
-- -RITECHNICAL REPORT,
//TE-7S.A9 /

r ,'Aspects of Effective Authoring Systems
/ and Assistance: Recommendations for

Research and Development.

r ~r ./Linnf University of Michigan

Sand- 1

LAIf red/.Bor k University of California at Irvine

Contracted by:

BATTELLE COLUMBUS LABORATORIES

Columbus, Ohio -r

/11 SI11778 I.

Contra AJ#L2-iB~

Beatrice J. Farr, Project ScientistA
LL.J Leon H. Nawrocki, Work Unit Leader
-i Educational Technology and Training Simulation Technical Area, ARI

LJPrepared for

U.S. ARMY RESEARCH INSTITUTE
for the BEHAVIORAL aid SOCIAL SCIENCES
5001 Eisenhoer Aveuue
Alexandria, Virglni 22333

-

Approved for public re)7;g9 rbution unlimited.

U. S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the

Deputy Chief of Staff for Personnel

WILLIAM L. HAUSER

JOSEPH ZEIDNER Colonel, US Army
Technical Director commander

Research accomplished
under contract to theDepartment of theArmy

Battelle Columbus Laboratories

NOTICES

DISTRIBUTION: Primanry distribution of this report has been made by ARI. Please address correspondenice
concerning distribution of reports to: U. S. Army Research Institute for the Behavioral and Social Sciences.
ATTN PEAI-P, 6001 Eisenhovier Avenue. Alexandria, Virginia 22333,

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not return it to

the U S. A rmy Research Institute for the Behavioral and Social Sciences.

NOE The findings in this report are not to be construed as an of ficial Departmewnt of the Army position,
unless so designated by other authorized documeints.

FOREWORD

This work was performed as part of the Army Research Institute's
(ARI) research program on the application of computer technology in
education and training. The effort was initiated and funded during FY
75 within the Unit Training and Educational Technology Technical Area,

under the direction of Dr. Frank J. Harris, Chief and Dr. Joseph S.
Ward, Work Unit Leader. Responsibility for completing and documenting

this work was assumed by the Educational Technology and Training Simu-
lation Technical Area during FY 76.

The primary impetus for this undertaking was the nearly universal
belief among members of the DOD research community that there was a need
for more interaction between those engaged in research, those involved
in creating software and developing authoring languages, and hardware
vendors. One unfortunate consequence of this lack of communication was
that system requirements for users (authors) were frequently overlooked
to the extent of being detrimental to system effectiveness. In an attempt
to ameliorate this situation, ARI convened a three day meeting so that
selected representatives from each of the above mentioned domains could
discuss developments as well as problems of mutual interest. The con-
ference had multiple goals; it was directed toward facilitating informa-
tion exchange and toward establishing suitable guidelines for applying
computer technology to training needs, with military training as the

focal point.

Through the Scientific Services Program of the US Army Research
Office, a contract was let under Battelle Columbus Laboratories to
secure the services of ten scientists and educators currently engaged in
widely diverisfied CAI activities. These experts, as well as technical
and user representatives from each of the services psychological research
organizations or operational CAI activities were the primary conference
participants. In addition, more than fifty individuals from the Depart-

ment of Defense, other government agencies, private research groups and
academia were invited to attend the first day of the meeting as observers.
The conference was held 9-11 September in Alexandria, VA. During the
first morning session representatives from the Army, Navy and Air Force

gave formal presentations detailing both past and present programs re-
lating to computer-based training. Considerable attention was also
focused on current and anticipated problem areas. The afternoon was
devoted to informal exchanges between the participants and observers.
The remaining two days were spent in small-group problem-solving sessions
which culminated in decisions regarding the topics of papers to be pre-

pared by the participants subsequent to the meeting.

As initially envisioned, the working sessions were expected to

focus almost exclusively on the authoring process. Although the major
emphasis did remain as planned, during the course of the conference it

became clear that it would be more profitable to expand the scope beyond
the original conception. In effect, the new agenda encompassed topics
ranging from models which describe students, instructors and the learn-
ing process to sophisticated problems in artificial intelligence.

One of the primary goals of the conference was to attempt to have
this diversified group of experts arrive at some consensus with respect
to: defining user needs and requirements for authoring languages,
identifying deficiencies within existing languages, delineating desirable
characteristics for an ideal authoring language and establishing pri-
orities for future research. Although somewhat less than consensus was
reached, participants did identify a number of the most critical issues
and offerred guidelines for research directed toward resolving the major
problem areas.

OSEPH .DNER
Technical Director

L a ; a (/or

D c|

UJNC LASSI1F~IEl)
SECURI17Y CLASSIFICATION OF THIS PAGE (When O.. prtl,0, d

REPOT DCUMNTAT~h AGEREAD INSTRUCTIONS
____ REPORTDOCUMENTATION__ PAGE BEFORE COMPLETING FORM

IREPORT NUMBER 2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TR-78-A9

4. TITLE (and S.btlll.) S. TYPE OF REPORT & PERIOD COVERED

ASPECTS OF EFFECTIVE AUTHORING SYSTEM AND
ASSISTANCE RECOMMENDATIONS FOR RESEARCH AND
DEVELOPMENT G. PERFORMING ORG. REPORT NUMBER

7 AUTHOR(&) S. CONTRACT OR GRANT NUMBER(.)

Karl L. Zinn and Alfred Bork DAJCO4-72-A-OOO1

Ta sk-Order-74-&24)

9- PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Battelle Columbus Laboratories 2Q76373lA762
Columbus, Ohio

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of the Deputy Chief of Staff September 197,I

!or Pe2rsonnel, Washington, DC 20310 13. 26BR FPAE

74MONITORING AGENCY NAME II ADDRESS(II different 1mmi Controlling OffiCe) IS. SECURITY CLASS. (of this report)

Army Research Institute for theBehavioral and Unclassified
Social Sciences PERT-OK_______________

IS&. DECLASSIFICATION/DW1NGRADING5001 Eisenhower Ave. , Alexandria, VA 22333 SCHEDULE

I6 DISTRIBUTION STATEMENT (of tis Report)

.%p[.roved for public release; distribution unlimited.

I7 DISTRIBUTION STATEMENT (of th. abstract entered In Block 20, It different from Report)

IS. SUPPLEMENJTANY, NOTES

Research monitored technically by Dr. Leon H. Nawrocki and Dr. Beatrice J.
Farr Educational Technology & Simulation Technical Area, ART.

19 KEY WORDS (Continue. on reverse aide If necceemay end IdentIfy by block niumber)

Computer-Based Instruction
programming languages
Auithor ing
Ins~tructional Systems

'WESTUACT f~eet mrew moda. e Nf nmseeavy ma fdua1It by block rmmbet)

-*his Is one of a s eries of papers dealing with the authoring process and
related problems in Computer-Based Instruction (CBI). It provides a brief
1i storical background of computer based authoring systems, gives details of some
+' the contributions that the computer has made in the development of more

tIfective teaching materials, outlines the most important aspects of the
r horIng process and provides some reconunenda tions for future research and

I pmont . N

Do V0, 47 \OTIOf OF INIOV GISOBSOLETE UCASFE

SECURIITT CLASSIFICATION OF TNIS PAGE WhenPr .,nrf

-AMIASSIFIED

IsURITY
CLASSIPICATION

of, TlS PAGE(IW
bets

.t,.4)

UNCLASSIFIED
SIECURITY CLASSIFICATION OF THIS PAGE(Whon P'Af.

ASPECTS OF EFFECTIVE AUTHORING SYSTEMS AND ASSISTANCE: RECOMMENDATIONS

FOR RESEARCH AND DEVELOPMENT

BRIEF

Requirement:

This paper is second in a series of reports emerging from a confer-
ence on Authoring Languages and Research Problems in Computer-Based
Instructional Systems. The conference was sponsored and conducted by
the Army Research Institute for Behavioral and Social Sciences as part
of the Technology Base Work Program. It was included in the "DOD
Integrated Plan for the Use of Computers in Education and Training."

Approach:

A three day conference was convened to determine the state-of-the-

art and future research directions for authoring systems, particularly
research issues relevant to improving the interface between computer-
based instructional systems and instructional developers (authors).
Participants consisted of ten technical consultants who were charged
with identifying and reporting on major topic areas. Additional invited
technical and user representatives (governmental, industrial and academic)
participated either actively or as observers throughout the conference
(the Appendix provides a list of participants).The first day was devoted
to (1) formal presentations by military training system representatives
describing current and planned computer-based instruction activities
within the military, and (2) a roundtable discussion which delineated
and defined major topic areas to be addressed. During the following two
days, participants divided into four working groups. At the final
session, each group presented a summary of their discussions relating to
the key issues and approaches to authoring system research. Active
participants selected topics for follow-on reports to be prepared sub-
sequent to the conference.

Determinations:

Effective authoring is a functions of many factors, one of the most
notable of which is the language in which the instructional material is
programmed. Ease of entry is an important consideration. Early author
languages did little more than adapt programmed instruction text for
computer presentation. They were essentially frame-oriented in contrast
to later languages which frequently contained specialized "logics" which
permit separation of strategy from content. The most recent generative
and mixed initiative approaches to CAI carry this separation even further.

A significant portion of future development in computer-based
instruction is likely to be in the areas of generative systems and
I'pecLtly designed simulated environments for skill learning. This will

increase the demand not only for systematic pedagogy and instructional
language development, but also for these special needs to be recognized
in software design.

The areas needing particular attention can be derived by comparing
the ideal authoring situation to current reality. Among these are:
human factors consideration in designing appropriate keyboards and
effective visual displays, possibilities for voice input in authoring
systems, progress in natural language processing and increasing authoring
capabilities via extensible languages.

Utilization of Findings:

Existing authoring languages for CAI fall short of meeting the
needs of Army courseware developers, particularly in view of their
relatively short training time and rapid turnover.

A research program to more closely integrate the requirements of
subject matter experts and instructional programmers (authors) could
profitably focus on better methods for: (1) program entry, (2) internal
record keeping, and (3) program storage and modification. High priority
should be assigned to devising appropriate sequences prior to using them
with large groups of students.

CONTENTS

Page

BRIEF HISTORY OF COMPUTER-BASED AUTHORING SYSTEMS 1

CONTRIBUTIONS OF COMPUTING TO DEVELOPMENT OF MORE EFFECTIVE
LEARNING MATERIALS ... 4

ASPECTS OF AUTHORING ... 5

The Authors Role .. 7
Language Used as a Source Language for Programs 9
Method of Entering Program 14
Testing the Program Before Student Use 15
Program Storage and Modification 17
Internal Record Keeping 18
Restart Capability and Other Student Options 19
Feedback Revision ... 20

RECOMMENDATIONS FOR RESEARCH 22

Engineering . .. 23
Information Science ... 23
Instruction Science ... 24
Pedagogy (Disciplines) .. 24

APPENDIX .. 25

F IGURES

Page

FIGURE 1. THE AUTHOR'S ROLE....................................... 7

2. SAMPLE FLOWCHART.. 8

3. THE SOURCE LANGUAGE USED............................... 10

4. MEANS FOR ENTERING PROGRAM............................. 15

5. TESTING BEFORE USE..................................... 16

6. RESTARTING AN INTERRUPTED SESSION...................... 19

7. FEEDBACK AND REVISION.................................. 21

ASPECTS OF EFFECTIVE AUTHORING SYSTEMS AND ASSISTANCE:
RECOMMENDATIONS FOR RESEARCH AND DEVELOPMENT

Programming languages for instructional use of computing should be
considered within the larger context of systems by which materials are
prepared and used. Many parts of the overall system affect the cost
(both for development and for use) convenience, and effectiveness of
development, and some shape the use of computer-based instructional
materials as much or more than the formal language in which they were
programmed. This Feport will consider, systematically, many aspects of
effective authoring, in particular those for which research or further
development may lead to more efficient computer-based education and
training.

This report is arranged in four major sections: brief history;
contributions to materials development; aspects of authoring systems;
and recommendations for research.

BRIEF HISTORY OF COMPUTER-BASED AUTHORING SYSTEMS

Since the initial applications of computers in teaching, the designers
of systems, programs and applications have given attention to authoring

as something more than simply writing a computer program. For example,
in the late fifties, early programs for teaching number systems, language
vocabulary and analytic geometry were constructed in such a way that the
teacher using the program could adjust the substance of the instructional
program to obtain a variety of exercises and to serve the needs of
different students. Some of these early designers clearly demonstrated the
concept of a "driver" program which could be applied to a number of
different information files in order to obtain, efficiently, a variety
of substantive offerings for the student.

The first identifiable author language (called TIP: Translator of
Interactive Programs) was written in the early sixties to ease the task
of adapting a programmed instruction text in statistics for computer
presentation. The programmer who was assigned the task of assembling
information for the drum memory device of an IBM model 650 computer
chose to develop a processor (a primitive compiler) which translated a
programmed instruction text (including anticipated answers and feedback)
into the structure required for the disk file. TIP provided a logic for

computer delivery which was comfortable for authors coming from a back-
ground in programmed instruction.

The first version of IBM's COURSEWRITER language evolved from TIP.
The approach to authoring encouraged by these early languages required
arrangement of instructional material in frames; each frame included a
question or other text, conditions by which a response from the student
could be classified, and actions to be taken for each possible condition.

Concurrently, the PLATO Project at the University of Illinois was
developing a somewhat different approach. Each key pressed by the
student was treated separately so the student could be interrupted
halfway through an answer based on what had been entered so far. Also,
the author (lesson designer) was able to control the plotting of a point
or the drawing of a line as a result of each individual key press. The
next action taken could be based on a single key press, and the structur-
for accomplishing this (called a "mode switch") was the unifying concept.
This approach is in contrast to that of a "frame" for COURSEWRITER.
Since this language (called CATO) provided only the primitive elements,
authors or their programming associates built within this language
specialized "logics" for different courses or kinds of exercises. These
logics represented a considerable advance along the same line of separat.
of strategy (in "drivers") from content (in information files) referred
to above.

Later developments of instructional software for the PLATO computer-
based education system went more in the direction of COURSEWRITER in
that the author provided text marked as questions, anticipated answers,
and specified actions to be taken. However, the PLATO design continued
to leave open the nature of various actions that might be taken and the
variety of displays which might be shown. For a long time, each new
author might request some additional operations in the language specific
to his purposes. Although the language (called TUTOR) has largely sta-
bilized, it is still open ended. The library of operations is so large
that few authors will learn all of them; but a consultant on the use of
the language can advise new authors or authoring groups on the subset of
operations which will be helpful to their purposes.

A quite different approach to authoring was taken at other univer-
sities. One of these is particularly well developed at the University
of California at Irvine. Here, the author is invited to develop his own
notation, usually a flow chart format combined with some convenient way
to provide related text to be displayed. The actual programming is done
by the technical support staff in whatever language is most convenient
for the job at hand. At Irvine, most work is done in a macro language
developed specifically for this purpose. At the University of Michigan,
instructional uses are programmed in FORTRAN,. PL/I, APL, SNOBOL, BASIC,
and only occasionally in a traditional coursewriting language such as
Coursewriter or FOIL.

A more structured approach to individual author notations is seen
in preprocessors designed for easier entry into whatever language is
used. For example, COURSEWRITER is not convenient for many of its
present uses. However, translators have been written to convert auto-
matically into COURSEWRTTER code other notations that authors find
convenient.

2

Another version of easy entry carries on a dialogue with the
author in order to be sure that all the information is provided in its
proper place. The PLANIT System provided the first instance of this
with on-line entry. A number of other systems have diverged considerably
from the (,O KS EL.RIT R approach; In some, for example, the author may
describe the curriculum material as a network of information rather than
an essentially linear sequence of fit frames. The TICS system in use at
MIT is a particular instance oi this.

The TICCIT system developed by MITRE Corporation uses a software
system defined by people at Brigham Young University. The intent was to
build, into the software, specific instructional strategies found to be
effective with the curriculum and level of student for which the system
will be used. For a Lonsiderable period of time, the BYU Institute for
Computer Uses in Education wa.s particularly interested in providing the
learner a certain kind of control. The student sets mastery goals and,
in part, determines the amount of practice and occasions for testing to
reach those specific goals. Because of a commitment to large-scale
curriculum development and specific strategies, the TICCIT system adopted
the separation of logic and content (something which had earlier been
found to be efficient).

The generative approach to omputer-ssisted instruction carries
the serparation of Iogir' and collt, nt 'still further. The designer of a
system conceives strategies for: 1) identifying what the student needs
and 2) delivering the information, exercises, quizzes or other material
to him. Carbonell (1970) spoke of "mixed-initiative systems" in whic
the student could obtain answers to questions as well as check himself
on substance. The information or substance of instruction is defined in
procedures, and in an information network. In the initial versions of
such systems the "author" needed to be very familiar with the procedures
for representing information and objectives in the computer file.
However, some progress is being made in providing for author interaction
with the computer to build such data bases and procedures without
requiring detailed knowledge of the techniques of artificial intelligence
and Information structures which are somewhat specialized. A significant
part of future authoring is likely to be in this area of generative
systems; designers of authoring and support procedures will have to
attend to a number of special considerations.

Ar.-)ther area for development in the future is that of specially
designed environments for learning a set of skills. For example, a
teacher of management skills may design a simulated envirnnment in which
the student must develop and reliably execute those skills in order to
perform well. Presently, the writing of management games or other simu-
lations h;is r-, systematic pedagogy or instructional language. However,
some of the special considerat ions in learning , -om this mode of computer
use shoild h recognized in software design. OtVer factors relating to

the future needs and opportunities for authoring are taken up in the
last section of this report.

CONTRIBUTIONS OF COMPUTING TO DEVELOPMENT OF MORE EFFECTIVE LEARNING
MATERIALS

Inherent in one's decision to use the computer, is the advantage
which is gained through a commitment to more careful attention to
learning materials. The newness of computing, vis-a-vis other means of
learning, combined with the apparent cost of computing for individual
learning activities, tends to focus attention on the quality of material.-;.
In addition to this secondary advantage, some aspects of the language,
system and supporting services can make specific contributions to the
quality of the learning materials under development. This section
identifies some of those contributions which are closely associated with
computer use.

Authoring systems such as the one designed for the TICCIT facility
require the persons developing materials to identify, for the student,
the objectives of instruction and various means for achieving them. Th
designers must consider what goals can be reached, and whether the
materials and procedures offered to the student are sufficient. Futher-
more, the computer system returns information to the developers organized
in a way that clearly identifies both the success and shortcomings of
the materials.

An authoring system (or programming language) which separates the
instruction strategy from the learning materials can be used (within
authoring system) in a way which contributes to the quality and perhap ,
the quality of materials produced. For example, it seems likely that
the author or authoring team which selects specific tested strategies mn-
suitable for each learning exercise, is going to be more productive and,
on the average, more effective than one which spends lots of time workii;
out each step in each instructional sequence. The entry of material
according to an established format is also more convenient, thereby
allowing the author to give more consideration to the suitability and
effectiveness of the substance of instruction. Most important, perhaps,
is the increased opportunity for revision of materials. The author or
an aide can scan the data files for terms or phrases which need attention,
can reset parameters in standard instructional procedures, or otherwise
readily make adjustments.

Computer routines have been used to check the completeness of a
teaching sequence. Branching, which is inherent in the logic, needs to
be filled out by corresponding codes in the materials. A computer
program can check to see that these exisL. In general, the author may
use the computer in drafting materials; for example, to keep track of
branches in the instructional sequence which still need attention, to

4

alert one's self with reminders of directions for additional work pre-
viously noted, and otherwise to assist in drafting, testing and revision.

This kind of assistance becomes increasingly important as more intelligence
is incorporated within the computer procedures and complex data structures.
Special kinds of computing assistance may be quite important in development
of materials for generative programs and mixed initiative dislogues.

Computer assistance is potentially important in supporting authoring
teams in which different functions are served by different individuals.
For example, a complex presentation involving various media may require
the assistance of technical experts as well as instructional specialists
and subject matter experts. Computing files and procedures can be used
to help coordinate these various efforts so that each contributor is
able to put forth his best effort without being distracted by the need
to attend to details of coordinating with others.

Some authoring systems make the collection of data rather easy;
others almost preclude it. In nearly all approaches to computing in
teaching, information about the instructional activity and achievements
of the learners will contribute to improvement of the quality of teaching
The computer can be programmed and used in ways which help with this
data collection for quality control and improvement.

When the computer is used as a medium for instruction, revising
material should be easy. Although instructional materials for whic|h the
logic and substance are separated may, in general, be easier to correct
and improve, any system can be helpful in the identification of errors
and entry of corrections, changes and other improvements.

An authoring system can help or hinder the development of alternate
versions of a teaching sequence. Good assistance from the system
encourages authors to provide greater variety in the set of materials
offered to meet the needs of different individuals. Provision for
alternate versions is also helpful in research. Computer assistance
facilitates preparation of materials for different treatments.

The list of contributions of computing to materials development
could be extended and some of the points could be given in greater
detail. However, the intent here is to indicate the range of opportunities--
not to provide a complete analysis.

ASPECTS OF AUTHORING

A number of strategies have been developed for authoring computer-
based instructional programs. This section describes some of the possi-
bilities which have been used in practice, and introduces a few other
theoretically possible mechanisms.

We are interpreting computer-based instruction in a very broad
sense, including any use of prepared dialog programs that are used by
students for learning purposes. The term "Authoring System" is used to
indicate the entire process of preparation and revision of such programs.
There are many variants possible, so the discussion must depart from
logical order if it is to be reasonably complete.

For the purposes of classification, the following distinctions have

been used:

A. What role does the author of the program play in the develop-
mental process? What technical personnel assist? Does the author write
computer programs? Does he or she prepare materials in some other way?

B. What notations or languages are used to write the program? Do
the writers use charts, forms, data files, procedure descriptions or

formal computer languages? Are the notations general-purpose or special-
ized for the instructional strategy or topic? In what representation
(e.g. language, diagram or interaction) does the author review the
materials?

C. How are programs entered? What preprocessors or translators
are involved? What peripherals are used? Is the entry of needed elements
prompted?

D. How is the program pretested before regular trials with stu-
dents? Is some automatic checking of ompleteness and logic accomplished
by machine? How is the programmer and/or author aided in reviewing the
procedures and substance? What aspects of the authoring system facilitate
preliminary testing with students?

E. How is the program stored and modified? What representation of
the program is given to the author for review and revision? How is
editing (revision) accomplished? To what extent can the computer
version of the material serve as documentation? Can an author obtain
advice while working on-line, whether automatically (from an "intelligent"
manual. for the authoring system), from a consultant working at another
user terminal, or perhaps through a computer-based conference of authors
working at different times (communicating via the "store-and-forward"
function of computer-based communications).

F. What internal records are kept as the programs are used by

students? What is the cost of saving and analyzing records? Are records
convenient to use?

G. How is restarting handled for the student who returns after
having been interrupted in the middle of a dialog?

6

H. What sort of built-in provision is made for gathering data

(student responses) and rewriting a program?

The Author's Role.

With regard to the author's role in developing computer dialogs,
there are several major considerations. These are listed in Figure 1.
First, does the teacher himself write computer programs in any language
at all, or does he/she engage in some other activity? Most projects
assume that the eventual author will be writing programs for the computer,
but a few systems do not. Several authors might be involved.

If the author of the dialog actually writes computer programs, two
main distinctions are possible. First, the teacher can use a general
purpose language that is already available, such as FORTRAN, BASIC,
PL/I, APL, assembly language, or SNOBOL. Any powerful language with
full capability is a possiblity. This general purpose language might be
extended to include special facilities to ease the task of writing

computer-student dialogs. Authors can also work within some specialized
language developed expressly for the preparation of computer-based
dialog materials; examples are: COURSEWRITER, PLANIT, and TUTOR.
Preprocessors to translate materials into these specialized languages
have also been used. Thus, the author might fill the forms which tell
what question is asked, what . to.: Lu expect, etc. The designers of

the languages developed just for authoring sometimes argued that no
programming was involved--that the languages avoided most aspects of
programming. Nevertheless, from the standpoint of the teacher (often a
complete novice) the activity of using one of these languages would
probably be viewed as just as much of a programming activity as writing
in a language like FORTRAN--particularly as teaching programs become
increasingly complex.

General purpose programming langu:t,
Writes program

Special purpose language for
teaching materials

Uses on-line query system

Fills out forms (off-line)

Author - Draws flow charts

Prepares decision tables

Gives general instructions to assistants

Figure 1. The Author's Role

It should be emphasized that the immediate question is not what
language is used to get the program in the machine (which is, we believe,
,i ;eparate issue discussed in the next section), but rather the question

7

of how the author of the program behaves in the authoring process.

Specialized languages for preparing dialogs can be broken into two

classes. On the one hand (and this includes most of thc actual material

developed), we have languages which are languages in the conventional
sense, needing to be written line after line in conventional program
form. Most of the languages mentioned above, both general purpose and
special purpose, are of this kind. However, another alternative, in
which the author sits at a terminal and is queried by the system, is
possible. PLANIT, SCHOLAR-TEACH, and DITRAN are examples of these
querying modes. Clearly, some advance preparation is necessary for the
author, so this approach tends to fit in somewhere between the case of
using a programming language and the other techniques. A variant of
query systems is the approach that has the author filling out forms,
perhaps to be used in responding to queries directly, or through a
secretary.

One alternative to writing programs is that the author or authors

prepare a kind of flowchart, not a program in any particular language,
but a graphic picture of what is to happen, and reflecting the pedagogical
decisions that are made along the way showing how the program will
respond to various student inputs. Figure 2 is an example of such a
flowchart.

Dialog frames are the simple
prosaic structures common to
most programming instruction

by computers.

Are you familiar with them?

INUT

If "no", "n't", etc. . The pattern is one of:

text and question
user input
string matching for expected response

If "yes", "am", etc.->,

l~y uestions?I

If null input or
any other

Please enter "yes"
or "no"

Figure 2. Sample Flowchart

8

Another possibility, similar to writing in a more or less loose flow-

chart format, is working with a decision-table format. Information conditio.

and outcomes are entered into a table from which the computer can determile
the actions to be taken. Although this approach has been demonstrated, we

do not know of any extensive amount of material being produced this way.

Nevertheless, it remains a potentially feasible authoring style.

A further option is for the "primary" author to describe, with chalk

and words, what he/she hopes to accomplish, leaving the many details to

be developed by a competent assistant. With this approach the author does
much less to define the details than when writing in the format of a fully
developed flowchart. These details can then be confirmed and corrected
by the primary author, who never uses any formal language other than
that worked out between him/her and the assistant.

One area in which this "chalkboard" approach has been particularly

useful is with "generative" material, based on problem generators or
performance criteria programs; these programs often differ in pedagogical
purpose from dialogs created in other ways. This kind of authoring
activity is difficult to describe. Perhaps it is a special case of
building a data base to fir a set of procedures. However, to date we
have seen the "knowledgeable program" approach handled only by people
who somehow combine subject expertise and computer science knowledge in

one person. Indeed, these people are often computer science graduate
students working on dissertations. (The most notable instance is the
SCHOLAR system of Carbonell. It was his Ph.D. dissertation at M.I.T.

that laid the cornerstone for some continuing work associated with the
artificial intelligence and educational technology groups now at Bolt,
Beranek and Newman). The author must be both the subject expert and
system expert since the substance is structured within the data base

according to techniques familiar only to computer scientists. Before
Carbonell's untimely death, he was working on entry of material by
people less knowledgeable about computer science.

Elliott Kaufmann at the University of Connecticut is also making
progress on building systems which include some knowledge of the con-
tent and structure of the subject matter. The intent expressed by
these various workers is to create a system which handles dialog with
the student without the computer expressions and student input having
been anticipated line by line.

Others working in the field include Michael Scott-Morton, MIT

Sloan School, John Wexler, SUNY at Buffalo, Leonard Uhr, University of
Wisconsin, David Levine, Rutgers, Adele Goldberg, PARC (Xerox), and
Laurent Skilossy, University of Texas.

Language Used as the Source Language for Programs.

The range of possibilities has already been discussed in the previous
section. Regardless of whether the author works in flowchart or decision-

table form, either a general purpose language or a special teaching

9

language must be used as the language for the actual source programs out
of which the student dialogs are created. These possibilities will be
touched on briefly.

Several additional detailed distinctions between languages must be
made. These are presented in Figure 3. First, a computer program,
dialog or otherwise, need not be written in a single language. Several
of the "specialized" languages for teaching are written in FORTRAN, and
so they allow easy interfacing of FORTRAN and assembly subroutines.
Assembly-based languages such as the Irvine dialog system also can be
readily interfaced with FORTRAN or other compiler-based languages. The
final program, then, can have parts originating in different source languages.
If a general purpose, higher level language is used, the routine used
repeatedly can be standardized as macros, subroutines or library code.

-General purpose language (no special facilities for teaching)

-Macro-based facility (specialized for teaching)
Kinds of
Languages -Special language for teaching materials

-Query language and system

-Single or several languages used

-Interpreter or complier or combination

-Personal storage availalle

Graphics capability

-Flexibility and extensibility F-character strings

meaning of text
-Matching facilities F-numeric value

Aspects [algebraic meaning
of
Languages Calculational facilties for author or student

with special language or

-calling on available language

-Syntactical and semantic properties

-Debugging facilities

-Costs

Figure 3. The (Source) Language Used

Another factor in language, assuming a non-querying system, is that
of interpretive language versus compiled language. Interpretive language

10

have obvious advantages in instant feedback of error messages, and the

ability to run the program immediately when entered. On the other hand,
compiled languages are likely to produce more efficient run-time code,
and thus, when the program is used by many students, save considerable

computer time. Combinations are also possible, in which an interpretive
implementation is used for the preparation stages, and a compiler for
the final product, or where lines are compiled when first encountered
and the code is stored.

When general purpose languages are used in developing teaching pro-
grams, the user has "unlimited" storage available which is unique to
him; whatever limitations exist are functions of the core available, the
operating system, the installation-imposed limits on individual users of
the computer, and the disk storage available to users. Thus a computer-
student dialog written in FORTRAN or assembly language might keep thousands
of values (based on student input) computed at one point but held for

use at some later stage of the program, or in another dialog. However,
some of the languages devised directly for educational use have assumed
severe limitations on personal storage, and so do not allow large amounts

of personal information to be kept on hand. We can see that storage
available to the individual user varies from one authoring system to
another, a factor which can severely limit what is possible when using
the computer as a teaching technique.

Other specialized and general purpose languages often assumed that
the student was to receive alphanumeric output in some form. Recently,
the development of inexpensive graphic terminals, which can draw lines
at computer command, has opened powerful new teaching possibilities.
Thus, graphic software is becoming an important component of contemporary

authoring systems. Often "packages" exist for general purpose languages
such as FORTRAN, at least for certain terminals; in some cases, this
code is available from the terminal vendors, and in others from user
libraries or developed locally. With the specialized teaching language
facilities the graphic situation depends on the age and flexibility of
the languages; older languages seldom considered graphics, and as long
as it remains difficult to add to the facilities, that situation is
likely to continue. But newer products (TUTOR, and the Irvine dialog
facilities) have full facilities for drawing lines at graphic terminals,
and some (usually limited) facilities for entering graphic data. The
nature of what can be done, however, differs from case to case, and as
such, needs to be individually examined when comparing languages and
authoring systems.

The term "extensibility" often has a technical meaning when applied
to programming languages. Here it is used in the general sense of
adding facilities, of any type, to existing languages or sets of facilities.
Early, specialized languages for developing computer-based teaching

11

material were based on a definite and often restricted view of how to

use the computer in teaching. These languages did not lend themselves

easily to extended uses not covered in the original plan. As a result,
extensive internal calculation based on student input data was often

difficult or impossible. More recent specialized languages, and many

general purpose languages, allow anything that is possible with the
computer; they do not assume a particular pedagogical strategy. However,
complete freedom, particularly in a multipurpose environment, may not be
desirable because the user may gobble up far too much of the system
resources.

One way in which languages and systems can differ in very complicated
ways is with regard to matching facilities (for recognizing student
input). A number of distinct types of input must be dealt with. First,
most dialog facilities allow key word or key string matching, perhaps
with various logical constraints. Thus, a language may ask that the
student input be one of several strings, followed by another string, but
not containing a third string.

SNOBOL is an example of such a general, pattern-matching facility.
Whether this matching is done at the whole word level, or whether matches
on fragments of words are possible, is another source of variation.
Some languages (TUTOR and PLANIT) have clever facilities which make
allowances for spelling errors in such keyword searches.

A second type of technique for matching student input concerns
natural language input, where an attempt is made to parse and "understand"
the input, and respond to it. Although programs of this kind have
existed for many years, their routine use in practical computer-based
instruction involving large numbers of students is still in the future,
if at all.

A third type of matching concerns student formulae, often containing
derivatives, integrals, and various types of operators. Augmented
matching can be sufficient in some situations. A simple algebraic
formula, in some facilities, can be handled by substitution of numerical
values, and comparison with correct values. This method, however, is
insufficient when the formula is not algebraic in structure. A related
task is that of using a student-input formula for internal calculations,
again a parsing operation.

A fourth matching facility concerns the ability to deal with the
student's numerical input, i.e., to find if it is within certain ranges.
This input is often imbedded in text strings which must also be examined
within the program; thus if "10 meters" is entered, both the numeric and
alphanumeric information must be analyzed.

Matching is not simply a question of software, but has implications
for hardware too. Some computer systems have powerful hardware instruc-
tions for rapid string matching, but these instructions are not necessarily

12

usable with a particular type of authoring software. Others must match
byte by byte or word by word. Since hundreds of matche.s may take place
each time a student enters an input (at least in some sections of the
program) efficiency in these matters can be of considerable importance

In determining how many students can be handled in the program.

Another difference between authoring systems concerns the question
of numerical abilities. Here we should speak both of numerical abilities

for the author, calculations he can request within the program which may
be dependent on student input data, and numerical abilities given to the
student when he is running a dialog. In both cases, these numerical

calcualtions can be done either in a general purpose language, one com-
monly available on the machine for other purposes, or in a specially

developed "language" just for the calculational purpose at hand. Some
systems do not offer this capability, but many teaching systems have
gone in the other direction, providing a new set of calculation facilities.

Some systems have taken care of these needs by providing linkage for the
author and/or the student to a higher level language already in widespread
use, such as FORTRAN or APL. In such a case, the student can write long
programs before returning to the dialog. It would also be convenient to
be able to "pass" variables between dialogs and calculational programs;

the APL "shared-variable" concept provides such a mechanism.

It is useful, in some situat,,ns, to relate the results calculated
by the author's program to results calculated by the students. That is,
the student may leave the dialog to do some work using a calculation
language, and then return with certain results already identified for

checking by the tutorial program. ihe advantage here is a reduction ia

the type of clerical and copying errors that follow from having students
copy down results and type them again for the system.

Also, students may leave the dialog to write their own programs.

If these are intended to arrive at a solution, and the result is incorrect,
it is helpful if the dialog strategy has access to intermediate results

and perhaps diagnostics coming from the programming and problem-solving
efforts.

Surely, if one is using the dialog system to teach the student
;ibout programming, one wants to be able to get diagnostic codes back
into the dialog in order that additional explanations will be given

(beyond what is built into the language processor itself). One can

provide procedural suggestions about how to solve the problem, write the
program, or check it out.

A language for computer-based instruction can be judged on the same
basis as other computer languages, so we can ask about some of the
general syntactical and semantical properties. Newer languages like

13

ALGOL and PL/l allow convenient block structure, an advantage in programming,

debugging, and in reading programs obtained from other systems. Blocks

of code, particularly within conditional statements, allow use of fewer

(o)TO commands; it has been argued recently that the GOTO is a common

source of programming error. More generally, it is convenient to treat

a very large program (and dialogs can be very large--several of the

irvine dialogs have load modules of over 100K words) as a group of

subprograms (not necessarily subroutines in the normal sense). '1notier

related useful syntactical feature is the ability to make variables

local to a piece of the program, rather than having them be global in

scope. Other aspects of data also need to be considered, such as the
ability to dynamically allocate storage for data, and the ability to

introduce new data types. Ability in start parallel processes may also

be important. Other syntactical features need to be examined in comparing,

different authoring systems.

Different authoring systems provide considerably different debugging',

aids. They are often a function of the operating system in which the

language is embedded. These aids range all the way from no assistance

at all (beyond working through the initial code) to various tracing

facilities of increasing sophistication. Thus a language like APL has

built-in debugging facilities, allowing one to set traces and breakpoint,

in convenient ways, and allows the inspection of variables when errors

occur. Systems that work with an efficient on-line assembly-language
debugger such as DDT on the PDPIO or DELTA on the Sigma 7, provide

extensive debugging facilities for the experienced programmer, but riot

necessarily ones which can be used by the novice. The question of who

is doing the debugging, the teacher or a student programmer, is important

in judging debugging facilities.

Method of Entering Program.

After a "program" exists in one of the forms suggested in the first

section of this paper, it must be placed into the machine. Some of the

variations are listed in Figure 4.

The first distinction between methods of getting programs into the

computer initially is the classic one between timesharing systems and

batch systems. Is the program to be punched into a series of cards and
read into the card reader, or prepared off-line in some other fashion,
perhaps with tape or disk units? Or is it to be entered interactively

at the terminal? Sooe computers and languages allow both possibilities,

hut particular authoring groups will often favor one or the other. With

a querying language, as discussed above, the information must be entered

directly at the terminal. With an algorithmic language, either possibility

may exist.

A second question relates to who i:s typing at the terminal, or
using the keypunch, or other input device. Many such systems, parti-ilar-]v

14

interact ie systems, have assumed that the te.acher himsel f , the designer
of the program, will also be the one who is sitting typing at the
terminal , keypunch or other input dlvicc.

Other systems hliv assumed thit programmers, perhap students, wil I

be doing this. Yet another variant is to assume the typing or keypunchin
will be dlone by secretaries, or by other personnel specially trained for
this job.

A flexible approach, here and elsewhere, may allow any of the above

variations and combinations. Thus the author may write out the program

on paper, and give it to a keypunch operator or secretary to enter.

Entry __ Batch Entry

Mode Timesharing

-Typed or keypunched by author

Entry

Means -Typed or keypunched by programmer

I-Typed or keypunched by secretary

Figure 4. Means for Entering Program

Testing the Program Before Student Use.

Between the time that a working program (one that compiles or
assembles without error) exists on the machine, and the time it is used

with large groups of students, some testing will generally proceed.

This is perhaps the part of authoring systems that is the least formalized,
and has had the least energy devoted to it. Many small modifications

are often required at this stage to produce even a modestly interactive
program, so the issue is important. Some of the possibilities for pre-
testing are listed in Figure 5.

Au I hor

-11 rurammer

-. ,ol I C e;gues -numbe r

-a 1n; -Lahn.(St (ied 'tident!1) -'elIec t Ion

-Srudents repeated trials

Lperformance data

interview

F kgire 5. Testing Before Use

Initial tes:ting is likely to be performed by the teacher arid associ-
ated programmer:s, although this is not essential. II any further terting
goes on at all. at this level--and in many places it does not--it often
consists of simply gathering a few students (perhaps out of the halls)
and running them through the material, observing what happens either
dfioctly, or using built-in storage facilities (to be examined in the
Internal Record Keeping section). Often, colleagues are used in this

ttesting, in addition to students who may or may not be representative of
the target audience. Small or large groups of students may be ;.;ed;
thus the author may work directly with two students, obtaining quick
feedback, or he may have large groups pre-test the dialog. Some more

formal testing procedures may also be employed. It is possible to
use the program in the normal fashion, as it vill be used ultimately,
except with a smaller group of students. Then it can be rewritten once
before being used with larger groups. Automatic methods of running
through the program, with random filed inputs generated by the computer
itself, have also been suggested; it is not clear whether these have
actually been used in practice, and they would not provide a complete
test,. in any case.

A descriptIon of approaches should include some mention of timing,
number of students, kind of data, and particularly the role of the
.suthor. One approach is for the author to do very little before calling
In at least two students to try it. In most instances, the author works
in the same room, observing the students at work, and is available to
answer their questions and to sit down and discuss it with them at the
end of the session. The author then rewrites that section and goes on
to the next, hopefully bolstered by his experience with the first two
students. This approach, of hnving a very close cycle of test-revision
with nnny batches of students in small numbers, is costly in author time
but contributes to an empirical, base for che validity of the curriculum
materials. The data tire quite rasual and dependent upon the ability of
:itudents to express themselves and the skill of the author in Identifyi,,
their difficulties.

16

AnotIher npp roi ch ti q.] arge r num1h1'rn of ntiudentin and Is more depen-
4lcii upon .1 clear di;cr[ption of ohl c-cl Iven and procedures to get one

t hrotlgh. After .1 large imount of material hni been produced, it In
Irled by twenty or more Studentn. The results are Ilikely to be taken In

-iammary form, saving the author the time of Interviewing each fttudent.
The saving In author time, however, co.ts the project something, namely
I':ti r ti'hlclne of data.

Summary information derived by the computer (or technicians) should
Ldentlify weak points in the instructional. procedure; the author is
looking for per cent wrong, particular wrong answers, and peculiar
,onnections or paths. Presumably if the data are unclear, the author
can turn to individual students for explanation.

The role of the author in nl this should he spelled out. lie may
be very much involved himself, doing tutoring and extracting information
from tlhosC experiences; he may be quite dependent on technical assistance
from the machine (or human assistant) to collect and summarize data for
him.

Program Storage and Modification.

The source program is not a completely finished document at any
time; it is always subject to revision. In the case of an interpretive
language facility, the source program will be the only one available,
but in other cases, the program cnn exist in one of several forms. It
can be stored outside the machine in the form of cards or magnetic tape.
Internal storage is likely to be disk storage. When the program is
actively being modified, it is convenient to keep it available in disk
storage, although this Is not possible in all systems. An authoring
system in which the author must spend half a day locating the card deck,
getting it back in the machine, etc., is clearly not as convenient as
one in which the author can simply specify, at a user terminal, the
program to be edited.

All the educational programs must he extensively edited during the
development period. Editing systems are an important component of any
authoring system. They often exist on the computer, independent of the
activities of producing educational materials. Such systems for editing
exhibit a wide variety of flexibility and aptness, with many variables.
Although they are often not considered part of the teaching software,
they are, nevertheless, an extremely important part of most authoring
systems, and can greatly affect the convenience of use of these systems.

We might distinguish a number of features of editing systems,
although no full discussion can be presented. First, is it possible to
replace lines? (This might be called "bare minimum.") Is it possible
to delete lines? Is It possible to conveniently change a rv characters
In a line, or in a large group of lines? Is it possible to reorder the

17

code, as is often necessary in a computer program? Is it possible to

merge parts, or all, of different files, or to break up a single file
into a collection of files? Does the editing system protect the casual
user, or does it make it all too easy to wipe out sizeable portions of

the program with a typing error in one place? Can the editing system be

used by a skilled secretary with minimal training in its use, or does it
require a computer professional?

Another important issue is documentation. The programs created are
likely to be large and complex. They should be frequently modified to
become more interactive and to deal with errors. Often, this modification
will be done Ly people who did not write the original program, so full
careful documentation is essential. Some of this can be supplied by the
author, while other aspects may be part of the authoring system.

One approach is for the author to prepare documentation as he
develops the program. In the case of flowcharts, this is the essence of
the author's notation and likely to be carried along unless or until it
becomes more convenient for him to work with the real representation
within the machine. Nevertheless, when the program is finished, it may
he worthwhile to bring the flowchart up to date to serve as documentation

to share with other users and reviewers.

If the author stays distant from the representation of the program
within the machine, perhaps the documentation would be generated in nart
by computer (as in a listing of problem headings and branches ai,, such)
or by a technical assistant working from the program listing itself.

Internal Record Keeping.

The saving of student responses is considered under Feedback and
Revision, but other record keeping can go along with running dialogs.
First, a complete authoring system should keep records of dialog usage--
who runs which dialogs, and for how long. We may also want to record
full error information when a program malfunctions. Long dialogs are
complex programs and so may still have unknown problems that will only

appear occasionally; the details of the error (the type of error, where
it occurred) can be useful in finding the problem.

Another type of record keeping can affect the performance of the
dialog. It nay be desirable to access and process information from
files, perhaps entered in running the program, perhaps not. Thus, an

educationally oriented retrieval system, such as the Dartmouth IMPRESS
system, can allow student access to very large structured data bases.

A third type of record keeping concerns communications between
dialogs, either one user with several dialogs or ore dialog with several
users. In the early days of using computers in education, each dialog
was a world in itself; a dialog might refer to another, but it would not

18

have access to informat ion about student performance in other dialogs.

It might, for example, be ugeful to know it a student cirrently using a
dialog has passed some partictlar point In a previous dialog, or even
i,ow he/she responned to a cert ain question in anoth,.r dialog. A complete
ant horing system can make provis l,.n for such pa sing of inforinati,,ii from
one program to another.

Passing information from one iiser tr another is s1ffLol in ;ui ti-

person games played on a computer. PLATO does this, occasionally, so

that one user will know how successfi ull preceeding ones have been. Th-,;,
data are part of "program storage" (in the Educom report specifications)
slince the data are really part of the information about the program and
its uses, rather than information about individual students.

Restart Capability and Other Student Options.

For various reasons, a student may not complete a dialog in ote

sittii.g, particularly it the dialog is long and complicated. An auth,,rir ,.
system r-ay provide restart facilities so that the student does not
necessatily have to start from the beginning the next time arouid.
Either the student or the author may terminate the session.

A number of strategies exist; they are listed in Figur, 6.

restart check
request identity -at the exit locati a

determine at locations determined b- "
location

at locations marked by author

restore previous situation

student
options L tview

- skip

-pacing

scanning text

accessing supplementary resources

Figure 6. Restarting an Interrupted Session

19

The first decision is who is to start again. The program can access the

account number of the student, or it can ask for a student-entered iden-

tification. If the student is suspected to be a repeat, it is still
,iseful to ask if this is the case; students will, fir example, often
tncer a personal identification such as BILL, and several students may
use cne account.

The next decision is where to restart. At least three possibilities
can be envisioned, assuming restart. The student can be restarted pre-
cisely at the previous program exit, usually at the point where the
computer is waiting for input; the problem is that the student may not
remember the context. The second case assumes that restart points can
he determined by the structure of the program; if it is composed of a
number of subprograms the student can restart at the beginning of the
sequence last used. The final situation, most flexible, is to allow the
teacher preparing the dialog to specify just where restarts are possible;

the student will begin again at the last such point finished.

In any case, a restart facility, if it is to be highly useful,
should completely restore the previous status. All the internal variables
should be set as before, and the same parts of the program should be in
core. Implementation depends on file facilities.

Restart capability is only o-' student option. Others are also
desirable in some situations. The student may wish to review certain
material, may want to skip ahead, may want additional examples, o, ms'L
want to control over pacing (the rate at which material is presented)

The notion of restart should be expanded to cover all mainner of
student options as well as the way in which the author sets limits on
these options. For example, one would include provisions for the
student: to skip ahead, go back and review, move to supplementary
resources such as calculation or glossary, and scan or searci ihoijt
through the text for keywords or other indicators of substan, . The
,ccompanying mechanisms of concern to the author are a computr-based
context (which may be present or determined at execution time), and a pi
vision for selecting our parts of the text which either are identified
by tags placed by the author, or selected by some other conditions such
as depth within the logical structure, nature of the question format,
etc.

Feedback and Revision

A computer dialog, as it is initially written, is seldom highly
interactive. It will require large amounts of student use, plus several
rewritings, before it will be highly responsive to many students in a
completely tree fashion. Of course, if the dialog restricts input
heavily, this problem does not Prise. But in many situations, a free-
form dialog must be heavily used and revised before it is effective.

20

Some considerations in feedback and revision are listed in Figure 7.

not possible

options in response saving all or none

-.partial author control

-selective -

--complete author control

user input I- full

Lrestricted

-tag showing program location

content of records -- tag ideitifying user

-time

-program status (progress through dialogue)

-sort on particular response

analysis of records- sort on user

-numerical information about performance

Figure 7. Feedback and Revision

The first major distinction relating to feedback in authoring

systems is whether the software permits saving student responses in

disk (or possibly tape) files. Clearly, the computer (with suitable
hardware) has the ability to save student responses, but not all

authoring systems allow this to happen. Furthermore, among those that
do, several variants can be found. One possibility is an "all or nothinL-
situation--that is, all responses can be saved or, perhaps, none. On
the other hand, the circumstance in which what is saved may be selective,
fully under the author's control. In this last case, the author might
specify that certain trivial responses not be saved at all, while in
other situations the author may choose to save the student responses

that the program could not analyze.

21

To attempt to save all responses, particularly in programs used

with large groups of students, produces enormous files, perhaps too

large for the machine. Just what is saved, is also a feature of authoring
systems. With regard to student input, we inquire as to whether a full
input, perhaps in places many lines long, can be stored, or if, as with
some systems, there are limitations. The stored records also ma,;

contain various other "tags." One essential thing is to identi:v the
place in the program where storage occurs, since student inputs may
occur in hundreds of places in the code. It is also useful, on occasion,
to identify the input as to student, so that the author can follow the
progress of a particular student through the dialog. In a similar vein,
the exact time of each student input may help in understanding what a
student is doing. If one file is used for several dialogs (impractical
for wide usage) the dialog must also be identified.

Another helpful operation involves the student path--or progress
through the dialog: what branches did he/she take, what program facilities
were used, how many times were retries necessary at a certain location?

Information of the type just suggested is more usable for the
author who is rewriting material, if auxiliary programs exist to aid in

massaging the raw data into other forms. Sorting is one such function.
Student responses need to be sorted both with respect to the program
location and with respect to users. Program progress also can be sorted,

and perhaps the data can also be used to obtain statistical information
about how the dialog is used.

Authors can be overwhelmed by data. Representation is critical,
and raw data typically are not used at all. The nature of data reduction
has proved to be a very expensive process, always in need of revision,
and even still, not much used by authors.

The saving and manipulating of data reflecting student use is only
one aspect of the revision problem, the one to which the computer contri-
butes. Provision still must be made, in current authoring systems, for
the teacher to use these data in reworking the program. Authoring
systems in current use differ widely with respect to how much in the way
of human resources they allocate to revision. As with initial testing,
it is hard to formalize the requirements for revision.

RECOMMENDATIONS FOR RESEARCH

This final section lists areas and aspects needing particular
attention in research programs and specific development activities. The
list is derived from a comparison between the ideal situation (aspects
of authoring and desirable contributions of computing) and the reality

of current systems as seen in technical reports, manuals and publications.

22

Engineering

Human factors considerations in interactive computing need consider-
able attention before the responsiveness of the computer can be appreciated
and put to full use. Today, most successful authors' computer-based
learning materials build on long experience with computers and exhibit
considerable tolerance for the shortcomings of the software and user
terminals. What makes a keyboard effective for different kinds of
users? What are the parameters of a usable display? In what ways can
the load which interactive computing places on the memory of the user be
alleviated?

What new kinds of visual displays may be created to extend the
effectiveness of the author? For example, how can data and procedures
be displayed to the materials designer in order to show complex structures
in full detail one time, and in various simplifications at other times?

What is the proper role for speech input on authoring systems? In
what learning environments will speech input be most helpful? What new
dimensions of input processing will become available to the author, and
how will classification of input be specified?

How will communication within a group of authors and reviewers be
facilitated?

Information Science

New knowledge about information structures may contribute important
tools for users of authoring systems, but many questions remain: What
structures contribute to more efficient storage, more rapid retrieval,
and more convenient access by the user? What structures open up new
possibilities for representation of information, growing networks of
knowledge, and opportunities for students and other users to add to the
data base?

Extensible language hold some promise for increasing authoring
capabilities in significant ways. In what ways can language be made to
adapt to the changing needs of authors, working individually or in
groups? How can a balance be achieved between: 1) adapting to the
needs and requirements of individual subject areas or authoring groups,
and 2) establishing general conventions, notations and procedures upon
which all users of a family of languages can build?

Natural language processing offers considerable opportunity for
extending access to automatic information processing. What would a
system look like if the designer of materials needs only to speak or
handwrite directions for setting up learning sequences? What additional
problems need to be solved, e.g. speech input, disambiguation, and many
instructional design considerations? What are the implications of

23

natural language processing for interaction with learner? For example,

how does the role of the materials designer change when the system
"understands" the student?

Instruction Science

Surprisingly, the area which has made the least impact to date on
the use of computing in teaching is that of instruction science. The
potential is there, but the methodology needs refinement. Eventually,
the contribution will be felt. In the meantime, we still need to know
what instructional strategies can be prescribed for particular learning
tasks with some confidence of achieving near to optimum results with the
objectives and students for which the materials were prepared? What
kinds of learners most benefit from various kinds of computer assistance?
In what ways can a computer program match instructional materials with
learning styles?

Pedagogy (Disciplines)

The largest advances in the near term are likely to come in the
area of pedagogy specific to the disciplines being taught. For example,
new tools of information processing will undoubtedly open up new oppor-
tunities for effective learning activities. Here, too, though, many
questions remain: Will information structures newly developed for
research and scholarly work in a discipline be carried over to corresponding
learning activities? What procedures of analysis (in an area of study)
correspond to learning goals for understanding process and structure in
that area? The right tools can give an advantage of two or three or
even ten times the "learning" without computer assistance.

24

APPENDIX

PARTICIPANTS

Mr. Avron Barr
Institute for Mathematical Studies in the Social Sciences

Stanford University, Ventura Hall
Palo Alto, CA 94305

Dr. Alfred Bork
Department of Physics
University of California
Irvine, CA 92664

Dr. John Brackett
SofTech
460 Totten Pond Road
Waltham, MA 02154

Dr. Victor C. Bunderson

Institute for Computer Uses in Education
Brigham Young University
Provo, UT 84601

Mr. Frank Dare
CAI Project
USA Ordnance School and Center

Aberdeen, MD 21005

Mr. Wallace Feurzeig
Bolt, Beranek and Newman
50 Mouton Street
Cambridge, MA 02138

Dr. Dexter Fletcher
Navey Personnel Research and Development Center
San Diego, CA 92152

Mr. Ed Gardner
Air Foce Human Resources Laboratory
Lowry AFB, CO 80230

Dr. Roy Kaplow
Massachusetts Institute of Technology

Room 13-"o
Cambridge, MA 02139

25

Mr. Don Kimberlin
Office of Project Manager
Computerized Training System
Ft Monmouth, NJ

Mr. George Lahey
Navy Personnel Research and Development Center
San Diego, CA 92152

Mr. Hal Peters
Hewlett-Packard
11000 Wolf Road
Cupertino, CA 95014

Dr. Mortenza A. Rahini
Department of Computer Sciences
Michigan State University
East Lansing, MI 48823

Dr. Martin Rockway
Air Force Human Resources Laboratory
Lowry AFB, CO 80230

Dr. Robert Seidel
HumRRO
300 N. Washington Street
Alexandria, VA 22314

Mr. Robert H. Simonsen

System Development Technology
Boeing Computer Service
Seattle, WA 98108

Dr. Lawrence Stolurow
Division of Educational Research
State University of New York
Stony Brook, NY 11790

Dr. Paul Tenczar
Computer-Based Educational Research Laboratory
Urbana, IL 61801

Dr. Karl Zinn
Center for Research in Learning and Teaching
University of Michigan
109 East Madison Street
Ann Arbor, MI 48104

26

