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- A method for obtaining asymptotic solutions of the unstable

resonator integral equation which is valid for all values of
the magnification was developed. Approximations were made
on the Greens functions rather than the eigenmodes, leading
to results which are easily generalized to different mirror
geometries. ®*Diffraction dominated eigenmodes® for reson-
ators where each ray escapes after a few transits were
differentiated from ®*waveguide dominated eigenmodes® which
are obtained for cavities with a large number of transits
per ray. The solutions obtained were seen to agree in the
appropriate limits with other asymptotic solutions, numeri-
cal results, and geometric optics predictions. To include
the effects of gain, the unstable resonator equation was
derived from Maxwell's equations in a polarizable medium.
The resulting equations have the same structure as the empty
resonator equation, and similar approximations can be used.

Some features of the effects of saturation on the eigenmodes

of an unstable resonator were considered.
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STATEMENT OF WORK

e contractor shall _furm'sh scientific effort during_ the period and

at the level indica in paragraph la Bf"Seetion‘H, together with all related

services, facilities, supplies materials, needed to conduct-the following

research.

a. Develop and apply analytic techniques for determining the

modes and eigenvalues of cylindriical unstable optical resonators.

b. For systems which display azimuthal symmetry, develop and apply
two different techniques: (1) an asymptotic differential equation approach
and (2) an approach that is valid for situations in which the resonator

magnification is large.
c. Develop a technique that is designed to treat cylindrical
resonators in which the system's azimuthal symmetry has been destroyed by

optical perturbations.

d. Develop techniques that are specifically designed for resonators

with large Fresnel numbers.

e. Develop a technique to incorporate gain in unstable resonator

calculations.
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ANNUAL REPORT

Recently there has been considerable interest in developing analytic
approaches to unstable optical resonators, especially devices with large

Fresnel numbers. Two reasons for this interest are:

(1) The fundamental physics of these resonators is not yet fully

S~ understood.

-~ (2) There is a need for rapid and accurate techniques for calcula-
ting the eigenvalues and eigenmodes of large Fresnel number un-
stable resonators. Such devices are of greatest practical
importance, and are most tractable to asymptotic techniques. We
note that computer generated solutions of the Fox-Li resonator
equation became more costly and less accurate as the Fresnel

number increases.

In the last year we have developed novel approaches towards elu-
cidating the physics of these devices and generating efficient techniques for
calculating the eigenmodes and eigenvalues of unstable optical resonators.
Below, we have summarized the results and related our work to that of others
in the field. We also discuss the relevance of our approach to problems

involving unstable optical resonators with gain media.




To clarify the motivation for our research, we first briefly review

1 and R. Butts and P. Avizonisz. These workers have

the work of P. Horwitz
developed asymptotic approaches to unstable resonators which we have been able

to complement and extend.

In 1973, Horwitz presented a very interesting asymptotic approach for
treating the electrodynamics of large Fresnel number resonators with rectangu-
lar geometries. The principle result of this calculation was the discovery of
a set of rapidly varying diffraction functions which could be used to abtain
the empty resonator eigenmodes. Specifically, the resonator eigenmode was
written as the sum of a fundamental spherical wave plus a series of edge dif-
fracted waves. The resultant series converged rapidly for large magnifica-
tions (M) with the convergence becoming poorer as M decreased towards unity.
Recently, Butts and Avizonis extended Horwitz's analysis to resonators with
circular mirrors. The eigenmode was once again written as a spherical wave

plus a series of edge diffracted waves appropriate to cylindrical coordinates.

Despite the very interesting results of these authors a number of

difficulties still remained. In particular,

(1) Convergence was best for large M. In their analysis Butts and
Avizonis found that this approach failed entirely for M < 1.3
with N « 10.




(2) For both cylindrical and rectangular geometries the edge dif-
fracted waves contained unphysical infinities at the shadow

boundary of the resonator.

(3) It is difficult to extend this approach to problems involving

driven laser resonators, especially in the non-linear regime.

It is clear that an asymptotic approach to solving the resonator equ-
ation is relevant in the limit of Fresnel numbers where rumerical solutions
are difficult to obtain. One would like to eliminate the unphysical singulari-
ties that appear in the existing asymptotic solutions, and extend the applica-
bility of asymptotic solutions to devices with small magnifications. Finally,
it is necessary to understand the physical consequences of the approximations
involved in the asymptotic approach to adequately treat the more complicated
case of a resonator with an active gain medium.

Under AFOSR support, we have developed“;;»;;y;;tdtic [and analytic)
approach to unstable resonators that does not suffer from the above diffi-

culties. In particular,

(1) Our approach demands only that the Fresnel number of the reson-
ator be large, is valid for all magnifications, and is not de-
pendent on the specific symmetry of the systems. Approximations
are made on the integral equation itself, rather than the basis

functions, leading to results which are generally applicable..




(2)

(3)

(4)

(5)

For a fixed N, the solutions to the resonator equation divide
into two classes. For curved mirrors with M>1+1//N the modes
are diffraction dominated, and our work reduces to that of Butts
and Avizonis (for circular mirrors) and Horwitz (for rectangular

devices).

For nearly flat mirrors with M<1+#1//N, the solutions are Zomin-
ated by the waveguide nature of the cavities, and are given by a
smooth core term analogous to that obtained by Heinstein3.
together with a small, rapidly oscillating function representing
the effects of edge diffraction. The core term contains the
diffraction loss effects, and the oscillating term averages

essentially to zero.

In our approach to resonator electrodynamics the flué?ﬁ?tTUw***~-

effects of diffraction appear in the form of edge waves. As
discussed in Appendix I as well as references (4) and (5), each
edge wave is the Fresnel diffraction pattern of a plane wave
around the mirror edge which has propagated k times across the
resonator. Furthermore, the edge waves used by Horwitz (for
strip systems) and Butts and Avizonis (for cylindrical reson-
ators) are the leading terms in the asymptotic expansions of the

Fresnel diffraction functions.

No unphysical infinities appeared in our treatment of the reson-

ator eigenmodes, because the diffraction functions are given

s



(6)

(7)

(8)

exactly in terms of Lommel functions. The leading terms of the
asymptotic expansions of the Fresnel diffraction patterns con-

tain singularities on the shadow boundary.

As a critical test of our approach we have applied it to a mar-
ginally stable (M=1) cylindrical resonator with a Fresnel number
of ten. The resultant eigenvalues and eigenmodes were in excel-
lent agreement with computer generated solutions of the Fox-Li
resonator equation.6’7 This work was reported in references (4)

and (5) which are enclosed with this report.

For the waveguide region M<1+1//N, we have demonstrated that in
the 1imit N»= the core term reduces to the closed resonator or
waveguide solution, and the edge diffraction term vanishes. We
emphasize that previous asymptotic theories do not apply to this
regime, and for large N reduce to geometric optics rather than

closed resonator solutions.

For the diffraction dominated region, M>1+I//N, the core term
reduces in the limit of large N to the  fundamemtal spherical
wave used by Butts and Avizonis (for circular systems) and

Horwitz (for rectangular systems).

In Appendix I we have outlined the most salient features .of our treat-

ment of empty resonators in a form that is applicable to all values of M. The




basic elements of the theory are summarized in Table (I-1) for cylindrical and

rectangular geometry.

The essence of our approach is to approximate the Green's function
for the differential equation governing resonator dynamics, and then to solve
the approximate integral equation exactly. Consequently, the application to
gain media is straightforward since the gain is a source term in the Green's
function solution. In Appendix II we outline the derivation of the unstable
resonator equation for driven resonators. The same type of approximations
made for empty resonators may be applied. Approximate solutions both for
linear gain and non-linear, saturable gain resonators are also discussed in

Appendix II.

Specific points of interest which have arisen from our treatment of

driven resonators are:

(1) In the paraxial approximation, Maxwell's equations reduce to a
form similar to a diffusion equation in the transverse direction, with the
longitudinal coordinate z in place of time. The Green's function spreads
transversely and decreases in amplitude as z is increased, in complete analogy

with diffusion.

(2) The integral equation for driven resonators implicitly contains
diffraction off the edge of a non-uniform gain media in the same manner that

the empty resonator equation describes diffraction around the mirror -edge.

i




Also, we expect the equation to describe the phenomena of refraction and

internal reflection at the boundary of the gain medium and empty space.

(3) In the waveguide region (M<1+l1//N) with a non-linear gain
medium, the resonator saturates very quickly as single pass unsaturated gain
exceeds diffraction losses. The reason for this is that each ray makes a
large number of passes through the gain medium before escaping, leading to

large amplifications and saturation.

(4) For the diffraction dominated region with M > 1+1//N', each ray
makes a relatively few number of transits before leaving the cavity, and satur-
ation is expected to be of less importance. Different methods must be used

for this region.

(5) We have shown in Appendix II how a homogeneous linear gain
medium leads to the same integral equation as that for an empty resonator,

with the eigenvalue \DIFF modified by the single pass unsaturated gain, A =

xL

¢ Aorree

The modes have exactly the same form as those of an empty resonator.
(6) For a saturable gain medium in a cavity with flat mirrors the
resonator saturates for single pass gain exceeding diffraction losses by as

little at .1%. The modes have nearly the same form as for the empty cavity.

In summary, we feel that our research illuminates the fundamental
physics that govern the electrodynamics of unstable resonators. Our methods

are applicable to different mirror geometries, are valid in the waveguide

10




dominated region where even ray optical solutions become cumbersome, and
describe the resonator with a gain-filled cavity. Prisently we are obtaining
numerical solutions for empty resonators with 1<M<1+1//N. These solutions
and the methods used to obtain them will be used to predict the amplitude and

distribution of radiation in saturable gain unstable resonators.

11




APPENDIX I

OUTLINE OF ASYMPTOTIC APPROACHES TO EMPTY UNSTABLE RESONATORS

As a specific example, we consider a cylindrically symmetric unstable
resonator with magnification M and a Fresnel number N. The Fox-Li resonator

equation can be cast in the following form

1
g 2
NEal -imN + M
Ay tpg (1) = 27i* TN S dop J, (2Neg)e " Lo™+(r/H)"] onp(p)s  (I-1)
0

where the eigenfunction of the (n,2) Fox-Li transverse mode is given by fni =

$ exp(-ivNeqrz), the eigenvalue is given by an/M, and ‘Jz is the

ng
Bessel function of order 2. As a first step we rewrite the reduced integral

LR - -

E 2
—iaNLo 2+ (r/MC) I
lnz°nm(r) = 2"i£+1N[ "S]doo Jl(ZwNoa)e g ¢nz(°)' (1-2)

We shall refer to the first term on the right hand side of Eq. (I-2) as the

core term and the second as the edge term. The physical meaning of these

terms will become apparent as we proceed. Next we make the following approxi-

mation on the edge term,

12




2nittl gdpp Jy (2anﬁ)e

where

S aER r
Fl(r,N) =2ri" N S dDDJE(ZﬁNpﬁ)e

3 2. e 2
~imN[e™+ ()] :
¢nz(p) = an (1) F"(l‘,N), (1-36)
)

2
SinNeZ+ () ]
: (1-3b)

There are three features that should be noted:

(1)

(2)

(3)

Using asymptotic techniques, one can demonstrate that equation
(I-3a) is valid to order (N)"1 << 1. For r<l, the integral Eq.
(I-3a) is dominated by the contribution from the lower endpoint
of the contour, and ¢np(o) may be replaced by ¢np(1) to lowest

order in N'l.

F,‘(r,N) is the zth azimuthal Fresnel diffraction pattern asso-
ciated with the mirror edge. For 2=0, it is the compliment of
the s-wave diffraction pattern of a circular hole, which was

discussed extensively by Lommel.

The integral in Eq. (I-3b) can be analytically expressed in

temms of a rapidly convergent Neumann series of Bessel functions.




The core term in Eq. (I-2) is dominated by the stationary phase point for r<M,
and is of order *np (p/M). The edge term which is of order llfﬁﬁ-arises from
diffraction and varies rapidly in space. To obtain a physical understanding
of the core term, we neglect diffraction entirely and solve equation (I-2)
exactly. Following this, we shall incorporate diffraction and solve equation
(I-2) using the approximation (I-3a). The resultant eigenmodes and eigen-

values are exact to order (1/N).

For cylindrically symmetric systems, we find in the absence of dif-

fraction
B T(l"%)("N)!‘-S I -5 iner Mz-l
¢Sl(r) = > (E-S)/Z r 1F1(T, !'+1, M )
LI(inNM = )
= (1S '
A, - (M) (I-4b)

where r is the gamma function, 1F1 is the confluent hypergeometric function,

and s can be complex.

There are several features of Eq. (I-4) that are of interest:

(1) The eigenvalue Ay has the geometric optics value of

unity for s=0 and the loss per bounce is 1 - —%w
M

14
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(4)

For M=1, b=0 and Eq. (I-7) reduces to a single Bessel function

of complex argument,

04, (1) = J,(ar) . (1-9)

For a strip resonator one obtains parabolic cylindrical func-
tions. For M#1, the asymptotic expansion of these modes are
the geometric optics solutions which correspond to the funda-
mental spherical wave used by Horwitz in reference (1). For
M=1, they reduce to the modes of a closed strip resonator,

sin(ax).

If diffraction is included, then to order (1/N) the empty resonator

electrodynamics are specified by

2
—inN [92+(ﬁ) ]

xnlonl(r) - 2wil+1N05 dop JL(ZnNoﬁ)e °nz(°) - onL(l)F(r,N).
(1-10)
The exact solution of Eq. (I-10) is
i k
1 r N
o ,(r) =e (1) e W R T (I-11)
- el ~ B L




where

=
E%F (1-12)
J=0

k

Y ® 7
and the Ang are obtained from continuity of the eigenmode at the mirror edge.
Eq. (I-11) corresponds to a coherent superposition of diffracted waves which
propagate back and forth across the resonator and are modified by the magni-
fication. The usefulness of this solution is set by the convergence of the
series which is turn is determined by the resonator's magnification. There
are in fact several different regions of interest. These are: (1) M >> 1,

(2) M=1 and (3) 1<M<1+1//N.
Case (I) M>>1

For this case convergence is excellent. To use equation (I-11) we

note that for sufficiently large k, FL(IF’ N ) is independent of both r and
i ™
as k, i.e.,
r N " N ; -
Fz('F“ xr )= F(O,—M— R Z.ko (I-13)
M k-1 ko-l

17




and one can then rewrite Eq. (I-11) as

k k
b (1) = 4, (1S LA NS

) +
k-1

k
+o (1) F (00— ) > —)
k +1 +1 “ng
Q ¢}

k k
oY ) R i) + e (M @s— AR (b -1)
k=1 m M k-1 ko-l

(I-14)
The first temm in Eq. (I-14) corresponds to a sequence of edge diffracted
waves and the second to a spherical wave. We obtain the Butts and Avizonis
description if the edge waves are given by their asymptotic expansion.

Case (2) M=1

For this case, one requires all of the terms in the series (I-11) and

the techniques of reference (2) can not be used. Eq. (I-11) becomes

@ 1 k .
o (r) =0, (1) :z}l )y (1-15)

18




which consists of a coherent superposition of Fresnel diffraction patterns
that propagate 1,2,...,k,... times across the resonator. To obtain solutions
from Eq. (I-15) we note that diffraction will perturb the low lying transverse
modes only weakly from the closed resonator form [e.g., the loss per bounce is
only a few percent for the TEMO,O mode]. Thus, we assume that all but the
first term in Eq. (I-15) coherently sum to form a core term which is conveni-

ently represented in terms of a Fourier-Bessel series,

o, (r) = in', C(-")J (a‘- r) ¥ che | (r;N)e,., (1) (1-16)
ng S L e b T i L

where the ajz are determined by requiring that the Bessel functions be ortho-
gonal within the resonator and the Cgf) are obtained by setting Eq. (I-16)
equal to Eq. (I-15). Convergence is rapid and only a few Bessel functions are
required. This particular case is discussed in references (4) and (5). Note
that the eigenmodes consist of a slowly varying core term with small oscilla-
tions from the Fresnel diffraction pattern of the mirror edge. The core term
can be shown in the limit of large N to approach a single Bessel function

th

Jz(bm.r)’ where bm. is the n-" zero of the sth Bessel function.

Case (3) 1<M<1 + .
/N

A spatially varying core term which is not described by geometric
optics remains and a number of diffraction functions are required. Recalling

that the solutions Eq. (I.4) for M#l consist of confluent hypergeometric

19




functions one is tempted to use a series of such functions for the core term.
For computational purposes, it is easier to work with Bessel functions and one
can express the hypergeometric functions in terms of Bessel functions via a

Neumann series as in (I-7). One then sets

ony (1) = “he t S G REE T

and proceeds from there. Numerical calculations indicate that as M increases,

the core term declines in magnitude and moves outwards towards the shadow

boundary. This case is presently under study.

One can carry out an entirely analogous procedure for strip reson-
ators. For this case, the Fresnel diffraction patterns can be expressed in
terms of the well known sin and cosine integrals. We find the analysis to be
entirely analogous to the cylindrical case. The results are summarized below

in Table (I-1).

20
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APPENDIX II

UNSTABLE RESONATOR EQUATION WITH GAIN

The Unstable Resonator Equation with or without gain is derived from

the Maxwell equations with the boundary condition that the transverse fieid

vanish on the mirror surface. The time dependence is separated as follows:
E(Ft) =E(F) e, (11-1)
Then the Maxwell equations become, assuming WU

2
P+ M « -5 (11-2)

o

where k=w/c and P is the electric polarization. For a resonator, the trans-

verse field will consist of a left moving and a right moving wave:

ET(F) =‘§: [}:t(r,z)e”"e e'ikz +C )::;'(r,L-z)eﬂ"e eikz] . (11-3)
2=0

where cylindrical coordinates appropriate to circular mirrors have been used,
: L P

the amplitudes zt and Iy are slowly varying, and C is a constant to be deter-

mined. Assuming that PT(?) satisfies a similar relation, and making the par-

8

axial approximation®, we find that each amplitude in Eq. (II-3) satisfies an

equation of the form

22
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- 5+ == - = - 2ik d )y g* (r,2') = -53 pt fr.z") (11-4)
2 B az'’ LRV * SRS

where z' = z for L, and z' = L-z for Zpe

This equation may be solved using Green's functions. The polariza-
tion on the right is regarded as a source, and the solution is determined by
boundary conditions on the mirror. The field on the mirror 1is naturally

assumed to vanish away from the edge:

£(r,z") ={>i(r,0) r<a (11-5)
0 r>a

This condition, together with the paraxial approximation, are the only approxi-
mations which are made in the derivation of the resonator equation. It is
assumed that both the field and its derivations vanish at r==. Then using
Hankel transforms, or results for the diffusion equation, the Green's function

for Eq. (II-4) is found to be

§ -ikir2+r'22
é(r,z;r'z") = £y e 2(z-2 J (krr'/z-z')u(z-2") (I11-6)

L=Z

23




where

u(x) = 1 for x>0 (I1-7)
0 for x <0

Treating the polarization as a source, and using the boundary condi-

tions given by Eq. (II-5), the solution to Eq. (II-4) is given by

Ry o T
L ! .2 = ; o P
IL’R(r,z ) =.§+ i**l g-ikr /22 g; pdoe™ ke "/22 J, (kre/z )zL,r(p,O)
2 " i 2o 1_,1 L
%, \ S"d"e”((”p 222Dy (kros(2*-2* )P (o,2')
[ Z =-Z L
o} L,R
0 0
(11-8)

The plane z'=0 coincides with the mirror surface only for flat
mirrors. Assuming a curvature R for the mirror, and R>>a, zt R(r,o) is re-
b ]

lated to an amplitude ¢ on the mirror surface by

o
kr©/2R
zt’R(r,o) . g v ¢t’R(r) (11-9)

This assumption may be seen to yield the correct results for curved mirrors by
obtaining the Green's function in spheroidal coordinates. The Green's func-

tion in spheroidal coordinates has the same form as Eq. (II-6). In the limit

24




of slightly curved mirror, R/L>>1, the following results are obtained. Substi-
tuting Eq. (II-9) into Eq. (II-8), we arrive at the amplitude at the point

r,z' given the amplitude on the mirror surface and the polarization:

ik(r2+02) /22" ikpl/2R
e J2

a

L : Kot o

zL’R(r,z ) b g pdpe (kro/z )°L,R(°)
0

2 1" L 2. & Lot
+l2(_€o_i13 df 'S pdp e 1k(r +p )/2(2 z )J!'(krp/(zl-z..))Pt’R(ﬂ,Z..)

(I1-10)
To determine ¢, we develop an eigenvalue equation. Letting z'=L, we

: [}
first use Eq. (II-10) to determine Z (r,L), which is then related to the ampli-
tude ¢ on the mirror surface with Eq. (II-9). Using the boundary condition

that the total field given by Eq. (II-3) vanishes on both mirrors, we obtain

r.L(r,L)e'ikL + CzR(r,o)e+ikL =0
zL(r,o) + CzR(r,L) =0 (I1-11)
Define the following integral transforms:
a
a k .2+41 ~ik(M241) (r24p2) 7aML
KL M f s ok pdpe Jl(kro/L)f(o) (I1-12)
0
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where the magnification is related to mirror curvature by

2
M+1 _
o - 1-L/R (11-13)

Using Eqs. (II-9)-(II-13), we arrive at two coupled equations for the

resonator with equal mirrors:

L
" . 2
- pd ik -ikr /2R ©
Ap #p(r) = KL’M¢L(r) o : dz KL-Z,IPL(r’Z)
0
L
. i 2
= pd ik -ikr"/2R «
0
where g = -CeZikL
A= ~1/C (I1-14a)

For equal mirrors, symmetry implies C=(-1)q+1 e-]kL. A=A = 0RO =0 and

P =P

mirror edge is:

R=P. In this case, the eigenvalue equation for the amplitudes on the

, : -
Ae = K2 dk_ e1kr /2R dz K

LM " 2e, 1-2,17 =5
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where

r= e~ i(kL-rq) (11-16)

Eq. (II-15) is first solved to yield the amplitude ¢ on the mirror, and the
eigenvalue X which determines the single transit gain or loss. The amplitude
at point z' may then be found by using Eq. (II-10). Finally, the total field
at any point is found by adding the left and right moving waves as in Eq.

(II-3). Since P is in general a function of the total field, Eq. (II-15) is

usually difficult to solve.

Before discussing specific examples, we note three points of inter-

est:

(1) For P=0, Eq. (II-15) reduces to the usual Fresnel-Kirchoff equa-

tions for empty resonators.

(2) Diffraction off the edge of the gain media is included if we
assume that P=0 for r>a. Then K rather than K~ is used, analogous to the

case of mirror diffraction for empty resonators.
(3) The transform of ¢ in Eq. (II-15) depends on M as appropriate

for a mirror term, while the transform of P is the wusual Green's function

which is independent of mirror curvature.
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We first consider the case of linear gain, described by P=xE where x
is a constant. We use the following properties of the integral transforms for

unit magnification:
@ &gl =
We find that the eigenvalue equation reduces on interation to:

ro = exp(—ika/ZEO)KEcb (11-18)

which is identical with the empty resonator equation except for the additional
phase factor. Consequently the eigenvalues will differ by the phase factor,
and the modes will be identical. This is the usual case where single pass
gain is multiplied by the eigenvalue for empty resonators to yield the total

gain, for which no stable solution exists.

To qualitatively discuss solutions for saturable gain media, we

choose a polarization of the form

-1E1%/€2
P = xte , (11-19)

which leads to analytic results if various approximations are made.
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(1) KE_Z in the gain integral is evaluated in the geometric optics

limit.

(2) The gain is assumed to be large enough so that saturation
occurs, and the amplitude for flat mirrors is nearly that of an empty reson-

ator,

o o Eodz(ax) : (I1-20

where a is determined in refs 4 and 5 and the equilibrium amplitude Eo is to

be determined.

(3) The phase changes induced by polarization in the modes and eigen-

values are neglected.

For equilibrium to occur, the radiation in the cavity neither grows
or decays and |A|=1. The eigenvalue equation is then easily solved for E,.
Leaving out the details, the solutions are presented below in figure (II-1)

where (Eo/Es) is graphed as a function of gain.

From the figure, we see that the cavity saturates (Eo"Es) for single

pass unsaturated gain exceeding diffraction losses by as little as .1%. The

eigenmodes were found to be essentially identical with the empty resonator

modes, with the greatest differences near the mirror edge.
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