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ABSTRACT

‘
~ cheduling logistics operations in a multi-echelon production system

requires planning and coordinating production and transportation decisions

for all facilities in a system . In this paper we show how these decisions

can be made in an actual multi-facility system consisting of a component

plant, at which products are ~?roduced , and a set of destinations, at which

the end product, automobiles , are assembled. An assembly schedule for

automobiles is specified in advance for each week in a planning horizon.

The component plant is required to produce and ship the correct mix of

products to each destination to meet this automobile assembly schedule on

time. Our objective is to develop models and an algorithm that can be used

to determine what products should be produced on the various production lines

at the component plant during each period (either a shift or a week), what

portion of a period ’s production and inventory on-hand at the beginning of

a period at the component plant should be loaded into rail cars and shipped

to the various destinations, and what portion of a period ’s production should

be held in inventory at the component plant into the next period so as to

minimize the appropriate costs subject to constraints on production and shipp ing .

The structure of the problem is examined and is exploited in the proposed

algorithm . \
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I. INTRODUCTION

Scheduling logistics operations in a multi-echelon production system

requires planning and coordinating production and transportation decisions

for all facilities in a system. Our goal in this paper is to show how these

decisions can be made in an actual multi-facility system operated by a large

automotive manufacturer. The system consists of a component plant, at which

products are produced, and a set of destinations, at which automobiles are

assembled. An assembly schedule for automobiles is specified in advance for

each week in the planning horizon for each of the destinations. In the real

environment, the planning horizon is normally 12 weeks, and the assembly

• schedule is not the same for each week of the horizon. The component plant

is required to produce and ship the correct mix of products to each destination

to meet the automobile assembly schedule on time .

The component plant produces products on independent production lines.

Certain products can be produced on each line. Only one product is produced

on a given line at a time ; different or the same products can be produced on

different lines at the same time. Changing production from one product to

another on a given line is accomplished quickly and at virtually zero cost,

and therefore can be ignored. Production lines are designed to. produce

products used in the assembly of a limited number of types of automobiles.

These production lines can be divided into separate groups so that lines in

one group are all capable of producing the same range of products; however,

any product produced in the group cannot be produced on a production line in

any other group. Only certain types of cars are assembled at each destination.

Furthermore, the manner in which products have been assigned to production

lines corresponds to the products used at the destinations. The destinations

can be divided into groups such that a) each product produced in a group of

production lines goes to only one group of destinations, and b ) the products
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used at any destination are produced on only one group of production lines.

This relationship is illustrated in Figure 1.

The products produced on all lines perform roughly the same function on

each type of automobile. The production lines are designed to take advantage

of the peculiarities of product manufacture that are dictated by the differ-

ences in the design of the automobiles. Due to the similarity in their basic

design, the cost to manufacture each product on the same group of production

lines is essentially the same.

• The amount of a product produced on a particular production line is

normally measured in container loads. The time required to produce a container

load is essentially the sane for all products. Once produced , the individual

umits are placed in containers which are transported to a warehouse for temporary

storage prior to being shipped .

Each week in the planning horizon is subdivided into shifts. During each

shift container loads of different products are loaded into rail cars, which

are then sent to various destinations. For any given destination, one or more

products can be loaded into a rail car; any integral number of rail cars can

be loaded for a particular destination. However, one rail car goes to one and

only one destination.

Assembly schedules can be expressed in terms of rail car equivalents.

Thus a schedule can be stated in terms of the number of rail cars of various

products that are needed at each destination by a specified time to carry out

the planned assembly schedule. Due to the manner in which each product is

produced on one of a group of production lines, which are, in turn, uniquely

identified with a set of destinations, we can aggregate the requirements for

each destination and express these requirements in terms of rail car equivalents.

For example, we could state destination twenty ’s requirement as follows: by

the end of week three we must have at least five rail cars shipped to destination

I
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4

twenty from the component plant. The component plant can disaggregate this rail

car plan by recognizing the exact mix of automobiles that will be assembled at

each destination. Thus the production goals for each type of product can be

established for each week in the horizon given a weekly rail car shipping schedule

and the assembly requirements at each destination. Furthermore, these weekly

production goals can then be systematically assigned by product and ultimate

destination to each shift throughout a given week.

There are a number of considerations in addition to the ones we have already

mentioned that must be taken into account when preparing a production and rail

car shipping schedule. First, no rail car will be shipped from the component

plant unless it is full. Second , there are weekly and shift constraints on the

number of rail cars that can be loaded and dispatched to destinations from the

component plant. Third, a maximum number of container loads of products can be

produced on a given line during a shift; however, this production capacity can

be divided in any fashion among the products that can be produced on the line

plus possibly slack time.

We have noted that production changeover costs are negligible at the com-

ponent plant, and that the cost of producing a unit of any product is approxi-.

mately the same . By union contract , employees are paid whether or not they work

so that over the short run labor costs are independent of the production or

shipping schedules. Also , the cost of production does not depend on the shipping

schedule since there is adequate capacity on regular time to meet all demands

at the component plant. (Overtime, in practice , would be used only when an

unforeseen shortage occurs for parts used in making the products, or a quality

problem occurs at the component plant.) However, the manner in which production

and shipping activities occur at the component plant significantly affect

• invento ry cwrying costs at each location . If production takes place several
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5

weeks prior to the time that units are needed , then carrying costs a’e incurred.

These units are sometimes stored at the component plant, but may be shipped

by rail car to assembly plants in advance of the time they are needed and

stored there. Normally, if the units are stored at a destination, they are left

in the rail cars. The cost of storing a unit, including the additional material

handling cost at the component plant and the demurrage for a rail car used as

a storage device at a destination , is assumed to be the same at either the

component plant or a destination. We ignore the pipeline i.~.-entory of units

in rail cars traversing from the component plant to a destination; this time

has been taken into account in the assembly schedule at the component plant

for a destination.

The production and shipping scheduling problem we have discussed can be

modelled in several ways. One possible model would have as decision variables

the amount of each product produced on each shift at the component plant and

the number of rail cars shipped to each destination during each shift through-

out the entire planning horizon. This type of model is easy to develop . However,

the usefulness of this type of model is not certain. Predicting shift-by-shift

production and shipping quantities at the component plant many weeks into the

future is considered to be a meaningless exercise in the real environment due to

the day-to-day dynamics. Consequently , this detailed model is not appropriate.

Furthermore, computational requirements for generating an optimal solution to

this type of problem are substantial.

Rather than tackling the detailed shift-by-shift problem for the entire

horizon, we propose to separate the production and shipping scheduling problem

into two parts. Since weekly assembly schedules are fixed at the destinations

for many weeks in advance, we first propose to identify aggregate week-by-week

production and shipping goals for the component plant. Aggregation is done

over all products that are a) produced on a given group of lines, and b) shipped
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6

to a particular set of destinations. Thus, rather than being concerned with

particular products, production and shipping requirements will be expressed

in terms of rail car equivalents for each group of products at each group of

destinations over the planning horizon. This aggregation is possible since

production capacity in each group of lines is interchangeable among the

products produced on those lines, and each destination ’s requirements are

produced in only one group of lines. The first model we develop will determine

the number of rail car loads to produce at and ship from the component plant

to the destinations each week so that the only cost under control, the carrying

cost at the plant aiti the destinations, is minimized while satisfying constraints

on a) meeting aggregate product demand at each destination , b) loading no

more than a maximum number of rail cars each week at the component plant,

and c) producing no more than capacity allows each week on a group of pro-

duction lines at the component plant. The model must also not allow a rail

car to be sent to more than one destination . Thus, the solution to this

problem , which we will call the aggregate production and shipping scheduling

problem , will indicate the number of rail cars to ship each week to each

destination so that overall inventory carrying costs will be minimized .

Once this solution is available we can address the second part of the

problem , namely , determining the detailed shift-by-shift production and shipping

schedules. However, rather than determininç LL~s~ detailed schedules for the

• 
~ entire horizon, we will establish them for only the first week of the horizon.

A detailed schedule can be developed for longer horizons if desired using

the methods we will describe. Recall that the solution to the first problem

establishes the weekly shipping plan. Given this plan , the second problem we

propose to solve determines what products to produce and ship on each shift

of the first week so that carrying costs are minimized over this period of

time and the constraints on a) rail car loading capacity for each shift,

I
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b) production capacity on each line in each shift, and c) the weekly shipping

schedule as established in the solution to the aggregate production and shipp ir~g

scheduling problem are all met . We also must ship only full rail cars , and

individual rail cars can go to only one destination .

As we will see, each of these two problems has a special structure. In

the next section we will state a mathematical model for the aggregate pro-

duction and shipping scheduling problem , analyze the structure of this problem,

develop an algorithm which exploits this structure, and present an example

• problem . In the third section, we will show how the solution to the aggregate

production and shipping scheduling problem can be disaggregated . In the final

section we summarize our results and discuss some possibl- extensions to the

model.

I
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8

II. AN ANALYSIS OF THE AGGREGATE PRODUCTION

AND SHIPPING SCHEDUL.ING PROBLEM

The aggregate production and shipping scheduling problem described in

the last section can be formulated as a mathematical programming problem . The

model we present takes special advantage of the relationship between a group

of production lines and a set of destinations. Recall that a) all production

lines within a group can produce the same products, b) products produced in one

group of production lines cannot be produced in any other group of lines,

4 c) each product produced in a group of lines is shipped to only one group of

destinations, and d) the produci s used at a destination are produced in only

one group of production lines. Hence there is a one—to-one correspondence

between a group of production lines and a group of destinations. The weekly

production capacity for each group of production lines can therefore be con-

sidered as the sum of the capacities of the lines within that group ; also,

the shipping requirements for all destinations within the same group can be

aggregated since only full rail car shipments are made and the one-to-one

correspondence exists between a group of destinations and a group of production

lines.

We assume the planning horizon is W weeks in length ; the number of production

line groups, and therefore the number of destination groups, is G; the demand ,

measured in rail car loads, for all products used in destination group g in

week w is D (gl , . . . ,  G and w 1, . . . ,  W)~ and the maximum number of rail

car loads that can be shipped from the component plant during week w is L
~
.

The decision variables used in the model are

P = the number of rail cars of products produced on production

lines in group g during week w ,

S the number of rail cars shipped from the component plant

to destination group g in week w,

.

I
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= the number of rail car loads of product produced on production

lines in group g in inventory at the component plant at the

end of week w ,

£ = the number of rail car loads of product on hand at the end of

week w at destinations in group g,

Ugw 
the slack production capacity for production lines in group g

during week w (measured in rail cars), and

V the slack rail car loading capacity in week ~

Recall that the objective of the aggregate production and shipping scheduling

problem is to determine a) the number of rail car loads to produce on each group

of production lines during each week of the planning horizon , and b) the number

of rail cars to send to each group of destinations each week of the horizon so

as to minimize system carrying charges while satisfying production and shipping

F limitations at the component plant , and demand requirements for each group of

destinations. As we have discussed , the carrying charges are proportional to

the number of rail car equivalents worth of inventory carried in the system

(excluding those in transit from the component ~lant to the destination s since

there is no way to reduce this quantity). The model can be stated as:

(1) mm Z~~~~~~ H +5 ’
~~~E

g w  g w

(minimize the total rail car loads of inventory carried
at the component plant and the destinations)

sub~ect to

( 2 )  ( I nventory baLance constraints at the component plant )

H + P  = H  + S
g,w-l gw gw gw

(3) (Inventory balance constraints at destination group g)

E + S = E  + Dg,w-l gw gw gw

(~~~) (Production capacity constraints at the component plant)

P + U  ~~Cgw gw gw

4 
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(5) (Rail car loading constraints at the component plants)

+ V  L
g gw w w

P , H , E , S , U , V �. 0 , where g 1 , . . .,  0 and w l , . . .,  Wgw gw gw gw gw w
in all of the above cases.

The above problem is a near network problem . This can be seen by examining

F the graphical representation of the constraints given in ~‘igure 2. First , we

observe that by ignoring the rail car loading constraints, as we have done

in the diagram in Figure 2 , the problem decomposes into G independent network

problems , one for each production line group-destination group combination .

Next , observe that the rail car loading constraint for week 1 states that the

sum of the flows over the arcs labelled in Figure 2 cannot exceed L
1 . In

general, the rail car loading constraint for week w states that the sum of the

flows over arcs having label 0 ( flow is ~ S w over these arcs) cannot exceed
g~~~

L . Constraints that cut across arcs in this fashion are often called “bundlew
constraints.” The presence of these bundle constraints cause the problem to

have a structure that is not a network flow structure .

We now discuss an algorithm for finding a solution to the problem , which

is based on the problem ’s near network structure . The complicating rail car

loading constraints are first relaxed to take advantage of the simplicity of the

structure of the remaining problem . As we have stated , the remainder of the

problem has the form of G independent problems . These C problems are all

network flow problems that have the form of a linear production-distribution

problem with upper bounds on production in each period . This problem was

first discussed by Bowman Cl]. The solution to these problems is found by simply

producing the ~~~~~~~~~~~~~~~~~~~~~~~ requirements as late as possible. Thus it is easy

to obtain an optimal solution to each of these G problems . Once these

solutions have been found , the rail car loading constraints are systematically

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .- - —
F,
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considered . The rail car loading constraints that are violated by the solution

obtained for the G independent problems are addressed one at a time. Inventory

and production decisions are revised but remain as close to the solution found

when solving the G independent problems as possible . Let us n w  formally

state the algorithm.

Algorithm for Solving the Aggregate

Production and Shipping Scheduling Problem

Step 1: Obtain the least cost production schedule for each group that

satisfies production capacity constraints and demand requirements

ignoring the rail car loading constraints. In the solution , carry

inventory only at the destinations . The algorithm used to determine

the optimal production plan places production as close to the period

in which it is consumed as possible. (A formal statement of this

algorithm can be found in Wagner 12].)

Step 2: If all rail car loading constraints are satisfied by the solution

found in Step 1, then that solution is optimal. Otherwise,

beginning with period 1, and proceeding period-by—period , resolve

rail, car loading infeasibilities by following in order Step 2a

and , if necessary , Step 2b.

Step 2a: If Vi,, < 0 , w1’ is the earliest period following w

having positive slack loading capacity (V 
~, 

> 0), and there is a

destination group g having Egj 
> 0 for jw  w+l, . . . ,  w

1
-l , then

increase Hgk by a min (_V
~
, V~~, ~~~~~~~~~ .. ,~1 j, 

Egj
)~ k=w , . . . ,  w~’-l.

Next , adju st V , V~,1, S and S 1 to reflect the fact that car

1
loads previously shipped in period w are now shipped in period w

also , decrement Egj~ ~~~~~ . .. ,  w~
’-1, by a. Examine additional

destinations until either v = 0 , there are no destinations forw

4
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which shipping can be moved into the future, or there is no slack car loading

capacity in any future period .

:tep 2b: If V = 0, then return to Step 2a and examine the next period for

which the car loading constraint is violated (if there are no future periods

for which the car loading constraint is violated , then the algorithm terminates).

f ~~ < 0, then beginning with period w-l, and moving back period-by-period

as necessary, attempt to find a destination g for which P~~ > 0 (positive

production at destination g in week w) and for which there exists a week j < w

for which U
gj 

> 0 (there is slack production capacity in week j )  and a week k,

j  .~, k< w,in which ~k 
> 0 (excess car loading capacity exists in week k).

Let

a = mm (U ., P , -V , V )
gj  gw w k

Then decrement U ., V , P , S by a and increment P ., S , V , H
gj k gw gw g~ gk w gi

. . . ,  k—i , Egi~ ~~
k, . .. ,  u-i by a. Repeat until V 0. If V cannot

be increased to a value of zero, then no feasible solution exists.

The first step of the algorithm establishes the optimal production and

shipping plan ignoring the rail car loading constraint. Step 2a adjusts the

shipping schedule to eliminate infeasibilities in the rail car loading constraints

without increasing the amount of inventory carried . If all infeasibilities

are eliminated via these adjustments , then an optimal solution has clearly

been obtained . If Step 2b is invoked for a given week , inventory carrying

costs are increased by as small an amount as possible .

Although we have no proof that this algorithm reaches an optimal solution

when Step 2b must he used , we do conjecture that an optimal solution is obtained .

The initial solution of the linear programming problem is dual feasible, obeys

complementary slackness hut may be primal infeasible on one or more of the

rail car loading constraints. The algorithm appears to maintain dual feasibility

I . —
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and complementary slackness at each step , so that when primal feasibility is

established the answer would constitute an optimal solution .

We now illustrate the algorithm on an example problem . Assume there are

two production line-destination group combinations (G 2) and the planning

horizon is five weeks long (W = 5). The demand , production capacity, and

rail car shipping capacity data are given in Table 1. We also assume the initial

inventories are zero.

Week

week , w 1 2 3 14 5

D , demand 14 6 8 10 10
1wGroup 1

C1
, production capacity 6 8 8 8 8

D,~~, demand 3 5 7 9 9
Group 2 -

C2~
. production capacity 6 6 8 8 8

rail car shipping capacity 10 15 13 16 17

Tab1e 1

Demand and Capacity Data

The solution to the production and shippthg problem ignoring the r~J .

car loading constraint is given in Table 2; that is , the sciution obtained

from Step 1 of the algorithm . We see that this solution violates the rai1

car loading constraint in week 3. Therefore , we must invoke Step 2a ~‘f n~;e

algorithm. Week 3 is the first week , and in this example the only week , with

a negative slack on rail car loading capacity . The first week fc lcwing

week 3 having positive slack rail car loading capacity is week 5 (u 1’ 
~

V n 1). Destination 1 has positive inventory carried at the destination at

the end -~f weeks 3 and 14 (E 13 L4 and £114 2). Instead of carrvin~ one rai .

I JJ. ~:~~~T 
T . - .- -
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Week (w)

1 2 3 14 5

~lw’ 
production 6 8 8 8 8

S1~,,, shipments 6 8 8 8 8

Group 1 H 1~,,, factory inventory 0 0 0 0 0

Eiw~ 
destination inventory 2 14 ‘4 2 0

0lw ’ slack production 0 0 0 0 0

p
2w ’ production 3 6 8 8 8

S2~~
, shipments 3 6 8 8 8

Group 2 H2~
, factory inventory 0 0 0 0 0

E 2~
, destination inventory 0 1 2 1 0

U 2 ,  slack production 3 0 0 0 0

V , slack rail car 1 1 -3 0 1
W loading capacity

Table 2

Initial. Solution

car load of inventory at destination 1 we can carry that one rail car load of

inventory at the component plant . Formally,the algorithm states that the

maximum increase in H13 and H114 is a = m m  (— (—3 ), 1, mm (‘4,2)) = 1.

Then V and S15 are increased by 1, and V~~, E13, S13 and E14 are all

decreased by 1. The results of these calculations are given in Table 3.

Note that the total, inventory carried is the same as it was at the end of

Step 1.. Consequently , if the solution found after making these adjustments

yields a feasible solution (i.e. satisfies the rail car loading constraints),

then that new solution is optimal.

F
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week ,w 1 2 3 4 5

~lw ’ production 6 8 8 8 8

S
1

, shipments 6 8 7 8 ~

Group 1 H iw~ 
factory inventory 0 0 1 1 0

destination inventory 2 4 3 1 0

slack production 0 0 0 0 0

P
2W~ 

production 3 6 8 8 8

S2 ,  shipments 3 6 8 8 8

Group 2 H2 ,  factory inventory 0 0 0 0 0

E2~~ 
destination inventory 0 1 2 1 0

02w’ slack production 3 0 0 0 0

V , slack rail cars 1 1 -2 0 0
W

Table 3

Results of First Iteration

Week 3 is still the first week with a negative slack on rail car loading

capacity. Looking forward in time from week 3, it is not possible to delay

any rail car shipping since there is no slack rail car shipping capacity in

either week 14 or week 5. Therefore, we invoke Step 2b of the algorithm . Thus

we will now look back in time to see what changes need to be made to the

production and shipping schedule .

Production lines in group 1 have no excess capacity in weeks 1, 2, or 3

(u 11 = u
12 = u13 = 0) so that no changes will be made to the production or

shipping schedule for the production lines in group 1. There is additional

capacity on production lines in group 2, however , since U~1 3. Furthermore ,

in week 1 there is available rail car loading capacity (V
1 1). Thus we can

reduce the production on lines in group 2 in week 3 by a = mini (3, 8, -(-2), 1) = 1.

t Then u21 2, V1 0, p23 
7, S23 

= 7 , 4, S21 ‘4 , V3 = —1 , = 1, and

— —— —  —~-~~~~~~~~ r .~~~ — -  - - -

. .._ s~. —-— — —
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E12 = 2. Since V3 -1, we repeat Step 2b. There is still additional

production capacity for production lines in group 2 in week 1 (U
21 

2).

We see that = 1, that is, there is excess car loading capacity in

week 2. The production on lines in group 2 can therefore be reduced by

a = mini (2, 7, 1, 1) = i in week three. The results of applying Step 2b

are displayed in Table 4. Since all of the rail car loading constraints are

now satisfied, the solution displayed in Table 14 is the final solution.

week , w 1 2 3 4 5

P1~4~ production 6 8 8 8 8

S1,  shipments 6 8 7 8 ~

Group 1 H
1 , factory inventory 0 0 1 1 0

Eiw~ 
destination inventory 2 4 3 1 0

slack production 0 0 0 0 0

p
2w’ production 5 6 6 8 8

S2 , shipments 14 7 6 8 8

Group 2 H
2~,,, factory inventory 1 0 0 0 0

E2 ,  destination inventory 1 3 2 1 0

U 2w~ 
slack production 1 0 2 0 0

V , slack rail cars 0 0 0 0 0w

Table 4

Final Solution

I

4 r

I 
.

- . - 

- : - .‘, ‘ : .~~~~~~~~~
.: 

-

~~~~~~~~

I — ~~~~~~~~~~~~~ — - -  _ _ _ _ _  J
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I I I .  DETAILED PRODUCTION AND SHIPPING PLANNING

The solution of the aggregate production and shipping scheduling problem

discussed in Section II is a plan that smooths weekly fluctuations in demand

over the planning horizon subject to weekly constraints on rail car loadings

and production line capacities. In particular, the solution determines what

the total production should be for each group of production lines and what

amounts should be shipped to each destination group in the first week con-

sidering various capacity constraints in future weeks. Thus the solution

specifies the values of Pgj , the number of rail cars of products to produce

on group g during week 1 and Sgj , the number of rail cars to be shipped to

destinations in group g during week 1. This aggregate plan can be accomplished

in week 1 since 
~g1 ~ 

Cg1 
(the production does not exceed production capacity)

and ~ S~1 j  L
1 

(the number of rail car loadings is not greater than loading

capacity in week 1).

The aggregate planning information must be disaggregated to establish

the detailed production and shipping plan for the first week. We will show

how to ~iisaggregate the quantities ~g1 
and Sg1 in three senses. First,

we disaggregate the first week ’s production and shipping plan by indicating

production and shipping requirements for each of the T shifts during that

week. At this stage no attempt is made to establish production and shipping

goals by individual product or by specific destination location. All production

quantities will be measured in rail car loads without regard for individual

product requirements; the shipping requirements and plan will be stated in

terms of the number of rail cars for each group of destinations.

The second level of disaggregation specifies how the first week ’s ship-

ments should be allocated among the individual destinations within each group.

Individual destination requirements , measured in rail car loads, are used to

make the allocations. At this stage no attempt is made to disaggregate by
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individual product types.

In the final level of disaggregation, the aggregate quantities of pro-

duction and shipping determined in the first two levels of the disaggregation

process are divided among the individual products made and shipped to each

group.

The purpose of the three stage disaggregation process is to determine

what products, measured in container loads , should be produced on each group

of production lines during each shift, what portion of a shift ’s production

and the inventory on-hand at the beginning of each shift at the component

plant should be loaded into rail cars and shipped during that shift to each

destination , and what portion of a shif t ’s production should be carried in

inventory at the component plant into the next shift.

First, we will show how the first week ’s aggregate production and shipping

schedule can be disaggregated into a shift-by-shift production and shipping

schedule for the first week. Recall that the solution of the aggregate model

specifies the number of rail car loads of products produced on production line

group g in week 1 (P
51
) , the number of rail car loads shipped to group g

during week 1 (Sgj) , the number of rail car loads of products produced in

group g in inventory at the component plant at the end of week 1 (Hg1) and

the number of rail car loads of inventory at destinations in group g at the end

of week 1 (Egj)

In addition to the weekly production and shipping goals, we have other

data that are used to determine shift-by-shift production and shipping decisions.

The capaci ty of group g during shif t t is c , which is measured in rail car
T 

g

loads. Furthermore, we assume c C . We also have the shipping
t=l gt g

capacity for each shift, L
~ , which is also measured in rail. cars. We also

T
assume 

~~ 
L
~~~~

L1
.

t l

_ _  

_ 
___  I1~1 _
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The decision variables we will have in this first level disaggregation

problem are:

~gt 
the production on lines in group g during shift t measured

in rail car loads,

5gt 
= the number of rail cars shipped to destination group g

during shift t ,

hgt the number of rail car loads produced in production group g

remaining in inventory at the component plant at the end of

shift t, and

e the number of rail car loads carried by destinations ingt

group g corresponding to shipments from the component plant

made prior to the end of shift t.

Using these data we can state the first  ievel disaggregation problem

as:

find the aggregate (without regard to product types or desti-

nation within a group) production and shipping schedule that

minimizes inventory holding cost at both the component plant

and destination groups during week 1 subject to a) meeting end

of the week inventory goals at both the component plant and

each group of destinations , b) satisfying aggregate demand

requirements for each group of destinations, and c) not exceeding

shift-by-shift production and rail car loading capacities.

As before, we assume that the cost of holding a container load is the same for

all products.

The mathematical statement of this first level disaggregation problem

is

4’ V

. 

-
~~ 

- - 
- V - 

—-—-- V 

_
~ F

V ., .

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
.

V—- 
~~~~~~~~~~~~~~~~~~~ 

_ .  .

‘~~-~~_- 
~~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~.. — . .V. _ —~~~~ ‘~.
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(6)  
~~~~~~~~~~~~~~~~~~~~~~~~~g t  g g t  g

subject to

(7) h
g t_l + 

~gt = hgt + Sgt

(8)  eg, t ...1 + Sg~ = e
gt + dg~

~~~ ~gt + ugt Cgt

(10) 
~ ~gt ~ 

v~

~gt’ 
hg.~ egt~ 

Sgt~ u5~
, v~ ~, 0 , g 1 , . . .,  C and t=l , . . . ,  T

where Ugt is the slack production capacity for production line group g in

shift t, v~ Is the slack rail car shipping capacity for shift t, and dgi~ 
0

for t 1 , ...~~ T-l and d
gT 

= 0
gl , the aggregate demand for destination

group g in week 1. The reason for defining the d
g.~ 

as we have is obvious

once we examine the structure of this problem .

Observe that this disaggregation problem (6) - (10) is mathematically

equivalent to the aggregate production and shipping scheduling problem

(1) - (5) discussed in Section II. Since this problem ’s structure is identical

to that of the aggregate production and shipping scheduling problem , we can

use the special algorithm developed in Section II to find the optimal (or

possibly near optimal) values for each of the decision variables.

The second level of disaggregation involves assigning the rail car

quantities of shipping and production by shift obtained in the first level

of disaggregation to each of the specific destinations within a g~oup . For

group g, suppose there are I destinations, indexed by i 1 , . . . ,  I . Let

r. be the rail car demand at destination i in week w; the aggregate demand

for group g in week w , D , is 
~ 

r1~ 
.

At the start of week 1 a total of E rail cars are at the destinationsgo

4 . ..
~~~~ .i . ..~~~~~~~ 

- -~~ — -
~~~~~~~~~~~~~-
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of group g and a total of Hg0 rail cars of product are in inventory at the

component plant. We will show shortly that the quantities Eg0 and Hg0 
can

be considered to be already disaggregated by destination by showing how the

quantities E
gi 

and H
g1 are disaggregated by destination .

Figure 3 shows the essential features of the procedure for deciding

to which specific destination rail cars are shipped in each shift and for which

specific destination rail cars of product are produced in each shift. The

top scale has the specific destination demand in rail cars ordered by week

and then by destination . The aggregate relations D + E E + S , andgl gl go gl

S + H = H + P are shown . The disaggregation of D into soecificgl gi go gi gl

destination demands, of 5gl into shift shipping , and of Pg1 into shift

production are also shown.

To find to which destination the kth rail car of shift t (the kth unit of

is to be shipped , one simply projects to the top scale and finds the

~esci~ation index . Similarly , to find for which destination the kt~ rail car

of shift t (the kth unit of 
~gt~ 

is produced , one also projects to the top

scale and finds the destination index .

The final level of disaggregation is to determine the number of container

loads of each of the J products to ship in each rail car or to produce for

each rail car. Let q.. be the demand at destination i for oroduct j  inijw

week w; the aggregate demand for destination i in week w , r1~ 
, is

J
q.. /R , where R is the number of container loads for products of

j:l ‘~~~ g g

group g that fill a rail car.

Figure ‘4 shows how this final level of disaggregation is accomplished .

To find which product to put in the kth container of a rail car, one simply

projects to the top scale and finds the product index .
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IV . SUMMARY AND EXTENSIONS

In this paper we have shown how coordinated production and transportation

decisions can be made in an actual multi-facil i ty system operated by an auto-

mobile component manufacturer. We first developed a model that establishes

a production and shipping schedule for each week in the horizon. This model

was based on several key observations concerning the system ’s operation .

First, the production lines could be divided into mutially exclusive groups.

The products produced within a group could be produced on any line within the

group , but on no other group of production lines. Second , the assembly plants

could be similarly dlvi ~ed Lito groups such that products produced on ox~

group of production lines could only be used at assembly plants within the

same group , and ‘roducts used at ~ particular ~ssembiy riant could alI be

produced on one group of production i~~e5. Third , because only full rail cars

are shipped from the component p ant t~ the ~ t~nations , the autcmobile

schedule could be expressed in ter-r~s t he  ~.urber of r3il oaro that have to

be shipped by the end of each week ~o each O-~st~o,~ t~ or . F’-~urt~ , the length

of time required to’ ro~.uce a :ontai:~er ~~~ of ar.v prcduot ro~uceo within

o group is the same fox- 3~~l ~rccuct: ~no l~:.•~ within a ~rcu~~, and also there

is no time required t~ oh~ r.ge fror. :~~ duct~~t~ one product to another. These

four observations guaranteed that a ~easLbT..e shift-tv-shift production and

shipp ing schedule f r  es- -h produc~ :ou~~ be obtii.-te~ fror’ the solution of an

aggregate model in wh~i:h production requirements were aggregated over products

and individual assembly plants for each of the destination groups for each week,

and the production capacity f-o r each ~rou~ of lines in each week was expressed

in terms of rail car loads of products produced on each group.

We also observed that the only cost that varies with the production and

shipping schedule is the inventory carrv i~ g cost. Furthermore , this cost

could be expressed in terms of rail car loads of product held since a car load

L~±:i :::~ ii~~ -

~~~~ 

- I
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of any product had the same value as that of any other product , and the cost

of carrying a car load of inventory at the component plant is the same as the

cost of carrying that car load at a destination plant .

Based on these observations we developed a model that determines aggregate

weekly production quantities measured in rail car loads for each group of

production lines and an aggregate weekly shipping schedule to each group of

destinations . We also presented a simple algorithm for finding the solution

to this problem .

Next we showed how the aggregate solution can be disaggregated so that

a shift-bv-shift production and shioping schedule for each product and each

specific destination can be established for the first week in the planning

horizon.

The models and algorithms we have developed can be extended to other

situations. If products produced on different groups of production lines cost

different amounts to produce , then the objective function can be modified

to reflect the difference in holding costs. Furthermore , the algorithms we

presented can be modified so that adjustments to shipping and production

decisions are made in order from highest to lowest holding cost for the pro-

duction line group-destination group combinations.

Also , if nolding costs are higher at destinations than at the component

plant, the algorithm we presented for the aggregate scheduling problem can

be modified so that initial inventory is all carried at the component plant

rather than at the destinations. The shipping plan can be adjusted in the

same general manner as described in the algorithm presented in Section II.

The difference is that inventory is sent to the destinations as late as

possible rather than as early as possible. Thus the roles of the destination

and component plant in the algorithm stated in Section II would be essentially

reversed .

4 . - ______j .  ‘ - - - - - ——
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The model we have presented can also be used as a capacity planning

tool in this actual situation we have modelled . In this situation , production

capacity is to a large extent dependent upon the number of workers assigned

to particular groups of lines. Within limitation this labor can be shifted

from one group of lines to another. Thus if the solution to the aggregate

planning problem indicates that there is a shortage of capacity on one group

of lines while there is excess capacity on other lines in certain weeks, the

lines can be rebalanced . The model can be effectively employed to analyze

the effects of changing production capacity on the amount of inventory carried

throughout the horizon.

t

F
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