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INTRODUCTION
This is the final report for Contract DASG60-78-C-0046, for
research on fault tolerance in distributed data processing (DDP)

systems. The work is aimed at providing a suitable theoretical basis
for the development of practical techniques for DDP system design and
verification.

Distributed data processing can lead to systems with greatly
improved reliability when compared with conventional systems, and can
offer flexible strategies for redundancy, self-testing, and
reconfiguration. DDP systems also have potential advantages in
security, efficiency, and evolvability.

General methods for designing and verifying distributed
processors to achieve particular levels of reliability do not yet
exist because the possible fault conditions are very complex.
Eff;cbive design methods can result from the use of formal methods for
specifying system behavior under fault conditions and for analyzing
the behavior of faulty interacting systems. The use of formal methods
is made particularly desirable by the difficulties in testing
distributed systems.

Research at SRI during 1978 and early 1979 under this contract
has focused on formal methods for fault-tolerant DDP. Three
fundamental issues have been investigated, and are discussed in the

three chapters of this report.

(1) Hierarchical structure in DDP systems (P.G.Neumann)

(2) Achievement of consistent redundant data representations
in faulty networks; specification, design, and
validation (L.Lamport and M.C.Pease)

(3) Self-diagnosibility in processing networks (W.H.Kautz)

This study indicates that the notion of hierarchical virtual
machines is applicable to the client's application programs as well as
to distributed operating systems (including multiprocessor systems).

A study was made of general hierarchical organizations of recovery and
initialization processes in networks with massive fault conditions.
The study of consistency in multiple data sets points out a

fundamental and serious problem that has not been discussed in the DDP

literature. New results here give the precise conditions under which




consistency may be achieved in a network containing multiple faults of
the "erroneous" or "lying" processor types. The study of
diagnosibility has resulted in a review of existing literature on the
structure of diagnosible networks, has established conditions under
which multiple faults can be distinguished and located in DDP

networks, and has identified some key reseach problems in DDP-network
diagnostics that need to be solved for the BMD application.




CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

1. Chapter 1: The Use of Hierarchical Structure in DDP Systems

Tnis chapter discusses the use of hierarchical structure in the
design and verification of DDP systems, extending some of the notions
developed by the existing SRI Hierarchical Development Methodology
(HDM). It includes some preliminary thoughts on specific uses of
hierarchical structure to facilitate the development of reliable,
secure, efficient, flexible, and verifiable DDP systems. The basic
goal is termed “"system controllability", by which is meant that the
system shall have certain properties of good behavior, such as that it

#* must be robust (i.e., it shall tolerate faults among
a given class of faults, possibly including the ability
of the system to reconfigure itself in a degraded
performance mode),

* must be free from deadlocks (largely a software problem),

* must be free from disintegration (i.e., it shall not
collapse into distributed components that can no longer
communicate) wherever possible for faults outside of 1
the class that it is able to tolerate,

# should do as well as possible in recovering from
nontolerated faults.

The approach taken also notes the relation of recovery to system

initialization and integrates the two concepts.

Hierarchically structured levels of abstract machines (also
called virtual machines) have been used advantageously in the design ?
of various new systems, particularly those with advanced requirements
for reliability, recoverability, and security [22, 15, 13]. Such use
facilitates the verification of critical system properties, and
evolutionary system growth. Initjal exploration shows that very
significant potential advantages result from using such structures in

the design of DDP systems.

The notion of virtualization provided by a level of abstraction
is illustrated in Table 1.1 (at the end of the chapter), which shows
several generic levels of abstraction. In this generic hierarchy, the
operations at each level depend only on lower-level operations for
their implementation, with the highest level at the top of the table.

The notions of fault-tolerance that are either hidden or explicitly
visible at that level are also indicated. Use of distributed
3




CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

implementations is indicated in upper-case letters.

Some potential advantages of hierarchical design structure in DDP

systems are as follows.

- Controllability (e.g, freedom from deadlock and from system
disintegration [loss of connectivity], continued possibility
of reconfiguration and recovery)

- Efficient organization of fault-tolerance (e.g., fault
diagnosis, reconfiguration, and recovery)

- Data security and system integrity (isolation of critical
functions and data, with controlled sharing where desired)

- Extendability to accommodate new functions

- Portability of the system to different hardware and to
different software configurations

- Verifiability of the design and of its implementation
(including correctness of both computational and
communications functions)

Various problems must be handled to achieve these potential
advantages. These problems deal primarily with accommodating faulty
behavior throughout the system, e.g., in data communications (errors,
excessive delays), in processing, in memory, and in system software
(synchronization, inadequate algorithms). 1In software the problems
involve recognizing and recovering from inconsistent states among the
virtual machines in different parts of the system, as well as among
various different levels of virtual machines within a given part of
the system. (The problem of inconsistent states in a distributed
system is discussed extensively in the next chapter.) The basic
solution is to integrate recovery completely into the basic system
design. There is good understanding of this problem for integrated
systems, but some issues in distributed systems require further

research.

Another key problem involves designing and implementing the
system to assure its verifiability, e.g., system controllability.
This problem is being addressed in various system efforts through the
use of HDM, which employs a strict separation of design and

4
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CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

implementation, formal specifications of each part of a system and of
the interactions among the parts, and a nierarchical design structure.

Many of its techniques contribute directly to verifiability [19].

Although the concept of hierarchical design thus has numerous
potential advantages in DDP systems, the existing notions developed
primarily for centralized systems need to be extended somewhat. For
example, the notion of hierarchical levels of abstraction is very
appealing in designing conventional systems. This notion is also
valuable in the design of DDP systems, and can be made directly
applicable -- with the use of a particular view of the
intercommunications. The use of such abstraction can greatly increase
the controllability of a distributed system and the formal
verifiability of critical system properties contributing to
controllability.

The philosophical basis of the hierarchical approach used here is
that distributed systems of hierarchically structured components can
be designed cleanly and implemented efficiently, and that most of the

benefits of using such structure can carry over to distributed
systems. Therefore, this report takes the view that each of the
component systems has a hierarchical design structure. The nature of
the intercommunications is studied, and the extent to which they too
can preserve hierarchical structure is examined. In general, there
are significant advantages to some sort of hierarchical
intercommumication (e.g., in assuring fault-tolerance, deadlock

prevention, and verifiability).

An intrinsic problem in hierarchically constituted distributed
systems is to assure that the component hierarchies of abstraction
within the system are compatible in some constructive sense -- and
that the protocols associated with the various levels in the different
hierarchies provide adequate controllability (particularly freedom
from deadlock). The compatibility problem can be solved fairly simply
in a homogeneous distributed system, but is also manageable in a
nonhomogeneous system as long as the hierarchies are comparable. Thus

the notion of "conformable" hierarchies is introduced here and its

5




CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

implications are discussed. In essence, two hierarchies among the
components of the DDP system are conformable if any desired
commumication is restricted to take place only between two compatible
levels, one in each hierarchy. The system is then hierarchically
controllable if the intercommunications can be guaranteed to result in

no harmful loops -- either in control flow or in communication flow.

A hierarchical solution to the deadlocking problem in a
nondistributed system is given by Dijkstra's hierarchical locking
strategy [2] used in the THE system, in which deadlocks between levels
can be avoided generically through the use of hierarchical priorities,
i.e., a downward-only locking dependence. An analogous result applies
to distributed systems, and is characterized informally here. One way
to achieve controllability is to constrain the communications
themselves to be hierarchically order preserving. Note that it would
also be possible to achieve a controllable system without
hierarchically constraining the intercommunications -- although much
greater care must then be taken: in the general nonhierarchical case,
verification of each system would be required, rather than generic
verification of characteristic properties for classes of systems

adhering to particular constraints.

1.1 Fundamentals of Hierarchical DDP

Good design methodology for DDP should maintain a clear
distinction between design decisions and implementation decisions.
For example, at each level of abstraction (i.e., for each abstract
machine) there is a potential choice among different design
alternatives regarding what is to be distributed and how, and
decisions as to what should constitute the abstraction at that level.
Within each of these design alternatives there may be several
implementation alternatives under which the abstraction can be be
realized efficiently and reliably. Several key notions are used here
to illustrate the variety of design and implementation alternatives.

However, hierarchical structure is used throughout as a framework
within which to describe the options, without having to deal with each
of the options individually.

P —




CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

SPECIFICATION ISSUES (What is to be distributed, and how?):

- At what levels should distribution of function take place?
Wnat should be centralized, what distributed? (Note hybrid
designs.) Decisions involve security, reliability,
efficiency.

- What is to be hidden? Should distribution be virtual or
explicit? Options exist at each level, some being dependent
on lower levels, some being independent thereupon.

- Reliability and security both imply that trust may be
necessary. What must be trusted? What should be proved?

- What must be done in design to enhance provability,
anticipating proofs of both design and implementation.

- How can initialization and recovery be incorporated into the
design, taking constructive advantage of hierarchical
structure?

IMPLEMENTATION ISSUES (How is distribution to be achieved?):

IR ASNETrT———")

- For virtual distribution, at any particular interface,
should irredundant or redundant distribution be used [in
space and/or time]? (The latter can employ direct
replication, various differing historical versions, and
techniques like recovery blocks.)

- What algorithms will guarantee controllability? How can |
consistent choices of protocols between system parts be
made? Can deadlock avoidance be proved? Can insecure
information leakage (propagation) be avoided?

Virtual distribution implies that distribution (e.g., remote i
execution or data access, or parallelism in data and control) is 3
hidden by the interface to the relevant level of apstraction.

Explicit distribution implies that the distribution must be known to
the user of the relevant level of abstraction. That is, the user must
explicitly designate which file system a particular file is on, or
which system a program is to run on. In general, explicit
distribution at one level of abstraction can be masked (virtualized)
at the next higher level of abstraction, e.g., in a virtual directory
that tries to find files in different file systems. Futhermore,
hybrid strategies may be interesting (e.g., using virtual distribution
on initial use for convenience, and explicit distribution on

subsequent use). However, this must be done carefully to avoid
7




CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

pitfalls such as the aliasing problems that produce incompatible

effects from using different would-be synonyms.

1.2 Conformable Hierarchies and Controllable Distributed Systems

This section presents an initial attempt to introduce rigor into
the notion of verifiably controllable distributed systems.
Intuitively, two hierarchies are controllable if there are no harmful
communications among the component nierarchies. Note that this can be
achieved through nonhierarchical as well as nierarchical
commumnications. However, the use of hierarchically constrained
intercommunications among compatible hierarchies appears to be
particularly effective and easy to analyze. This can be achieved if
the relative ordering among levels of abstraction in two different
components of 3 distributed system can be maintained whenever
communication is permitted. Here communication implies explicit
control flow (as in remote procedure calls and returns, or as in
coroutine calls), implicit control flow (by signalling), or a
combination thereof. For example, a potential deadlock may arise if
level 7 in hierarchy A can communicate directly with level 5 in
hierarchy B when level 6 in A can communicate with level 6 in B. This
is an example of a nonhierarchical communication situation, e.g., a
circular dependency chain, in which level 5 in A can depend on level 7
in B which can depend on level 6 in B which can depend on level 6 in
A, which can depend on level 5 in A. Note that even if the only
communication between the two hierarchies is that between the two
levels 6, it is still possible for deadlocks to arise. However, such
deadlocks can be analyzed directly, whereas the deadlock resulting
from the circuitous loop involving different levels in each of

different hierarchies is far more difficult to detect.

Definition of Conformable Hierarchies. Consider two hierarchical
design structures Di and Dj, each consisting of a hierarchy of levels
of abstraction, Di = [AiO, Ai?1, ..., Ail] and Dj = [AjO, Aj1, ...,
AjJ], where each Aik is a level of abstraction in Di (0 < k <= I), and
each Ajk is a level of abstraction in Dj (0 < k <= J). (Level 0

[i.e., AiO, AjO] is in each case the lowest level of abstraction in
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its hierarchy.) Consider the mth level Aim in Di, which can

communicate with the nth level Ajn in Dj. Then, the two hierarchical
design structures Di and Dj are conformable if and only if

no level in Di higher than Aim can communicate with
a level in Dj lower than Ajn,

and

no level in Di lgower than Aim can communicate with
a level in Dj higher than Ajn.

That is, the communication between Aim and Ajn is the only

inbercommunication involving either level.

Desired Toneorem (Simple Dijkstra-like result). If every pair of
hierarchies is conformable in a distributed system composed of
intercommunicating hierarchical design structures, and if each such
design structure is deadlock free, then the resulting system is

deadlock-free with respect to the intercommunications.

As in Dijkstra's THE System, deadlocks may still occur within one
level; in addition, they may occur here because of a dependency loop
in communications between a level of abstraction in one design
structure and a level in another (i.e., in the communication from Aim
to Ajn and back). Note also that freedom from deadlock can be
obtained with constraints that are weaker than those indicated by the
theorem. However, the above approach gives a simple and easily proved

generic way of simplifying the deadlock-avoidance problem.

It is desirable to investigate the generality of this approach,
Lo see whether designs of distributed systems of conformable

hierarchies are overly restrictive. This will be done in future work.

Some people have expressed the concern that distributed systems
might not be amenable to hierarchical design. It appears that their
concerns are not well founded. The same beliefs had been voiced
previously in designing conventional systems, although recent
experience now indicates that not only is it feasible, but that the

advantages can be significant. The same conclusion appears to relate
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to distributed systems.

The concerns about the feasiblity of hierarchical structure iq
nondistributed systems seem to have arisen from the apparent need to
have one level (e.g., processes) dependent on another (e.g., memory),
and then observing a reverse dependence (that processes need virtual
memory and virtual memory needs processes). A general design
technique exists to get around this problem, namely to split one level
into two separated levels, with a resulting proper
hierarchicalization. In the example of processes and memory, this
results from having variable processes dependent on yirtual memory
dependent on fixed processes dependent on fixed memory; see [15]).
This general design technique for nondistributed systems is also

applicable to distributed systems.

As noted above, it is also possible to have communications
between a level in one hierarchy and either of two levels in another
hierarchy without losing controllability, although the analysis is
more complicated. However, for many applications the approach

discussed here appears to be adequate.

1.3 Control of Performance, Degradation, Hierarchical Recovery, and
Reconfiguration

Depending on the recovery time available, real-time systems may
employ a variety of strategies to cope with losses in state
information and in processing resources resulting from faults. One
simple response is to enforce a deliberate degradation of performance,
in which tasks that generate erroneous data are isolated from
fault-free tasks, and low-criticality tasks are allocated fewer
computational resources. Given more time, it is desirable to restore
information about the state of external and internal system variables
to the most recent correct values. Given still more time, it is
desirable to reconfigure the available computing resources to provide

the maximum possible computing power.

All of these techniques apply in real-time DDP, but are

complicated by the need to coordinate corresponding activities in many

10
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CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

processors. For example, some state information (e.g., about an
externally observed object) may be distributed over several
processors. If one component of state information is found to be in
error, it may be necessary to label data accordingly or to discard
data in other components that may have been corrupted by the error. A
further complication in fault-tolerant DDP is the use of redundant,
nominally identical computations at multiple nodes. It may take
considerable effort to ensure that all such copies are provided with
identical input data and that their outputs are properly synchronized

despite delays in some results caused by local roll-back operations.

Given the possibility of different recovery times within
concurrent recovery processes, and given the varying [and possibly
substantial] time delays required to propagate data among processors,
a considerable amount of skew in the timing of updates in
corresponding in state data is likely. 1In fact, it may be impossible

to get back to a consistent state.

The use of hierarchical structure appears attractive for
organizing the processes of performance degradation, recovery, and
reconfiguration. For example, all of these functions may be
structured hierarchically and distributed at various levels of the
executive system hierarchy. In operation, many of the lower-level
processes would be invisible at higher levels. This organization

tends to increase the efficiency and verifiability of such mechanisms.

The design of hierarchical, distributed, real-time systems for
maximally efficient accomplishment of degradation, recovery and
reconfiguration is essentially unexplored. However, many applicable
techniques are closely related to those arising in the initialization
of a hierarchically structured system. In general, initialization is
accomplished one level at a time, from the lowest level upward. Each
properly initialized level becomes the basis for the initializa.ion of
the next level. The same approach seems to be highly relevant .n
achieving minimal degradation, maximal recovery, and effective

reconfiguration.
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CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

1.4 An Illustration: Distributed Implementations of PSOS

These concepts are illustrated here by considering a
hierarchically designed computer operating system, the Provably Secure
Operating System (PS0OS) [15], [3]. The basic hierarchical design of
PSOS is given in Table 1.2. From the table, PSOS appears to be a
simple general-purpose nondistributed computer system. Nevertheless,
PSOS is highly appropriate as an example, precisely because its
hierarchical structure lends itself naturally to distributed

implementations.

The most important levels of the hierarchical PSOS design are the
capability manager (responsible for creating capabilities, which form
the basis for all addressing in the system), the segment manager
(which permits virtual addressing), the abstract-type manager (which
permits dynamic creation of types and typed objects and helps enforce
the encapsulation of their implementations), the directory manager
(wnich maps symbolic names into capabilities), the user object manager
(which maintains directory entries for objects), and the user process

manager. These levels are summarized below.

A PSOS capability is a protected name for an object. It provides
the only means by which that object may be accessed. It contains a
system-wide unique identifier (UID) that is unique for the lifetime of
the system, along with a set of access bits. For capabilities off
objects of any particular type, the access bits are interpreted by the
type manager for that type. The type manager defines all of the
operations to be permitted on objects of that type, and also defines
the meaning of the access bits for all capabilities of that type. All
accesses to an object are mediated by the relevant type manager and
require an appropriate capability for that object. The type manager
interprets the access bits on that capability and determines whether
the intended operation may be performed on that object. The fact that
a purported capability is indeed a capability is enforced by the
hardware, since every capability has a tag bit that unmistakeably
identifies it as a capability and that can be set only by one of two

capability-creating instructions. Thus capabilities are nonforgeable

12
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CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

(assuming correct hardware). That a capability represents an object
of the appropriate type must be assured by the appropriate type
manager. Capabilities may be passed around from one user to another

-- subject to certain communication restrictions.

In a typical implementation, most of the lower levels are
expected to be implemented in hardware. Thus, for example, the
capabilibty manager and much of the segment manager would be in

hardware or possibly microcode.

Table 1.3 illustrates how the PSOS system concept can lead to
distributed versions of the system, first in the design, and then in
the implementation. The table shows various levels at which potential
intercommunications and protocols may meaningfully exist, and some of
the forms the distribution can take. 1In general, virtual distribution
and explicit distribution may both be accomplished by the introduction
of new levels into the design. Virtual distribution may also be

accomplished invisibly within an existing level of the design.

As noted above, each level in PSOS acts as the type manager for
some object type. This conceptual distribution of type managers
suggests one mode of distributed implementation for PSOS, in which the
implementations of the various type managers can be distributed
separately. The complete encapsulation of typed objects for any
particular type also suggests a mode of distribution, in which a type
manager may itself have a distributed implementation, coordinated by
communication at that level or a lower level. These two modes are
discussed next, at each of several levels of interest, beginning at

the lowest level.

The creation of capabilities is centralized conceptually in the
lowest level of the PSOS basic design shown in Table 1.2. It is thus
used by each of the higher levels. Nevertheless, capability creation
can be distributed with the aid of a simple system convention (see

below).

The interpretation of capabilities is intentionally already
distributed in the design. Each type manager is responsible for

13
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CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

interpreting the capabilities for all objects of its type. For
example, the segment manager -- implemented largely in hardware -~
knows about all of the segments in the system of Table 1.2. It could,
however, be distributed so that each of several segment managers knows
only about its local segments -- using either virtual distribution or
explicit distripution. On the other hand, a collection of distributed
PSOSes could be conceived in which the distribution is done at the
user object level and in which the segment level of each component
system is left intact.

In any distributed version of PSOS, universal uniqueness of
capabilities must be maintained. In a homogeneous distributed system
of PSOS systems, global uniqueness is trivial to achieve, if each
unique identifier contains a SITE_UID and a LOCAL_UID. (The LOCAL_UID
can be implicit in locally interpretable capabilities, or could be
explicit.) Since SITE UIDs can be fixed forever at site creation, it
is relatively easy to ensure that they are unique. Thus it is easy to
ensure that the distributed-system-wide capabilities are unique.
Consequently a central mechanism for generating capabilities is not
needed, and each componeant can do its own creation. HRecognition of
foreign capabilities at this level is thus easy, based on the
SITE_UID. Note that in such a scheme the SITE UIDs must also be

trusted and thus nonforgeable.

The segment manager is outlined above. The most commonly
executed instructions in PSOS are those that read or write at some
location in a segment designated by a capability and an offset.
Virtual distribution can be achieved by having a distributed segment
manager that knows about nonlocal segments and that can redirect the
access to the appropriate local segment manager (e.g., basing its
action solely on the SITE UID). Explicit redirection can also be
handled at the user object level by redirecting a symbolic but
globally meaningful segment name to the appropriate local segment
manager. (Permitting explicit requests for foreign segments at the
level of the segment manager is probably a bad idea, although it could
be implemented.)
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Given a distributed segment manager, the abstract-type manager
could be extended to take into account multisegment object
implementations in which the various segments forming an abstract
object are themselves distributed. Note that this effect can also be

achieved by extensions to the user object level.

The distinction between the abstract type manager and the
particular type managers (e.g., the directory manager) is important.
Each type manager may use virtual and/or explicit distribution of its
implementation, depending on its needs. Each type manager is
responsible for encapsulating the implementation of objects of its
type, although the abstract-type manager facilitates the isolation of

the implementation capabilities from the abstract object capability.

The directory manager lends itself nicely to a virtual directory
system in which there is distributed implementation of various
directory structures. It would also be easy to provide redundant
(e.g., distributed) directory information. However, explicit separate
directory roots are better accomplished at the user object manager
level. At the user object manager level, both virtual and explicit
distribution of object creation and deletion is possible, with the
options of distributed directories and distributed segment managers

noted above.

At the user process level, both virtual interprocess
communication (across distributed system boundaries) and explicit
signalling are possible. At the user input-output level, both virtual
input-output and explicit foreign names are possible. Similarly, both
options exist for user environments (virtual name distibution and
explicit foreign names) and for the user request interpreter (virtual

command distribution or explicit remote logins).

1.5 Future Research Directions

This chapter has introduced the notion of hierarchical
communications among hierarchically structured components in the
design of a distributed system, and has discussed some of its
implications. This notion appears to have considerable potential in
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the development of reliable, fault-tolerant, and secure distributed
Systems. It also appears to contribute to system controllability in

varjous ways. Until now, it has received relatively little attention,
but will be considered further in subsequent work.
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HIERARCHICAL STRUCTURE IN DDP SYSTEMS

Table 1.1

Some Examples of Virtualization of Faultb-
Tolerance in a Hierarchical System Design.

Visible
functions

Hidden
functions

Fault-tolerance mechanisms. [Protocols].
DISTRIBUTION IS INDICATED IN UPPER CASE.

- - - - - - - - - - - -

Applica-
tion

Virtual
network

Virtual
system

Virtual
process

Virtual
i-o

Virtual
file
system

Virtual
memory

Virtual
unipro-
cessing

Multipro-
cessing

Network,
nodes

Other
nodes

Other
subsystems

Process
scheduling

Asynchrony
Buffering

Inaccessible
directories,

archiving

Storage
addresses

Multipro-
gramming :
dispatching

Processor

Application rollback features and DATA
DISTRIBUTION (redundant or not).
[APPLICATION-TO-APPLICATION PROTOCOLS. ]

DISTRIBUTED CONTROL OF COMMUNICATION,coding;
REDUNDANT DISTRIBUTION OF DATA AND PROGRAMS
[NODE-TO-NODE PROTOCOLS. ]

Compartmentalization, data security, system
integrity; COOPERATING SUBSYSTEMS
[SUBSYSTEM TO SUBSYSTEM PROTOCOLS. ]

REPLICATED PROCESSES; INDEPENDENT ALTERNATE
PROCESSES; automatic rollback; process
directories.

[HIGH-LEVEL INTERPROCESS PROTOCOLS. ]

DISTRIBUTED I-O ARCHITECTURES, REMOTE
CONTROLLERS; safe asynchrony; extensive

handshaking and cross-checking.
[I-0 DEVICE PROTOCOLS.]

REPLICATION OF CRITICAL DATA, e.g., on
on different media; FILE ARCHIVING AND
ROLLBACK/RETRIEVAL; cross-checking.
[FILE TRANSFER PROTOCOLS. ]

Redundant physical address calculations;
REPLICATION OF CRITICAL DATA. -
[INTERDEVICE PROTOCOLS. ]

Reliable interrupt mechanisms;
process isolation (e.g., domains of
protection).

[LOW-LEVEL INTERPROCESS PROTOCOLS.]

Redundant interprocessor signalling

coordination [INTERPROCESSOR PROTOCOLS. ]

Highest level is at the top of the table.
hide some internal functionality from lower levels.

Each level tends to
Each level

depends exclusively on lower levels for its implementation.
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Table 1.2
Hierarchical Structure of PSOS

iLevel | PSOS Abstraction or Function |
T H
| 16 | user request interpreter # |
i 15 | user environments and name spaces ¥ H
i 14 | user input-output #* i
i 13 | procedure records * H
i 12 | user processes % and visible input-output#* |
! 11 | creation and deletion of user objects # |
i 10 | directories (#*)[C11] I
! 9 | types and abstract objects (#)[C11] I
I 8 | segmentation and windows (#)[C11] !
. i 7 | paging (8] |
| 6 | system processes and input-output [12] H
! 5 | primitive input/output [6] '
i 4 | arithmetic and other basic operations # \
! 3 | clocks [6] |
{ 2 | interrupts [6] i
i 1 | registers (*) and addressable memory [7] '
i 0 | capabilities # i
1 ]
1 1

# - yisible at user interface |
(*) = partially visible at user interface ;
{i] = hidden above level i }
1
:
]

[C11] = creation/deletion hidden by level 11

[}
1
I
'
[}
I
|
]
I
1
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Table 1.3
Levels of Potential Intercommunications and Protocols

user request interpreter (virtual command distribution;
explicit remote logins)

user enviromnments (virtual name distibution;
explicit foreign names)

user input-output (virtual i-o; foreign names)

user processes (virtual ipc; explicit signalling)

user objects (virtual; explicit remote creation)
directories (virtual directory system; explicit roots)

abstract types (virtual distributed implementation;
explicit distribution of multisegment objects)

segmentation (virtual and explicit distribution
based on SITE_UID)

primitive input/output (controller signalling)
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2. Chapter 2: Formal Specification, Design, and Validation of Robust
DDP Systems

2.1 Robustness and Reliability

A system is robust if it continues to function correctly despite
the failure or unavailability of some of its components; for a given
design, it functions correctly as long as enough of its components
continue to function properly. Robustness is considered in this

chapter.

A system is reliable if it has a sufficiently high probability of
functioning correctly. Reliability is attained through robustness. A
robust system is reliable if there is a sufficiently high probability
that enough of its components continue to funcbtioi. properly.
Reliability as measured in terms of the probability of correct
functioning is not considered here except, in the context of

robustness.
2.2 Specification

2.2.1 What is a Specification?

A specification of a system is a statement of how the system is
supposed to behave. It is perhaps best viewed as a contract between
the system's buyer/user and its designer/implementer. When the two
parties have agreed on the specification, (1) the puyer has stated
that he will accept any system that meets that specification, and (2)
the implementer has stated that he is legally bound to deliver a
system bthat will meet that specification. Clearly there are many
degrees of precision which specifications may have. (All too often,
the buyer and the implementer are so closely tied together -- and
frequently completely out of touch with the people who will actually
use the system -- that the specification is not useful as a contract.
Such specificaticns often prematurely bind various irrelevant design
decisions, while completely avoiding other critical decisions. The
result can be a system being designed [and even implemented] before

there is any understanding as to what it is supposed to do.)
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For a specification to serve as such a contract, it must satisfy
two criteria.
1. It must be understandapble to the buyer, so he can be sure
that the system will behave the way he wants it to. Since

the buyer is human (or a group cf humans), this means that
the specification must be understandable to humans.

2. It must be precise, so the implementer will know exactly how
the system he provides must behave. (Deciding whether the
contract nas been fulfilled should be a technical decision,
not a legal one.)

In the Hierarchical Development Methodology (HDM), there is a
distinction made between requirements and specifications. In general,
a requirement is a global property that all operations at a particular
interface must satisfy. Examples in secure systems include
system-wide security properties such as the military multilevel
security policy used in KSOS and the properties concerning the
nonbypassability of the capability mechanism in PSOS. An example in a
reliable system is the Markov model defining the probability of
recovery following faults in SIFT.

A specification, on the other hand, is a definition of what a
particular operation or module of the system is to do. It is
desirable to be able to show that each specification satisfies its
requirements, and that each programs is consistent with its

specification.

A specification can be broken into two components: a logical, or
functional, specification and a performance specification. The
logical specification defines what the system (or module, or
operation) must do. The performance specification defines what
resources it may demand to meet its logical specification. Typical

resources are time, computer memory, processors, and communication

channels. For example, consider an airplane autopilot system that is
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1
implemented by a network of processors. It receives input from the

airplane's sensors and the pilot's controls, and sends output to the
airplane's actuators and the pilot's instruments. The logical
specification defines precisely what the output should be as a
function of the input history. The performance specification defines
(1) how long it may take to respond to inputs (how much time it may
require) and (2) now robust it must be (how many properly functioning
processors and communication links it requires to produce the correct
ouput). (In general, the time and processor/communication resources
required need not be independent of one another; slower response may

be acceptable when fewer processors are available.)

It appears that these two components of a specification can
always be identified. However, they may interact with one another.
Different logical functions may require different amounts of
resources. In particular, "graceful degradation" of service is
specified by requiring that different logical functions require
different amounts of processor/communicaktion resources. For example,
in an autopilot we may specify that attitude control must be performed
correctly (e.g., the airplane must not go into a tailspin) despite the
failure of two processors, but that navigation need only be performed
correctly (the pilot's instruments must report where the airplane is)
if at most one processor has failed. (As seen here, this type of
interaction between the logical and performance specifications poses

problems that have not been completely solved.)

2.2.2 How To Specify a System -- an Informal Discussion

The behavior of a distributed system consists of the concurrent
activity of its components. Human beings tend to think of one thing
at a time and have difficulty understanding concurrent activity.

(This is demonstrated by the difficulty people have in writing correct

1Rat,her than choosing examples of ballistic missile defense
applications, we here use examples which have been carefully studied.
We trust that the reader will recognize the relevance of our work to
ballistic missile defense despite the absence of explicitly related
examples.
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concurrent programs; such programs usually behave in ways not expected
by their authors.) This presents a serious problem in trying to write
a specification of a distributed system that will be understandable by
humans. Our solution to this problem consists of writing the

specification in the following three parts:

1. A sequential algorithm which describes the logical behavior
of the system. We call this algorithm the system machine.

2. The relation between the input/output of the system machine,
and the input/output of the individual processors wnich form
the system.

3. Performance requirements on the execution of the system
machine by the processors.

In terms of our decomposition of the specification into logical
and performance specifications, the first two parts comprise the
logical specification, and the third part is the performance

specifications.

We illustrate this approach with two examples. First, we return
to the example of an airplane autopilot implemented by a network of

processors. The two parts of its specification are described below.
1. The autopilot may be described logically by an algorithm
that at regular intervals -- say every 50 milliseconds --
accepts as input a vector (airspeed, altitude, angle of
climb, throttle position, ... ) of values and produces a
vector (aileron position, rudder position, ground speed
display value, ... ) of outputs. Tne system machine
consists of a precise specification of the algorithm that
produces the output as a function of both (i) the input and
(ii) the values of certain state variaoles. (Those state
variables contain the values maintained by integrators in
analog autopilobts.) We discuss below the problem of giving a
precise, formal specification for such a system machine.

2. The system machine defines the system as a single entity.
In reality, the autopilot system consists of a collection of
processors. The second part of the specification consists
of a description of how the input and output of the
individual processors are related to the input and output of
the system machine. For example, a single value of the
airspeed is part of the system machine's input. This value
is derived from several sensors that measure the actual
airspeed, each sensor being read by one or more processors.
The airspeed input to the system machine must be defined as
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a function of the airspeed sensor values read by the
processors. This function must be designed so that it will
produce a reasonable system machine input value despite the
mal function of some sensors, or of some processors reading
the sensors. Part of the system machine's oucput is a
rudder position. The actual control signals thabt cause the
rudder to attain this position are sent by several
processors. (Robustness dictates that the failure of one
processor should not cause the rudder to assume an incorrect
position.) We must define the control signals sent by the
processors to the rudder as a function of the rudder
position output of the system machine. Thus, part two of
the specification consists of the collection of all of these
functions that relate the processors input and output to the
system machine input and output.

i 3. The third part of the specification consists of performance
3 requirements for how the processors must execute the system
machine. Below are some sample requirements.

1. If a majority of the processors are functioning
properly, then they should (collectively) correctly
execute the system machine.

2. A processor is considered to be correctly executing the
system machine only if it reads all of its input values
within 100 microseconds of the beginning of the system
machine's 50 millisecond iteration period, and
generates its output values at most 25 milliseconds
later.

Our second example is a robust distributed data base system --
one that will maintain the correctness of the data despite the failure
of some of the processors on which the data is stored. The data are
assumed to consist of disjoint, named items. A user btypes requests to
read or modify data items. For siamplicity, we assume that a user
sends all of its requests to a single processor, and that each request
may either read or write a single item of data. (A data item is
created when it is written for the first bime.)1 The specification
consists of the following parts.

1. Every millisecond, the system machine executes one step.
Its input consists of a sequence of requests. Each request

1It is quite easy to generalize this example to one in which the
system is responsible for preserving the mutual consistency of
different data items, but doing so would complicate the example.
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contains:
- The identity of the requesting user
- The name of the data item
- The type of request (read or write)

- The value to be written (if it is a write request)
The output consists of a sequence of acknowledgements, one
for each input request. An acknowledgement consists of':

- The identity of the user,

- An indication of whether there was an error, and, if
so, the nature of the error (e.g., read of a
nonexistent data item),

- For a correctly executed read request, the value read.
A single system machine step is performed by executing the
sequerice of input requests in order, updating the values of
data items, and generating acknowledgements in the obvious
way .

. Each processor receives requests from many users. We may

consider these requests to form a sequence. The system
machine input is defined to consist of a sequence of
requests formed by merging the sequences of unprocessed
requests of all the individual processors. (An unprocessed
request is one that was not included in the input to a
previous step of the system machine.) The processors'
outputs are defined so that each acknowledgement generated
as output by the system machine is routed to its indicated
user.

We make the following performance requirements for the
system.

- If a majority of the processors are functioning
properly, then: (1) they will correctly execute the
system machine, and (2) a properly functioning
processor will generate an acknowledgment for a request
within 0.5 seconds of its receipt.

- The number of messages sent among the processors will
equal, at most, 17 times the number of requests
received.

Of course, the values 0.5 and 17 are just illustrative =--
whether this particular specification can be met will depend
on the exact nature of the network of processors. The
second requirement means that if no requests are are
received, no messages are generated. This is a very strong

25




g

Chapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

constraint on the implementabion.1

2.2.3 Formal Specification

We have discussed now the specification of a system can be broken
into three components and given some informal examples. We now
consider the problems involved in writing formal specifications. By
"formal", we mean defined with sufficient precision to be suitable for
mechanical manipulation. Given a formal specification of a system, it
is in principle possible to verify mechanically that some particular
implementation is correct. This would provide the proof that the
implementer has met the contractual obligation defined by the
specification. Formal specifications are useful even if such a
mechanical verification is not feasible. Perhaps the most significant
intellectual contribution of computer science is the idea that we
really understand how to do something only if we can program a
computer to do it. A formal specification is therefore one for which
we really understand how to decide whether an implementation is

correct.

2.2.3.1 The System Machine

Tne system machine is basically a sequential program that takes
input values and produces output values. Considerable work has been
done on methods for formally specifying sequential programs. Some of
these methods provide very useful tools for specifying the design of a
system. However, we feel that they are not adequate for the type of
"contractual" specification we have been discussing, because the
specifications they produce for nontrivial programs are too difficult

for a human being to understand.

The fact that these specification techniques lead to such
complicated specifications has led many to believe that real programs

are too complicated to have precise, formal specifications. However,

1This requirement is oversimplified. In practice, a small
number of messages will be needed to maintain synchronization
even if no requests are received. The point is that the 1 -
millisecond repetition rate of the system machine should not mean
that messages must be generated every millisecond.
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we do not hold that view. Mankind has developed a very good language
for precise human communication: the language of mathematics. It is
a generally accepted assumption of the physical sciences that if we
understand something, we can precisely describe it with mathematics.
We believe this to be true in the world of programming too. If we
understand what a program is supposed to do, then we can express that
understanding in the language of mathematics in a way that is both
precise and understandable to other human beings. If we cannot write
such a mathematical specification, then it means that we do not

understand what the program is supposed to do.

This belief has been borne out in the two simple but nontrivial

examples described in [7] and [8].

We do not mean to imply that any program has a simple
specification, merely that it has a humanly understandable
specification. If the program is very complicated, then understanding
its specification may require a considerable effort. To simplify the
task of understanding the specification, hierarchically structured
specifications may be used. One may view the "Reliability Model" and
the "Allocation Model" of the SIFT system described in [22] to
comprise a hierarchically structured specification of that system.
Such a hierarchical decomposition corresponds to the ordinary
mathematical technique of defining simple notations to represent more

complex concepts.

Our experience indicates that to obtain understandable
specifications, one must be able to use the extreme power and
flexibility that the language of mathematics has developed during the
past 2000 years. Current formal specification methodologies seem to
be too restrictive and lack this flexibility. However, traditional
mathematics is not formal in our sense of the term. The challenge
that faces us is to develop formal methods -- methods susceptible to
mechanization -- that will have the power and flexibility of
traditional, informal mathematics. Boyer and Moore [1] have developed
a mechanical verification system that is extremely flexible. We hope
that it can provide the basis for the needed formal specification
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methodology.

2.2.3.2 The System Machine / Processor Relation

In the systems we have considered, it has pbeen fairly simple to
specify the relation between the input/output of the system machine
and the input/output of the individual processors. We feel that
methods which are sufficiently powerful to specify the system machine
will easily be able to specify this relation.

2.2.3.3 Performance Specification

We first consider robustness specifications. As we have seen in
our examples, robustness is expressed by stating that the system
machine must be executed correctly if enough of the components are
functioning properly. Correct execution of the system machine means
that (1) the system machine input is based upon the correct input of
all the properly functioning processors, and (2) all properly
functioning processors correctly generate their output based on the
same (correct) system machine output. This has been defined precisely
in [9], using the language of traditional mathematics. To obtain more
formal specifications, we are faced with the same problem for the
system machine: devising formal methods that have the power of
traditional mathematics.

This method of specifying robustness only allows an "all or
nothing" specification -- it does not handle the problem of specifying
"graceful degradation". A more general specification method dealing
with this problem is described below.

Specifying other performance requirements, such as the
requirement that an acknowledgement must be generated within 0.5
seconds of the receipt of a request, seems to be straightforward.
Given a sufficiently powerful specification language that allows us to
express the necessary concepts, there seems to be no difficulty in
writing the specifications. However, such formal specifications are
only useful if formal methods exist for verifying that an
implementation meets these requirements. This problem will be

discussed later.
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2.2.4 A Hierarchy of System Machines

We have discussed how one can specify a single degree of
robustness for a system by specifying robustness requirements for the
implementation of the system machine. However, we often want to
specify different degrees of robustness for different system
functions. For example, in an autopilot, attitude control requires
greater robustness than navigation, since losing control of the

airplane is more serious than getting lost.

Our solution to this problem is a two-level hierarchy of system
machines, consisting of a single high level executive machine and a
collection of lower level task mggnlgg§.1 Each task machine specifies
a collection of system functions requiring the same degree of
robustness. For an autopilot, one task machine might specify the
attitude control functions, and anotner task machine might specify the
navigation functions. The executive machine specifies how resources
are to be allocated to the execution of the different task machines.
The executive machine's input consists of diagnostic information that
it can use to determine which components (processors and communication
links) are faulty. Its output consists of intructions to the
processors that determine what system functions (which task machines)
each processor is to execute, and when those functions should be

executed.

The executive machine thus acts as a scheduler, and is
responsible for controlling the graceful degradation of the system in
the face of component failures. The executive machine must have the
greatest degree of robustness, since its correct execution is
necessary for the execution of any task machine. The robustness of
each task machine is determined by the executive machine. To verify
that a task machine's robustness specification is met we must (1)
verify that the executive machine's robustness specification is met by
its implementation, and (2) verify that the robustness of the

executive machine implies the necessary robustness of the task

1Tnis hierarchy of system machines should not be confused with a
hierarchical specification of a single system machine.
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machine. The latter verification involves only the executive

machine's specification, and is independent of its implementation.

This type of hierarchy has been used in the SIFT system. The
SIFT global and local executives essentially form an executive
machine. In the description of that system [22], only this executive
machine is specified. The applications tasks run by the SIFT

executive constitute the task machines.

Our description of the hierarchy of system machines has been
informal. The SIFT system is the only case in which such a hierarchy
has been worked out in detail. We do not yet have a general method
for writing a formal system specification in terms of a hierarchy of

system machines.

2.3 Design

2.3.1 Basic Problem

The system machine specifies the logical behavior of the system
by a single sequential algorithm. However, the behavior is actually ‘
produced by a distributed system of processors. The processors' ;
behavior must be properly synchronized to correctly implement the ‘

system machine.

Processor synchronization is complicated by the robustness
requirements. Many mechanisms have been proposed for synchronizing
distributed systems of processors, but few have rigorously considered
the problem of failed components. In order to be able to discuss the
problem in a sufficiently precise fashion, we now introduce some
formal notation for describing the concepts introduced informally in
the preceding section.

We begin by precisely defining the concept of the system machine.

0) T1’
of possible inputs, a set O of possible outputs, and a set S of

We assume that we are given a sequence of times T , 2 set I

possible states. The system machine is specified by functions
sm.next.state and sm.output from I X S into S and O, respectively.
if ;m.giahg(li) and ;m-innu&(;i) represent the system machine's state
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and input at time Ti’ then sm.oubpub(sm.input(Ti), sm.sbabe(Ti))
represents the system machine's output at time Ti’ and
sm.nexb.sbabe(sm.inpub(Ti), sm.state(Ti)) represents its state at
time T To formally specify the system machine, one must formally
0’ T1, , the sets I, 0, S, and the

functions sm.output, sam.next.state.

i+1°
specify the sequence T

Let us assume that the system is to be implemented by a fixed set
of processors labeled 1 through N. We now precisely define the

concept of the correspondence between the system machine's

input/output and the processors' input/output. For each processor Kk,
let Ik and 0k denote the set of all possible inputs and outputs for
that procesor. The system machine - processor correspondence is
specified by a function sm.input .merge from I1 X wee K IN to I, and
N functions D-oubpuk .demerge, from O to 0. If p.inpubk(Ti)
represents the input to processor k at time Ti‘ then
sm.input.merge(p.inpubT(Ti), st p.inpubN(Ti)) represents the

input to the system machine at time T If sm.outpub(Ti) represents

i
i’ then

p.oubpub.demergek(sm.oubput(Ti)) represents the output of processor k

the system machine's output at time T

at time Ti' To formally specify the correspondence between the system

machine's and the processors' inputs/outputs, one must formally

specify the sets I 0, and the functions p.oubpub.demergek for each

’
k; and the single ?unc:ion sm.input .merge.

Synchronizing the processors means first of all guaranteeing that
for each time Ti’ each processor k produces the output
p.oubput.demerge(sm.oubput(Ti)) for the same value of sm.output(Ti),
and that the processors all produce these values at approximately the
same time. However, we must do more than that; we must guarantee that
the value sm.oubpub(Ti) the processors use is the "correct" output of
the system machine. We now consider just what constitutes correct
output. We have defined the system machine's output and next state in
terms of the functions sm.output and sm.next.state. Hence, correct
output involves the application of these functions to the correct

values of the current state and the current system machine input. The 1
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correct current state at time T1 is defined inductively Lo be the |
state correctly computed at Lime Tl_,. We would !ike ) define the

correct current system machine input Lo equal tre value obtained by
applying the function sm.input.merge to the correct inputs of all the
processors. However, we cannot expect any processor Lo be able to
determine the correct inpucs to a faulty processor. Instead, the besc
we can hope to achieve is to have all the non-faulty processors
execute the system machine step at time T1 using as input the same

val ue sm.input.merge(v,, s vN), where Lhe e satisfy the
following property: if processor k is nonfaulty, then Y equals the

b correct input to processor k at time Ti'

This condition can be achieved only in the absence of serious
communication failure. If communication failure should destroy all
communication paths between two processors, there is no way that they

can learn about each other's inputs. Hence, they cannot be expected

to determine the same user machine input. We therefore begin by

considering perfect communication.

2.3.2 Interactive Consistency with Perfect Communication

Assume a collection of N processors, communicating with one
another by means of a perfect communication network. Each processor k
generates a value i/p(k) -- its correct input at time Ti . Every
J(1), s sy vJ(N)) -- where

vj(k) represents the value that processor j thinks is the correct

processor j computes a vector of values (v

value for i/p(k). These vectors of values must satisfy the following

two conditions for all i, j, and k.

1. If processors j and k are nonfaulty, then
v.(k) = i/p(k)
i.e., processor j obtagns the correct value for processor
k's input.

2. If processors i and j are nonfaulty, then
vi(k) 2 v (k)
i.e., processors i and j compute the same vector of values.

If these conditions are met, then we have achieved interactive
consistency.
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We have developed an algorithm to achieve interactive consistency

in the case of perfect communication. To illustrate the algorithm, we

consider the case N = 4. We make the following assumptions:

i

The communication network linking the processors is
complete. This means that any processor can send a message
directly to any other.

. The communication network is such that there is no way a

non-faulty processor can be fooled about who originated a
message. There might be distinct transmission lines between
each pair of processors, for example. A message that
processor j receives from processor k, for instance, may be
pure garbage if k is faulty, but j can still obssrve which
line it came in on and so know with absolute certainty that
it came from k.

. Every message originated by any processor has either the

form F defined as
F: / k / data /

where the data is originated in processor k, or the form F'
defined by

Fre f k £ Msg /

where Msg is a message of the form F or F'. That is, every
message either originates the transmittal of data or is a
relay of a message that has been received. In the latter
case, the route the message has followed is indicated in the
message, although the early part of the route may be stated
falsely if the message has passed through a faulty
processor.

. The network contains just four processors, of which just

one, say Processor 1, is faulty.

Consider the case in which processor 1 is the source of the data.

Being faulty, it can send out any combination of the same or different

values to the other processors. Consider the various cases:

Case 1 Processor 1 sends out the same value to all the other

processors. There is no problem. None of the others
is faulty, the value processor 1 sends out cannot be
changed by any of the others. There is, no faulty
behavior exhibited.

Case 2 Processor 1 sends one value, say A, to one processor,

say processor 2, and a different value, say B, to the
other two. This is interesting. Processor 3 and
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processor 4 both tell processor 2 they received the
value B from processor 1. Since there is only one
faulty processor, processor 2 knows that processor 3
and processor 4 cannot both be faulty. Therefore at
least one of them must have truly received the value
B. This is different from the value processor 2
received, so processor 2 can be certain that processor
1 is faulty. However, processor 2 cannot use this
information.

Consider wnat processor 3 sees. It receives value B
from processor 1 directly. Processor 4 says it
received B also. However, processor 2 tells processor
3 it received the value A. There is no way processor
3 can tell if it is processor 1 that is faulty, or
processor 2. 1f processor 1 were actually good, it
would have sent processor 2 tne value A, but, if
processor 2 is faulbty, it could be sending false
informat ion about what value it received.

To resolve this difficulty, consider the following
algorithm. Let each of processor 2, processor 3, and
processor 4 send to the others the value it received
from processor 1. Each processor then has three
values, the one it received from processor 1 directly,
and the two values that each of the other processors
says it received. If two of the three values a given
processor has agree, let that value be used.
Otherwise, draw the conclusion that processor ! is
faulty and ignore its data.

Processor 2 receives the same value B from both
processor 3 and Processor 4. Therefore it uses this
value, even though it knows processor 1 is faultbty.
Processor 3 receives the value B directly from
processor 1, and the same value from processor 4. It
does not know if processor 1 or processor 2 is faulty,
but it uses the value B anyway. Similarly, processor
4 receives the value B directly from processor 1, and
the same value from processor 3. Therefore processor
4 uses the value B. All three non-faulty processors
use the value B. Interactive consistency has been
obtained.

Processor 1 sends distinct values to each of
processor 2, processor 3, and processor 4, say A, B,
and C, respectively. Then processor 2, for instance,
received A directly from processor 1, B from processor
3, and C from processor 4. Since no two agree,
processor 2 asserts that processor 1 is putting out
garbage and should be ignored. Processor 3 and
processor 4 reach the same conclusion. All agree that
processor 1 is faulty, and interactive consistency has
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again been obtained.

The algorithm described under case 2 is an example of one that
assures interactive consistency under the stated conditions.
Algorithms have been developed that apply under broader conditions.

In particular, if assumptions 1 through 3 are retained, but there are
N processors of which not more than M can be faulty, an algorithm that
achieves interactive consistency if N is at least as large as (3M +1)
is given by [16]. We have also shown that this condition relating N
and M is a hard one under assumptions ! through 3. For any smaller
value of N, the faulty processors can act in a way that will fool the
non-faulty ones, so that interactive consistency can no longer be

assured.

We have been assuming tacitly that a processor k always sends
some message to each other processor containing a value for i/p(k).
(If k is faulty, then it may send differing values.) However, we must
be aware of the possibility that a failed processor will not send any
messages. This possibility is handled by the use of timeouts. We
assume that all processors have clocks, and the non-faulty processors'
clocks are all synchronized to within some tolerance. (The problem of
synchronizing the clocks is discussed below.) A processor sends its
input value for time 'I'i when its clock reads Ti. The absence of a
message with processor k as its destination can then be observed by
processor k as the failure of the message to arrive by a certain time
on its clock. Exactly when the message should arrive will depend on

how many processors have to relay it.

The absence of a message is treated as if a message with the
special value NIL has arrived. Conversely, the special value NIL can
be sent by not sending any message. (In particular, processor 2 need
not explicity inform processor 3 if it failed bto receive a value from
processor 1 -- it implicitly conveys that message by not relaying any
value to processor 3.) This means that if i/p(k) equals NIL, processor
k sends no messages, and there are no messages to be relayed. Hence
processor k can inform all other processors that its input value

equals NIL without any messages being sent! This is extremely
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important, because it makes our method feasiple for situations in
which input occurs relatively infrequently but quick response is still
desired. In our distributed database example, user requests
presumably occur sufficiently infrequently that for most of the one
millisecond iterations of the system machine, there are no requests
present. We simply let the value NIL denote the processor input
consisting of the null sequence of requests. If no processors have
any input requests, then the system machine input is the null
sequence, so the system machine does not change state and produces the
null sequence of oucputs. In this case, there will be no messages
produced (since all processors are sending the value NIL), and no
processing needs to pe done. It should be clear how the system can be
implemented so that although the system machine is logically executbing
a "null iteration" every millisecond, there is no physical processing

in the absence of user requests.

Assumption 3 may look fairly trivial but it is not. It is
possible to allow a processor, when relaying a message, to add what we
call an authenticator. Suppose processor k receives a message M from

another processor. It relays this message in the form F" defined by

s /£ kil M/ SM, k) 7/

S(M, k ) is an encrypted version of the message M whose encrypting
depends on M and k in a way such that it cannot be forged by any other
processor. Another faulty processor faulty might accidentally create
a valid authenticator for k , but we assume that it cannot do so
intentionally. More precisely, we assume that the probability that it
will accidentally create one is vanishingly small. The designing of
an authentication mechanism depends on the type of faulbty processors
that can occur. If the faults are caused by random hardware failure,
then an appropriate redundancy mechanism can be used. If the faults
are caused by malicious intelligence, then cryptographic techniques
must be employed. Such techniques have been developed [18], but are

beyond the scope of this report.

We assume that the recipient of a message in form F" can examine
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the authenticator and either verify that it is the proper
authenticator for M and for k , or else discover that k has not

accurately relayed the message.

Note that if a message gets relayed several times, each time the
relaying processor adds its own authenticator to the message. The
message Kkeeps growing longer, and the work of verifying it gets more
elaborate. Nevertheless, authenticators do enable us to achieve
interactive consistency without cequiring the redundancy of having an
N at least as great as (3M + 1). An algorithm for doing this is given
in [16].

2.3.3 Interactive Consistency -- General Case

We now consider the general problem of achieving interactive ’
consistency in an arbitrary network of processors and communication ;
links when the communication links may be faulty. We define a
communication link joining two processors to be functioning properly
if it correctly transmits any message sent over it within some fixed
length of time. A subnetwork of the network of processors is said to
be functioning properly if all of its processors and communication
links are functioning properly. The general statement of the
interactive consistency problem for an arbitrary network of N

processors is given below.

Assume that each processor k generates a data item i/p(k) at time
T. Each processor j must compute a vector of values (vj(1), et | o
vj(N)) by time T + D (for some fixed D) such that if a "large enough"
subnetwork M of the network of processors is functioning properly,
then for all processors i, j, k:
1. If j and k are in M, then v, (k) = i/p(k) -- if k is in M,

then every processor in M obtains the correct input for
processor K.

2. If 1 and j are in M, then v, (k) = vJ(k) -- all processors in
M compute the same vector o% values®

Of course, to complete the statement of this problem, we must

specify precisely what constitutes a "large enough" subnetwork. We

would like to make this "large enough" requirement as small as
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possible.

We have begun work on this general interactive consistency
problem. We believe that, using authenticators, solutions are
possible that satisfy the above requirement for arbitrary choices of
the subnetwork M -- just as with perfect communication, authenticators
permit solutions that will work despite any number of failures. We do
not know what types of general solutions are possible without
authenticators. However, it appears that for a solution to tolerate
the failure of m processors, each processor must be connected directly

to at least 2m+! other processors.

2.3.4 Clock Synchronization

Our algorithms to achieve interactive consistency require that
non-faulty processors have clocks that differ by at most some fixed
quantity. Since real clocks do not run at exactly the correct rate,
even if they are started in exact synchrony, they tend to drift apart.
Thus, there must be some procedure for periodically resynchronizing
them.

We assume that each processor can read its own clock and the
clocks of all processors with which it is directly linked. We must
design an algorithm in which each processor periodically makes these
readings, and in which the values obtained are used to resynchronize
the clocks. First suppose that each processor can read every other
processor's clock and determine the difference between the two. We
then get a matrix D of values, where Di,j is the difference between

the clocks of processors i and j as measured by processor j. If

either i or j is faulty, then D might have any value. Assume that

1,3
if i and j are both nonfaulty, thea the value of Di differs from the

true difference between the clocks by at most d. Tﬁin a
synchronization method has been devised that results in the clocks of
all nonfaulty processors differing by at most Ud after the
syncrhonization has been performed. The method depends on the use of

an interactive consistency algorithm to broadcast the values of Di

v J

to all the processors.
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We are currently trying to generalize this method to an arbitrary
network in which a processor can only read the clocks of its
neighbors, so the full matrix of values D is not available. We are
also trying to obtain more efficient methods, possibly employing
authenticators directly instead of just using them to achieve

interactive consistency whea broadcasting clock readings.

2.3.5 Other Implementation Problems

Given syncrhonized clocks and a solution to the general
interactive consistency problem, it is easy to devise an algorthm in
which, if some "large enough" subnetwork M functions properly at all
times, then every processor in M will correctly execute the system
machine. However, this would produce a system that might be

unsatisfactory for two reasons:

1. It is requires that the same subnetwork M function properly
at all times. For example, consider a network of three
processors, in which any subnetwork containing two
processors is "large enough". Such a solution would require
that some two processors never fail. However, we might want
a system in which processors could be repaired and brought
back into the system. This would allow the system to
continue functioning correctly even though every processor
failed at some time -- so long as it never happened that two
processors were faulty at the same time.

2. It allows a processor not in M to do anything. If a
processor is functioning properly, but is isolated from M
because of communicabtion failure, we might want it to stop
producing output. (Of course, there may be situations in
which it is better to do something than to stop, in which
case we would want the processor to keep producing the best
output it can.)

To solve both problems, it is necessary to enable a properly
functioning processor to become aware that it is no longer part of any
"large enough" properly functioning subnetwork M that is correctly
executing the system machine. This could have happened for two
reasons: (1) it lost communication with the rest of the system, or

(2) it failed. The first case is easy to check for: the processor

1If‘ a processor is faulty, we cannot expect to be able to stop
it from doing anything.
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just continually checks to make sure that it is using the same input
as a "large enough" number of the other processors. It can turn
itself off if it does not hear from enough other processors within a

prescribed period of time.

Fajlure can be divided into two subcases: (1) hard failures that
lead to detectable errors -- i.e., errors that can be detected by
comparing the processor's output with the output of other processors,
and (2) transient failures whose only result is to leave the processor
with an incorrect version of the system machine state -- e.g., that
causes it to have an incorrect value for some data item in the
distribputed database example. The first type of failure is easily
detected. The second kind of failure leads to the problem of the
*lurking fault"™ -- a fault that may not manifest itself until some
future time. This can be extremely dangerous. For example, in the
autopilot system, this error might only be discovered when the
airplane enters some critical flight phase. The problem of detecting

such lurking faults is addressed in the next chapter.

When a processor has discovered that it is no longer correctly
executing the system machine, then the problem of restarting it is, in
principle, straightforward. The processor must obtain enough
information to allow it to update its version of the system machine
state, and then it can simply join in with the other processors in
executing the system machine. It must obtain redundant information
from enough other processors (authenticated if it does not have direct
communication with enough processors) to make sure that it obtains the
correct system machine state. In practice, it will be necessary to
minimize the amount of information transfer necessary to restart a
procesar, Doing this will be a difficult programming problem, which
will be very sensitive to the particular details of the system.

[There does not seem Lo be much that one can say about this problem in

general .]
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2.3.6 Formal Design Methodology
Thus far, we have been describing an informal design for a
system. There are two parts to this design:
1. The "logical"™ design -- the design of the system machine and

the mapping functions sm.input.merge and p.oubput.demergek;
and

2. The "distributed implementation" design -- the design of the
robust method for implementing the system machine on the
network of processors.

The first part is essentially the design of an ordinary,
non-distributed sequential program, and is addressed by the SRI
Hierarchical Development Methodology HDM ([ 15, 19]). Extensiouns to
the formal development methodology to permit it to handle the second
part of the design is now being explored in related work. Clearly,

further experience and further research are needed.

2.4 Verification

We now consider the problem of formally verifying the correctness
of the design. This means formally proving that the design meets the
specifications. The specifications can be separated into (1) logical
specifications and (2) performance specifications. These will be

considered separately.

2.4.1 Logical Specifications

Tne design of a robust distributed system has been split into two

subproblems:

1. Designing a sequential program for each processor k to
implement the system machine and the input/output mappings
sm.input .merge and p.output.demerge . (The parts of the
program that implement the system machine and the mapping
sm.input .merge can be the same for all processors.)

2. Designing a distributed algorithm to robustly implement the
system machine by properly synchronizing the processors'
programs.

Verification of the logical specifications involves first showing
that they are satisfied by the sequential programs that implement the
system machine and its input/output mappings on the individual
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processors, then showing that the distributed algorithm correctly
synchronizes these programs. Tne methodology for verifying that the
design of a sequential program satisfies such a logical specification
is discussed in [19]. We now consider verification of the
synchronization algorithm. We begin by describing the general work on
the formal verification of concurrent programs, after wnich we discuss

the particular problems presented by distributed systems.

2.4.1.1 Verifying Concurrent Programs
The fundamental method of verifying concurrent programs is
described in [10]. It is an extension of the basic Floyd/Hoare method
for sequential programs [5]. The method allows one to prove two types
of logical properties:
1. Safety properties that state that "something bad does not

happen" -- for example, that a bad output is not produced by
a good processor.

2. Liveness properties that state that "something good must
eventually happen" -- for example, that a good processor
eventually produces some outpub.

A safety property is proved by proving that some assertion is
invariant -- which means that if the assertion is true initially, then
it will always remain true. Liveness properties are proved by a
generalization of the type of "counting down" arguments used to prove
the termination of loops in a sequential program. The proof of a
liveness property usually requires first proving the invariance of

some assertions.

The method is completely general and can be applied to any
concurrent programming enviromnment. However, unlike the method for
sequential programs, a simple hierarchical decomposition of a proof is
not in general possible. The basic reason for this is that with
concurrent programs, two separate modules could be executed
concurrently. This leads to a type of interaction between modules
that is not present in the sequetial case. In particular, we cannot
prove the correctness of a level of design without knowing how its
modules are implemented by the lower levels. There are three possible

ways to deal with this problem.
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1. Restrict the possible forms of interaction between modules
so that dangerous concurrent execution cannot occur. For
example, one can prohibit the concurrent execution of any
two modules that access the same data. This approach is
feasible for systems that are implemented on a single
computer, since such prohibitions are easy to enforce. It
is used (for example) in the original design of PSOS [15].
However, this approach is not by itself applicable to
distributed systems, because concurrent execution is a
physical reality in a distributed system, and can only be
prevented by very costly synchronization schemes.

2. Try to develop methods for specifying modules that contain
all the information about their interaction with other
modules that is necessary to prove the correctness of the
design without having to know precisely how the modules are
specified. Two different approaches at this are described
in {11] and [12]. However, neither of these approaches have
reached the stage of being applicable to large systems.

3. Recognize that we can only prove the correctness of the
bottom level of the design, but use the hierarchical design
process to simplify the construction of this proof. This is
the approach described in [10], and is the only one now
feasible for distributed systems. However, further research
is needed to determine how well it works, and what sort of
tools are needed to make such proofs practical for large
systems.
2.4.1.2 Veryifying Distributed Concurrent Programs
The most obvious complication that distribution introduces into
the verification of concurrent programs is that the communication
mechanism must be regarded as a collection of processes -- separate
from the processes representing the processors' programs. Typically,
each communication line is represented by a process; the specification
of that process consists of a precise specification of that
communication line. Thus, there are many processes -- and the
complexity of the proof tends to vary as the square of the number of

different processes.1

Distributed synchronization algorithms seem to be inherently more
complex than nondistributed ones. When a central control mechanism

(such as a monitor in an ordinary multiprocess program) exists, the

1Two processes are not considered to be different if they execute
the same algorithm with different constants (e.g., processor number).
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invariant assertions used in the proof involve objects (such as
variables) local to that control mechanism. However, for a
distributed algorithm the assertions involve objects distributed
throughout the entire system. The proof of correctness is therefore

more "global" for a distributed algorithm, and it is more difficult to

isolate the synchronization mechanism from the rest of the system. |

[ Our initial efforts [U4] indicabte that it is possible to formally
verify distributed algorithms. However, much more experience is
needed to determine the limits of the current method, and wnat sort of

9 further development is necessary.

2.4.2 Performance Specifications

Robustness specifications of the system become part of the

logical specification of the synchronization algorithm. The
requirement that the system performs correctly if "enough" components
are functioning properly becomes the requirement that the
synchronization algorithm satisfy certain correctness properties as
long as "enough" of its processes execute their algorithms correctly.
An informal proof of such a requirement is contained in (9]. No
formal proofs of such robustness properties have been undertaken. We
believe that the formal methods described above are adequate to verify
these properties, and we intend to attempt such formal proofs in the

future.

Other performance specifications of the system become performance
specifications for the synchronization algorithm. To verify that
these specifications are met, certain performance specifications must
be placed on the processors' algorithms for implementing the system
machine and its input/output mappings. For example, consider the
problem of verifying the requirement for the distributed database
system that an acknowledgement be generated within 0.5 seconds of the
receipt of a request. The delay in generating the acknowledgement for
a request received at time Ti consists of two parts: (1) the time
needed for a processor to learn what the system machine input at time
T, should be, and (2) the time taken by the processor to process the

£
list of input requests to produce its output. The first part of the
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delay is caused by the synchronization algorithm itself; the second
part is caused by the processor's program that implements the system
machine and its input/output mappings. The second part is usually
assumed to be much smaller than the first, since it does not involve

any interprocessor communication delays.

An informal verification of a synchronization algorithm's
performance is given in [9]. Formal methods for verifying performance
have not been developed. It appears to be possible to formally prove
worst-case execution time bounds for sequential programs -- i.e., to
formally derive upper bounds on the execution times of programs in
terms of the execubion times of individual program statements. A
method for doing this for concurrent programs was also indicated in
[10]. However, it appears that this method will give upper bounds
that are so pessimistic they are useless. Further research is needed
to develop a method that provides more realistic upper bounds on

execution times.

We know of no practical methods for formally verifying any other
type of temporal specification -- e.g., specifications of average
execution times. Since such properties are important, it would be
very useful to know how to verify them. Hence, research should be

undertaken in this area.

Other types of performance specifications seem to require ad hoc
approaches to their verification. For example, it should be easy to
determine how many messages an algorithm can generate, so
specifications of maximum communication traffic should be easy to
verify. However, we know of no general methodology for verifying such

performance specifications.
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3. Chapter 3: Fault Diagnosis in DDP Systems

3.1 Introduction

It is already well recognized and appreciated that fault
tolerance is an essential requirement. for the DDP system currently
under development for BMD application. Wnat may not be so well
appreciated is the extent to which the requirement of fault tolerance
may modify, and even dictate, design considerations normally governed
by other more familliar factors in a conventional non-fault-tolerant
design. Many of the issues and implications of fault tolerance in
large digital systems have only recently been understood. Others,
especially those having to do with computer networks, are still
awaiting clarification, test, and practical application. It is very
important, therefore, that fault-tolerance issues be given serious
attention at an early stage in DDP-system planning and architectural
design. 1f the last decade of digital system design has taught us
anything, it is that certain system-wide features, such as security,
reliability (including diagnosability and survivability) and
extendibility, must be provided for early and not handled later as an

add-on or retrofit.

The long-range objective of the diagnosis investigation, whose
initial stage is reported in this chapter, is to provide a strategy,
algorithms, and design techniques for the diagnosis of DDP networks of

the class represented by the BMD system.

Diagnosis includes the detection, location, and handling of
faults, wnich may arise from either random or malicious causes. The
purpose of diagnosis is to enable the whole system to continue to
carry out its mission as effectively as possible, even in the presence

of multiple faulty units.

The goals of this first year's study have been:

- To achieve a fundamental understanding of fault diagnosis in
DDP systems

- To identify the main issues and problems requiring fucther
research
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- To relate these issues and problems Lo other aspects of the
design

- To explore approaches to the solution of any of these
problems for which conventional approaches appear to be
inadequate, to the extent that time and funds permit.

The next section of this chapter discusses the application of
general diagnostic theory to DDP systems; fault location is the main
area in which research results are needed. Next, a system model
appropriate to fault diagnosis is presented. The fault location
problem is then discussed in greater detail: GLhe questions that need
to be answered, relevant published and new results on local testing,
and some new results on communication and decision requirements in
computer networks. The chapter closes with a summary of the major

problems and results and our recommendations for continuing research.
3.2 Application of Diagnostic Theory to DDP Networks

3.2.1 Fault Accommodation

The 1life history of a fault in any large system for which fault
accommodation is provided is marked by four events, shown in Figure
3.1; namely:

Fault occurrence (FO): The fault occurs and remains latent
until it gives rise to an error indication.

“aulb detection (FD): The presence of the fault becomes known at
~ome level within the system, but its exact location is not
necessarily and not usually known.

Fault location (FL): As a result of repeated errors or
deliberate diagnostic steps, the location of the fault is
determined to a fineness determined by the size of the
smallest replaceable or reconfigurable unit (SRU).

Fault handling (FH): Finally, action is taken to circumvent the
harmful effects of the fault through masking, repair,
or reconfiguration.

Note that a "fault" need not be a hardware failure but can also
arise from a design or programming mistake, a signal transient, or

another externally induced modification of data or programs.

In this sequence, then, the DDP network accommodates the
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occurrence of a fault (FO) in three successive operations: FD, FL,
and FH. It is then ready to handle a second fault by the same
sequence, albeit with somewhat reduced resources (a smaller network).
This process continues with succeeding faults as long as enough of the
network remains to carry out the mission-oriented functions and the

FD, FL, and FH operations themselves.

3.2.2 Multiple Faults

In many systems faults occur randomly and infrequently, so that
the chance that the sequence shown in Figure 1 might be interrupted by
a second fault can be presumed to be negligible. In a system such as
large DDP networks of BMD type, however, the probability of
simultaneous or correlated faults can become so large -- or the times
taken for FD, FL and FH operations so long -- that the possibility of
a second fault arising while the first one is still being diagnosed
can no longer be neglected. Some of the possiole sequences of FO, FD,

FL,and FH events are illustrated in Figure 2.

If the chance of near simultaneous faults is not negligibly
small, the designer has to provide specifically for a diagnostic
capability to deal with two or more faults occurring at about the same
time. Multiple failures can result from the chance occurrence of a
widespread transient, such as a lightening strike; from a hardware or
program weakness that can be manifested simultaneously in replicated
units (such as similar nodes of a network); or from a malicious act,
such as sabotage or enemy attack, which could disable two or more
units at the same time. The time required for FL and FH can be kept

small by careful system design.

It will become apparent shortly (if it is not immediately
obvious) that the system cost of multiple fault accommodation --
measured in terms of required hardware, communication capacity,
running times of programs, and file sizes -- increases very rapidly
with the number t of simultaneous faults that need to be diagnosed
simultaneously. Consequently, in specifying overall system

requirements for a network, careful attention is required to:
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- Determine the required overall system reliability

- Estimate the achievable reliability of individual SRUs and
the communication links

- Determine the likelihood of occurrence of up to t
near-simultaneous faults.

3.2.3 Fault Detection

Currently available FD techniques are many and varied; they
encompass both hardware and software at all levels of design. The
cost of adding or incorporating FD into a design is usually relatively
small, Aormally less than 10 percent, and in any case is much less

than the redundancy required for reconfiguration or masking.

New FD techniques are not likely to be required in DDP systeams.
Design choices must be made, of course, but the costs and
effectiveness of each alternative can readily be determined from
information available in the course of design. No fundamental
difficulties in making these decisions are anticipated. Therefore,
even though FD will surely play an important role in the actual design
of a DDP system, particularly as the essential element of FL, it is

not a critical research issue.

3.2.4 Fault Location

FL techniques deal mainly with the problem of how to select a non
redundant set of FD tests that are collectively sufficient to pinpoint
one or more faults to the SRUs in which they fall. Some systematic
methods for FL are now available, but they were devised for gate
networks, memories, and small Integrated Circuit packages and are not
directly applicable to networks whose SRUs are the size of
minicomputers or larger. There is only a little in the technical
literature and in current practice to draw from in deriving a strategy
and general procedure for identifying the faulty elements in a
distributed network. In fact, the FL problem for DDP networks has not
even been adequately formulated, nor have the critical aspects of the
problem been identified. These matters are discussed in Section 3.4

below.
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3.2.5 Fault Handling

The only effective method for FH in a system containing as much
local autonomy as a DDP network, yet requiring rapid recovery
following failure, is by programmed reconfiguration. Repair is too
slow, and hardware masking is too costly. Moreover, to protect
against the propagating effects of typical hardware faults, the SRUs
must be programmmatically and electrically isolated from one another
to the maximum extent possiple consistent with effective
communication. Reconfiguration must be controlled from a high,
software level of the system hierarchy. Programmatic isolation of
SRUs demands that all inter-SRU communication be carried out in such a
manner that erratic or badly timed data from one SRU cannot block
correct operation of another. For example, all data transfers may be
carried out according to the rule that no item of information received
from another SRU will be used until it has been confirmed by
comparison with corresponding items of identical information recovered
from other SRUs. Electrical isolation is required to reduce to very
low the probability that a faulty SRU may forcibly jam the operation
of another, non-faulty SRU to which it is connected by a communication
link. Software and hardware fault isolation require some design

effort but present no serious conceptual problems.

Handling faults by reconfiguration, assuming the minimal degree
of fault isolation suggested above, is actually the same as providing
a scheduling/assignment (S/A) algorithm for a fault-free network. The
only apparent difference is that some of the SRUs and/or links of the
fault-tolerant network will already have been identified as faulbty and
will have been disabled or will be disregarded for S/A purposes. The
DDP network architecture must anticipate these losses by providing
enough redundancy and flexibility of function that satisfactory S/A
can be carried cut for critical task programs, in the face of all
possible deletions of disabled SRUs and/or links up to tne allowed
maximum number t. The S/A algorithm is otherwise independent of fault
diagnosis procedures; that is, it does not depend on how the faulty
elements have been identified, nor does it dictate how the FD and FL

procedures should be carried out.
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An efficient and effective S/A algorithm is an important part of
the distributed operating system of any DDP network, with or without
fault tolerance. It will be used fully in the fault recovery process.
However, its design is not greatly affected by the diagnostic strategy
adopted and the diagnostic procedures used, and this strategy and
these procedures do not themselves depend critically on the S/A

algorithm.

FL therefore emerges as the only one of the three steps of fault

diagnosis requiring serious research attention.

3.3 System Model for Fault Diagnosis

Before delving more deeply into the FL problem, it will be
necessary to set up a model of the class of DDP networks under
consideration. This model is best expressed mathematically in terms

of a graph G with suitably labeled nodes and edges.

The conventional and obvious representation will be employed. It
identifies the nodes of the graph with the SRUs of the DDP network --
not all of which are necessarily separated geographically. The edges
of the graph correspond to the direct communication links between
SRUs. These are presumably bidirectional, though there is no
implication that the communication capacities (bandwidths) in the two

directions are the same. A typical small graph G is shown in Fig. 3.

In a full network model created for DDP design, each node would

be characterized (labeled) to indicabte the type of processing and

memory capabilities that it provides. Edges would be labeled

similarly t. indicate the type and grade of communication. For

diagnosis, however, it is not necessary to label the nodes fully but

only to distinguish three types:

- Executive nodes. Full power for controlling the network
resides in this set of nodes. This capability includes the
diagnostic interpretation of sets of reports from tests
conducted locally in the network for FL, most if not all of
the operating system, and the S/A program used for
reconfiguration control. The subset of executive nodes can
be expected to be richly coupled by edges.

- Regular nodes. These have the capability to best themselves
oik
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and other nodes, and can be tested by others, but have no
autnority to take action on the results of these tests
beyond sending the results to the executive nodes.

- Slave nodes. These can be tested by other nodes, but have
no power to cest other nodes.

This graph model can also aid the development of an S/A

algorithm. For this purpose each network task would be described by a
set of alternative labeled subgraphs (each normally consisting of one
or a few intercounected nodes) sufficient to execute that task. The
corresponding running-time estimates would also be specified. Again,
nhowever, for diagnostic purposes it is adequate and merely to assume

& that every node has sufficient processing and memory capability to (1)
store and apply testing programs to itself and (for non-slave nodes)
to selected neighboring nodes, (2) initiate the transmission of the
test results to all of its neighbors and (3) relay all to its

neighbors. received messages regarding test results.

Another extension, to be considered later, provides for several
fault status levels. It has been assumed so far that each node (SRU)
is either faulty or nonfaulty. Actually, it will probably be
worthwhile to distinguish between nodal faults having different
probabilities and different consequences, thereby providing various
levels of confidence and utility at individual nodes. It will not
then be necessary to reconfigure a node out of use for a fault that
affects only an infrequently run, low-priority program; the first
occasion of a transient faulb; or a difficult-to-locate fault that may
have actually occurred in another node. Also, a properly designed
node will usually retain its capability for relaying received messages
to other nodes, even though it is crippled internally. Finally, it
may be possible to retain memory readout capability from a node
despite failure of its procesor, so that data and programs can be

transferred to a non-faulty node rather than be completely lost.

Inclusion of any of these alternatives will require an increase
in the number of levels of fault status to more than two. This

extension will complicate the FD, FL, and FH programs but it can be

expected to yield much higher network reliability for a given degree t
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of fault protection.

3.4 Fault Location in DDP Networks
FL requires three steps:

- Testing, in which tests are conducted among small sets of
nodes in the network.

- Communication, in which the test results are relayed through
the network to the executive nodes.

- Decoding, in which the executive nodes calculate which nodes
of the network are actually faulty.

At the global (network) level, all three steps must somehow be

carried out correctly, even in the presence of up to t nodal faults.

These three steps will now be discussed one at a time.

1. Testing
Two types of error reports from testing can be distinguished:

1. A report generated spontaneously by a node and communicated
to its neighbors as a result of its own self-diagnosis
action.

2. A report generated by one or more neighbors of a node as a
result of testing operations conducted on that node by these
neighbors.

Type 1 can probably be relied on to detect, during normal
operation, almost all faults at the relatively low cost required for
even high-level self-diagnosis. Type 2, though more expensive in time
and hardware, will be necessary to ferret out the remaining faults
whose probability is lower but whose effects on overall reliability
can be much greater: latent and lurking (long-term latent) faults,
and the various multiple faults affecting two or more nodes (SRUs) at
about the same time. Only type 2 requires the development of a test
strategy and an algorithm for fault diagnosis.

In both types the initial error report resides in the node in

question or its neighbors, ready to be recommunicated through the

network to the executive nodes.
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In the simplest case, a local test consists of a node A of the
network testing another node B, as indicated in the two-node subgraph
shown in Figure 4. The directed edge or arc between A and B
distingul shes which node is the tester and which is being tested.

(The arrow designates the direction of control -- not information
flow, wnich must be bidirectional.) For testing purposes, then, the
testing graph takes the form of a directed graph GT whose nodes
correspond to those of the original graph G (hence, to the SRUs of the
DDP network), but whose arcs indicate which nodes are capable of
testing which others. Clearly, the set of arcs of GT must be a subset
of the set of edges of G. The graph shown in Figure 5 illustrates a
possible testing graph; it corresponds to the example given in Figure

4

The testing problem is not trivial. An error report e from the
test A-->B reflects the true failure status fB of node B (e=0 if B is
nonfaulty; e=1 if B is faulty), but only if A is itself nonfaulty
(fA=0). If A is faultby (fA=1), then the test result e may be 0 or 1
and is meaningless (e=X). This observation, summarized in Table 3.,
permits an e-label (0, 1, or X) to be attached to every arc in the

graph G provided only that all nodes are labeled with their f-values

T’
(0 or 1). In other words, if the fault status of every node is given,

one may readily determine the values of all error reports.

The inverse problem -- that of determining a consistent node
labeling corresponding to a given arc labeling -- is the decoding step
mentioned above and discussed below. A valid solution must be
independent of the Xs; that is, it must held for an arbitrary
assignment of values 0 and 1 to the Xs. It is obvious that if there
are too many Xs, complete decoding is impossible. For any given graph
GT’ only a maximum number of faulby nodes may be located. The graph
must be designed so that a redundant and overlapping pattern of local

tests will accurately locate up to t faults in the network.

Actually, local testing may take place in ways other than that
indicated in Figure U4(a). The self-test shown in Figure 4(b)

corresponds to an error report of type 1. Even though most faults can

54




— T ——

CHAPTER 3 FAULT DIAGNOSIS IN DDP SYSTEMS

be expected to reveal themselves first during the running of a regular
task program, a self-test is of limited use for FL since, as indicated
in Table 4(b), the test result e = 0 provides no definitive fault
information at all. Hence, the fault coverage of self-testing can be
expected to be low. Indeed, no separate segment of hardware or

program can ever be counted on to check fully its own fault st,al',us.1

Other modes of local testing are indicated in the rest of Figure
4. The alternative in Figure 4(c) is especially worth noting because,
if nodes A and B are similar, identical programs may be run on them
and the key variables can be compared frequently for agreement. Thus,
fault coverage is high and there is prompt detection (normally with
local location as well) when a fault first appears. In Figure 4(d)
nodes A and C are required to test B (either or both of the dashed
arcs may be missing), so a failure in either A or C can render the
test result meaningless. Finally, in Figure 4(e) node A tests B and D
simultaneously, but B and D each participate in the testing of the
other. Clearly, many other test modes are possible. (A general
network testing model encompassing these and other testing modes is
described by Russell and Kime [20, 21].)

With this background, it can be appreciated that there are
important fundamental questions of how the size and interconnection
structure of a network are related to the type and extent of local
testing required for a desired degree of fault locatability. Most
crucial for design purposes, it will be necessary to determine the
limits on the size and interconnection structure, and the types of
local tests required, as functions of the prescribed number, t, of
faults that are to be accommodated simultaneously. The total number
of faults that can be accommodated before repair may also be relevant.
These questions must be answered before the architectural design of

the DDP network can be completed.

1The usefulness of self-tests may be improved statistically by
"stretching" task programs into a diagnostic mode wherein they are run
with artifical inputs, blocked outputs, and internal changes arranged
to flex little-used portion of the hardware and software of the SRU.
Nevertheless, the limitations of self-testing are fundamental.
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Other problems in local testing, equally important but not so
urgent, involve extensions to the fault model assumed here: how to
handle faults on communication links (edges), transient and
intermittent faults, and multiple fault status levels (nodal faults
that are less than catastrophic).

A few results are available in the technical literature for the
A-->B mode of the general testing problem [Figure 4(a)]. Preparata et
al [17] have derived necessary conditions for the minimal size and the
connection pattern of networks capable of locating t faults at the
same time (one-step FL). They showed that the number n of nodes in GT
must be at least 2t + 1, and each node i must have in-degree dini'z t
(Parallel arcs and self-loops are disallowed.) They also determined a
family of node-symmetric networks based on star polygon graphs that
achieve these numerical bounds exactly and are one-step
t-fault-locatable. When multiple faults can be located in sequence
instead of in one step, weaker limits apply: in terms of the number N
of arcs, we have N > n + 2t +2, instead of N > nt. This bound also is

snown by construction to be achievable for t-fault location.

Hakimi and Amin [6] derived three sets of necessary and
sufficient conditions for one-step t-fault locatability in A-->B
testing. The first set contains the two inequalities stated above ~--
N2>2t + 1 and d1ni 2 t for every node i-- plus a third condition: no
two nodes test each other. That is, the first two inequalities must
continue to hold for at least one set of arc removals that break all
two-node loops of the type shown in Figure 4(c). The second set of
necessary and sufficient conditions requires that N > 2t + 1 and c(GT)
2 b, where ¢ is the connectivity, defined to be the smallest number of
nodes of the graph whose removal yields a graph that is not strongly
connected. (The in-degree condition is satisfied automatically.) The
third set of necessary and sufficient conditions contains the same two
inequalities stated above, plus a third requirement that says, in
effect, that every subset of n-2t+p nodes must have more than p
successors, for all p =0, 1, « t=1,

All three sets of conditions are very general but algorithmically
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awkward and would be difficult to implement efficiently. More
workapole conditions need to be derived, not only for the A-->B case
but for other testing modes as well. It has not yet been demonstrated

that this algorithmic complexity is fundamentally necessary.

2. Communicabtion

The distribution of test results around the network, and to the
executive nodes in particular, is one instance of the interactive
consistency problem discussed in Chapter 2. The "value" of the
message originating at each node A is now the set of outcomes of the
tests performed by A on its neighbors in the graph GT' Note that if B

is faulty, the test result e need not be the same as the results of

AB

other tests of B -- for example, e -- unless we also assume

DB’ “EB’
that all tests of node B were identical and executed effectively
simultaneously. This assumption is probably not justified for
practical networks, in view of the possibility of marginal and
transient faults if not for other reasons. Consequently, it cannot
realistically be assumed that all fault-free testors of a given node

will agree with one another.

Tne interactive consistency bound N > 3t presented in Section 2
is directly applicable to the communication problem of diagnosis only
when the graph G is complete and all nodes are executive nodes. Thus,
this bound and algorithm need to be extended to cover the more
arbitrary graphs under consideration here. Also, just as for testing,
an extension is needed to allow for faults on communication links
(edges) and certain multiple fault levels within nodes. Finally, it
may be necessary to remove the assumption that the identity of the
sender of a communicated message is always known and not subject to

error.

The heaviest communication load requiring interactive counsistency
will arise from self tests rather than A-->B or other test modes, but

the communication requirements are otherwise the same in both cases.

These extensions will require some investigative effort, but none

of them appear to be insurmountable.
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3. Decoding

The executive nodes must be provided in sufficient number nE to
compensate for faults in at most t of them -- namely, g 2 3t.
Assuming that each of them has received reports from all tests that
have been performed, the problem remains of determining from this
information which nodes are actually faulty. As a consequence of
interactive consistency, one may be assured that all non-faulty
executive nodes are working with the same set of test results. (They
may have a common NIL value for some node, indicating the lack of an
agreeing majority among reports received from that node by different
routes). Consequently, as long as they employ the same decoding
algorithm they will all reach the same conclusion about which nodes

are faulty.

An example of the decoding problem for A-->B testing is

illustrated in the three parts of Figure 6. The graph G, in Figure

6(a) has been node-labeled with a hypothetical pattern o? node faults
(1s). In Figure 6(b) the resultant error reports are appended as
labels to the arcs of GT' In Figure 6(c) an arbitrary assignment of
Os and 1s to the Xs has been made, and the information regarding which
nodes are at fault has been deleted. A successful decoding algorithm

must regenerate these node labels from the arc labels.

Even when a network is known to be t-fault locatable, no general
decoding algorithm is now available. This problem is similar to the
classic decoding problem in coding theory; many codes have been
devised whose error-correcting properties are known but for which

decoding algorithms have never been found.

In general the solution to the decoding problem is not unique.
For example, an arbitrary directed graph having an arc labeling
consisting of all 0s could have arisen from a node labeling consisting
of all 0s (no faults at all) or all 1s (all nodes faulty). Given an
arc labeling, therefore, we seek the particular corresponding node
labeling having the least number of 1s (the fewest faults)--that is,
the labeling of minimum weight. Actually, we are interested mainly in
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those sets of arc labelings that could have risen from a maximum of t
node faults. (Other arc labelings resulting from more than t faults
may or may not be decodable.) The decoding problem is therefore one of
determining for a given graph GT the minimum-weight node labeling
corresponding to any arc labeling that can arise (according to Table

3.4) from a node labeling having no more than t 1s.

A solution to this problem will now be presented for A-->B
testing.

Following Meyer and Masson [14], the full set of test results may
be conveniently represented in the form of an n x n matrix E whose
general element eij is 0 or 1, according to whether the test of node j
by node i did not or did indicate an error. Nonexistent arcs in G are
designated with an "unspecified" value, eisz. Each row Ei of this
matrix designates the collective result of all tests performed by node
i, and each column vector Ejb designates the collective result of all

tests performed on node j.

Note first that for a single fault at node i, all n-1 row vectors
representing nonfaulty tester nodes must agree with one arother in
their non-U components , even in column i where any non-U value must
be 1. When the number of faulty nodes does not exceed t, E will have
at least n-t such agreeing rows, except possibly in columns
corresponding to faulty nodes. Rows representing faulty test nodes
will contain arbitrary values (Xs) in their non-U components; they may
or may not agree with the other rows. Columns correspondng to faulty
nodes will contain 1s except in rows also corresponding to faulty

nodes, where the entries are arbitrary.

In these terms, then, the decoding problem is one of finding a

L Ei1’ v Eip of the error matrix E that

agree in all of their non-U components, except possibly in Columns i1,

maximal set of rows E

i2, ... 1ip. Restated, the problem is one of deleting the least
number of rows and their corresponding columns such that all remaining

rows agree in their non-U components.

The set DE of rows and columns to be deleted may be readily
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identified by calculating the matrix product

F = BEC

using ordinary scalar addition and a special multiplication rule given
by the table

0., o 0 1
)
|

ui o 0 0
1
1

T 0 0

The entry fij of the (symmetric) matrix F will be 0 if and only
if rows i and j of E agree perfectly in their non-U components; fij
will be £ t if the disagreement is limited to t components and fij

will be >t otherwise. The rows of F, all of whose components are { t,
then define the corresponding rows of E over which agreement holds.
Let C be the binary consensus obtained by summing vector over all of
these agreeing rows (formed, for example, by boolean addition with Us
replaced by 0s). The positions of the 18 in C identify the faulty

nodes precisely.T

For testing in other than A-->B mode, a systematic procedure is
not available. This is an outstanding problem whose solution is
required before diagnosis programs for a DDP network can be written.
If a practical decoding algorithm cannot be found for the class of
networks known to satisfy the above conditions for t-fault
locatability, then additional nodes or interconnections must be added
to the network to permit decoding, thereby affecting the network
architecture. This risk of network redesign must be acknowledged, but
it is surely very low.

Two of the extensions mentioned in the last two subsections also

1This last step of returning to E to form C is necessary because one
or more rows of E representing faulty nodes may happen to agree with
the rows representing nonfaulty nodes, except in columns representing
faulty nodes.
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need to be made: the accommodation of faults on links as well as

nodes, and provision for multiple fault status levels within nodes.

3.5 Summary and Conclusions
We have described the history of a fault from occurrence, through

detection and location, to handling by recounfiguration.

The most important observation is that the complexity required
for automatic fault diagnosis depends critically on the maximum number
t of simultaneous or near-simultaneous faults that must be
accommodated. The probability that multiple faults will need to be
dealt with at the same time can be reduced by (1) running
high-coverage FD programs frequently, (2) reducing the running time of
FL and FH programs, and (3) following good hardware and software
design practice to minimize the probability of highly correlated
faults between similar units. In a system such as the BMD DDP
network, protection must also be provided against maliciously induced
faults that could appear on several nodes and/or links simultaneously.
Further analysis of these fault conditions will be necessary, obut it
seems likely that tolerance against simultaneous malicious faults will
dominate the requirements for network redundancy and for diagnostic
capability. In any case, the minimum acceptable value of t must be

determined from system considerations.

It has also been pointed out that, of the three aspects of
diagnosis for which hardware and programs must be provided (FD,FL, and
FH), virtually all of the unsolved problems in diagnosis concern FL.
Further, all three steps of FL -- testing, communication, and decoding
-- contain research problems still unsolved for the types of DDP

networks expected in the envisioned application.

Work on these research problems should be guided by the goals of
(1) determining how the costs and capabilities of FL programs are
related to (a) the value of the parameter t and the classes of faults
that can occur, and (b) the main design parameters (number and types
of SRUs, and number and configuration of inter-SRU communication

links); and (2) finding good algorithms for allocating local tests,
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for the communication protocol, and for decoding test results prior to
reconfiguration.

The major conclusions to be drawn from this study of the

diagnostic aspects of fault tolerance in DDP systems are:

1. The maximum value t of faults to be accommodated
simultaneously should be determined as soon as possible from
overall system requirements.

2. Research is needed for all three steps of FL: testing,

communication, and decoding. Testing results are needed
first.

3. Diagnosis requirements are crucial to the overall BMD system
design, and should be incorporated early in the design
effort, not later as an add-on.

i
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FIGURE 1 LIFE CYCLE OF A FAULT.

FO = Fault Occurrence; FD = Fault Detection; FL = Fault Location; FH = Fault Handled.
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FIGURE 2 LIFE CYCLES OF SOME POSSIBLE MULTIPLE FAULTS
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FIGURE 3 AN ILLUSTRATIVE EXAMPLE OF THE GRAPH OF A DDP NETWORK,

SHOWING ITS SMALLEST RECONFIGURABLE UNITS (SRUs) AND
THEIR INTERCONNECTIONS

@V el
a b c

Testing

o g Q Indirect
o ] and Multiple
D

FIGURE 4 SOME POSSIBLE TESTING MODES.

(a) Node A tests Node B; (b) Self-test of A by A; (c) A and B test each other;
(d) A tests C while C tests B (and perhaps other tests as well); (e) A supervises
joint B-D test.
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FIGURE 5 ONE POSSIBLE TESTING GRAPH CORRESPONDING TO THE
DDP NETWORK GRAPH SHOWN IN FIGURE 3

FIGURE 6 AN EXAMPLE OF A TESTING GRAPH ILLUSTRATING:

(a) Node labeling (SRU fault statuses); (b) Derivation of arc labeling (error reports)
from node labeling; (c) The reverse problem of determining node labeling from arc
labeling.
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Table 1

ERROR TABLES CORRESPONDING TO FIGURE 4 (a) AND (b).

fas fB = fault statuses of Nodes A and B (0 = nonfaulty, 1 = faulty);
e = error report from test (0 = noerror, 1 = error, x = test result

ambiguous).
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