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N
This paper examires some of the preblems and issues involved in
designing a practical decuctive inference nrocessor to augment
a data managerent system, as well as some of the ben2fits that
can be expected from such an augrentation. A deductive
processor design is presented that inccroorates new techniques
for selecting, from larae collections of mostlv irrelevant
general assertions and specific facts, the small number nesded

for deriving an answer to a particuiar query. f‘:\\

INTRODUCTION

AMAOQT1105

In this paper we discuss some of the issues invoived in adding a deductive
capability to a data management system, and we describe a specific aporoach towards
achieving this cbjective. Ficure 1 illustrates the major components cf cur
deductive data management system:

e A language processor that translates user input into a formal
intermadiate symbolism.

e A data management system* that retrieves specific facts (n-tuoles
of data values) from a data base as required, i

e A deductive processor that uses general assertions {i.e., premises
‘representing general rule-based kncwledce about a data-base domain)
to derive implicit information from collections of explicit data
values.

e A control module that facilitates communication between the several
components of the system and directs interaction between the
deductive processor and the data management system during on-line
question answering.

-~

Listed below are some of the benefits to he expected from addina a deductive
processor to a data management system:

e A deductive processor permits the extraction of information that is
not explicitly stored but that can be inferred bv corbining soecific
facts in the data hase with rule-based knowledae encoded in genera]
assertions. This auamentation of the informaticn-retrieval function
can be especially important for very large data-base domains.
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*In our prototype we use a relatioral data manaqement system (see Codd (1970),
Date (1975)). The research described in this paper is an cutgrowth and extension
of our earlier research on natural-lanquage data management (see Kellogg et al.
(1971), Travis et al. (1973)). 3
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e A deductive processor allows a data manaaement system's lanquaqe to be
4 extended and adanted to the needs of particular users. Thus a user's
| language can be uncounled from the particular terms and cateqories used
{ in organizing a data file. This is essential if users are to be able
to use a system without havina a thorough knowledae of its file structure.
v For example, a user should he able to ask whether the maternal grand-
father of John Kennedy was richer than his paternal qrandfather without
knowing the respective men's names or that the file is structured in
terms of net worth. Relatively powerful inferential mechanisms are
necessary to enable full use of such descriptive references.

e A deductive processor not only qenerates answers to specific queries
but also supplies evidence {lires of reasoning) for or against these
answers. In some cases, the system may suoplv one argument leading to
L "yes" and another leading to "no" (indicating inconsistent information).
In the real world of unreliable reports and uncertain facts, this kind
of response will in many cases be much more useful to a user than simple ;
categorical answers. |

e NWhile deduction is itself a precise and strict process, deductive
arguments can use premises of differing degrees of plausidbility. Since
the plausibility of a conclusion (answer) is a function of the plau-
sibility of the premises from which it is derived, deduction provides
a basis for using "soft" information in a computer-bhased system. The
important thing is that the system be able to show the user the evidence
for a conclusicn as well as the conclusion itself. Deduction can also
be used to generat2 multiple distinct arauments for a conclusion,

s therehy supplyino additional evidence for the plausibility of its
2 answer.

answers when specific direct answers are not possihle: e.a., "Is Jce
Smith eligible for a pension?--Yes, if he has thirty years of continuous
." service." 1In this case the deductive processor identifies a specific
A fact about Joe Smith that it needs to complete an argurent but that it
- cannot find in the files to which it has access.

J e A deductive processor can, under certain circumstances, supply conditional

o A deductive processor can answer "what-if" and other kinds of high-level
queries that are difficult if not impossihle for present-day data
management systems. |

Y Each of these capabilities is currently demonstrable within our prototype
deductive deta management system. OQur primary concern in this paper is to

| outline our deductive system and to give examples empnasizing the derivatien
of implicit information.

. Research on mechanizing deduction has been conducted primarily in the areas of

3 question-answering and theorem orovina within the broader area of artificial intelli-
G_ . gence. Early question-answering systems such as SIR (Raphael (1964)), PROTOSYNTHEX
1| (Schwarcz et al, (1970)), and CONVERSE (Kelloga (1968, 1971)) relied primarily

i on set-inclusion logic for their deductive canahility. Elliott (1965) developed

7 structure-specific procedures (such as one for transitivity and svmmetry) for
deriving new information from a file of specific facts. The inferential

capabilities in these systems were limited and used for special nurposes.

BT T S

With the development of "resolution" (Robinson (1965)), more soohisticated theorem-
proving techniques were incorporated into cuestion-answering svstems, most notably
in Green (1969) and in Minker et al. (1973). General statements formulated in a
first-order predicate-calculus symbolism could now be used to derive new informa-
tion. Deductive power increased considerably, but at the expense of increased

e e A A A >




184 KELLOGG, KLAHR, TRAVIS

search space. This led to a host of resolution strategies (Chang and Lee (1973)).

Some recent approaches to deduction have offered alternatives to resolution; these
include procedure-oriented deductive svstems, exemplified by PLANNER (Hewitt
1971;). and natural-deduction systems, exemplified by Bledsoe (1974) and Nevins
1974).

Our primary concern has been to desian a deductive processor that will subport
practical data management in realistic environments involving larae files of gen-
eral and specific information.* e have concentrated on the nrobhlem of selecting
from such large files the few oremises and facts that are relevant for a particular
required deduction. We have adoptecd some of the deductive techniques used in
question-answering svstems and modified them to be more suitable for data manage-
ment; we have also introduced new "planning"” techniques for premise selection.
These techniques are discussed below.

INFORMATION STRUCTURES TO SUPPORT DEDUCTIVE DATA MANAGEMENT

Figure 2 illustrates the principal files and processors that constitute our
deductive system. MNote that the deductive processor operates primarily on general
assertions in its construction of proofs. The data management system accesses and
retrieves specific facts when such facts are needed for proof completion. The

four files used by the deductive processor are the general assertion file, the
predicate connection araph, the variable substitution file, and the semantic advice
file. These files have been segmented for purposes of processing efficiency and
data organization,

General Assertion File. The deductive orocessor has access to a file of general
assertions, or premises., These premises are represented in a Skolemized,
quantifier-free form, as "primitive conditicnal" expressions. Primitive con-
ditionals are logical statements whese major connective is the implication sign.
On either side of this connective, groupings of literals may be combined con-
junctively or disjunctively. Each literal is an atomic formula (i.e., a predicate
and its arquments) or a negated atomic formula. The primitive corditional is a
canonical form for the first-order predicate calculus. This form facilitates
finding chains of deductively linked middle-term predicates, disnlayina inference
plans and evidence chains, and storing information in such a wav that the strat-
egic or heuristic implications of the original formulation are not lost in the
system, as is often the case with other canonical forms (e.g., the conjunctive
normal form used in resolution).

A predicate occurrence is uniquely identified by specifying the premise in which
it occurs, the predicate name of which it is an occurrence, its ordinal position
in the premise, whether it is on the left or right of the main conaitional,
whether it is negated or not, and whether it is a member of a conjunctive or dis-
Junctive set. For each predicate occurrence, the above information is represented
by a unique compact bit string (a single IBM 370 computer word in our current
implementation).

Predicate Connection Graph. The predicate connection granh is abstracted from the
Tnformation available in the premises. MNodes represent predicate occurrences.

Each edge between a pair of nodes represents a possible deductive interaction
between the predicate occurrences in the nodes. The predicate connection graph is
of key importance in our system. It reporesents explicitly and compactly a areat
deal of detailed structural information ahout general assertions and their possible
1ntercgnnections. This information is in a form that can be quickly accessed and
scanned,

*For the related artificial-intelliqgence problem of efficientlv using a very larqe
knowledge base, see McDermott (1975) and Fahiman (1975).

e
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186 KELLOGG, KLAHR, TRAVIS

The predicate connection aranh bears some resemhlance tn the aranh nroof nrocedures
of Kowalski (1975), Shostak (1376}, and Vates et al. (1970}, The important distinc-
tion hetween our annroach and these nrocedures is in the wav the connection aranh

is used. As we will see in the next section, the rredicate connection aranh is

used to develop possible nroof nlans. The araoh is an abstraction of information
about nremises and their deductive interactions and does not, bv itself, construct

' proofs. It is used as a nlanning tool. For a full discussion of the predicate

i connection qranh, its use in constructina nroof nlans, and the use of semantic
advice in restrictina searches throuch it, see Klahr (197§).

Figure 3 illustrates a small set of premises and their repnresentaticns in
primitive-conditional form. Finure 4 illustrates the rredicata connection araph
for these nrerises. The sgiid lires in Finure &4 are y-arcs /these “unification®

d arcs represent deductive interactions between different cccurrences cf tne same
predicate). These arcs are corouted when nremises are first entered into the
svstem. Another kind of information in the nredicate connection aranh is the
deductive dependencv link, which represents deductive denendencv between predicate
occurrences within a single oremise. Two of the four kinds of dependency 1inks
are shown in Fiqure 4.

|

] Variabhle Substitution File. Another file, also senarated out for opurnoses of

’ - efficiencv, is tne varianle substitution file. This file is also abstracted from
|

information in the nremises. It consists of the substitutions for variables that
establish the unifications renresented bv the u-arcs in the predicate connection
graoh. This file is used onlv durina the verification process, when the sub-
stitution lists for all the unifications in a nroof are combined and checked for
consistencv.

E | Semantic Advice File. Semantic advice can he of considerahle aid in deductive
| searchina. 1t perrits the snecification and use of deductivelv sianificant nroce-
dural semantic information speciric to a rarticular domain of discourse. Freauently,

t advice cannot be forrulated directlv within the lonical svmbolisn of the aqeneral

l assertions, even when a svmbolism as rich as that of nrimitive conditionals is

{ used. 'henever such advice can be cantured, it can verv likelv be put to cood use

in simnlifvina and soeedinn un the deductive nrocess. In thne advice file, seman-

‘ tic advice is formulated and stored as condition-action pairs. (The user mav also
‘ give problen-snecific advice for any narticular auerv.)

|
i DEDUCTIVE PROCESSNR MNDULES
|

Control. The control module provides the nrimarv interface between a user's
symboTic input (queries, advice, and data), the several deductive processor mod-
ules, and *ha dz*a mananenent svstem, For examole, Control mav locate semantic
advi_e in the advice file relevant ts a specific innut ouerv. It mav then cal?
the Middle-Term Chain Generator ard the Proof Prooosal Generator to create proof
proposals. Control will then invoxe tne Proof Proposai Verifier and the Data
Management System in sequence to verify and comnlete a proof. Firallv, it will
call the Response Generator and disnlav the answer and nroof to the user.

Middle-Term Chain Generator. The predicate connection aranh is used to find
chains of middle-tern nredicates that deductivelv link the assumntion and qoal
predicates of a querv. The hasic nroof strateaies of natural deduction, oroonf-bv-
contradiction, and nroof-hv-cases are automaticallv incornorated into this nred-
cate chain aenerator (since the nredicate denendencv links reflected in the
nredicate connection nranh are of the different kinds needed for all of these . 1
strateqies: see Klahr (1975)), The chain-aeneration nrocess mav he visualized as

one of aenerating a series of expandina “wave fronts" from each assumntion and

goal nredicate. These wave fronts renresent deductivelv sianificant nnssihle naths

from each predicate. As the two wave fronts exnand, intersections are taken to

determine when an assumption wave front impinaes unon a noal wave front. lhen this

hapnens, the system has discovered the beaqirnina of a oroof nlan.
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1. Husbands and wives are married to each other.
v(M(x].xz), N(x],xz)) > M(x],xz)
2. Marriage is a symmetric relation.
: M(x3,x4) > M(x4,x3)
3. Spouses of Greeks are Greek.
&(6(xg), M(xg,xg)) = Glxg)
4. People living in a place located in Greece are Greek.
&(Loc(x7,Greece), Liv(x8,x7)) > 6(xg)
5. Spouses live in the same place.
&(M(xg,xlo), Liv(xg,x]])) > Liv(x]o,x]])

Figure 3. Sample Premise Set in Primitive-Conditional Form.
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Proof Pronosal Generator. For each middle-term chain nroduced, the Proof Pronosal
Generator extracts the premises containina the nredicate occurrences in the chain
and forms skeletal proof plans. These nlans are iater sent to the verifier, which
constructs full deductive detail for the proofs.

Proof Proposal Verifier. For each proof proposal, the variables and substitutions
for them in the proof structure are examined to determine whether there are any
blockages (variables takina on conflicting values). If verification is successful,
the Control processor examines the proof to see whether there are anv remaining
subproblems that need sunport from the file of specific facts. If facts are needed,
the data management system is called to search for these facts to complete the
proof.

Response Generator. !hen the svstem completes a successful verification and
instantiation of a oroof propesal, it outouts answers and, if desired, the deriva-
tions on which thev are based. Ithen derivations are not comnlete, the svstem mav
display conditional answers or partial derivations that, in manv cases, will oro-
vide clues to missing information that the user may be able to acauire from some
other source.

A BUSINESS IMFNRMATINY EXA™PLF

As an example of how our svstem warks, let us assume that we have the task of
maintaining as cornlete and accurate a nicture as possible of the operation of a
large business organizilion. This will include the need to understand the various
factions, real decision-makina loci within the organizition, and real flows of
control and information, as csrosed to nubliclv announced ones or the ones that
appear on a formal orecanization chart as in Fiaqure 5. This chart is for a fic-
tional company that is a larae distributire organization with three major line
divisions: Chemical, Drug, and Liquer.

We should stress that high-level guesticns such as "Is the Drun faction or the
Liquor faction in supremacy?" have to invelve a consicderable amount of human
interpretation. A user should not expect a cormputer svstem, even one capahle of
sophisticated deductian, to generate categorical ansuers directlv for such ques-
tions. What a deductive data maracerent svsten can do, however, is help to ccliect
and organize evidence for or asainst a general conclusion or working hvpothesis.

It is important to note that an inference system mav make use of both certain and
plausible information in the generation of arcuments and in the display of
evidence. That is, the evidence may be strong or weak; the human interpreter must
Judge which.

Let us suppose that a new man, Zembruski, has bheen appointed executive vice
president and head of the Chemical divisicn. Ne know sorethina atout him but
this information is spotty ard incomnlete. The task is to work out deductive
connections that might provide evidence toward concluding whether his aopointment
should be considered a victory for the Orug faction or the Liguor faction. For
ourposes of simnlicitv, we will focus on one princioal relationship that miaht
bear on this auestion. This is the notion of informal information flow amona
individuals. e take this notion to cover the nnssihle exchanaes of information
between peoole who are friends, relatives, co-workers, spouses, etc. If we can
obtain information that will allow us to deduce various instances of information
flow, we might gain evidence, for exarinle, that Zerhruski has manv more informational
:on:acts with executives in the Liquor division than he does with those in the Drug
ivision.

Suppose that Engler is vice president and head of Liquor. ‘e can ask the auestion,
"¥Will there be information flow between Enqler and Zemhruski?" MNotice that while
this is a ves/no question, we will not be satisfied with just a simple "ves" or
"no." We will want to have access to the facts and the qeneral assertions used by
the inference mechanism in its derivation.

A s i
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In Figures € and 7 we qive an example set of specific facts and aeneral assertions
that are pertinent to guestions of information flow. 0Of course, in an actual
situation, there could be hundreds of additional aeneral assertions in the system,
and thousands of additional specific facts.

One successful derivation that our system could come up with, given the assertions
and facts in Figures 6 and 7, is illustrated in Figure 8. When our system is aiven
a complex question, it is broken down into a set of assumption predicates and a

set of goal predicates. !'hen both assumptions and aoals exist, the Middle-Term
Chain Generator is invoked to find middle-term predicate occurrences lirking
assumptions and goals. e will see an example of this process in the next examole.
For the current query we have only a single goal, namely, to establich information
flow between Encler and Zerbruski. 1In this situation the systzm will back up frem
the goal statement as illustrated in Ficure 8 and select premises that can
deductively lead to the estabiishment of the goai.

Each premise in Fiaure 8 renresents an instance of a aeneral assertion. The aoal
statement is enclosed in a rectanale, as are the two snecific facts ohtained from
the data base. The vertical lines connectina the instances of predicates--for
example, the line connectina two instances of Sibling--are unificaticn arcs that
are located by searching the predicate connection gqranh. It is within this qraph
that the system finds the linkaaes that enable it to link Brother to Siblina,
Sibling to Relative, Relative to hepotism, Nepotism to Friendship, and, finaily,
Friendship to Information-flow.

The general assertions used in Figure 8 are not all strictly true. For example,
the premise concerning nepotism for relatives of subordinate e~nlovees is sometires
true (for certain circumscribed contexts or situations), but is clearlv not alwavs
true. We anticipate manv uses in our svstem of such nlausihle prerises, ‘Uhere
this is dore, it is clearly important to be able perspicuouslv to disnlay to a

user the lines of iogical argurent that are being followed by the svstem, so that
the user can evaluate the crecibility of a conclusion drawn from such gquestionable
premises. Our system permits the discoverv of alternative derivations for the
same conclusion, which may enhance the credibility of the conclusion.

We note here a possible use of semantic advice. The user could suagest the use of
particular premises or predicates that he feels may he appropriate to a particular
query. For the current query, he may feel the premise concernina nepotism for

relatives may be appropriate to establish information flow. The system would try

Zembruski is division head of Chemical: Head(Zembruski,Chemical)
Engler is division head of Liquor: Head(Fngler,Liauor)

Richard Z. is a line subordinate of Enaler: Line-sub(Pichard 7.,Engler)
King is a line subordinate of Fnaler: Line-sub(King,Enqler)

MR-Aces is a bridge club: Bridge-cluh(MR-Aces)

Rita S. is a member of MR-Aces: Member{Rita S.,MR-Aces)

Ann K. is a member of MR-Aces: Member(Ann K.,MP-Aces)

Rita S. is the wife of Smythe: Wife(Rita S.,Smythe)

Ann K. is the wife of King: Wife(Ann K.,Kinq)

Richard 2. is the brother of Zembruski: Brother(Richard Z.,Zembruski)

W 0O N DWW N -

—
e

Figure 6. Specific Facts.
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Brothers and sisters are siblings.
¥x,y ( v(Brother(x,y), Sister(x,y)) = Sibling{x,y) )
Wives maintain information fiow with their husbands.
Vx,y ( Wife(x,y) ® Info-flow(x,y) )
Information flow runs between friends.
Vx,y ( Friend(x,y) ® Info-flow(x,y) )
Every worker who is not a chairman of the board has a boss.
Vx3dy ( &(Worker(x), = Chairman(x)) 2 Boss{y,x) )
Every line subordinate is a worker and a sutordinate.
Vx,y ( Line-sublx,y) = a(Yorker{x), Subord(x,y)) )
Every staff subordinate is a worker and a subordinate.
Vx,y ( Staff-sub(x,y) = &(Yorker(x), Subord{x,y)) )
If someone does a nepotistic favor for another, then they are friends.
Vx,y ( Nepot(x,y) = Friend(x,y) )
Staff subordinates have information flow with their superiors.
Vx,y (" Staff-sub{x,y) = Info-flow(x,v) )
Line subordinates have information flow with their superiors.
Vx,y ( Line-sub(x,y) 2 Info-flow(x.,y) )
There is a boss who has information flow with everyone of his subordinates.
Ax Vy ( &(Bess(x,y), Subord(y,x)) = Info-flow(x,y) )
If someone is a subordinate of another, the suverior may do a nepotistic
favor for a relative of the sybordinate. -
Vx,y,z ( &(Subord(x,y), Relative(x,z)) = Nepot(y,z) )
People who are cousins or siblings are relatives.
Vx,y ( v(Cousin(x,y), Sibling(x,y)) = Relative(x,y) )
Members of a bridge club maintain information flow with each other.
¥x,y,z ( &(Bridge-club(x), Member(y,x), Member(z,x)) * Info-flow(y,z) )
The subordinate relation is transitive.
Vx,y,z ( &(Subord(x,y), Subord(y,z)) % Subord(x,z) )
Information flow is transitive.
Vx,y,z ( &(Info-flow(x,y), Info-flow{y,z)) = Info-flow(x,z) )
Information flow is symmetric. g
Vx,y ( Info-flow(x,y) = Info-flow(y,x) )

Figure 7. General Assertions.
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to use that premise in its oroof. Similarly, if the user felt the relation
"nepotism" is of kev imoortance, the svstem would be alerted to link through
occurrences of that nredicate when possible. ‘tote also that such advice could
be placed in the advice file for general use (e.g., if goal is Infe-flow, use
Nepotism as middle term, or in more symbolic form "Goal({Info-flow); (Nepotism)").

To show another capability of the system, consider the following situation. We
ask the system "What if Zembruski were to appoint Smythe to his staff; would there
then be information flow between Engler and Zembruski?" Here we are sugaesting
the use of a particular assumobtion. Using this assumotion the system will try to
establish the same goal as in the earlier example.

A successful derivation for this cuerv is shown in Fiqure @. This crocf uses
premises quite different from those in the first derivation. This second derivation
is more complex than the first. We can cet the qist of the arqument, however, if
we follow through a few of the implications of the boxed specific facts that have
been obtained from the data base. In order deductively to link Staff-sub(Smythe,
Zembruski) to the coal Info-flow(Engler,Zembruski), the svstem has to determine
that Smythe has a wife, Rita; that the MR-Aces is a bridae club; that Rita is a
member of that bridae club; that Ann K. (the wife of employee King) beloncs to the
same bridge club, and hence, via a general assertion, has possible information
flow with Rita; and that King is a line subordinate of Encier. Together, these
relations deductively establich that there may indeed he information flow between
Engler and Zembruski, namely through the wives of two of their subordinates.

We can use this examnle to show the basic operation of the system. The system is
given an assumption and a goal. The Middle-Term Chain Generator atterpts to find

3 chain of predicate occurrences that deductively 1ink z2ssurption to goal via tre
premises. The predicate connection gqranh, which contains infoermation on the
deductive connections between oremises, is used in this chain-zenaration process.
If the chain generator is successful and produces a chain, the Proof Proposal
Generator extracts the set of premises containing the occurrences in the chain,

and the system has the beginning of a proot plan. In Fiqure 9, the set of oremises
on the right were formed as a result of a chain linking the assumption to the

goal via occurrences of the predicate Info-flow.

The Proof Proposal Generator then examines the set of oremises to determine whether
subproblems remain. In Figure 3, four subproblems were formed and are resolved
using the four premises on the left. Subproblems resultinag from these four oremises
are specified as needing fact-file support. (We have previously indicated to the
system that certain predicates should te left for data-base search, either because
we have complete knowledge about certain predicates such as Line-sub in an
organization or because the information can be easily deternined by the user, such
as the wives of employees. In the latter cace, the systen would essentiallv be
giving the user 2 "conditional answer," leaving certain subproblems open for user
completion.)

Once 311 subproblems have been deductively resolved or left for fact-file support,
the Proof Proposal Verifier combines the substitutions of all the unifications in
the proof to check for consistency. Inconsistencv occurs if a variable is reguired
to take on two different constant values simultaneouslv. If verification is
successtul, the data management system is invoked to locate the soecific facts
needed for proof completion. in figure 9, the six facts shown complete the proof.

While we have sungested the imoortance of displaying evidence for (or against) a
deduced answer, we can readily see that derivations such as the one illustrated in
Figure 9 may become difficult to follow. It is important to disnlay machine-
generated logical arquments in as persnicugus and user oriented a form as nossihle,
We are currently developing techniques to displav English-like formulations for
such proofs.
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SUMMARY

We have argued that inference mechanisms can significantly enhance the power and
usability of a data management system. They enable the compact storage of a large
amount of information in the form of general assertions, and they enable the com-
bination of these assertions, with explicitly stored specific facts, to deduce
other specific facts that would ctherwise not be available.

Perhaps just as important, a deductive capability in a data management system can
enable extendability of user language. The general assertions used by the deduc-
tive mechanisms can definitionally connect the concepts used by the data management
system for orcanizing its data base to different concepts more apprepriate fer a
particular user community.

We have briefly described a deductive system specifically designed to provide
inferential capability for a data management system. From various files containing
information extracted from general assertions, the system generates middle-term
chains, which it combines into proof proposals. These proposals are then used in
the generation of data-base search reguests for concrete facts, which, in turn,
transform proposals into complete proofs and answers.

Applying deduction to practical question-answering in realistic environments
requires special attention to the previously unsolved problem of efficiently
selecting, from very large files of specific facts and general assertions, the
very few that are relevant for a particular deduction. Our approach to this
selection problem involves constructing abstract orcof plans and then iteratively
fleshing them out with mere and more detail. Particular facts and assertions are
selected for trial only when they fit into scme plan. Semantic advice, i.e.,
advice specific to a particular subject domein, can be used to guide the construc-
tion and articulation of proof plans. On the basis c¢f our experiments so far,

the approach locks promising.
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