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A method for obtaining asymptotic solutions of the unstabl e
resonator integral equation which is val id for all val ues of
the magnification was developed . Approximations were made
on the Greens functions rather than the eigenmodes, leading
to results which are easily general i zed to different mirror
geometries. Diffraction dominated eigenmodes for reson-
ators where each ray escapes after a few transits were
differentiated from waveguide dominated eigerinodes* which
are obtained for cavities with a l arge number of transits

C.. per ray. The sol utions obtained were seen to agree in the

~ appropriate limits with other asymptotic solutions, nuneri-
cal results, and geometric optics predictions. To include

~~ the effects of gain , the unstab le resonator equation was
derived from Maxwel l s equations in a polarizable mecliuni.

!C.~ The resulting equations have the same structure as the aupty
resonator equation , and similar approximations can be used.
Some features of the effects of saturatfon on the eigerm~odes
of an unstable resonator were considered..

LpproVld for pnbltc re1ea~ej

~~~~
j
~~t.jo~ uziliaited.



TABLE OF CONTENTS

Statement of Work . . . .    . . . . . . . 3
Annual Report       . . . . . . • 4

Appendix I — Empty Resonators *  . . . . . . . 12
Appendix II — Driven Resonators         . . . . . . • 22

References . . . . ,   . . . . • . . 31

Tal ks and Articles Generated . . . . . . . . . . 32

_____________ —

NTIS GEJt&I
DDC TAB
Un ann ounced
Just if icat ion ___________

By_____________________

Dis tr i~ uti  cnJ

_Avai1abi1l~ L..Code$ —

Avail and/or
Dist special

A Hi
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (A1SC )

NOTICE OF TRANSMITTAL TO DDC

Thi t O C h f l iC3 l  r•: ~.rt 1:iS L> ecn rev te~i1 end is

approved for ~~ L~~ic  r ’
~~ C 3O LAW A~~ 190—12 (7b).

Distribution is tinlimite~1.

A. D. M1OSE
Technical Inf.riiattou Officer

2



STATEMENT OF WORK

e contractor shal l furnish scientific effort duri.ng .the period and

at the level indica in paragraph la ofS~etion H, together with all related
serv ices , facilities , supplies material s, needed to conduct_ the followi ng

research.

a. Develop and apply analytic techniques for determining the

modes and eigenval ues of cyl i ndr ical unstable optical resonators.

b. For systems which displ ay azimuthal symmetry, develop and apply

two different techniques : (1) an asymptotic differential equation approach

and (2) an approach that is val id for situations in which the resonator

magnification is large.

c. Develop a techni que that is designed to treat cyl indrical

resonators In which the system’ s azimuthal symmetry has been destroyed by

optical perturbations.

d. Devel op techniques that are specifically c~ signed for resonators

with large Fresnel numbers.

e. Develop a technique to Incorporate gain In ~~st~ble resonator
calculations .
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ANNUAL REPORT

Recently there has been considerable interest in devel oping analytic

approaches to unstabl e optical resonators , especially devices with large

Fresnel numbers. Two reasons for this interest are:

(1) The fundamental physics of these resonators is not yet fully

understood.

(2) There is a need for rapid and accurate techniques for calcul a-

ting the eigenval ues and eigenmodes of large Fresnel number un-

stable resonators. Such devices are of greatest practical

importance , and are most tractable to asymptotic techniques. We

note that computer generated solutions of the Fox-Li resonator

equation become more cos tly and less accurate as the Fresnel

number increases.

In the last year we have devel oped novel approaches towards elu-

cidating the physics of these devices and generating efficient techniques for

calcul ating the eigenmodes and eigenval ues of unstable optical resonators .

Below, we have suninari zed the resul ts and related our work to that of others

in the field. We al so discuss the relevance of our approach to problems

involving unstable optical resonators with gain media.

P 4



To clarify the motivation for our research, we first briefly review

the work of P. Horwitz1 and R. Butts and P. Av i zonis2. These workers have

developed asymptotic approaches to unstable resonators which we have been able

to com plement and extend.

In 1973, Horwitz presented a very interesting asymptotic approach for

treating the electrodynamics of l arge Fresnel number resonators with rectangu-

lar geometries. The principl e result of this calcul ation was the discovery of

a set of rapidly varying diffraction functions which could be used to obtain

the empty resonator eigenmodes. Specifically, the resonator elgenmode was

written as the sum of a fundamental spherical wave pl us a series of edge dif-

fracted waves. The resultant series converged rapidly for large magnifica-

tions (M) with the convergence becoming poorer as M decreased towards unity.

Recently, Butts and Avizonis extended Horwitz’s analysis to resonators with

circular mirrors. The eigenmode was once again written as a spherical wave

pl us a series of edge diffracted waves appropriate to cylindrical coordinates.

Despite the very interesting results of these authors a number of

difficulties still remained. In particul ar ,

(1) Convergence was best for large H. In their analysis Butts and

Avizonis found that this approach failed entirely for 14 C 1.3

with N .‘~ 10.



(2) For both cyl indrical and rectangul ar geometries the edge dif-

fracted waves contained unphysical infinities at the shadow

boundary of the resonator.

(3) it is difficult to extend this approach to problems involving

driven laser resona tors, especially in the non—linear regime.

It is cl ear that an asymptotic approach to solving the resonator equ-

ation is relevant in the limit of Fresnel numbers where i~.inerical solutians

are difficul t to obtain. One would like to eliminate the unphysical singulari-

ties that appear in the existing asymptotic sol utions , and extend the applica-

bility of asymptotic sol utions to dev ices with smal l magnifications. Finally,

it is necessary to understand the physical consequences of the approximations

invol ved in the asymptotic approach to adequately treat the more complicated

case of a resonator with an active gain medium.

Under AFOSR support, we have developed an asymptotic Eand analyticj

approach to unstable resonators that does not suffer from the above diffi-

culties. In particular ,

(1) Our approach demands only that the Fresr,el number of the reson-

ator be large , is valid for all magnifications , and is not de-

pendent on the specific symmetry of the systems. Approximations

are made on the i ntegral equation itself, rather than the basis

functions , lead i ng to results which are generally applicable.. 6



(2) For a fixed N, the sol utions to the resonator equation divide

into two classes . For curved mirrors with 14>1+1/lW the modes

are diffraction dominated , and our work reduces to that of Butts

and Avizonis (for circular mirrors) and Horwitz (for rectangular

devices).

(3) For nearly flat mirrors with M<1+1//L the solutions are domin-

ated by the waveguide nature of the cavities, and are given by a

smooth core term analogous to that obtained by Weinstein3,

together with a small , rapidly oscillating function representing

the effects of edge diffraction. The core term conta ins the

diffraction loss effects , and the oscillating term averages

essentially to zero .

(4) In our approach to resonator electrodynamics the fluc~~~t~~
y
~~—-

effects of diffraction appear in the form of edge waves . As

discussed in Appendix I as well as references (4) and (5), each

edge wave is the Fresnel diffraction pattern of a plane wave

around the mirror edge which has propagated k times across the

resonator. Furthermore, the edge waves used by Horwitz (for

strip systems) and Butts and Avizonis (for cylindrical reson—

ators) are the leading terms in the asymptotic expansions of the

Fresnel diffraction functions.

(5) No unphysical Infinities appeared In our treatment of the reson-

ator eigenmodes, because the diffraction functions are given

P 7



exactly in terms of Lommel functions. The leading terms of the

asymptotic expansions of the Fresnel diffraction patterns con-

tain singulariti es on the shadow boundary.

(6) As a critical test of our approach we have applied it to a mar-

ginally stable (M=1 ) cylindrical resonator with a Fresnel number

of ten. The resultant eigenval ues and eigenmodes were in excel-

lent agreement with computer generated solutions of the Fox-Li

resonator equation .6’7 This work was reported in references (4)

and (5) which are enclosed with this report.

(7) For the waveguide region M<1+1//N, we have demonstrated that in

the limit N+~ the core term reduces to the closed resonator or

waveguide sol ution, and the edge diffraction term vanishes. We

emphasize that previous asymptotic theories do not apply to this

regime , and for l arge N reduce to geometric optics rather than

closed resonator solutions.

(8) For the diffraction dominated region, I’Dl+IJAT the core term

reduces in the limit of l arge N to the fundamental spherical

wave used by Butts and Avi zonis (for circular systems) and

Horwitz (for rectangular systems).

In Appendix I we have outl ined the most salient features.of our treat-

ment of empty resonators in a form that is appl icable to all val ues of M. The

t
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basic elements of the theory are suninari zed in Table (1—1) for cyl indrical and

rectangular geometry.

The essence of our approach is to approximate the Green’s function

for the differential equation governing resonator dynamics , and then to solve

the approximate integral equation exactly. Consequently, the application to

gain media is straightforward since the gain is a source term in the Green’s

function sol ution. In Appendix II we outl i ne the derivation of the unstable

resonator equation for driven resonators. The same type of approximations

made for empty resonators may be appl ied. Approximate solutions both for

linear gain and non-linear , saturable gain resonators are al so discussed in

Appendix II.

Specific points of interest which have arisen from our treatment of

driven resonators are:

(1) In the paraxial approximation , Maxwell ’s equations reduce to a

form similar to a diffusion equation in the transverse direction , with the

l ongitudinal coordinate z in place of time. The Green’s function spreads

transversely and decreases in ampl itude as z is increased, in complete analogy

with diffusion.

(2) The integral equation for driven resonators implicitl y contains

diffraction off the edge of a non-uniform gain media in the same manner that

the empty resonator equation describes diffraction around the mirror edge.

P 9



Al so , we expect the equation to describe the phenomena of refraction and

internal reflection at the boundary of the gain medium and empty space.

(3) In the waveguide region (M<1÷1/1/i~i) with a non—linear gain

med i um , the resonator saturates very quickly as single pass unsaturated gain

exceeds diffraction losses. The reason for this is that each ray makes a

large number of passes through the gain medium before escaping , leading to

large amplifications and saturation.

(4) For the diffraction dominated region with H > i+iiA~, each ray

makes a relatively few number of transits before leaving the cavity, and satur-

ation is expected to be of less importance. Di fferent methods must be used

for this region~

(5) We have shown in Appendix II how a homogeneous linear gain

medium l eads to the same integral equation as that for an empty resonator,

with the eigenval ue A DIF F modified by the single pass unsaturated gain, A =

e A DIFF. The modes have exactly the same form as those of an empty resonator.

(6) For a saturable gain medium in a cavity with flat mirrors the

resonator saturates for single pass gain exceeding diffraction losses by as

little at .1%. The modes have nearly the same form as for the empty cavity.

In summary, we feel that our research illuminates the fundamental

physics that govern the electrodynamics of unstable resonators. Our methods

are applicable to different mirror geometries, are valid in the waveguide

10 ~~~~~
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dominated region where even ray optical sol utions become cumbersome, and

describe the resonator with a gain-filled cavity . Pi~~ently we are obtaining

numerical sol uti ons for empty resonators with iqi<i+i//~f. These solutions

and the methods used to obtain them will be used to predict the amplitude and

distribution of radiation in saturable gain unstable resonators.
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APPENDIX I

OUTLINE OF ASYMPTOTIC APPROACHES TO EMPTY UNSTABLE RESONATORS

As a specific exampl e, we consider a cylindrically symmetric unstable

resonator with magnification M and a Fresnel number N. The Fox—Li resonator

equation can be cast in the followi ng form

A nL ,~~
(r) = 2wi t+1N dpp J&(2wN~~)e 

TN +(r/M)] (I 1 )

where the eigenfunction of the (n,L) Fox-Li transverse mode i~ given by f~ =

riL exP (_iIr Neqr
2), the eigenv al ue is given by Tr~ 

= A RL/M, and is the

Bessel function of order t. As a first step we rewrite the reduced integral

Eq. (I—i) as

ç ç -iiNCp 2+(r/M2)]M
A LO L (r)  = 2ir i N [~’~~J

dPP JL(2irNP~
)e •,.~ (p). (1—2 )

We shal l refer to the first term on the right hand side of Eq. (1—2 ) as the

core term and the second as the edge term. The physical meaning of these

terms will become apparent as we proceed. Next we make the foll owing approxi-

mation on the edge term,

12



2 2

~.+1 
—I1TN[p + (-! )]

2~i N ~~~ .J~ (2TN~~)e 
M • ( ~ ) = 

~~ F(r ,N), (I—3a)

1

where

2r -iTN[p2+(~) ]
FL (r ,N) = 2irj N dppJ L(21rNp~

)e . (I-3b)

There are three features that should be noted:

(1) Using asymptotic techniques , one can demonstrate that equation

(I-3a) is valid to order (N)4 << 1. For rcl, the integral Eq.

(I-3a) is dominated by the contribution from the lower endpoint

of the contour, and •~~(p) may be replaced by •flp (l) to lowest

order in N4.

(2) F
~

(r ,N) is the ~th azimuthal Fresnel diffraction pattern asso-

ciated with the mirror edge. For &=0, It Is the compl iment of

the s-wave diffraction pattern of a circular hole, which was

discussed extensively by Lonmel .

(3) The integral in Eq. (I—3b) can be analytically expressed in

terms of a rapidl y convergent Neumann series of Bessel functions.

I
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The core term in Eq. (1-2) is dominated by the stationary phase point for r<M,

and is of order 
~np 

(p/N). The edge term which is of order i/Ii~ ar i ses from
diffraction and varies rapidl y in space. To obtain a physical understanding

— of the core term , we negl ect diffraction entirel y and solve equation (1—2 )

exactly. Followi ng this , we shall incorporate diffraction and solve equation

(1-2 ) using the approximation (I—3a). The resultant eigenmodes and eigen-

val ues are exact to order (1/N).

For cylindrically symmetric systems, we find in the absence of dif-

fraction

____________ 
N 2(M2 1= 

2 (~~s)/2 
r1 1F1(-~j~, t1•1, 

lii r 
M2 

~

L !(i1TNM _
~
!i_ )

M2— 1 (I—4a)

= (
1
)
S (1—4b)

where r is the gamma function , 1F1 is the confluent hypergeometric function ,

and s can be complex.

There are several features of Eq. (1-4) that are of interest:

(1) The eigenval ue A 5t has the geometric optics val ue of

unity for s=O and the loss per bounce is 1 —

14
I

14



te~
~ ~~~~~ ~ e

S k 
~ c4

4 1- 
~~ Si

a

~ i’,. 3t_~ttS ’

~~~~ ~~~~~~~ 
~

0ç~!~
C 

~ ~%a’~

\S 
c-c’
.

S 
\O~ 

~51ei~ CO~

a~~

~ i ~~Y’ - 

~ e~’

~eS~~
t 

~l(\c~~~
’s’ 

~
$4

1(
.

a 
a

,~

ca” 
,
~~ 

c,et’~
’ ~

~~~~~~~

~ e~~
—~

•

~

• 
~~~~~ 

-

~~~ 

~~

~
r

Co ~.

-
C~k~

p 
— -  — _ _ _ _ _ _



/

For M=1, b=O and Eq. (1—7 ) reduces to a single Bessel function

of complex argument ,

at~’~ 
= JL(ar) . (1—9 )

(4) For a strip resonator one obtains parabolic cylindrical func-

tions . For M~1, the asymptotic expansion of these modes are

the geometric optics sol utions which correspond to the funda-

mental spherical wave used by Horwitz in reference (1). For

M=1, they reduce to the modes of a closed strip resonator,

sin(ax).

If diffraction is included , then to order (1/N) the empty resonator

electrodynamics are specified by

22 r— ur N [p +(-~ ) ]
A nt$nt(t~

) = 2wi 1+1N 5 dpp J~
(2irNP.

~
)e nL~’~ 

—

(1-10)

The exact sol ution of Eq. ( I— lU) is

nL~~ 
= ~~~~ 

~ 
F
~ ~~~ iç1

) ( I -l i)

16



where

Mk l  E —

~~

-

~~ 
(1-12)

and the A nL are obtained from continuity of the eigenmode at the mirror edge.

Eq. (I—li) corresponds to a coherent superposition of diffracted waves which

propagate back and forth across the resonator and are modified by the magni-

fication . The usefulness of this sol ution is set by the convergence of the

series which is turn is determined by the resonator’s magnification. There

are in fact several different regions of i nterest. These are: (1) M >> 1,

(2) M=l and (3) l<M<l+l//~i

Case (I) M>>1

For this case convergence is excellent . To use equation (1—11) we
t

note that for sufficiently large k , F
~

(-
~~
, 

~~
— ) is independent of both r and

M

as k, i.e.,

F
~
(!
~, ~~~

— ) ‘
~~
= F(O ,!~— )  if k > k0 (1—13)

I
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and one can then rewrite Eq. (1-11) as

nt (r) = nz~~ 
FL(
!
~k; ~~ 

+

e

k
+ ,

~~
(l ) F

~
(O; — ~~~~~~~~~~ 

) 
~~ (i— )

k0+l k0+1 nt

k k
= nt 0

~ ~~ 
(.

~
_—) F~(-~~; ~~

— ) + •~~(1)F (Q ;~ )/x~~ (x
~~

_ l)
k=1 ni. M k—i k0—1

(1—14 )

The first term in Eq. (1-14) corresponds to a sequence of edge diffracted

waves and the second to a spherical wave. We obtain the Butts and Avizoni s

descript ion if the edge waves are given by their asymptotic expansion.

Case (2) M 1

For thi s case , one requires all of the terms In the series (I—il) and

the techniques of reference (2) can not be used. Eq. (1—11) becomes

= •nL~
1
~ 
~~ 

F
~
(r;N/k) (1—15)

18



which consists of a coherent superposition of Fresnel diffraction patterns

that propagate l,2,...,k,... times across the resonator. To obtain sol utions

from Eq. (1-15) we note that diffraction will perturb the low lying transverse

modes only weakly from the closed resonator form [e.g., the loss per bounce is

only a few percent for the TEN00 mode]. Thus , we assume that all but the

first term in Eq. (1-15) coherently sum to form a core term which is conveni-

ently represented in terms of a Fourier-Bessel series ,

= £ ~~~~~~~~ r) + -~i_. FL(r;N),fl~(i), (1—16)

where the 
~~ 

are determined by requiring that the Bessel functions be ortho-

gonal within the resonator and the ~~~ are obtained by setting Eq. (1—16)

equal to Eq. (1-15). Convergence is rapid and only a few Bessel functions are

required . This particul ar case is discussed in references (4) and (5). Note

that the eigenmodes consist of a slowl y varying core term with small oscilla-

tions from the Fresnel diffraction pattern of the mirror edge. The core term

can be shown in the limit of large N to approach a singl e Bessel function

where 
~~ 

is the ~th zero of the tth Bessel function.

Case (3) 1<M<l +

A spatially varyi ng core term which is not described by geometric

optics remains and a number of diffraction functions are required. Recalling

that the sol utions Eq. (1.4) for M�l consist of confl uent hypergeometric

19



functions one is tempted to use a series of such functions for the core term.

For computational purposes , it is easier to work with Bessel functions and one

can express the hypergeometric functions in terms of Bessel functions via a

Neumann series as in (1-7). One then sets

n~~~ m~ 
~ c~~ J~+~

(ar) + 

k 1  
F~(i~~, Mk~ ~~

and proceeds from there. Numerical calcul ations indicate that as 14 increases,

the core term declines in magnitude and moves outwards towards the shadow

boundary. This case is presently under study.

One can carry out an enti rely analogous procedure for strip reson—

ators. For this case, the Fresnel diffraction patterns can be expressed in

terms of the well known sin and cosine integrals. We find the analysis to be

entirely analogous to the cylindrical case. The results are summarized below

in Table (I—i).

20
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APPE ND IX II

UNSTABLE RESONATOR EQUATION WITH GAIN

The Unstable Resonator Equation with or without gain is derived from

the Maxwel l equations with the boundary condition that the transverse field

vanish on the mirror surface. The time dependence is separated as fol l ows:

t (~,t) = 
~~(~~) ~~~~ . (11—1 )

Then the Maxwel l equations become, assum ing ‘ 1 ~ci ’

(~2 + k2)~~~) = - 
~~~
- 

~~
) , (11-2)

where k=w/c and P is the electric polarization . For a resonator, the trans-

verse field will consist of a l eft moving and a right mov ing wave:

ET(~
) =~~~~ [z~(r ,z)e~~

0 e
_fl(Z 

+ C £~(r ,L—z)e ’~
’0 e~~

Z] • (11—3)

where cylindrical coor di nates appropri ate to circul ar mirrors have been used,
the amplitudes E~ and are slowly varying, and C is a constant to be deter-
mined . Assuming that PT(r) sati sf ies a similar relation, and making the par—
axial approximation 8, we find that each amplitude in Eq. (11—3) satisfies an

equation of the form

22  
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~ r2 
+ — — 21k 

~~ir) 
EL,R(r ,z }  = — -

~~
—-. P~~~ ( rz ’) (11—4 )

where z’ = z for Z
L 

and z ’ = L—z for ER.

This equation may be solved using Green’s functions. The polariza-

tion on the right is regarded as a source , and the solution Is determined by

boundary conditions on the mirror. The field on the mirror is naturally

assumed to vanish away from the edge:

z( r ,z’) =5E (r,o) r<a (11—5)
1. 0 r>a

This condition , together with the paraxial approximation , are the only approxi-

mations which are made in the derivation of the resonator equation. It is

assumed that both the field and its derivations vanish at r=w. Then using

Hankel transforms, or results for the diffusion equation, the Green’s function

for Eq. (11—4 ) is found to be

— 1k r2+r’2)
G(r ,z;r’z’) = e 2~z-z’) j (krr ’/z-z’)u(z-z’) (11-6 )

(

23
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where

u(x) = 1 for x > 0 (11—7)

0 for x < 0

Treating the polarization as a source, and using the boundary condi-

tions given by Eq. (11—5), the sol ution to Eq. (11—4) is given by

EL R (r ,z )  =
~~~~~ i~~ e kr2/2Z~ç pdpe

_ i
~~~

/2z JL (krp/z t)E~ ,r(p ,O)

+

~~
o 5 ~ pdpe_ + / 2

~~~~~~
)Jt(krp/(z

1 _z
~~))p~p ,zh1 )

(11-8)

The plane z’=O coincides with the mirror surface only for flat

mirrors. Assuming a curvature R for the mirror , and R>>a , E~~,R (r,O ) is re-

l ated to an amplitude • on the mirror surface by

= eikr
2/2R $L,R r (11-9)

This assumption may be seen to yield the correct results for curved mirrors by

obtaining the Green ’s function in spheroidal coordinates. The Green’s func-

tion in spheroidal coordinates has the same form as Eq. (11—6). In the limi t
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of slightl y curved mirror , R/L>>1 , the following results are obtained . Substi-

tuting Eq. (11— 9 ) into Eq. (11—8), we arrive at the amplitude at the point

r,z’ given the amplitude on the mirror surface and the polari zation:

ZL R (r ,z )  =
~~~~~ ~‘ç pdpe k 2 z e 2RJL (krp/z

I)~~ R(p)

pdp e
k + P

2 h I I )
J
t

(kr p / ( z
I _z h 1 ) ) P

~~~R
(p ,zh 1 )

(11—lu)
To determine •, we develop an eigenval ue equation . Letting z’=L, we

first use Eq. (11-10) to determine E~(r ,L), which is then rel ated to the ampl i-

tude • on the mirror surface with Eq. (11—9). Using the boundary condition

that the total field given by Eq. (11—3 ) vanishes on both mirrors , we obtain

£L (r ,L)e ’
~~ 

+ CzR (r ,o)e
~~

’
~ 

=

+ CER (r ,L) = 0 (It—li)

Define the followi ng integral transforms:

f = ~ jL+1
S 

pdpe (M+ 1 ) + / 4 M L  J
~
(krP/L)f(P) (11-12)
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where the magnifica tion is related to mirror curvature by

M+ 1 
= 1-L/R (11-13)

Using Eqs. (1I-9)-(II-13), we arrive at two coupl ed equations for the

resonator with equal mirrors :

1k —ikr /2I~
2

X
R ~R

(r) = K
~~M

4SL(r) - 
.
~~~

— e dz

0 J

L

A L •L(r) = K
~~M ~R

(r) - e kr2/2R S dz K~_Z,lPR (r ,z) (11-14)2c
~

0

where A R =

X L = —1/C (II—14a)

For equal mirrors , symmetry implies ~~(-.1)~u 
~~~~~ A = X =X R L ’  and

In this case, the eigenval ue equation for the amplitudes on the

mirror edge is:

L

= K~ M 
— 

~ 
efl~

’2
~
’2
~ 

( d z P  (11—15)z,1
0
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where

A= e~~~~~~
1) 

. (11-16)

Eq. (11-15) is first solved to yield the amplitude $ on the mirror , and the

elgenval ue A which determines the single transit gain or loss. The amplitude

at point z’ may then be found by using Eq. (11—10). Finally , the total field

at any point is found by adding the l eft and right moving waves as in Eq.

(11—3). Since P is in general a function of the total fiel d, Eq. (11—15) is

usually difficul t to solve.

Before discussing specific examples , we note three points of inter-

est:

(1) For P=0, Eq. (11— 15) reduces to the usual Fresnel—Kirchoff equa—

tio~1s for empty resonators .

(2) Diffraction off the edge of the gain media is included if we

assume that P=0 for r>a . Then Ka rather than K~ is used, analogous to the

case of mirror diffraction for empty resonators.

(3) The transform of 4’ in Eq. (11—15) depends on M as appropriate

for a mirror term , while the transform of P is the usual Green’s function

which is independent of mirror curvature .
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We first consider the case of linear gain , described by P=xE where x

is a constant . We use the following properties of the integral transforms for

unit magnification :

L

~~~ 
K~ = K~ (11 17)

We find that the eigenval ue equation reduces on interation to:

= exp(—ikxL/2 t0)K~~ (11—18)

which is identical with the empty resonator equation except for the additional

phase factor. Consequently the eigenval ues will differ by the phase factor,

and the modes will be identical . This is the usual case where single pass

gain is multiplied by the eigenv al ue for empty resonators to yield the total

gain , for which no stable sol ution exists.

To qualitativel y discuss sol utions for saturable ga-i n media , we

choose a pol ari zation of the form

—I El 2/E2
P = xEe S (11—19)

which l eads to anal ytic results if various approximations are made.
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(1) Ktz in the gain integral is eval uated in the geometric optics

limit.

(2) The gain is assumed to be l arge enough so that saturation

occurs , and the amplitude for flat mirrors is nearly that of an empty reson-

ator ,

• E0~J~(ax) , (11—20

where a is determined in ref s 4 and 5 and the equilibrium amplitude E0 is to

be determined.

(3) The phase changes induced by polarization in the modes and eigen—

val ues are neglected .

For equilibrium to occur , the radiation in the cavity neither grows

or decays and Aki. The eigenv al ue equation is then easily solved for E0.

Leaving out the details , the solutions are presented below in figure (Il—i )

where (E0/E5) is graphed as a function of gain.

From the figure , we see that the cavity saturates (E0~sE5) for single

pass unsaturated gain exceeding diffraction losses by as little as .1%. The

eigenmodes were found to be essentially identical with the empty resonator

modes, with the greatest differences near the, m irror edge.
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