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ABSTRACT

Photoluminescence spectra from three species of n-GaAs,
lightly Si-doped, heavily Si-doped, and lightly Te-doped, show
the onset of additional radiative transitions upon modest
annealing in the 550-700°C range. Etch back procedures reveal
that the new structure is all surface related. It is attributed
to the creation of arsenic vacancies at the surface which
(1) allow electrical activation of silicon donors, (2) enhance
the probability of silicon site exchange, and (3) lead to complex

formation involving both donor and acceptor levels.
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INTRODUCTION

Photoluminescence (PL) has been extensively used to characterize many
of the impurity and defect energy levels in gallium arsenide.lJ‘ Some of
these levels have been unambiguously identified, while others have been the
subject of speculation and controversy. In particular, there are many situa-
tions in which the transition appears to involve a complex of more than one
impurity or vacancy. These transitions are often rather broad, sample de-
pendent, and have a peak wavelength that depends on excitation intensity.

The purpose of this paper is to study the effects of modest heating of
bulk gallium arsenide, and to attempt to identify the fundamental changes
in the material insofar as they can be deduced from the PL spectra. In this
study, we have chosen three different types of n-doped GaAs, and have care-
fully measured the effects of controlled annealing on their PL emissions.

We have then integrated our observations with those of other authors

to form what we believe is a consistant model of the thermal effects.

EXPERIMENTAL

The GaAs samples studied were <100> orientation single crystal wafers.

As far as we could establish, they were all grown in silica, as opposed to r
graphite crucibles, and thus unintentional impurities are likely to be silicon %
and unlikely to be carbon.

The PL measurements were made with the relatively straightforward
apparatus shown in Figure 1. Samples were mounted on the cold finger of a 3
cryogenic dewar that could be operated with either liquid helium or liquid
nitrogen. Estimated sample temperatures for these two modes of operation
were 12°K and 90°K respectively. The warm up rate after liquid helium

boiled away from the chamber shown was about 15°K per hour, allowing




sufficient time to make temperature dependent measurements over the inter-
mediate range. Further heating above 90°K was also possible. The actual
dewar used had four light entry windows and was equipped to measure four
samples each cool-down.

The PL excitation source was a 50 mW, 6328 R He-Ne gas laser. The
beam was attenuated by a variable density filter, modulated by a 40 Hz
mechanical chopper and focused to approximately 1 mm2 at the sample. The

emitted radiation was focused onto the entrance slit of a 1/2 meter grating

spectrometer, taking care that the reflected laser light missed the slit.

A silicon p-i-n detector was mounted directly over the exit slit of the
spectrometer. Its sensitivity covered the 8000 to 10,500 ) range of
interest, although some correction must be made for magntidues of spectral
lines abové 10,000 K. The current output from the detector was amplified
and converted to a voltage which became the input signal of a lock-in
amplifier referenced to the chopper driver. The lock-in output was con-
nected to an x-y recorder for preserving the spectra.

Thermal annealing of the GaAs samples was done in a temperature con- Y
trolled quartz furnace. They were exposed to a continuous flow of hydrogen {
gas. Annealing temperatures were concentrated in the 550-700°C range and
times were varied from 10 to 150 minutes. Samples were kept in the flowing
H2 atmosphere until they cooled to ambient temperature. Etching procedures
to establish the depth of the thermally induced transitions were done using
a sulferic acid solution. A part of the sample was protected during the ‘
etch, and the depth of the resulting step was measured with a scanning

electron microscope.
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ITI. RESULTS AND DISCUSSION

A. As~-Grown Material

The PL spectra from annealed samples of the three types of GaAs
studied are shown in Figure 2 at a temperature of 90°K and again at 12°K
in Figure 3. There are three classes of emission lines observable in PL
spectra of corresponding samples. Both the lightly doped silicon (n =
4 x 1037 cm-3) and the lightly doped tellurium (4.5 x 1016 cm-3) samples show
a narrow peak at 1.503 eV for 90°K and 1.514 eV at 12°K, in each case about
7 meV lower than the band gap for those temperatures'.. This energy corresponds
closely to that of a simple hydrogenic donor 1mpurityl. and is assumed to
result from silicon on a gallium site (Sica) in the first case.: teBurium
on an arsenic site (TeAs) in the second. We will refer to this donor-valence

band (D -B) transition as Band I. This transition as well as the other

assignments we make to the as-grown material are shown in Figure 4.
8

In the heavily doped silicon (n = 3 x 101 cm-3) material, there is a
second peak labeled Band II at 1.474 eV for 90°K which moves progressively
to 1.486 eV at 12°K (see Figure 5a). Band I is also present in these samples

at the higher temperatures, but becomes unresolvable at about 35°K (Figure

5b). Both of these peaks are somewhat wider in the heavily doped material
than Band I is in the 1ightly doped samples. We attribute Band II to a donor-

acceptor (SiGa-SiAs) transition (see Figure 4) since silicon is known to

be an amphoteric donor in GaAs, and is found on both gallium and arsenic

sites in heavily doped material. The energy of Band II differs from Band I

by 28 meV which is consistant with the energy of a hydrogenic acceptor
impurity. The increasing dominance of the donor-acceptor transition is |
interpreted as the decrease in acceptor ionization with lower temperature. i

Further evidence that Band Il involves a donor-acceptor pair comes from

-
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shift of the line to higher energies with increased excitation intensity
(1.2 meV/decade in our case) and narrowing of the line (1 meV/decade).
Following the argument of Leite and DiGiovanni,12 there is a coulombic term
in a donor-acceptor transition with a spatial energy dependence, and higher
intensity excitation light increases the probability of transitions from
donors to nearby acceptors.

The third major feature in the unannealed samples is the broad peak
near 1.2 eV appearing in both the tellurium and the heavily doped silicon
samples. This structure, labeled Band III, is generally attributed to a
complex consisting of a donor impurity and a gallium vacancy acting as
singly charged acceptor.13 The observed transitions (see Figure 4) would,
therefore, be (Sica - VGa) and (TeAS -V

Ga)'

transition is observed, in agreement with Williams,13 to occur at a slightly

In the tellurium case, this

higher energy, presumably because the Group VI QOnor Te can be adjacent to
the vacancy, while the Group IV donor silicon, must be at least a second
neighbor site away. The lightly doped Si samples do not show Band III, due,
one assumes, to a lack of gallium vacancies. In the other as-grown samples,
the intensity of Band III is essentially independent of the measuring tem-

peratures.

B. Heat Treated Material

The PL technique was next used to examine changes in the radiative
transitions in GaAs due to heat treatment. All of the peaks observed in
the PL spectra for the various samples both before and after annealing are
tabulated in Table I. The evolution of the 90°K PL spectrum from lightly
doped GaAs:Si for successively longer annealing times is shown in Figure 6.
The first feature of interest is the growth in intensity of Band I, the

donor to band transition. Similar behavior is observed in a slightly more
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heavily doped sample from a different manufacturer. This increase in
intensity involves only material in the first few microns from the surface,
as determined from etch back procedures. Since the lightly doped material
is known to be partially compensated, it is possible that the additional
donors are being transfered from acceptor sites, a situation presumably
enhanced in the surface region by a higher incidence of vacancies. An
alternative explanation is that the additional silicon could diffuse into
the GaAs from external sources, such as the quartz annealing tube.

The second major feature of the lightly doped GaAs:Si is the almost
immediate appearance and then gradual decrease, of a peak at 1.36 eV (Band
IV) and a smaller companion at 1.33 eV (Band IV'). This structure has been
observed by many authors, and has been explained in different ways.3’7’9’14
The major peak is interpreted by us as an arsenic vacancy-silicon complex
(VAS— SiAS), and the smaller as the first phonon replica corresponding to
the 36 meV LO phonon in GaAs. Since this peak, in our viewpoint, involves
Si on As sites, it is logical that it would diminish as the donor peak grows.
A very similar looking peak, incidentally, occurs in GaAs with carbon impur-
ities at 1.41 eV and is accompanied by phonon replicas at 1.38 eV and

8,15

1.34 eV. We assume that the 1.41 eV transition is (VAS-C ). One

As
report, in fact, finds the 1.36 eV structure when GaAs is annealed in contact
with a silicon compound, and the 1.41 eV when it is adjacent to graphite.16
It would seem reasonable to assume that other acceptors in GaAs will form

).

similar complexes and may, in fact, be indistinguishable from (VAS-SiAS
The final feature to appear upon modest annealing (Figure 6) for

longer times is Band III, not previously seen in the lightly doped GaAS:Si

samples. The explanation here is that eventually enough arsenic vacancies

form near the surface that it becomes statistically favorable for the

reaction VAs + SiGa > VGa + SiAS to proceed to the right, leading to a




finite concentration of gallium vacancies. At the same time, we see a very
small feature at 1.47 eV, the position of the peak previously attributed to
a (Sica-SiAs) donor-acceptor transition. Both these peaks are eliminated
by etching a few microns from the surface.

The time evolution of the 90°K PL spectrum from a heavily doped GaAs:Si
specimen is shown in Figure 7. No significant differences in the evolution
were observed at 12°K. 1In Figure 8a and b, the evolution of the major
peaks in the lightly and heavily doped samples are compared, and one
observes that the changes in the spectrum from the heavily doped material
are much less dramatic. 1In Figure 8b, we do see a roughly parallel
increase in Bands III and IV (1.2 and 1.36 eV) and corresponding decrease
in Bands I and II for the single impurity transitions. Again we attribute
the basic physical change in the GaAs to the in-diffusion of arsenic
vacancies leading to complex formation and the subsequent creation of
gallium vacancies through silicon site exchange. As before, the additional
structure can be eliminated by etch back techniques.

Of additional interest in the heavily doped silicon material in the
development of a peak at 1.44 eV (Band V). This peak is clearly distinguish-
able from the 1.47 eV peak and in fact is just resolvable in the as-grown
material (Figure 7). It is presumably the peak first discussed by Queisserl,
in even more heavily doped GaAs:Si. Following the suggestion of Kressel,
gg._gl.,B we think it reasonable to attribute Band V to a donor-acceptor
complex of silicon on two adjacent sites, distinguishable from the standard
SiGa-SiAS transition at 1.47 eV. We observe that the next larger Sica-SiAS
distance is nearly twice (\/II7§) the near neighbor distance. After higher

temperature annealing (Figure 7), there is a general decrease in the

intensity of Band III and a further shift from Band II (1.47 eV) to Band V
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(1.44 eV), explained as a tendency for silicon impurities to cluster on
neighboring sites.

The GaAs:Te PL evolution is given in Figure 9. There is a small
initial increase in Band I and (.2 immediate appearance of Band IV (1.36
eV). We attribute these features to silicon impurities with identical
effects as in the lightly Si-doped samples, silicon being likely present
because of the silica container for the original crystal growth. The most
prominent feature in Figure 9, however, is the appearance of a new peak

at 1.31 eV, labeled Band VI. This peak is definitely not a phonon replica

of the 1.36 peak. It is too large and occurs at the wrong energy; it

would, however, mask any phonon replicas from Band IV. We believe that

this new band probably results from a transition from the tellurium donor
to a nearby arsenic vacancy acting as an acceptor (TeAS-VAS). It has a
width and shape (no phonon replica) quite reminiscent of acceptor bands due

to gallium vacancies, but its energy is much larger. This peak which is

also seen in more heavilv doped GaAs:Te from two different manufacturers, is

»

|
‘ | presumably related to the primary dopant, and it seems very unlikely that i
i! tellurium would act as an acceptor. An arsenic vacancy, on the other hand, Q
Ll
!
‘l

holds the possibility of pairing the extra electron almost as well by being

| an acceptor as by being a donor. An alternative explanation, however, is

the existence of the other unknown impurity, creating a new deeper acceptor

level in the crystal.

IV. CONCLUSIONS
Based on fairly careful photoluminescence measurements of moderate
temperature annealed gallium arsenide, we have constructed (Figure 10) a

tentative energy level diagram for the common impurities, silicon and
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telurium, and their complexes with vicancies. With the exception of the
1.31eV line in GaAs:Te, all the spectral features described above are repre-
sented.

The basic trigger, in our opinion, for the transitions which we see

develop during modest anneal cycles is the formation of arsenic vacancies

PRI i b

at the GaAs surface. These include (1) a growth of the 1.503 eV donor-band
transition in lightly doped GaAs:Si, (2) the appearance of the 1.36 eV
arsenic vacancy-acceptor complex transition in all samples, (3) the
appearance of the 1.44 eV complex line in heavily doped GaAs:Si, and (4)

the appearance of a broad 1.31 eV peak in GaAs:Te. We appreciate that this

picture is subject to some discussion, but we feel that it is supported by

the bulk of the evidence currently available.
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FIGURE CAPTIONS

Figure 1. Schematic of photoluminescence apparatus.
Figure 2. PL spectra of three types of GaAs examined at 90°K.
Figure 3. PL spectra at 12°K. }
Figure 4. Suggested energy diagram for as grown GaAs:Si, Te. ! I
Figure 5. Temperature dependence of (a) PL peak energy, (b) PL |
intensity for heavily doped GaAs:Si.
Figure 6. Evolution of PL spectrum with annealing time for
n = 4x1015 em™3 GaAs:Si.
Figure 7. Evolution of PL spectrum for n = 3 x lO18 GaAs:Si.
Figure 8. PL intensities vs. annealing time for (a) n~ - GaAs:Si
(b) nt-GaAs:Si (c) n- GaAs:Te.
Figure 9. Evolution of PL spectrum for n = 4.5 x 1016 GaAs:Te.
Figure 10. Suggested energy diagram for common transitions in heat

treated GaAs. 1.31 eV transition for Te-doping not shown
(see text).
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