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ABSTRACT

This report involves the application of ideas in adaptive stochastic
control to economics.

We investigate the control problem for a linear, multivariable, dynamic
system with purely random (i.e. white) parameters, The quadratic cost
criterion is formulated to make the problem a tracking problem. Since the
parameters are modelled as white stochastic processes, there is no
posterior learning and no dual effect. The certainty-equivalence principle
does not hold. We find that the extension of the ''Uncertainty Threshold
Principle" from scalar systems to multidimensional ones turns out to be
analytically intractable.

Next, we derive sensitivity equations for the above optimal system to
study the effects of small variations in parameter uncertainties on the
optimal performance of the system. These equations enable us to rank 1
parameters in order of the sensitivity of the performance to variations
in their variances. This makes it possible to locate the '"pressure"
points in a model, if any exist.

We then convert an economic policy problem into a stochastic optimal
control tracking problem and analyse it with the equations we have derived.
We study the different elements that enter into a tracking problem and
then discuss the empirical results obtained from the sensitivity equations.
The model we choose for the analysis turns out to be insensitive to
variations in parameter variances which makes it reasonably reliable.

We also analyse in detail the structure of the model and the inter-
dependences of the state and control variables.

General purpose computer programs are included in one of the appendices.
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CHAPTER 1

INTRODUCTION :

8 8 { Adaptive Stochastic Control

Though research in stochastic control has progressed in the last
decade, there does not exist at present a general, computationally viable y
theory of optimal stochastic control. Richard Ku, in his doctoral thesis

[1], gives a survey of this area. Bellman [2] first introduced the

concepts of 'information pattern' and 'learning'. Feldbaum [3] expanded
on this in his celebrated four part paper on the theory of dual control,
in which he identified the two distinct roles an optimal controller must
play to be truly optimal. The controller must actively try to identify
the unknown parameters of the system and simultaneously try to control the
system. He showed that in such dual control systems there may exist an
inherent conflict between applying the inputs for learning and for

effective control purposes. This introduced the concepts of caution and

probing and the possible trade-off between them, For some insight, the

reader might want to refer to a paper by Sternby [4], in which he solves
a simple dual control problem analytically and compares the optimal

solution with other suboptimal strategies.

Bar-Shalom and Tse have further clarified the concept of dual
control and various related concepts like separation, certainty-
equivalence, neutrality and have also made precise the subtle differences
between closed-loop optimal policies and feedback optimal policies
arising from different information patterns. These can be found in

[5] - [9]. On the last point there is an excellent paper by Dreyfus [10].




Since the permissible controls are cgusal, the only information
about future observations that can be used by the controller is the
probability distribution of these future observations. This knowledge
is what makes the difference between a feedback control policy and a
closed-loop control policy.' It is only the latter policy that uses this
information to advantage. The fee&back law at time t wuses information
only upto time t. And it is this difference that makes the dual effect
possible. A control is said to have a dual effect when, in addition to
its effect on the state of the system, it is able to affect the
uncertainty of the state of the system. If the control cannot affect
this uncertainty, then the system is called neutral. If the dual effect
is present, then the control can help t¢ improve the future estimation
and in so doing facilitate the task of the control. In this case the
control is said to be actively adaptive. Precise definitions of these

terms can be found in the references cited above.

It turns out, however, that we cannot solve the adaptive control
problem except for special cases, In fact, the decision problem in
linear systems with unknown parameters is actually a nonlinear stochastic
control problem [7], [47]. There are two ways in which we can make
approximations to make the original problem mathematically tractable.

“ne is to approximate the optimal law. The second is to approximate the
linear system as having random parameters that are uncorrelated in time,
or white, in engineering jargon, and to obtain the ortimal control for
this approximate system which may now be possible analytically. This is
the route we shall take in this report., We shali find that our

assumption of white parameters makes identification impossible which means
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there is no probing action thereby making the problem solvable,

Before we turn to a mathematical description of the problem, let
us first survey the interactions of control theory and economics, as we

shall be applying our techniques to an economic policy problem,

1.2 Control Theory and Economics :

In recent years, several workers have begun to find the techniques
of optimal control theory to be useful to the analysis of economic
problems. Some of the basic concepts of system theory and, in particular,
of stochastic optimal control theory may be able to provide a more unified
and comprehensive analytical framework for posing and solving economic
problems. Kendrick [12], Athans and Kendrick [13], and Aoki [14] have
written good survey articles with extensive bibliographies on the
different areas of interaction between economists and control theorists.
The earliest instances of such intercourse began to appear in the 1950's
with the work of Tustin [15], Phillips [16], Theil [17] and Simon [18].
After this, there seems to have been a total absence of dialogue until
the 1970's., This decade has seen, however, an encouragingly large
number of interactions. Aoki, Chow, Kendrick and Pindyck, amongst
others, seem to have been the more prominent contributors, [19] - [38].
Though there is still a debate about the degree and kind of applicability
of control theoretic ideas and methods, it is significant that the debate
does not question any more the fact of the basic usefulness of control
theory to economics. One cannot emphasize enough, however, the need
for control theorists to thoroughly understand the economics they wish

to apply themselves to. Also, economists would do well to appreciate
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the different tools developed in control theory together with the

limitations of these tools,

The applications of control theory have been in different areas of
economics : various microeconomic problems and macroeconomic stabilization
and regulation problems. Examples of microeconomic applications are
profit maximization in a firm, optimal advertizing levels, analysis of
commodity markets, optimal price setting in the face of uncertain consumer
response, and others, all in a more general dynamic setting. The reader

can find references in the survey articles cited above and in [38].

A natural area for control applications is the analysis of
macroeconomic policy planning problems. Economic policymakers are
interested in controlling the national economy with the various instruments
they have at their disposal. The economy is, firstly, a dynamic entity,
in which present policy action affects not only the present but also the
future course of events. Secondly, it is essentially a stochastic entity
as well, so that some way of incorporating uncertainty at a basic level
is needed. This makes the regulation of the economy a natural stochastic

control problem,

A number of questions arise in the evaluation of the performance
of the economy under different specifications of the policy instruments.
First of all, we need to specify goals in terms of which this performance
can be evaluated, Once we have succeeded in formulating clearly our
objectives, how do we look for good policies? In general, one might
expect a good policy to coordinate all the available instruments in some

suitable way, How do we compare different ''good" policies? Is there an
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unique optimal policy? Many other related questions can be asked.
Optimal control seems to offer a natural, precise framework for addressing

such questions.

Another point, in a slightly different vein, needs to be made
here. System theory can make a far more basic contribution as well. Much
conventional economics is done in a sociopolitical vacuum from which all
traces of conflict, compromise, imbalances of power, human factors in
policymaking and other so-called imperfections have been conveniently
removed. If one is to adopt a realistic approach to real problems, then
a more comprehensive viewpoint at a fundamental level is needed, and to
the extent that science can illuminate our understanding of human
"systems', system theory has the potential to incorporate a larger view.
(This, of course, is not to ratify the argot in the pseudosciences of

""General Systems Theory' [39] or '"System Dynamics" [40].)

Economists and control theorists approach their models with
different attitudes and this has, to some degree, influenced the tools
they use., In economics, many aspects of the models are rather arbitrary
since the sheer complexity of real economic phenomena force model
builders to adopt many simplifying and often unrealistic assumptions for
reasons not entirely justifiable on economic considerations alone. This
is in addition to the fact that economic theory today does not as yet
have a really fundamental grasp of economic phenomena. Conscious of this
arbitrariness to some extent, economists do not take their models
literally and are generally content with establishing qualitative

properties of their models such as existence of optimal decision rules
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and properties of classes of optimal decision rules such as stationarity
and stability. Time has played a relatively minor role in these models,

though recent economics has considered it more adequately.

Engineers, on the other hand, do have a better and deeper
understanding of the engineering systems they model, relatively speaking,
and so tend to trust their models to a far greater degree. They generally
analyse their systems in detailed quantitative terms, and construct and
implement algorithms for optimal decision rules, in addition to studying
the qualitative features of their systems. Most models do take into

account the dynamics of the system.

The focal point of the interaction here has been the traditional
macroeconometric model which, after suitable transformation, can be
recast into the state-space representation familiar to engineers.
Economists usually assume that the main state variables can be measured
exactly. Also, they emphasize the estimation of unknown parameters.
Engineers, on the other hand, usually take parameters as given and deal
with observation errors instead, In [31], Kendrick observes that the
data used by policy analysts to determine monetary and fiscal policies
are known to contain errors. Such data are being constantly revised as
more information becomes available. The magnitude of these revisions
gives us a measure of the relative quality of different macroeconomic
time series., However, economists do not at present use this new
information in determining policies. Fair [11] points out that the
accuracy of the model is generally improved when the actual values of the

exogenous variables are used and when more recent coefficient estimates
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are used. From the engineering side, adaptive control algorithms that
look impossible in an aerospace context may be perfectly practical when

decision rules have to be computed only once a month or once every quarter.

Differences of this kind in attitude and approach help to underscore,
in fact, the common thread that binds both fields : the making of decisions
with imperfect information in an uncertain environment. Adaptive
stochastic control seeks to tackle this basic question. Let us turn now

to a mathematical formulation of the problem,

1.3 The Problem :

We shall study the following linear, multivariable, discrete-time

system

Xeo1 T Atxt + Btut + . (1.3.1)

where At’Bt are white, Gaussian matrices and <, is a white, Gaussian
vector, Note that the noise in this system enters both additively, through
Ceo and multiplicatively through At and Bt' Note also that all the

random quantities are white. This is a crucial assumption in that it

makes active learning impossible since, at each time instant, the values

of A, B and C are all uncorrelated with the past. However, this

assumption does enable us to deal analytically with uncertain parameters,
representing in some sense a worst case situation. The assumption of a
Gaussian distribution is actually superfluous. All we need to know are

the first and second order statistics. The actual probability distribution

does not matter,
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This formulation holds a double interest, Firstly, its solution
is of basic theoretical interest, An analysis of this problem can be
found in [1], [41], [42], [43]. This system forms the basis of the
result embodied in the 'Uncertainty Threshold Principle' expounded in
[1], [44], [45], [46]. The second point of this formulation is that its
assumptions fit the framework of linear econometric models reasonably
well. The estimated parameters of econometric models are actually random
variables. The use of white processes, of course, may not be quite
realistic, though this assumption makes the problem amenable to mathe-
matical solution, and in addition represents a worst case situation

which may yield useful information for further analysis.

The central result of Ku's thesis [1] that is of relevance to us
is embodied in what is called the '"Uncertainty Threshold Principle'.
It arises from an analysis of the following scalar stochastic control

problem :

X = a.x, + btu +&

t+l t*t ¢ *S¢3 X, 8iven (1.5.2)

where X, is the scalar state of the first order system. We assume that
the driving term Et is a zero-mean Gaussian white noise with known

variance EZ. We also assume that the random parameters a, and bt are

Gaussian and white with known means a, b, known variances zaa’ be,

and known cross-covariance zab‘ We also have perfect state information.

The optimal control problem is to find a feedback control law
u, = y(xt,t), t=0,1,2, ... , N=-1, such that the expected value of the

following quadratic cost functional is minimized.
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N-1
J = E{QxfJ + ¥ @t ept) ). BQ20, E>0 (1.3.3)
< . o

The expectation is taken with respect to the probability distribution of

the underlying random variables a,, bt’ Et.

‘The solution to this problem is readily obtained by applying the

standard stochastic dynamic programming algorithm. We get the following
equations
*
u, = - Gt X, (1.3.4)
G o Kt+1 ( Zab +—25b) (1.5.5)
t R+ ( be + b°) Kt+1
% 2 _ o2 T2
Kt Q + Zaa + 3 )Kt+1 Gt[R + K“l(zbb + b%)] (1.3.6}
KN = Q 1:3-7)

The optimal cost is given by :

! N-1

J = Kxé ) k. .8 (1.3.8)

=0

We note, in passing, that the control law is linear in the state and the

Riccati-like equation satisfied by Kt has a unique solution under the given

conditions,

An inspection of the infinite horizon case (N-+«) yields an

interesting result., Assume that Kt+ is "large" in the following

1
equation :
K., (£ » &)t
Kt = Q4+ ( Zaa + 3?) Kt+l - E;II T ab+ D K
( bb t+l
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Then the backward in time evolution of Kt is given approximately

Kt 3 Kt#l N
(Z., + dp)?2
where M = I + &% - —20 (1.3.9)
(I * BY)

Clearly, if the threshold parameter M >1, then K, blows up. In
fact, it is possible to prove that the unique positive solution to the
above equation exists if and only if M<1, This result, which imposes
a fundamental limitation on the infinite horizon problem, is called the
Uncertainty Threshold Principle. If M>1, then Kt blows up and therefore
the optimal cost J* also blows up. In physical terms, this principle
makes the eminently reasonable statement that if one's knowledge about
the present and future structure of the system is ''very" uncertain, then
there is no optimal action that will keep the cost finite for the infinite
horizon problem, Though the result has been proved for linear-quadratic
systems,it seems reasonable to assume the same qualitative result for

general systems too.

1.4 Structure of Report

In this report we shall pursue two different routes that arise
from the random parameter formulation, The first is to extend the above
described result to multivariable systems. This turns out to be far more
difficult than what it may seem to be on first sight, The equations,
though similar in structure, are far more complicated because of the

appearance of matrices in all the formulas. The first difficulty one faces
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is the question of suitably representing the covariance of a matrix and
then establishing formulas and equations that are expressed in terms of
the means and covariances of the various matrices. We find that it is
very difficult, if not impossible, to derive an analytical formula for
the threshold in analogy with the scalar case. This part of the work is

described in Chapter 2.

The second route is more practically oriented. We know that it
is difficult to control large econometric models with many random
parameters. If we formulate the policy problem in an optimal control
framework, then it would be very useful if we could develop some method
by which to rank these parameters in terms of their influence on the
performance of the system. This would tell us which, if any, parameters
are sensitive and give a clue as to whether better information is needed
if we are to trust the model we are using. This kind of study falls under
the general rubric of sensitivity analysis. A fair amount of work has
already been done in this area, [48] - [63], and this methodology can be
readily applied to derive equations for our case. We first derive
sensitivity equations for optimal random parameter systems. Next we
choose a small econometric model by Abel [47] and apply these equations
to the model. We then analyse the results and comment on possible uses

for this approach. This is the content of Chapters 3 and 4.

1.5 Contributions of the Report ;

1. Derivation and analysis of the solution to the optimal
linear - quadratic tracking problem with purely random

parameters and additive noise.

PSR
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Sensitivity analysis : development of sensitivity equations
for the above system to rank parameters in terms of their

influence on the performance of the system,

Application of above equations to a simple macroeconomic

model of the U.S. economy,

Development of general purpose computer programs for the
optimal stochastic control of multivariable linear systems
with white parameters with respect to quadratic performance

criteria, for both regulator and tracking applications.
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CHAPTER 2

OPTIMAL LINEAR RANDOM PARAMETER SYSTEMS

2.1 Introduction :

In this chapter, we shall develop and discuss the optimal control
problem for linear systems with purely random parameters. We treat the
most general case of this formulation : the problem is multivariable and
includes additive noise, and is stated as a tracking problem. We also
state the 'Uncertainty Threshold Principle' for one-dimensional systems
and consider some of the difficulties involved in trying to extend it to
multivariable systems. Here we present one way of representing
algebraically the solution to the multivariable control problem. Some
empirical results are presented to demonstrate the behaviour of such
systems. This chapter will try to lay the groundwork and motivation for

the next chapter.

In the next section, we state the problem as a multivariable
linear - gquadratic random parameter tracking problem. In section 3,
we present the solution of the problem. Since the actual derivation is
slightly long and complicated we choose to present it in Appendix A.
In section 4, we discuss the solution of the problem. Next, in section
5, we demonstrate the Uncertainty Threshold Principle developed by

Ku [ 1] for further insight into the problem.

e - > -




2.2 Problem Statement

Let us begin by stating the problem, Consider a multivariable

stochastic linear dynemical system with state X, and control u

t it
described by the following difference equation
Xt+1 BeZe * BBy * &, (2:2-13
X given; t = 0,%1,2, .., ; N-1
n m nxn nxm n
X, € R, u, € Rt At € R . Et € R v ELE R

Henceforth we shall not underscore vectors or matrices for greater
clarity of notation., We assume that the additive term C. driving the
system is a vector random process which is white and whose mean vector

and covariance matrix are given. That is, we assume that

E { Ct} £ g vt

1 1 ft=1

B{fc =@ (e=c)y% = 3.8 ) =
s t S s 0 if t #1

where EC is an n X n matrix.

Assume that At and Bt are random matrices which are also white with

given first and second order statistics. We assume that

u
>

E{At}

wl|

E{Bt}=

Here we face the issue of how to represent the covariance of a matrix.

Just as the covariance of a vector is a matrix, so the covariance of a
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matrix is a fourth-order tensor. We can, however, express this tensor

as a higher dimensional matrix. There are many ways of doing this, an
obvious one that comes to mind immediately being the Kronecker product.
The manner of representation should evidently be dictated by how we wish
to use the covariance., We shall find that, for our purposes, the most
suitable representation is obtained by using the simple notion of a
stacking operator, that is, an operator that stacks the columns of a
matrix into a single vector, Mathematically, if we have a p X q matrix A

whose columns are denoted by a; e

if A = (aya,a; ..... aq)
4
then S(A) = a

stacks the columns of A into a single vector of length pq.
The definition of covariance now follows quite readily :
Cov A) = E{[S@A) -s@] [s@®) -s@)]"}

An immediate advantage of this representation vis-a-vis the Kronecker

product is that it is symmetric,

To return to our problem, we assume that

E{[SA) -SA ] [SA) -SA) 1"}y = I, 6.
E{[S(B)-S@B ][S(B)-5B)1'1 = I, 6.
E{[SB) -S@E ] [SA) -SA) 1'} = I 6.

et g TR 47l e
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We also assume that the following cross-covariances are given

Ac 5t‘r

n
]

E{[S@) -S@ 1 [e -2l

| & z

ol

E{[se@,) - S 11 c,p = = 6”

All the covariance matrices must, of course, be positive semi-definite.
In addition to this, they must a}so satisfy the constraint that the
correlation coefficient for each pair of parameters must lie between -1
and +1. Note that all the given statistics are time-invariant - this

is not really a restriction. The generalization to the nonstationary
case is immediate. Note also that we have made no assumptions about the

actual distributions of the various random parameters.

For any optimal control problem, it is essential to specify the
information available for control, that is, the informaticn pattern.
Generally, in stochastic control problems, utilizing observations
improves the performance over the open loop controls because using
measurements on the system allows one to reduce the uncertainty. A
causal or non-anticipative control cannot obviously use future
observations, but it can, however, use the given a priori information
about the future probabilistic behaviour of the system and measurement
dynamics, or, in equivalent terms, it can use a probabilistic description

of future observations.

For our formulation of the problem, the information pattern is
especially simple, The whiteness of each component of noise, multi-
plicative as well as additive, in the system, makes any learning

impossible, and so renders the control law incapable of affecting future
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uncertainty. The law does, of course, take present uncertainty into

account.

We assume perfect state measurements. We also assume that the
admissible controls are real-valued and of state feedback type,
'ut =Y (xt,t)', such that they depend only on the given a priori

information and measurements upto time t.

The optimal control problem, then, is to determine the control

sequence ' u, = 'Y(xt,t), t =20,1,2, ... ; N-1 ', that minimizes

the following quadratic cost criterion :

N-1
1 ~ 5, - i B -
J o= = E{E=0 [(xy - X)'Qx, - X)) + (u - G)'R(u_ - G)]
+ (xN 2 RN)'Q(XN - iN) } (2.2.2)

where {it} , {ﬁt} are the target state and control sequences

respectively. These are, of course, also specified at the beginning of
the problem. Thus, the problem is what is called a 'tracking' problem in
the literature. Note that the weighting matrices are taken to be
constant for simplicity but the generalization to time-varying matrices

is quite direct.
We now proceed to solve the problem.

2 Problem Solution :

The solution to the optimal control problem stated above can be
obtained by applying the method of stochastic dynamic programming. Since

the complete derivation is somewhat lengthy, we shall relegate it to
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Appendix A and merely state the solution here.

The control law turns out to be a linear state feedback law, as

one would expect. The equations are :
: = Lyx, +m (2.3.1)

where the gain Lt is given by :

e _l e
= - ' '
L, [R+B'K B [BK A] (2.3.2)
3 1 )
(We use the notation B Kt+lB to denote E { Bth+lBt} , etc. See

Appendix A)

and where

i =1
&

Bu.l [2.3.3)

B ] Peep - "%

- [ R+ Bk,

1 [ B'Kt+1c + B

The matrix, Kt’ in the above equations, satisfies the following Riccati-

like difference equation :
K = Q-+ XTE::;R s [B'K AL, (2.3.4)
with the terminal condition:

KN =  Q (2.3.5)
The vector, P> satisfies the following equation :

- _| ' 1 o
Pe ge el el " N Pret e Kt+1A] My (2:2:6)

pN r QiN

The optimal cost can also be evaluated and turns out to be :
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3 LI '
J = 3 onoxo % PeX, ¥ B, (2.3.8)

The scalar g, comes from the following difference equation :

= l'v' _1_"|~ l—v—-_ =

& ~ 7 R0 B, ek S P

15 ' 5 1

* 5 [B Kt+1° + B Peul = Rut] m, + 8. (2.3.9)
g = Lz qx (2.3.10)
N 2N w

The state of the optimal system is now given by :

Xl ™ (At + BtLt) X, * Btmt * e, (2.3.11)
Since X, is a random variable, so is the control ut, though the

gain Lt and the driving term m, are deterministic.

Note, however, that our a priori information is in terms of means
and covariances of At, Bt and ct, whereas the solution is expressed in
terms of certain expectations of At’ Bt’ Ce- We should like, therefore,
to represent the solution in terms of the various means and covariances.
As these equations are a bit complicated, let us first look to the

scalar case for some insight. Let's consider the scalar system :
X = &x. *hu *g (2:3.12)

where a, bt' ¢, are now scalar random processes. The Riccati-like

equation for the scalar k‘ s

K = Q + a‘\t.l . ‘ahktﬂ) L




Therefore,

But
E { a?} =
E { b?}

E {ab}

Hence

So now we

parameters directly influence the evolution of Kt'

27
- (R + b?’K__.) Y @bK. )
t+l t+l
i ?EI- Ke+1 (2.5.1%
R +# b“. Kt+1
e )
g Bl eattay
Tl —
R+ B2, K,
=2
Za + a
Zb + b?
Zba + ab
(Eb *-B)sz
=2 3 a t+l
Q + (Za + a )Kt+1 e (2:3.14)

see how the covariances and means of the various random

In order to represent

the solution to the multivariable case in a similar way we need to make a

few definitions.

(a) e; v a vector of appropriate dimensions with all zeroes except

for a one in the i-th place.

0
0

1

O e




(b)

(c)

(d)

(e)

B
1)
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i3 " a matrix of appropriate dimensions with all zeroes except

for a one in the i,j-th place.

o

o

.

o>
RSN

L 8 block matrix with n columns and an appropriate number

of rows (usually either n2 or mn) with blocks of nxn such that
the k-th block is the identity In’ and the rest are zeroes. Here
'n' refers to the number of states and 'm' to the number of

controls. This is a generalization of e;-

3 i
k 1 0
0 1]

Z:l N~ the (k,%)-th block of size nXxn in covariance matrix ZA.

A similar definition holds for cross-covariance matrices too.

Zkﬁ "~ the (i,j)-th element of the (k,2)-th block of I, i.e.
A

kL = =

Rs L TR B T T

Note that, from the above definitions, we have,

kb _ 3
R pk ZAPE
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We now have the following representation :

L A'KA = E{ A'KA }

n n
» Y tr(KP!L P ) E . + A'KA (2.3.15)
K=l =1 k“A 27 “ke
Proof :
A'KA = E { A'kA }

= E{ ZR(A'KA)klEkl} where (A'KA), , is the (k,%)-th

element of (A'KA)

# Ez EL (A'KA) o 1 By

But
E (A'KA)kl " ="E aﬁ Kaz ]

where a,, a, are the k-th, 2-th columns of A respectively.

E [ a} Ka,] E [ g : 3k Xi5 254 ]
S T AT
£,4 ij ik j2

= KL = =
Z Kot ZA..+ aikajz)
1 1

P
k2 - -
0 N R G R N
. % I L
i,j ij Ai] i, 1k 1 3
k& - - - g z
#® 2 K ZA + ai KaQ (since K is symmetric)

. ' a a
= tr (K Pk ZA Pl) + ai Kaz
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Therefore,
A'ER » ] ¢ (Piz P E.,+ ]I (ANA), E
) ST S ) kL°kR
iy e
= tr (KR'Z P ) E, &+ AYKA as required
k=1 %=1 kAL R

The same expansion holds obviously for the other cases as well.

Thus, we can rewrite the solution to our optimal control problem in the

following way :

u, = tht +m AP
m m 5 b
= i 1 - =
B i {=1 §=1 tr (Ko Pkipfe) By ¢ B'KyyB ]
m m
1 S -
[ {=1 §=1tr (Kev1PxZpaPy ) Epg * B'K 4A ] (2.3.17)
m m :
= e ' _’ el g
k. e E-1 §-1 £ (Ko P ZpPy) By * B'Ke, Bl
5 R = fr= ~
| ] ' g
i 55 onBilpel®y * By S #Biny, 5 R ]
(2.3.18)
n n g ?
¥ LT '
A S E=1 §=1 t Ruarpta id By Aot 1 #
m m p 1
[ R 3
( E=1 §=1 tr(Ky, PiZpaPy) Epg ¢ B'K AL L, ‘
(2.3.19)
n —
by - Qx ' ' - .
™ e E:ltr (Kt*lpszc)ek EhNat Nt {
m m |
¥ - -
[ E=1 §=1 tr (Ko, PLZgPy) By, * B'K ]
| (2.3.20)
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- _1_"’| vl _1_"'1 0
B o FHRSCTRRL
1 L ~1
Bl R R L S Y
i [ ? tr (K. PY T ) e B'K E]' m
LY KeerPx “Be) S t+1 t
1 = ~
+ §-[ B'p,,; - Ru, ] R (2.3.21)
Ky, = Q (2.3.22)
Py = - QxN {2:3.23)
= _]'_~I ¥
gy = 7 XN Q xy (2.3.24)
J* = L XK. X + p'x + g (2.3.25)
2 000 o 0 C
2.4 Comments :

Let us briefly note some of the salient features of the solution.
Figure 2.1 shows the overall structure of the optimal feedback system.

Since ug = tht +m,, the optimal controller is a linear and time-

varying transformation of the state. This is so even if the system is

stationary and the cost-functional is time-invariant.

The driving term 'mt' in the control performs the function of
neutralizing the mean of additive noise term Cys whereas the gain Lt
does the actual steering of the system, as can be seen by the fact that

Lt is independent of ¢ Looking at Lt more closely, we see that when

t*

B, is more uncertain, the ‘controller is more cautious, as it should be

t

since the control u, affects the state x_ through Bt' If there is,

t

on the other hand, a high correlation between At and Bt’ then the

control is more active since it can better regulate the system. This is
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so even in the extreme case where B = 0, that is, when the system is
'most' uncontrollable on the average, since the controller can use the
information about the high correlation in a useful way. When the matrix
At is uncertain, then, of course, the controller will be more active,
though the degree to which it will be so will depend on the other terms

in the expression, since Kt appears in both the numerator and the
denominator. Similar observations can be made for the various covariances

in the equation for 'mt'. For example, if Bt and c_ are strongly

t

correlated then the magnitude of m_ is greater, as it can more

e

effectively cancel the exogenous driving term Cyo
We note also that the certainty-equivalent control law is

different from the optimal control law. It can be obtained from the

optimal law by setting all covariances to zero. Basically, the optimal

control takes into account the uncertainty in the parameters.

The optimal control is without any posterior learning. This,
in fact, we had already anticipated when we defined our information
pattern. The random matrices in the system equation are white and
therefore unidentifiable. It is as if at each new time instant, the
system restructures itself anew according to some unknown (and not
necessarily constant) probability distribution, whose first and second ,
moments, however, are known to us. The control system must adapt
itself to this visceral change in order to minimize the cost-to-go.

The whiteness of the noise does not permit us to reduce future
uncertainty by present control action, which is to say that the control

does not perform a dual role. Note however that the optimal decision

s S — —_——-—- - - —eeee




34

certainly uses a priori knowledge of future randomness. That is, we
know and make use of the a priori knowledge of the various future means
and covariances, The problem and its solution are changed if we exclude

knowledge of future statistics from the information pattern.

Physically, of course, this is quite unrealistic, and we ought to
mention some ways in which this choice of modelling a stochastic system
can be useful. In reality some learning is always possible and systems
are never so insistently white. If we assume that the parameters are
unknown but constant, we know that leads to the well-known dual problem,
which does not admit of an exact analytical solution. With our assumption
of whiteness we face a problem that is analytically tractable and that
leads to a control that can be easily implemented. Moreover, economists
have argued that in economic systems, it may be desirable to treat
unknown parameters as purely random to obtain a consequent caution in the
control, especially when Bt is not known accurately. Athans and Varaiya
[44] have argued that the control of white parameter systems represents

a worst-case situation in which the ratio (for scalar systems)

K (0] L, 20, L #0, L #0)

K = = =
o]z, Zy La 0

2 1

provides a measure of the deterioration in performance due to the unknown
parameters, which can provide a guide as to whether sophisticated

parameter estimation and adaptive control algorithms are warranted.
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255 The "Uncertainty Threshold Principle" :

In this section we examine the asymptotic behaviour of linear
random parameter systems. We assume here that all means and covariances

and the weighting matrices in the cost functional are constant,

Let us first consider the simplest situation of scalar systems

in a regulator problem type setting without additive noise. We have :

xt+1 = atxt + btut Xy given (255 1)

t =002 .. 5 N
Here, a, and bt are white with given means, variances and covariance,
all of which are constant. Note that the term Ce is absent.
N-1

J . %E{z [ + RuZ ] +Qxd} (2.5.2)
k=0

Note that we have no non-zero trajectories to track.

The solution to this is obtained from our earlier general solution

and is given by :

* =
ug tht (2v5:3)
K (E + ‘B)
R A = = (2.5.4)

K = Q+Kk (8% +1) ha (2.5.5)
t t+l a 5 2
R+ ( b + b ) Kt+1
Ky = Q (2.5.6)
* )
J = 5 X, K, (25,73
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This set of equations has been investigated by Ku [1] and gives
rise to what is called the Uncertainty Threshold Principle. This is
basically a result regarding the stability of the nonlinear difference
equation for Kt' Its implications are discussed fully in Ku [1]. Here
we shall merely give an informal expositional ~rgument and then see what

can be said for the general multivariable case.

In Eq. 2.5.5 assume that Kt+ is '"large'. Then we have the

1

approximate relation

K Y m Kt+1

where 'm', the threshold parameter, is given by

o L, S S e |- TN (2.5.8)

If m > 1, then obviously Kt blows up as N - » , so that a steady-state
solution does not exist in this case. In fact, the uncertainty threshold
principle states that for the infinite horizon problem, a necessary and

sufficient condition for a solution to exist is m < 1.

If Kt blows up for the infinite horizon problem, then so does the
cost J* which means the optimal control problem has no solution. This
makes good intuitive sense too, because if there is too much uncertainty
in a system then there is little one can do to control its evolution

over a long period of time.

We would expect a similar result to hold for multivariable systems

as well, However, it seems that a neat mathematical expression for the

. L+ e e —_
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threshold is not possible owing to the complexity of the equations
involved. A special case of multivariable systems has been explored by
Ku [1] in which the e.z»nvalues of the A matrix have to satisfy a
threshold. The general case, in which we consider the multivariable
tracking problem with additive noise is, as one would imagine, hopelessly
complicated., Here we must consider the stability of three equations,

for Kt’ Pe and 8y» tO determine whether the infinite-horizon cost remains

finite or not.

(28]

.6 Conclusion :

In this chapter, we have stated and solved the optimal tracking
problem for a linear-quadratic system with purely random parameters. We
briefly noted the salient characteristics of the 'Uncertainty Threshold
Principle' and found that the multivariable case presents formidable
analytical problems which may make it impossible to derive a mathematical

expression for the threshold.

Now that we have the complete solution, we can explore, in the
next chapter, the derivation of the sensitivity equations for this
problem and then apply them to a macroeconometric model of the U.S.

economy.
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CHAPTER 3

SENSITIVITY EQUATIONS

w
—

Introduction :

In this chapter, our main objective will be to develop equations
to analyse the sensitivity of linear systems with random parameters to

variations in parameter uncertainties.

The concept of sensitivity is a very general one and 'sensitivity
analysis' is a fairly well-developed tool. In any real system, there is
always some uncertainty associated with the exact values of its parameters,
either because of imperfect information or because of approximations made
in the modelling process or possibly because of some inherent randomness
in the behaviour of its parameters. This obviously affects the efficacy
of any control law, whether open or closed loop, as well as the accuracy
of any simulation of the system. If the behaviour'of a system is
dramatically different as a result of variations in parameter values,
then we say the system is very sensitive to such variations. This gives
us some useful information in assessing the reliability of our efforts.
An excellent example of such a situation is provided by the now infamous
'Limits to Growth' report by che Club of Rome [48]. Sharply different
qualitative results, such as lack of evidence on which to base a
prediction of the collapse of world population, can be obtained by
appropriate combinations of small changes., This illustrates the caution

that is necessary in basing policy judgments on sensitive models.
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There are many different questions one can ask in this area of
sensitivity analysis. One basic question is how perturbations in the
parameters affect the optimal performance of the system. If the optimal
cost or optimal welfare are significantly altered as a result of small
variations in the parameters, then obviously our analysis and policy
recommendations are not very reliable, This kind of study is probably
most useful in dealing with large economic and socio-economic systems,
in which little is known about the actual structure of the system, and
in which there is almost always a great deal of uncertainty about

parameter values,

For systems with parameters that are modelled as being deterministic,
the standard procedure is to derive sensitivity equations with respect to
variations in the parameter values themselves. This has already been

done and is readily available in the literature.

For systems whose parameters are modelled as random processes,
however, it makes sense to look instead at the effects of variations in
the parameter uncertainties, that is, the variances and covariances of
these parameters., This leads to a slightly modified set of equations,
though the basic approach remains the same, Sensitivities may either be
absolute, or relative to the parameter and optimal cost values, and it may
be useful, in general, to look at both sets of numbers. We can even
rank parameters in order of their sensitivities which may help to

identify the 'pressure points' of a system.
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We shall first derive general sensitivity equations from the
) optimal control solution developed in the previous chapter. Next, we
briefly describe a small econometric model of the U.S. economy and do a
sensitivity analysis of the model. We end with a discussion of the
results and possible uses for a sensitivity analysis and ranking of

parameters.

3.2 Problem Statement

We are given the following linear multivariable system

X = At X

41 + Bt i #ie X =X (3. 21)

e t t 0o (o}

We have perfect measurements of the state. The elements of the matrices

At’ Bt and the vector ¢, are all random variables. Each element con-
stitutes a white stochastic process with given mean and variance. That

z >3 2 % where

B’ BA” "Be” “Ac’

each covariance matrix is defined by the convention described in

is, we are given the covariance matrices ZA, )2 o

chapter 2, and we are given the mean matrices A and B and the mean

vector ¢, We choose to minimize the standard quadratic cost functional:
1 N
= — - X ' - X - U ' - U
J 5 E{ E [ (x, - %)'Q (x, - %) + (u, - §)'R(u, - §)]
T s
+ (x %) 'QUxy - %) } (3.2.2)
The sequences {it} 5 {Gt} are, of course, given,

This is so far only a restatement of the optimal control problem

considered in the previous chapter. Its solution has also been given there.

S — — — ——— vy . - —— e
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Now we would like tn pose the following question. Let 0 denote
any element of any one of the six covariance matrices. The question is
how sensitive is the optimal cost to small variations in o ?

If J* denotes the optimal cost, then the answer is given by the
number %%* 0" Here the symbol 5 is used to mean 'evaluated at the
given values of the various means and covariances'. This number is an
absolute measure of sensitivity. If there is a small absolute change 8o
in o, it induces a corresponding absolute changeGJ*in J*, whose

magnitude is given by the relation

*
GJ* - oJ so (3+2:3)
30 !0
3" *
If -5% is large, then the induced change 8J 1is also proportionally
0 *
large. It is in this sense that %% is an absolute measure of
0

sensitivity.

We can also obtain a relative measure of sensitivity by noting

that
%* a*
& . S o %" (3.2.4)
J* 90 |o 3
*
This number, g% | E;, tells us how a percentage or relative change
v g

*
in ¢ is transformed into a percentage or relative change in J . In
general, the appropriate measure will depend upon the application at

hand, and in some cases both measures may provide useful information.

e e e e e s ——
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*

9J

to evaluate the quantity =-

0 o.

3.3 Derivation of Sensitivity Equations :

The derivation of sensitivity equations for a linear random

parameter system is quite straightforward though the final equations are

somewhat cumbersome to use.

control problem (see Chapter 2).

-*
Ue

Lt X, +m

- [R+BK_,B

- [R+BK,

t t

!
¢e1® J

e
1B |

[ Bk, A ]

[ B'K,,

1

c + B'

——— 1
QIO KT« [ B AT E,

+

(ST

N

X'K._X_ % X. *®
oo0o0 po 0 8

(o]

o ———— g g

Pie1

- Rut]

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

We first restate the solution to the optimal

Sy

3.2)

«3.3)

3.4)

3.5)

3.6)

3.7)

3.8)

3.9)

3.10)
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The evolution of the state is now given by :

Xt+1 = (At + BtLt) Xt + Btmt + Ct s xO = xo (3_3.11)
dK: dp g
*
In order to calculate %Q-, we need to calculate ; __9, __9,
g 3L 3m 90 ’ 90 ’ 90
which in turn require us to calculate 559, 559. Let us, therefore,

differentiate the appropriate equations.

Preliminaries :
Before we actually carry out the differentiation let us state a

few simple algebraic results in order to make the derivation a little

clearer.
s _ oA
(b) 3% tr A = tr 3 : (3. 3.12)

(b) Let G be a random matrix with mean G and covariance ZG and let H

be a deterministic matrix and some function of o, where o may be

an element of ZG. Then,
_3_ cruc = _3_ ' cruc
3 [G'HG 1 = == [ g 2tr (HP} Z.P)) E , + G'HG ]
) = &5 (HP! TP ) E , + 3 (G'HG)
90 k G2 kb a0
k,%
3 oH g1 oH =
= 3 3p{ 30 Ph ZgPy) By * G' 556
k,2%
3z
+ 7 tr P} 327 Pp) Epy
K,
e 3H = oH =
A 9H oH
Let £(G'HG) A E : tr (55 Pp ZPy) Ep ¢ G 56 (3.3.13)

We make this definition only to save us some repetitious writing.
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. i-1
Let r = 1 + quotient [ ]
: il
s = 1 + quotient ['—_ﬁ_—_]
u = 1 + remainder [ = ; L ]
: j -1
v = 1 + remainder [__TT__]

where i = 1,2, ..., , n"; J = 1,2, cun , N

Let Uij be the (i,j)-th element of ZG

Then,
BZG
e = E.. +E.. - E..S.. . :
aoij i] ji Ty (because ZG is symmetric)

Therefore,

BZG ]
r — = (] 1 = Dt
Py 30, ; Py "R Bt * RBegPy - Bp B0,

i

Euvékrals * B Gks 62r - By Gkr dls Gij

which follows from the fact that (i,j) must belong to the (k,%)-th

block of Eij for a non-zero product. Hence

oL

-
L tr (P 357 Py ) By
k,2 ij e
= tr (HE, ) E, ¢ tr (HE, ) E . - tr (HE ) E 6,
- vu, uv _ Lvu vu . .
= h Ers + h ESr h Ersdij where h =~ is the (v,u)-th
element of H, etc.
(3.3.14)
For i = j, this simplifies to :
h"VE
TS

m——— - v o - e
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L | =
() 3g (A7) = 35 (1) =0
A -1 a1
— . A * A — =0
00 a0
-1
- - (3.3.15)
30 30
Derivation :
We shall now differentiate the optimal equations stated above.
There are six separate cases to be considered : oij can be the (i,j)-th
h'_ <
element of any one of ZA, ZB’ Zc, ZBA’ ZBc’ ZAc' We sh:11 only look at
Zar Tgs Ipa
; - -
Let St [ R+ B Kt+IB ]
B
t 90. .
1)
3L
S S d - -1
l 3. . 'ao..[ REB ) - & B ™
1] 13
- B 2 % 5
t+l aoij i €
as
3 % T Y . 13
r S Bo, . ¢ B'Keath - S¢ "o, (B'KpyA)
13 1)
= =1 _3. s = [ 'l_é
- St ao.?B Kt+lB) st G Kt+1A E st 30..(B'Kt+1A)
ij 1)
D)
= s, @K B+ § erk ., Pr—B8p)E |5 lER A
t t+l & T+l "k S SR
k,% 30, .
1)
3L
-l o are—— \ __BA
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Therefore,
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2934 1j ij ij

Evaluating this number finally gives us an absolute measure of the
sensitivity of the optimal cost to variations in parameter uncertainties.
As we mentioned before, we can also calculate from this a dimensionless
number, a relative sensitivity, for each parameter, viz.

@ -y
2"

30.
1]

We have, at this point, completed our derivation of the cost
sensitivity equations. It is also frequently useful to look at the
sensitivity of the optimal control law to parameter variations. Though
the transformation itself in the optimal law is deterministic, the control
is random because the state is random, Here again, therefore, it is more
meaningful to calculate the sensitivity of the covariance matrix of the

optimal control to parameter uncertainties. Mathematically, we would

like to calculate Egg where Zut is the covariance matrix of the
optimal control ut*. We have
*
u, = tht + mt
Therefore,
Zut = LtZtLé where I, = cov {xt} (3.3.40)

We need, therefore, to calculate Zt. This turns out to be a gargantuan
mess, so we shall not bother to reproduce it here, and merely indicate

the source of the complexity.
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= m
g (A, +B.L) X +BD +c (3.3.41)

The point is that At’ Bt and c, are themselves random, so that
calculation of variances becomes doubly complicated. Some relief is
afforded by the fact that, at each time instant, X, is independent of

R Bt and ¢_, but even so, the complexity is too great to warrant a

1 t

derivation here.

3.4 Computer Code

In Appendix B, we code the solution to our stochastic control
problem and the sensitivity equations we have derived in this chapter.
More precisely, we code Equations (3.3.1) - (3.3.11) and (3.3.16) -
(3.3.39). Though all the quantities represented in these equations are
not printed out, they are all used in various intermediate calculations,
and so can easily be made available by minor alterations in the program
if the user needs them. The program does not contain sensitivity
L, . Since this program was used for a

Bc’ “Ac

specific application it also has a particular specification for the

equations for o € L. L

target sequence { it} which can again be altered by the user. No
sequence { Gt } was needed for this application because we used R = 0.
The user must provide both target sequences, the values for the Q and R
matrices, the values of the means and covariances of A, B and ¢, and the

time horizon N.

——— - —_———— e —— —— L ——— e ———
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3.5 Conclusion

Now that we have derived the relevant equations let us see how
we can use them in analysing a specific model. For this we choose a
small econometric model of the U.S. economy and analyse it in the next

chapter.




59

CHAPTER 4
SENSITIVITY ANALYSIS
4.1 Introduction :

In this chapter, we shall use the equations we derived in the
previous chapter to analyse the sensitivity of a small macroeconomic
model of the U.S. economy. We first describe the model, then recast the
equations into the appropriate optimal control framework, and finally
present some simulation results with a discussion of their interpretation.

Let us begin in the next section with the model.

4,2 A Simple Macroeconomic Model

We shall describe, in this section, an especially simple macro-
economic model of the U.S. economy. This model was developed and
estimated by Andrew Abel [47] to analyse the relative effectiveness of

monetary and fiscal policies in an optimal control framework.

It is based on real quarterly data covering the period from 1954/I
to 1963/1IV, which corresponds roughly to the period between the end of
the Korean War and the beginning of heavy U.S. involvement in Vietnam.

It is an extremely small model, consisting of only two endogenous target
variables, consumption Ct and investment It’ and two instruments,
government expenditures Et and the money supply Mt' We assume that, in
the short run, government authorities can control Et and Mt in real terms
since prices do not change rapidly enough to seriously neutralize their
actions. Over the time period covered by our data, the rate of inflation

was low enough to make this assumption plausible.

- P —— T — ——— - - —— e




60

This model is based on a closed economy. Desired consumption is a
linear function of GNP, and the realized period-to-period adjustment in

consumption is subject to a partial adjustment factor :

Ct = aCt_1 + bIt + bEt +d (4.2.1)

The structural equation for investment is based upon a modification of
Samuelson's private consumption accelerator. We posit that the desired
level of the capital stock is a linear function of consumption and that
the realized adjustment of the capital stock is subject to a partial
adjustment factor., Since gross investment, I_, is defined as

t

K, - (1-0)K

" where D is the depreciation rate of the capital

t-1’

stock, we have

I = eCt - (1 - D)eCt_1 + £ It-l + g

In addition, we assume that the level of gross investment is linearly
related to the money supply in order to capture some of the effects of

interest rates upon investment
= ' = - ' 1
I = e Ct (1 D)e'Ct_1 + £ It ¥ hMt At (4:.2:2)

The estimated reduced form equations corresponding to the structural

equations are :

€ = 0.9266 C - 0.0203 I + 0.3190 E_, - 0.4206 M

- 0.0534) -1 (0.0916) ©1 (0.1389)  (0.1863) °
- 63.2386
(25.7718)
RZ = 0.9958
D-W = 1.7084 (4.2.3)

SO— o —— - - e e PR
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It = Q. 1527 Ct_1 + 0.3806 It-l - 0.0735 Et + 1.5389 M
(0.0781) (0.1339) (0.2031) (0.2724)
- 210.8994
(37.6899)
R2 = 0.8749
D-W = 1.7582 (4.2.4)

Note that each of these estimated equations has a high value of R2.

In addition, the Durbin-Watson statistic, although biased towards 2.0
because of the lagged endogenous variable, does not suggest significant
serial correlation in either equation. The figures in parentheses are the

corresponding standard errors.

4.3 Conversion into Optimal Control Framework

Let us recast the reduced form equations in the previous section
into state variable form., We shall write the model as a first-order

linear vector difference equation with random coefficients :

xt*l = At X, + Bt ut + Ct @31}
where
Ct
x =
-
_ n
Et+1
u =
t
Mt+1
e -l
-
- Et+1 Et
Note that u,_ = and not .
t M M
t+l t
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This is a small difference in the approach of control theorists and
econometricians and is merely a matter of definition. Both refer to
the policy variable that must be used to directly influence the state

at time (t+l).

The coefficients of the various variables in the reduced form

equations give us the respective means of the random matrices At, B, and

the random vector Ct' We have :
[
t %13 812—‘ 0.9266  -G.0203 |
r\t = A = a 8 = |
21 22J 0.1527  0.3806 |
b blZ? 0.3190 0.4206—|
B = B = | =
. 521 bzgj -0.0735  1.5389
(Cl -63.2386
Ct = [ > = =
ch -210.8994

The covariance matrices are defined by the convention in Chapter 2.
These are obtained from the standard errors of the various random
variables. The square of each standard error, that is the number in
parentheses under each coefficient in Eqs. (4.2.3) - (4.2.4) gives the
variance of the corresponding variable. Thus the diagonal entries of
and a in that order. The off-

11 3210 212 22

diagonal entries, the covariances, we somewhat arbitrarily set to zero.

ZA are the variances of a
(Ignoring the covariances will usually tend to overestimate the size of
the model's forecast errors. The majority of the estimated covariances

are usually negative and cancel part of the variance in each coefficient.




Ignoring the covariances thus tends to overemphasize the degree of

fluctuation 1in the coefficients.) All the covariance matrices are

constant.
ZA = diag [ var(all), var(a21), var(alz), var(azz) ]
.0029 0 0 0
[0 .0070 0 0
0 0 .0084 0
L—O 0 0 .0179
ZB = diag [ var(bll), var(bZIJ, var(blz), var(bzz) ]
0193 0 0 0
0 .0412 0 0
T lo 0 .0347 0
0 0 0 .0742
.
EC - diag [ var(cl), var(cz) ]
(-664.1908 0
0 1420.5286

L

We also need to define the values of the cross-covariance matrices

z The estimation procedure used in Abel's paper does not

“BA’ “Be’“Act
provide us with estimates of these covariances, so here again we shall
arbitrarily set them all equal to zero. This will also help a little in

reducing the complexity of the various equations we have derived. We

have, therefore :

o
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by " 0
7 “
“Be g 2

At this point, we have completely specified the linear, random
coefficient structure of the economic system in state variable form. To
analyse the system in an optimal control framework, we need to specify a
cost criterion

N
1 . . - y .
J = SE {§=o [6x, ~ 20" Qg - %) * (w, - B} Biw, - 6.1]

¢ (xg - %) (xy - K

We need to choose suitable values for the targets {it}, {ﬁt} £ = 05150 5N
and specify the weighting matrices Q, R and the time horizon N. Following
Abel, we examine the historical growth rates for consumption and

investment over the period of estimation, 1954/I to 1963/IV, which turn

out to be 0.91 % and 1.14 % per quarter respectively. With these in mind,

we select target growth rates of 1.25 % per quarter for both Ct and It'

Mathematically,

tald
"

t
. (1.0125)" x, % NP

We shall restrict our choices for Q to diagonal matrices for the
purpose of the analysis. We shall use the following five values for the

Q matrix to compare different solutions.
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10 0

diag (10,1) (10,1) for simplicity

&
1
i

I

diag (2,1)

>
p

(3]
-

—
~—

[[>2

diag (1,1) A (1,1)

_
(e)
o

diag (1,2) (13,2

le>

L[>

A diag (1,100 A (1,10)

o
1]
= - A v e
o o
- o
— L J
[]=2

Henceforth the notation (10,1), (2,1) etc. will be used to denote the
diagonal entries of diagonal Q matrices. We shall use this simplified

notation especially when we present the simulation results.

We choose the R matrix to be zero throughout to simplify the analysis.

Since R is chosen to be zero, we do not need to specify the targets

{ut} . The cost criterion is reduced to

N
1 & kg >
J = Ee{z (X = % J" @ (% =~ X)) |

After doing a few simulations, it was decided that N = 15 would be large
enough for the analysis without incurring too great a cost for the

simulations,
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The last item that needs to be specified is the initial conditions.

From the historical record we find that

%o I | 89

The units used are billions of dollars. Et and Mt’ the instruments,

also have the same units. Note that x = io by definition.

This completes the statement of the problem. In the next section,

we present some simulation results,

4.4 Interpretation and Discussion of Results
PEESTEEES ,r o i i e P ———————————————

We shall now present, in the form of graphs and tables, some
simulation results describing the behaviour of our econometric model in
an optimal control framework, In this section we shall analyse some of

these results and leave others for future research,

First, some general observations. As with other tracking problems,
this problem can be split into one part that helps to regulate the state
and another that helps it to track the desired trajectory and cancel any
additive driving terms. We see that, in the event that all the covariance
matrices are zero, the optimal control tracks perfectly. This is seen
from the uppermost curves in Figs. 1 and 2. This is to be expected since
R = 0 and there is no constraint on the control energy expended in the
process. Also, in our problem, Xy * io, so there is no initial error.
lhis deterministic solution is also the certainty-equivalence solution

[ 1, and we observe that the certainty-equivalence principle does not hold.

e o o e - -
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In the stochastic case, with :\, TB and £ nonzero, we must first 1
i -
understand what it means for the state to track the desired trajectory. i

Since A,B and ¢ are all random 50 are xt and u, (though the gain Lt and

m

the correction cum tracking term m. are deterministic). The control ‘
attempts to minimize the mean square error of the state trajectory which .
means it tries to keep the mean of the error plus the variance of the

error small. In other words, there is a trude-off between keeping the

average state close to the desired trajectory and keeping the variance

of the error low. In general, therefore, we shall find that the average

state evolution does not track perfectly. This is so even though R = 0.

In Figs. 1 and 2, we have plotted the means of the state trajectories for

the different values of Q. We see here that these mean trajectories

fall short of the perfect certainty-equivalent trajectory. Of course,

the actual trajectory we would get from any stochastic simulation would

be different each time since we would have different realizations of At’

Br and 6y = this is true for both the state and control variables.

The certainty-equivalent solution for R = 0 simplifies to

by . = - B7% (4.4.1)
¢ = o)
K, = Q (4.4.2)

. =l o= el " L g
m, = - €+ peyy) = B g = Ra) (4.4.3)
P = SR (4.4.4)
g, = & % QX (4.4.5
¢ ° 2 ot 7t St
e 0 (4.4.06)
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Substituting these equations into the mean of the state equation we

Yesl ™ \\t - BLtS(t + Bmt e
- R-BEFWx -8B le+BB R 7
. s . . t+1 C
/
= Xip1r 23S expected. (4.4.7)

Note that the gain Lt’ the additive term my and the average state §£

and the average control law Gt are all independent of the choice of Q.
This is why we need not specify the value of Q for the certainty-equivalence
curves in Figs. 1 and 2. The different curves for the stochastic case

are identified by the corresponding values of Q.

The gain Lt in Eq. 4.4.1 serves to cancel the coefficient matrix A
which it does exactly in the mean case when A = A, whereas the term m,
cancels the additive exogenous term ¢ as well as forces the state to
track the target, both of which again are done exactly in the mean case.

. x . . .
Note that the optimal cost J 1is zero (Eq. 4.4.6), the absolute minimum
* .

of J,because R = 0 and because the state tracks perfectly, J 1is also

independent of Q.

Let us now examine the stochastic case more closely. Our first
observation of the simulation results is that the regulator part of the
problem viz, [,t and Kt’ is well behaved. We have plotted in Fig. 3 the
certainty-equivalent and the stochastic Kt ror Q= il L) There are

four graphs, one for each element of K. Since K¢ is symmetric two of the

graphs representing the off-diagonal terms are identical, We plot, in a
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similar way, L_ in Fig. 4, again for Q = (1,1). The certainty-

equivalent value of Lt in this figure is given by Eq. (4.4.1). Both
quantities soon reach a steady state, seen backward in time. The

correction terms m, in Fig. 5 keeps growing because it has to track §t

in addition to cancelling the exogenous term Ct' The optimal
cost also keeps growing. However, since Kt is steady initially, we

: - 1 :
can deduce that the regulator component of the cost, = xéhoxo, settles

to a steady state, The tracking error naturally keeps accumulating

and this makes the cost grow. The behaviour of Kt (Fig. 3) leads us to

the conclusion that the uncertainties in the problem are within the
uncertainty threshold (even though we do not know exactly what the

threshold is). We shall find later that even if Zk is multiplied by a

scale factor of 30, Kt does not blow up. This seems reasonable when

one inspects the numerical values of A, B, I  which are all fairly

L.-\’

"B 4
small. The elements of :A’ ZB in particular are all << 1.
% a ' T ; ~K2 |
P Req8 Beat® * & BERgy A ¥y ]
kg%
- [A'K,_ .B].[B'K_..,B + J tr(K gk 0 [B'K_ . .A]
t+l o52))! t+l B kR . trl

Note that = 0 in our preblem: Since Q2 0, u, =10, £, = 0, the

“BA

structure of the equation tells us to expect Kt > Q or equivalently,

I

I Kt“ > |lQl where || M || = (det M)l/z. This is in fact borne out
by the simulation results, In Table 1, we present some norms of K for
different Q. This demonstrates that the steady state '"value'" of Kt in
the stochastic case is greater than that in the certainty-equivalent case.

This confirms our intuition that we need more ''force'" when there is
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.uncertainty. The end point constraint KN = Q forces Kt to come down to
the C.E. value at N (Fig. 3). Physically, K_ represents a sort of
cumulative weighting matrix which incorperates both the present error
at time t as well as the propagation of this error as t progresses
to N. When ¢t << N we would expect the slope of Kt to be relatively
horizontal since the future error weighs about the same for small t
far from N. However, as t gets close to N, Kt is determined more by
the present error since the propagation error gets smaller, so that it
begins to fall to Q, till at t = N, there £§ no future and KN exactly
equals the present error weighting matrix Q. We have ignored here the
effects of non-zero R, The steady-state value is greater in the
uncertain case because we are minimizing the mean square error, as
opposed to just the mean error so that there is greater propagation of
the present error and Kt > Q. This description can quite easily be
extended to the case of time-varying Q's. Note also that if :BA # 0,
then the propagation of the uncertainty in the error is somewhat reduced,
since B and A are now correlated and the control can make use of this
additional information. However, because of the restrictions placed by
the various correlation coefficients, the effects of uncertainty cannot

be completely nullified. This is also supported by the mathematics.

The gain 't, Fig. 4, follows the behaviour of l\’t in a mathematical
sense. It is steady initially and, as t approaches N, it moves away from
the steady-state value just as Kt does. Again, it basically attempts to

minimize the mean square error instead of just the mean error. Note that

Lt represents only the regulator part of the control and is totally




ndependent of the targets and the driving term c¢. The scalar case
rovides some insight into its behaviour
o ;i:’) SR 1
o7 - = = = = (- g =
L ’ 2 D "
b + O° e S A
b b

Note that in the scalar case L is constant even in the stochastic case.

\lso, note that ;t decreases in absolute value as e increases, other

N

SRR

when o, = 0, the coefficient vanishes,

1s required by the regulator. The optimal gain is chosen so as to mir

E(a + ) 2
" .
] 4
i 2
¢ < I 3 B ) = ()
i d t
t
. 2
el 1 Z ab + (b + 0 ) X = 0
D t
- ab
herefor 2 - as required
t i )
b“+o
b




e

short der 1t101 rel hows, from a different per ctive, tha
t, does the stochastically optimal thing. The vector ca c
S 1 Bt = - r Byt =X o 1 + Sy 2
ntially in the same way though tne mathe EoliC 1 1 trifle opaqug
cau the aj oprilat quantit to mir e for the one-st al
! I S S R A (A + BL_ ) because K embodies the corr
‘ £ t+] b t+l 0
cunulativ velghtir t time t.
The t I 1s ain essentially a mathematical entity like K. .
P, b ) t
The equation for p, is
{ p
L
D = - OQx_ # A'K c + A'p + (A'K B)
t t t+] 2320 |
= - + AYK c % N'D
] = o |
. =
- (A'K__.B).(B'K__.B) (B'K__,c + B'p, .
t*1 ok t+l
: = & X
[ts behaviour can be erstood in analogy with that of K . It
!
1as t basic functions ihe Tirst 4 1ts role in providing a correc
term to cancel the exogenous term ¢ and the second to provide a
cumulative weighted measure of the desired trajectory. To understand
these roles more clearly let us look at them separately, First let
1ssume that the desired trajectory is zero i.e. '\‘I = @ Lfor all 4.
Then,
i~ = A 'K c + A'p (A"K B)(B'¥ r,”l.iw ¢ + B'p
t t+1 4] +] 5+ txl :
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]
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We note here that the behaviour of P, is directed towards c. At ;

P., = 0 because c,, cannot affect the optimal cost. Now let us assume

= = = e |

< -8 s A ATK . (B'K (B '
?t \\'\t A pt+l ke E\t+18) (E \t+18) (B pt*‘l)
P\. = ~ 1Q i\

This shows how at t=N represents a weighted target and for earlier t,

2 IJL\;
how it incorporates both the present target in the term - Qit and the
propagation of this in the future as well as future targets in the rest

of the equation. In the general case when R # 0, P also includes the

ghted control targets in the term - Ru

%

Just as K gives us the gain L_ so in combination with
ex] 8 g . Pegp &

K, l) gives us the additive term My s which embodies the two roles of Py

(=g &

explicitly in the control. The first role is to act as a correction term

to offset the

(9]

xogenous vector c. This function is independent of the
regulator and tracking parts of the problem or, in other words, it is
needed in both. The second function is tracking. It is responsible for

making the state track the desired trajectory. These two objectives are

clearly observable in the equation for my -

We see from Fig. 5 that the behaviour of m, shows an approximately steady
srowth. Though the corrective component does reach a steady state the

tracking component does not since the target itself grows with time. Its




behaviour could also be understood in terms of the minimization of a
suitable expression as we did for Lt. However, this is complicated by

>

the fact that both K and p enter into it.
t+l £+l

Now that we have some description of the behaviour of the various
components of the problem we can better appreciate the behaviour of the

control ut and the state Xt'

The certainty-equivalent control U, is given by

u = beo® +m = -5 R X, = B'I(E — X l)

and the certainty-equivalent X, is

shows that wu_ and Xy in the certainty-equivalent case must be

approximately linear (since it =z [1 + 0.0l:St] xo). This is borne out

gs. 6-7. In the stochastic case we find that u,
C

by Figs. 1-2 and Fi
; - B T e, = : o
tries to approach u in the '"middle'", as we would expect. At this

+
&

point it is useful to look at the mean values of the A and B matrices

.o w02l [z o] | es.pd]
A =~ B =| | c = | |
«15 .38 -.07 1.53 | =210.90 |
: | L L N
and
F= ] £ o p ) ,;‘J T —“ I -~ 7_* = 7 r - A ot
Cont : 93 .02 C, : 32 42 Es | 63.24
T, 15 38 T -.07 1.53 M 210.90
el 1= ’
| | _1 I ) ) L i
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Looking at the relative values of the elements of A, we see that
5 )

average consumption C is essentially independent of average investment I,
though 1 does depend on C. Also, owing to the relative values of the
elements of B we see that the average government expenditure Et does not
directly

really affect investment Tt However, E; influences Et

+]° +1

which in turn influences It+ , SO that the effect of average government

2
expenditure on average investment is experienced two periods later. We

note also that both the instruments can influence consumption.

In the stochastic case we see that as the relative weighting of
consumption and investment in the weighting matrix Q changes in favour of
one or the other, the corresponding state approaches the target more

closely, as one would expect. In Fig. 1, the perfect C.E. case is at

1"

the top. Below this comes the curve corresponding to Q = diag (10,1).

As the relative weighting of consumption decreases to Q = (2,1) the mean
consumption trajectory drops even further down. This trend continues
till Q = (1,10). In Fig. 2, we observe exactly the opposite. Q = (1,10)
represents the case for which investment tracks most closely since the
relative weight of I is highest here and it gets progressively worse as

we go to Q = (10,1).

*
Finally, the optimal cost J needs to be considered. We find that

it can also be divided into two parts : the regulator part and the

5

r'4

: 1 : :
tracking part. The regulator part comes from the term = (éKoxo, which is
the same as the cost for the corresponding regulator problem. The

additional terms péxO and 85 explain the tracking part of the cost.




84
The term 'go’ represents a residual type cost (the dynamic counterpart
of the constant term 'c' in the minimization of a quadratic function
2 w
ax- + bx + ¢). We note also that J increases as E\ increases, since the
ke

control becomes less and less capable of controlling the system

effectively, (Fig. 8).

Let us now look at the sensitivities of some of the parameters. To

keep things simple we shall only look at the sensitivities of the diagonal

o) me 5 ) i { J ) = [ H

elements of £y and g Note that 91 var (all)’ 322 var (JZI),
333 = var (alﬁ)’ Ogs = var (322) when Zij £ ZA‘ Similarly, when
”11 £ B Ull = var (bll), 022 = var (bZI)’ 633 = var (b12) and

a = var (b_,). For convenience we shall denote var (a‘j) by c(aij)
i :
and var (bii) by C(bii)' The relative sensitivities corresponding to

different Q matrices are given in Table 2 and are then ranked in Table 3.

We do the same with the absolute sensitivities in Tables 4 and 5.

Our first observation is that none of the parameters are overly
sensitive. We note that the highest relative sensitivity is only .3 or
30%. We can call a relative sensitivity of 1 or 100% high because that
implies a variation of a magnitude commensurate with the actual value.
Judging by this standard sensitivities of .3 or less are negligible.
Thus, in a general sense, this model is quite insensitive to variations
in parameter variances. In other words, at least for this model, this
method of analysing sensitivity does not yield much useful information,
besides the fact that the model is insensitive and therefore recasonably

reliable.
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If we look at the variations in the sensitivity ranks as Q is

changed, we find a reasonable pattern. When consumption is more heavily

weighted than investment, we find that the parameters 5(111), :(ul7),

G D) :1b17) tend to be more sensitive, whereas when investment is

more heavily weighted the parameters J(aﬁl)’ j(a7ﬂ), oibee )5 ailh

by, ) are

22

more sensitive (Tables 3 and 5). This is as it should be as is evinced

by the positions of these parameters in the covariance matrices

; 11
|
) 0(471) ) 0 ‘
M o T e S R S R
0 0 o(alz) 0
i i |
‘ 0 0 | 0 0(377) :
IS A
:roll) 0 ) 0
. 0 :(bZI) 0 0
u‘)) g i R Ao = S = = e S . LS ol i
0 0 Lo a(b,,)

What happens in the sensitivity equations is that the above shown 2x2

blocks enter into the mathematics directly through the terms Pii\P.,
2] . s D ~ 8 ~ - \ v ’ = 3
Fﬂ‘Hrh’ Since c(allj, O(Glzj, G(bll), C(blz) occupy the top left

positions in these blocks they contribute to the error in the propagation
of consumption and as consumption assumes a greater relative importance
in the cost functional, these parameter variances become more sensitive.
This is shown by the column of rankings under Q = (10,1) in Table 3.

Exactly the same happens in the other direction with investment. The

i m— e s - - e
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parameters :(”‘13’ o i S T(bjl), dg(b,,) occupy the bottom right

1
i

hese blocks and thereby contribute to the error in

o)

positions in t

investment, so that they become more sensitive as the relative weighting

of investment increases. As we move from the column under Q = (10,1) to
the column under Q = (1,10) from left to right in Tables 3 and 5, we
find that the parameters C(uZI), 7(322), O(hjl)’ O(bZJ) move from the
bottom of the columns gradually to the top when we get to Q = (1,10).
This pattern also makes sense physically When consumption is more

important, one would expect the higher sensitivities to be with the
first rows of A and B which parameters affect consumption directly.

More explicitly

C = a C + a S F_ b M +c¢c
t+1 11 “t e SR B 12 "t 1
The other parameters u:l, a:l’ th' hzz affect Ct only indirectly. The

same is true for investment.

From this one would expect J(ujl), ag(a,,), G(hﬁlj, g(b,,) to be more

sensitive as is borne out by the results.

(2,1) seems to represent some sort of a '"break-point' that

Q
weights consumption and investment in some '"'equitable'" manner. Firstly,
we find that the relative sensitivities at this value are all evenly
distributed i.e. there is no priority in ranking in either group,

"11)’ '12), c(h“), "J(hlz)] or [om:l), o('u:z), ‘”h:l)’ '7(1)::)1.




under Q = (2,1) in Table 3. If we increase the relative

weight ption towards Q = (10,1), then find elements of !
5(a.,), d(a,;,), g(b,,), og(b,,)] becoming more sensitive whereas if we

[ola,,), alay,;) 1102 9(bg5)) g

decrease it towards Q = (1,1), (1,2) and (1,10), we find [o uﬁlj, 7(a,,) ,

5(b,,)] becoming more sensitive. Of course, since our data comes

from only five Q matrices, we cannot have the exact break-point but we

can say that it lies roughly near Q = (2,1). This also seems to be the

S

1

gives the lowest value for the optimal cost J scaled by the norm

of the corresponding Q, as can be seen from Table 6. In addition to this,

BE o DR i | . . 1 ~ p £
Table indicates that “Lo!‘ i1s largest in the Q = (2, ase. 0Of course,

.,4
—
(¢

the certainty e

*
uivalent J equals zero and is lower than the above

*
i
scaled J and |

1 £e aler I ohnv an |1 o - \
S Loi'CL = .682 1s also higher thtmlll.o,I for Q = (2,1).

*
The fact that J is lowest for this Q means that this represents the

e artn o . " T
minimum of J taken over all Q. Similarly, the fact that L 1s highest

seems to imply that the control is most forceful in this case. All this

Q = (2,1) represents a special weighting matrix.
The specific value of Q depends of course in some complicated way on the

values of A, B and f\, Lp. However, the important point is that it gets

closest to the certainty-equivalent case in some average way. It

represents, in a certain sense, an '"optimal' choice for Q.

scaling the entire matrix f\ by factors

3

As we increase f\ gradually

of 1.1, 2, 6, 15 and 30 progressively, we find first that the optimal cost

J increases (Fig. 8). This is reasonable physically since the system

becomes increasingly difficult to control with increasing uncertainty.

1

We find the other variables behaving reasonably too. For example, the
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quality of the state trajectory drops and we find in some sense a greater
expenditure of control energy (Fig.9-10).The behaviour of the sensitivities

does not show any useful regularities as can be seen by carefully étudying

Tables 8 and 9. Since the relative sensitivity is given by %%f.-%; and

*
0 and J*both increase, and the change in & itself is hard to guess, we

90
are left without any reasonable predictions. For example, the first row
of Table 8, which shows the values of c(all) as the scale factor a of ZA
increases, indicates that c(all) increases as o goes from 1.1 upto 15 and
then drops at ¢ = 30. Similarly, the third row shows that o(alz) increases
till o = 6 and then drops for a = 15 and o = 30. The second row keeps
increasing whereas the fourth row behaves like the first. However, there
is no identifiable pattern which allows us to predict the behaviour of
these sensitivities. Also, since the values of ZA are very small; even

a scale factor of 30 does not succeed in making Kt blow up. We are still

within the threshold even though we do not know exactly what it is,

To sum up, we could say that the outcome of the analysis on this
model is basically positive, There are no really sensitive parameters,
so we can trust the results of the model (on the assumption, of course,

that the underlying economics is accurate).

4.5 Conclusion :

In this chapter, we have presented a simple macroeconomic model of
the U.S. economy and recast it into state-variable form. Next, we have

applied the equations developed in Chapters 2 and 3 to this model, and
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C.E. case

consumption (4 B)

time (in quarters)

120
Y C.E.case
@
=28
-
@
3
@ L0
€ =30

1 L
0 5 10 15

time (in quarters)

Fig. 9. State trajectory, Eq. (3.3.11). Comparison of trajectories
for C.E. case with the stochastic case when ZA is scaled by

a factor of 30. Q = (2,1) for all curves.
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money supply ($ B)

Fig.10. Control trajectory, Eq. (A.4), for N = 15. Comparison of
trajectories for C.E. case with the stochastic case when

ZA is scaled by a factor of 30. Q = (2,1) for all curves.
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(150 I § a:2 o:6 a:15 o:30
7G| s | 170 272 || .204 .215
ola, )| .106 | .161 .287 || .397 .444
a(a )| .044 .063 .089 .077 . 049
a(@)) [ .o40 | .060 .094 || .104 .101
ofby )| .127 || .122 | .106 || .080 .048
o(by) | .117 .115 112 .108 .098
o(by,) | .l64 131 .065 .026 .012
o(by,) | .151 .124 . 069 .035 .026

Table 8. Relative sensitivities for Q = (2,1) and
different scale factors o for ZA

(i.e. the actual covariance used in
simulations is aZA where ZA is given

on page 63).
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presented some empirical results together with a discussion of these

results.

Our model turns out to be fairly insensitive to parameter uncertainty
variations and therefore quite reliable. Applications of this method to
more models is required for a better understanding of the equations we
have developed. It seems, however, that the complexity of these equations
and their relative resistance to deeper insight makes this method of
approaching sensitivity issues undesirable. The computation involved
increases at a prohibitively untrammelled rate as the dimension of the
model increases and since most useful econometric models are large, this
method is not quite practical, It can, however, be useful when a small
subset of the parameters in a large model needs to be analysed for its
sensitivity, This, of course, is to be expected since this method is

essentially a brute force way of identifying sensitive parameters,
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CHAPTER 5

CONCLUSION

5.1 Summary of Results

In this report, we have investigated the structure of optimal,
linear, random parameter systems. We model these parameters as white
stochastic processes. Thus, the model contains both additive and
multiplicative white noise. This white parameter approach to adaptive
stochastic control is important for two reasons. Firstly, it makes the
problem solvable analytically. The general adaptive control problem is
in fact a nonlinear stochastic control problem and cannot be solved
without making approximations. Secondly, it shows, in a worst case
sense, the fact that the control gains of an optimal stochastic system
with purely random parameters depend not only upon the mean values, but
also upon the variances of the random parameters. The scalar case of
this problem was investigated by Ku [1]. Here we investigate the most
general multivariable version., The problem is formulated as a tracking
problem and includes additive noise as well, We do this work in

Chapter 2.

In the next chapter, we develop sensitivity equations to analyse
the sensitivity of the system performance to small variations in the

variances of the system parameters. The equations turn out to be fairly

cumbersome in the general multivariable case. Deriving equations for the

sensitivity of the optimal control and the optimal trajectory turns out

to be hopelessly complicated.
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We describe a simple macroeconomic model, recast it into an
optimal control framework, and make a thorough investigation of its
structure and of the optimal solution together with the sensitivities
of the different parameters. We present some of the relevant simulation

results for the analysis.
5.2 Conclusions :

The multivariable case for linear random parameter systems, though
solvable analytically, turns out to be somewhat opaque and does not
yield much further insight than the scalar case. The main result for
the scalar case described in Ku [1] is the Uncertainty Threshold
Principle. In the scalar case it is possible to find an analytic
expression for this threshold (some function of all the means and
covariances). In the multivariable case, we find that it is very
difficult, if not impossible, to obtain an analytical expression for the
threshold. The source of the problem is that we are dealing with
matrix quantities and matrix multiplication is non-commutative and
operations like the trace of a product of matrices do nct decouple.
However, a threshold certainly exists as can be verified by trying out

different values for the various mean and covariance matrices.

The sensitivity equations, since they are derived from the above
optimal solution, turn out to be even less amenable to any insight. We
do not even bother to reproduce the equations for the sensitivities of
the optimal control and state trajectory, The application of these

equations to Abel's model also turns out to be of dubious value. Though
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they do supply us with some valuable information - that the model is
basically insensitive and therefore reasonably reliable - it is
questionable whether such a brute force approach to sensitivity analysis
is worthwhile. Many currently popular econometric models are large and
nonlinear and this approach would become far too involved computationally.
The cpu time depends geometrically (“n2?) on the order of the system and
linearly on the time horizon. However, if we restrict the set of
parameters whose sensitivities we wish to examine to a small subset of
all the parameters, then we can hope to extract some useful information

at a reasonable cost.

5.3 Suggestions for Future Research :

1. More analysis is required to thoroughly understand the
different aspects of tracking problems. Specifically, one
needs to understand the end-point behaviour of various

variables like X,p U Lt and m, physically. It may help

t’

to reduce these matrix and vector quantities to scalars

by using suitable norms.

aK
2, We have calculated quantities like 7;: . It may be useful
9K
to consider quantities like ‘5;+e as well, This represents

the effect of a change in the present value of ¢ on the
future value of Kt' This may prove to be useful in
adaptive control schemes where such information may be used

to guide control action.
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Though the equations turn out to be very complicated, it

EEEt Bth

ag ’ —5;‘

Perhaps somewhat different initial assumptions might lead

would be useful to look at the behaviour of

to a more tractable problem which might yield useful

information.

The scheme developed in this report can be applied to assess
the reliability of different models of a given system. This
affords a selection criterion which can aid in choosing one

out of a number of models.

This sensitivity analysis can also be applied to an analysis

of the monetarist-fiscalist debate in Abel's paper [47].

.
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APPENDIX A

We solve here the optimal control problem posed in Chapter 2

using the method of stochastic dynamic programming.
We begin by stating the problem and the principle of optimality.
We have the following linear random parameter system :

7 : A.
Xy el A * Bpu + oy x, given (A.1)

where Ak’ Bk and ¢, are all white and Gaussian with known means,

k

covariances and cross-covariances.

E{A} = A
E (B} = B
E {¢} = c
EL[SQA) -SM 1 [sA) -s@) 1} = 1,6,
E{[s() - S@B) ][ S(By) - S 1} = Zp 8ip
E{[ Sy - s@© 11 S(cy) - s€) ]} = E, S
E{[SB) -8B 1[SA) -8R 1} = I8,
E{[SB)-S®B 1[Scy -5 11 = Zp.fis
E{[s@®) - SA) 1 [ S(c,) - s© 1} = LacSig

Here we introduce some notation for convenience. For any matrices Yk,Z

let

« YLY if E {Yk } = Y constant

k
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The cost functional we choose to minimize is :

N-1
1 ~ = o e
I = 3 E{E=0 [(xy = %) ' - %)+ (e - 8) "Ry - Ty)]
g - X QU - %)} (A.2)
where Q, R are symmetric, positive semi-definite matrices and where xk, U

are given target trajectories.

The stochastic control problem is to find a control sequence

{u.,u } that minimizes the value of J. This problem is the

or Y10 =t Una1
stochastic tracking type of optimization problem and can be solved with
either the discrete minimum principle or dynamic programming. We choose

the second approach.

et J = 2 g=k [Cx - 2)'Q0x - %) * (uy_y - B )'R(w, ) -8, ) ]
o= 3 LOom KO0 - R ¢ (T ) RGy gl ) ]
% = E { I }
N = EL{P}
y; = min Yk

U-1* ot ¢ e

where k=1, 2, ... , N

We have

*

Yi = min Yi kK ®1;2; s5s¢ 3 N
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* .
Yk = Eln EJk
el 2V Fhe s
= zxn 3 E (Pk + Pk+1 Al AP PN)
W L B |
= 31n 3 EPk + z1n EJk+1
k=17 *UN-1 k-1, *UN-1
(Note : EJN+1 Z0)
= min EP, + min (min EJk+1)
-1 Yk-1 gk ar i et
. . * * -
= min Ak + min Yk+1 (Note : YN+1 =)
* - *
Y TS 5N 2 (A.3)
Yk-1

This is the functional recurrence relation that we shall use in our

derivation,

We shall first calculate Ak.

A = EPk

= [ Poplx) ax
g % [T%) ' g-%) + (g =8 ) 'ROw -8 ) ]
PO/ 0By 1S X IP Ay 1By ()P (X )
e T WEL WL WL WY

using p(x) =/ p(x/y) p(y) dy.
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Note that X1 is independent of A SO we can write

Rai® Boyr S
P 1B 12Ck-17%k-1) = P(AL_1»By 1ocy 1) P (X))

Also, d(xk, Ak-l’ Bk-l’ -1 xk-l) is merely an abbreviation for

dxdek-ldBk-ldck-ldxk-l'
Therefore,
L l " ' '
A= Tl A A X )+ up  (ReBr QB 1) uy

1% * P B P ¥ P BB %)

* B Gy G T R - R

- By )Ny - (B Iy - 2K Qe )
PA 1B 1Sk DDP O A 1By 1oy g0%y )

using X, = Ak-lxk-l + Bk-luk-l + ck_1 and integrating out xk.

Now, integrating with respect to Ak-l’ B RE and ck_1 we get

k

5 1 HH e ' o —~ o
A [ x; AR X1t uk_l(R + B'QB) u,_; *c'e

+

2up_ (BTQR)x, _; + 2uy  (B'Qc) + 2x; , (A7Qc)

+

210% 3! % & ]
X Qg + U gRuy - 2G) Ru

2x]'(QAxk_1 - 2x]'(QBuk_1 - ZXiQC ] p(xk_l)dxk_1
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1 k = N
* = * -
T * min )\N (YN+1 =210)
UN-1
dA
N = 0
duN_1
RTOR RTOA ~ o oRias
2(R + B QB)uN_1 # Z(B'QA)xN_1 + 2(B'Qc) - 2RuN_1 2B QxN 0
u, .= < (R+B'Q8) L E®
N-1 " L L
. el e _ Biar - ax
(R + B7QB) ™" (B'Qc - B'QX - Riy_;)
With this, we calculate Y;.
2 [ [ x¢  (A'QA)x + X! (A'QB)(R+B'QB)-1(B'QA)X
N 2 *N-1 N-1 © *p-1 N-1

+

(B'Qc - E'Qi& 4 Rﬁhll)'(R+§76§)'1(§762 " E'QiN - Ri, )

+

2x_, (BTQR)' (R + B7Q8) "' (BQc - B'QX, - Rdy_)

+

c'qe - 2x}_, (A'QB) (R+376§)'1(§763)xN_1

2(B'Qc - B'QXy - Ry ;)'(R + B'QB)'I(B'QA)xN_1

2 xj_ AW R + B7W) " B7Q)

2(87Q¢ - B'Qx, - Ry )" (R + B'QB) ' (Bqe)

+

' AT O YAy [
2 xy 1 (ATQe) + Xy Qi + By Ruy

+

2 @y ) RR + 5708) ' (BTQA) x|

—_—

+ 20 R R+ BB '@ - B'Qx,, - Rd

2 XyQAxy )

N-l)
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+ 2 $QBR + B'QB) "' (B - B'QX, - Rd )

On simplifying the above, we get,

1 x&_l{XTGR - (A'QB)(R + B'QB) "1 (B'qa)} X1

|
N -

+

2y (A7qe - Rroxy - (ATQB) (R+B'QB) ! (B'qc - B*Q%,- Rl )}

(BQc - B'Q%, - RGN_I)'(R*ETGE)-I(ETEE - B'Q% - R, )

0 + Do *y pe - 9 30z
+ ¢'Q + xNQxN + uN-lRuN-l 2 xNQc ] p(xN_l)de_1

Since we know the final answer, we can make some convenient definitions at

this point,

N
Py = - @&
P 1 I'0%
gy = 3Ry
Then,
Wt 7] D ETRA - RRER ¢ FRB T TR x

+

- | =
1 ' 1 & ' ' ' o
ZxN_l(A KNc + A Py (A KNB)(R+B KNB) (B KNc + B Py RﬂN_l)

(B'Kyc + B'py - RﬁN_l)'(RtB'KNB)-l(B'KNc + B'py - Ry )

+

c'Kye + 2gy + Uy Ry o+ 287y ] p(xy ))dxy
Now define

] [} ' =1 '
Doty ° AR A = (IR (BIRGBTR, . B) (B'K, )
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L 21
= ' ' o ' 1
IN-i-1 Mheq® ® Ry g - R B RATE, D)

ap - L i
(B 4C * B'Py gy - Buyiy)

K. = Q + D.

1 1
P e T
-3
— i} '
Ly - R + B'K, B)™ (B'K., A)
1 - it
X & ' ' ' K
m, (R + B'K;,;B)” (B'K;, c + B'p,, - Ri,)
= ll Y] Lo (] lv
Pai-t . T F B Rp e Bipy RO Y Mt SR e
l""l o ]
P e i S P PRy
== lv“‘
g; L+
Thus we can write
. * % fixt D . 2! % gr ] Dk,
N 2 N-1"N-1"N-1 * “*N-19N-1 Nl P 5 10Ky g
*
Une1 ® Dyeg ®nap Oy

From here we go on to the next step in our calculation.

*
e Vet

UN-2

YN-1

R WS-
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We have, from the previous step,

SR

* 3 ) 3 , 1
N JUxg 1Pho1Xne1 * 290o1%-1 * 20y ] POxgopddxy

B

1 L ] 1
U Xy A 2PNo1AN-2)%No2 * UN-2BN-2PN-1BN-2Y-2

0w

R S

1 1 1
CN-2PN-1%N-2 * 2UN-2BN-2Pn-1AN-2%N-2

+2xh . A D

DN-1°N-2 N-2"'N-2"N-1°N-2

] 1]
* 2uy oBN-2

+ 2

+

L} L} 1 1] A}
2xy oMN-29N-1 t 2 Uy 2BNa29N-1 *2ON-29N-1

+*

21y 11 POy | Ay 0By oSN 2 XN 2) P (A2 By 220y 2)

Py _p)d(xy_y5Ay 55 By 500N 50Xy 2)

' A'nh A 't R'n_ ®n P
JU X ADN A Xy 5 * up ,B'Dy (B uy o+ c'Dy jc

T

B'D ¢ # 2 x!

]
N-1 N-2" "Dy

L} 1] 1]
2 uy B Dy A Xt 2 5

+

. AW 1R =
o Ea SR L S WL

Pxy_p)dxy

after integrating with respect to XN-1° ANAZ’ BN-Z’ and CN-2"

Therefore,

: SR et T,
Mo * W= 7] I, (AT@ Dy DA Y xy,

+ul {R +B'(Q+ Dy ,)B} u

N-2 N-2

+e'(@Q + Dy_,)e

1
+ 2 u&_z B'(Q + DN-I)A Xy-2
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] ]
ey BT By e
h\
v2xy , M@+ D_c
*2xg o ANy - Gy )
*2up, B'ay, - Ry-1)
*2c(ay g - @y )

+ 2 rN_1

~ ~

1] b | £33 I~ ~
* Wy Ay Ry - 20 Ry ]

Plxy_p)dxy 5

1]
(ST

JU xRy R)xy o+ ul o (ReB'Ky By o

L L} 1
*C'Ky 1S 2wy (BTKy AMXy o ¢ 2 ug oB'KY C

L] 1 ' _' 1 -'
2242 Kot 2 XgATRy Ly 2 ug oB'Ry

+

+

Ry

=t ¥ 2Ly
2Py P By R g TGRS

2 2Rz ] poxgydxy

We can now minimise this expression w.r.t. Uy.2°

*
e Tt Y S

duy >

d

B'K. .B BYX. A B, o
2(R + B'Ky_BJuy , + 2 B'Ky (A x. , +2B'K ¢

= % Y ,
+ 2B Pn-1 2 RuN_2 0

e a



Let us now calculate

N-1

ST
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=
"

1 =] 0
N-2 = (Al KN—IB) (B KN-IA) XN-2

- ' ! ] =0 - DX
(R + B'Ky 1B) "(B'Ky_ € + B'py ) - Ruy,)

* Mg Wg o "Wy,

*
IN-1
' Ay A 1 —*
[ U xg_pATKy qAIxy 5+ X{ oLy (R + B'Ky (B)Ly oxy o

A L 1 ] ]
M2 (REBIKL (B)my o+ 2 xg oLy o (ReB'Ky ,BImy o
1] ]
c KN 1c + 2 2 N 2B KN 1A X + 2 m B KN lA X
1 1 ] '
2% N 2 N- B! KN 1c +2m B'K c + 2 x A KN 1c

N=2% “N-

Ay ' ] Y
XA TPy 2 Xl oB Py 2 My B Py

) g g g =
2P * 2oy gt Wt UyaoR2

~y

T
2 uy_oR Ly pXn_p = 2 T ,Rmy ] plxy 5)dxy ,

[ I PNo2®Nea * 220 * 2Ty o] POXy_p)dxy

after some simplification and rearrangement of terms.

So we see that we get similar expressions for the control and

optimal cost-to-go for the next period. This obviously carries through

by a simple induction argument to all time periods. Thus we can write

down the complete solution. Before we do this we eliminate some of the

new variables we introduced earlier.

T —

o




i-1

i-1

i-1
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—
' X ' '
ATKA - (AK;B) (R + B'K;B)

Q+ D,

—

0 KB
Q + ATK, A + ATK;

+

IB)

L.
i

(B'K:A)

1

e = e —— -1 =
] ' e ]
A Kic + A P; (A'KiB)(R + B KiB) (B'Kic o B'pi

- Qxi + qi

Lo '
Qxi + A Ki+l

1
5 (B'Kic + B'p

o '
Rui-l) m

R u

.

i-1

t g

1-

1

c +A'p o (A'Ki+

= Blkoagl
Bl 8,
R T c'p
2 1 i
Lghy c'pi+1
m ot 8ia

The complete solution to the optimization problem is therefore :

"

+
Mo * By

= [}
(R + B'K_, B)

-1 Bk

t

B)" 1

(RB'K

a B - AT TN A T
th A Kt¢1c + A p“1 + (A'K

Q+ A'K A +

+1A)

('R pg * Bpy °

(A'K

t+l

B) L

t

t+l

—— AT e NI O e

(A.4)
(A.5)
Rﬁt) (A.6)
B) m, (A.7)
(A.8)

Acatn.
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(A.9)

(A.10)

(A.11)

(A.12)

We can also calculate the value of the optimal cost-to-go and the optimal

cast.

The optimal cost-to-go is given by :

s 1
= 'ka-EE[
. 1 '
= /I,

+

= gl Qe ) x

[ 8]

%

k-1 k-1

1 L
7 DIy -2x

1
e B

R i
k.~ et R g - Ry

]

M -
e X 1\

Y2yt X @] POy )X

N —

& . ' '
: [ O K * 2P0 1%y * 2 g P0G dx

_1_ 1 (]
B, W S SR WL L W

k =

Lyds

Ve

(A.13)

* 21y 4] Pl ) )

N




*
The optimal cost is given by J

Since x
€ X

i A
= E { 5 onoxo

is known with certainty

Jr=

X
2 00 o0

120

we can write

(A.14)
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APPENDIX B
COMPUTER SUBROUTINES
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PAE NN FORTwAN A CCNVERSATIONAL MONITOr SYSTuM
IsTEvER NA,NS,NNA,NPTS,N,M,NM, NN, IPVT!1]) ,KIN,KOUT PARJLU1U
DOUBLE 2RLCISLON A (18,2),Bil10,2) ., Ci10,2),0610,2) ,£(10.2) . PAE00020
SLGA LT (4) STGBL12,4) ,STGBA(12,4) ,STGC10.2) » PARJ4UU3Y
SIGAC17,2) «SIGBCI12, 2) PT {12) ,GT,X2ER0 (10) PARVOO40
XE £12) ;85 012) . Dit10,2) , ERTL10,2) . BL 010,2) ., E8 £10), PARODOSD
JI110,2),V(10,2),w!l10,2),W1(10),42{10),WOEK {10), PAZJ0J69
VW (10,2) ,UVi (10,2) ,AERRAY (51,10), 2AEQUO70
BEB 10 ,2)  BRAL160,2) , BPBL10,2) . PAR QU080
3PA(10,2) ,LCOST (20) 4COST (20) ,BPC (10), 2AROVUYD
3DP 1) DM (1)) ,LP L) ,BKC11Q), DG PARCU1UY)
PAROO 110
CCUMON/LNOU/KIN ,KOUT PARV.120
PAROC 130
KEN=5 2ARVC 140
KOUT=b 2AR00150
NA= 10 PAROO 160
NN=U PARIU1TuU
Ni=4 PARGCO 180
14=1 2 ARUU 190
NS=12 PAROO 200
NNA=?7 PAROU 210
N=2 PARQ0220V
d=2 PAX00230
CALL MATIO NA,N,N,Q,4) PARUC 243
CALL HMATIONA,4,4,K,4) PAEOU 250
CALL H4ATIU NA,N,N,A,4) P ARG 260
CALL MATIO!NA,N,M,B,4) PAKU0Z70
CALL MAT1O v ,N,M4,C,u4) PARC0281
CALL MATIO(NNA,NM,NY,S5IGA,4) PAKQO290
CALL MA IO (NS,NH4,NN,SIGB,4) PARQO 300
CALL MATIOINA,N,N,SIGC,4) PAEOQU31Q
UT(1)=0.000 PAROO 320
UT 12)=d<0D7 PARUCI3L
XZZRO £1)=362 CDO PAROU 340
XZoEO {2)=39.0D0 PARUL3SC
NPTIS=10 PARQO0360
AT(1)=((1.0125D0) ¢* (NPTS-1) ) *XZERKO (1) PAROV 370
AT [2)=!111.7125D0) **x [NPTS-1) ) *XZERO {2) PAROU38U
CALL PAR(JA, NS,NNA,NPTS,N,M,NM,NN,A,B,C,Q0,R,SIGA,SIGB, PARO0 390
SIGBA ,SIGC ¢SIGAC,SIGBC,XT,UT,2T,GT,X4EROQ,D, KT, PAKQQ 400
ZM,EL,ARxAY,COST ,LCOST ,BKB,BKA,BPA,BPB, Ed, DP, PARCUG4 10
8PC ,BOP,BKC,DG,U,V, W, VW, UV, W1,w2,HWORK, IPVT) PAROU4 20
WaITE(KOUT, 15) GT PARO0O0 430
FCLMAT {1HS,7H GT = ,D26.16) PAROQU44LO
WRITE(KGUL, 16) PARVOU Y450
FCRMAT [1H) ,5H PT ) PARLL46
CALL MAZ2ICIN,N,MM,PT,3) PARQU4T7Q
WKITE (KOUT,17) PARUCUBD
POKMAT (1HJ,7H M (T) ) PAROU 49D
CaLl MATIO(N,N,MM,EM,3) PARQOS500
WRITE {(KOUT,13) PARV0510
PCRAAT (140,74 L(T) ) PAROVS20
CALL HMATIO!NA,4,N,EL,3) PAROV0S530
WRITE(KCUT, 19) PARQQS54Q
FPORNAR [V UH,78 KT) ) PAROIS550




Q0N

Paniy SURTRAN A

CALL MALIO(NA,N,N,EKT,3)
STOP

LAST LINE OF PARMN
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CCNVERSATIONAL MCGNITOR SYSTuM

2AROL 560
PARYL.57
2AR00 580
P ARUL 595
PARQU6G00
?AROC610




FlLE:
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SUTRCUT INa

2% xD AR AMZTERS ¢
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A CCNVEESATIONAL

2AR (NA,NS, NNA, NPTS5, N, M, N4, NN, A, By C,WsR,SIGA,SIGE,

Sis5B8a,SIeC,S51G6AC,SIGBC, XT,UT,PT,ST,XZELO,
DR, 2KT,EHMyEL,A nFAY ,CCST,LCOST, BKB,BKA,BPA,
be 3,04, OP, BPC, BDP ,bKC ,0G6,U,V,4,Vi,0Vi, a1,4d2,
WORK,IPVT)

di g NS, NNA NPTS, N, M, NE,NN,IPVT (N)

DCUSBLE 24sCL3I0N A (WA ,N),B(NA,M),C (NA,N),Q!NA,N), EINA, &),

STIGA (NNA,NN) , SIGB{NS,h4),SIGBA(NS,N),

SLGC {NA,N) ,SIGAC {NNA,N),SIGBC/NS,H),

T (N) UT(M),PT(N),GT,XZEEO {}) ,DK (NA,N) , EKI (NA,N)
ZL (NA,N) ,ABRAY {NPTS,1) ,COST!NPTS), LCOST(NPTS),
zd{M) ,BKB({NA, M), BKA(NA,N), BPA(NA,N) ,BPB(NA, Y) .,

J(NAGN),V(NA,N), W (NA,N),VW (NA,N),OVH (NA,N),W1'N),

MONITOE SYSTEH

PAROCLV10
PAROCC 20
PARQUQ3U
2ARJI0V4D
PAEJL LS
PARVUCUGD
PARJUUT L
PAROCOO8C
2 ARULJ9Y
PAEOU 100
PAENC114

+PARQQ120

PAROO 13D
PARQU140
PAROC 150

a2(N),DP(N),Dn{M),DG,BPC{N),BD2 (N) ¢y BRC(N),aCRK (N)PARJU160

**xxxL0CAL VAKIABLZIS:

INCEGZE K4 L,KK,LL,KIN,KQUT,ITOP (40,6) ,IN (9) ,NSYM (1) ,4SC ,MAKES,
IY,JNDEX,Il1,iI5,1EGY,MH4,NLG,NGEIDH,INDEX,ICOUNT,ID,IL,
I,1ND1,IND2,IND3,IND4,IR,IS,IT, ITM1,IT1,IU,IV,I1,I,1I4,15,PAR00210

J,Ju,d1,

KL

DOUBLL 2aZlISICN CTUND,TR, SUM,XMIN, XMAX, YMIN,YMAX,YSF {10),ZERO,

*ex**xFUNCILONS:
INTEGLa 40D
DCUELEL

XM,XS1(2) (XS !2) LTS (10,2) (XSAVE’16,2),

LTSAVE {30,2) , MTSAVE {30) ,UTS(2) ¢X52{2),
JSAVE(15,2) , DKSAVE (96,32) ,PTSAVE (32) ,GTSAVE (16),
4371,2),DPSAVL {96, 16), DMSAVE (96, 16),

DGSAVE (48,16) ,CSTSEN ,LARRA Y (15,4) , MARRAY (15,2) ,
R=LSEN /8) , SC

PRECISION DFLOAT

**#*x*xSUBROUTINES CALLED:
SAVE,MADD ,MSUB,MHEUL, MQF, MSCALE, TRNATB, TRACE, THPLT,LINEQ ,4LINEQ

- ————— - — - — - - - — - ——————— —— -

*xxxxPURPISE :

THIS SUBxOUTINE

)
CPIIMAL

PZKFOR4S TWO PUNCTIONS:

IT SOLVES THE FOLLOWING DISCRETZ TIME LINEAR QUADRATIC
CONTROL PKOBLEM FOk A LINEAR SYSTEM WITH PURLLY

RANDUY PARAMETERS.
THZ SYSTEM IS DESCRIBED BY

XT+1)

A,3, AND

THZ MEANS,
AND

As By

[THZ COST

A%( [T) + B*U(T) + C, X(3)

C ARE WHITZ AND RANDOM.
COVAGIANCES, AND CKCSS COVARIANCES JF
AnkE SPECIFIED.

~
~

CKRITERICN IS

PAROU 170
2AKCL 180
PAKQU 190
PAKQL200

PAROL22Y
PAKIU230
PAROU 240
PAROQC250
PAROC 260
PAKQU270
PAXQ0 280
2AR0G 290
PARQU 300
PARQU31C
PAR00320
PARUL33Y
PAROO 340
2AR0C3590
PArQ0360
2ARVL 370

-?AR00380

PAROO 390
PARGV4LD
PAROCY410
PARQuU42C
PARUG430
PARILUYD
PARCU4S50
2AK00460
PAROLY70
PAROO 48D
2 AROu49
2A&00500
PARVESTO
PARCUS520
PARQOVS3Y
PAKRO0540
PARQQOSS5)




ri

QONOOCC GG
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NN

SIGA
Sley

S1GJA
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PCRTRAN CONVELSATIONAL MONITOE SYSTaM
J = {1/2)*E'SUMJATION FEO4 T = . TO ¥=-1 OF PARILS6
T PAX00570
‘XT)-XTILDA'T)) *Q*(X(T)=-XTILDA'T)) + PARICSBL
T PAR00590
(U(T) -OTILLCA(T)) *K#* (U(T)-UTILDA (T))) + 24800600
T 2ARUU61C
(£(N)=XTILDA(N)) *u* (X(N)-XTILDA (N)) PALKOU62)
PARCL630
THE IARGET SEQUENCES (XTILDA(T)), (UTILDA(T))., I=0,1, . .N 2Aa00640
4UST BT SPECIFIZD ALCNG WITH @ AND R. 2ARLU057
PAR0066C
IT CALCULATES THE QUANTITLES PAROV670
PAGTIAL DERIVATIVE OF JSTAR WITH RESPECT TC SIGMA AND PAKOU680
Pt PARTIAL CERIVATIVE OF JSTAR WITH RESPECT TO SIG¥A * 2AR0GLY0
15LGMA/JSTAK) PARV0700
43225 JSTAR 1S THE OPTIMAL CCST (OBTAINED FROM (1)) AND PARVUUT10
SIGMA IS AN ELEMENT CF ONE OF THE COVAKIANCE MATEICLS PARJ( 720
3IGA, OR SIGBA. THIS GIVES THE ABSOLUTE AWD ELLATIVE PAK00730
5SNSITIVICS OF THE OPTIMAL PERFGEMANCE TO VARIATIONS PARUVUTLHC
IN THE PARKAMETEK VAELANCES. PAROG750
PARVUGT6D
%% %P ARAMLTZR DLSCKIPTION: PAKOUT770
ON INPUT: PAR0OO 78D

ECW DIMENSIONS OP THE AREAYS CONTAINING A {(ANDPAROO 790
B,C,u,E,SIGC,DK,EKT ,EL,BKB ,BKA ,BEA,3PB,U,V,¥, PARQUBOD
VW,UVW), SIGB (AND SIGBA,SIGBC), AND SIGA {ANDPAROUS1U

SIGAC), RESPECTIVELY, AS DECLAKED IN TdE PARQ0820
CALLING PROGRAM DIMoNSION STATEMENT; PARKULE3Q
PAKOCB40
NUMBER OF POINTS 10 BE PLOTTED; PAEVULES0
PAR0OB60
NUMBEEK OF STATES; - PARULBT U
PARQOBRC
NUMBER OF CONTHOLS; P ARQU 890
PARUOUI00
= N*M; PAROV9 10
PAROUY92V
= N*N; PAROGY3C
PARUVIUL
N X N SYSTEM MATEIX; PARQU950
PARC( 96
N X 4 INPUT MATRIX; PARKOU970
PAROUYSBC
N X 1 ADCDITIVE NGCISE VERCTOR;: PARUUI90D
PAR0O 1000
N X N STATEL WEIGHTING MATEIX; PARO1010
PARO 1020
M X M CONTEOL WEIGHTING MATRIX; PARVIV3
PARQ 104G
NN X NN COVARIANCE MATRIX OF A; PA&GDT1QS )
ZAr01060
NM X NM COVARIANCE MATRIX OF Bj PARO1Q7 )
PAR01080
NY% X NN ChOSS COVARIANCZ MATKIX OF A PAROTVYQ
AND B; PARV1100




FILE:

naoccOnannNOOnNoNaOnNanNOAaNaNLOONACONOO0CO0AGADCOGONACO0N NG

2ak

(O]

SigLl

w
4
C:
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CONVERSATIONAL

N X N CCVARIANCE MATKIX OF C;
NN X N CkOSS COVARIAKNCE

AND C;

JATRLX OF a

N¥ X N CEOSS CUVARIANCE
AND C;

MATRIX OF &

REAL VECTCE 0T
XTILDA (NPTS) ;

LENGTH § COWTAINING

REAL VECTOR OF LENGTH N
UTILDA{NPTS) ;

CONTALINING

RLAL VCCTOR OF LENGTH N
THL VALUES OF P (NPIS)

CONTAINING

REAL SCALAL CONTAINING THE VALUE OF

G INPIS) ;

INITIAL CONDITION VECTOR.

N X N ARaAY CONTAINING THz KICCATI MATRIX;

M X 1 ELAL VECTOR CONTAINING THE COR&ECTIOCN
CU4 TKACKING TERM;
M X N GAIN MATEIX;

NPTS X NN & EAL SCRATCH AXRAY USED FOR
PLOTTING

NPTS X 1 KEAL VECTOR CCNTALNING THE OPTIMAL
COST TO GO;

N X N ARRAY CONTAINING THEZ
CF EKT WITH RESPECT TO SIGMA;

REAL VECTOR OF LENGTH N CONTAINING THE
PAKRTIAL DERIVATIVE OF EM WITH RESPECT TOC
SIGMA;

REAL VECTOR OF LENGTH
2ARTIAL DoRIVATIVE OF
SIGHA;

N CONTAINING THE
PT WITH RESPECT TO

PARTIAL DERIVATIVE

MCNITOR SYSTZHM

PAROU1110
PAx01120
PARU1130
PARV 1140
PAcQ1159
PARJ116)
P2ARU117 .
2AR01180
PAZU119)
2Ar01200
2ARQC1210
PAKQ1220
2AKD 1230
PARO1240
PAR0 1250
PARQ1260
PARKO 1270
PARU1281)
PAx01290
PARU1300
PARU1I310
PRR01320
PARO1330
2AR0 1340
PARO01359
2AR0 1360
PAROV137¢C
2AR0 1380
PARO1390
PAR01400
2AK01410
PARO1420
PARO1430
PAROI44T
PARQO 1450
PARV146G
PAR0 1470
PARU148J
PARJI149C
PARQ1500
PARQ1510
PAKQ 1520
PARQ1530
P2AR0 1540
PARU155%
PAKO 1560
PARO1570
PAxJ1580
PAKO 1590

XREAL SCALAR EQUAL TO THE PARTIAL DERVIATIVE OFPAEKO1600

GT WITH FESPECT TO SIGMA;
M X N REAL SCHATCH ARRAYS;

4 X M REAL SCRATCH AREAYS;

PARO 1010
?ARO1B620
PARO 1630
PAKV16lU4y
PARO 1650

i,
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Pal FCRTEAN A
3D¢,3PC,BKC EEAL SCRATCH VLCTCES CF LENGTH N;
U, V, N, Ve, UV N £ N AEAL SCKATCH ARRAYS;
Wl,d2, d0aK EEAL SCRATCH VECTCLS OF LZNGTH N;
IPVY INTEGER SCRATCH VICTCh OF LENGTH N.

she®xij] STOXY ¢
WHITTZN BY Jea.Ke CAKRRIG,

(L)\Bo FOR IdFfF. AND DEC. SYS.' (L-I.D.S), M.IUTQ’ Y. 35-“27'

CAMBRIDGE, 4A 02139, PlHs: (617) = 253-7263),
JANUAERY 1979.
40ST ELCSNT VERSION: JANUARY 11, 1979.

CCMAON/LINOU/KIN,KQUT
DATA IGSLANK/1H /

DATA IN(1) oIN(2)  IN(3),IN(4)/1H1,1H2,1H3,1H4/
DATA iIN!5S),IN'),IN'T),IN8),IN(9) /1S, 1t6, 1HT, 1H8, 1HI/

DATA ITOP [1,1),ITOP {2,1),ITOP (4,1) ,ITOP(5,1),1TOP[6,1),

+1TOP (7,1),1TCP{8,1),1TOP(9,1),ITOP (10,1),ITOP {11,1) ,ITCP (12, 1),

+ITOP {13,1) ,ITOP {14,1) ,ITOP {15,1) ,ITCP!16,1) ,ITOP(17,1),

+ITOP (18,1) ,ITCP(19,1) , L TOP{20,1) ,ITOP (21, 1), ITOP {22, 1), iTOP {23, 1)

¢/ 14 , 14K, Vi , 14V, 14E, 18k, 14S, 140, 14S, 14 , 1HT, 141, 1HY, 1HE,
’A‘d ,1H "d 'Ih '1h '1H '1H ,1H /

DATA ITOP (1,2),1TOP[2,2),ITOP{3,2),1TOP (4,2),ITOP {5,2),ITOF {(6,2),

+I1TOP(7,2) ,1T0P(8B,2) ,1T02(10,2) ,ITOP (11,2) ,ITOP (12,2),

CCNVEERSATION AL MCNITCw

SYSTEN

PAKG 1660
P2ARI167.
PARV 1640
PAEU169.
PAR01700
PAa01710
PARO172V
PA&0 1730
PAGUT 740
PARO 1750
PARC176
PARV177v
PARV1T78
PARO179u
PARUIBOU
PAR01810

-=-==PARU182.

PARO 18390
2An0 1640
PARQO1485)
PARD 1860
PARO01870
Pagd01o89
PARO189.
PARO0 1900
PARL191L
PAROQ 1920
PAKQ 193¢
PAKQ1940
PAKQ 1950
PARJ196V
PARO 1970
PARV198u
PARU 1990

+ITCP {13,2),1TCP (14,2) ,1TOP(15,2) ,ITOP[16,2) ,ITOP {17,2),1TOP {18,2) ,2 ABQ2ulu

+ITCP(19,2) ,1TICP(20,2) 4ITOP(21,2) ,ITOP (22,1) ,ITOP (23,1)

+/16 ,143,147,1HA , 16T, HE, 0 , 14X, 14 , WV, 1HE, 14F, 14S, 1HU, 1S, 1H ,

*1HT ,1HI ,1H4,WHEL1H L,1d /

DADA iTO®!1,3),ITOP(2,3),1TCP(3,3),1TOP !4, 3),1TOP {5,3),1ITCP (6,3),
+1TOP(7,3),4iTOP (8,3) ,ITOP!9,3),LITOP {10,3),ITCP(12,3) ,LTOP!13,3),

PAR02010
2ARV2020
PARO 2030
2ARQ2V4L
PARQZO05V
PARQZ060

+IT0P {(14,3),ITCP{15,3) ,1TOP[16,3),ITOP!(17,3),1T0P {13, 3),ITOP {139,3) ,PARQ207?

+I1TOP(20,3),ITOP(21,3) ,1TOP (22,3) ,L10P (23,3)

PARO2080

+/1H ,1HC,1d0,1HN,1HT, 14R, 1hO, 1HL, 1H , WU, 1H , 1HV, 1HE, 1HR, 1ES ,1HU, PARO209V

+1d4s, W , 14T, 1HL, 1M, 1HE /

DATA 1TOP!1,4),ITOP(2,4),1TCP (3,4),1TOP (4,4),ITOP (5,4),ITOP (7,4),
+I170P '8,4) ,ITO2 (9,4) ,ITOP[10,4) ,1TOP {11,4) ,ITOP{12,4) ,IT0P (13,4),

PARO2100
PARVZ11V
PAROZ120
Pahiuc13.

+ITCP (14,4 ,ITOR{15,4) ,JTCP{16,4) ,ITOP {17,4) ,ITOP {17 ,4) , ITOP (19,4) ,PAR02140

+ITOP (20 ,4) ,LTUP [21,4) ,IT0P [22,4) ,ITCP (23,4)
+/1U0 LG, 1dA ,1HI ,1UN,1H , 1HV, 1HE, 1kK, 1HS, 10, 1dS, 1H , 14T,
¢ 181, Hid, THE,TH ,1H ,1H ,1Hd ,14 /

DATA ITIP(1,5),ITOP(2,5),ITOP(4,5)1TOP (5,5)(1TOP (6,5),

+1709 '7,5) ,1TCE 8 ,5) ,iTOP{9,5) ,1TOP{10,5) ,ITOP ‘11,5),IT0P {12,5),

PARU215¢
PAkv2160
PARQ2170
PAEUZ 180
PARQ2190
PAx0220(
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24an fOnTkAN A CONVELSATICONAL MONITOLR SYST:ZM

+I10P {13 ,5) ,1TCP (14 ,5) ,£T0P(15,5) ,1T0P [16,5) ,ITOP (17,5) , ITCP {18,5) ,PAR02210

¢1TOP(19,5),ITOP (20,5) ,ITCP !21,5) ,ITCP {22,5) , LTOP{23,5) PAnJ2220
/14 ,tit, 14 ,1dV, 14, 1HR, VHS, 14U, 1HS, 14 , 14T, 1HL, 1M, THE, 11 , PARULZ23
$la L L1 L1 L , 16 , 1l / 2AR02240

PAR0225)

DATA IT02(1,6),1TCP(2,6),ITGP(3,6),LTCP (4,6),1T02 (5,6),LTO2(6,6), 2AK02260
¢ITOP !7,0) (1TCP 8 ,6) ITOP!9,6),1TO2{1),6),1TOP (11,6) ,ITCP (12,6), PAR4227y
+ITC2(13,0) ,iT0e(14,6) .LTOP (15,0) ,IT0P (16,6) ,1TCP (17 ,6) ,IIC2 (18,6) ,PAx02280

+I1TOR 19 ,0) ,ITOR {20,6) ,DTOP !21,6) ,LTOP(22,6) ,ITOP !23,6) PARL229%
L1 SIHC ;THO  HHS VBT, 1H L THV, THE J VHE G THS o VHE VHS , TH 1 HE S THE, 2ARUZ300
* 1B, HE;TH o1d L1H 18 14 1H / PARGZ31)
PARD2320

¥sC=1 PAK02330
MAXES=" PARO<Z340
ILY=Q PAx02350
I1Z26Y=1 PAECZ36¢(
ZEKO=0.0L) PAR0 2370
XNIN=1.JDJ £ARQ02380
NGR IDH=5 2AR02390
an=1 PARO2400
NLG=(C PARVZ41y
DC 10 I=1,10 PAROZ420
YSF (I)=1.3900 PABL2H3D
CONTINUGZ PAEQ2440
DO 20 I=24,40 2AR02450
ITOP (I,1)=1B8LANK PARQ2460
ITG2 (I, 2) SIBLANK PARQ2470
170P !I1,3)=IBLANK PAEU2489
TOP !I,4)=IBLANK PARQ 2490
LTOP !I,5)=IBLANK PARULSOG
ITOP (1,5)=1IBLANK PAROUZ2510
CONTINUZ 2Aa02520
IT=NPTS PAEQ253¢C
KAANK=DFLGAT(ILIT) PARO2540
CALL SaVZ (NA,NA,N,N,Q,EKT) PARVZ550
CALL MMUL(NA N, N, MM, H,NoUoXT,PT) 2ARU 2560
CALL MSCALL IN,N,4M,~1.0D0 ,PT) 2ARQJ2572
CALL HQF INA,N,N,N,%M,Qs,XT,#W1,WORK) PAaa02580
GT=%1.1)/2.uDd P ARD259%
DO 3¢ L=21,N PAROZ60C
DC 30 K=1,N PAxU<6 10
INDEL =K+ (L-1) *N\ PARJc 620

ARRAY (LI, INDEX)=Q (K, L) PARUZ030

CONT INU Z PAEOQ2040
IHDzx=]1T¢N PAROZ050
PTISAVE [IdDcX=-1)=PT {1) PARVZOL S
P1ISAVE[INDLX)=PT!(2) PArU2079
STSAVE (LiT)=GT P ARULOEBL
ITAN=I[-1 PAEOZ090
DO 229 iL=1,1ITH1 2Andz700
iT1=1T=1L PAEJY< 710
CALL ITaNATE(NA,NA,N,M,B,0U) PARQ02720
CALL MMUL(NA,N,N,M%, M,N,0U,PT," 1) PAROZ730
CALL M44UL (NA,M4,NA, 44 ,4,M,k,UT,V) PARO2740
CALL MSUB (N,NA,N,M,MA,d1,V,a) PARLLTS
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CALL 440L (NA,NA,NA,N,¥,N,U,cKT, W)
CALL 44UL !NA,NA,NA,%,4,N,8,DB,BKB)
CALL MMUL/NA,HNA,NA,N,M,N,W,A, BKA)
CALL ANUL (NA,NA,N,44,4,N,W,C,BKC)

CALCULATE A(T) ,L (1)

30 60 k=11
KX= 1+ K= 1) *N\

CALL MMUL {NA,NS,NA,N,N,N,LEKT, SIGBC (KK, 1) , #)

CALL TRACE (NA,N,W,TR)

BKC [K) =B&C [K) +w 1{K) +TE

DO 40 L=1,4
LL=1+1-1) *¥

CALL MMUL (NA,NS,NA,N,N,N,EKT,SLIGB (KK,LL) ,¥)

Call TRACE !NA,Ng4,TR)

BKB (K,L) ==K (K, L) =BKB (K ,L) -TR
CONTINUE
BC 59 L=1,N

LL= 1+ (L-1) %N

CALL ¥MUL{NA,NS,NA,N,N,N,cKT, SIGBA{KK,LL) , w)

CALL TRACE(NA,N, Ww,Tk)
3Ka {K,L) =BKa (K,L) + Tk
CCHTINUE
CONT INUL
CALL SAVE(NA,NA,M,M,BKB, W)
CALL 5AVE [N,M,4,44,3KC,EM)
CALL LIN&g!NA,4,4,EM,COND,IPVT, NOEK)
CALL 3AV:(NA,NA,H4,M,BKB,W)
CALL SAVZ {NA,NA,M,N,BKA,EL)
CALL MLINEL(NA,NA,M,N,W,EL,COND,IPVT,WCRK)

SAVe LI ANL MT

Lo 79 J=1,4
L1=2% [ITM1-IL)+J
LTSAVE(I1,1)=£L{J,1)
LISAVE(I1,2)=EL (J,2)
CONT LNUE

DO & L=1,K
DO 8¢ K=1,4
INDEX=K# L=1) *M
LAREAY {IT1,INDEX) =EL (K,L)
CONTINUE

12=2% (IT11-1L)
ATSAVL (i2+1)=E4!1)
4ISAVE(I2+2)=E4(2)

LG 90 K=1,H4
MARAAY (IT1,K)=LM(K)
CONT INJE

CALCULATE TK, DM, DG, DP, COST SENSITIVITY

CONVERSATIONAL

ACNITOR SYSTZM

PAKCGZT76)
PARQ277y
PAKJ« 7480
PARUZ790
PARUZB800
PARQ02810
PARCcB2.
PAZu 2830
PAROZGBY S
PAROZB5U
PARD 2860
PAROZ287U
?PARD2880
PARK U2 890
PARQ 2900
PARV2910
PARD 920
PARNDZ93C
PAR0 2940
?AK02950
PARU2960
PA&02970
PARV2980
PARO29S0
PARO3IULT
PARO 3010
PARY3u2C
PARO3030
PARD 3040
PAR03050
PAERQ 3060
PARO3UTO
PAKQ 3080
PARU3 )90
PAR03100
PARKU311Q
PARO3 120
PARO3130
PARKQ3140
FAR03150
PARV3 16D
PAR03170
PARV3I 1B
PARG 3190
PARQ3200
PARO3210
FARUD3220
PARV3230
PARU 3240
P ARW3253
PARO 3260
PARVIZ2T7 )
PARVU 3280
PAFU3290
2ARV 3300
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FORTLAN a

193 ICOUNT=1,3
Iib1=-1
IND2=N*IL+ 1+ [ICOUNT-1) %12
IND3=)
LdD4=IL#+1+ (ICOUNT-1)*0
po 18J) I=1,NH
J=1
IND1=IND1+ U
INC3=IND3+1
D0 12 I1=1,2
INDEX=IND2-N4+I1-1
DP (I1)=DPSAVE (INDEX,LINL3)
CM(I1)=D4SAVL (INDeX,IND3)
PO 109 J1=1,2
JNDZX=IND1+J1-1
DK (I1,J1)=DKSAVI(INDEX,JINDEX)
CONTINUZ
JG=CGSAVE(INC4-1,IND3)
CALL THNATB (NA,NA,N,4,B,U0)
CALL MMUL (NA,NA,NA,N,¥,N,U,DK,¥)
CALL MMUL {NA,NA,NA,N,1,N,W,A,BPA)
CALL MMUL [NA,NA,NA,M,4,N,w, B, BPB)
CALL MMUL f5A,NA,NA,M4,4,d,%,C, BPC)
CALL MMOL{NA,N, N,MM,4,N,U,DP, BDP)
L2= 14 (I-1) /N
I5=1¢1J-1) /N
IU=1+4M0D(I-1,N)
IV=1+4CD J-1,N)

CALCULATZ DK

D0 110 K=1,H
£C 110 L=1,¥
KK= 14 (K=1) *X
LL=1+[L-1) *N
CALL MMUL(NA,NA,NA,N,N,N,DK,SIGBA (KK,LL) ,4)
CALL TEKACE /NA,N,W,TR)
BPA (K,L) =BPA (K,L) +Tk
CONTINU&
D0 120 K=1,M
DO 120 L=1,4
KK=1¢(K=1) ®N
LL= 1+ (L=-1) *N
CALL 4MUL{NA,NA,NA,N,N,N,DK, SIGB (KK,LL) , W)
CALL TEACE(NA,N,W,Tk)
3P8 'K,L)=B2B [K,L)+TE
CONIINUZ
IF 'ICOUNT. Ege2) 3PA'IR,IS)=BPA{IR,15) +EKT./IV,IU)
CALL TENATB /NA,NA,M,N, BPA, ¥)
CALL MMUL/NA,NA,NA,N,N,4,W,EL, V¥)

CALL SAVI(NANA,M,N,BPA,UVNW)
CALL SAVL [NA,NA, M, M,BKB,¥)
CALL MLINLy(NA,NA,M,N,W,UVw,COND,1PVT,WORK)

CCNVERSATION AL MONITUE SYSTZHM

2ARQ03310
2A8 33320
PARO3330
PARU3 340
PARO 3350
2Ax03360
PAx03370
2AR03 380
PARJ339V
?AR03400
2ARV341,
PARO 3420
PA&03430
PAROQ3440
PARU3450
PARO3460
PARO 3470
PARO03480
PARO3490Q
PARVU3S0C
2AR03510
PARV3520
PAE03530
PARU3540
PAR03550
PA&V 3560
PARKOU3570
PARQ3580
PARQ359V
PARO 3600
PAKY3610
PARU 3620
2AR03630
PARU3S040
PARU3650
PARKUVU3060
PARV3670
PARJ3687%
PAKO 3690
PARU3 700
PARO0 3710
PAK03720
PARO3 730
PARO 3740
PARV3 750
PARO37060
PARQO377C
PARO 5780
PARU3I 790U
PARO 3800
PARUIS 1L
PAR03B20
PAKJD 3330
PARUV3 840
PARKOS850

i DRSS e
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FORTRAN A

CALL TRNATB/NA,NA,d,N,BKA,W)
CALL MMUL INANA,NA,N,d4,4,0n, UV, V)
CALL &ADD ‘NA,NA,NA,M,4,V,VW, Vi)

CALL SaVa(NA,NA,4,N,BKA,W)

CALL SAVE [NA, NA, 4, %,0KB, UVa)

CALL MLINCy(NA,NA,4,N,UVW,w,COND,IPVT,WORK)

IF 'ICOUNT.EQ.3) BPB/IR,IS)=BPB(IR,IS) +EKT(IV,1U)
CALL MMUL (NA,NA,NA,N,M,¥,B8PB,W,UVH)

CALL SAVE 'NA NA,4,M.BKB,s)

CALL MLIN=Q(NA,NA,M,N, ®,UV¥, COND, IPVT, WORK)

Call TRNATB/Nao,NA,4,N,BKA,H)

CALL MMUL!NA,NA, NA,N,H,M4,%,0V¥,V)

CALL MADD(NA,NA,NA,M, N,VW,V,VW)

CALL TRNATB (NA,NA,N,N,A,V)
CALL “4UL NA ,NA,NA ,N,N,N,DK,A, UVW)
CALL MMUL (NA,NA,NA N,N N,V,UVH,W)
CALL XADD 'NA ,Na,NA ,N,N,¥,VW,UVW)
DO 130 K=1,0
DO 139 L=1,N
KK=1+(K=1) *N
LL=1+(L=-1) *N
CALL MMUL{Na,NA,NA,N,N,.', DK, SIGA (KK,LL) , &)
CALL TRACE(NA,N,W,TE)
UVW (K,L) =UVW (K,L) +TE
CONTINUE
iF /ICOUNT.EQ.1) UVW {IR,IS)=UVW 'IK,IS)+EKT/IV,1U)

CALCULAT = DH

DS 140 K=1,4
KK=1+ [K=1) *}
CALL MHUL (NA,NS,NA,N,N,N,DK,SIGBC (KKg1) ,W)
CALL TRACE!NA,N,W, TE)
BPC (K)=82C(K) +BDP (K) +TE
CONTLNUE

CALL SAVEC (NA,NA,N,N,BKB,W)
CALL SAVE({N,M,N,4,BPC, DY)
CALL LIN&p NA,4,d,DM,COND,IPVT,WORK)

CALL SAVE(N,N,N,4M,BKC,¥W1)

CALL SAVE /NA,NA, t,N,BKB, )

CALL LINEG(NA,H4,W,W1,COND,IPVI,WORK)
CALL ¥MULNA ,N,N,4M,N,N,BPB,W1,n2)
CALL 5AVL(NA,NA,¥,N,BKB,+)

CALL LINzg [NA,N,W,W2,COND,IPVT,wOEK)
CALL HMADD (N N,N,N,4M,DH, w2,DN)

CALCULATE DG
CALL MMUL[NA,NA, NA ,N,N,N, DK, SIGC, W)

CALL T&ACE(NA,N, &, Tk)
CALL TRNATB (WA ,44,N,%4,C,W3)

CONVEXSATICNAL 4ONITIOk

SYSTEN

PAR V386
PARO 3870
P2 ARG 3880
PAED3390
?ARQ 35900
PAR05910
PARO3920C
PAR{O3930
PARO3940
PARJ3I95C
PARO3960
PARD0397C
PAR03 980
PAx03990
PAKRC40Q0
PARQ4010
PARUL V20O
PAx04030
PARCH U4V
PARO4OSO
PARQ4 06UV
PAKRQH4OQ70
2AR04080
PAR Q4090
PARKQ4 100
PARO411D
PARJ4 120
PARD4 1372
2AR04 140
PARO4 150G
PARO4 160
PARQU 170
PAKO4 180
PARO4 190
PAEROQU200
PARQ4 210
2AROW 227
PAx04230
P ALQU 240
PAEQU 250
PARQUY 260
PARQU270
PARUL 280
PAROU290Q
PAROUG 300
PAROU3T 2
2ARQU 320
2 ARvld 334
2ARQU 34U
PARUY 350
PAROU360
2ARQU37C
2AG V380
PARI U 39y
2 ARVE40 )
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CALL MMUL 'NA,NA,N,M%,N,N,DK,C, % 1)
CALL MAUL (4M,N,NA, MM, 88, N,n3,%1,%)
CALL MMUL/44,N,NA, MM, 4M, N, W3,0P, V)

JG=DG+ ITE+d (1, 1)) /2..D% + VI(1,1)

Call TRYATB !N,4M4,N,M¥,BPC,H3)
CALL AMUL(4%,4,NA,Mi,4M4,N,%3 ,E4,W)

CALL TENATB (N, 44, N,H4M, BKC, K3)
CALL 4MUL ‘M4 ,N,N,MM,MH4,N,W3,DH,V)

DG=DG*+ (4(1,1)+V(1,1))/2.920
CALCULATE D2

CALL THNATB (NA,NA,N,N,A,¥)
CALL MMUL !NA,NA,N,MM,N,N,CK,C,W1)
CALL MADD(N,N,N,N,M4,%1,D2,W1)

CALL MMUL /NA,N, N, M, N,N,¥,W1,02)

26 150 K=1,N
KK=1+ [K=1) %N
CALL A44UL (NA&,NNA,NA,N,N,N,DK,SIGAC (KK,1) ,#)
CALL T&ACE (A ,N,W,TR)
TP (K) =W2(K) +TE

CONTINUZ

CALL TENATB NA,NA,N,N,BPA,W)
CALL MAULI!NA, 4, N, 1M, N, N, W,EM, W 1)

CONTINUE

CONVERSATIONAL YON

SYSTEN

2ARJ&4410
PAZ04420
2AEJL4430
2ARU& 440
2ALULGLS50
PAnU4460
PARLULGT L
PARO 4489
PAR VLYY
PAROUS00
2ARCU4510
PARUL 520
PARQ4&4530
PAGU4540
2AR04550
PARV4 SO
PARO4S70
?AEQU 587
2AEKQ4590
PAxU4600
PARQ461U
PARUG620
2AaQ4030
2AEC4 040
P ARJU465u
2AR04660
D ARU467L
2Aa04680
rAa08650
PAn04 700

CALL 4ADD(N,N,N,N,MM,DP,W1,DP) PARO4710
CALL TENATD {NA,NA,N,N,BKA, W) PAROLT20
CALL 1MUL(NA,N,N, MM, ,Jd,N,W,CY,W1) PAZUUT730
PARU4TUY
CALL MYADD (N, N N,N,MM,DP,W1,DP) PAZU 4750
PARC4 704
IPILNEITHY 6O TO 160 PARQL477C
PAnQ4 7480
CALCULATE COST SENSITIVITY PAROLT79Y)
PARD 480U
CALL TENATB!N, 1,N, 1,X2ERO,W3) PARV481U
CALL MMUL (NA,N,N, MM, N,N,UVA,XZEEOQO,WORK) PARO 4320
CALL MMUL!1,HN, N ,MM, MM, N,W3, WOEK, W) PARJUB3L
PARQ 48340
CALL TENATB{N,N,N,MM,DP,W 3) P AR WU B5C
CALL MMUL [N,N,N,MM,MU,N,W3,XZERC, V) PARVULBOU
PARQ4B70
CSTSEN=N [1,1)/2.0D0 + V[1,1) ¢ DG 2Aa0d4 3880
iITi(KOUT,900) CSTSEN PARI4E9D
IF{ICOUNTECe 1.ANDeI.EQed) KL=KL¢1 cARO4 900
IF (ICOUNT,. EQe3 +AND I, EQ.J) KL=KLe¢1 2ARJI49 10
It (ICOUNT.EQe 1eANDeI.2Qed) RLLSEN(KL)=CSTSEN*SIGA I, J) 2AG G892
IF(ICOUNT.EQe3 sANDILEQsJ) RELSEN (KL)=CSTSCN*5IGB (I,J) 2ARO493u
PARQU 9Y °
PARUU4YSV




FIiLb:

OO

(@

i3

(@]

180
190

(i 0 10 5

(@]

[ B

€00

20¢C

(o

PAE

2
UL

sav

919}

CUN

TRAN A

E DK, bP, D4, DG
17¢ IDb=1,2

INDEX=IND2+ID-1

-133-

CCNVEESATICNAL MONITZOFR

D2SAVE JINDEX,INL3) =DP (1ID)
DMSAV (I NDEX, IND3) =DM {ID)

L0 173 Jb=1,2
JNUEX=1UD1+JD-1

CKSAVE (INDEX, JNDEX)=UVwW (ID,JD)

TINUZ

UDGSAVEZ(IND4,INL3)=DG

CCNTINUE

CONTINUJL
CALCULAL=

SC=.98703
CaLL dSca

CALL
CALL
CALL
CALL ThRAC
CALL TIRNA
CALL
CALL
CALL

s(T),

43209876544 L0
LZ [N,N,44,5C,XT)

TRNATE (N,NA,f ,M1,BKC,V)
MATL {NA, M, N, %M, A%, 5%,V, 24,62)
SMUL INA,NA,NA,N,N,N,EKT,S1GC, W)

E(NA,N, W, TR)
TE(NA,NA,N, 44,C,H)

GVER Wa LTING G (T +1)

AU L (NA,NA, NA,N,MM, N, %, EKT,V)
MAUL (NA, NA, N, M4 ,M8,N,V,C, d1)
MAUL 'NA,N,NA,HM, M4,N,4,PT,V)

GI=GT+V(1,1) +(W1(1)+W2 (1) +TK)/2.0D0

CALL
CALL
GT=GT+ (ﬂ' 1

SAVE GF

GTSAVE(IT

CALCULATEL

CALL
CALL
CALL
CALL
CALL
CALL
CaLL
CALL

TR NA

(M) +W201))/2.900

1) =GT
2{T) .

T3 (NA,NA,N,N,A, W)

DC 290 K=1,N
KK=1+ (K=1) ®N
CALL M#JL /NA,NNA,NA,N,N,N,EKT,SIGAC (KK, 1) ,W¥)

CALL T

PT(K)=
COUMNT INUE

RACE(NA, N, W, TR)
W1(K) +H 2(K) ¢TR

AF (HA NN, N, UM ,u ,XT,W 1,WGEK)
AGF (NA,M,N,M,48,K,0T,¥2, AORK)

OVErk WRITING P (I+1)

M4UL ‘NA,NA,NA,N,N,N,EKT,C,V)
MADD INA,N,NA, N, MM,V,PT, V)
MAAUL (NA, NA, N, 44 N, N, W,V ,W1)
ThNATS (NA, KA, M, N,BKA, W)

A4UL (NA, M, NA, 4, N, 4,4, 34,V)
440 L 'NA,N,N,MY, N,N, Qo XT,W2)
ASUB (NA, NoN N, MM, V, W2, 42)

-

SYISTZM

YARU4Y0 "’
PAGI4 9T
PARO4Y94Gy
PARLE YT
PAE05000
PAROS0 10
PARO5020
PAR05030
PAROS04)
PARIS5050
DARUOIOY
PAROS0O70
PAE'\'de(
2AEQ05090
2AKR05100
PAKO05110
2AR05120
PARU5130
?AROS 140
PARUS 150
PAK0S5160
PARUS 17
PARCS 1R8O
2ARJ5130
PARO5200
ZARIS 210
PARUS22¢C
cAR05230
PARD5240
cand 5250
2 AR 05269
PAa05270
PAalS5283
PAEUS 290
PARQS5302
2Aa Y5310
PARDS 320
P AnJ5339
PAaub 340
2 ARJS 354
2ARV5360
PA&05370
PAXJS5 380
PARD0S5390
PARVUSH00Q
ZAKU5410
PARVO42U
2ARU543Q
PARUO YUY
PAROS4SU
¢ARUS 460
PAROS470Q
2ARCS4E0
PARO5490
PARISS500
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PAFE FURTaAN A

E4=(LT=LL) %N
PTSAVZ :13-1) =L):‘:1)
PTSAVL(L4)=21 (<)
CALCULEALE KIT) , OVERWRITENG K (T+1)
CALL TLUNATB (NA,NA, M, N,BKA, W)
CALL AMUL NA,NA,NA,N ,0,4,W,EL,U)
CALL MUPRINA,NA, NA, N, NoEKT,A,%,V)
CALL dAADD(NA,NA,NA,N,N,U,&,U)
0C 213 L=1,N
DG 210 K=1,N
Ke=1+4 (K= 1) *N
Li=1¢{L~1) &N
CaLL MMUL ‘NA,NNA,NA,N,N,N,EKT,SLGA /K&, LL), V)
CALL TRACL{NA, N, Y, TR)
W (X,L)=u(K,L)+U(K,L) +TR
INDEX=K+ [L=1) *u
ArRcAY (IT1, INCEX) =4 (K, L)
CONTINUE

SAVE(NA,NA,N,K, W, EKT)

21
caLL
220 CONTINUZ

PLCT K

bo 230 L=1,N
D0 239 J=1,N

iNDeX=J¢(I-=1) *N
LP{INDEX.LE.%)
AF [IRDEX «GT.9 )
NSYA(1)=11
CALL THPLT [NPTS 4IESY,ARRAY (1,INDEX) ,NPTS, LTOP,NSY1, XUIN,

+ KMAX,YMIN,YMAX,YSF ,NG: IDH,dLG,MSCALE MAXES , IXY)

23) CONTLINUZ

ITOP (3,1)=IN(INDEX)
i1TOP(3,1) =13LANK

CALCULATLE STATL XS

XSAVE(1, 1) =XZER0 (1)
LSAVE {1,2)=KZEKOQ (2)

XS {1)=XZEROQ (1)
XS [2)=XZERD [2)
DG 250 I=1,ITM1
o 2490 J=1,M
INDEX= 2% =2+
LTS [Jd,1)=LTSAVLE (I1NDEX, 1)
LT5(J,2)=LTSAVE(INDEX,2)
COMNTINUE
CALL MnMUL [NA ,8,8,80, %, N, LTS, XS, XS1)
11=1I+1
ATS 1) =UTSAVE(II=1)
MTS(2)=ATSAVE [II)
CALL MADE (M,4,4,18,84,XS1,4T5,X51)

240

CUNVEESATICNAL MCONIIO& SYST:M

PAKOSS514
PARUS5520
PAROS5530
PAROSS40
2AKUS5550
2 ARuS56°
PAROS370
PARUS580
PAROSS590
PAROS600
PAGV5610
2AR0562)
PAKO5630
PARJIS64D)
?AE\ -4565 J
PARUS5660
2ARV5070
PARJS5680
PARKUS090
PA&RUS 7UV
PARIS710
PARUS T72C
PAR05730
2 AROS 7490
2Ar05750
PARUST760
PARDS774
PAROS780
PAR057590
PARQ5300
PAKOS8 10
PARO053820
PAKO5830
PARUSBY I
ZAR05850
PARCSB60
PAROS8B70
PAr0S588¢0C
PARUS 490
2405900
PARUSY1y
PAROS5920
? ARU593¢
PAKOS5940
PARJS9SC
PAROS960
PARDOS97Q
PAKUS5980
Paku5990
2 Akvo uC{
PAKI6010
2 ARVb Y2V
PAROGU30
PAROGOQUD
PARVLUS0

e ———— e BT —
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»

B i - K TR
PAL FORTRAN A

USAVL (I, 1)=XS1(1)
USAVE '1,2)=KS12)
CALL 14GL ‘HA,¥,4,44,N,4,B,X31,X52)
CALL dALJ IN,N,N,N,44,(52,C,452)
CALL HAUL INA ,Noli, UM, Ho Ne Ay XSoX 31)
CALL MADC(N,N,N,N,MN,%S1,XS2,XS)
XSaVi fI¢1,1)=X511)
A5AVE(I+1,2)=X5(2)

CONTINUZ

PEDT STATL TRAJECTORY

D0 269 J=1,%
NSYH (1) =24
IF(J.L3.9) ITOP(9,2)=IN(J)
IF (J.GT.9) ITOP!Y,2) =15LANK
CALL TUPLI(NPTS,IEGY,XSAVE(1,J) ,NPTS ,LTOP (1,2) ,NSY",XHUIN,XMAK,
YMIN,YMAX,YSF,NGKIDH,NLG,MSCALE,4AXES,ILY)

269 CONTLINUL

PLCT CCANTRUL TEAJECTOERY

X4=DFLOAT (1T 1)
DG 270 J=1,HN
HSYM !1)=2
IF(J.La.9) ITO2(11,3)=1IN(J)
IF (J.GT.9) 1ITOP !11,3)=IBLANK
CALL THPLT{ITM1,IEGY,USAVE(1,J),ITN1,ITCP (1,3),NSYM,XAIN,XN,
YMIN,YUAX,YSF,NGRIDH,NLG, MSCALE, ¥AXES, IXY)

270 CCHNTINU

2LOT GALINS

o 28, I=1,d
DC 289 J=1,M
NSYM (1)=12
INDZX=J+ (I-1) *4
IF (IND:X.LE.Y) ITCP /6,4)=IN/INDEX)
LF!/INDEL .GT.Y) ITCP!6,4) =1BLANK
CaLL THPLT (IT¥1,I1EGY, LARKAY {1,INDEX),ITM41,ITOP{1,4),NSYN,
KAIN, X Mg YMIN,YMAX ,YSF,NGRIDH,NLG,MSCALL,4AKES,
IXY)
CONTINUE

PLOT COERECTION TERM #.T)

DO 290 J=1,H
NSYA (1) =13
1F(J.LZ.9) ITOP (3,5)=1IN(J)
IF {J.sT.9) ITOP!3,5)=I3LANK
CALL TUPLI(iTM1,IZGY,dARKAY (1,J),ITH1,ITOP (1,5), NSYM LAMIN, XN,
YMIN,YMAX,YSF,NGEIDU ,NLG,MSCALE,MAKES,IXY)
CONTINUE

CALCULATLS COST

CONVERSATICHN AL MCONITOF 5YSIcod

PAEQouUbS
PAELbUTC
PAROG6O8CU
PARVE J9U
PAx06 100
2ARV6 110
PARU6120
P AR06 130
2 AEO60140
PARO6 150
PaRuUE 16C
PA06170
2AKU6 180
PAKO6190
PAROE 200
PARD6210
PAR0B 220
PARJI623y
PAkO6240
2 AKGb 25¢C
PAn06260
PARU6 270
PAz06280
PAROB 290
PAR06300
PARO6310
PARD6320
PAKQ06330
P ARV6 340
2AKU 6350
PARUD6 364
PAKO6€37¢C
2Ax06 350
2ARV6390
PARQC640C
PARTE4 1
PAxOou420
PARKQBU3C
PAnO64YU U
PARO64S0)
PAx Vo460
PAKJO 470
PAEDGU B0
PArC 649U
PARUBS L
PAEC6510
PARCB52Q
PARUG530
PA&Q o 540
PARUES550
2AkKUbLSO(
2ARUBS57.
PARQoSH0
PAROLSYU
PArQb ol




PELE:

300

310

320

OO0

700
302
900

€2 i

DO 320
IT1=4

XS {1)=ASaVE [IT1+1, 1)
X3(2)=X5AVZ(IT1+1,2)

DG 33

LS 390 K=1,N
INDEX=K+ [L-1) *N
U !K,L) =AREAY [IT1+1,IN0bEX)

FORTRAN

IL=1,1I1

P=1 L

Y L= N

CONTINUE

CALL
I5=1I1
SUd=)

JOF (NA,2 N, N, MN,0,LS5,W1,42)

1* N
.U;.”

DG 310 II=1,8
IIS=I5+I1
53 A=SUM+PTSAVE(IIS) *XS(II)

CONTLNUE

COST (LL)=0.5D0*K 1{1) +SU# +GTSAVE (IT 1+ 1)

CONTINUZ

SC=1.003/COST (1T)

A
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CALL 4SCALE(8,8,1,SC,RLLSEN)

PLGT CO5

n
L

NSY¥ (1)=10
CALL THPLT (NPTS,IEGY,COST, NPTS,ITCOP (1,6) ,NSYM,XMIN,XMAXL, YMIN,YM AX,2 AEULB6T
YSF,NGEIDH,NLG,4SC, MAXES,IXY,NSYM)

WRITE /KO

ugt,7C9)

Wi ITE (KOUT,30U)

FOAMAT(1
FORMAT (4

POXMAT (140, 10H CSTSEN =

RETUEN

LAST LINE OF PAR

END

40, 274
D26.16)

(RELSEN(10) ,10=1,8)
RELATIVE COST SENSITIVITY )

«L026.10)

CCNVEERSATIONAL

MONIT Ok

SYSTEH

PAROBO1"
PAKU662Y
?AKUbLO30
2ARJEO4U
2AZ0005)
PAEK U666 .
2AR06670
PARUEO8Y
PARVG6OYO
PAxO06 700
PARKJdob 71¢
2AR06720
PARO6730
PARQ6740
PARJIDTSY
PAKRO6760
PARUGTT )
PARQ6780
?ARQ6 790
PARQ6800
2ARKQ00d 10
2K 06820
PARQO6830
PAKUOBY L
PARO06A50

PARO6870
PAROO 380
PARQ06 490
?AGQ6900
PARO6910
PARQO6Y 20
PARJ6 930
PARQ 6940
PARUOI95C
2AR00Y60
2Ac06970




