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A method is presented for the identification of 2 nonlinear system repre-

the field of complex numbers and the output space Y is the Sobolev
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20. ABSTRACT (CONTD.)

Our identification scheme is based on a given set of input-output pairs
(Cu;,y;): u,€E,y €, i=l,...m) and on an appropriate description of the class
C t w‘tch & is lssumed to belong, a description which permits us to incorporate
In the formulation of C our a-priorl knowledge of the properties of V,

Let y(t) = (Vu)(t) denote the output at time t corresponding
to an Input u. We express this In the form y(t) = V_(u), where we assume that
V. belongs to the Fock space Fy(E) of order p over E. If E = L (D), V. can
bé represented by a Volterra functional expansion. We show and ase the'
property that Fb(E) is a repreducing kernel Hilbert space. Also, we construct
a Hilbert space B (I,Fb(E)) of nonlinear operators from I to F.(E) and
characterize the operator class C to which V belongs as an ellipsoidal class
in af‘(x,rp(e)).

-~ The above developments permit us to obtain the solution to our nonl inear
system idantification problem as the solution to an appropriate minimum norm
problem in (B I.F'(E))é“'?rocedures for obtaining both the noncausal and causal
solutfﬁﬁ?n; glv%ﬁf’" e also introduce the concept of '‘¢-causality', which is
weaker than that of causality, and derive an g-causal solution to our problem.
The case when measurement errors are present is finally considered.
eps: &
The results 2re illustrated by the computer simulation of a simple example

in'which very good agreement with the theory is obtained over a wide time-inter
val.
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1. Introduction

Let S denote a system represented by a nonlinear* operator V:E - Y,
where E and Y are appropriate Hilbert spaces called respectively the ''input"
and ''output'' spaces. From now on, the norm and inner product in a given
space, say H, will be denoted by (.,.)H and || . HH’ the subscript being
omitted when the space referred to is clear from the context.

In the present paper, we consider the problem of identifying S and hence
V, based on a given set of input-output pairs ((ui, yi)lui €E, Y; ey,
i=1, ..., m} (called "probing input-output pairs'') and on the class C to
which V is assumed to belong.

Our framework is such that the operator class C is defined by assuming
a '"finite gain'' property for the operator V and taking into account the
smoothness properties of the output. Furthermore, members of C are not
required to be known up to a finite set of parameters. For this reason, we
regard the system identification approach developed here as being a ''non-
parametric approach."

Specifically, we formulate the nonlinear system identification
problem in its fullest generality as follows:

For a given V ¢ C, let eC(V) denote a norm on the operator class C
which measures an appropriate error in the approximation of v by members of

~

Then, under no measurement noise conditions, V is our

best estimate of the operator V (which is to be identified) if it is the
Accession For

solution of the following problem:
N1l Gu.el W

the entire class C.

1
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Problem 1. Given u; ¢ E, Y €Y, i=1, ..., mand an appropriate
operator class C, find Q as the solution of
m;n(ec("v‘)} (1.1)
Vec
V(ui) "y, | = Ve ar e o n*
If the output measurements are corrupted by noise, we model the rela-
tion between the probing input-output pairs (ui, yi). I =k, cesy m, by
¥ ™ V(ui) + Vi R B e (1.2)

Hde
where v; € Y satisfy

(Vil \)J‘)Yaqiéij' '1J=]’ L RO | mr (103)
q; being positive constants, and éij = Kronecker delta. The set of equa-
tionsU.3) may be interpreted as there being no correlation between the noise
present in the ith and jth measurements. In this case our best estimate

V of V is the solution of:

Probiem 2. Minimize
m
10, 5 a7 v -y . (1.4)
i=1

where J is a criterion which optimizes the estimate with respect to the

|

class properties of V as well as noise. ||

In what follows, we assume that the input space E is a separable Hil-
bert space over the field of complex numbers; Y is the Sobolev space Hi(l)

of complex-valued functions g on an interval I of the real line such that

* Ends of formal statements will be signified by the symbol || ,

** |f the noise belongs to some bigger space than Y, then we define v; as

the projection of the noise on Y.
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g(k)( & dkg/dtk). k=0,1, ..., n=1, are absolutely continuous and
g(n) € LZ(I); and V belongs to a Hilbert space of nonlinear operators
Bi(r; F (E)), which we call a Bochner-Sobolev space of order n over
Fp(E). where Fp(E) is a Fock space of order ; over E,

In sections 2 and 3, we define the spaces FO(E) and Bi(I,Fc(E)),
and present mathematical developments pertaining to them needed in later

sections. We show that F (E) is a reproducing kernel Hilbert space and
~

we establish useful links between FD(E) and B:(I,F (E)) on one hand, and
I+

their particular manifestations in the form of spaces of Volterra func-
tionals and of Volterra operators on the other hand.
Section 4 is devoted to a detailed formulation and solution of Prob-
lem 1 for the general case of a noncausal operator. In Section 5, these results are
particularized to the causal case and (after the introduction of the concept of
'"€- causality'') to ;he e¢-causal cese, Problem 2 is solved in Section 6 and an
example presented in Section 7.
The present approach to the system identification problem is similar
to the one proposed by de Figueiredo and Caprihan [1], [2] for the identi-
fication of linear systems, with the basic difference that in the linear
case, the space, to which the operator to be identified belonged, was
assumed to be the space of '‘trace class'' operators.
Referring to contributions of other authors relevant to the develop-
ments in the present paper, special mention should be made of the early
work of A.V, Balakrishnan [3] and others (see references in [2]) on the
identification of nonlinear systems from input-output data, as well as the
recent contributions of F.J. Beutler and W.L. Root (see [4] and references
therein) on the identification of linear as well as polynomic systems much
along the lines of the present paper. Other papers on related topics are

the ones by J.L. Franklin [5], E. Mosca [6]. and W. Porter [7] [8] [9].

We now proceed to construct the mathematical framework used in the
solution of Problems | and 2.

-
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2. Developments Pertaining to Fock Spaces and Volterra Expansions

Let E be the separable Hilbert space introduced previously, and
denote by Bn(E;¢) (where 4 denotes the space of complex numbers) the

Banach space of n-linear symmetric bounded forms A : ExEx...xE — ¢

where

[AGu s eeu DS M upf] oo |

for some M € RL For any A € Bn(E;Q), define a new functional
: E - b
PA s E ¢ by
PA(u) = AU, )

- 1 - .
and a norm on PA by

fiE gl ”iﬁzl | &Gy - . o0

(2.1)

(2.2)

(é.s)

The space of functionals [PAIA (i Bn(E;t)] is a normed lincar space, and

we denote by P(nH) the Banach space of continuous n-homegencous poly-

nomials obtained by completing {!’A|i\ (€ T';“(i".;fﬂ)} in the (2:2) norm.

For A & Bn(E;C) detine the norms H-”“ and H-HB as follows (the sub-

scripts H and B stand for Hilbert and Banach respectively and do not

refer to specific spaces)

sl

IA(ul,... L

HA““ 5 “J:ﬁzl,...,HL5H=1

lolly = sue 6]

(2.4)

(2.9




and it is immediately obvious that HAHB < HAHH. :

It is not difficult to conclude that for symmetric n-linear forms

one can bound HAHH - <h HAHB for some constant A dependent only on n

§ [10]. so “'HH and.H-HB are equivalent norms on the space Bn(E;¢).

f Let H™ denote the tensor product of a Hilbert space H with itself

n times [I11,12] and let eIQ e£9...@ e be a decomposable element of

E" where e, € E. Thén from the definition of E" it follows thal

Hef& ey @ enusn\- “gln...ue || and (e,@ e@...e) [ul,...,un] -

(eyou)p-- (e ,u )p for e),.. e, Upseeed € E. Here et clns

a member of the n-th order Cartesian product of E. Inlrcdiyc2 1:

e{9 cz...® e - (el,')E...(en,-)E. Then i maps the decomposable ele-

ments of E" into P(nE). It is clear that

”i(elﬁ. .en)" - H(el,‘)E...(en,-) "a < ”eln...”en” : (2.86)

Define i by linearity on all finite linear combinations of decom-
posable elements of E" and,using equation (2.€),it is easy to demon-
strate [12,]13] that i is a bounded linear map of finite linear combina-
tions of decomposable elements of E" into P(nE). Finally, by con-

tinuity extend i to all of E". Define a new map Sn: E" - E" by

1 -
Sn =? 2 c ’ (2~7) ;
gep |

n
where Pn is the permutation group of n integers and ¢ acts on decom- §
posable elements of E" by

o (e®e,..Qc) = eol ) eczg...ea e"n : 2. 8)




Since E is separable, there s [:pk}:-l’ i

orthonormal basis for E. Then it is well known [12] that

[cpi e, 8.8y, 1+ " *® {5 an orthonormal basis for E". Clearly,

1 2 n il-l,...,in-l
« CD‘
0 may be defined on all of E" by © Z 2 6. P R
ll,...,ln 11 1“/-
11=1 1n*-l
@© @
Z Z e 0 0, @ .0, , (2. 8): and furthermore, one can
1 iy ‘o ‘o ’

i =} i =1 1 n

1 n

show that € is a bounded lincar operator on E" into E". It then follows
[12] that Sn defined in equation (2.7 ) is a projection operator in En,
ie. S;‘-’ = Sn.’md S:‘ = n(whcre the superscript * denotes the adjoint).
The subspace SnEn of E" is called the symmetric tensor product of
E of order n. For the case of E = 1.2(R1)‘En is just L2(R1)9...® L2(R‘) and
it can be shown that there exists an isomorphism J between E" and L,,(Rn)
such ethat J sends the element Z [ e @&1 into
) Gt

h'(Ll,---,tn), wherc* ht € L2(Rn) and {ei]t=1 is an orthonormal basis for

n . , : .
!.2(R1). S En is then just the subspace of LZ(R ) of functions left invari-
n . . .
ant under any permutation of their variables. Furthermore, one can show

[12] thac:

£ ’
Z ci 3 Chag ei ('L]l)-..ei (qn) =

i g * n Tl n

1oty
I(")I BCtsgoon o Y MLCE D W (R Y de » 2.9) |
D Jo Ry 1 1 n' n C 1,...,( e ;
R R!
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where * | 8
e.;(u) = J. ei(t) u(e) de, (2.10) '
R |

where ul,u,,...,un € L2 (R). To complete our construction we loock at

the space i(SnEn) (= P(nE). Certainly i(SnEn) is a linear space and

5 2 iz n - 3
since 1 is 1-1 on SnE (12] we cen define an inner product between any

two elements u,y € i(SnEn) by

! -1 =1,
(WV) = (1 (), 1" (V)gn (2.11)
Now we- invoke the following theorem: ;
- E
Theorem 2.1 i
If i is a 1-1 bounded linear operator frcm a Hilbert space H into :
a Barich space B then the image i(ll) C€ B is a Hilbert space with the -
t
inner product |
. L
IS DA | | - i
W, V) = (17,1 (), wi (2.12) i
Proof: It is clear that i(H) is a vector space in B and furthermore 1I
it is an inner product space with inner product (2.12). To show that 1i(H) :

is actually a Hilbert space we must demonstrate completeness. Let {bi}
be a Cauchy sequence in i(H), ie V € > 0 3 N(e) such that (bbb b )< €

for i,j:Ne. But

; =} =1 5
(b -b b -by) = (17 (b b ),i7 (b b))y =

J

Whep - i), e - 1TTe ), (2.13)

J J

so that [i-l(bi)] is a Cauchy scquence in H. But I is complete so

there exists h € H such that i-l(bi) = h. Therefore




(b=t (m),b =) = (e, 1T e im)), -

Ao - n e =0 (2.19

We can now say that i(SnEn) is a Hilbert space of n-homogeneous

synmetric polynomials on E. We denote i(SEn) by PH(nE) and PH(nE) is

known in the literature as the Hilbert-Schmidt polynomials on E [13 .

)E . We.

From now on we will denote the inner product in P“(nE) by (=,
: : n

state the following propositions connecting tensor products of L, spaces

2

and the Hilbert-Schmidt polynomials.

Proposition 2.1

Let M be a measure space and E = LZ(M), then P € PH(nE) if and only

if there exists hn € LZ(MX...)M) such that

P(u) = f Rl f B (E)s e es ) (e e ) du s (2.15)
M

S MX . X

hn is symmetric and

”PHEn i ”hn“Lz(Mx,...,xM)' (2.1&)

Proof: Sce Reed and Simon [12]. |

Proposition 2.2

L.l
Given an orthonormal basis {ei} of E, each P € PH(nE) is uniquely

i=1

expressed as a limit in H-HE norm by

n
P = Z s, i 2.17)
n i Lpeeest 1 i
preceaiy n n
with symmetric coefficients c, { € ¢ and
EE R
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2 }d 2
ell, = e ik (2.15)
n e i i A
1 n

Here, e£ (W) = (ei,u)E for 4«€ E. If R € PH(nE) and

¥ 7 [ 3
= . . 7 c“
7 Z dil,--.,in ¢ £ ’°1n 2.19)
By
then
x*
(P,R). = X X d. £l (2.29)
E_ s e SROE l

11,...,in
Proof: See Dwyer []3] . I
We wili no&(definé the Fock Space [12,1% ,14] of functionals which
will be the mathematical framework within which Volterra expansions will
be considered.

Definition 2.1 Let p be some fixed real number >O. The Fock space

of order p, denoted Fp(E), is the space of sequences (fo,fl,fz,...) where
s .
£, € ¢ and £ € P ("E), such that

S 2 I
et el S e (2.21)

It is well known []2] from the construction of Cartesian products of
Hilbert spaces that Fb is a Nilbert space. We will denote the inner

product between two elements f = (f ,f ..) and g = (go,gl,...) of Fp(E)

g
® n
by (asdy = ) & .80 (2.22)
[ n=Q n
What we now will show is that F (E) can be considered to be a space of
s

functionals on E by the relation

(-] f ()
() = Z B (2.23)

; n=0Q
‘Thus an element fefp(E) will be viewed both as a sequence such as in the
Definition 2.1 and a functional on E the evaluation of which is defined

by (2.23).

24

N elarsra




for £ € FP(E). Suppose that we have an element {2 € PH(ZE) ; then

we know by Proposition 2.2 that |

£2 8 z 8 ¢ e (-)e; ) (2.24) k
S 1% %y 2
1*%2
and
el = F ey o P (2.29)
g T . 2.2
g 1*%2
2%

2
But f2 is also an element of P("E) so we can consider the Banach norm

(equation 2.5) of fz. By definition, “fZHB = sup |fq(LOl and by (2.24),

E
fedly = omp ) ey e (e 0| (2.26)
"‘JHE-I N e 2
=
Sinca {eiltwl is a basis tor E we can write 4 = \ oyl (2.2.7
i=1
where
’
&y (u,eiE ei('.s)

Applying the Cauchy-Schwartz inequality to the right-hand side of (2.26),

we get:

Y e @ el s 5 e e @llef o - |
b oo i, .4 i
2 ) 1

a 2\1/2 \ el 2\1/2
[ E P I B el 0 s
£ 172 e Wi 2
1'ig !
25

u,
|

i m, are linearly
Proof According to the preceding lemma, €

=, seen




12|12 BHEE T 2\\12
S ’(z'« [ Sk, o
X,, =

1.=1 i

l' - 2

{

and since |lull = 1 in (2.26), this implies 2‘ |

i=1

equation in (2.43) we finally obtain

- - 2.29)
l/.
s | Y e e el ¢ ) e 1D HIH
ll=t *, &, ti'i2 4 5" & . O
11')‘2 11,12

Stating these results in a proposition for arbitrary n, we get
Proposition 2.3

£ € P ("E) then e llg < ||f|lEn 2.10)
where "fnllB = sup lfn(u)l A I

l|u E=l

We are now in position to show that relation (2.23) defines a bounded

functional on E. 1If fn € P“(“E), then

li“(“)l = “Unn lfn (]ﬁn) I < Hu“" sup lfn(\.)l
ve=1

< el Ne llg = lafl® el (2.31)
n

We can see from (2.23), (2.30) and (2.31) that

y &, f () (3] f (u) 2 1_ ||u|n i
el =1 ) = 1s ) 1) dn B R e
n=o n=0 n=0 =
. v 4.
) lie Il (830
1 /

26
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But since we are dealing with f € Fp(E), we can write (2.32) as
fuli®
] = o W el < oo (2.33)

This allows us to state the major theorem of this section.

Theorem 2.2

o0
: B
1f £ € FP(E) then f = }, .0 1s an entire function of bounded type,
]
' neo ™

ie. f takes bounded sets into bounded sets. If an(u) denotes the n-th

Frechet durivative'of f at u then
n 4
D £(0) = fn . (2.39)

The class of functions Fp(E) is a Milbert space with the inner product

(,)p siven by (f,8), = 2 " = @@, - I a5
P P n=o B

Proof: Equation (2.33) escablishes the first statement and the proof
of the remainder of the theorem may be found in Dwyer [13]. i

The construction of the space FP(E) for an arbitrary Hilbert space
E is due to Dwyer [13,14]).

The construction of Fp(E) when E = LZ(M)' where M is a measure space
was well known [12) before Dwyer. The characterization of Fp(E) when
E = LZ(R) is still a most useful and casily understood Fock space.

Before we conclude this section, let us introduce a map which will

later prove to be exceedingly useful. If y € E then the n-th order poly-

(n) J : % .
nomial Q' (+)...u'(+) on E is certainly an element of P“( E). Define

exp(u) € FP(E) to be the functional

P SES—
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x
£
g= L B,
n n=o
e e A,

where fn = W () ed (1)

It is clear that for s € E

(
(exp(u))(v) = e
and that
(pnunf:)/z

lespcall, =

Now if fn € PH(nE), then we may write

— P,
Using equation (2.27) we get for V 1 € E, u'(-)---““(-)

! /
2 %_”qi ei ...ei
$iyen il G u
1 n

Therefore by Proposition 2.2 we conclude that

() .
! (
£ U)o (e = (U
(Fpu'C)edC)y = ) o
n 1
s R |
1 n

L
n 1

We can now state the following important result.

Proposition 2.4

If £ € F (E) and L€ E, then £(3) = (, exp(—;'—»F e

Proof: By definition and equation (2.41),

28

n

(2.36)

(2.39)

(2.38)

. (2.39)

(2.40)

=f M) . (2.41)

(2.42)
p

e

——
Kom.

T
BT tms ™ uwn o PR I DT T = Bor S I TR} I
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e £ (W - (fn’L((')"'u’(.»En 1
£(W -Z o i l - - :
n=o0 n=o |
. |
A
2 n e 0.
P n

n=o P

It is worthwhile to rederive equation (2.33) in light of the above pro-

position. It is clear that

lfe] = CeexpChp | < llellp Moo GOl (2.43)
p P p

by (2.42) and the Cauchy-Schwartz inequality. By equation (2.38) we may
rewrite (2.43) as
2
2
le| = Nl eldI™72e @
[

which is just inequality (2.32). We have actually shown more in Proposi-

tion 2.4 than we set out to do. We have proven that point evaluation is a
continuous functional on the space Fp(E). Equation (2,42a) identifies the
representer of the point evaluation at « as the element exp(?). For

future reference we state this obscrvation in the form of a theorem.

Theorem 2.3

The Fock space Fp(E) is a Reproducing Kernel Hilbert space with the

(U»V)E/p
reproducing kernel e

for U,v € E. I g
Suppose that our Hilbert space E = L,(R). What would the Fock Space 1
PP P 2

of Lz (R) look like? Proposition 2.1 tells us that fn € P"(an(R)) has

the form

29
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(n ‘ u ) .
£ (W) - J' )j b (Eysenenty) UCEp) oo (8 dey .o udey (2.49
n
R
P £ (W)
Thus since {(4) = 2 -—n—,— ; we may write
n=0

1 . .
f() = hu + T Jhl(:l)u(tl)dcl + 5 ”hz(tl.tz)t.a(t:l)\.n(v:z)dtld:2 +
R .

2
1 UL \ - L4
3 If[hJ(tl.tz,t3>J(-1)u(L2)L(t3)dtldtzdt3 e (2.40)
R3
' 2
where h_ €C, hy € Ly(R), hy € L(RT), etc.

By definition,

® n (n)
2 2 :
uanp i l L J.R“J. Bhoittes et LS e e s (2.47)

n=o

A question which might naturally arise is how much error we incur

> £ (W)
by truncating a Volterra series. In other words, if f(u) = Z v
" n=90
Y
and we approximate f{ by 2 5 how can we bound the error of such

n=o

an approximation in a pointwise scnse?  We know that

N £ (W) @ f (W) @ no e |l
- ) =) 1= ) M S
n=0 n=N+1 n=N+1
. R gy g e
( ) v A ‘"‘”Fp()_ IR
n=N+1 F n=N+1 n Nel P i
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So if we define the truncated exponential function

® k
ey(2) = 2 Z ( 249
k=N
we can say that the error satisfics
‘ f (W)
n : = i
[£() i s & N (2.5%)

e Cielip )
S PN+l ‘P

The goodness of the truncated approximation is prescrved only in a small
neighborhood about the origin and deteriorates for large values of
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3. Hilbert Spaces of Nonlinear Operators

We now proceed to introduce spaces of Hilbert-valued functions on an

interval I of the real line.

Definition 3.1 Bi (Z.FD(E)) is the space of functions (operators) V
from I to F’(E). where V is strongly measurable with respect to ordinary
Lebesgue measure u on 1 and satisfies
Tiviol?  a <a. | 3.1
I F

We will often denote the value V(t) € Fp(E) by vt, and also replace
d. by dt with the understanding that all integrations are in the senses of
Lebesgue or Bochner.

Note that if u € E and y is the function on I defined by

y(t) = Vt(u). (3.2)

then, since faccording to /2.44))

r'[v(t)l2 dt = .,;IVt<U)l2 dt <

exp(ul/p) [ v e, (3.3)
3 F (E)
2 P
it follows that y € L (1).
The following is easily established.
Theorem 3,1 [15]. Bi(T,Fg(E)) is a Hilbert space under the inner product
ww QJI‘(V:"”:) dt. (3.4)

F(E
% N

In connection with some applications, it is appropriate to introduce

smoother versions of the space Bg(I.F;(E)).

32
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A function g:I - Fp(E) is said to be strongly differentiable at t € ]

if there is an element Dg(t)eg'(t) € F;(E) such that

Lim || 94E29C0) g1 (1)) = o, (3.5)
h-0

Higher order strong derivatives D,g(t)eg(')(t), i >1, are similarly defined.

Definition 3.2, B:(I,Fa(E)) is the space of functions V from I to
Fp(E) such that V, V',...,V(n-l) are absolutely continuous and belong to

B2(LF_(8)), and V™ € 82(xF (£)).)
9 P 9 [

As in the case of Theorem 3.1, we have:

Theorem 3.2, Bi(I.FéE)) is @ Hilbert space with the inner product

n . .
@w =z o FEM e, (3.6)
B2 i=0 1 Fp(E)
n

where a; are positive constants.

o ———— .. a2 5 ISR " S
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4. Nonparametric Nonlinear System ldentification in the Noiselegs Case:

Non-Causal Solution

We now return to the nonlinear system identification problem, and

assume that, in the input-output relation

y = V(w (CPRD!

satisfied by the system S to be identified, u and y belong respectively 1
2

to £ and H;(I). and V € B:(I,FQ(E)). For simplicity we will denote the ‘?

2 2 3 2 2
spaces Hn(I) and Bn(I.Fp(E)) simply by Hn and Bn.

One of the key points of our analysis is to reverse the roles usually !

assigned to u and V; that is, we shall consider u to be an operator

U Bi - H: which acts on V yielding y according to the relation
~ A ’
u(V) = V(u =y, (4.2)

Clearly, such an operator U is linear, and it is strongly continuous

since, according to (2.,44),

! 1 " ' 12 | {
Bl 5 = e , < exp (jlullg/2e) (V] , . (4.3)
H H B
n n n
Also, we define the class C, introduced in Section 1, by
2 1" 1
C=(vesB :jVi,s<v). (4.4)
n B2 -
n
where y is a positive constant sufficiently large for C to have a nonempty 3
intersection with the set B
€
c 2‘ v = i = n
= (Ve Bn. ui(V) Yo i Lo S ) (4.5 -
Condition (4.4) may be interpreted as a finitunuss requirement on the gain @

of the system S (where we define the system gain as sup {/V(w)! , /Wu’E)V u) ;
L°(D
and on the smoothness of V, where the extent on the relative boundedness of

the norms of the Frechet derivatives of V up to order n is determined by the {
constants a, appearing in the definition of vl

! 2 B~
Let p be a functional on Bn with the follow?ng properties,

(see Theorem 3,2) and by v.

%
(i) p is bounded on bounded sets of B;:

(ii) p>0 on e:;

e et WM -
RIS SR S

oy b

E—————
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(i) p(V+W) <p(V) +p(V) ¥V, WeB

»

3 30

(ivy pCa V) = |a] P(V) Vae@ VeB;
(v) p is continuous on Bi.
We define the error criterion eC over the class C (introduced in

Section 1) to be

eC(V) = sup p(V - W), (4.6)
Wel

and reformulate Problem | as:

Problem la. Same as Problem |, with the additional specification that
Y = (D and that C and e, be as defined by (4.4) and (4.6). |

Remark. Equations (4.6) and (4.4) constitute a minmax criterion for
the choice of the best Q. This type of criterion is particularly appeal-
ing when the number of measurements is small thus making a statistical
criterion not plausible. ||

4.1. Geometrical Considerations

Our solution to Problem la relies on the geometry of the set
ascny. 4.7
to which we now turn our attention.

A set S in a normed linear space X is said to be symmetric if there
exists an element X € S , called the center of S, with the property that
) +TNMES = Xy = N € S. Let p denote a seminorm on X with the properties
(i) through (v) stated earlier (where now X replaces Bi) then the following
result holds:

Lemma 4.1. If § is a bounded symmetric set in normed |inear space X,

then the center X0 of S minimizes

e(x) = sup p(x = y). ! (4.8)
YES

e et
R e

ki)
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Proof. Since p is a function of (x-y) and S is symmetric, we may
consider the translated set §' = § - X which is also symmetric and has

the center at the origin, We shall prove that the origin minimizes e on 8.

Let (xi}?_] be a sequence in S§' such that p(xi) - e(0) as | - = .
Then for any ¢ > 0 there exists a N(e) such that
e(0) < p(x,) + ¢, | 2 NG (4.9) 3

and

.,1_4,,__,..

2p(xi) = p(in) =px, +y+ Ry = y)
< plx; + y) * plx; = y) = p(y-(-xi)) + p(y - xi) . (4.10)

So we conclude that

either ply = x;) 2 p(x;), (4.11a) r
or ply - (-xi)) > p("i)' (4.11b) ;
If (4.11a) is true, then 13

Ply = x;) 2 p(x,) 2 e(0) - ¢ (4.12a)

while if (4.11b) holds, we have
ply - ("‘i)) > p(xi) >e(0) -~ ¢ . (4.12b) I
Now (4.12a) implies that {

e(0)Sp(y-xi)+e§supp(y-x)+e H
xes! (4.13a)

and (4.12b) implies that

e(0) < p(y - ("‘i)) + e <sup p(y = x) +¢ 13
x€s! (4.13b) i

since X, and -x, are elements of S'.
Because ¢ is arbitrary, it follows from (4.13a) and (4.13b) that
e(0) < e(y) forallyes'.|
Now let

Ne (v e [T =0, 0i=1, ..., .

36
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The following constitutes a particularization of a well-known minimum norm
result to our problem.

*
Lemma 4.2, If V ¢ B: satisfies the relations

<

¥
(v,w)2=0 YWeN (4.15)

Bn

and
S~ * .
“i(v ) = Yi» i=1, ..., m (4.16)
*
then V is the unique solution of the minimization problem

min [V 2 (4.17)
Vey B
n

(where y is defined by (4.5)). ||

Next, we have

Lenma 4.3. Let V' denote the solution of (4.17) and Q be as defined
in (4.7)., If V* + T € Q then

v, m o, -0 | (4.18)

B
n

%
Proof. Clearly, V €qQ .

% %
To prove the lemma, suppose first that ||V sz = y2 . Then since V is
a minimizer on Q, it must be that n
W AT = (4.19)
n
which implies that
%

v, n 5" 0 (4.20)

Bn

*
Suppose next that !lV sz < yz. Then define the functional on ¢

n
* *
F(s) = (V +sn, V + sn) 2 - (4.21)
Bn
By continuity, there exists a neighborhood [-¢, ¢] about s = 0 such that
F(s) < yz.
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Now since
* .
?i(V +n) = Yo L=y my (4.22)
we have
3i(ﬂ) = OF T e M (4.23)

*
Hence V + s1 € y for all s.
Since F is minimized at 0, we can differentiate (4.21) and obtain at
s =0,
%*
Fr() | g = (207, M) + 25(n,m) g = O (4.24)
or
%*
(v ,m =0. I
Finally we have:
% % *
Lemma 4.4. If V and Q are as in Lemma 4.3, then V + N e Q=V =-N€q
%
(and hence V is the center of Q). ||
*
Proof. Since V + M € C, we have
% %* * %
Yzz(v +7, V +1) =(V,v)+ (0
% %
=V -1,V -1, (4.25)

the equalities following from the preceding lemma. H

4,2, Solution and Algorithm

In order to state the system identification result that we are
1fter, we require the following two additional lemmas.
Lemma 4.5. |If (ui: i=1, ..., m} is a set of distinct*

Ui
elements of E, then (e " i=1, ..., m} is a linearly independent set of

Fp(E). I o

Proof. See Guichardet [ll].l

Lemma 4,6, |If Ui i=1, ..., m, are distinct elements of
(Ui,Uj)E

E, then the mxm matrix G with elements Gij = exp

is nonsingular. ||

* u; and u, are distinct elements of E ifl'm'uzu # 0.
E
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u,
- e N
Proof. According to the preceding lemma, e ', i=l, ..., m, are linearly

independent elements of $ (E). The result then follows from the fact

e A (u,, u)
(e '. e J) - exp_'___l_L . H
Fp(E) 0

It is now possible to state:
Theorem 4.1, In Problem la, suppose that the probing inputs

u,! i=1, ..., m, constitute a set of distinct elements of E. Then Pro-
I

blem la has a unique solution expressible in the form

2 m (u.,')E
V(*) = T c.exp : (4.26)
i=1 " o
2
where <, < Hn are determined by
cl(t) Y](!)
c,(t) A Gl Yo lt)
c(t) = o =6 y(t) =G & (4.27)
cm(t) ym(t)
(u..ui)
where ( (s the Gram matrix (exp ) of the
o) Lo = o Gews M
set (exp((ui. wYibas B = Ly ooy s

Proof. Since u,, i=1, ..., m, are distinct elements of E, according to
e i

Lemma 4.6 G-‘ in (4.2)) exists.

Clearly, by construction,
V(ui) ® Fd Lom T o eey T (4.28)

If W €N, then

A n ¢ M u, .
VW, = £ ad) £ (0 (exp =L, ) w)dt
B j=0 4 = P k

m n . .
= £ [ g a0ld(nolv (u)de =0 (4.29)
a] j=0

where the second and third equalities follow respectively from Theorem 2.3
and the fact that D'W (u)) =0, j =0, I, ..., n=1, and D™ (u,) =0 a.e.

since WeN.  According to Lemmas 4.2 through 4.4, V(+) defined by (4.26) is

the center of ) and hence by Lemma 4,1 the solution to Problem la.
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Remark. It is of interest to obtain an estimate of the
error
I .
Fo(E)

- iy, -
g Wt v, (4.30)

where Vt and Vt correspond respectively to the actual system and our
estimate of it according to (4.26). According to the projection theorem,

we have for £

g= (|th‘.12F © - 7¢) ¢ 5o (4.31)
p

I f ui,i =1l,...,m, are orthonormal, then the diagonal elements

of G are e (Napierian base) and its off-diagonal elements equal to unity.

Then, (4.31) is expressible in the form

fjv 12 Tl of 8 £ RO v.(0) (4.32)
g = ||V =@ By, (&)= B E y:(t) y.(t : «32
L+ Fp(E) il b gl i j
i#j
where
o e2+ m =2 .= 2-] i (4.33)
e +(m-2)e-(m-1) e + (m=-2)e=-(m=1)

An estimate of £ can then be obtained by replacing y2 for

in the above formula, where ., is the constant introduced

2
v ||
LR (E)

in connection with (4.4).

R S e L
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5. Causal Solution

Thus far, the only conditions assumed on the probing input-output
pairs (ui. yi). i=1,...,m, are that they belong to appropriate spaces,
and us i=1,...,m, consitute a set of distinct elements of E,

However, if we demand that the solution Q to the system identification
problem of the preceding sect ion be ''causal'', we need to impose additional
restrictions on those pairs when m > |} in other words, when the number
of the probing input-output pairs is greater than one, the causality
constraint on 0 manifests as a set of admissibility restrictions on the
pairs. These restrictions are developed in subsection 5.2, Also, in
that subsection we introduce a weaker form of the concept of causality,
which we call '¢-causality'; and show that it is possible to construct
an ¢ -causal solution 0 to the problem under consideration under less
stringent admissibility requirements on the pairs (ui. yi), i) L vaterat
than for the strictly causal case.

For simplicity in presentation, we will assume that the opera-
tor V belongs to the space Bi(l, Fp(LZ(I)) which we will abbreviate as Bi.
where I = [0,1], and hence (according to (2,46)) admits a representation

of the form

!
1
y(t) =V (W) =h () + 57 js hy(tysDu(s)dds ) + ...

L (n
tdi Jo... fo B Ct By e es 8 Ju(s Do uiuls dds + ooy (361)
where ds(n) = dsL <. ds. and the hi satisfy the conditions stated in

connection with (2,46) and (2.47).

———
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Let P, : Lz(l) = LZ(I) be defined by

u(s) ifs<t
(Ptu)(s) . a.e. (5.2)
0 if s>t
Definition 5.1. V € ag is causal if
Pt(v(Ptu)) - Pt(V(U)) ¥vtel[0,l]. H (5.3)
Introduce the step function
0, t<o0
w(t) = (5.4)
1, t>0,

and define the operator 6:82 = Bi by

1
~ 1
(CV)(U)t = ho(t) +17 IO W(t-s])h](t.s])u(s])dsl
| rl )
o T +;T Jo-o- ‘[‘0 w(t's‘)...W(t'sn)hn(t,S],...,Sn)

u(s‘)...u(sn)ds(n) 35 oot o i (5.5)
Clearly, TV is a causal operator, Furthermore it can be easily shown

that T is a projection operator. In fact, it is obvious that 62 = 5, and to

T R
show that ¢ = C simply use the definition of the inner product in Bi.

Denote by M the subspace of causal operators in Bi , that is

<. (5.6)
o

M
We seek the solution of ;
Problem 1b. Same as Problem la, except that E =Y = LZ(I)' and hence
vV € Bi(I,Fp(Lz(I))) (abbreviated as Bi), and we require that V satisfy the
ce  ‘traint

VEM, ; (5.7)

*Henceforth, the superscript ™ on an operator symbol denotes its adjoint.

3 R >

Sy
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Let y be as in (4.5) with Bi replaced by Bi . Clearly, y N M is
a closed linear variety in 82. Hence, if y N M is nonempty, as we shall
assume from now on, it follows from previous considerations that Problem
Ib has a unique solution 0 which is the minimum norm element of y N M.
To obtain an explicit representation for Q, we use the fact that Q
is the unique element of y N M orthogonal to N N M, where N is the subspace
defined by (4.14) (with B: replaced by Bi). This fact is elicited by
Lemma 5.1 below.
Let z denote an arbitrary element of y N M, i.e,
Z€ExNM (5.8)
Clearly,
x =z +N. (5.9)
Lemma 5.1. x N M=2z+ (NAM).

Proof. Sufficiency: Let (using (5.9))

XExyNM=(z+NNM, (5.10)
Hence, according to (5.8) and (5.9), x can be expressed as

X=2z+r, (5.11)
where z € M and r € N, But since, according to (5,10), x € M and, as we
have just stated, z ¢ M, it follows from (5.11) that r € M, So the sufficiency

is established.

Necessity: Let x be expressed as in (5,11). Then, according to the

right side of Lemma 5.1, x € M because both z and r belong to M, and r

belongs to N (because it is in NN M). Hence, by (5.10), x € y N M. ||
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.1, The Case of a Single Probing Input-Cutput Pair

For the case of a single probing input-output pair. we bave:

Theorem 5.1, If m = |, the sclution to Problem I5 is of the forn

& t
o ; . : bl

V (u) = ?}(:) npl = uy (du(s)ds), (5,129

B H

where
! Pt 2
T () = lexp(- e iu](s)! ds)] v L. | | €5, 130
) 0

Proof. It is clzar that (5,12) is a fcasible soiution. According
to Lemma 5.1, to show that it is of minimum norm it is sufficient to
prove that such V is orthogonal to NOM,

(5.12) can Le expanded in the form

- 1
v, (u) = El(t) v+ %T i w(t-s])u](s,\u(s,ﬁdﬁl
- LY 0 N .
| Bl
+ = 5 w(t-sl) w(t-sq\u‘(s‘\u.(ﬂ,)n(s')u(s,\dslds” -
2lgs 0 0 : e F B

(5,14)

’ 4 ~
Taking the inner product in 86 of the cbeve V with an arbitiary V

represented by (5.5) velonging to NM, we obtain

A ! 1
FYa o~ o ¢ e
WV, V)= h TORGR R Jo 1 (Eas) dwCess ) ) INERTT
| i
+ 37 e hz(t.s'.sz) w(i=s)) w(t-s,)
0 ¢
ul(s')ulfsz) dslds2 . PPN L (3. 15)
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In (5.13), because VEM, we have

h,’\'t.s,) vv(t-s') = f',(t.sl) a Q. (5.iba)
ho(tus, sy) w(t=s)) w(t=s,) = h, (t,s,,s,) ae (5.106b) i1
atc, .. l
‘A
Using equations (5.18), expression (5,15) reduces to 3
! i1
T 3o i
I T\ () ¥ (u) dt . (5.17) i

Above, Vt(ul) = 0 a.e. because VAN, Hence (5.17) vanishes thus

establishing that V defined by (5.12) is orthoconal to NfM . |!

5.2 The Case of Several Probing Input-Output Pairs

We now consider the case in which the number of the probing

input-output pairs (ui.yi). i=1,....m, is equal to or greater than two.

We denote col(ul.....um) and col(yl,...,ym) respectively by U and V ,

and introduce the causal Gram matrix T(t) with elements defined by

L9
§..(t) = expl & [ u.Ct'y u,(t') de’ ] 1,j=1,...,m.
IJ a"ol J

5.2.1 Strictly Causal Solution

As in the case of (4.27) (with G now replaced by the causal

-~ ", -~ “~
G{t)), we require to obtain the solution c(t) = col(cl(l),....cm(t)\ of

the equation

() () = Vit




|
|
|’
|
|
|
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The difficulty arises at the origin because T(0) is a singular

matrix with all elements equal to unity. According to this last fact,

in order for (5.19) to have a solution at t =0, Yi(O)‘ i (S

must be well defined? and there must hold

T(0) +T,(0) + =+ + T (0) =y (0) =y, (0) = ... =y (0) .  (5.20)
|
In addition, the following condition will be needed in the neighborhood '

of the origin: I
For some ¢ > 0, the restrictions of u; to (0,t), 0 < t<eg, are

distinct elements of L2(0.t) and

) -
lim G (t) Y(t) exists as a finite vector ( where,in (5.2
t-0

t>0 taking the limit we consider an appropriate member of the

equivalence class ).

We will call (5.20) and (5.21) a set of '‘admissibility conditions' on

the probing input-output pairs,

Remark. For m = 2, condition (5.21) is obtained by requiring

that

y;(O). y;(O). u,(0), and u,(0) be well-defined

(5.22)
and finite and ul(O) # u2(0).
This is gleaned from the fact that (for m = 2)
c‘(t) = = B pe (5.23)
Gll(t) Gzz(t) - Glz(t)
. G, (1) y (1) = G, (8) ya(t)
c,(t) = ~'2 ' . 2. (5.24)
2 ~ ~2 * 14
G”(t) Gzz(t) - Gn(t) .

| f y'ELz(I). theny. is an equivalence class. For the Eake of complete |
generality, we say that y.(0) is 'well defined" if a member ¥y, of the class y
is such that §.(t) tends !o a limit as t » 0, and we denotgthls limit by y (Oi.
In other words, y. is the equivalence class generated by such a §.. A similar
statement applies when we say that a derivative of y. is well defined at 0.

€(0) is defined as the solution of (5.19) with 7(0) defined as above,
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Now, according to (5.18),

1im Eij(t) P8 T Tl SRR (5.25)
(‘.0

~l l
lim Gij(t) - u‘(O) uj(O) (5.26)
t -0

Hence, by I'Hapital's rule,

6o () ¥ () + G,y (8) ¥1(8) = Gy (8 = G (0) y,(0)

lim € () = Vim =
1 - -~ b | ~ ~1
t -0 t-0 Gl'(t) Gzz(t) + Gll(t) Gzz(t) - ZGIZ(t) Glz(z)

x U, (0) (4, (0) = u (0 y (O) + y;(O) . y;(O)

% (u‘(O) - uz(m)2 (5.27)
and similarly with Eé(t). which shows that (5.22) is a sufficient
condition for (5.21).

For the case of m = 3, the above type of calculation becomes
extremely tedious. In application of 1'Hopital's rule, differenti-
ation up to order three has to be carried out of the rumerator
and denominator of the expressions for gi(t), i =1,2,3, Such a
differentiation of the denominator gives

G‘](t) Glz(t) Gl3(t)

3 - - -
0'""(0) « < ‘ i | e e e
dt

e . (5.28)
Gal(t) G32(t) GBa(t)
and hence
I

(2 uu, + < u“\ “w. 3

e 3 ’ \ I 22 l

. - ' g -

D (0 pz (u2 u3) (ulu2 + u‘u2 + 5 uluz) Uy |
v + ¥ + L IR |

| (Gyug * Guy + 5 Yy uy

i

s = SN -4
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' ' 122
Y (ulu2 + U Y, + 0 uluz) 1
' 1 4
+ (u' - UJ) Y, (2 u,u, + - uz) 1
u, (u.u! + u'u + 3 uzuz) 1
e el e Nl b
' ' ! 22
u, 1 (ulu3 + ujuy + 0 u'u3)
' ' 1 2.2
+ + 3 ;
*+ (uy -y Up T (uguy + waug + 5 uuy) (5.29)
' ] 2
u3 | (2u3u3 * 3 u3)

where we have abbreviated u‘(O) and u;(O) by u, and u; for i =1,2,3.
From (5.29) it follows that D'''(0) # 0, if u (0) # uy(0) # u,(0).
This and considerations resulting from differentiating the numerator

lead to the “nllowing sufficient condition for (5.21) to hold:"

y{(O). ui(O), and u{(O), - 2.8, bs
(5.30)

well defined and finite and u'(O) # uj(O) Voikj, 1,]=1,2,3.

A sufficient condition similar to (5.30) can be derived feopr

m > 3 but the calculation is too tedious to be carried out here.

2
Lemma 5.7, Suppose u, and Y, cL(D,i =1, ..., m satisfy

i
conditions (5.20) and (5.21). Then (5.19) has a unique solution T, with

¢« . I

Proof. Since lim E-'(t) V(t) exists and is finite, there is a
t-0
©0

subinterval {o,tlL 0 <t <&, over which (1) = E"m J(1) is bounded

almost everywhere. Since up i= 1, ..., m, are distinct on [O,CQ , they

* In this calculation higher order derivatives (in ordinary or
distributional sense) of u, and Y cancel out at 0,
|
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are distinct on [0,t], 615 t g‘l. and hence G and T are continuous
on [C].I]. This and the fact that y; € LZ(I) establishes that the restriction
of C;to (&.1] belongs to Lz(t'.l). Because, in addition, ¢ is bounded

a.e. on [O.E‘]. we cordude that ﬁ € LZ(I). I

The above leads to the following:
Theorem 5.2. Let m > 2 in Problem 1b. If, in this problem, we
further restrict the operator to be identified G to be such that &
("i'yi)' i=1,...,m, satisfy the admissibility conditions (5.20) and
(5.21), then Problem Ib has a unique solution expressible in the form

(with the understanding of the notation V(u)(t) = Vt(u)):

-~ m o (ui’.)t
()= g ci(t) sxpl sege——_. ]

% : , (5.31) o
i=]

where

Cetdy =040 (5.32)

2,0

i LTI o B

and E} are the components of the vector C obtained by solving (5.19), #

Proof, It is clear that G € Bi and

(W) =y (0, i =1,m. (5.33) ;

i
i
?
|
i
‘.
i
i
i

Proceeding in much the same way as in the proof of Theorem 5.1,
iz s )
we can show that each term of the form E}exp[-—ji———— ] is orthogonal

to every V€ N N M, this completing the proof. |
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5.2.2, e-Causal Solution

In order to weaken the admissibility conditions (5.20) and

(5.21), we introduce the following generalization of Definition 5.1

Definition 5.2, VEBi is ¢-causal (for some positive ¢ < 1) if

P, (V(PW) =P (V(W) ¥ t>e¢ HEs (5.34)

We may now formulate the following weaker form of Problem Ib:

Problem lc. Same as Problem Ib except that the constraint (5.7)
is replaced by the restriction that, for some specified ¢, 0 < ¢ <1,

V be non-causal for 0 < t < ¢ and causal for t > ¢ . “

Theorem 5.3. Let ¢, 0 < ¢ < 1, be such that the restrictions of

uis i=1,...,m, are distinct elements of L2(0.e). Then for this ¢,

Problem lc has a unique solution described by

uis )y 2
v ( $) = Z c, (t) exp(--————l;£2‘31> Yo<t<e , (5.35a)
=]
(U.,')
V()=_c(t) exp( Y Sk, (5.35b)
1]
where
e () =67 F(o), (5.36)
T =T Fo, (5.37)

where G and B(t) are mxm matricgs with elements

(u..u.):
G,. = exp —';,—J—“(O—’a) (5.38)

tJ

e S e — v -
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(u,,u, )2
tij(t) = exp(—l—i—"f(-m) . “

: (:5539)

Proof. Clear from the arguments used in proving Theorems 4.1 and
5.2. 1
Remarks:

(a) In some cases, it may be easily verifiable that the condition
on (ui :i=1,...,m) of the above theorem holds for arbitrarily small
¢, as in the example (ui(t) = sin kt, k=3 . ml .

(b) Also, it is immediately clear that a sufficient condition for
the condition on {ui) of Theorem 5.3 to hold for arbitrarily small ¢

is that the Ui, i=1,...,mbe continuous in the neighborhood of t = 0,

and in addition ui(O) # uj(O), Vi#]j

TR 403 BT

ey
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6. Nonlinear System ldentification in the Noisy Case

We next turn our attention to Problem 2 formulating it in the following
specific form:

Problem 2a. Find the solution V of

min J(V) (6.1a)
ve 8
where
~ It My~ n2 :
J(V) = “v,lBz + £ q; lu; (v =y Yy - I (6.1b)
n

Remark: The class properties of V are taken into account by the con-
stants a., i=l, ...,n, (see equation (3.6)) picked in the definition of the
inner product in B: , while the noise properties are accounted for by the
weights q;‘, i=l, ous m, B (6.10). |

We seek a noncausal (not necessarily causal) solution G of (6.1).
Details on the causal extension of the present results can be worked out in
exactly the same way as in section 5 and hence will be omitted.

To obtain the solution to Problem 2a, we first construct a Hilbert space

B defined by the Cartesian product
m tmes

B = Bi X Y% s X Y7 (6.2)
with the inner product between any two elements of B f=col(fo,f|,...,fm)
5 nl 3
and g—col(go,g],...,gm), where f, and 90 € B and fi and g; €Y, i=l,...,m,
defined by
e
F.9z = (fo,go)Bz +i§, 9; (Fae))y - (6.3)
n

Introduce the operator L: Bg - B in the form

L = col(1,u,("), ...,Gm(')) (6.4)
and denote by ; the vector
y = col(0,y ,euury, ). {{6.5)
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Then (6.1b) can be re-written as
Joy =L v - Wé ; (6.6)
The following two lemmas, which result from elementary considerations,
are stated without proof.

Lemma 6.1. The adjoints of ﬁi:Bi - Y and L:Bi - B are:

u. *
and
L= (1, q;] ET,...,q;'ﬁ"Lm) : | (6.8)

Lemma 6.2. The minimizer Q of (6.6) satisfies the operator equation
L=ty | (6.9)

We also need the following result.

Lemma 6.3. The solution Q to Problem 1b belongs to Nt (orthogonal com-

plement of N), where N is defined by (4.14).

Proof. Let Po denote the orthogonal projection’ from Bi into N1 . Then

JV) = (PV + (V- PV, PV + (V- POV))BZ
2 g TR -y |2 q
e M CP¥) = villy
PV, PV L+ T g [PV -y |2
CH e S l[a3CP¥D = vylly
n
+(V-PV, V- POV)BZ
n
2
= “.f(POV) +lv-ry HBZ
n
23 V), (6.10)

with equality if and only if

= i 1 L
v ﬁ>v y la€s B V & N* ,

bl tC

ST

— e e
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Now the set
(u‘. .)
{expl 3 Tt om il ey v im) (6.11)
spans N+ . Hence, by Lemma 6.2,
- m (u]. 2
v, = EE' c;(t) exp[ e s (6.12)
where <, e ¥ .
Substituting V resulting from (6.12) into (6.9) and solving for
¢ i=1, ..., m, we are led to
Theorem 6.1. The solution to Problem 2a is
~ + o ~ + o
¥selth oo to T ggtl Y., (6.13)
where
c = col(c', il cm) . (6.14a)
Q = diag(ql,.... qm) 3 (6.14b)

? = co\(yl, et ym) .

(6.14c)

e ——— —————
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7. Computer Simulation Example

In order to illustrate the preceding developments, we consider the
simple example of a system described by the scalar differential equation:

y(t) = =y(t) + u(t)y(t)y= d/dt, y(0) =1, (7.1)
on the interval T = [0,1]. The exact input-output description for such a

system is

s co—

y(t) = V. (u) = exp (| (u(s) - 1)ds}

= exp(-t) exp(fou(s)ds}. {1.2)

We assume we are given the eleven probing input-output pairs:

ul(t) =1 y () =1 |
|

uz(t) = sin 2t yz(t) = exp(-t)exp(-(cos 2mt-1)/2m j
u3(t) = sin 4mt y3(t) = exp(-t)exp(-(cosémt-1)/2m) %
ue(t) - sinlOnt y6(t) - exp(-t)exp{-(cos10mt=1)/2n} f
u,(t) = cosnt y,(t) = exp(=t)exp{(sin2nt)/2n) i
us(t) = cos4nt y8(t) = exp(-t)exp{(sin4rt)/2n} :
: I ?
u'|(t) = cos|0mt y,l(t) = exp(-t)exp{(sinlOnt)/2r} k
|

(7.3)
With p = 1 and up . i=1, ..., 1l defined as above, (5.18) becomes

t
ﬁij(t) = exp(foui(s)uj(s)ds] :

by J=™ls ewies Ul o (7.4)
It is clear that the (ul,yi). i=1,...,m, satisfy the condition for
an e¢=-causal solution V to exist, given by the expression (5.35), for

arbitrarily small ¢ (see Remark after Theorem 5.3).

Consider the test input u(t) = t. According to (7.2), the corresponding |

exact output is
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y(t) = exp(-t) exp(® t2) .

(7.5)

Table | and Fig., | compare samples of this output at sampling instants

t, = (O&)i , i=1,..., 25,

(7.6)

with the corresponding samples of the output of our solution operator V

in a digital computer simulation, where we have assumed the value of

ey

¢ = .04, The agreement is remarkably good except for the first two instants.

The disagreement near t = 0 results from the fact that det(Eij(t)) tends to

zero as t - 0., If we take ¢ = .12, the agreement is nearly perfect. {
"
:\
TABLE | |
E: )
g y(t)=y(t) ¥
% y(t,) y(t) Error (—-—;?E?j—-)ﬂ {
!
.04 .96155838 2.80182753 -191
.08 .92607505 .50049397 45.95 f
.12 .8933293) .89325025 0.00885_, E
.16 .86312134 .86312003 1.51x10 2
.2 .83527021 .83527024 -3.59x107°
.24 .80961213 .80961212 1.23x10°°
.28 .78599881 .78599882 -1.27x107°
32 7646296 7642961 0
.36 .7443827 7443827 0
.40 .726 14904 72614904 0
b .709496 30 709496 30 0
.48 69433550 .69433550 0
.52 .68058674 .68058674 0
.56 .66817845 .66817845 0
.60 65704682 65704682 0
.6h 64713523 64713523 0
.68 .63839376 .63839376 0
32 .63077882 .63077882 0
.76 62425272 .62425272 0
.80 .61878339 .61878339 0
.84 61434415 61434415 0
.88 61091344 61091344 0
.92 60847467 60847467 0
.96 .60701608 .60701608 0
1.00 .60653066 .60653066 0
[
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01

SL°

614

L <

-~

0l




ta
8. Conclusion
In this paper we have developed an approach, based on a Fock space
and Volterra expansion framework, for the formulation and solution of
the nonlinear system identification problem, both without and under the

causality and g-causality constraints.
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