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Abstract

Relationships between objects in the real world are
constrained by many physical and functional considerations.
This paper presents a formalism cal led Constraint Networks which
allows such constraints to be represented and used to make Infer-
ences about object locations in Images . Constraint Networks are
used in a system which accepts information about geometric rela-
tionships between structures in Images and then uses these
constraints to guide search for these structures. The system has
been used successfully to Infer rib positions in a chest X-ray
and to locate aerat ion tanks and new construct ion sites In aer ial
Images. 
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I. Introduction

Consider the following situation: You are flying at
3C00 feet somewhere close to home and wish to find your
neighbor ’s house; you might find yourself examining the
scene below in the following fashion: “Well , I know I live
close to the river . Upstream from the end of my street is a
park , so if I find the park I can find my house . And since
my neighbor lives north of my house I can just look a little
north of my house...”. This impromptu strategy for
neighbor ’s—house—finding can be viewed as applying a
successive series of constraints to the aerial image, thus
removing areas of the scene from further consideration. “My
house is close to a river and down from the park” and “My
neighbo r ’s house is close to mine ” are both facts which can
be used to limit the search space for a feature to a
reasonable size. The first constrains the sub—image to be
scrutinized to that part of the total image which is both
close to the river and at a particular orientation to the
river and park, while the second implies a constrained
sub—image which is close to your house. This process of
successive reduction of the search space by repeated
l imi ta tion of the space is extremely useful in approaching a
computer vision task. Currently, many systems simply use
the technology approach to vision ; i.e. apply an operator
over the whole of an image , and then use the results from
this massive “search” for further analysis. If instead we
could l imi t  — or , as we will say, constrain — our focus of
attention to a much smaller area by the intelligent use of
some facts and inferences drawn from them , we could then
make considerable savings in an analysis of any scene .

Cur goal , then, is to maximize the use of facts we
already know about a given scene to tell us where to look
for objects we are interested in. Further , we would also
like to be able to use any information that can be inferred
during the analysis as soon as the inference can be made.
‘10 attain these goals, we introduce a formalism called
Constraint Networks, which is useful in limiting our search
of an image for a particular instance of an object.

II. Constraint Networks

.1 Constraint Networks were originally outlined in
(Ballard , et al.]. In this paper , I have extended and
refined that notion. A Constraint Network (CN) models a
real world object ’s expected location in an image by
describing its relationships to other objects already
located in the image. Each of these descriptions is
actually a constraint on the object’s location in the image.
For ins tance , a dockyar d is usuall y found adjacent to the
water ’s edge and in or near a harbor. This statement tells
us two characteristics of real dockyards: 1) dockyards are
adjacent to the coastline ; and 2) dockyards are in or near
harbors. Both statements constrain the dockyard’s possible
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location by specifying where it would be with respect to the
coastline and to harbors. CN’s are an embodiment of this
kind of knowledge. In this report, CN’s are used in the
domain of image understanding to illustrate the more general
principles involved in continual search—space refinement.

A CN is composed of nodes represen ting objects or
object locations and arcs specifying operations which
express constraints between them. Each constraint serves to
determine the object location more precisely within the
image by limiting the possible area where the feature could
occur.

Specifically, a CN is the data structure which we use
to represent these constraints. Normally, a CN serves as a
data source giving the feature ’s location. However , since
the facts which limit the possible location of the object
are explicitly encoded by the nodes of the CN, if the
location is not known when the CN is interrogated , then an
evaluator can use the CN to compute the feature ’s location .
When a CN is evaluated , the evaluator uses the knowledge
encoded in the structure of the CN and data available to
compute the most likely area in the image where a particular
feature may be found . So, Constraint Networks offer an
inexpensive way to eliminate large parts of the image from
analysis by explicitly indicating where to look next when
given some contextual clues. In many scenes, information
about the location of one feature can specify the locations
of others in the picture (Garvey], .

However , when modeling real world constraints , we need
not limit the kind of knowledge used to simple relations of
feature locations within an image. CN’s can also utilize
additional information about the domain of interest. We
might also know , for example , that docks have a normalized
albedo above some determined value for aerial photographs.
Knowing this fact would immediately reduce our searching for
docks to those areas of the scene which have a reflectivity
greater than the value specified . Domain—specific knowledge
of this sort can also be represented as a constraint which
limits the range of values assumed by a feature description.

While these kinds of knowledge can also be represented
as a group of assertions, each encoding a single constraint,
we choose the network format for representing our
constraints because 1) CN’s are a forma l struc ture which ca n
explicitly encode the relationships between features easily,
2) it provides a facility for optimization of evaluation and
sharing of partial results, and 3) it is a simple way to
compose complex constraints from primitive constraints in a
straightforward manner.

- - = __
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III. Constraint Networks: Structure and Function

As we have established , a CN describes constraints
which are known about the location of objects in a
particular image. This knowledge is embedded in the form of
a connected network of nodes. Each node represents some
feature or object in the image. The network is composed of
nodes of three types:

Feature nodes — are the handle by which the Constraint
Network is accessed by some larger image understanding
system. The CN under a feature node embodies the knowledge
which describes a particular feature in an image. A Feature
Node has attached to it (as sons) CN’s which are alternative
encodings of the possible locations of the feature in the
image. These CN’S may be thought of as different strategies
for finding the feature. Yet, a CN is not a completely
procedural mechanism for representing knowledge , for
associated with each node in a CN is the result of the
evaluation of the CN below that node. This also holds true
with the feature node ; if the entire CN has been evaluated
below the feature node , then the feature node contains the
result of that evaluation . In this case , “evaluation ” of
the CN becomes a simple lookup. In other words , a CN is a
“compute when required” structure which minimizes the amount
of processing that it must perform . This is similar to the
idea of “memo functions” as suggested by (Michie].

Qperation nodes — are the nodes encoding the various
constraints which are placed on the feature being searched
for in the image. An operation node gets input from all of
its sons and then applies the operation it represents on
that data , thus realizing the constraint. Operation nodes
represent the geometric relationships between features and
are operations chosen from some system—defined set of
primitives.

Data nodes — are the terminal nodes of the network. That
is , they have no sons and always evaluate to data. Data
nodes supply an unevaluated network with initial image data
to operate on; they usually correspond to locations or
image features which are relatively easy to determine.

The nodes of a CN can all potentially hold data . This
capability is used to store the partial results found during
an evaluation of the CN. As a result , all nodes are always
in one of four states. A node is UP—TO—DATE if the data
attached to it is a valid instance of the feature in the
image. A node is OUT—OF—DATE if no data is attached to the
node (i.e. it is not known if this primitive feature exists
in the image) ; the node can be NONE—THERE if it is known
that no primitive feature of this type exists in the image,
or finally the node can contain information which is
HYPOTHESIZED (the result of the evaluation of a CN and may
not truly exist in the image). Each different status

H
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affects the results of node evaluation , and the way that
results are handled by any nodes which use the result. A
node that is OUT—OF—DATE returns a value which indicates
that the answer may be anywhere in the UNIVERSE of the
image. An UP—TO—DATE node explicitly points to the feature
in the image. A node which is HYPOTHESIZED determines a
loca tion in the image , but the data may or may not locate
the specified feature since it is the result of the
evaluation of another CN. A HYPOTHESIZED result is
considered the most likely location of a feature until the
validity of the HYPOTHESIZED data can be verified . Finally,
a node which is in a NONE—THERE state indicates that the
feature simply doesn ’t exist in the image , or that all
instances of that feature in the image have already been
bound to other nodes which describe this feature. (This
distinction is easy to make , but is only performed if
required.)

IV. Constraint Types

Constraints in the CN world are expressed by geometric
operations on data . The operations encoding primitive
geometric constraints are chosen from a set of basic

• operations which describe transformations on areas , describe
relationships between areas , specify shapes and the like.

• The function of the operations in the primitive set is to
provide the CN builder with enough tools to describe
flexibly and naturally image areas and their relationships
with other image areas. Although the number of potential
operations is quite large, we have found that a small number
of primitives (about twenty) suffice for most of our
descriptive tasks.

In our system , the primitive set is made up of four
different types of operations .

Directional operations specify where to focus
attention. Operations such as LEFT,
REFLECT, NORTH, UP and DOWN all
constrain the sub—image to be in a
particular orientation to another
feature.

Area descriptions specify a particular area
in the scene that restricts a feature
location. For example , CLCSE—TO ,
IN—QUADRILATERAL, and IN—CIRCLE define
areas at some loca tion in an image of
interest.

Set operations permit areas to be handled as
point sets of pixels. These operations ,
such as UNION , DIFFERENCE and
INTERSECTION make very complex image
areas far easier to describe .

Pre dicates on areas allow features to be
filtered out of consideration by

I L  -



r -— ______  ________

• deting by Constraints Page 5

measuring some characteristic f the
data . For example, a predicate testing
WIDTH, LENGTH or AREA against some vaLue
would restrict the size f features in
consideration to be onLy th se within a
permissibLe range.

In actually constructing a CN, the builder is not
limited to building CN’s from purely primitive operati ns.
Since a CN represents an implicit description f an area in
the image, it can be used by other CN’s as an peration for
Locating a feature. This alLows the CN builder the ability
to form very complex CN’s by building upon previous work.

V. Describing an Object Location ~~ Constraints

By using a combination of geometric constraints we can
describe the expected location of most features that we

• would like to f ind  in a scene. We can ice the location .,f
the aeration tank in a sewage treatment plant for an
example.

The aeration tank is a rectanguLar tank surrounded on
either end by circuLar sludge and sedimentation tanks.

V
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~ 
: Aeriat view of a sewage plant
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As a general ru le , sewage flows from the sedimentation tanks
to aeration tanks and finally through to the sludge tanks.
This design permits us to identify and use the following
types of constraints on the location of the aeration tanks.

Constraint 1: “Aeration tanks are located
somewhere close to both the sludge tanks
and the sedimentation tanks.”

Constraint 2: “Aeration tanks must not be
too close to either the sludge or
sedimentation tanks.”

These constraints seem reasonable because we understand that
in a design of a sewage plant , the various components of the
treatment process will be close together for practical
reasons. And , since the aeration phase occurs between
sludge treatment and sedimentation collection , we can expect
to find the aeration tanks between the sludge and
sedimentation tanks.

The first constraint explicitly relates the possible
location of the aeration tank with the location of the
sludge and sedimentation tanks. This relationship would be
encoded in a CN as:

Aerat ionTank

UI Distance 1Union

Sludge [Sediment
Tanks ( Tanks

• Figure 2 — CN encoding of Constraint ].
• (see Xppendix 3 for notation)

When this CN is evaluated , the top node would have data
expressing that part of the image which satisfies Constraint
1; that is, that portion of the image which is within some
distance X of both the sludge tanks and the sedimentation
tanks. (X could be found empirically. It could also be the
result of another CN which might consider the tank ’s
diameter or the camera angle of the image.)

Similarly, Constraint 2 would be encoded as shown in V

Figure 2.1 below.

~ ~~~~,•  ,~4~~w~I •
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1
~iurat ionTank

L ‘~~

“p

L c 2[
Ui [~istance—I

U~~O n J  

_ _ _ _

[[
Sludge J Sed,ment 

-

Figure 2.1 — CN for  Const ra in t  2

The en t i re  network describing the probable location of
the aerat ion tanks must  embody both of these cons t r a in t s .
Cons t ra in t  1 determines an area which is close to both

• groupings of tanks and Cons t ra in t  2 says that we should
disregard a portion of that area. If we think of the image
as a point set (that is, a list of pixels in some order
which makes up the image), the function to perform would be
a differencing operation to remove the area given by the
second constraint from that specified by Constraint 1.
Figure 2.2 shows the final CN which incorporates both
constraints.

Of course , there  could be places where the ae ra t ion
• tanks might  be located very far away or perhaps violate some

other constraint. It is important to note that the
constraints are only the most likely limitations on an
object .  They can work very well for  stereotyped scenes, and
might  fa i l  to per form in novel situations. The cause or
ontology of the constraint  is unimpor tan t  here.  (See
Section IX on Future  W o r k . )  Simply tha t  such constra ints
exist and can be u t i l ized  by an image understanding system
is important in this context .  We believe that  geometr ic
const ra ints  are adequate for  the kind of f ea tu re s  we may
wish to locate in an image because things of complexi ty
usually exhib i t  d i f f e re n t i a b l e  par ts  related and
interconnected by their functions or by their existence in a
common milieu . Because of this, these relationships often
can be expressed in terms of their form , or , put another
way, by geometric descriptions which relate parts of the
whole. Domains which exhibit weak relationships between
discernable features would cause Constraint Networks to
perform poorly. This can occur, for example , when
attempting to analyze microphotographs of a slide smear. 

~~~~~~~~ -- .~~~~~ 
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The objects have randomized locations on the slide to make
them easily observable and as a result , demonstrate few
connections which could be represented as constraints.
However , in more ordinary domains the connections of
functionality , shared properties and cooperation affect most
commonplace things, and therefore, constraining attention is
often a useful and powerful tool to guide search.

Aeration
Tank

Dl

ditlerence

C2

close•to

Cl Distance
V

Close-to 
___________

Ul j Oist~nce 

~union _ _ _ _ _

Sludge Sediment
Tanks Tanks V

Figure 2.2 — Complete CN for aeration tank location

VI. Evaluation of Constraint Networks

A Constraint Network is evaluated by a special purpose
evaluator working top—down in a recursive fashion , storing
the partial results of each constraint at the topmost node
associated with that constraint, with a few exceptions.

In Figure 3 we give an example of a Constraint Network
which is to find the most likely site for new construction V

on a new oil tank farm . We know from experience that the

~t~- ~:i::°:: iwi: 
V. :~~~~~:
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near other , older oil tanks. But since we only wish to find
new construction , we can eliminate the old oil tanks and
their immediate vicinity . With this in mind , we can
interpret the CN in Figure 3 to represent

“New construction around oil tanks is f
usually found near the oil tanks, but
not on the oil tanks themselves. ”

The computation required is not difficult to see. We want
to compute the union of the oil tanks , and subtract that
area (the oil tanks themselves) from the union of the areas
near the oil tanks. This should reduce the image area being
searched from the entire image to a considerably smaller
“swiss cheese” area in and around the tanks. (As a further
refinement to the CN we could also remove permanent
structures which are within this region . The CN has been
simplified for discussion ’s sake.)

[ New

• [ Construction

‘4 
- 

2

difference

H _  _

I ci 
_ _ _ _ _

(~~~~lose.to [ close .Io 
V

/(~~~~~\ H
Distanc~1 _____________ 

Distance
H x l  I ~‘

_________ 
uniOn L

vi~~ 7

[ [ T
ank 11 .. Lr~~~ ~11Figure 3 — a CN for new construction site in an oil field

We can think of a CN’s evaluation in the following way.
Feature nodes may have several sons, or sub—CN ’s, each
encoding a separate strategy. A particular strategy is V

A t
- ~~~~~~~~~ — -  
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selected by a strategist as described in [Lantz , et al].
The strategist computes the utility of each strategy
attached to the feature node and based on this estimate the
most desirable strategy is selected . The strategist ’s
measurement of utility is based on both an a priori
measurement of the algorithm ’s effectiveness and an
assessment of the status of the data present in the body of
the CN.

On this basis , the strategist interested in the feature
node chooses a strategy and begins to evaluate the CN. In
Figure 3, the Feature node (Node 1) has only the single
strategy mentioned above. The strategist would be forced to
select this strategy for evaluation. In the more general

V case, strategies of a feature node are evaluated until an
• answer is obtained or all strategies are exhausted . If all

strategies are evaluated , and none is able to return a V

result , then the entire image is returned . The feature
could be anywhere in the image.

When a strategy is selected , the root node of the
strategy will be evaluated (In this case, Node 2) . In most
CN’s, this node will be an operation node. An operation
node evaluates by first evaluating all of its arguments , and
then applying its procedure to those results. Its own

• result is passed back to node of the CN which evaluated it.
Of course , if the son of art operation node is a feature node
or another operation node , then the evaluator will
recursively continue to evaluate .

V At some point in the course of the evaluation , the
evaluator reaches a node which has already been evaluated
and is marked UP—TO—DATE or HYPOTHESIZED (and therefore
containing the results of evaluation below that point). The
results of this node are returned and used exactly as if it
were a data node. If a data node is marked OUT—OF—DATE is
evaluated , the evaluation mechanism returns a result stating
that the pr imi~ ive feature location is not specified , and
that more work needs to be done by an executive procedure
(which will presumably direct a low—level worker to find the
needed information) . If the pr imitive feature is then not
supplied , the strategist will specify the status of the
node. In this case , either the feature doesn ’t exist , all
instances of that feature in the image are already bound to
other nodes , or the worker could have simply used up all
available resources before being able to return an answer.
In the first two cases, the node would then be marked as
NONE—THERE , and would return NIL to indicate that the
feature desired is not in this image. Alternatively, if the

V worker has exhausted its resources , but has not yet
V determined the status of the feature described by the node ,

the node will remain CUT—OF—DATE and have the entire image
as its value. This indicates that the feature could be
located anywhere in the image. At a later date, processing
can resume from this node without having to recompute the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _  •~~~~~~~~ V V . V
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v
part of the tree which was already processed . Finally , a 

V

node marked HY?QTHESIZED has data which was inferred by a CN
somewhere down the line of inference . HYPOTHESIZED data can
and is used to make inferences , but the results of all
inferences based on hypothesized data are marked

V HYPOTHESIZED as well.

VII. An Example of CN Evaluation V

• Figure 3 is the graphic representation of the
Constraint Network which computes the area of probable new
construction of tanks at a tank farm site. This CN embodies
the strategy (given above) of “New construction of oil tanks
is found near the old oil tanks , but not very close and not 

V

on the oil tanks themselves ”.

To evaluate the CN, the evaluator would begin with Node
1, the feature node , and discover that it was initially
OUT—OF—DATE. The evaluation routine would then evaluate the
strategies attached to the node in the order specified by

V the strategist. In this case we have a simple choice — only
a single strategy exists. This process would then continue

• until a strategy returned a valid response , or until the
strategist decided that continued evaluation would become
too expensive to pursue any further. The evaluator would
proceed to evaluate the strategy embodied in the remainder
of the C1~. To do so, it would traverse the graph , returning
a value only when it find s an UP—TO—DATE or NONE—FOUND node ,
or if it simply runs out of alternatives (then returning
NONE—FOUND too)

To evaluate the strategy, the evaluator would then
evaluate Node 2. Since it is an operation node , each of its V

sorts must be evaluated before it can apply its constraint.
Now the evaluator has a choice between Nodes 3 and 8. Since

:1 each node is realizing a single constraint , the order of
evaluation is unimportant. We~ choose preorder for the sake
of discussion. Continuing on in this fashion , the
evaluation reaches Node 4. This node gives a distance
measure to Node 3. It quantifies the meaning of “near the
oil tanks” . Again , this value can be found empirically, or

V it too can be the result of another CN. In this CN however ,
the distance is given by a data node which is marked
UP—TO—DATE. Upon evaluation, this nude returns an argument
to Node 3.

This procedure of evaluating sons and returning
continues until the evaluation reaches Node 8. When Node 8
evaluates its sons , it first attempts to evaluate Node 5.
However , Node 5 has already been evaluated from Node 3 and
marked UP—TO—DATE . Since the node has already been visited ,

• the evaluation of Node 5 returns its result to Node 8
without having to re—compute.

_ _  _ _ _  

~~~~ 7V V
V
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— V. Results from each evaluation are propagated up the
network and each node ’s result is stored at that node and
the node is marked UP—TO—DATE. Finally, the result of Node
2 is available and Node 1 can be updated with its correct
result. The evaluator then returns with the Feature node ’s
resui. t.

Since we have not yet verified the presence of new
construction in the area returned by the CN , and are

• therefore uncertain of its exact status, we attach the label
HYPOTHESIZED to the data now stored at the Feature node ,
Node 1.

VIII. Attachment of Data to Data Nodes

• As we shall see below , every Constraint Network must
begin with some data . However , when we write the CN’s, we
don ’t know how much or what kind of data will be given at
evaluation time. How does the CN find its initial data set?

• Since it represents generic knowledge, the CN is
constructed separately from the image, and , for a useful

• system , the CN must be able to work over a wide rang e of
inputs from many sources. To solve the problem of
identifying nodes in the CN with instantiated features in

V the scene , we have developed two methods of run—time
attachment of data. Each node in the CN , whether it is a
Data, Operation or Feature node, has a descriptive name
associated with it. At run time , when data is added to the
system , it is bound to a node based on this description .
This object description is CN dependent and is simply a text

• description of the item as it appears in the scene. It is
chosen from a list of such descriptors which apply to a

V particular CN. For example , “oil tank 23” would be an
object peculiar to one image and could be bound to the
generic node ‘1 oil tank” in the CN. Data can also be bound

• to specific nodes in a CN by structurally matching parts of
the CN to a description of the area expressed in the
relational primitives. That is~ the data being input is
described by a sub—CN specified by the agent delivering the
data. This sub—CN is then matched to portions of the the
existing CN by graph—matching techniques and the data is
bound between corresponding nodes. In both cases , the
binding is done only on demand . Demand occurs whenever an
OUT—OF—DM E node is evaluated ,. When this happens , the data
which has been added is examined to see if any item matches

• either the name or the structure of some node in the CN. If
a free datum does, its value is attached to the node which

V is being evaluated ; and the datum is removed from the• new—data pool.

Primitive feature data could come from a map, as in
[Barrow] , from a special purpose “wor ker ” routine , designed
to find the primitive features that are easy and quick to
find ; (as in Ballard’s Right Rib 4 finder [Ballard ,TRll]),

~~~~~~~~~~~~ • V - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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V t

or from some other external source. This gives the CN a
basis upon which to direct search for the features in the
image .

In keeping with the generic nature of the
uninstantiated CN , no data is attached to any node.
Whenever a new feature is bound to a node, those results

• which depend on it as a par t  of the i r  s trategy should be
re—computed . To separate out only those parts of the CN
which are dependent on the newly updated node, all of the
nodes above an updated node are marked OUT—OF—DATE. The
effect of this is to inval idate  all of those HYPOTHESIZED
features whose computations were based on what has now
become incorrect data. Since the evaluation process
proceeds only past nodes which are marked OUT—OF—DATE ,
updating the status of only the invalid nodes minimizes the
amount of recomputation which wil l  have to be done to

• re—evaluate the CN , that portion of the CN which must be
recomputed from that which is still valid .

IX . Use of Par t ia l  Knowledge

Usually, each CN starts with some data in the form of
features already located in the image, numeric values

• specified , etc. However , the number of UP—TO—DATE nodes may
:1 vary from as few as one , to as many as every node in the

network. One of the key features of CN’s is that their
performance improves as the number of UP—TO—DATE nodes
increases. The accuracy to which a CN can compute an area
in the image corresponding to the desired feature depends to
a large part on the number of UP—TO—DATE nodes which it uses

V during its evaluation. Figure 4 is a CN describing the
• expected locations of ribs in a medical image based on the

locations of the neighboring ribs either across the chest,
or up and down the rib cage. This is an unusual CN: it has H
no explicit data nodes which represent ribs , but since each
node can contain data , we can bind data to an operation node
or feature node exactly as we would a data node.

[ Ribcage

• H: ~

LRS 
[

AR S 

~ I
- V_ V~~~~ 
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RR4

_ _ _ _ _

V_  
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1R4 

~ 
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-

• /~~~~ 
V

[ 

8R3 Oist 2

Figure  4 — CN describing r ib  locations

Suppose we are able to find RightRib4 in a chest X—ray.
Using only this data , the CN would be able to return an
en t i r e  hypothesized r ib  cage based only on the model
represented by the CN. This yields at best only a crude
estimate of the rib locations (Ballard ,TR1].]. A better V

approach would be to coordinate an interaction between the
CN and a worker which would then look for a rib in the V
hypothesized area (using a r ib  wor ker procedure a ’ la
[Ballard ,TRll]). Now , if we were able to initiate the CN
with  two or more r ibs , the hypothesized ribcage location
would improve dramat ica l ly . In this CN , r ib  locations are
represented by three d i f f e r e n t  t r ans fo rma t ions  of known
ribs. The location of LeftRib 3 (LR3) is represented to be
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a) Right aib 3 reflected about the spine , b) LR2 sh i f ted  down
the rib cage by one inter—rib distance , or C)  LR4 shifted up
by a s imi la r  amount .  Each of the three  s t ra tegies  has a V

V 

d i f f e r e n t  u t i l i t y . The re f lec t ion  of a r ib  around the spine
has a good chance of constraining the rib location very
tightly. This is not as true for the down—rib operation ,
and the worst case occurs when an upward rib is hypothesized
f rom the source r i b .  (Bal lard ,TR 11]

V Each const ra in t  operation re turns  an area of likelihood
based on whatever results it has available for use. If this
data were the result of a previous conjecture , and that the
resul t  of a conjecture before it , uncer ta in ty  about the
exact location of the feature location accumulates. As an
empirical result , however, we have found that this
accumulation of uncertainty is not a very serious problem
fo r  domains where the chain of inferences is short ,  or the
relative positioning of features is restricted . In the ribs
world above, for example, the successive rib locations are
highly constrained with respect to the ribs around them and
therefore the uncertainty in hypothesized rib locations V

never becomes very large, even after passing through a long
chain of reasoning . One might  f ind  examples where the V

accumulat ion did become so great  as to render the resu l t  of
V many successive constraint operations of little value.

However, this problem can be obviated by appealing to the
higher level strategist to verify the sub—CN ’s hypothesized
results and thus make them into reliable information sources
before building upon their results [Lantz , et all .

Since partial results are maintained in context, the
• utilization of new and corrected data becomes a simpler

V task.  With each operation expl ic i t ly  denoted and its
results available, re—evaluating a given operation reduces
to f inding the node which made the last correct computation

V and then attempting either an alternate strategy or
• supplying new information to be evaluated , in a new and more

correct fashion. Also , since the addition of new
information to the CN marks OUT—OF—DATE only those
computations which are dependent on tha t  i n f o r m a t io n ,  only
they will  need to be re—evaluated .

X. Grain Size of Constraint  Networks

In the hierarchy of data structures produced during
image analysis, the level of effective operation of
Constraint  Networks seems la rge ly  l imited by the na ture  of
the expectations incorporated into the CN. The constraints
used are static by nature and their applicability seems
limited to high—level concepts. We have found that CN’s
tend to become d i f f i c u l t  to mana ge e f f ec t ive ly  at low levels
of domain representation and inferencing . In the vision
domains we have studied , low level processing such as region

V 
V growing , edge following or the like do not seem easily

amenable to representation as Constraint Networks. CN’s can

b
— 

_ _ _ _  _ _  ~~~~~~~~ t VV VV
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~~~V V 
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easily provide an adequate mechanism for line following when
the edges are of high contrast. But in noisy environments
and at small grain size, the strong interconnections between
features rapidly become weak , reduc ing the basis on which
Constraint Networks operate.

XI. Future Work

A desirable future extension of Constraint Networks
• would be to incorporate some notion of the connection

between structure and function in computing an object’s most
l ike ly  location in a scene . This would i n i t i a l l y  requi re
that  the CN perform inferenc ing  of a d i f f e r e n t  sort  about
the structure of a feature. Currently, the knowledge in a
CN is structurally oriented . It describes the location of
art object based solely on its relationships to other objects
in 3—space. Comprehension of the functional connections
between objects would greatly increase the robustness of
feature location. 

V

The dynamic data attachment mechanism is f a i r l y
expensive if the semantic descript ion par t  f a i l s , since it
involves sophisticated graph matching between the input

• description and portions of the CN. This could be a
substantial area for improvement.

Constraint Networks can also be used as a knowledge
source describing the relationships between objects in an
image. In this use of CN ’ s , they act as a static
representat ion of the interconnect ions between items ,
separating features from their functions in CN’s. We have V

made some preliminary efforts in this direction , attempting
to categorize the nature and manner in which non—geometric
inferences could be made from the structure and contents of
th e CN . V

XII. Summary

In this paper I have attempted to illustrate how
Constraint Networks operate , what kinds of things they can
be used for and to indicate their adequacy as goal—oriented

V direc tors  of a search process. Const ra int  Networks  have
been shown to be useful  in di rect ing specialist  rout ines  in
a model—driven search for features in both medical and
aer ia l  image unders tanding .

V In addit ion , I have shown a few of the properties V

charac te r iz ing  Constraint  Networks , including : improving
accuracy with additional data , automatic attachment of data
to procedures by semantic description , maintenance of

V partial results , sharing of partial results by matching on
their structural description , and “compute—when—required ” V

behavior minimizing the total processing performed to
extract a feature location.

V~~V~~~V V _ V ~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -- - -
— —~~~~~— —-V — ~-V_V~ ____ 

~~~~~~~~~~ —V -V V. 
~~~~~~~~~~~~ ~~~~~~~~~~~~ _-_-
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~~pendix 1
• Op !rati n t f  a CN EvaluatV r Program Example 1

Bel .w we sh .w the results f pr cessing by the
C nstrairt t Netw~rk given in Figure 5. This trace
illustrates the capabiLity ~f CN’s t impr ve the
hypV thesized rib l catiVns with differing amounts f initial
inf. rmati ,n.

—

Figure 5

Fig u re  5 shows the i n i t i a l  data given t~ our simple
m)del ~f a r i b  cage. In th is  case , we have specified )flly
the Ucatiin f right rib 4 (RR4). This data c~uld have

V c ,me f r o m  a human s urce ~r specialist workers designed t,find ribs with a high a pri~ ri reliability .

V. 

- 

V _ V  _V X V ~~~~~~~V_ _  V_ V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



F~~
V V V _

~~~~ 
~~~~~~~~~~ 

- 
V~~~ V V ~~~~~~_VVV V V _ V ~ ~~V V _ V ~~~~~ V ~~ -V_V.  

V~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - —

M V) de l in g by C’nstrairtts Page 18

If we n3w evaluate the CN , the remaining five ribs will
be hyp thesized using three different strategies. Figure 6
sh ws this result. The chV ice ~f strategy is dependent )Tt
its expected utility and is made by a strategist verseeing
the evatuati,rt .

-~~~~~~~

V 
‘ qIE - 

--

Figur e  6

LR4 is hyp.thesized with the “good ” cr~ss spine
reflector model , which statistical studies have sh wn will
give us g~~d matches f.r the ribs [Ballard] . LR5 is
c)mputed by using the d .,wrt translatiV~n fr.,m the l cati V n f
LR4. While we know this  prediction will give us a
reas nable estimate 3f the rib locati .ns , we can see that it
is n~t nearly as precise as that given by the reflecti n.
The remaining ribs are hyp thesized f r m  this data by
c~ntinuing the up and d w n  translati ns f r m  the
hyp thesized results V3f ~thet CN’s.

In Figure 7 the CN is initialized with a larger data
set, this time it is giv en LR3 , RR4 and RR5. Starting the
netw rk with this much data is n,t entirely implausible . We
might , f~ r example, have computed these rib l3cati~ns in aprevi,us sessi~n ~r they might be the result ~f a different
part  ~f the image unders tand ing  system which was able t

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~
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c~mpute these rib locations easily and could share the
results with the CN model.

Figur e  7

If the CN is n w  eva lu a ted  it wou ld  compute the r e s ult
shown in Figure 8.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I

Fi gure 8

If we compare Figures 6 and 8 we can see the improved
performance with additional data. In particular, RR3 and
LR5 are confined to a smaller area in Figure 8 since the CN
c uld use the reflection model fV)t rib location rather than
the less e f f e c t i ve  up or d own t r a n sla t i o n s .  Impr ov ement in
the quality of the hypothesized reg ions comes ab ut as a

V result of being able to use the SuperiOr strategies f r
predicting rib locations, and flVOt having t rely on a a long
chain V)f hypothesized results based on the poorer quality
St ra teg ies .
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Example 2 
V

An ther way in which Constraint Networks impr ove withincreased amounts of i n fo r m a t i o n  is by being able to rem ove
areas from consideration based upon the added da ta .

Figure 9 sh Ows the in i t i a l  data given tV) the aerat i~ ntank CN f rom Figure  2 .2 .  In this  case we are  able tO startthe CN with only a single sludge tank and a single Vsedimentation tank .

—

‘ 

~~~~~~~~

—

Figure  9

When the CN is evaluated , the resu lt  is that sh ownbelow in Figure 10. 

--V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ V’~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V - V
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V

~~~~
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V

I V
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-

FigVure 1.0

If we now add to the CN the location of the remaining
sludge and sediment tanks in the picture , and re—evalua te
the network , the result mor e accurately reflects the actual V

location of the aeration tanks.

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~V .

~~~~~i: ~~~~~~~: -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 
~-V~~~~~~~~~ V _ V V ~~ 

VV~~~~~~~~~~~~~~~~~~~~~~~~_  ~~~~~~~~~ 
V -V _

iodeling by Constraints Page 23

~~
1
~~~~~~~~~~~~~~~~~~~~~ t

fr 

V -i- :

V Figure  U

- 

1_~~~~
V V~~~~~~~~ . 

- - —

—— V ~~VV_ ___ 
~

V V._ VVVV ~~__ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - dV~~�~~J_JV __~ — — _ _ _ ~~~

__ — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _

Modeling by Constraints Page 24
-

(
---V

V Appendix 2
System Implementation

V 
The CN system reported here was written in SAIL at the

University of Rochester by the author during the summer of
1978. It consists of three prog rams — CNGEN , the Constraint
Network Generator; PlC , the data set constructor and EVAL ,
the CN evaluator and test prog ram . The programs communicate 

Vvia disk files containing the LEAP world which defines not
only the CN’s, but the data as well.

Data is represented in LEAP as the datum of an item .
F e a t u r e s  in the picture are represented by lists of the
pixel locations which the feature occupies. The canonical
representation used is basically a run—length encoding of
horizontal scan—line segments making up the region. This

V representation has several nice properties from an
implementation viewpoint. It is very easy to represent
multiple areas , or a discontinuous feature in a scene in a

V • single list datum . Union , difference and intersection of
areas  are all straight—forward to implement , and the V

merge—like algorithms used run in time varying linearly with
the size of the regions. Facts about the data contained in
a data node are encoded as LEAP triples (or associations)
which state a particular quality of the data node. The

V triples assert facts such as data type (the representation
used ; INTEGER , AREA , REAL) node name , node status
(HYPCTHESIZED , CUT—OF—DATE , NONE—FOUND , UP—TO-DATE) , and
which nodes are sons or fathers of a given node . V

Co n s t r a i n t  Networ k s are  also represented in LEAP . In
the same way, LEAP t r i ples are used to represent the
Father—Son relationships between nodes in a network and to
associate the various node states with each node. In LEAP
no tation , a node which was ou t of date woul d be — V

VALIDIT’~i of NODE is CUT!CF!DATE 
V

The process of generating the CN’s and savin g the ir
structure onto disk is done by the CNGEN program . This
program runs interactively on a Grinnell color display,
allowing the CN builder to see the CN’s as they a re  bein g
made. The program permits the builder to edit, create and
delete CN’s easily and quickly. The desirability of such a
f a c i l i t y  fo r  semant i c  netwo r ks was r e c o g n i z e d  in [B r a c h m an )  -

PlC takes digitized images and creates the initial data
nodes for the CN’s to evaluate. PlC can create arbitrary
shapes interactively by using various sizes of circles ,
arbi trary quadrilaterals and lines. Complex shapes are 

V

formed by merging together smaller pieces of the shape to
form the final region.

LV- V - .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Finally, EVALI performs the evaluation of the CN’s.
EVAL accepts data sets and CN ’ s on demand . It offers
tracing facilities which display the result of the
evaluation of each node in a different color. This facility
makes it easy to follow the inferencing patterns of the CN
in use and permits an easy way to follow the actions of the
strategist.

-- _ _ _  _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~
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— - -
~ Appendix 3 Constraint Network Notation

On the Grinnell color display , a CN is a multi—hued V

splendid thing . Feature nodes are red , Operation nodes blueand Data is green . As an alternate representation for ablack and whi te  world , the nodes are labeled as below —

______________________________

L
Figure 12 — Feature Node

V 

_ _

Figiire 12 — Operation Node

• 

LL~~~~~~~~~~~~~~~~~~

Figure 12 — Data Node

r
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