
AD—A0 71 030 SRI INTERNATIONAL tPtO PARK CA COMPUTER SCIENCE LAB F/s 9/2FORMAL TECI IIQItS FOR FAULT TOLERANCE IN DISTRIBUTED DATA PROCE—ETC(U)APR 79 J GOLDBERG. W KAUTZ. L LAMPORT DASG6O—75—C—oo;o(RECLASSIFIED

_ _ EtI EJ U
_ _ _ _

•
_ _ _ _ _

_U!U WU !E
IB

10 ~~~~~~~~~~~

~~ . ~~32 MI22

I p HIII~° *

HHI~ilFi l ~ 111111’. nui~
4

MICROCOPY RESOLUTION TEST CI-IA~T

~~ BU REA ~

T~~~~~~~EVEL~~~~~~~~~~FORMAL TECHNIQUES FOR FAULT-
TOLERANCE IN DISTRIBUTED DATA
PROCESSING (DDP)

Final Reporl

SRI Projec t 7242
Contract N~. DASG8O- : 3-C-0046

April 3 , 1979

By: Jack Goldberg. Project Leader and Director
William H. Kautz, Stan Scientist
Leslie Lamport , Computer Scientist
Peter G. Neumann, Program Manager
Computer Science Laboratory
Computer Science and Technology Division

Prepared tor:

Ballistic Missile Defense Advanced Technology Center
P.O. Box 1500
Huntsville, Al abama 35807

Attention: Mr. J.E. Scalf
I D C•

~~~1EPflh7

DISTIUBUTION STATEMENT A
CI~~ .Apptoved for public release;

DistribUtiOn Unlimited

SRI International
333 Ravenswood Avenue

__________ 
Menl o Park , Calif orni a 94025

— (415) 326-6200

~ 
Cable: SRI INTL MNP
TWX: 910-373-1246

l~~
. ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 , REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

Final Report

-
4. T I T L E land Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

• (\ Formal Techniques for Fault—Tolerance in /. Final Jep.rt
Distributed Data Processing (DDP),.

• • • 6. PERFORMING ORG. REPORT N U M B E R

7 . AUTHOR(s)

• • - 8. CONTRACT OR GRANT NUMBER(s)

7 ~~; Jack Goldbe rg, WilliamlKautz, Leslie Lamport ,
~~ DAsc6o—7 8—C—oo46 ’1and Peter Neumann • -. 4

9. PERFORMING ORGANIZAT ION NAME AND ADDRESS 10. PROGRAM ELEMENT , PROJECT . TA SK
AREA & WORK UNIT NUMBERS

SRI International-
333 Ravenswood Avenue _~-J/~

.
r~~~ 5~&~~ Pr ojec t 7242

Men lo Park , CA 94025 -. -- •
I .

12. REPORT DATE 13. NO. OF PAGES
11 . CONTROLLING OFFICE NAME AND ADDRESS

• . -) Anr ~~~~~~~~~~~~~~ 9),1/ • .• i~~. SECtffis~PP et*St (of this report)

• Unclassified
14. MONITORING AGENCY NAME & ADDRESS (If dlff . from ControllIng Office)

15e. DECLASSIF ICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of th Is report)

Distribution of this document is unlimited . It may be released to the
Clearinghouse , Department of Commerce, for sale to the general public .

17 . DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20. If different from report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse s ide If necessary and identify by block number)

fault tolerance multip le da ta sets
d istributed data processing diagnosability
hierarchical struc ture
processing ne tworks

20. ABSTRACT (Continue on reverse side if necessary and identIf y by block number)
—

~ Distributed data processing can lead to systems with grea tly improved
reliability when compared with conventional systems, and can offer flexible
strategies for redundancy, self—testing, and reconfiguration . DDP systems also
have poten tial advan tages in securi ty, efficiency , and evolvability. The work
in this contract is aimed at providing a suitable theoretical basis for the
developmen t of prac tical techniques for DDP system design and verification.
Three fundamental issues have been investigated and are reported here :
hierarchical structure in DDP systetns ;achievement of consistent redundant data .~~

~~~~~ FORM 1A~~~~~ - • i /
1 JAN 73 I~IF’i) Unclassified ~~~

‘ 
-
, 

-, 
-

EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (WIser . Des. E ntered )

1
’
. ,

hIlIL .--— ,- -, - -- ----.---- --..------——- . •
~~~~~~ 

. . .
~~~~ 

- .
~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~


SECURITY CLASSIFICATION OF THIS PAG E (When Date Entered)

19. K E Y WORDS (Continued)

JO
ABSTRACT (Cont inued)

representations in faulty networks——specification , desi gn , and validation ; and
self—diagnos~ bility in DDP networks.~~ This study indicates that the
notion of hierarchical vir tual machines is applicable to the cl ient ’s application
programs as well as to distributed operating systems (including multiprocessor
systems). A study was made of general hierarchical organizations of recovery
and initialization processes in networks with massive fault conditions. The

• study of consistency in multiple data sets poin ts out a fundamental and ser ious
problem that has not been discussed in the DDP literature . New results here

• give the precise conditions under which consistency may be achieved in a ne twork
containing multiple faults of the “erroneous” or “lying ” processor types . The
study of diagnosability include a review of existing literature on the
structure of diagnosable networks, establ ish condi tions under which mul tip le
faults can be distinguished and located in DDP networks , and iden t i fy some
key research problems in DDP—network diagnostics that need to be solved for
the BMD application .

FORM 1AW’~~ BACK
~~~~~~~~ JAN 7 3 U ~~~~~~~~~ Unclassi f ied
EDITiON OF I NOV 56 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE Wl~er~ Osts E ntered)

• 
-
~ 

-—--
~~-~~ ~~--~~~~~~~~~~~ —‘-- • -~~— - - - - -• ,• • • -- • -



Table of Contents

1. Chapter 1: The Use of Hierarchical Structure in DDP Systems 2
1.1 Fun d amental s of’ Hierarchical DDP 5
1.2 Conformable Hierarchies and Controllable Distributed Systems 7
1.3 Control of Performance, Degra dat ion , Hierarchical. Recovery, 9

and Reconf igurat ion
1.4 An Illustration : Distributed Implementations of PSOS 11
1.5 Futur e Research Directions 14
2. chapter 2: Formal Specification, Design , and Validation of 19

Robust DDP Systems
2.1 Robustness and Reliability 19
2.2 Specification 19

2.2.1 What is a Specification? 19
2.2.2 How To Specify a System —- an In formal Discussion 21
2.2.3 Formal Specification 25

2.2.3.1 The System Machine 25
2.2.3.2 The System Machine / Processor Relation 27
2.2.3.3 Performance Specification 27

• 2.2.4 A Hierarchy of’ System Machines 28
2.3 Design 29

• 2.3.1 Basic Problem 29
p 2.3.2 Interactive Consistency with Perfect Communication 31

2.3.3 Interactive Consistency —— General Case 36
2.3.4 Clock Synchronization 37
2.3.5 Other Implementation Problems 38
2.3.6 Formal Design Methodology 40

2.4 Verification 40
2.4.1 Logical Specifications 40

2.4.1.1 Verifying Concurrent Programs 4 1
2.4.1.2 Veryifyirig Distributed Concurrent Programs 42

2.4.2 Performance Specifications 43
3. Chapter 3: Faul t Diagnosis in DDP Systems 45
3.1 Introduction 45
3.2 Application of Diagnostic Theory to DDP Networks 46

3.2.1 Fault Accommodation 46
3.2.2 Multiple Faults 47
3.2.3 Fault Detection 48
3.2.4 Fault Location 48
3.2.5 Fault Handling 49

3.3 System ~~del for Fault Diagnosis 50
3. 4 Fault Location in DDP Networks 52
3.5 Summary and Conclusions 60

Accession For
• NTIS Gf~ &I

DDC TA~
Un anno un ced
Ju~t i f i c at ior ~___________

By____________
Dist r i~’utio n/

Avail aud /or
Dist special

V

- ,

- • - -- --
~~~~~~~~~~~~~~~~ ~~- - ~~~ - •-- ~~~-- - - 

~~~~~~
-••

~~~~~~~
‘- •

~~~~~~~~~
-
~~
- •- . - -•



-~~-. - - - -- -

INTRODUCTION

Thi s is the final report for Contract DASG6O~ 78_C~ 001I6 , for
research on fault  tolerance in distr ibuted data processing (DDP )

systems. The work is aimed at providing a suitable theoretical basis
for the development of practical techniques for DDP system design and

ver i f ica t ion .

Distr ibuted data processing can lead to systems wit h great ly

improved r e l i ab i l i t y  when compared with conventional systems , and can
offer  f lexible  strategies for redundancy , sel f—test ing , ~nd
reconfigurat ion . DDP system s al so have pot ential advantages in
securi ty,  eff ic iency , and evolvabi l i ty .

• General methods for designing and ver i fying d is t r ibu t ed
processors to achieve particular level s of r e l i ab i l ity  do not yet
exist because the poss ible faul t condit ions are very complex .

Effective design met hods can resul t from the use of formal methods for
specifying system behavior under fault conditions and for analyzing
the behavior of fau l ty  interacting systems. The use of formal methods
is mad e part icular ly desirable by the d i f f icul t ies  in testing
distr ibuted systems.

Research at SRI during 1978 and early 1979 under this contract

has focused on formal method s for fault—tolerant DDP. Three

fundamental issues have been Investigated , and are discussed in the
three chapters of this repor t .

( 1)  Hierarchical st r ucture in DDP system s (P.G .Neu m ann )
(2 )  Achievement of consistent redundant  data representations

in faul ty  networks ; specification , design , and
validation (L .L .amp ort and M.C.Pease )

(3)  Seif—diagnosibil l ty in processing networks ( W . H . K a u t z )

This study indicates that the notion of hierarchical virtual
machines Is applicable to the c l ient’ s application programs as well as

• to distr ibuted operating system s ( including multiprocessor systems) .
A stud y was mad e of general hierarchical organizations of recover y and
init ia l ization processes in networks with massive fault conditions.

The study of consistency in mult ipl e data sets points out a

fundamental and serious problem that has not been discussed in the DDP

l i t e ra ture .  New results here give the precise conditions under which

I

I.

~~ -- • - -~• -~~



~~~~ -~~~~~~ -~ - -- - - - -.--- .--.—_____

consistency may be achieved In a network containing multipl e faults of
the “erroneous” or “lying” processor types. The study of
diagnosibility has resulted in a review of existing literature on the
structure of diagnosible networks, has established conditions under
which mul t iple faul ts can be dist inguished and located in DDP
networks, and has identified some key reseach problem s in DDP—network
diagnostics that need to be solved for the BMD application .

2

-)
t _ I

- -

--- ~~- - - -- —- — t-

-

~

__ i _ - - - - - • -- .- - - - - _

~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~~~ 

- --

~

—-- .---

~~~

— — •- -—--

~~~~

-----—- - -- -- —-- --. ------ --

CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTE~4S

1. Chapter 1: The Use of Hierarchical Structure in DDP Systems

This chapter discusses the use of hierarchical  st r uct ure in the

design and ver i f ica t ion  of DDP system s, extending some of the notions
developed by the exist ing SRI Hierarchical Development Methodology
( H D M ) .  It Includes some preliminary thoughts on specific uses of
hierarchical  s t ructure to fac i l i t a te  the development of rel iable ,
secur e , e f f i c ien t , fl exible , and ver i f iable  DDP systems. The basic
goal is termed “ system controllabili ty” , by wh ich is meant that the
system shall have certain properties of good behavior , such as that it

~ must be robust ( I . e . ,  it shall tolerate faul ts  among
a given class of faul ts , possibly including the ability
of the system to reconfigure itself in a degraded
performance mode) ,

* must be free from deadlocks (largely a soft ware p rob l em ) ,
* must De free from disintegration ( i . e . ,  it shall not

collapse Into dis tr ibut ed components that can no longer
communicate) wherever possible for faults outside of
the class that it Is able to tolerate ,

* should do as wel l as possible in recovering from
nonitolerated faults.

The approach taken also notes the relation of recovery to system
initial ization and integrates the two concepts.

Hierarchically structured levels of abstract machines (also

called vir tual machines) have been used advantageously in the design

of various new systems, particularly those with advanced requirements

for reliability, recoverability, and security [22 , 15, 13). Such use

fac i l i t a tes  the verif icat ion of cr i t ical  system pro perties , and
evolutionary system growth . Initial exploration shows that very

signi f icant potent ial advantages resul t from using such st ructures in
the design of DDP systems.

The notion of virtualizationi provided b~ a level of abstraction

is illustrated In Table 1.1 (at the end of the chapter), which shows
several generic levels of abstraction . In this generic hierarchy , the

operations at each level depend only on lower-level operations for

the ir implementat ion , with the highest level at the top of the table.

The notions of fault—tolerance that are either hidden or explicitly

vIsible at that level are also indicated . Use of distribut ed



- -  — -— — -~~~-~-

CHA PT ER 1 HIERARCHICAL STRUCTURE IN DDP SYSTFi4S

implementations is indicated In upper-case letters.

Some potential advantages of hierarchical design structure in DDP

systems are as follows .

- Controllability (e.g, freedom from deadlock and from system
disintegration [loss of connectivity], continued possibility
of reconfiguration and recovery)

— E f f i c i e n t  organizat ion of faul t—tolerance  (e .g . ,  fau l t
diagnosi s , reconfiguration , and recovery)

• — Data security and system Integri ty ( isolat ion of criti cal
functions and data , with controlled sharing where desired )

- Extenidability to accommodate new functions

— Portability of the system to different hardware and to
different software configurations

— Verifiability of the design and of its implementation
( including correc tness of both computat ional and
communications functions)

Various prob lem s mus t be handled to ac hieve these potent ial
advantages. These problems deal primarily with accommodating faulty

behavior throughout the system , e.g., in data communications (errors,

excess ive delays) , in processing , in memory, and In system so f tware
( synchronization , inadequate algorithms) . In software the problems

involve recognizing and recovering from inconsistent states among the

virtual machines in different parts of the system , as wel l as among

various different level s of virtua l machines within a given part of

the system . (The problem of inconsistent states in a distribut ed

system is discussed extensively in the next chapter.) The basic

solution is to integrate recovery completely into the basic system

design . There is good understanding of this problem for integrated

systems , but some issues In distribut ed systems require further

research .

Another key problem involves designing and implementing the

system to assure i ts veri fiability, e.g., system controllability.
This problem Is being addressed in various system efforts through the

use of H~4, which employs a st rict se parat ion of des ign and

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •~~~~~~ -•-•••- . _ _



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~ .
-

~~~~ 
—-— 

~
- -~~ — --

CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYST~ 4S

Implementationi , formal specifications of each part of a system and of

the interactions among the parts, and a hierarchical design structure .

Many of its techniques contribute directly to verifiability [19].

Although the concept of hierarchical design thus has numerous

potential advantages in DDP syst ems , the existing notions developed

primarily for centralized systems need to be extended somewhat. For

exam ple , the notion of hierarchical levels of abstraction is very

appealing in designing conventional systems. This notion is also

valuab le in the design of DDP sys tem s, and can be made direc tly

applicable —— with the use of a particular view of the

intercommunications. The use of such abstraction can greatly increase

the controllability of a distribut ed system ari d the formal
verifiability of critical system properties contributing to

controllability.

The philosophical basis of the hierarchical approach used here is

that distribut ed systems of hierarchically structured components can

be designed cleanly and implemented efficiently, and that most of the

benefits of using such structure can carry over to distributed

• systems. Therefore, this rep ort  takes the view tnat each of the
component systems has a hierarchical design structure . The nature of

the intercommunications is studied , and the extent to which they too

can preserve hierarchical structure is examined . In general, there

are significant advantages to some sort of hierarchical

intercommunication (e.g., in assuring fault—tolerance , deadlock

prevention , and verifiability).

An intrinsic problem in hierarchically constituted distributed

systems Is to assure that the component hierarchies of abstraction

within the system are compatible in some constructive sense -— and

that the protocols associated with the various levels in the different

hierarchies provide adequate controllability (particularly freedom

from deadlock). The compatibility problem can be solved fairly simpl y

in a homogeneous distributed system , but is also manageable in a
nonhomogeneous system as long as the hierarchies are comparable. Thus

the notion of “conformab le” hierarchies is introduced here and its

5

1 ~ — 

- I



-

~~~~~ 

——- • -
~
- -7-—I - -

~~~~~~~~~~~

CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

• implications are discussed. In essence, two hierarchies among the

components of the DDP system are conformable If any desired

communication is restricted to take place only between two compatible

level s , one in each hierarchy . The system is then hierarchically

controllable if the in te rcommunica t ions  can be guaranteed to result in

no harmful loops —— either in control flow or in communication flow.

A hierarchi 3a1 solution to the deadlocking problem in a

nondistributed system is given by Dijkstra’s hierarchical locking

strategy [2] used in the THE system , in which deadlocks between levels

can be avoided generically through the use of hierarchical priorities ,

i.e., a downward—only locking dependence. An analogous result applies

to dis t r ibut ed system s, and Is characterized informally here. ~~e way
to achieve controllability is to constrain the communications

themselves to be hierarchically order preserving . Note that it would
also be possible to achieve a controllable system wi t hout.

hierarchically constraining the iritercomm iziications —— although much

greater care must then be taken : in the general nonhierarchical case ,

verif icat ion of each system would be required , rather than generic
verif icat ion of characteristic properties for classes of systems
adhering to particular constraints.

1.1 Fundamentals of Hierarchical DDP

Good design methodology for DDP should maintain a clear
distinction between design decisions and implementation decisions.

For exam ple , at each level of abstraction (i.e., for each abstract

machine) there is a potential choice among dif ferent  design

alternatives regarding what is to be distributed and how, and

decisions as to what should constitute the abstraction at. that level .

Within each of these design alternatives there may be several

implementation alternatives under which the abstraction can be be

realized efficiently and reliably. Several key notions are used here

to illustrate the variety of design and implementation alternatives .

Howeve r , hierarchical structure is used throughout as a framework
within which to describe the options , without having to deal with each

of the options individually.

6

I.

— - — — - - 
— - J_ _•__ ~~~~~ _ __  - - • —~~~~~~~- ~~—~~~—



r - -  -

•

CHAPTER 1 HIE R AR CHICA L ST R U CTURE I N DD P SYST EMS

SPE CIFICATION ISSUES (What is to be d i s t r i b u t ed , and how?) :

— At what level s should distribution of function take place?
What should be centralized , what distribut ed? (Note hybrid
designs.) Decisions involve security, reliability,
efficiency.

— What. is to be hidden? Should distribution be virtual or
explicit? Options exist at each level , some being dependent
on lower level s, some being independent thereupon .

— Reliability and security both imply that trust may be
necessary. What must be trusted? What should be proved?

— What must be done in design to enhance provability,
anticipating proofs of both design and implementation .

- How can initialization and recovery be incorporated into the
design , taking constructive advantage of hierarchical
structure?

IMPLEMENTATION ISSUES (How is distribution to be achieved?):

— For virtual distribution , at any particular interface ,
should irredundant or redundant distribution be used [in
space and/or t ime]?  (The latter can employ direct
replication , various differing historical versions , and
techniques like recovery blocks.)

— What algorithm s will guarantee controllability? How can
consistent choices of protocols between system parts be
made? Can deadlock avoidance be proved? Can insecure
information leakage (propagation) be avoided?

Virtual distribution implies that distribution (e.g., remote

execution or data access, or parallelism in data and control) is
hidden by the interface to the relevant level of abstraction.

Explicit distribution implies that the distribution must be known to

the user of the relevant. level of abstraction . That is, the user must

explicitly designate which file system a particular file is on , or
which system a program is to run on. In general , explicit

distribution at one level of abstraction can be masked (virtualized )

at the next highe r level of abstraction , e . g . ,  in a v i r t u a l  directory

that t r ies  to fi nd files in d i f ferent  f i le  systems. Futhermore ,
hybrid strategie s may be interesting (e.g., using virtual distribution

on initial use for convenience , and explicit distribution on

subsequent use). However , this must be done carefully to avoid

7

~~~~~~~- -- -a- ~~~~~~~~~~~~~~~~~~ -~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~ -


C HAPTER 1 H I E R A R C H ICAL ST RUC T U R E I N DD P SYST EMS

pitfalls such as the a l i a sing problem s that produce i ncompa t ib l e

effects from using different would—be synonyms.

1.2 Conformable Hierarchies and Controllable Distributed Systems

This section presents an initial attempt to introduce rigor into

the notion of verifi ably controllable distribut ed systems.

Intuitively, two hierarchies are controllable If there are no harmful

communications among the component hierarchies. Note that this can be

achieved through nonhierarchical as well as nierarchical

communications. However , the use of hierarchically constrained

intercommunications among compatible hierarchies appears to be

particularly effective and easy to analyze . This can be achieved if

the relative ordering among levels of abstraction in two different

components of a distribut ed system can be maintained whenever

communication is permitted . Here communication, implies explicit

control flow (as in remote procedure calls and returns , or as in

coroutlne calls), implicit control flow (by signalling), or a

combination thereof. For exam ple , a potential deadlock may arise if

level 7 In hierarchy A in communicate directly with level 5 in

hierarchy B wrien level 6 in A can communicate wi th level 6 in B. This

is an example of a nonhierarchical comm unicat ion s i tua t ion , e . g . , a
circular dependency chain , in which level 5 in A can depend on level 7

in B which can depend on level 6 in B which can depend on level 6 in

A , which can depend on level 5 in A. Note that even if the only

communication between the two hierarchies is that between the two

levels 6, it is still possible for deadlocks to arise . However , such

deadlocks can be analyzed directly, whereas the deadlock resulting

from the circuitous loop involving different levels in each of

di fferent hierarchies is far more difficult to detect .

Definition of Conformable Hierarchies. Consider two hierarchical

design structures Di and Dj, each consisting of a hierarchy of level s

of abstraction , Di = [AiO , Au , ..., All] and Dj [AjO , Ajl ,

A j J] , where each Aik is a level of abstraction in Di (0 < k < I), and

each Ajk is a level of abstraction in Dj (0 < k <= J). (Levgl 0

[i.e., AiO , AjO] is in each case the lowest level of abstraction in

8

_

~~~~~~~~~~~~~~~~~~~ - - ) - __________________



—-~.-~~~~
-,- —~~~~~~~~~~~~~~~~

--
~~~~~~~~~~

-
~~~

CHAPTER 1 HIERARCHICAL. STRUCTURE IN DDP SYSTEM S

its hierarchy.) Consiaer the mth level Aim in Dl , which can

communicate with the ntk-i level Ajn in Dj. Then , the two hierarchical

design structures Di and Dj are ~oriformable if and only if

no level in Di higher than Aim can communicate with
a level in Dj lower than Ajn ,

ar’i

no level in Dl lower than Aim can communicate with
a level in Dj higher than Ajn .

That is , the communication between Aim and Ajn is the only

intercommunication Involving either level .

Desired Theorem (Simple Dijkstra—like result). If ever y pair of

hierarchies is conformable in a distribut ed system composed of

Intercommunicating hierarchical design structures , and if each such

design structure is deadlock free, chen the resulting system is

deadlock—free with respec t to the intercommunications.

As in Dijkstra ’s THE System , deadlocks may still occur within one

level ; in addition , they may occur here because of a dependency loop

in communications between a level of abstraction in one design

structure and a level in another (i.e., in the communication from Aim

to Ajn and back). Note also that freedom from deadlock can be

obtained with constraints that are weaker than those indicated by the

theorem . However , the above approach gives a simple and easily proved

generic way of simplifying the deadlock—avoidance problem .

It is desirable to investigat e the generality of this approach ,

to see whether design s of distribut ed systems of conformable

hierarchies are overly restrictive. This will be done in future work.

Some peopl e have expressed the concern that distribut ed systems
might not-- be amenable to hierarchical design . It appears that their

concerns are not well founded . The same bel iefs  had been voiced
previously in designing conventional systems, although recent

ex perience now indicates  that  not only is it feasible , but that the

advantages can be significant . The same conclusion appears to relat e

9

I.

- •. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
LLIt L ~~~ :~. • . ~



- - 
-

CHA PT E R 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

to distributed systems.

The concerns about the feas ib l i ty  of hierarchical  s tructure in

nondistribut ed systems seem to have arisen from the apparent need to

have one level ( e . g . ,  processes) dependent on another (e . g . ,  memory ) ,

and then observing a rever se dependence ( that processes need v i r tua l

memory and v i r tua l memory needs processes) . A general design

technique exists to get around this problem , namely to spl i t  one level

into two separated levels, with a resulting proper

hierarchicalization. In the example of processes and memory, this

results from having vLariable processes dependent on virtual memory

dependent on fixed processes dependen t on fixed memory; see [15]).

This general design technique for nondistribut ed systems is also

applicable to distributed systems.

As noted above , it is also possible to have communications

between a level in one hierarchy and either of two level s in another

hierarchy without losing controllability, although the analysis Is

more complicated . However , for many applications the approach

F discussed here appears to be adequate.

1.3 Control of Performance, Degradation, Hierarchical Recovery, and
Reconf igurat ion

Depending art the recovery time available , real-time systems may

employ a variety of strategies to cope with losses in state

information and in processing resources resulting from faults. One
simple response is to enforce a deliberate d egradation of performance ,

in which tasks that generate erroneous data are isolated from

fault—free tasks, and low—criticality tasks are allocated fewer

computational resources. Given more time , it is desirable to restore

information about the state of external and internal system variables

to the most recent correct values. Gi ven still more time , it is

desirable to reconfigure the available computing resources to provide

the maximum possible computing power.

A l l  of these techn i ques appl y in rea l—t ime  DDP , but are

complicated by the need to coordinate corresponding activities in many

10 

--~ - - - - - _ - - .. 



r - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CHAPTER 1 HI E RAR CHICAL STRU CTURE IN DDP SYSTEMS

processors. For example, some state information (e.g., about an

externally observed object) may be distributed over several

processors. If one component of state information is found to be in

error , it may be necessary to label data accordingly or to discard

data in other components that may have been corrupted by the error. A

further complication in fault—tolerant DDP is the use of redundant ,

nominally identical computations at multiple nodes. It may take

considerable effort to ensure that all such copies are provided with

identical input data and that their outputs are properly synchronized

despite delays in some results caused by local roll—back operations.

Given the possibility of different recovery times within

concurrent recovery processes, arid given the varying [and possibly

substantial ] time delays required to propagate data among processors,

a considerable amount of skew in the timing of updates in

correspond ing in state data is likely. In fact , it may be impossible

to get back to a consistent state.

The use of hierarchical s tructure appears a t t rac t ive  for

organizing the processes of performance degradation , recovery, and
reconfiguration . For exam ple, all of these functions may be

structured hierarchically and distribut ed at various levels of the

execut-ive system hierarchy . In operation , many of the lower—level

processes would be invisible at higher levels. This organization

tends to increase the efficiency and verifiability of such mechanisms.

The design of hierarchical , distribut ed , real—time systems for

maximally efficient accomplishment of degradation , recovery and

reconfiguration is essentially unexplored . However , many applicable

techniques are closely related to those arising in the initialization

of a hierarchically structured system . In general , initial ization is

accomplished one level at a time , from the lowest level upward. Each

properly in i t ia l i zed level becomes the basis for the initial iza-~ion of
the next level . The same approach seems to be highly relevant ~n

achieving minimal degradation , max imal recovery, and effective
reconfiguration .

11



CHAPTER 1 HI E RA R CH I CAL STRUCTURE IN DDP SYSTEM S

1.~ An Illust ration: Distr ibuted Implementat ions of PSOS
These concepts are i l lus t ra ted  here by considering a

hierarchically designed computer operating system , the Provably Secure

Operating System (PSOS) [15], [3]. The basic hierarchical design of

PSOS is given in Table 1.2. From the table , PSOS appears to be a

simpl e general—purpose nondistribut ed computer system. Nevertheless ,

PSOS is highly appropriate as an example , precisely because its

hierarchical structure lends itself naturally to distribut ed

implementations.

The most important levels of the hierarchical PSOS design are the

capability manager (responsible for creating capabilities , which form

the basis for all addressing in the system), the segment manager

(which  permits  v i r tua l  addressing) ,  the abs t rac t—type manager (wh ich

permits dynamic creation of types and typed objects and helps enforce

the encapsulation of their implemontations), the directory manager

(which maps symbolic names into capabilities), the user object manager

(which maintains directory entries for objects), and the user process

manager. These levels are summarized below.

A PSOS caoabilitv is a protected name for an object. It provides

the only means by which that object may be accessed . It contains a

system—wide unique identifier (UID) that is unique for the lifetime of

the system , along with a set of access bits. For capabilities of~
objects of any particular type, the access bits are interpreted by the

type manager for that  type.  The type manager defines all of the

operations to be permitted on objects of that type, and also defines

the meaning of the access bits for all capabilities of that type . All

accesses to an object are mediated b~ the relevant type manager and

require art appropriate capabi l i ty  for that  object .  The type manager
Interprets the access b i ts  on that capability and determines whether

the intended operation may be performed on that  object .  The fact that
a purported capabilIty is indeed a capability is enforced by the

hardware , since every capability has a tag bit that unmistakeably

identifies it as a capability and that can be set only by one of two

capability—creat ing instructions. Thus capabilities are nonforgeable

12 

-~---- - -- ----~~--- ~~~~~~~~~~~~~~~~



~~~~~- - - - - ~~~~~~~~~~~
- - -

CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

(assuming correct hardware). That a capability represents an objec t
of the appro priate type must be assured by the appropriate type

manager . Capabilities may be passed around from one user to another

—- subject to certain communicat ion res t r ic t ions .

In a typical implementation , most of the lower level s are
expected to be implemented In hardware. Thus, for example , the

capab i l ity manager and much of the segment manager would be in
hardware or possibly microcode.

Table 1.3 illustrates how the PSOS system concept can lead to

F distributed versions of the system , first in the design , and then in

the implementation. The table shows various level s at which potential

intercommunications and protocols may meaningfully exist , and some of
the forms the distribut ion can take. In general , virtual distribution

and explicit distribut ion may both be accomplished by the introduction

of new level s into the design . Virtual distribution may also be

accom plished invisibly within an existing level of the design .

As noted above, each level in PSOS acts as the type manager for

some object type. This conceptual d is t r ibut ion of type managers
suggests one mode of distributed implementation for PSOS, in which the

implementation s of the various type managers can be d is t r ibut ed
separately. The complete encapsulation of typed objects for any

particular type also suggests a mode of d is t r ibut ion , in which a type

manager may i tself have a distr ibuted implementat ion , coordinated by

communication at that level or a lower level . These two modes are

di scussed next , at each of several levels of interest , beginning at

the lowest level .

The creation of capabilities is central ized conceptually in the

lowest level of the PSOS basic design shown in Table 1.2. It is thus

used by each of the higher levels. Nevertheless, capability creation

can be distribut ed with the aid of a simple system convention (see

below).

The interpretat ion of capabIlities is intentionally already

distributed in the design . Each type manager is responsible for

13

- -


~~~~~~~~~~~~~~~~~~~~

-- -

~~~

-

~~~~~~~

-- -  -

~~~~~~~~~~~~~

CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

Inter preting the capabi l i t ies for all objects of i t s type. For
example , the segmen t manager —— imp l emented largely in hardware -—
knows about all of the segments in the system of Table 1.2. It could ,
ho wever , be d i s t r ibu ted so that each of several segmen t managers knows

onl y about its local segments —- using either virtua l distribution or

explicit distriout ion . On the other hand , a collection of distribut ed

PSOSes could be conceived in which the distribution is done at the

user objec t level and in which the segment level of each component

system is left intact.

In any distributed version of PSOS, universal uniqueness of

capabilities must be maintained . In a homogeneous distributed system

of PSOS sys tems , global uniqueness is trivial to achieve, if each
unique identifier contains a SITE.UID and a LOCAL_UID. (The LOCAL.JJID

can be implicit in locally interpretable capabilities , or could be

explicit.) Since SITE_UIDs can be fixed forever at site creation , it

is relatively easy to ensure chat they are unique . Thus it is easy to

ensure that the distributed—system—wide capabilities are unique .

Consequently a central mechanism for generating capabilities is not

needed , and each component can do its own creation . Recognition of

foreign capabilit ies at this level is thus easy , based on the
SITE_UID. Note that in such a scheme the SITE_UIDs must also be
trusted and thus nonforgeable.

The segment manager is outlined above. The most commonly

executed instructions in PSOS are those that read or write at some

location in a segment designated by a capability and an offset.

Virtual d is t r ibut ion can be achieved by having a dis tr ibuted segment
manager that knows about nonlocal segments and that can redirect the

access to the appropriate local segment manager (e . g . , basing its
act ion solely on the SITE_UID). Explicit redirection can also be

handled at the user object level b~ redirecting a symbolic but

globally meaningful segment name to the appropriate local segment

manager. (Permitting explicit requests for foreign segments at the

level of the segment manager is probably a bad idea , although it could

be implemented.)

14

i~~-

CHAPTER 1 UIERARCHICAL STRUCTURE IN DDP SYSTEMS

Given a distributed segment manager , the abstract—type manager

-~ould be extended to take into account multisegmen t object

i m p l e m e n t a t i o n s In which the various segments forming art abstract

object are themselves distribut ed . Note that this effect can also be

achieved by extensions to the user object level .

Tne distinction between the abstrac t type manager and the

particular type managers (e.g., the directory manager) is important.

Each t y p e man ager may use v i r t u a l and/or exp l i c i t d i s t r i b u t i on of i t s
impl emen ta t ion , depending on its needs. Each type manager is

responsible for encapsulating the impl ementation of objects of its

type , a l t h o u g h the abstract—type manager facilitates the isolation of

the im pl e m en t a t i o n c a p a b i l i t i e s from the abstrac t objec t capability.

The d i r ec to ry manager lends I t se l f n ice ly to a virtua l directory

system in whi ch there is d i s t r i b u t ed Implementa t ion of various
d i r ec to ry s truct ures. It would al so be easy to provide redundant
(e.g., distribut ed) directory information. However , explicit separate

directDry roots are better accomplished at the user object manager

level . At. the user object manager level , both virtual and explicit

distribution of objec t creation and deletion is possibl e, with the

-~pt - i~-~r is of d i s t r i b uted d i r e ct o r i e s arid d i s t r i b u t ed segment manager s
r~- : F e d wove .

A~ the user process level , both virtua l interprocess

com rnzI - ca ti- -)rl (across distribut ed system boundaries) and explicit

si.~~a l1 i r.~ are possible. At the user input—output level , both vir t ua l
input -’-ur put. and explicit foreign names are possible. Similarly, both

cptI7r ~s exist fThr user environments (virtual name distibution and

ex p l i c i t f’~r e Ign names) and for the user request in terpre ter (v i r t u a l
comman d d i s t r i b u t i o n or exp l i c i t remote l og in s) .

1.5 Future Re3earch Directions

This cha pter has introduced the notion of hierarchical
communications among hierarchically structured components in the

design of a distribut ed system , and has discussed some of its

implications. This notion appears to have considerable potential in

15

a.. - _...-...——.-—- ~~~~~~~~~~~~~~
_ —~-_ - ~.-4 .- ----4 .-~~-- _—~~~~-

CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

the devel opment of rel iable , fault—tolerant., and secure distributed
systems. It also appears to contribut e to system controllability in
various ways. Unti l flOW , it has received rel at ively l i t t l e at tention ,
but will be considered further in subsequen t work.

r
_

~~~~~~~

_

~~~~~

—- - -

~~

-- —

~~~~~~~

—- --- -- —

~~~

-- ------— -

~~~~ 

--- - - - -- - - - - —-

~~~~~~~~

CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEM S

Table 1.1

Some Examples of Virtual ization of Fault-
Tolerance In a Hierarchical System Design .

Visible Hidden Fault—tolerance mechanisms. [Protocols].
functions functions DISTRIBt.T1’ION IS INDICATED IN UPPER CASE.

Applica- Network , Application rollback features arid DATA
tion nodes DISTRIBUTION (redundant or not).

[APPLICATION-TO-APPLICATION PROTOCOLS.]

Virtual Other DISTRIBUTED CONTROL OF CcIIMUNICATION,codlng;
network nodes REDUNDANT DISTRIBUTION OF DATA AND PROGRAMS

• [NODE—TO—NODE PROTOCOLS.]

Virtual Other Compartmentalization , data security, system
system subsystem s in t eg r i t y ; COOPERATING SUBSYSTEMS

[SUBSYSTEM TO SUBSYSTEM PROTOCOLS.]

Vir tua l Process REPL ICATED PROCESSES ; INDEPENDENT ALTERNATE
process scheduling PROCESSES; automatic rollback; process

direct ories.
[HIGH-LEVEL INTERPR OCESS PROTOCOLS.]

Virtual Asynchrony DiSTRiB UTED 1-0 ARCHITECTURES, REM OTE
i—o &tffering CONTROLLERS; safe asynchrony ; extensive

hand shaking and cross-checking .
[1-0 DEVICE PROTOCOLS.]

Virtual Inaccessible REPLICATI ON OF CRIT ICAL DATA , e.g., on -

-

file directories , on different media ; FILE AR CHIVING AND
system archiving ROLLBACK/RETRIEVAL ; cross—checking .

[FILE TRAN SFER PROTOCOLS.]

Virtual Storage Redundant physical address calculations;
memory addresses REPLICATION OF CRITICAL DATA .

[INTERDEVICE PROTOCOLS.]

Virtual Multipro— Reliable in te r rup t mechanisms;
unipro— gramming : process isolation (e.g., domains of
cessing dispatching protection).

[LOW-LEVEL INTERPROCESS PROTOCOLS.]

Multipro— Processor Redundant interprocessor signalling
ceas ing coordination [INTERPROCESSOR PROTOCOLS.]

Highest level is at the top of the table. Each level tends to
hide some Internal functionality from lower levels. Each level
depends exclusively on lower levels for its implementation .

17

‘—

CHAPTER 1 HIERARCHICAL STRUCTURE IN DDP SYSTEMS

Table 1.2
Hierarchical Structure of PSOS

l Level J P505 Abstractio n or Function

16 user request interpreter *
15 user env ironm ents and name spaces ~

user input—output *
13 procedure records *
12 user processes * and vis ib le input~output’
11 creation and deletion of user ob jec ts *
10 directories (*) [C 1 1]
9 types and abstrac t objects (*)[C11]
8 segmentation and windows (*)[C’l]

• 1 7 l paging [8]
6 1 system processes and inpu t —output [12]
5 1 pr imi t ive input /out put [6]
‘4 arithmetic and other basic operations ‘
3 clocks [6]
2 interrupts [6]
1 1 registers (*) and addressable memory [7]

• 0 capabilities •

* vis ible at user inter face
(*) = pa r t i a l ly visible at user interface

1 (i] hidden above level i
1 [Cli] creation/deletion hidd en by level 11

18

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
- _

CHAPTER 1 HIERAR CHICAL STRU CTUR E IN DDP SYSTEM S

Table 1.3
Levels of Potential Intercommunications and Protocols

1 user request interpreter (virtua l command distribution ; I
explicit remote logins)

user environments (virtual name distibution ;
explicit foreign names)

•
1 user input—output (virtual i—o ; foreign names)

user processes (virtual ipc ; explicit signalling)
•

user objects (virtual; explicit remote creation)

directories (virtual directory system ; explicit roots)

I abstract types (virtual distribut ed implementation ;
explicit distribution of multisegment objects)

1 segmentation (virtual and explicit distribution 1
based on SITE_U ID) I

I primitive input/out put (controller signalling) I
1 capabilities (creation distributed ; no dynamic protocol) I

19

I
‘•

_________________ _±

Chapter 2 DESiGN arid VALIDATION of ROBUST DDP SYSTEMS

2. ~~apter 2: Formal Specification , Design, and Validation of Robust

DDP Systems

2.1 Robustness and Reliability

A system is robust. if it continues to function correctly despite

the failure or unavailability of some of its components; for a given

design , It functions correctly as long as enough of its components

continue to function properly. Robustness is considered in this

chapter .

A system is reliable if it has -a sufficiently high probability of

functioning correctly. Reliability is attained through robustness . A

robust system is reliable if there is a sufficiently high probability

that enough of its components continue to functioi. properly.

Reliability as measured in terms of the probability of correct

functioning is not considered here except , in the context of

robustness.

2.2 Specification

2.2.1 What is a Specification?

A specification of a system is a statement of how the system Is

supposed to behave. It is perhaps best viewed as a contract between

the system ’s buyer/user and its designer/implementer . When the two

parties have agreed on the specification , (1) the ouyer has stated

that he will accept any system that meets that specification , and (2)

the impl ementer has stated that he is legally bound to deliver a

system that will meet that specification . Clearly there are many

degrees of precision which spec ifications may have. (All too often ,

the buyer and the implementer are so closely tied together —- and

frequently completely out of touch with the people who will actually

use the system -- that the specification is not useful as a contract.
Such specifications often prematurely bind various irrelevant design

decisions , while completely avoiding other critical decisions. The

result can be a system being designed [and even implemented] before

there is any understanding as to what it is supposed to do.)

20

I ‘
•

•

-• ~~~~~~~~~~~~~~~~ - • - — - - • —~~~~~~~~~~~~~~~ -- ~~~~~~~ -— -~~~~~~~~~~~ -~~~~~-— - -- —~~~~~~~~~ ~~~~~~~~


~~~
-- -

~~~~~~~~~~~~~

Chapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

For a specification to serve as such a contract , it . must satisfy

two criteria.

1. It must be understandable to the buyer , so he can be sure
that the system will behave the way he wants it to. Since
the buyer is human (or a group of humans), this mean s that
the specification must be underst andable to humans.

2. It must be precise , so the imp lemeni te r w i l l know exactly how
the system he provides must behave . (Dec id ing whether the
contract has been fulfilled should be a technical decision ,
riot a legal one.)

In the Hierarchical Development Methodology (HDM), there is a

dis t inc t ion mad e between requi rements and specif icat ions . In general ,
a requiremen t is a global property that all operations at a particular

interface must satisfy . Examples in secure systems include
system—wide security properties such as the military multilevel

security policy used in KSOS and the properties concerning the

nonbypassability of the capability mechanism in P303. An example in a

reliable system is the Markov model defining the probability of

recovery following faults in SIFT.

A specification , on the other hand , is a definition of what a

particular operation or module of the system is to do. It Is

desirable to be able to show that each specification satisfies its

requirements , and that each programs is consistent with its

specification .

A specification can be broken into two components: a 1o~ical, ~~~~~.

function al, aoecificationi and a oerformanc~ anecification. The

logical specification defines what the system (or module , or

operation) must do. The performance specification defines what

resources it may demand to meet its logical specification . Typical

resources are t ime , computer memory, processors , and communication

channels. For example , consider an airplane autopi lot system that is

21

I.L - • •

Chapter 2 DESIGN ari d VALiDATION of hOBUST DDP SYSTEM S

Impl emented by a network of processors. ’ It recei ves input from the

a i rp l ane ’s sensors and the p i l o t ’ s con t ro l s , and sen ds o ut put to the

ai r plane ’ s ac tua to r s and the p i l o t ’ s i n st r u m e n t s . The logical
spe c i f i c a t i o n d e f in e s p rec i se ly wha t the out put shoul d be as a
f unct ion of the inpu t h i s t o r y . The performance spec i f i c a t i on def i nes
(1) how long it may take to respon d to inputs (ho w muc h t ime i t may

req u i r e) and (2) how robust i t must be (how many proper ly f u n c t i o n i n g

processors and comm un ica t io n l inks i t requires to produce the correct

ou p u t) . (In general , the t ime and processor /commun icat ion resources

requi red need riot be independen t of one another ; slower response may

be acceptable when fewer processors are available.)

It appears that these two components of a spec i f ica t ion can

always be iden t i f i ed . Ho wever , they may in te rac t wi th one another .
Di f fe ren t logical funct ions may require d i f f e r e n t amounts of

resources. In par t icu lar , “ graceful degradation ” o f ser v ice i s
specif i ed by requir ing that d i f f e r e n t logical func t ions requi re

d i f f e r e n t amount s of processor/comm unicat ion resources. For example ,
in an autopi lot we may spec i fy that a t t i t u d e control must be performed

corr ect ly (e . g . , the a i rp lane must not go into a t a i l sp in) despite the
f a i l u r e of two processors , but that nav iga t ion need only be performed

correct ly (the pi lot ’ s ins t ruments must r ep or t where the a irplane is)

if at most one processor has fa i led . (As seen here , th i s type of

in te rac t ion between the log ic al and pe r formance spec i~ icat ions poses
problem s that hav e not been compLetely solved.)

2 .2 .2 How To Specify a System -- an In formal Discussion
The behavio r of a d i s t r i b u t ed system consists of the concurrent

a c t i v i t y of i t s components . Human beings tend to t h i n k of one th ing
at a t ime and have difficulty und erstanding concurrent activity.
(This is demonstrated by the d i f f i c u l t y people have in w r i t i n g correct

1Rather than choosing examples of b a l l i s t i c miss i le defense
appl icat ions , we here use examples which have been ca re fu l ly studied .
We trust that the reader will recogni ze the relevance of our work to
ballistic missile defense despite the absence of explicitly related
examples .

22

h111.L

_ _ _ _

-

~~~~~~~~

Ch apt er 2 DES 1GN and VALIDATION of ROBUST DDP SYST EMS

concurrent  programs; such programs u s u a l l y  behave m i  ways not expected
by t h e i r  a u t h o r s . )  This  presents a serious problem in t r y i n g  to wr i t e

a spec i f ica t io n  of a d i s t r i bu t ed  system tha t  w i l l  be un ders t an dab le  by
h u m a n s .  ~TAir solution to th i s  problem consists  of w r i t i n g  the

spec i f ica t ion  in the fol lowing three  par ts :

‘ . A sequent ia l  algorithm which  describes the logical behavior
of the system . We call th i s  a lgo r i thm the svstem machine.

2. The r e l a t i o n  between the i n p u t / o u t p u t  of the system machine ,
and the In p u t / o u t p u t  of the Ind iv idua l processors which  form
the  system.

3. Performance requ i rements  on the execu t ion  of the system
• mach ine  by the  processors.

In term s of our decomposi t io n  of the spec i f i c a t i on  in to  logical

ari d perfor mance spec i f i ca t i ons , t r i e  f i r s t  two par ts  compr i se the
logical  s p e c i f i c a t i on , and the t h i r d  part is the per formance
sped f i c a t i o n s .

We illustrate this approach with two examples. First , we return

to the exampl e of an a i rp lane  autopi lot implemented  by a network of
pr c’cc~ sor s .  The t wo par t s  of ~t s s p e c i f i c a t i o n  are  descr ibed below.

The au top i lo t  may be descr ibed  l o g i c a l l y  by an a l g o r i t h m
tha t  at regular  in t e r v a l s -- say ever y 50 mi l l i seconds  -—
accep ts as Inpu t a vec to r  (a i r speed , a l t i t u d e , angl e of
cli mb , th r o t t le  p o s i t ion , . . .  ) of val ue s and produces a
vector (a i l e ron  posi t ion , rudder  pos i t ion , gro und speed
d i s p l a y  val ue , . . .  ) of out p u t s .  Tne system machine
consists of a precise specification of the algorithm that
p roduces the output  as a func t ion  of both ( i )  the input  and
( I i )  the val ue s of ce r t a in  s ta te  var iao les .  (Those s tate
variables contain the val ue s main ta ined  by in tegrators  in
analog autopi l o t s .)  We discuss below the problem of giving a
precise , formal spec i f i c a t i on  for such a system machine .

2. The system machi ne defines the system as a singl e e n t i t y .
In r e a l i t y ,  the autopi lot system consists of a col lect ion of
processors. The second part of the spec ification consists
of a descript i on of how the  inpu t  and out put of the
Ind iv idua l processor s are related to the input and out put of
the system machine . For example , a si ngle value of the
airspeed is part of the system machine ’s input. This value
Is derived from several sensors t hat measure t he ac tua l
airspeed , each sensor being read by one or more processors.
The airspeed inpu t to the system machine must be defined as

23

(. 
- I

I 

- - -



-.—— ---w-~~~~~~~~
-—- -

~~~~
——-

~~~~~

Chap te r 2 DES IGN and VALI DA T ION of ROBUST DDP SYSTEMS

a func t ion  of the a i rspeed sensor val ue s read by the
processors. This func t ion  must oe designed so that  it wi l l
produce a reasonable system machine input value despite the
mal func t ion  of some sensors , or of some pro cessors readi ng
the sensors. Part of the system machine ’s out put is a
rudder pos i t ion .  The actual  control signals that cause the
rudder to attain this position are sent by several
processors. (Robustness dictates that the failure of one
processor should not cause the rudder to assume an incorrect
pos i t ion . )  We must define the control signals sent by the
processors to the rudder as a func t ion  of the rudder
position out put of the system machine. Thus, part two of
the speci f ica t ion  consists of the co l lec t ion  of all  of these
funct ions  that  relate the processors input and output to the
system machine input and output .

3. The t h i rd  p ar t  of the spec i f ica t ion  consists of performance
requirements for how the processor s must execut e the system
machine.  Below are some sample requirements.

1. If a ma jo r i t y  of the processors are funct ioning
proper ly ,  then they should (co l lec t ive ly)  correct ly
execut e the system machine .

2. A processor is considered to be correctly executing the
system machine only if it reads all of its input val ues
within  100 microseconds of the beginning of the system
machine ’s 50 mill isecond i te ra t ion  period , and
generates i t s  output  value s at most 25 mIl l iseconds
later .

Our second example is a robust distribut ed data base system ——
one that will maintain the correctness of the data despite the failure

of some of the processors on which the dat a is stored . The data are

assumed to consist of disjoint , named items. A user types requests to

read or modify data items. For simplicity, we assume that a user

sends all of its requests to a single processor , and that each request

may either read or write a single item of data. (A data item is

created when it is written for the first time.)1 
The specification

consists of the following parts.

1. Every mil l isecond , the system machine executes one step.
Its Inpu t consists of a sequence of requests. Each request

It is quite easy to generalize this example to one In which the
system is responsible for preserving the mutual consistency of
different data items , but do ing so would complicate the example.

24 

--- - - ——-~~~~~~~~ - - - —~~~~~ ---~~~~~~~~~ ~~~~~-- -~~ • -~~~~~~~~• - - --~~ -



r ~~~~~~~ 
-

~~~~~~~

-

~~~~~~~~~

—

~~~~

--
- - - -

Cnapter 2 DESIGN arid VALIDATION of ROBUST DDP SYSTEMS

contains :

— The I d e n t i t y of the reques ting user

— The na m e of the data item

— The type of request (read or write)

— The value to be written (if it Is a write request)
The output consists of a sequence of acknowledgements , one
for each input request . An acknowledgemen t consists of:

— The identity of the user ,

— An indication of whether there was an error , and , if
so, the nature of the error (e.g., read of a
nonexistent data item),

— For a correctly executed read request , the val ue read .
A single system machine step is performed by executing the
sequence of inpu t requests in order , updat ing the val ue s of
data items , and generating acknowledgements in the obvious
way.

2. Each processor receives requests from many users. We may
consider these requests to form a sequence. The system
machine input is defined to consist of a sequence of
requests formed by merging the sequences of unprocessed
requests of all the individua l processors. (An unprocessed
request is one that was not included In the input to a
previous step of the system machine.) The processors’
outputs are defined so that each acknowledgement generated
as out put by the system machine is rout ed to its Indicated
user .

3. We make the following per formance requirem ents for the
system .

— If a majority of the processors are functioning
properly, then: (1) they will correctly execut e the
system machine , and (2) a properly functioning
processor will generate an acknowledgment for a request
within 0 .5 seconds of i ts receipt .

— The number of messages sent among the processors will
equa l , at most , 17 times the number of requests
received .

Of course , the values 0.5 and 17 are just illustrative — —
whether this particular specification can be met will depend
on the exac t nature of the network of processors. The
second re qu irement means that if no requests are are
received , no messages are generated . This is a very strong

25

-
~~~~~~~

Chapter 2 DESIGN and VALIDATI ON of ROBUST DDP SYSTEM S

constraint  on the Implement a t ion . 1

2 .2 .3  Formal Spec ificat ion
We have discussed how the specification of a system can be broken

into three components and given some informal examples. We now

consider the problems involved in writing formal specifications. By

“formal ” , we mean defined with sufficient precision to be suitable for

mechanical manipulation . Given a formal specification of a system , it

is in principl e possible to ver ify mechanically that some particular

impl ementation is correct . This would provide the proof that  the

Implementer has met the contractual obligation defined by the

specification . Formal specifications are useful even if such a

mechanical verification is not feasible. Perhaps the most significant

intellectual contribution of computer science is the idea that we

really understand how to do something only if we can program a

computer to do i t .  A formal spec i f icat ion is therefore one for which
we r ea l ly  understand how to decide whether  an implementat ion is

correct.

2.2.3 .1 The System Machine
The system machine is basically a sequential program that takes

input val ues and produces output values. Considerable work has been

done on methods for formally spec i fying sequential  programs. Some of

these methods provide very useful tools for speci fying the design of a

system . Howeve r , we feel that they are not adequate for the type of

“contractual” specification we have been discussing , because the

specifications they produce for nontrivial programs are too difficult

for a human being to understand .

The fact that these specification techniques lead to such

complicated specifications has led many to believe that real programs

are too complicated to have precise , formal specifications. However ,

~This requirement is oversimplified . In practice , a small
number of messages will be needed to maintain synchronization
even if no requests are received . The point is that the 1 —

millisecond repetition rate of the system machine should not mean
that messages must be generated every millisecond .

26



- - -

Chapter 2 DESIGN and VALIDATI ON of ROBUST DDP SYSTEMS

we do not hold that view. Mankind has developed a very good language

for precise human comm unication : the language of mathematics. It is

a generally accepted assumption of the physical sciences teat if we

understand something , we can precisely describe it with mathematics.

We believe this to be true in the world of programming too . If we

understand what a program is supposed to do , then we can express that

understanding In the language of mathematics in a way that is both

precise arid understandable to other human beings. If we cannot write

such a mathematical specification , then it means that we do not

under stand what the program is supposed to do.

This belief has been borne out in the two simple but nontrivial

examples described in [7] and [8].

We do not mean to impl y that any program has a sim pl e
specification , merely that it has a humanly understandable

specification . If the program is very complicated , then understanding

its specification may require a considerable effort. To simplify the

task of und erstanding the specification , hierarchically structured

specifications may be used. ~ ie may view the “Reliability Model” and

the “Allocation Model” of the SIFT system described in [22] to

comprise a hierarchically structured specification of that system .

Such a hierarchical decomposition corresponds to the ordinary

mathematical technique of defining simple notations to represent more

complex concepts.

Our experience indicates tha t  to ob ta in  understandable

speci f ica t ions , one must be able to use the extrem e power and
f l e x i b i l i t y  that the language of mathem atics has developed during the

past 2000 years. Current formal specification methodologies seem to

be too restrictive and lack this flexibility. However , traditional

mathematics is not formal in our sense of the term . The challenge

that faces us is to develop formal methods —- methods susceptible to

mechanization -— that will have the power and flexibility of

traditional , informal mathematics. Boyer and Moore [1] have developed

a mechanical ver i fication system that is extremel y flexible. We hope

that it can provide the basis for the needed formal specification

27

~~~~~ ~~~~
_ •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - - . 

I

~ - • ~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

methodology .

2 . 2 .3 . 2 The System Machine / Processor Relation

In the systems we have considered , it has Deen fairly simple to

specify the relation between the input/output of the system machine

and the input/out put of the individua l processors. We feel that

methods which are sufficiently powerful to specify the system machine

will easily be able to spec i fy this relation .

2.2.3.3 Performance Specification

We first consider robustness specifications. As we have seen in

our examples , robustness is expressed by stating that the system

machine nust be executed correctly If enough of the components are

functioning properly. Correct execut ion of the system machine means

that (~) the system machi ne inpu t Is based upon the correct inpu t of

all the properly functioning processors, and (2) all properly

functionIng processors correctly generate their out put based on the

same (correct) system machine output. This has been defined precisely

in [9] , using the language of traditional mathematics. To obtain more

formal specifications , we are faced with the same problem for the

system machine : devising formal methods that have the power of

traditional mathematics.

This method of specifying robustness only allows an “all or
nothing” specification —— It does not handle the problem of specifying

“graceful degradation ” . A more general spec i fication method dealing

wi th this problem is described below .

Specifying other performance requirem ents , such as the
requirement that an acknowledgement must be generated within 0.5

seconds of the recei pt of a request , seems to be straightforward .

Given a sufficiently powerful specification language that allows us to

express the necessary concepts , there seems to be no difficulty in

writing the specifications. However, such formal spec i f icat ions are
only useful if formal met hod s exist for verifying that arm

impl ementation meets these requirements. This problem will be

discussed later .

L _ _ _

28

1~~
. ‘

Ceapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEM S

2.2.~3 A Hierarchy of System Machines

We have discussed how one can specify a singl e degree of

robustness for a system by specifying robustness requirements for the

impl ementation of the system machine. However , we oft en want to
specify different degrees of robustness for different system

funct ions . For example , in arm autopi lot , a t t i t ud e control requires
greater robustness than navigation , since losing control of the

airplane is more serious than getting lost .

Our solution to this problem is a two—level hierarchy of system

machines , consisting of a single high level executive machine and a

collection of lower level t~asi.~ macI~ines.
1 Eac h task machine specifies

a collection of system functions requiring the same degree of

robustness. For an autopilot., one task machine might specify the

attitude control functions, and anotner task machine might specify the

navigation functions. The executive machine specifies how resources

are to be allocated to the execution of the different task machines.

The executive machine ’s input consists of diagnostic information that

it can use to determine which components (processors and communication

links) are faulty. Its out put consists of intructiorms to the

processors that determine what system funct ions (w h i c h task mach ines)
each processor is to execute, and when those functions should be

executed .

The executive machine thus acts as a scheduler , and is
responsible for controlling the graceful degradation of the system in
the face of component f a i lu res . The exec ut ive machine must have the
greatest degree of robustness , since It s correct execution is

necessary for the exec ut ion of any task machine . The robustness of
each task machine is determined b~ the executive machine . To ver ify

that a task mach ine ’s ro bust ness spec i f ication Is met we mus t (1)
verify that the executive machine ’s robustness spec ification is met by

its implementation , and (2) verify that the robustness of the

execut ive machine implies the necessa ry robustness of the tas k

1
Tflis hierarchy of system machines should not be confused with a

hierarchical specification of a single system machine .

29

-~~ — - -~~~~ - - -

Chapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

machine . The latter verification involves only the executive

machine ’s spec i fication , and is independen t of its implementation .

This type of hierarchy has been used in the SIFT system . The

SIFT global and local executives essentially form sri exec ut ive
machine . In the description of that system [22], only this executive

machine is specified . The applications tasks run by the SIFT

executive constitute the task machines .

Our description of the hierarchy of system machines has been

informal . The SIFT system is the only case in which such a hierarchy

has been worked out in detail. We do not yet have a general met hod

for writing a formal system specification in terms of a hierarchy of

system machines.

2.3 Design

2.3.1 Basic Problem

The system machine specifies the logical behav ior of the system

by a single sequential algorithm . However, the behavior is actually

produced by a distributed system of processors. The processors’

behavior must be pro perly synchronized to correctly implemen t the
system machine.

Processor synchronization is complicated by the robustness
requirements. Many mechanism s have been proposed for synchronizing
distributed systems of processors, but few have rigorously considered

the problem of failed components. In order to be able to discuss the

problem in a sufficiently precise fashion , we now int roduce some
formal notation for describing the concepts introduced informally in

the preceding section.

We begin by precisely defining the concept of the system machine .

We assume that we are given a sequence of t imes T0, T1, . . . , a set I
of possible inputs , a set 0 of possible outputs, and a set S of

possible states. The system machine is specified by functions

~~~~~~~.state and ~~.outout from I X S into S and 0, respectively.

If .~~.ptate(j1
) and j~ .inDut(I1

) represent the system machine ’s state

30 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r~
-—- —--—-i--ii ~:~: ~~

_ _ _ -w -- - -

Cnapter 2 DESIGN -and VALIDATION of ROBUST DDP SYSTEMS

and input at tine T., then sm .output(sm.iriput(T .), sm.state(T .))

represents the system machine ’s out put at time T1, and

sm .next.state(sm.lnput(T
1
), sm.state(T~)) represents Its state at

time Ti 1 . To formally specify the system machine , one must formally

specify the sequence T
0,

T1 , . . . , the sets I, 0, S, and the

functions sm.output , scn.next .state.

Let. us assume that. the system Is to be implemented by a fixed set

of processors labeled 1 through N. We now precisely defi ne the

concept of the correspondence between the system machine ’s

input/output and the processors’ input/output . For each processor k,

let arid °k denote the set of aLl possible inputs and outputs for

that procesor . The system machine - processor correspondence is

specified by a function ~~~ Inout .~ erge from I~ X . . . x ‘N
to I , and

N funct ions ~ .outDut .demerge~ from 0 to If p .inpu tk(TJ
)

represents the inpu t to processor k at time T1, then

sm .input.merge(p.inpu t 1 (T
1), ... , p.inputN

(T
i)) represents the

Input to the system machine at time T1
. If sm.output(Ti) represents

the system machine’s output at time Ti, then

P.outPut.demer~ e~(sm.Ou tPut(T~)) represents the output of processor k

at time Ti . To formally specify the correspondence between the system

machine ’s and the processors’ inputs/outputs , one must formally

specify the sets ‘k’ °k and the functions P.outPut.demer~e~ for each
k; and the single function sm.input.merge.

Synchronizing the processors means first of all guaranteeing that

for each t ime T1, each processor k produces the output
p.output.demerge(sm.output(T.)) for the same value of sm.output(T

1
) ,

and that the processors all produce these values at approximately the

same time . However , we must do more than that ; we must guarantee that

the value smn.output(T
1) the processors use is the “correct” out put of

the system machine. We now consider just what constitutes correct

output . We have defined the system machine ’s output and next state in

term s of the functions sm .output and sm .next.state. Hence , correct

output involves the application of these functions to the correct

values of the current state and the current. system machine input . The

31

.- ~~~- ~~~

—
~~~~

Cnapt.er 2 U~~ IJN i n - i  ~~~AL~~~~DAT ~~ ) N t ~~~ LJ 1.) P  ~Y$TE~4~3

correct current. st ate at Int- T i s  i~- f I r ~~: liii ~~ i.- . y r be •

state correctly compu ’-ed al. t i m e  T~~~~~. ~~•‘  .~~u l i -i.~f m r e  t r e

correct curre nt , system m~- rn tie l’pu t 0 ~~~ u~~ i p r ’-  viI -a .- oDL ~~j f .~.1 t~y

app l yi rig the function s.n. I nipu r- . merge F 0 tne correc t i ripu t S - - I ~ I the

processors. E4owever , we c.jr r~~t ~~~~ ‘I ~~‘ ?  ~ ~~~~~ t o  0,- ~r l e  to

determine the ~~rrec t ini pu is to i f~~u i t  y pr- c~-Msor . lr .st ead • F h~ beSt.

we can hope to achi eve Is r have all tfle r~~r-fau lt - y pr  c~ ssors

execut e the system machire step ~t F i~ e I usi ng as I..pu r tnt- same

val ue sm.iniput.merge (v , ,  . . .  , v s), 
wn.-~re the v 3aF isfy -n—

fo l l o w i n g  pr oper ty :  i f  processor K is  ni n r f a u l t  y ,  r. ’-~’. ~-1u -i lS tri e

correct  i n pu t t o proce ssor K ,ir- time T1

This  c o n d i t i o n  cart be ach ieved  o n l y  In  F - he  absence of ser ious

communicatio n failure . If comin iiiicatIon f~ :lure srioul d dest roy all

commun ica t i on  paths b i tween i  two processors , there Is rio way tflat they

can learn about each other ’s Inputs. Hence , they can not be expected

to determine the same user machine input . We therefore begin by

considering perfect communication .

2.3 .2 Interactive Consistency with Perfect Communication

Assume a collection of N processors, communicating with one

another by means of a perfect communication network. Each processor k

generates a value i/p (k) —— its correct inpu t at time T1 
. Every

processor j computes a vector of value s (Vj
(’)~ . ..~~ v~ (N)) -— where

v~ (k) represents the val ue that processor j thinks is the correct

val ue for i/p(k). These vectors of value s must s a t i s f y  t.ne f o l l o w i n g

two conditions for all 1 , j, and k.

. If processors j and k are nonfaulty, then
v 4(k) = i/p(k)

I.e., processor j obta~ns the correct value for processor
k’s input .

2. If processors I and j are nonfaulty, then
vi~

k) = v 4(k)
i . e . ,  processor s I and j com$ute the same vector of values.

If these conditions are met , then we have achieved inter~cttv~e

consist ericv.

32

I t . I



~

Chapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

We have developed an a lgor i thm to achieve in te rac t ive  consistency

in the case of per fect communication . To illustrate the algorithm , we

consider the case N ZI. We make the followinig assumptions:

1. The communication n etwork linking the processors is
complete. This means that any processor can send a message
d i rec t ly  to any other .

2. The communication network is such that there is no way a
non •-faul ty  processor can be fooled about who o r ig ina ted  a
message. There might be distinct transmission lines between
each pair of processors , for example. A message that
processor j receives from processor k, for Instance , may be
pure garbage if k is faulty, but j can still observe which
line it came in on arid so know with absolut e certainty that
it came from k.

3. Every message originated by any processor has either the
form F defined as

F: / k / data /

where the data is originated in processor k, or the form F’
defined by

F’ : / k / t l s g /

where Msg is a message of the form }~ or F’ . That is , every
message either originates the transmittal of data or is a
relay of a message that has been received . In the latter
case , the rout e the message has followed is indicated in the
message, although the early part of the route may be stated
falsely if the message has passed through a faulty
processor .

LI. The ne twork  contains  just four processors , of wti ich just
one , say Processor 1 , is f a u l t y .

Consider the case in which processor 1 is the source of the data .

Being faulty, it can send out any combination of the same or different

val ues to the other processors. Consider the various cases:

Case 1 Processor 1 sends out the same value to all the other
processors. There is no problem. None of the others
is faulty, the value processor 1 sends out cannot be
changed by any of the others. There is , no faul ty
behavior exhibited .

Case 2 Processor 1 sends one value , say A , to one processor ,
say processor 2, and a different. value , say B, to the
other two . This is interesting . Processor 3 and

33 

- - ..s~~~.. ~~~~~~~~~~ —- ~~~..  ~~~~~~~~~~~~~~~~~~~~~~



~ 

Cnapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

processor LI both tell processor 2 they received the
val ue B from processor ‘ . Since there is only one
fa u l t y  processor , pr ocessor 2 knows tha t  processor 3
and processor LI cannot both be faulty. Therefore at
least one of tnem must have trul y received the val ue
B. Th is is d i f f e r e n t  from the val ue processor 2
received , so processor 2 can be ce r t a in  tha t  processor

is fa u l t y .  Ho wever , processor 2 canniot use t h i s
i n f o r m a t i o n .

Consider what processor 3 sees . It receives value B
from processor 1 d i r e c t l y .  Processor LI says it
received B al so. However , processor 2 tells processor
3 I t .  received the val ue A. There is no way processor
3 can tell if i t  is processor 1 that is faulty, or
processor 2. If processor 1 were actually good , it
would have sent processor 2 the val ue A, but , If
processor 2 is faulty, it could be sending false
In format ion  about what value i t  received .

To resolve this difficulty, consider the following
a lgor i thm . Let each of processor 2 , processor 3, and
processor LI send to the o thers  the val ue i t  received
from processor 1 . Each processor then has th ree
values, the one it received from processor 1 d i r e c t l y ,
and the two values that each of the other processors
says it received . If two of the three  val ues a given
processor has agree , let that value be used .
Otherwise , draw the conclusion that processor ‘ is
fau l ty  and ignore i ts  da ta .

Processor 2 receives the same value B from both
processor 3 and Processor LI. Therefore it uses this
value , even though it knows processor 1 is f a u l t y .
Processor 3 receives the val ue B d i r ec t ly  from
processor 1 , and the same val ue from processor LI. It
does not know if processor 1 or processor 2 is faulty,
but it uses the val ue B anyway. Similarly, processor
LI receives the value B directly from processor 1 , and
the same val ue from processor 3. Therefore processor
LI uses the value B. All three non —fau l t y  processors
use the value B. Interactive consistency has been
obta ined .

Case 3 Processor sends distinct values to each of
processor 2, processor 3, and processor LI , say A , B,
and C, respectIvely. Then processor 2, for instance ,
received A directly from processor 1 , B from processor
3, and C from processor LI. Since no two agree ,
processor 2 asserts that  processor 1 is pu t t i ng  out
garbage and should be ignored . Processor 3 and
processor LI reach the same conclusion . All agree that
processor I is faulty, and interactive consistency has

34 

~~~~~~~~~~~~ ~. . - - ~~~~~~ —~~~-


Cnapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

again been obtained .

The al gorithm described under case 2 is an example of one that

assures interactive consistency und er the stated conditions.

Algorithms have been developed that apply under broader conditions.

In particular , if assumptions 1 through 3 are retained , but there are

N processors of which not more than M can be faulty, an algoritnin that

achieves interactive consistency if N is at least as large as (3M +1)

is given by [16]. We have also shown that this condition relating N

and M is a hard one under assumptions I through 3. For any smaller

val ue of N, the faulty processors can act in a way that will fool the

non—faulty ones , so that interactive consistency can rio longer be

assured .

We have been assuming tacitly that a processor k always sends

some message to each other processor containing a value for i/p(k).

(If k is faulty, then it may send differing values.) However , we must

be aware of the possibility that a failed processor will not send any

messages. This possibility is handled by the use of timeouts. We

assume that all processors have clocks , and the non—faulty processors ’

clocks are all synchronized to within some tolerance. (The problem of

synchronizing the clocks is discussed below.) A processor sends its

input value for time T
~

when its clock read s T
~
. The absence of a

message with processor k as its destination can then be observed by

processor k as the failure of the message to arrive by a certain time

on its clock . Exactly when the message should arrive will depend on

how many processors have to relay it.

The absence of a message is treated as if a message with the

special value NIL has arrived . Conversely, the special value NIL can

be sent by not sending any message. (In particular , processor 2 need

not explicity inform processor 3 if it failed to receive a value from

processor 1 —— it implicitly conveys that message by not relaying any

value to processor 3.) This means that if i/p(k) equals NIL , processor

k sends no messages , and there are no messages to be relayed . Hence

processor k can inform all other processors that its input value

equals NIL without any messages being sent! This is extremel y

35

~~~~~~~~~~~~~~~~~~~~ ~~~~



Chapter 2 DESIGN arid VALIDATION of ROBUST DDP SYSTEMS

Important , because it makes our met hod feasible for situation s in

which inpu t, occurs relatively infrequently but. quick response is still

desired . In our distribut ed database example , user requests

presumably occur sufficiently infrequently that for mo st. of the one

millisecond iterations of the system machi ne , there are rio requests

present . We simply let the val ue NIL denote the processor input.

consisting of the null sequence of requests. If no processors have

any input. requests , then the system machine input. is the null

sequence , so the system machine does not change state arid produces the

null sequence of ouGputs . Iii thi s case , there will be rio messages

prod uced (s ince all  processors are sending the  value N I L ) ,  ari d ri o

pro cessing needs to be done . It shoul d be clear how the system can be
implemented so that  a l though the system mach ine  is log ica l ly  execut i ng

a “nul l  i t e r a t ion ” every mi l l i s econd , there  is no physical  processing
in the absence of user requests.

Assumption 3 may look fairly trivial but it is riot. It. is

possible to allow a processor , when relaying a message , to add what. we

call an au thent ica tor . Suppose processor k receives a message M from

another processor . It relays th i s  message in the form F” def ined by

F” : / k / M / S ( M , k ) /

S(M, k ) is an encrypted version of the message M whose encrypting

depends on H and k in a way such that It cannot be forged by any other

processor. Another faulty processor faulty might accidentally create

a val id authenticator for k , but we assume that it cannot do so

interit.ionally. More precisely, we assume that the probability that it

will accidentally create one is vanishingly small. The designing of

an authentication mechanism depends on the type of faulty processors

that can occur . If the faults are caused by random hardware failure ,

then an appro priate redundancy mechanism can be used . If the faults

are caused by malicious intelligence , then cryptographic techniques

must be employed . Such techniques have been developed [18], but are

beyond the scope of this report.

We assume that the recipient of a message In form F” can examine

36

I i. I . 
-

- . — .— .—— -——-— . -- ——S-- ~~~~~~~ ~~~~~~~~~~~~~~~ — —- - -  .— ..— 5— — .1.— ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ • S _~ —



- --— -..~~ —-S—~~~~~-— --~~~~~~~~~~~ ~~~—
--

~~~~~~~~

Chapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

the aut.nenticat.or and either ver ify tnat It is the proper

authenticator for M arid for k , or else discover that k has not

accurately relayed the message.

Note that if’ a message get s relayed several times , each time the

relaying processor adds its own authenticator to the message. The

message keeps growing longer , and the work of verifying it gets more

elaborate. Nevertheless , authenticators do enable us to achieve

interactive consisten cy without requiring the redundancy of having an

N at least as great as (3M + 1). An algorithm for doing this is given

i n [16].

2.3.3 Interactive Consistency —- General Case
We now consider the general problem of achi ev ing int erac t ive

consistency in an arbitrary network of processors and comm unication

links when the communication links may be faulty. We define a

communication link joining two processors to be functioning proDerly

if it correctly transmits any message sent over it within some fixed

length of time. A subnetwork of the network of processors is said to

be functioning properly if all of its processors and comm unication

links are functioning properly. The general statemen t of the

interactive consistency problem for an arbitrary network of N

processors is given below.

Assume that each processor k generates a data item i/p(k) at time

T. Each processor j must compute a vector of values (v~ (1)~
v.(N)) by time T + D (for some fixed D) such that if a “large enough”

subnetwork M of the network of processor s is functioning properly,

then for all processors i , j, k:

1. If j and k are in K, then v 4(k) = i/p(k) —— if K is in H,
then every processor in H obtains the correct inpu t for
processor k.

2. If i and j are in M , then v (K) = v (k) —— all processors in
M compute the same vector of values’~

Of course , to complete the statemen t of this problem , we mus t
specify precisely what cons t i tu tes a “large enough” subn etwork . We

would like to make this “large enough” requirement as smal l as

37

~~~A. .s , ~~~~~~~~~~~~~~~~~~~ -.- A~~~~~~~ ~~~~~~~~~~~~ •S1_IL~ % e A S s , . W td4S*~~~~~~~ ” t~~a~ - -.‘.~~~



Chapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

possible.

We have beg un work on this general interactive consisten cy

problem . We believe that , using authenticators , solutions are

possible that. satisfy the above requirem ent for arbitrary choices of

the subnetwork M —— just as with perfect comm unication , authenticators

permit solutions that will work despite any number of failures. We do

not know what types of general solutions are possible witho ut

authenticators. However , it appears that for a sol ution to tolerate

the failure of m processors , each processor must be connected directly

to at least 2m+ 1 othe r processors.

2.3 . 11 Clock Synchronizat ion
Our algorithm s to achi eve interactive con sistency require that

non—faulty processors have clocks that differ by at most some fixed

quantity. Since real clocks do not run at exactly the correct rate ,

even if they are started in exact synchrony, they tend to drift apart.

Thus , there must be some procedure for periodically resynchronizing

them .

We assume that each processor can read its own clock and the

clocks of all processors with which it is directly linked . We must

design an algorithm in which each processor periodically makes these

readings , and in which the values obtained are used to resynchronize

the clocks . First suppose that each processor can read every other

processor ’s clock and determine the difference between the two . We

then get a matrix D of’ values, where D. . is the difference between
1~ ,3

the clocks of processor s i and j as measured by processor j. If

either i or j is faulty, then D1~~ 
might have any value . Assume that

if I and j are both non faulty, then the val ue of D
~~j 

differs from the

true differqnice between the clocks by at most. d. Then a

synchronizat ion method has been devised that results in the clocks of

all nonf’aulty processors differing by at. most LId after the

syncrhonization has been performed . The method depends on the use of

an interactive consistency algorithm to broadcast the values of Di j
to all the processors.

38

L. 5—. 
___

~~~~~ . ~~~~~~~~~~~~~~~~~~~ -—..- 


Criapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

We are cu r ren t ly t r y i n g to generalize th i s method to an a r b i t r a r y
network in which a processor can only read tne clocks of its

neighbors , so the full matr ix of values D is not available. We are

also trying to obtain more efficient method s, possibly employing

authenticators directly in stead of just using them to achieve

interactive consistency when broadcasting clock readings.

2.3.5 Other Implementation Problems

Given syncrhonized clocks and a solution to the general

interactive consistency problem , it is easy to devise an algorthm In

which , if some “large enough” subnetwork M functions properly ~~
times, then every processor j j j , ±1 will correctly execut e the system

machine . However , this would produce a system that might be

unsatisfactory for two reasons:

1. It is requires that the same subnetwork K function properly
at all times . For example , consider a network of three
processors, in which any subnietwork containing two
processors is “large enough” . Such a solution would require
that some two processors never fail. However , we might want
a system in which processors could be repaired and brought
back into the system . This would allow the system to
continue functioning correctly even though every processor
failed at some time -— so long as it never happened that two
processors were faulty at the same time .

2. It allows a processor not in H to do anything . If a
processor is functioning properly, but is isolated from M
because of comm unl1cation failure , we might want it to stop
producing output. (Of course , there may be situations in
which it is better to do something than to stop, in which
case we would want the processor to keep producing the best
output it can.)

To solve both problems, it is necessary to enable a properly

functioning processor to becom e aware that it is no longer part of any

“large enough” properly functioning subnetwork K that. is correctly

executing the system machine. This could have happened for two

reasons: (1) it lost communication with the rest of the system , or
(2) it failed . The first case is easy to check for : the processor

~If a processo r is faulty, we cannot expect to be able to stop
it from doing anything .

39

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - - - - - 4



Chapter 2 DES iGN and VALIDATION of ROBUST DDP SYSTEMS

just continually checks to make sure that. It Is using the same Input

as a “large enough” number of the other processors. It can turn

itself off if it does not hear from enough other processors w i t h i n  a
prescribed period of time .

Failur e can be divided into two subcases: (1) hard failures that

lead to detectable errors —- i.e., errors that can be detected by

comparing the processor ’s output with the output of other processors,

and (2) transient failure s whose only result. is to leave the processor

with an incorrect version of the system machine state —- e.g., that
causes it to have an incorrect value for some dat a Item in the

distributed database example. The first type of failure Is easily

detected . The second kind of failure leads to the problem of ’ the
“luricing fault” —— a fault that may riot manifest itself until some

future time . This can be extremely dangerous . For example , in the

autopilot system , this error mi ght only be discovered when the

airplane enters some critical flight phase. The problem of detecting

such lurking faults is addressed in the next chapter .

When a processor has discovered that it is no longer correctly

executing the system machine , then the problem of restarting it is , in

pr inciple , straight forward. The processor must obtain enough

information to allow it to update its version of the system machine

state , and then it can simply join in with the other processors In

executing the system machine . It must obtain redundant information

f rom enough other processors (authenticated if it does not have direct
communication with enough processors) to make sure that it obtains the

correct system machine state. In practice , it will be necessary to

minimize the amount of information transfer necessary to restart a

procesor . thing this will be a difficult programming problem , which

will be very sensitive to the particular details of the system .

[There does not seem to be much that one can say aoout this problem in

general .3

40

-



pr ..~::i ~: - 

-

~~~

-S -
-

~~~~~

-- - - . -

~~~~~~~~~

Chapter 2 DESIGN arid VALIDATION of ROBUST DDP SYSTEMS

2.3.6 Formal Design Methodology

Thus far , we have been describing an informal design for a

system . There are two parts to this design :

1. The “logical ” design —— the design of the system machine and
the mapping functions sm.tnput.merge and P.outPut.demer~ e~ ;
and

2. The “distribut ed implementation” design —— the design of the
robust method for implementing the system machi ne on the
network of processors.

The first part is essentially the design of an ordinary ,

non—distributed sequential program , and is addressed by the SRI

Hierarchical Development Methodology L-IDM ([15, 19]) . Extensions to
the formal development methodology to permit it to handle the second

part of the design is now being explored in related work. Clearly,

further experience and further research are needed .

2.-Il Verification

We now consider the problem of formally ver ifying the correctness

of the design . This means formaLly proving that. the design meets the

specifications. The specifications can be separated into (1) logical

specifications and (2) performance specifications. These will be

considered separately.

2.11.1 Logical Specifications

Tne design of a robust distribut ed system has been split into two

subproblems:

1. DesignIng a sequential program for each processor k to
implement the system machine and the input/output mappings
sm.input.merge and P.OUtPUt.demergek. (The parts of the
program that impl emen t the system machine and the mapping
sm.input .merge can be the same for all processors.)

2. Designing a distributed algorithm to robustly implement the
system machine by properly synchronizing the processors’
programs.

Veri f ica t ion of the logical specifications involves first showing
that they are satisfied by the sequential programs that implement the

system machine and i ts input/output mappings on the individua l

41

-S 5 ~~~~~~~~~~~~~ -— ~. - 5~~~~~~ -~~~~~ - ~~~~ - - . ~~—

pr.. ~~~~~ - - - - --~~~—-S— -~--S--S- — - ——--5~~- ~~~~ —~~-55SS~~.

Chapter 2 DESIGN and VALIDAT ION of ROBUST DDP SYSTEMS

processors, then showing that the distributed algorithm correctly

synchronizes these programs. The methodology for verifying that the

design of a sequential program satisfies such a logical specification

is discussed In [19]. We now consider verification of the

syn chronization algorithm . We begin by describing the general work oni

the formal ver ification of concurr ent programs, after which we discuss

the particular problems presented by distribut ed systems.

2.11.1.1 Verifying Concurrent Programs

The fundamental method of verifying concurrent programs is

described in [10]. It is an extension of the basic Floyd/Hoare method

for sequential programs [5]. The method allows one to prove two types

of logical properties:

1. Safety orooerties that state that “something bad does not
happen” —— fo r exam ple , that a bad output is not produced by
a good processor .

2. Liveness orooerties that state that “something good must
eventually happen” —— for example, that a good processor
eventually produces some output .

A safety pro perty is proved by proving that some assertion is

invariant —— which means that if the assertion is true initially, then

it will always remai n true . Liveness properties are proved by a

general ization of the type of “counting down” arguments used to prove

the termination of loops in a sequential program . The proof of a

liveness property usually requires first proving the invariance of

some assertions.

The method is completely general and can be applied to any

concurrent programming environment. However , unlike the method for

sequential programs, a simple hierarchical decomposition of a proof Is

not in general possible. The basic reason for this is that with
concurren t, program s, two separ ate modules cou ld be execu ted
concurrently. This leads to a type of interaction between modules

that. is not present in the sequetial case. In particular , we cannot

prove the correctness of a level of design without knowing how its

modules are implemented by the lower levels. There are three possible

ways to deal with this problem .

42

1 ’ -

-—
- -~~~ -~~~~~~~~~.— -~~~~~ — -——— -~~~~ S.

~~~~~~~~ S



F

Chapter 2 DESIGN and VALIDATION of ROBUS T DDP S Y S TE M S

1. Restrict the possible forms of Interaction between modules
so that dangerous concurrent execu~Ion cannot occur . For
exampl e, one can prohibit the concurrent execution of any
two modules that access the sam e data. This approach Is
feasi ble for systems that are implemen ted on a single
computer , since such prohibitions are easy to enforce. It
is used (for example) in the original design of PSOS [15].
However , this approach is not by itself applicable to
distribut ed systems, because concurrent execution Is a
physical reality in a distribut ed system , arid earl only be
prevented by very costly synchronizat ion schemes .

2. Try to develop methods for specifying modules that contain
all the Information about their initeraction with other
modules that is necessary to prove the correctness of the
design without having to know precisely how the modules are
specified . Two different approaches at this are described
in [1’ ] and [12]. However , neither of these approaches have
reached the stage of being applicable to large systems.

3. Recognize that we can only prove the correctness of the
bottom level of the design , but use the hierarchical design
process to simplify the con struction of this proof. This is
the approach described in [10] ,  and is the only one now
feasible for distribut ed systems. However, further research
Is needed to determine how well it works , and what sort. of
tool s are needed to make such proofs practical for large
systems.

2.11.1.2 Veryifying Distributed Concurrent Programs

The most obvious complication that distribution introduces into

the verification of concurrent programs is that the communication

mechanism must be regarded as a collection of processes —— separate

from the processes representing the processors’ programs. Typically,

each communication line Is represented by a process ; the specif icat ion

of that process consists of a precise specification of that

communication line . Thus, there are many processes —— arid the

complexity of the proof tends to vary as the square of the number of

different processes. 1

Distributed synchronization algorithm s seem to be inherently more

complex than nondistributed ones. When a central control mechanism
( such as a monitor in an ordinary multiprocess program) exists , the

1Two processes are riot considered to be different if they execute
the same algorithm with different constants (e.g., processor number).

43

I. 

—- — - ——.

~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~ - --~-~ S~ - -~~ - - -~~-~~~ ~~~~~~~~ ~~~~~ -~~~~~~~~~~~



Chapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

invar ian t  assertions used in the proof Involve objects (such as
variables) local to that control mechanism . However , for a

distributed algorithm the assertions invol ve objects distributed

throughout the entire system . The proof of correctness is therefore

more “global ” for a distribut ed algorithm , and it is more difficul t to

isolate the synchronization mechanism from the rest of the system .

Our I n i t i a l  ef for ts  [4) indicate that it is possibl e to formally

verify distribut ed algorithms. However , much more experience is

needed to determine the limits of the current method , and wniat sort of

further developmen t is necessary.

2.11.2 Performance Specifications

Robustness specifications of the system become part of the

logical specification of the synchronization algorithm . The

requirement that the system performs correctly if “enough” components

are functioning properly becomes the requirement that the

synchronization algorithm satisfy certain correctness properties as

long as “enough” of its processes execute their algorithm s correctly.

An informal proof of such a requiremen t is contained in f93 . No

formal proofs of such robustness properties have been undertaken . We

believe that the formal methods described above are adequate to ver ify

these properties , and we intend to attempt such formal proofs in the

future.

Other performance speci fications of the system become performance

specifications for the synchronization algorithm . To verify that

these specifications are met , certain performance specifications must

be placed on the processors’ algorithms for implementing the system

machine and its input/output mappings. For example , consider the

problem of verifying the requiremen t for the distributed database

system that an acknowledgement be generated within 0.5 seconds of the

receipt of a request . The delay in generating the acknowledgement for

a request received at time T1 consists of two parts: (1) the time

need ed for a processor to learn what the system machine inpu t at time

should be , and (2) the time taken by the processor to process the

list of input requests to produce its output . The first part of the

44

I ‘ —  ‘

-- 
-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~ —~~~~- - -.-~~~ 
—--

~~~~~~~
- -

Chapter 2 DESIGN and VALIDATION of ROBUST DDP SYSTEMS

delay is caused by the synchronization algorithm itself; the second

part is caused by the processor ’s program that Impl ements the system

machine and its input/output mappings. The second part is usually

assumed to be much smaller than the first., since it does not involve

any interprocessor communication delays .

Art informal. verification of a synchronization algorithm ’s

performance Is given in [9). Formal methods for verifying performance

have not been developed. It appears to be possible to formally prove

worst-case execution time bound s for sequential programs -— i.e., to

formally derive upper bounds on the execution times of program s in

terms of the execution times of individua l program statements. A

method for doing this for concurrent program s was also indicated in

[103. However , it appears that this method will give upper bounds

that are so pessimistic they are useless. Further research is needed

to develop a method that provides more realistic upper bounds on

execution t imes .

We know of no practical methods for formally ver ifying any other

type of tem poral specification —— e.g., specifications of averaze

execution times . Since such properties are important , it would be

very useful to know how to verify them . Hence , research should be

undertaken in this area.

Other types of performance specif icat ions seem to require  .~~~~~ flQ ~~~

approaches to their verification. For example , it should be easy to

determine how many messages an algorithm can generate , so
specif ica t ions  of maximum communication t r a f f i c  should be easy to
verify . However , we know of’ no general methodology for ver i fying such
performance specifications.

45

I

L 
- ‘  

- - - -. .-~~~~ - 
.. . 

~~~~~~~~~~~~~~~~~~~~~~~~~~


CHAPTER 3 FAULT DIAGNOSiS IN OD? sys-r~ is

3. Chapter 3: Fault Diagnosis in DDP Systems

3.1 Introduction

It is already well recogni zed and appreciated that fault

tolerance is an essential requirem ent for the DDP system currently

under development for PAID application. Wnat may not be so wel l

appreciated Is the extent to which the requirement of faul t tolerance

may modify , and even dictate , design considerations normally governed

by other more familiar factors In a conventional non - f au l t—to le r an t

design . M3ny of the issues arid impl ica t ions of fault toleran ce in

• large digital system s have only recently been understood . Otners,

especially those having to do with computer r,etworks , are still

awaiting clarification , test , and practical application. It is very

Important , therefore, that fault—tolerance issues be given serious

attention at an early stage in DDP—system planning and architectural

design . if the last decade of digital system design has taught us

anything , it. is that certain system—wide features, such as security,

reliability (including diagnosability and survivability) and

extendibility, ~~~~~~~~~~ be provided for early and not. handled later as an

add—on or retrofit.

The long—range object ive of the diagnosi s inves tiga t ion , whose

initial stage Is reported in this chapter , is to provide a strategy,

algorithms , arid design techniques for the diagnosis of DDP networks of

the class represented by the BMD system .

Diagnosis includes the detection , location , and handling of

faults , which lay arise from either random or malicious causes. Tne

purpose of diagnosis is to enable the whole system to continue to

carry out its mission as effectively as possible , even In the presence

of multiple faulty units.

The goals of this first year ’s stud y have been :

— To achieve a fundamental understanding of fault diagnosis In
DDP systems

- To identity the main issues arid problem s requiring further
researc h

46

I ~
‘
‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _  

-

~~~~~~~

CHA PTER 3 FAULT DIAGN OSIS IN DDP 3YSTE~IS

- To relate these Issues arid problems to o the r aspects of the
de sign

— To explore approaches to the sol ut ion of art y of these
probl ems for which conventional approaches appear to be
inadequate , to the exten t that time arid fund s permit.

The next section of this chapter discusses the applicatior~ of
genera] diagnostic theory to DDP systems; fault location is the mai n

area In wn ich research results are needed . Next , a system model
appropr i a te to fault diagnosi s is presented . The fault location

problem Is then discussed in greater detail: the questions that need

to be answered , relev ant published and new results on local testing ,

and some new results on communication and decision requirem ents in

computer nietworks . The chapter closes with a summar y of the major

problems arid results and our recommendations for continuing research .

3.2 Application of Diagnostic Theory to DDP Networks

3.2.1 Fault. Accommodation

The life history of a fault In any large system for which faul t

accommodation is provided is marked by four events , shown in Figure

3.1; namely:

fault occurren~e IiQj: The fault occurs and remains latent
until It gives rise to an error indication .

‘i~u~~ detection .j~~): The presence of the fault becomes known at-
‘ one level w i t h i n the system , but i t s exac t location is not
nie-essarily and not usually known .

}~ault location (.~j,~): As a result of repeated errors or
deliberate diagnostic steps , the locat ion of the faul t Is
determined to a fineness determined by the size of the
smallest replaceable or reconfi gurable u n i t (S R U) .

Fault hanidlin,g j~j).: Finally, action is taken to circumven t the
harmful effects of the fault through masking , repair ,
or recon figuration .

Note that a “fault” need not be a hardware failure but can also

arise from a design or programming mistake , a signal transient , or

another externally induced modification of data or programs.

In this sequence , the n , the DDP network accommodates the
47

I L.

-— -- — —— —~~ — — ~~~~ ‘A •—~~~ - —— — — . — . ‘ -—

CHAPTEfi 3 FAUL-r DIAGNOSIS IN DDP SYSTEMS

ccuc rence of a faul t (P0) in th ree successive o p e r a t i o n s : PD , FL ,
arid FH. ft is the n ready t~ han d le a second fa ul t by the same

sequence , albeit with somewhat reduced resources (a smaller network).

This process continues with succeeding faults as long as enough of the

net work r emains to car ry out the m i s s i o n — o r i e n t e d funct ion s arid the
PD , FL , arid FF1 operation s chemselves.

3.2.2 Multiple Faults

In man y system s f au l t s occur randomly arid i n f r e q u e n t l y , so tha t
the chance that the sequence shown in Figure 1 might be interrupted by

a second faul t can be presumed to be n egl igible. In a system such as

large DDP networks of BMD type , however , the probability of

si mul taneous or correlat ed fa ul ts can become so large -- or the t imes

taken for FD, FL and PH operations so long -- that . the possi~~i I i t y of

a second fa ul t a r i s i n g wh i l e the f i r s n one i s s t i l l b e i n g d iagnosed
can rio longer be n egl ected . Some of the possiol e sequences of FO, PD,

FL , and PH events are i l l u s t r at ed in Figure 2.

If the chance of near simultaneous faults is not negligibly

smal l , the d e s i gn e r has to provide spec i f i c a l l y for a d i agn os t i c

c a p a b i l i t y to deal wi th tw~ or mor e faults occurr ing at about the same

t ime . M u l t i p l e f a i l u r e s can resul t from the chance occur’rence of a

wide spread transi ent , such as a l i g hteni ng s t r ike ; from a hardware or
prog ram weakness tha t can be man i f e s t ed s imul taneous ly in repl icat ed

un i t s (such as similar nodes of a network); or from a malicious act ,

such as sabotage or enem y a t t a c k , w h i c h could d i sab le two or more

u n i t s at the same time. The time required for FL and FM can be kept

smal l by careful system design .

It. will become apparent shortly (if it is not immediately

obvious) that the system cost of multiple fault accommodation ——

measur ed In terms of required hardware , comm unication capacity,

running times of programs, and file sizes —— increases very rapIdly

wito the number t of simultaneous faul ts that . need to be diagnosed

s i m u l t a n e o u s l y . Coniseque ni t ly, in spec i fy ing overall system
requirements for a network , careful attention is required to:

48

r
- ‘-

~~~~ •: .,~ . ‘T~~~ ’ - “--

~~~~~~~~~~~~~~~

- —— —

~~~~~~

-- 

CHAPTER 3 FAUL T DIAGNOSIS IN DDP S YSTEMS

— D e t e r m i n e  the requi red  overal l  system r e l i a b i l i t y

- Es t ima t e  the  achievable  reliability of individual SBUs arid
the comm unicat ion  links

— Determine the l ike l ihood of occurrence of up to t
niear—slaiultaneous faults.

3.2 .3 Fault Detection

Cu r r e n t l y  a v a i l a b l e  FD techn i ques are man y ari d var i ed ; they
encompass both hardware  arid so ft war e at all level s of design . The

cost of adding or i ncorpora t ing PD into a design is usual ly  r e l a t ive ly

• smal l , normally less than 10 percen t , arid in a n y  case is muc h less

tha n the redundancy required for r econf igura t ion  or masking .

New PD tech niques are not l i ke ly  to be r equ i r ed  in DDP systems.

Design choices must be mad e , of course , but the costs ari d
effectiveness of each alternative can readily be determined from

informat ion ava i l ab l e  in the course of design . No fun damenta l
di fficulties in making these decisions are anticipated . Therefore,

even though FD will surely play an i mp or t a n t  role In the actual design

of a DDP system , particularly as the essential elem ent of FL , it is
riot a critical research issue .

3.2.ZI Fault Locat ion

FL techniques deal mai nly with the problem of how to select a non

redundant set of FD tests tha t  are col lec t ively  s u f f i c i en t to p inp o in t
one or more faults to the SRUs in which they fall . Some systematic
methods for FL are now available , but they were devised for gate

networks , memories , and small Integrated Circui t packages and are not

directly applicable to networks whose SBUs are the size of

minicomputers or larger . There is only a little in the technical

literature and In current practice to draw from in deriving a strategy

arid general procedure for i d e n t i f y in g  the faulty el ements in a
di stributed network. In fact , the FL problem for DDP networks  has not
even been adequately formulated , nor have the critical aspects of the

problem been identified . These matters are discussed In Section 3.~
below.

49

—



CHAPT~~ 3 FAULT DIAGNOSiS IN DDP SYSTE~1S

3. 2.5 Fault. Handling

The onl y effective met hod for FH in a system conitairii nig as muc h

local auton omy as a DDP network , yet requiring rapid recovery

followi ng failure , Is by programmed recon figuration . Repair is too

slow , and hardware  masking  is too c o s t l y .  Moreover , to pro tec t

against the propagat ing effects of typical hardware faults , the SBUs

must be programmmatically arid electrically isolated from one another

to the maximum extent. possiole consistent with effective

commuilcatiori . Reconfiguration must. be controlled from a high ,

so f t ware level of the  system h i e r a r c h y .  Programmatic  i solation of

SRUs demand s that all init.er—SRU communication be carried out. in such a

- ‘ manner t ha t  e r ra t i c  or badly timed data from one SRU cannot block

correct operation of another. For example , all data transfers may be

carried out according to the rule that rio item of informationi received

from another SRU will be used until It. has been confirmed by

comparison with corresponding item s of identical information recovered

from othr -’ SBUs . Electrical isol ation is required to reduce to ver y

low the p r o b a b i l i t y  that .  a f a u l t y  SRU may fo rc ib ly  jam the opera t ion

of another , n o n — f a u l t y  SRU to which  i t  is connected by a comm unica t io n

link . Software arid hardware fault i sola t ion requ i re  some design
ef fo r t  but present  no serious conceptua l problems.

Handling faul ts  by reconf igura t ion , assuming the minimal  degree
of fault isolation suggested above , is actually the same as providing

a sch edul ing/ass ignment  ( S /A )  a lgor i thm for a f a u l t — f r e e  n e t w o r k .  The
only  apparent  d i f f e r e n c e  is tha t  some of the SBUs arid/or l inks of the

fa u l t — t o l e r a n t  network will  already have been ident i f ied  as f a u l t y  and
will  have been disabled or wi l l  be disregarded for S/A purposes. The

DDP n etwork architecture must anticipate these losses by providing

enough red un d ancy and flexibility of function that satisfactory S/A

can be carr ied  out for cr i t ical,  task programs , m i  the face of all

possible de le t ion s of disabled SBUs arid/or l inks up to tne  allowed
maxImum number t. The S/A a)gorithm is otherwise independent of fault

diagniosis procedures; that is , it does not depend on how the fa u l t y

elements have been identIfied , nor does it dictate how the PD and FL

procedures should be carried out. .

50

~~ I. • 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-

CHAFFE R 3 FAULT DIAGNOSIS IN DDP SYSTEM S

An e f f i c i e n t ari d e f f e c t i v e S/A a lgor i thm is ani i m p o r t a n t part of
the distribut ed operating system of any DDP network , with or witnout

fault tolerance. It will be used fully in t he f a u l t recover y process .

Howev er , its design is not great ly af fec ted by the d iagn os t ic strategy
adopted and the diagnostic procedures used , and this strategy and

these procedures do riot themselves depend critically on the S/A

algorithm .

FL therefor e emerges as the only one of the three steps of faul t.

diagnosis r e q u i r i n g serious research a t t e n t i o n .

3.3 System Model for Fault Diagnosis

Before delving more deeply inito the FL problem , i t w i l l be

necessary to set up a model of the class of DDP networks under

consideration . This model is best expressed mathematically in term s

of a graoh G with suitably label ed nodes and edges .

The conventional and obvious rep~’esenta tiori will be employed . It.

identifies the niodes of the graph with the SBUs of the DDP network —-
not. all of which are necessarily separated geographically. The ed~es
of the graph correspond to the d i r ec t c o m m u n i c a t i o n l i r tk s between

SBUs . These are presu mably b l d I r e c~ ionial , thoug h t h e r e is no

implication that the communication capacities (bandwidths) in the two

directions are the same. A typical small graph G is shown in Fig. 3.

In a full network model created for DDP designi , each node would

be characterized (labeled) to indicate the type of processing and

memory capabi l i t i es that i t provides. Edges would be labeled
similarly t~ indIcate the type and grade of communication . For

diagnosis , however , it is not necessary to label the nodes fully but

only to d i s t Inguish three types:

— Executive flQg~~ . Full power for conitroll inig the networ K
resides In t h i s set of nodes. This capab i l i ty includes the
diagnostic interpretation of sets of reports from tests
conducted locally in the network for FL, most. if not all of
the ope ra t in g system , and the S/A program used for
recon figuration control . The subset of executive nodes cart
be expected to be r ich ly coupled by edges .

— Re~ ulpr ~~~~ These ha ve the capab i l i t y ‘c test themselves

~~~~~IuI uu. um .mI suIuuuIu P1~
’ 

. 

- 
. 

-

‘ 

‘ :: :~‘ : ~~~



CH AF FER 3 FAULT DIAGN OSIS IN DDP SYSTEMS

and o the r  nodes , arid can be tes ted by o the r s , b ut have rio
author ity to take action oni the results of these t es t s
be yond sending the resu l t s  to the  exec u t i v e  nodes.

— Slave nodes. These can be tested by other nodes , bu t have
rio power to &est other nodes.

This  graph  model can also aid the development. of an S/A

algorithm . For this pur pose each network task would be described by a

set of alternative l abeled subgraph s (each normally consisting of one

or a few int erconnecte d nodes) sufficient to execute that task . The

‘, c~r r ’espo ni d in ig  r ur in i ln ig—t lm e e s t i m a t e s  would also be speci f ied . Again ,

~m ” w e v e i , for d i agnos t i c  purposes i t  is adequate and merely to assume
t h a t  e v e r y  node has sufficient processing arid memory capability to (1)

st~ r’e and appl y testing programs to itself arid (for non—slave nodes)

r ”  se lec ted  r .e i ghb or i r i g nodes , ( 2 )  ini L~.ate the t ran smission of the
t est results to all of its neighbors and (3) relay all to its

r. ’~:~~hbors. received messages regarding test resu l t s .

~~~ l-h er  ex tens ion , to be considered la te r , provides for several

f~ -i .~t s t a t u s l eve ls . It has been assumed so far that each node (SEW)
is e i t h er f a u l t y or rioni faulty. Actually, it will probably be

h w t i l i e to d i s t i n g u i s h between nodal f a u l t s hav ing d i f f e r e n t
pr~’ O a o l l i t I e s a rid d i f f e r e n t con seque n ces , the reby provid ing var ious
le v e ls c’i’ conf id en ce and u t i l i t y at i n d iv i du a l n odes. It wi l l not
then be n ecessary to reconfi g ure a node out of use for a faul t tha t
a f f e cts o n l y ant i n f r e q u e n t l y run , low—priority program; the first
occasion of a t r ans i en t f a u l t ; or a d i f f i c u l t — t o — l o c a t e faul t tha t may
have a c t u a l l y occurred m i another node. Also , a properly designed

node will usually retain its capability for relaying received messages

to other nodes , even thoug h i t is cr ippled i n t e r n a l l y . F i n a l l y , i t

may be possible io r e t a in memory readout capab i l i ty from a node

despite failure of its procesor , so that data arid programs can be

tran is fer re d to a n o n — f a u l t y n ode ra ther than be comple te ly lost .

Inclusion of any of these a l t e rna t ives will requi re ant Increase
in the number of levels of faul t s ta tus to more than two . This

extension will complicate the PD, FL , arid PH programs but it. can be

ex pected to yield much higher network reliability for a given degree t

52

I t. •
‘

- —
- -~~

‘
~~~~~~~~~ - —---~~~~

‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~“ ‘  ‘~~~~- - -~ ~ - - -


‘
~~~~
—-

~~~

CHA PT ER 3 FAULT DIAGNOSIS IN DDP SYSTEMS

of fault protection .

3. 1~ Fault. Location in DDP Networks

FL requires three steps :

— Test ing, In which tests are conducted among small sets of
nodes in the network.

— Communi cat ion , in which the test results are relayed th rou gh
the network to the executive nodes .

— Decoding, in which the execut ive nodes calculate which nodes
of the n etwork are ac tua l ly f a u l t y .

At the global (n e t w o r k) level , all th ree steps must somehow be

carr ied out cor rec t ly , even in the presence of up to t nodal f au l t s .

These three steps will now be discussed one at a time.

1 . Testirj,g

Two types of error reports from testing can be distinguished :

~~~. A report  gen erated spontaneously by a node and communicated
to its neighbors as a result of its own se l f—diagnos i s
ac t ion .

2. A report generated by one or mor e ne ighbors  of a node as a
resul t  of testing operatA oni s conducted on that node by these
neighbors.

Type can probably be relied on to detect , during normal

operat ion , almost all faul ts  at the r e l a t i v e l y  low cost required for
event high—level self—diagnosis. Type 2, though more expensive in time

arid hardware , will be necessary to ferret out the remaining faults

whose probability is lower but whose effects on overall reliability

cant be much greater : latent and lurking (long—term latent) faults ,

and the  various mul t ip l e faul ts  a f fec t in g  two or more nodes (SRUs) at
about the same time. Only type 2 requires the development of a test

strategy and an algorithm for fau l t  diagnosis .

In both types the Initial error report resides in the node in

question or its neighbors , ready to be recommunicated through the

network to the executive nodes .

53

‘ ‘



CH A FFER 3 F A UL T DIAGNOS IS IN DDP SYSTEM S

In the s i m p l e s t case , a local test consists of a node A of the

net ,work t .est lnig another n ode B , as indicated in the two—node subgraph

shown In  FIgur e 4. The directed edge or ~~~ between A and B

dis tingui shes which node is the tester and which is Deinig tested .

(Tne ~r r~ w designates the direction of control —— riot in formation
flow , which must be bIdirectional.) For testing purposes, then , the

te s t i n g  gra~h takes the form of a directed graph GT whose nodes
correspond to those of the original graph G (hence , to the SBUs of the

DDP network), but whose arcs indicate which nodes are capable of

testing which others. Clearly, the set of arcs of G
T 

must be a subset

of the set of edges of G. The graph shown in Figure 5 illustrates a
possible testing graph ; it corresponds to the example given in Figure

3.

The testing problem is not trivial. An error report e from the

test A——> B reflects the true failure status f8 of node B (e~O if B is

nonifault.y; e~ 1 if B is faulty), but Only if A is itself nonfaulty

If A is faulty 
~~A

- ’
~~’ 

then the test result e may be 0 or 1

and is meaningless (e=X). This observation , summarized in Table 3.,

permits an e-label (0, 1 , or X) to be attached to every arc in the

graph GT, provided only that all nodes are l abeled with their f—value s

(0 or 1). In other words , if tne fault status of every mode is given ,

one may readi ly  determine the values of all error reports.

The inverse problem —- that  of determining a consistent node
labeling corresponding to a given arc labeling -— Is the decoding step

mentioned above arid discussed below . A valid solution must be

independent of the Xs; that is , it must hold for an a rb i t r a ry
assignimenit of values 0 and 1 to the Xs. It is obvious that if there

are too many Xs , complete decoding is impossible. For any given graph

GT, only a maximum number of faulty nodes may be located . The graph

rnu~t. be designed so tha t  a redun d an t and overlapping pat tern  of local
tests will accuratel y locate up to t faults in the network.

Actually, local testing may take place in ways other than that

IndIcated In Figure 4(a). The self—test shown in Figure 4(b)

corresponds to an error report of type 1. Even though most faults can

54

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- - - -.—- -—. —--——— .— ‘.— ——— . —‘—-— - -“—-—---__ ._. 
~~~~~~~~~~~~~ -- a_s


r~~~~~~~~~~~~~~~
T

~~~
II ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CHA FF E R 3 FAULr DIAGNOSIS IN DDP SYSTEMS

be expected to reveal themselves first during the running of a regu la r

task program , a self—test Is of limited use for FL since , as indicated

in Table 4(b), the test result e = 0 provides no definitive fault

information at. all. Hence , the fault coverage of self—testing cart be

expected to be low. Indeed , no separate segmen t of hardware or

program can ever be counted on to check fully its own faul t status .1

Other modes of local testing are indicated In the rest of Figure
4. The alternative in Figure 1I(c) is especially worth rioting because ,

if nodes A arid B are similar , identical programs may be run on them

and the key variables can be compared frequentLy for agreement. Thus,

fault coverage Is high and there is prompt detection (normally with

local location as well)  wh en a faul t first appears. In Figure 4(d)

nodes A and C are required to test B (either or both of the dashed

arcs may be missing), so a failure mi  either A or C can render the

test result meaningless . Finally, in Figure 4(e) node A tests B and D

simultaneously, but B and D each participate in  the  test ing of the
other . Clearly,  many other test modes are possible. (A general

network testing model encompassing these and other testing modes is

described by Russell and Kime [20 , 2 1J . )

With this background , it can be appreciated that there are

i mp or t a n t  fundam ental questions of how the size and interconnect ion
structure of a n etwork are related to the type and extent of local
testing required for a desired degree of faul t  l oca tabi l ity .  Most
crucial for design purposes, it will be necessary to determine the

limits on the size and interconnection structure , and the types of

local tests required , as function s of the prescribed number , t , of

faults that are to be accommodated simultaneously.  The total number
of faults that can be accommodated before repair may also be relevant..

These questions must be answered before the architectural design of

the DDP network can be completed .

1The usefulness of self—tests  may be impr oved s ta t i s t ica l ly  by
“stretching” task programs into a diagnostic mod e wherein they are run
with artifical inputs , blocked out puts , and internal changes arranged
to flex little—used portion of the hardware and software of the SRU.
Nevertheless , the limitations of self—testing are fundamental .

55

t .

_____________________________



r 
- 

-

CHAPT ER 3 FAULT DIAGNOSIS IN DDP SYSTEMS

Other problems in local testing , equally importan t but not so

urgent , involve extensions to the fault model assumed here: how to

handle faults on communication links (edges), transient arid

Intermittent faults , and multiple fault status levels (nodal faults

that are less than catastrophic).

A few results are available in the technical l it e ratur e for the

A-->B mode of the general testing problem [Figure 4(a)]. Preparata et

al [17] have derived n ecessary conditions for the mintimal size and the

connection pattern of networks capable of locating t faults at the

same time (one-ste,~ FL). They showed that the number n of nodes in GT
must be at least 2t + 1 , and each node i must have in—degree d . > t.m u  —

(Parallel arcs and self—loops are disallowed.) They also determined a

family of node—symmetric networks based on star polygon graphs that

achieve these numerical bounds exactly and are one—step

t—fault—locatable. When multiple faults can be located in sequence

instead of in one step, weaker limits apply: in terms of the number N
of arcs, we have N > n + 2t +2 , instead of N � nt. This bound also is

shown by construction to be achievable for t—fault location .

Hakimi and Anin [6) derived three sets of necessary and

sufficient conditions for one—step t—fault locatability in A— ->B

testing . The first set contains the two inequalities stated above ——
N ~~ . 2t + 1 arid di i  ~ t for every node I—— plus a third condition: no

two nodes test each other . That is , the first two inequalities must

continue to hold for at least one set of arc removal s that break all

two—node loops of the type shown in Figure 4(c). The second set of

necessary arid sufficient conditions requires that N ~�. 2t + 1 and c(GT)

�~ 
t , where c is the ~onnectiyity, defined to be the smallest number of

nodes of the graph whose removal yields a graph that is not. strongly

con nected . (The in-degree condition is satisfied automatically.) The

third set of necessary arid sufficient conditions contains the same two

Inequalities stated above , plus a third requiremen t that says, in

effect., that every subset of n—2t+p nodes must. have more than p

successors , for all p = 0, 1 , . . . t — 1 .

All three sets of conditions are ver y general but algori thmically

LI 
t. 

.

t 

—— ‘

~~~~~~~~

‘
__ _ _ _ _ __ i__,_

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



.- .- -. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. - -

~~~

- -_- ---- _--

~~

.

CHAPTER 3 FAULT DIAGNOSIS IN DDP SYST EMS

awkward arid would be difficult to Impl emen t efficiently. More

worka ole  cond i t ions  need to be der ived , niot on ly  for the A—-> B case

but for other testing modes as well . It has riot yet been demon strated

that this algorIthmic complexity is fundamentally necessary.

2. S~~mmur1Ic atI onu .

The distribution of test results around the network , and to the

executive nodes in particular , Is one Instance of the interactive

con sisten cy problem dIscussed in Chapter 2. The “value” of the

message originating at each node A i s  now the  set of outcomes of the
tests performed by A on its neighbors in the graph GT. Note that if B

is fa u l t y ,  the test result e~~ need riot. be the same as the results of
other tests of B —— for example , e~~ , eEB, —— unless we also assume

that all tests of node B were identical and executed effectively

simultaneously. This assumption is probably not justified for

practical netwo r ks , in view of the possibility of marginal and
transient faults if not for other reasons. Consequently, it cannot

realistically be assumed that all fault—free testors of a given node
will agree with one another.

The interactive consistency bound N > 3t presented in Section 2

is directly applicable to the communication problem of diagnosis only

when the graph G is complete and all nodes are executive nodes. Thus,

this bound arid algorithm need to be extended to cover the more

arbitrary graphs under consideration here. Also , just as for t es t ing ,
an extension is needed to allow for faults on communication links
(edges) and certain multipl e fault level s within nodes. Finally, It

may be necessary to remove the assumption that the identity of the

sender of a communicated message Is always known and not subject to
error .

The heaviest commun ication load requi r ing  in teract ive  consistency

will arise from self tests rather than A——> B or other test modes , but

the communication requirem ents are otherwise the same in both cases.

These extensions will require some investigative effort , but none

of them appear to be insurmountable.

57

t .  
,



CHA PTER 3 FAULT DIAGN OSIS IN DO? SYSTEMS

3. Decodln&

The executive nodes must be provided in sufficient number flE 
to

compensate for fau l t s  i n  at mo st t of them —— namely, nE ~ 3t .

Assuming that each of them has received reports from all tests that

have been performed , the problem remains of determining from this

information which nodes are actually faulty. As a consequen ce of

interactive consistency , one may be assured that all non— faulty

executive nodes are working with the same set of test results. (They

may have a common NIL value for some node , indIcatIng the lack of an

agreeing majority among report.s received from that. node by different

routes). Consequently, as long as they employ the same decoding

algorithm they will all reach the same conclusion about which nodes

are faulty.

An example of the decodIng problem for A——> B testing is

illustrated in the three parts of Figure 6. The graph G1 itt Figure

6(a) has been node—labeled with a hypothetical pattern of node faults

(ls). Itt Figure 6(b) the resultant error reports are appended as

labels to the arcs of In Figure 6(c) art arbitrary ass ignm ent of

Os and is to the Xs has been mad e, arid the information regarding which

nodes are at faul t. has been deleted . A successful decoding algorithm

must. regen erate these node labels from the arc labels.

Even when a network is known to be t - faul t  locatable , no general
decoding algorithm is now available. This problem is similar to the

classic decoding problem in coding theory; many codes have beeni

devIsed whose error—correcting properties are known but for which

decoding algorithms have never been found .

In gen eral the solution to the decoding problem Is not unique .

For exam ple , art arbitrary directed graph havin g an arc label Inig

consisting of all Os could have arisen from a node labeling consisting

of all Os (no faults at all) or all is (all nodes faulty). Given an

arc labeling, therefore , we seek the particular corresponding node

labeling having the least number of is (the fewest faults)-—that Is,

the labeling of minimum wei&h t. Actua l ly ,  we are interes ted m a i n l y  in

58

______________



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -

~~~~~~~~~~

— - - -

~~~~~~~~~~~

---

~~~~~~~~~~

-- —

~~~

- -

CHAPTER 3 FAULT DIAGN OSIS IN DDP SYSTEMS

those set.s of arc labelinigs that could have risen from a maximum of t

n ode  f a u l t s .  (Other arc labelinigs resulting from more than t faults

may or may riot be decodable.) The decoding problem Is therefore One of

determlntinug for a given graph GT the min imum—weight node l abel Inig

corresponding to arty arc labeling that can arise (according to Table

3.4) frets a node labeling having rio mor e than t is.

A so l u t i o n  to th i s  problem w i l l  now be pre senited for A— ->B

t est ing .

Following Meyer and Masson [14], the full set of test results may

be conveniently represented in the form of an ni x ni matrix E whose

general elemen t eu is 0 or 1 , according to whether the test of node j
by node i did not or did indicate an error . Nonexistent arcs In G are

designated with an “unspecified” value , e1j=U. Each row E
~ 

of this

matrix designates the collective result of all tests performed by node

i , and each column vector E~
t designates the collective result of all

tests per formed on node j.

Note first that for a single fault at node i , all n—i row vectors

representing nonifaulty tester nodes must agree with one another in

their non—U components , even in column i where any non—U value must

be ~~~. When the number of faulty nodes does not exceed t , E will have

at least n-t such agreeing rows , except possibly in columns

corresponding to faulty nodes. Ro ws representing faulty test nodes

will contain arbitrary val ues (Xs) in their non—U components; they may

or may not agree with the other rows . Columns correspondng to faulty

nodes will contain is except in rows also corresponding to faulty

nodes , where the entries are arbitrary.

In these term s, then , the decoding problem is one of finding a

max imal set of rows E , E , ... E of the error matrix E that.ii ii Ip
agree in all of their non—U components, except possibly in Columns ii ,

i2, ... ip. Restated , the prob]em is one of deleting the least

number of rows and their corresponding columns such that all remaining

rows agree in their non—U components.

The set. DE of rows and column s to be deleted may be readily

59 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- -

CHA PTER 3 FAULT DIAGNOSIS IN DDP SYSTEM S

ident i f ied by calculat ing the ma t r ix product

F EEt

using ordinary scalar addition and a special multiplication rule given
by the table

‘: 0 U 1

0 : 0 0 1

u : o 0 o

1 : 1 0 0

The entry f
1~ of the (symmetric) matrix F will be 0 if and only

if rows I and j of E agree perfectly in their non—U components; f~~
will be ~ t if the disagreement is limited to t components and ~~~
will be >t otherwise. The rows of F, all of whose components are .~~ t ,

then define the corresponding rows of E over which agreement holds.

Let C be the binary consensus obtained by summing vector over all of

these agreeing rows (formed, for example , by boolean addition with Us

replaced by Os). The positions of the is in C identify the faulty

nodes precisely.T

For testing in other than A——> B mode , a systematic procedure is

not available. This is an outstanding problem whose solution is

required before diagnosis programs for a DDP network can be written .

If a practical decoding algorithm cannot be found for the class of

networks known to satisfy the above conditions for t.—fault

locatability, then additional nodes or interconnections must be added

to the network to permit decoding, thereby affect ing the ne twork

architecture . This risk of network redesign must be acknowledged , but

it is surely very low.

Two of the extensions ment.ioned in the last two subsections also

1
This last step of returning to E to form C Is necessary because one

or more rows of E representing faulty nodes may happen to agree with
the rows representing nuonfaulty nodes, except in columns representing
faulty nodes.

60

_ _ _ _ _ _ _ -~~~~~~~~~~ - - _
~~ - - _ -

~~~ 



CHAPTER 3 FAULT DIAGNOSIS IN DD? SYSTEMS

need to be made:  the accommodat iont of f au l t s  on l inks  as wel l as

nodes , arid provis ion for m u l t i p l e faul t  s ta tus  levels  w i t h i n  nodes.

3.5 Summary and Conclusions
We have described the history of a fault from occurrence , through

detect ion  and location , to hand l ing  by r econf igura t ion .

The most impor ta n t observat ion is tha t  the complex i ty  required
for automatic fault diagnosi s depends critically on the maximum number

t of s imultaneous or near—simul ta n eous f au l t s  tha t  must be
accommodated . The p robab i l i t y  that  m u l t i p l e f au l t s  wi l l  need to be

dealt with at the same time cant be reduced by (1) runni ng

high—coverag e FD programs f r equen t ly ,  ( 2 )  reducing the running t ime of

FL ari d FR program s , and (3) following good hardware  and software

design practice to min imize  the p robab i l i t y  of h i g h l y  correlated

fau l t s  between similar  uni ts .  In a system such as the BMD DDP
network , protection mus t also be provided against mal ic ious ly  iniduced

faults that could appear on several nodes arid/or links simultanteously.

Further analysis of these fault conditions will be necessary, out it

seems likely that tolerance against simultaneous malicious faults will

dominate the requirements for network redundancy arid for diagnostic

capability. In any case, the minimum accept able val ue of t must be

determined from system considerations.

It has also been pointed out that , of the three aspects of

diagnosis for which hardwar e and program s must be provided (FD , FL , and

F R ) ,  v i r tua l ly  all of the unsolved problem s in diagnosis concern FL.
Further , all three steps of FL —- t e s t in g ,  comm unicat ion , and decoding
—— contain research problem s still unsolved for the types of DDP

n etworks  expected in the envisioned appl ica t ion .

Work on these research problems should be guided by the goals of

(~~) determining how the costs and capabilities of FL programs are

related to (a) the value of the parameter t and the classes of faults

that can occur , and (b) the main design parameters (number and types

of SRUs , and number and configuration of inter—SRU communication

links); and (2) finding good algorithms for allocating local tests ,

61 



~~~

_ _

~~~~~~~

_ _ _ _

~~~~

CHAFFER 3 FAULT DIAGN OSIS IN DDP SYSTEM S

for the commurilcation protocol , and for decoding test results prior to

reconfigurat lent .

The major conclusions to be drawn from this stud y of the

diagnostic aspects of faul t tolerance m i DDP systems are:

1. The m axi mum val ue t of faults to be accommodated
simultaneously shoul d be determined as sOon~ as possible from
overall system requirements.

2. Research is needed for all three steps of FL: testing,
communication , and decoding. Testing results are needed
first .

• 3. Di agnosis r equ i r emen t s are crucia l to the overall BMD system
design , and should be incorporated early in the design
effort , not later as art add—on .

62

~ Irii1J1 - — - ----~~- -— —~-- - - -~~ ——-————~~~~~~~~~~~~~-

F ~~~~ 1iT~~~I T

Permanent fault:

FO FD FL FH

I
‘ time

1 2 3 . . . r

latency alert “reconfig n
interval interval interval

FIGURE 1 LIFE CYCLE OF A FAU LT.
FO = Fault Occurrence; FD = Fault Detection; FL = Fault Location; FH = Fault Handled .

Transient fault:
FO FD Reset

I
______ ______4— T~

Multiple faults: ? ?
F01 FD 1 FL 1 FH 1

H H
F02 FD 2 ? FL 2 FH 2

F01 FD 1 FL 1 FH 1
I HI

~~~FD2

F01 FD 1 FL 1 FH 1

F02

FIGURE 2 LIFE CYCLES OF SOME POSSIBLE MULTIPLE FAULTS

63

t .  I



SR U’s:

0 Exec.

Q Re9.

A 
Slave

FIGURE 3 AN ILLUSTRATIVE EXAMPLE OF THL GRAPH OF A DOP NE’WORK ,

SHOWING ITS SMALLEST RECONFIGURABL E UNITS (SRUs) AND
THEIR INTERCONNECTIONS

~~~~~~~~~~~~ 
}

and Multip le

FIGURE 4 SOME POSSIBLE TESTING MODES.

(a) Node A tests Node B; (b) Self-test of A by A; (c) A and B test each other;

Cd) A tests C while C tests B (and perhaps other tests as well); (e) A supervises

joint B—D test.

64

--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



51

~~t TI ‘-~~~ 

-

SR U’s:

El Exec.

Q Reg.

A Slave

FIGURE 5 ONE POSSIBLE TESTING GRAPH CORRESPONDING TO THE
DDP NETWORK GRAPH SHOWN IN FIGURE 3

FIGURE 6 AN EXAMPLE OF A TESTING GRAPH ILLUSTRATING:
(a) Node labeling (SRU fault statuses ); (b) Derivat ion of arc labeling (error repo rts l
from node labeling; Cc) The reverse problem of determining node labelin g from arc
labeling.

65

_ _   ~~~.



Table 1
ERROR TABLES CORRESPONDING TO FIGURE 4 (a) AND (b) .

~ A ~ B 
faul t statuses of Nodes A and B (0 = nonfau lty, 1 = faul ty ) ;

e = error report from test (0 = no error , 1 error , x = test result
ambi guous).

~A f B e  e
0 0 0  0 0
0 1  1 1 x
l O x
1 1 x

a b

66

~ .: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- , --- -,— .

REFERENCES

REF EREN CES
V ]  R.S. Boyer arid J S. Moore.

A Comoutp t io r tp l  Logic.
Academi c Press , 1979.

[23 E. W . Di jks t ra .
The Str uc tu re  of the  The M u l t i p r o g r a m m i n g  System .

.amunticpt ica s  of ~~~ ~ Q~i 11( 5 ) :3 L 11_ 3 1) 6 , May 1968.
[3] R. J. Feier tag  arid P. G. Neumann .

~~~ 
Fpurtdation~s of ~ Provabli Secure On erat in ig Syst~~ (~~~Q~~) .

NCC , 1977 .
[I)] R . J . Feiertag , e t . a l .

COL Final Reoort.
Technical Report , SRI Internation al , Menlo Park CA , August 1978.

[5] R . Fl oyd .
Assigning Meanings .~~~~ Pro2rams, pages 19—32 .

- . American Mathemat ica l Society, 1967 .
[6] S .L . Hakimi and A . T . Amin.

Charac t e r i za t i on of - Connection Assign men t of Di agnosable
Systems.

~~~~~~~~~~ Transaction ~~~j  Comouter’s C—27 :86 — 8 8 , January 19714 .
[7] L. Lamport. “The Specification arid Proof of Correctn ess of

Interactive Programs,” S. Takasu (ed.), Proceed lni .gs .Qi~~j l~Internat iona l  Coniferenice ~~~~~. Mathematical Studies ~~ InformationProcessing ,  Univers i ty  of Ky oto , 197 8.
[8] L. Lam port .

.Qn. ~~~~ Proof ~j Correctness ~~ ~ Calendar Program .
Technical Report CSL—88, SRI International , Menlo Park , CA ,

January 1979.
[9] L. Lamport.

The Implementation of Reliable Distribut ed Multiprocess Systems.
Comouter Networks 2:95—11 14, 1978.

[10] L.  Lamport .
Provinig the Correctness of Mult iprocess Programs.
IEEE T r a n s .  on Softwar e ~ngjneering S E — 3 ( 2 ) : 1 2 5 — 1 1 4 3 ,  MAR ~977 .

[ 1 1 ]  L. Lamport.
A New Approach to Proving the Correctness of Mult iprocess

Programs.
.A21 TOPLAS 1( 1) : , July 1979,

[12] L. Lamport.
fl~~ ‘Hoare Lozic ’ of Concurrent Programs .Technical Report  CSL—79, SRI I n t e rn a t i o n a l , Menlo Park , CA ,

November 1978.
Submitted to Acta.

[13] E .J .  McCauley and P. Drongowski .
~~Q~ : Desigrt ~~ .~~, Secure Qoeratirtg System .
NCC 79, 1979.

[ii) ] G.L. Meyer arid G.M. Masson .
An Efficient Fault Diagnosi s Algorithm for Symmetric  Mult ip le

Processor Architectures.
j~~~~ Tranaactions ~~ Comout.~~~ C—27 (11):1059—1063, November

1978.
67

~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -

I

~~~~~~~~~



REFERENC F~.$

P5] P.G. Neum an n , R.S. Boyer , R .J . Feiertag , K.N. Levitt , L.Robinson .
A ftQ~~~l 

~~~~~e Qpecatl, n ~~~~~~Technical Report , SRI Inter natio n al Menlo Park , Cal i f o r n ij ~~,February 1977.
Final Report , Project 4332.

[16] M. Pease , B. Shostak , L. Lamport .
~~~~~jni ~g~~~~~ r~t in the ~~~~~~~~ ~~Techn ica l  R epor t  CSL—8 7 , SRI In te rna t iona l , Men l o  Park , CA ,January 1979.
This work supported by NA3A Langley Research arid BallisticMissile De fen se Advan ced Technology Center .[17] F .p . Preparata , G. Metze, and H.T. ~hien.On the Connecti on Assign m en t Problem of Diagnosable Systems.IEEE Ij.~~~~ctioa~ on ~jectr’orii~~~r n ic Comout~~~ EC — 16 ( 5 ) :84 8_ 8 514 ,December 1967.

[1 8] B .L .  Rivest , A. Sh amir , and L . Adleman .A Me thod for Obtaining Digita l  Sign atures  and Publ ic—keyCryptosystems.
~~~~~~~~~~~~~~~~~~~~~~~ 2 1: 1 2 0 . 126 , February 1978.[19] L. Robinson , K . N .  Levitt , P.G. Neumann , arid A. R. Saxenia . “AFormal Methodology for the Design of Operating System Software,”R.T. Yeh (ed.), Curre

~~ re r s t h _________Prenttice...Hall , 1977.
[20] J.D. Russell arid C.R. Kime .

System Fault Diagnosis: Closure and Diagnosability with Repair..1~~~ . ~~~~~~~~~~~ ~~ Comouter~ C_211(11):1078_1089, November1975.
[21] J.D. Russell and C.R. Kime ,

System Fault Diagnosis: Masking , Exposure, and DiagniosabilityIEEE
~ranspctionjs QJJ ut rs C~21I (12):llSS..ll61 December1975.

[22] J.H. Wensley, L. Lamport, J. Goldberg , M .W. Green , K.N. Lev itt ,P.M. Melliar...Smith , R.E. Shostak , arid C.B. Weinistock .SIFT: Design and Analysis of a Fault-Toleran t Computer forAircra ft Control .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 66(10):1240_12514, October 1978.

68

- 
I L

~~~~~~~ 


