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During the reporting period Professors David Heath, John Muckstadt,

and Carol Shilepsky have conducted research on the interchangeability/

substitutability problem for recoverable items (items that are subject

to repair when they fail). This problem arises when recoverable items

can be substituted for one another during the repair of an assembly.

The long range objective of the research project is to develop a

method that the Air Force can use to assist in the management of inter-

changeable recoverable items. To accomplish this goal we have proposed

to analyze several simplified problems that will give us insight into

the form of the optimal or near optimal policy for the real problem.

Specifically, we proposed

a) to understand fully the behavior of a single-echelon, two item

system over an infinite horizon when the failure processes for the items

are independent, stationary Poisson processes and repair times are expo-

nential;

b) to develop methods for finding optimal and near optimal policies

for the situation described in a);

c) to extend the results for topics a) and b) to systems having many

items;

d) to extend the analysis to situations in which there are two echelons

(depot-base structure) and many items where, as before, the failure processes

for the item are independent, stationary Poisson processes and repair times

are exponential;

e) to develop methods for finding the optimal or near optimal operating

policy for the situation described in d);

ApproYed for public rsleaae ;
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f) to study the problem when failure and repair processes need not

be stationary and the time horizon is finite for both single and two

echelon systems; and

g) to develop heuristic dispatching rules for the dynamic environment

described in f).

To date we have almost completed objectives a) ~nd b). Specifically,

we have studied the interchangeability/substitutability problem for two

items that fail at a single location. Moreover, the failure processes

for these items are assumed to be independent, stationary Poisson processes,

and repair times are exponentially distributed. The system studied is

assumed to be a closed system, that is, no items are added to or deleted

from the system. Based on these assumptions we first showed that the prob-

leni could be viewed as a Markovian decision problem for which there exists

a stationary optimal policy. Since our main goal is to find methods that

can be used to solve the real problem, we next developed various approaches

for finding optimal and near optimal policies.

The first approach that we took was to formulate the decision problem

as a linear programming problem. The number of “states” in the Markovian

decision problem for realistic problems is so large that the linear program-

ming method is not a practical method for finding optimal policies. It is,

however, useful as an experimental tool to check the optimality or near

optimality of solutions generated by other means. Furthermore, we were able

to identify some properties that an optimal policy should possess.

Next, we developed a simulation approach that exploits these properties

that an optimal policy is conjectured to have. This heuristic method is

computationally efficient and finds, at least for the cases tested, a nearly

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~ :~~
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optimal policy. (The details of the results of this work can be found

in the attached technical report, entitled “An Analysis of a Single

Location Inventory Problem for Two Interchangeable Recoverable Items.”)

Recently, a new heuristic has been developed which may be even more ef-

ficient. Further testing of this method is currently being conducted.

Throughout our analysis we have been in contact with Lt.Col. Jon Hobbs

and Mr. Victor Presutti cf Headquarters, Air Force Logistics Command (AFLC/

XRS). Their guidance has been extremely valuable. They are providing data

that will be used to test the proposed heuristics. Once these test are corn-

pleted and adjustments made to the heuristic we will have completed goals

a) and b) stated above. .

We have been invited and will present the results of our research at

the International Meeting of The Institute of Management Sciences on

June 20, 1979. Furthermore, we plan to prepare a paper having the same

title as the attached technical report and submit it for publication in

the Naval Research Logistics Quarterly.
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ABSTRACT

In this paper we examine the interchangeability/substitutability

problem for two recoverable items that fail at a single location. We

H assume the failure processes for each type of item are independent,

stationary Poisson processes. We also assume the repair times are

exponentially distributed. Furthermore, we assume that the system is

H a closed system , that is, no items are added to or deleted from the

system. We first consider a discrete-time problem and show that this

problem is a Markovian decision problem. We then show that for this

problem there exist optimal stationary Markov control policies. Next

we formulate a continuous time model and show how to find the optimal

stationary Markov control policy using linear programming. Unfortunately ,

this approach is impractical for solving most real problems. Consequently

we have established and explored some of the properties that we feel

an optimal policy should possess. A discussion of these properties is -

- j given in Section IV. Lastly, we will describe a heuristic that can be

used to find a good policy. This method is an efficient simulation search

method that finds policies having the properties we conjecture an

optimal policy should possess.
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I. INTRODUCTION

H During the past 15 years a substantial amount of research has been

conducted related to the management of recoverable items , that is , items

subject to repair when they fail 
(1,2,3,4,5,6,7,8,9,11,12 ,13,114] A

number of mathematical models have been developed that can be used to

determine optimal stockage levels for each recoverable item in both single

and multi-echelon systems. Most of the models are based on the assumption

that the items are independent. That is, the failur e processes among the

items are assumed to be independent. Some recent research has been devoted

to dependencies in the demand process by recognizing that certain recoverable 
-

items have a hierarchical design t1 ,5,6,13,14j~ For these items , the

failure of a recoverable component results in a demand for both a spare

component and the assembly containing the component. However, in all of

the models presented to date the replacement rule for a failed component is

the same: replace all failed units with a serviceable spare item of the

same type.

- ‘ In this paper we examine a problem that arises when items are some-

times interchangeable or can be substituted for one another during repair.

Frequently it is possible to repair a broken assembly using several differ- -

ent types of parts; however, choosing the “correct” part to use to repair -

the assembly is not based on engineering considerations alone. Using one

type of item to complete the repair rather than using a second type of item

- 

- can cause subsequent parts shortages that can be avoided . This can occur

because some items are “more useful” than others. For example, suppose

there are only two types of items in the system. The “more useful” item

can be used to satisfy a demand for either type of item whereas the

“less useful” item can only be used to satisfy demands for its own type

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ — .~•
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of item. Many such interchangeable/substitutable items are found in the

Air Force. This is particularly the case for electronic items. In some

instances , newly designed items can be used to replace older units when they

fail; however, these older units cannot be used to repair a newer generation

of an assembly .

In this paper we will examine the interchangeability/substitutability

Li problem for two items that fail at a single location. We assume the failure

processes for each type of item are independent, stationary Poisson processes .

H We also assume the repair times are exponentially distributed. Furthermore ,

we assume that the system is a closed system, that is, no items are added

to or deleted from the system. We first consider a discrete-time problem

and show that this problem is a Markovian decision problem. We then show

that for this problem there exist optimal stationary Markov control policies.

Next we formulate a continuous-time model and show how to find the optimal

stationary Markov control policy using linear programming. Unfortunately,

this approach is impractical for solving most real problems. Consequently

we have established and explored some of the properties that we feel an

optimal policy should possess. A discussion of these properties is given

- 
in Section IV. Lastly, we will describe a heuristic that can be used to

find a good policy. This method is an efficient simulation search method

that finds policies having the properties we conjecture an optimal policy -

should possess.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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II. A TWO-ITEM SINGLE LOCATION SYSTEM:
A DISCRETE TIME MODEL

In this section we present a discrete-time model f or the inter-

changeability/substitutability problem. We examine this discrete-time

model since it yields a particular form for the optimal control policy.

In particular, we show that for the associated Markov decision problem

there is a stationary Markov control policy which achieves the lowest

average back-order level. This result provides the motivation for

restricting attention to Markov control policies in the continuous time

model developed in the next section.

To simplify the analysis and discussion we restrict our attention

to a single location system with only two types of items: type 1 and

type 2. The assemblies in which these items are installed are called units;

we also assume that there are two types of units and that each unit contains

only one item of the types considered. Furthermore, when a type 1 unit or a

type 2 unit fails , we assume that it can be repaired with a serviceable

type 2 item. Type 1 items can also be used to repair failed type 1 units:

however, type 1 items cannot be used to repair type 2 units. For example,

two units might be different “generations” of a computer found in a fire

control system; the Items might be old and new versions of an integrated

circuit board found in the computer. The newer version of the circuit board

can be used in both generations of the fire control system compnter~ but,

the old generation circuit board is incompatible with the newer fire control -

systen computer .

L.t N1 
be the number of units of type I and M1 be the number

of spare items of type i in the system. Thus there are a total of

N1 
+ lt.ms in the system. Let be the number of type i items

_ _ _ _ _ _ _ _ _ _  

a
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installed in type j units, and m~ be the number of servicable type I

items in spare stock.

Note that according to the substitution rules we have established

“12 is always zero. Thus the five numbers in
1 

, in
2 

, n11 , n~1 , 
and

TI22 specify the disposition of all items. The number of type i items

in repair is given by N.  + M. - (in
1 

+ E n..) , and the number of back-
1 1 j=1 ‘~~ 

2
H orders associated with type j units is N~ — E n1~ . 

-

H

We assume the system operates as follows in the discrete t.me model.

At each time t n . (t a t ) ,  n = 0, 1, ... certain actions are available .

These actions correspond to installing some items currently in spare stock

in appropriate units lacking an item. After installation of items,

failures may occur. We presume that items fail independently of one another

and that each item of type i installed in a unit of type j has proba-
bility A.,. . (E~t) of failing (where (st) is small enough so that these -

numbers do not exceed 1). Next, items which have failed are removed from

the units and sent to repair. Items are repaired independently; we presume

that each item is repaired during this time interval with probability

r. .(L ~t).

After this sequence of action-failure-repair we begin again at the new

time (n+l) . t~t by selecting another action. The system continues to

operate in this manner for an indefinite length of time.

The number of backorders during the action-failure-repair cycle is

defined to be the number of backorders which exist immediately after the

action (unit repair) is taken and before the failures occur.

We wish to choose those actions which minimize the average number

of backorders. 
L

- — —--— ~~-

—-a 
_ _ _
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The selection of the particular sequencing of events - action, failure

repair - was not made arbitrarily. This sequence was selected so that the

problem could be formulated as a Markovian decision problem (average cost

model). (A discussion of Markovian decision problems can be found in

reference 10.)

Notice that for any policy ( that is , a specification of the actions to

be taken for all possible situations) there is positive probability (actually

bounded away from zero) that after one cycle of action-failure-repair all

it ems which were in use will have failed and been repaired . Hence there

is a state (namely that with no items installed and all in spare stock)

for which ev~’y action taken at every state gets to that state in one step - .

with probability greater than or equal to ~ > 0 . By Ross [10] (Theorem

6.17 , Corollary 6.20 , and the remarks following Corollary 6.20)  there is

then an optimal stationary Markov control policy. This policy can be corn-

puted by a technique involving li near programm ing; this technique is adapted

to the continuous-time model developed in Section III.

fr i

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
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III. A TWO-ITEM SINGLE LOCATION SYSTEM :
A CONTINUOUS TIME MODEL

We now consider the continuous time model corresponding to that of

Section II. The notation descr ibing the numbers of units and items and

the state of the system remain the same.

We now suppose that the failure times of type i items installed in

type j units are independent exponentially-distributed random variables
with mean 1/A.. , and that the repair times are independent, exponential

random variables with mean hr. . As before, the measure of perf ormance

of the system is the average number of backorders. Motivated by the

result s of the previous section we shall consider only stationary Markov

control policies.

Since it would seem unreasonable to allow backorders for type i units

if there are type i items in spare stock we consider the installation of

type 1 items in type i units to be automatic arid not subject to control.

Thus the actions available involve only the installation of type 2 items
— 

in type 1 units. We shall compute the optimal stationary Markov control

policy which takes action only when the system changes state due to an item

failing in service or being returned from repair. Finally, we allow only the

substitution of one type 2 item into type 1 units at a time.

When the process jumps to a new state there are (possibly) two actions

available : do nothing, or install a type 2 item in a type 1 unit. Of course,

if there are no type 2 items available or no backorders associated with

type 1 units, then there is only one action available: do nothing.

Following Ross [10] we allow randomized actions; thus corresponding to

state S there are two numbers and ~~2 (non—negative and summing to 1)

giving the probabilities of selecting action a1 
( do nothing) or a2

(= put one type 2 Item in a type 1 unit). These P’s completely specify the

control policy.

_ _
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Once these P’ s are specified the process which results is a stationary

Markov process. In fact, if we consider the process which specifies the state

the system most recently jumped to and the action taken there, this process is

a Markov chain and we can compute its stationary transition probabilities

and then the average cost .

Let be the equilibrium (or stationary) probability that this process

most recently jumped to state S and that the action taken there was a . Then

we must have E E ct
a 

~
a 

= ~ ~
a where a (S �S ) is the rate at

S~~ S S S S  1 2a S 2 12 2 a 1 1 2

which transitions to state S~ will occur if the current state is S2 and

the action taken is “a” , and 
~~ 

-E 
~~~~ ~ 

so that the column-sur~s
2 2  S1 1 2

(S
1� s2 )

of the a-matrix are zero. (The subscripts may seem reversed in the above .

This is because in the usual Markov chain matrix notation the order of

vector-matrix multiplication is the reverse of that used in the usual L .P .

notation, which we adopt here.)

The cost associated with each state , C( S ,a) , is the number of back-

orders (total for units of type 1 and type 2) associated with state S if

action a is chosen.

We wish to minimize the cost-per-unit-time given by E E Z~ C(S ,a)
S a

subject to the equilibrium equations Z E c~ ~ 
Z~ = Z Z~ and to the

H a S 2 1 2  2 a 1
condition Z E Z~ 1

H
(Note that in some states substitution obviously cannot be performed ;

for these states we can simply ignore (that is set to zero) the corresponding

z7 for a SUBSTITUTE).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - ~ TT~
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The solution to the above stated L.P. provides th€ values fc~r the P’s

(and hence the policy) as follows :

P{take action a when in state SI
azS

E Z ~
b

whenever E Z~ � 0 . When E = 0 , state i is never reachea by the
b b

controlled system and thus it makes sense to leave the action chcsen there

undefined .

Suppose T represents the number of realizable states in the system

(a state is realizable whenever Z > 0 ). Then the above optimization

problem has T equality constraints and T basic variables (note there is

one redundant constraint). If state S is realizable, then Z~ > 0 for at

least one action a . Consequ~ntly at least one Z~ is positive for

S 1 , ..., T . This implies that for each state S , Z~ can be positive for

only one action a . Thus P~ must be either 0 or 1

A program was written to generate the input for a linear prograTr~ing

package (MPSX). The output was then submitted to MPSX and (in almost all

cases) an optimal strategy was obtained .

To present the results of the computations we notice that under our

control policies the number of variables necessary to describe the state of

the system can be reduced from the five above to three as follows: Since

we never allow backorders for type I units if there is serviceable spare
2

stock on hand ; N. - E n.. and m. cannot both be positive. We thus set
~ ~=i ~~ 3.

2
s1 m1 

— [N
1 

— Z n.j , which is the net inventory of items of type i
J).

(it is negative if there are backorders associated with type i units) .

. - - . -~~
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The variables s
~ 
, s2 

and n21 then describe the state of the system .

Finall y,  since at each state the control policy merely specifies

-

, 

“substitute” or “don’t substitute” it suffices to graph the set of states S

- 
at which one would perform a substitution. Graphs of the optimal “suLstitution

- set” S for several situations are given in Figure 1, Figure 2, and Figure 3.
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IV. THE FORM OF AN OPTIMA L POLICY

To enable us to find approximations to an optimal policy , we examined

the structure of the set of states, S , from which a type 2 item should

be substituted into a type 1 unit. Clearly

S ~ {(s1
, S

2~ n21
) : S

1 
< 0, s

2 
> ~~~~~

Every such subset gives rise to a control policy ; however, there are

three properties (monotonicity relationships) that one might expect the

optimal subset (S
0~t
) to have. Willingness to perform a substitution

depends on the number of type 1 units out of service , the number of type 2

items in spare stock, and the number of type 2 items already installed in type

1 units. Intuitively, for fixed s
2 

and n21 , as s
1 

decreases there is

at least as great a need to substitute type 2 parts in the type 1 units .

We express this as

MR1) CS
1
, 

~2’ ~~~~ 
~~ s < s

1 , 
implies Cs , s2, n21) c

Similarly, a greater supply of type 2 spares should imply an equal ox’ greater

- 
- willingness to substitute. This property is expressed as

MR2 ) (s~~ ~2’ 
n21

) c S~~~ , s > s
2 , 

implies (s
1
, s, n21) c S~~~

Finally,

~~~~~~~~~~ 
~~~~~~~~~ 

s
2, 

n21) C , n < a21 , implies (s
1, ~2’ n) c S~~~

Since S is a set in three-dimensional space we can draw its graph in

sections; thus if we let each section correspond to a fixed value of s
1 

we

would expect the graph to look like that of Figure 4.

In each optimal strategy computed using the linear programming method

described in Section III the properties MR1)-MR3) held. On the basis of

this conjectured form of the optimal policy we developed a procedure to

examine states for possible inclusion in S

- - . - - __ ;_ - - - - —
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V. APPROXIMATIONS TO AN OPTIMAL POLICY

To find a good approximation to the optimal substitution policy we

employed a search technique which proceeds as follows : begin with S

empty (i.e., with a policy which allows no substitution); repeatedly

consider adding one point at a time to S by comparing the performance

of the system using the augmented S with the current policy; then add

the point if the level of performance is higher.

The first states considered are those for which s
1 

-l . In this

set , the most likely candidate for membership in S is (-1, M2
, 0);

i.e., allow substitution when there is a type 1 unit out of service only

if there are M2 
type 2 items in stock and none already installed in

type 1 units. If this state is added to S , s
2 

is successively decreased

by one unit as long as the inclusion of (—1 , s2, 0) improves the policy.

Then n21 is incremented by 1 and (-1, M2-1, 
1) is considered (note,

if a21 = 1, then at most M2-l serviceable spare type 2 items can be in

stock). Again, s
2 

is decreased until there is no further policy improvement.

We then increment a21 again. After all appropriate states of the form

(-1, s2, a21) have been added to S , those for which s1 
= -2 are con-

sidered in a similar fashion. We take advantage of property MR1) to include

automatically in S each state (—2, 
~2’ n21) such that (-1, s2, a21) has

already been added to S . This significantly reduces the number of compariscns

which have to be made.

An alternate search pattern was considered in which (-N1, H2, 0) is

the first state examined for inclusion in S . In this state all type 1 units

are out of service and all type 2 items are in spare stock. Intuitively,

this is the state from which one would be most likely to allow substitution

_  

- 

. -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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and hence an appropriate starting point for the search. The disadvantage

of this approach was that MR1) could not be used to increase the computational

efficiency, and hence the first method was used .

The search technique involved being able to compare the perf ormance of - 

-

two policies. We developed two methods for this: one, analytic , which gave

an exact number for the expected backorders under a given policy, and the

second , simulation .

In the analytic method we observe that the substitution rules for a given

policy and the transition probabilities depend only on the present state,

hence the system is a Markov chain. The method consists of generating the

steady state equations, finding the equilibrium probability distribution

for the chain and calculating the expected number of backorders under the

equilibrium distrilution. This number can be compared to the expected back- 
—

orders for the same policy augmented by one state as required by the search

procedure.

A serious disadvantage of this method of policy comparison is related

to the number of states in the chain and hence the number of equations to be

solved for the equilibrium distribution. The number of .states for a system

with N
1 

units of type i and items of type i is

- I (N
~ 

+ M
~ 

+ l ) ( M
2 

+ l ) ( N
2 

+ M
212 + 1) .

For example, a relatively small system with N
1 

= 10 and M
~ 

= 5 has 1248

states. When the number of units and items grows by a factor of a , the

number of states increases roughly by a multiple of a3 . The time required

to solve the equations corresponding to the enlarged system then increases

by approximately a multiple of a
9 
. We are , therefore , critically limited

in the size of the system we can investigate using the Markov analysis to

compare policies. 

— --—-~~ -——.- -- -— - — — -- -~~ -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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The major advantage of this approach is that the answers are exact and

hence two polic ies can be compared. The similar results obtained by linear

programming and by the search technique with analytic policy comparison

suggested tha t the search mechanism is valid and encouraged the developnent

of a more efficient method of policy comparison.

The simulation method , which provides the only tool suitable for the

analysis of large systems, performs two simulations, one for each policy

and uses the state at which the policies differ as a starting point for the

simulation. In one, the substitution of a type 2 part is made, and in the

other it is not made. The two simulations are then run until they both

reach the same state. This state is not necessarily the one in which the

simulations started. If either system reaches the initial state in which

the desirability of substitution is being questioned , the substitution is

not made. -

When the two systems reach the same state the run is terminated and t~e

difference between the number of backorder-days is recorded; call the resuit

- - (say the number of backorder-days with the extra substitution minus the back-

order-days without it) for run I B.

We wish to determine E(B
1
) , since if E(B

1
) > 0 we should not perform

the additional substitution while, if E (B
1
) < 0 we should. To estimate

E(B
1
) we computed I B. and I B1 

; we could then estimate E(B
1

) and
i]. ~ i 1

V(B
1
) and construct confidence intervals for E(B

1
) . Large groups of runs

were made; after each group of runs a confidence interval was computed at a

selected confidence level. If this confidence interval did not include the

origin the procedure was terminated and the appropriate strategy was selected

as optimal. Moreover, if the confidence interval did include zero but was

shorter than some pre-selected tolerance level, the procedure was terminated

and it was concluded that both policies gave nearly the same performance level.

- --- ‘— -~~~~ —~~-.-
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(Actually in our runs this outcome did not occur.) It should be noted that

although we were using a sequential procedure we used analysis appropriate

for a single sample and that this is not precisely correct. However, in

each case the results obtained by simulation were the same as those obtained

by analytic comparison. Moreover, the simulation was computationally superior

in two respects: the amount of computer time did not grow as rapidly with

increased system size as it did for the analytic method, and , perhaps even

more relevant in terms of absolute limitations, the simulations did not

require the large amounts of storage necessitated by solving such large

systems of equations. Substitution sets (S) generated by the search pro-

cedure for the same examples presented in Section HI are found in Figures

5, 6 , and 7.

In conclusion , we make the following observations:

1) the exact solutions obtained through linear programm ing

and the approximate solutions obtained with the search

support the assumption that the form cf the optimal policy

satisfies MR1) - MR3);

2) comparison of exact results and those obtained by a search

with analytic policy evaluation indicate that a search

is an effective method o~ policy improvenent~

3) the correlation between results of search with analytic

comparison and simulation comparison indicates that the

simulation method is valid and hence gives us a method

for finding an approximation to an optimal policy which

can be applied to large systems . 

-
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VI. A SUMMARY AND CO M MEN TS CONCERNING FUTURE EFFORTS

While we now have a method for policy approximation which can be used

on large systems , there are several possibilities for further work with this

model. Continued investigation of the structure of an optimal policy (i.e..

is it linear in any of its variables?) might suggest a reduction in the

number of states to be considered for inclusion in S during a search for

an approximation to the optimal policy . A more precise comparison of the

performance of the exact and approximate solutions should be made to find

a balance between reduced backorders and computational accessibility .

• In addition , we plan to use the insights obtained through the study

of this highly simplified inventory model as a basis for our future efforts

to study more complex situations.

Unfortunately, many real-world considerations are not addressed in our

simplified model. For example, we have ignored the fact that a) sometimes

a family of substitutable items may consist of more than two items, b) items

are normally stocked at more than one location, c) the failure and repair

distributions may not be stationary, d) the planning horizon may be of such

F a short duration that infinite horizon models may be inappropriate , and

e) the system stock level for each item may not remain constant for an

extended period of time . We plan to address many of these issues in our

future work.
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