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INTERNAL ENERGY TRANSFER IN ISOLATED MOLECULES:
ERGODIC AND NONERGODIC BEHAVIOR

Stuart A, Rice
The Department of Chemistry and The James Franck Institute
The University of Chicago
Chicago, Illinois 60637

|. Introduction

| have been asked to present a broad overview of current understanding of the nature
of intramolecular energy transfer in isolated molecules, In the short time available

for this talk | can do no more than describe very briefly some attempts to answer the
major questions associated with this subject. In my opinion these are:

1. Under what conditions, if any, is intramolecular energy exchange slow/rapid
relative to other processes, for example photon emission, or isomerization, or frag-
mentation?

2. How does the intramolecular energy exchange depend on the energy of the mole-
cule and the nature of the initial excitation?

3. If there are situations for which intramolecular energy exchange is slow relative
to chemical reaction, why does this behavior occur? Does it derive from special char-
acteristics of the molecular force fields? Are there dynamical or symmetry restrictions
on the spectrum of states in these cases? Are these special situations commonly or
rarely found?

4, Given the answers to (3), can we devise excitation methods and reaction condi-
tions that permit enhancement of the selectivity of the chemistry that follows?

These questions are pertinent to all types of reaction dynamics. They are raised
at a conference devoted to laser chemistry because the laser provides a tool with which
one cen construct experiments that attempt to answer them. Prior to the development
of laser sources suitable for the preparation of isclated molecules in well defined non-

stationary states these questions could not be addressed. The kinds of phenomena asso-
ciated with the decay of incoherent superpositions of molecular states, such as is char-
acteristic of thermal energization of a molecule, are naturally and elegantly described
by statistical theories. The RRKM theory [1], which successfully accounts for the rates
of thermal unimolecular reactions and the vast mojority of chemically activated uni-
molecular reacticns, is a brilliant example of appropriate analysis. But the very suc-
cess of statistical theories has led to a too ready acceptance of their applicability to
situations different from the ones they were designed to describe. For example, one
of the most widely held of the current views concerning intromoleculer dynomics is
that vibrational relaxation is always rapid relative to all other processes except for
energies near the ground state, Furthermore, it is often assumed that the rapid random-

ization of vibrational energy follows automatically from the existence of onharmomcny
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The consensus concerning this assumption can be traced to the notion that it is implied
by the success of RRKM theory in the description of thermal unimolecular reactions.

But the data for thermal unimolecular reactions rarely require such an interpretation
because of the incoherent nature of the initial thermal excitation. Chemical activa-
tion of unimolecular reactions in bulk experiments suffers from similar, but not as severe
difficulties of interpretation vis a vis the initial state of excitation. The point is not
that intramolecular vibrational energy exchange does not occur in these cases, but ra-
ther that determining whether it does or does not occur cannot be uniquely inferred.
Evidence that randomization of vibrational energy may not always be faster than other
processes is inferred from several different kinds of experiments on isolated molecules
[2]. However, all of the inferences are indirect and they are based on the use of extra
assumptions in the analysis of the observations, hence they can be erroneous [3]. Simil-
arly, although many theoretical models show that vibrational relaxation can in certain
circumstances be very slow compared to other processes [4], these models employ simpli-
fications that reduce their applicability to real molecular systems. In short, there are
now a number of hints, from both experimental and theoretical studies, that suggest the
existence of some cases for which vibrational energy redistribution is slower than other
processes. The conditions for which this slow relaxation occurs, its generality, and its
relation to molecular structure are not known. Even the existence of the phenomenon
in real molecules is not unequivocally established because of inadequacies in experimen-
tal design, approximations in the interpretation of observations, and simplifications em-
ployed in the theoretical models. Despite these caveats, it is possible to assert with
assurance that there is not a universal form of statistical behavior characteristic of all
energized molecules. The picture which is emerging requires recognition of the exis-
tence of different dynamical domains, each of which is important in a different energy
range and on a different time scale, As | shall show, there is little doubt that up to
about one half or two thirds of a typical bond dissociation energy a molecule is not well
described by a statistical model, whereas for larger energies the statistical model is ac-
curate for many purposes. In addition, even when the energy of the molecule exceeds,
say, a bond dissociation energy, if there are processes sufficiently fast to compete with
energy randomization, deviations from statistical behavior are to be expected. Although
this statement is prima facia obvious, the acceptance of the notion that there might
exist processes that can compete with energy randomization, or that energy randomiza-
tion can be as slow as hundreds of vibrational periods, has only recently been accepted
as a necessary part of the description of reaction dynamics.

The brief discussion of the following sections is intended to draw attention to several

of the subtleties in the behavior of systems of coupled nonlinear oscillators, Wherever
possible, both classical and quantum mechanical models are considered. After survey-
ing the various theoretical predictions it will be argued that some of the dynamical
properties discovered in simple models are, in fact, robust, and are important for under-
standing intramolecular vibrational relaxation and reaction dynamics in real systems,




Il. A Few Properties of Nonlinear Dynamical Systems

Any discussion of intramolecular dynamics of highly excited molecules must confront the
problem of describing large amplitude motions of the atoms. It is a cliché, though true,
that most of our intuitive sense for how systems of oscillators should behave is derived
from examples for which a linear analysis or a perturbation to a linear analysis is poss -
ible, e.g. harmonic motion or weakly coupled harmonic motion. While this way of
thinking suffices for the description of small amplitude motions of the atoms of a mole-
cule, it is inapplicable to the description of large amplitude motions. The point is that
the nonlinearities of the restoring force field are so important that the dynamics can be
qualitatively different from that predicted by extrapolation from the harmonic limit,

For example, it is not possible to predict the existence of solitary waves on a chain of
nonlinear oscillators with a perturbation theory analysis starting from the harmonic os-
cillator limit [5]. The existence of qualitatively new phenomena in the large amplitude
limit suggests we rethink our analyses of intramolecular vibrational dynamics. It is not
yet established that these special large amplitude phenomena have important chemical

consequences, but the hint that they are important is strong.

The remarkable developments of the past two decades in the analysis of nonlinear
dynamical systems are not widely known to chemists, For that reason | will presume on
your patience and sketch some of the ideas and results that appear to bear on the rate of
intramolecular vibrational relaxation, and its coupling to other processes.

| shall discuss the classical mechanical case first, and then the quantum mechanical
case,

A. Some Properties of Trajectories (CM) [6]

Given a dynamical system with N degrees of freedom described by the Hamiltonian
H(ﬁ,z) and the equations of motion
] M . dH
?;'-'-' af‘ ? ﬁ: == s-gt‘l (])
and given the initial values of the coordinates and momenta, a; ] /b: the values of

1,/b at any other time ¢

% = 9,5 (f,io,lb‘) ’ /b, = lbg(f)glif’)’ @)

are unique under very weak conditions, Egs. (2) can in principle, be solved for 7') /b:)
s

q;-_-_- ?«:(t"},/b) : /6: - lb:(t, @:/b)-’ 3)

which gives 2N functions of the phase space variables and the time which are con-
stant along any trajectory of the system. Elimination of € between the equations (3)
leaves 2N=1  functions of only the phase space variables; these functions also have
the property of being constant along any trajectory. This argument establishes the exis-
tence of 2N =1 functions C; ( . ) which are integrals of the motion; attributing a
set of numerical values to the "L 'is equivalent to completely determining the system
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trajectory in phase space.

Saying that the set of 2N=1 values of C'; determine the trajectory is one thing;
finding the values is quite another! Of course, every constant of the motion must sat-
isfy the Poisson-Bracket relation

{f/) @} =0, J'-_-/,z,...,z/v-/ @
but the only obvious solution is f, = H(¢, ‘b) . Although it is in principle poss-
ible to stepwise find 2N=2 other functions which with @&, form a complete set of
functionally independent integrals of the motion, in practice this is impossible to exe-
cute even for very simple mechanical systems.

Note that C =H  requires that the trajectory of a conservative system lie on
the energy surface H@/ ﬁ) = £. In general, each of the equations

C; = k S=h2, ., NI s
for given A, defines a 2N=1 dimensional hypersurface in the 2N dimensional phase
space. The {raiectory of the system must lie entirely on each of these surfaces, hence

is determined entirely by their hiperdimensioncl intersection, Put in slightly different
words, fixing the value of any & restricts the region of phase space in which the tra-
jectory can lie. Specification of all 2N=-1 mj reduces the allowable dimension~
ability from 2N to 1, which is the trajectory of the system. However, the integrals of
the motion ; are of two types. Some are isolating, in the sense that the domain of

| phase space to which they restrict the trajectory is compact and readily partitioned
from the full phase space-- the language used here is loose but the geometric visual-
ization intended should be clear. The integral & =H[’,f) is of this type. Others,
apparently the vast majority, are nonisolating. The regions of phase space to which
they restrict the trajectory pass tortuously through the full domain accessible under the
isolating integrals of motion. The distinction between these two classes of integrals of
the motion is evident even for the simple system of two independent harmonic oscilla-
tors whose Hamiltonian is, of course (7 =/ ),

ﬁ/:‘é(ﬁll"'w,‘%z) + 4 (f: + w:;: )5

()
which leads to the equations of motion
. [ ]
pocos wt 49, sin Wt = p :
. " A all 2.
@9 cos it —p sinal = @) o
Elimination of € , for each value of & , gives
| 3 3 3 o2 4,0
| bty = P rw g " = Con.:z'anz‘f .
L=/ a.
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Finally, elimination of € between the equations of motion for different 4 =1,2 leads
to a third integral of the motion, &g . The nature of C; depends on the ratio w, /&y,
in particular on whether this ratio is rational or irrational. In the case that e, [ad; is
rational the projection of the system trajectory on the 4,4 2 plane is a closed curve, in
fact a Lissajous figure. In this case Q} (g,plis a multivalued function with a finite
number of branches. On the other hand, i GJ,/AJ, is irrational, the projection of the
system trajectory on the @, @, plane does not generate a closed curve because there
can be no rational integer set which leads to matching of the periods of the two oscilla-
tors. As a resylt, the motion of the system is not periodic, and the projected trajectory
in the ¢'gt plane passes arbitrarily close to each point lying within the rectangle de-
fined by the maximum amplitudes of the two oscillators. The trajectory thereby densely
fills the accessible @, @4 space. Although the integral of the motion on &g exists, it
is a pathological function, namely a multivalued function with an infinite number of

. branches. Note that when &, fa) is rational, the projected trajectory is a Lissajous fig- |
ure that restricts the motion of the representative point to a small portion of the ¢, 92
plane. In this case Ly is an isolating integral of the motion. But when @y /e, is irra-
tional the existence of d.} does not prevent the projected trajectory from filling the en-
ergetically accessible region of the ¢, %2 plane. In this latter case dgisa nonisolat-
ing integral of the motion.

A different view of dynamics is given by the Hamilton-Jacobi form of mechanics.
This representation of the dynamics is based on finding a canonical transformation such

that

(9)

' The new momenta B are integrals of the motion, while the new coordinates Q, are
linear functions of time. Note that only N constants of the motion are determined by
the canonical transformation, so the system trajectory is restricted to an N = 1 dimen-
sional subspace of the full phase space, but not to a smaller space, For a bounded sys-
tem linear combinations of the # define actions Je and their conjugate angle var=
iables @g ; the Jx and $s define the action-angle representation of mechanics. It
is only for the case of a system of independent hermanic oscillators that the & are inde-
pendent of 7} and constant. In more general cases we can, in principle, find H'(~7,'¢)
but the corresponding frequencies will not be independent of J .

Consider the situation in which the system Hamiltonian can be separated into

H(T §) = H(T) + A H, (5 8).
(10)

Ho(T) describes an integrable system, the trajectories of which densely cover regions

of phase space, As in the example of two harmonic oscillotors with @, /&y, irrational,

we expect that when regions of phase space are densely covered the frequencies

w;= [9/".,374' )  are not related by a set of rational integers. The term A H (T¢)
is a "small" perturbation, The traditional view of the influence of anharmonicity on the
motion of coupled oscillators suggests that A H, destroys the topological structure of

the trajectories corresponding to Hp{JT) no matter how small A H, , if only enough

L"--'l-—--ll-llll-l—------I-——------------—--r . I




time elapses. The idea is that A, causes the trajectory to wander out of densely
filled regions corresponding to HOCJ' )= constant, thereby filling all of accessible phase
space.

A remarkable theorem, due to Kolmogoroff, Arnold and Moser (KAM) [7], implies
that the intuitive description of the trajectory just given is incorrect. The theorem says
that provided A is "sufficiently small” and A, (J; $) is analytic in T and ¢
in a given domain, the phase space can be separated into two regions of nonvanishing
volume, One of these is small, and it shrinks to zero volume as A=» 0 ., The larger
of the two regions has the structure characteristic of Ho (T). Thus, the KAM theorem
asserts that for the majority of initial conditions the trajectories of the system have the
same character as in the uncoupled oscillator case (Lissajous figures restricted to N-1
dimensions). There is a small region (of instability) in which the trajectories are wildly

7 erratic and can depart drastically from the nearby confined trajecteries,

To apply the KAM theorem we need to know what is "small enough" with respect to
or, equivalently, for fixed A  how the topological behavior of the trajectory
changes as the energy of the system increases. At present all of our knowledge concern~-
ing this crucial point is derived from numerical solutions of the equations of motion of

model systems [8]. Some hypotheses, based on analytical considerations, have been
advanced to explain the results of the numerical studies [9], [10], [11], but these have
followed and cannot yet replace the trajectory calculations.

In a sense, it can be said that numerical solution of the equations of motion of some
system is intended to reveal the consequences of the breakdown of integrability and the
lack of isolating integrals of the motion other than the energy. Poincaré [12] introduced
a representation of the results of trajectory analysis which permits visualization of these
consequences. This representation, which is most useful for two dimensional systems,
portrays the motion on a so-called (Poincaré) surface of section. Consider, for simpli-
city, a Hamiltonian of the form (m = 1)

H= £t +p) +£(2,,8.).

an
For fixed energy, H=E , (11) has only three independent variables, One surface
of section is defined by the intersection of =& with @, = © ; in that plane the
coordinates are £, and . To each point in the surface of section there corres-
ponds a unique value of 4, and @., and of & and ¢ =0 . Then /6’ is deter-
mined except for sign since, from (11), 4

i
b= x EZE'f:'f(¢;;°)J 3 i

A given trajectory of a bound system will repeatedly cross the surface of section, since
that trajectory must repeatedly pass through g,=0, half the passages with £, >0 and
half with p, & © . We now recognize two possibilities. If there exist isolating inte=
grals of the motion other than the energy, such as C, with @y /e, rational for the
Hamiltonian (6), the system trajectory lies on a hypersurface of smaller dimensionality
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than the energy surface, This hypersurface intersects the surface of section in a smooth
closed curve -~ closed because the motion is periodic. In contrast, if there is not any
isolating integral of the motion other than the energy, the intersections of the trajectory
with the surface of section will cover that surface. The pattern of intersections will
appear random, but is in fact not, since the trajectory satisfies the deterministic equa-
tion of motion. The two cases described are schematically sketched in Fig. 1.

To illustrate both the subtleties of nonlinear mechanics and the consequences of the
KAM theorem consider the Toda Hamiltonian [13]

Higp) =t (B +p7) +54 [e 2. #2039, | 2028,
+e"'7" ] - é— )
(13)

and that generated by expanding (13) to third order in @, and @, ,known as the
Henon-Heiles Hamiltonian [14],

2 Z 2 2 S
Hg,p) = 4B k) + £ 31 492) +97% ~1 9]

(14)
The trajectories corresponding to (13) were studied by Ford [15]. The results, presented
as surfaces of section, are shown in Fig. 2. Given the exponential nonlinearity of H,
the most plausible guess as to the motion under H is that the only isolating integral is
the energy. That expectation is wrong! The surfaces of section for all energies clearly
show evidence of periodic behavior, and it was later shown by Henon [16] that other
isolating integrals of the: motion do exist, and that (13) corresponds to a completely in=
tegrable case, despite the nonlinearity. Now (14) is "much less nonlinear” than (13)
and, given that (13) represents an integrable case and (14) is derived from (13), we
could reasonably expect (13) also to describe an integrable system. As shown in Fig. 3,
this is not the case [8]. Since (13) describes bounded motion only for £< 1/6 we con-
fine attention to this energy region. For low energy (€ =1/1a.) the motion is obviously
periodic, for intermediate energy, E=(ifg) it is mostly periodic with some nonperiodic

regions, and when & approaches 1)& the motion is apparently nonperiodic. Therefore
for, say, £ES I/g there is an isolating integral other than the energy, but not for all
ES ¢ s ivst the behavior described by the KAM theorem.

B. A Few Details: The Effect of Resonances (CM)

For illustrative purposes consider again a system with two degrees of freedom so that, in
angle-action variables,

H=HUT,T) +V(T, T, 4, 4). g
When V=0 , H, generates a motion for which J;, J, = constants and

$.=ew;(T,7)+ P, w;= 9Ho/3~7:', . The motion of the unperturbed system is
“ 40
conveniently represented on a two dimensional torus where ¢, , P, ore the angle




Fig. la Schematic representation of
a Poincare surface of section when the
trajectory is quasiperiodic.

Fig. 1b Schematic representation of
a Poincare surface of section when the
trajectory is not quasiperiodic.
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Fig. 2a Poincare surface of section for the Toda lattice. E =1, From [8].

;' Fig. 2b Poincare surface of section for the Toda lattice. E =256. From [8].

Figs. 2c, 2d The separation distances versus time in momentum and position space for

'f two initially close trajectories of the Toda model. From [8].

Fig. 2e The separation distances versus time for two initially close trajectories of the }
Henon-Heiles model. E =1/8. The lower curves are for trajectory pairs in the
quasiperiodic region, the upper curves for trajectory pairs in the ergodic region.
See Fig. 3b. From [8].
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5 v Fig. 3 Poincare surfaces of section for the
| Henon-Heiles model. From [8].
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coordinates and J;, J; the radii. If V issmall enough and the Jacobians

9 (@, ,w,) -
(T, T) 3
(16)

KAM show that the most of the unperturbed tori bearing conditionally periodic motion
with incommensurate frequencies continue to exist, being only slightly perturbed by ¥ .
On the other hand, tori bearing periodic motion or very nearly periodic motion, with
commensurate frequencies, or with incommensurate frequencies whose ratio is well approx-
imated by p/S , 1; § small integers, are grossly deformed by ¥ and no longer remain
close to unperturbed tori. Furthermore,although the unperturbed tori with commensur-
ate frequencies which are destroyed by V' # O are everywhere dense, KAM show that
the majority (in the sense of measure theory) of initial conditions lead to motion on pre-
served tori bearing conditionally periodic motion when V' is sufficiently small. Thus,
KAM theory shows that for small ¥ most initial conditions lead to nonergodic motion.

What is the character of the motion not on preserved tori? Imagine H expanded in
a Fourier series:

H=H(T,T) +f (T,T)ces(me, +néh)

et (17)
In KAM theory the angle dependent terms are eliminated by successive canonical trans-
formations, each of which is close to the identity transformation. The final Hamiltonian
is a function of transformed variables only and is "close" to the original Hamiltonian. If
this can be accomplished in some general sense, one finds that the unperturbed motion,
for the most part, lies on tori close to unperturbed tori.

To illustrate these ideas suppose the only important coupling term in (17) is £

(as displayed) [17]. Then to eliminate the term cos (me@ +ng@,) introduce the
canonical transformation

F = ﬂ191 ‘*'dz.gz + Bounm (4‘91.)5’." (mé,+n QL)

(18)
with 4, € the transformed action-angle variables, and B,y to be determined. If

Bm,,“-:a ,thenJ‘--J;' 5‘-=¢"- . Applying F to H ,

H = H0d,9,) +3 Dmes (4,,4,) +new, (9,9, ] Bon

)
+fmm(‘dl‘4z )} @s(m6,+n6,) (19a)
v g

_ H,
w‘:(J“Jg,) -’ﬂ .

A

(190)
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To lowest order, the angle dependent term is eliminated if

I (D100)
?
Me, (W, D) +nen (¥, <, )

B (I, = —

(20)
which requires that 2 &, + 77&/), 4 O or be very small compared to f,,,,, If the de-
nominator is small compared to £onn. Bamm is large, and the transformation is not
close to the identity transformation, fience the transformed motion is not close to the
unperturbed motion. Consequently, if there exists a band of frequencies & for which

| (T, 72) +nah (T, Td | L& | foy (T T,

21
then the angle dependent term grossly distorts an associated zone of unperturbed sori)
bearing the frequencies satisfying the inequality. In general, if one Fourier compgnent
satisfies the inequality, there will be additional terms £0:fm’¢, +7'¢,) inH with
ratios m’/n ! sufficiently close to m/n that the inequality is also satisfied for them--
hence the zone of unperturbed tori distorted by the displayed term will simultaneously
be affected by many other angle dependent terms.

Note that the inequality cited is a kind of resonance relationship which, if satisfied,
asserts that CoS (m @, + n¢fy) resonantly couples the oscillators when their frequen-
cies lie in the designated bands. When I}/ is small, hence all f,.,,,, small, such
resonance zones are narrow and the KAM theorem shows that the totality of all resonant
zones is small relative to the measure of the allowed phase space. We expect that as

V and f,,,.,, increase, or as & increases, the measure of the resonant zones will also
increase until most of phase space is filled by them. KAM theory thereby predicts an
amplitude instability for conservative nonlinear oscillator systems permitting a transition
between predominantly quasi-periodic and ergodic motion.

In general, it is found that:
(i) A Hamiltonian of the form

H= Ho( T, %) + frpn (T) T ) oS (g +11 4, )

has an "extra” well defined constant of the motion:

(ii) An m-n resonance for M3 7 introduces a chain of 777 islands in the -T; plane
and a chain of 2 islands in the J7 plane. (Islands are ovals surrounding points repre~
senting stable periodic orbits).

(iii) lsolated resonances distort the unperturbed tori by introducing, in pairs, new stable
and unstable periodic orbits.

(iv) An =7t resonance zone appears abruptly, in general at some E=29,and
is bounded by a separatrix which passes through the unstable periodic solutions.

(v) The mm-7 resonance zones decrease in size rapidly as 7 and M increase.
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Several models of coupled nonlinear oscillator systems have been studied (8], [18],
[19] by numerical integration of the equations of motion. A common feature of the re-
sults is the existence of isolating integrals of the motion other than the energy at low
energy, and the apparent lack of such isolating integrals at high energy. Also, the
transition from periodic to apparently stochastic behavior of the trajectory is smooth but
abrupt as the system energy increases. The magnitude of the energy at the transition is
dependent on the number of oscillators in the system. For small coupled systems, say
two or three oscillators,it is about one half to two thirds of an oscillator dissociation
energy. For a system with many oscillators it is, typically, larger than an oscillator
dissociation energy, but only a very small fraction of the total energy of the system,
and that fraction decreases as the number of oscillators increases.

Several interpretations of the dynamics underlying the KAM transition have been

proposed. There is not time to discuss these, but a categorization of the ideas involved
is worthwhile, One, due to Zaslavski and Chirikov [11], is based on the properties of

the nonlinear resonances of the system. It is asserted that as long as there are no non~
linear resonances, the trajectory of the system is nonergodic, The KAM transition is,
then, associated with the onset of overlap of nonlinear resonances of the system, which
overlap leads to ergodic behavior of the trajectory. Another, | think due to Ford (8],
associates the KAM transition with a dramatic increase with energy in the number of
hyperbolic fixed points of the time evolution operator of the system. A third, recently
published by Duff and Brumer [10], associates the KAM transition with a local instabil-
ity, i.e. a region of the energy surface for which characteristic frequencies vanish.

A fourth, proposed by Mo [9], is not easy to characterize. It is known that in the non-
ergodic region the motion of the system is such that two trajectories, starting from
nearby points, separate linearly in time, whereas in the ergodic region two such tra-
jectories separate exponentially in time. Mo has used a projection operator scheme to
generate an equation of motion for the separation between two trajectories. This form-
alism is truncated at an early stage to yield a manageable approximate equation of
motion,

All of the proposed interpretations cited above appear to successfully predict the
KAM transition in many cases, but also to fail for at least one case. Clearly, we are
a long way from fully understanding the detailed nature of the dynamical state of a
system near to a KAM transition.

C. Application to Model Molecular Systems (CM)

To see how the ideas mentioned in Sections |IA and |IB can be applied to molecu-
lar dynamics | shall briefly sketch an analysis by Oxtoby and Rice [20]. This analysis
is intended to elucidate the relationship between nonlinear reson.nces and statistical
behavior in intramolecular energy exchange. As throughout this section, classical
mechanics is used.

The molecular model considered consists of a "critical” nonlinear osciliator driven
by coupling to "other" vibrational modes; rotation-vibration interaction is neglected.
Oxtoby and Rice choose bond-angle coordinates to describe the motions in the system.

When energy transfer due to interaction between non-bonded atoms is neglected
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the potential energy is separable in bond-angle coordinates, and the kinetic energy is
of the form [21]

hE = 3’.‘5& @b -
3 (22)

G‘.‘f depends on the bond lengths, angles and constituent masses. Suppose G‘j is
approximated by its value for the equilibrium configuration of the molecule, denoted
G‘; . Then the molecular Hamiltonian has the simple form

H=H +V
=Zlurez 2] + Z Gikbi

(23)
When G‘e vanishes, as in the coupling of bond bending and bond stretching in a
linear mofecule, the next higher term in (.. isretained and V' is only slightly more
complicated. Note that ¥ is pairwise additive between modes. Also, for a large
molecule many of the coupling terms are zero since &G has matrix elements only be-
tween nearby stretching and bending modes. Furthermore the perturbation averages to
zero over a vibrational period. Then the dominant effect of ¥  will arise through
near resonant coupling of two modes. Oxtoby and Rice now transform to action-angle
variables. Then ¥ becomes

V=32 VT8, 7,4)

ALj
zV"j-":Z”V,,f;’,' (J’,@)e”’"p""""#’f) ¢ L.
' (24)
A resonance occurs when
%[‘mﬁ--ﬂ-mﬁj) =0, (25)
3 maw; (T) + nw; (T;) =o. -

For given total energy in the two interacting modes «, 7, the resonance condition
defines a resonance center--denoted .7:’; -7';"-- in phase space for each m, = ,
Close to the resonance center the nonresonant terms in V' *  can be neglected since
they are small relative to resonant term. Then, near a resonance the total Hamiltonian
simplifies to

BT BT Lyt
He Bag 2= +aymde + Y (T, T )cos(my; +nd)),

(27)
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(28)
(29)
hence
o / 70T \2 (47-)’.
Hr - [w‘_ +wj 3-7;) ]“-—-"'2 (30)
+VI(T T ) cos(mg. +mp)).

Note that (9T /?J’ ) is to be calculated subject to conservation of energy in the
pair of oscnllofors Al

The reduced form for H (30) is the Homllfomon for a simple pendulum. When
AT, issmall enough the resformg force in V will pull the resonance back

toward the resonance center, The width of the resonance is determined by the range of
J; over which the "pendylum" is stable. This is

(AJ‘Z)M”-_-.-G[IV.,,,,,I/lw + (97 )w l]

and the width in energy space is

'BE
(4E;),,,. * ) NZ T mere

. ‘)
- 4oy (T )[w 11wl 4 (ZYwp1]

31

(32)

When the energy lies within (4 E),,,,/z of E‘-’ the system will be stabilized and
will oscillate around the resonance center, Since for every choice of 7m,2 there is
a resonance, the set of resonance centers is dense in action space. But, the resonance
widths decrease rapidly as 2,2 increase so that resonance overlap considerations can
be restricted to only the first few resonances.

Oxtoby and Rice propose that the molecular dynamics can be qualitatively classi-
fied according to the locations and widths of the nonlinear resonances (26). Phase space
is then divided into three parts:

(i) The representative point lies outside all resonances. Then the energies of the
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different vibrational modes change slowly.

(ii) The representative point moves under the influence of a single resonance. In this
case the energies in the resonantly coupled modes can, under certain conditions, change
rapidly, but the motion is periodic, and the resonance is stabilized.

(iii) The representative point is simultaneously influenced by several resonances: num-
erical studies indicate that then the trajectories appear to behave stochastically, errati-
cally filling the phase space.

The behavior described under (iii) leads to the contention that the stochasticity
arising from overlap of nonlinear resonances [11] leads to rapid energy exchange be-
tween vibrational modes, and is the ultimate justification for RRKM theory. Oxtoby
and Rice have studied this contention by examining simple models. For example, sup-

pose that resonance between a pair of oscillators dominates the approach to stochasticity.

Take

Hy = Z[Uitg) +2 G 1, (33)

Ui(3.) = 2, (e zh‘/a-..'_ze— 2. las - ), i

where D, is the bond dissociation energy and &, defines the length scale for the
potential. The frequency of small amplitude motion is

o, = (2065 /a2 )™

(35)
In action-angle variables H. is
Hy=Z[D-2,0-2;%:/20) ], (36)
w, = (gﬁ ) = L) (/-_n.-T-/zD-)
: MR/ =4 v /2 b ).
o (37)
Since %
E. =D, - Do)~ T )21; ),
(38)
one can write
U/
w(E) = (- &[D) 7 39)
The corresponding momentum is
Ua
(B ()
ps Gt/ N M+ ( I-q"/_n_‘.‘)‘/"rm b
(40)
where ¢‘° = U"{ + 6; is the angle variable of the canonical transforma-

tion. Continuing, (32) becomes,
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and

’rﬂdda(E_") = an'(E:,')- 42)
The results of numerical calculations for this model reveal the following:

(i) In typical two oscillator resonance dominated dynamics there will be significant

non-random behavior over the entire energy range up to D . Slow energy redistribu-

tion occurs because the system can be "trapped” for many vibrational periods near the

centers of isolated nonlinear resonances. (See Figs. 4 and 5).

(ii) As the total energy increases the relative volume of phase space occupied by over-

lapping resonances increases, so that energy redistribution becomes the behavioral norm.

(See Figs. 4, 5 and 6).

(iii) If one bond dissociation energy becomes large, the corresponding oscillator becomes

more harmonic, leading to a decrease in the width and (especially) number of nonlinear

resonances.

(iv) As the two frequencies L2, fZJ move apart, the number of nonlinear resonances

decreases, especially so at low energy.

(v) Resonance widths are proportional fo

[(GT‘J) /G:u G:JJ ] i

so that large changes in masses and bond angles are necessary to affect the resonances
and their overlap.

(vi) Harmonic bending modes (especially low frequency modes) are strongly coupled to
the critical bond stretch only when the critical mode is very close to dissociation. Then,
a likely pathway for energy transfer to a breaking bond involves, first, transfer from
other bond stretching modes and, second, only when the critical bond is close to disso-
ciation, transfer from the bending modes. (See Fig. 6).

What happens when there are many nonlinear oscillators? For two interacting oscil-
lators the zeroth order energy surface is one dimensional. In this case there is only one
path from a given point to any other, hence narrow resonances do not overlap. For
n> 2 oscillators, the energy surface is of dimension 7 = | , and centers of resonances
are not points, but rather 71 - 2 dimensional surfaces,

(vii) Many oscillator case: Suppose one oscillator is singled out for attention. If a

large amount of energy is put into this oscillator relaxation will proceed in two stages.
First there will occur transfer of energy to a few modes directly coupled to the critical
oscillator and, second, transfer from these modes to the rest of the molecule., We expect
the second process to be, basically, "statistical" in character, The same argument
applies to the reverse process, namely energizing some vibrational mode. The analysis
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Fig. 4 Resonance structure for

= CC stretch (1000 cm=!) coupled
== 5 CHstretch (2900 ecm™).CH

= dissociation energy is 2D, where
e —l D is the CC dissociation energy.

Black areas indicate single reson-
ances: cross-hatched areas indi-
cate resonance overlap. E is the
total energy in the two oscilla=-
tors, E; the energy in the critic-
al CC stretching mode.

g 10 2 14

s Fig. 5 Resonance structure for F
=S CC stretch (1000 cm=1) coupled

to another CC stretch (1300 cm"]);
the second CC dissociation ener=-

gyis 1.5D. l

Fig. 6 Resonance structure for
CC stretch (1000 em=1) coupled
to CCH bend (400 ecm=1); the
bending mode is taken to be har-
monic.
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of the first process leads to consideration of an ensemble of one-dimensional resonance
distributions, each member of the ensemble corresponding to a different distribution of
non-critical energy amongst the 7=~ oscillators directly coupled to the critical oscil-
lator. The general conclusions concerning stochasticity in the two oscillator case are
found to remain valid in the many oscillator case. (See Fig. 7). It is found that as the
number of oscillators increases, the energy of each one (on average) decreases. Conse-
quently, the noncritical oscillators are closer to harmonic and vach one has fewer and
narrower resonances with the critical oscillator. Thus resonance overlap need not in-
crease with the number of oscillators directly coupled to the critical oscillator.(See Fig.
7).

A direct confirmation of the Oxtoby-Rice analysis can be obtained by comparison
with studies of dissociating trajectories on an energy surface. Identifying the onset of
stochasticity with overlap of nonlinear resonances is in agreement with Bunker's molecu-
lar dynamics studies of linear triatomic molecules and the existence of a random distri-
bution of lifetimes against fragmentation, (See Fig. 8).

It is important to remark that the rapidity of mode to mode energy transfer depends
on the nature of the modes used to describe the dynamics of the system. In particuler,
the small vibrational amplitude, normal mode, description so useful in spectroscopic
analysis breaks down for large amplitude motion. In the preceding paragraphs it was
argued that if bond stretching and bond bending coordinates are adopted there can be
localization of an initial excitation up to an appreciable fraction of a bond dissociation
energy. Parr and Kupperman [22] have examined energy exchange between normal modes
in an anharmonic triatomic molecule. That is, taking the bond stretching to be defined
by a Morse potential, the same linear combinations that define small amplitude normal
modes in terms of bond stretches were used for large amplitude motion. Note that this
model includes diagonal anharmonicity within bonds, but no bond-bond interaction. For
a symmetric triatomic, M3 with half the energy of dissociation in the asymmetric
stretch, half that energy is exchanged with the other (defined) normal modes in less than
one period of vibration. As shown in Fig. 9, there does not appear to be any regularity
in the pattern of mode to mode energy exchange. A similar model of CENO[22] with
half its dissociation energy in the symmetric stretching mode, shows evidence of non-
linear resonance trapping of energy . (See Fig. 10)

D. Large Amplitude Motion - Solitary Waves [23], [24]

There is yet another consequence of the existence of anharmonic potential energy terms
in the Hamiltonian of a coupled oscillator system. Consider the fact that these anhar-
monicities correspond to nonlinearities in the equations of motion of the system. Now in
the case of continuum wave motion corresponding nonlinearities are known to yield
localizing phenomena such as shock waves. Possibly, then, nonlinearities in the oscil-
lator dynamics could, in some circumstances, counter the tendency for energy redistri-
bution into all available bond vibrations. An example of this behavior is provided by
the Toda lattice [13] already mentioned. This model has the advantage over others that
also support so called solitary waves [24] of being discrete, hence somewhat closer to
molecular systems than are continuum models.

i Consider an infinite one~dimensional lattice of particles of equal mass which
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Resonance structure for CC stretch (1000 ecm™)) coupled equally to the three
modes of Figs. 4, 5and 6. E is the total energy in all four modes, E; the energy

in the critical CC stretching mode,

Resonance structures for Bunker's model #3 (a random lifetime distribution case)
and #8 (a nonrandom case). Critical oscillator dissociation energies in both cases
are 60 kecal. Bunker investigated the energy range from 62.5 - 75 kcal.
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interact only with their nearest neighbors through a (Toda) potential of the form

5 L
Vol ke 8 ],
(43)

where x s the displacement of the bond from its equilibrium (43) length, and k and
b are parameters. Note that as b—» @@ , the potential becomes harmonic with force
constant R , and as b O the pofenﬂcl is equivalent to that between colliding hard
spheres, The classical Hamiltonian for this system is

.2
H= 2 mfxn -+ V(xn"xn-l);
n

(44)
and the equation of motion is
= ik ['e"(xnﬂ"xh)/i e‘ (Xn- n—l)/b] '
(45)
Substitution of the new coordinates and time,
- (% - nt)/ b
R, = e -1,
2
T = (k/m) "t
(46)

yields an equcfion of motion of the form,

9.’_1 An ("“' @n) = 2@7,"' QTH‘I '—Qn—l . 47)

This equation has nondivergent solutions of two types: (1) solitary waves (single and mul-
tiple) which asymptotically may be written as linear combmahons of noninteracting sin-
gle solitary waves of the form [13]

@, = sink K sech*(kn £¢sinh K +§ ),

48
and (2) c-noidal waves, [13] The c-noidal waves may be represented as an infinite (nurZ\-
ber of equally spaced solitary waves which mutually interact; their dispersion relation is
different from that of the solitary waves. This is, of course, a loose classification for
both types of solutions may occur simultaneously and the motion can be difficult to inter-
pret.

For our present purposes, the behavior of both types of solutions in the harmonic and
hard-core limits are particularly illustrative, In the harmonic limit the amplitude of the
solitary waves approach zero and the c-noidal waves approach the normal modes of the
infinite harmonic lattice. In the hard=core limit the amplitude of the c-noidal waves
approach zero and the solitary waves become sherper and sharper. The analogy between
this behavior and the vibrational processes which cccur in molecules is too appealing to
overlook, Large amplitude vibrations probe parts of the molecule's potential energy sur-
face which are possibly better characterized by the interaction between colliding spheres
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with short ranged interactions than by atoms joined by springs. |t is important to note
that the properties of these local excitations cannot be treated in perturbation theory
beginning in the harmonic limit since the differences in the forms of the solitary wave
and c-noidal excitations are equivalent to a phase transition and it is not possible to use
perturbation theory to predict properties across a phase transition,

Some characteristics of solitary waves are worth noting [24]:
(i)  Solitary waves propagate for an indefinitely long time, hence a system in which
such a wave is excited will be nonergodic in the absence of external disturbances.
(ii)  Solitary waves are, in most cases, stable under collision with other solitary waves
(when this is so they are called solitons).
(iii) The existence of solitary wave solutions does not, in my opinion, violate the
KAM theorem since the initial conditions are rather special, hence probably excluded in
the sense of measure theory from those for which the KAM topological analysis holds.
(iv) The soliton solutions for the Toda lattice are compressional waves. There are not
any dilational solitary wave solutions for the Toda lattice. This fact is of importance
with respect to how boundary conditions influence the stability of solitary waves. For
example, at a free end a compressional solitary wave is reflected as a dilational wave,
which will not be stable. In some cases, for example the continuum analogue of the
Fermi-Pasta=Ulam lattice, [25],both compressional and dilational solitary waves exist.
Although it is not certain, it appears likely that lattices with harmonic and odd power
anharmonic potential energy terms support only compressional solitary waves, while lat-
tices with harmonic and even power anharmonic potential energy terms support both com-
pressional and dilatational solitary waves,
(v)  In all cases for which the existence of solitary waves has been established rigor-
ously, the system has an integrable equation of motion. This is a crucial point since
virtually all systems of physical interest have nonintegrable equations of motion.
Zabusky [26] has discussed nonintegrable systems which support solitery waves, but
little is known of such systems.

What, if any, is the connection between solitary wave phenomena and molecular
dynamics? | do not know the answer to that question, but | can offer the following
tantalizing facts. First, the existence of solitary waves appears to be more general than
might be expected from the statements of the last paragraph. Rolfe, Rice and Dancz
[27] have shown, by numerical integration of the equations of motion, that large ampli-
tude motion on a one dimensional lattice of particles interacting with a Morse potential
or with a Lennard-Jones potential is described by solitary wave motion (see Figs. 11 and
12), Second, Dancz and Rice [28] have shown that the introduction of quantum mech~
anics to describe the atomic motion does not fundamentally alter the situation==solitary
waves still describe the large amplitude motion of the one dimensional lattice. Third,
evidence is emerging which suggests that solitary waves can exist in three dimensional
systems [24]. Fourth, and on the other side of the coirn, it is not known if solitary
waves can exist on a lattice with a distribution of force constants and masses. The pre-
liminary evidence available suggests that introduction into a one dimensional lattice of
a different mass leads to destruction of a solitary wave by scattering, [29], although
presumably a regular sub=lattice of particles with different mass will not have such an
effect. Finally, it is not known what conditions will uniquely excite a solitary wave

in a molecular system, assuming such exist,

.
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[1l. Energy Transfer in Quantized Systems

In the last section it was shown that, for a system described by classical mechanics, in
the absence of low order resonances among a set of coupled oscillators most trajectories
are stable and quasiperiodic for small enough energy. For a system of two, three, ...
oscillators the KAM transition between quasiperiodic and apparently stochastic behavior
i is of the order of one half to two thirds a bond dissociation energy, The relevance of
this observation to the behavior of molecules depends on whether or not there are resem-
blances between the dynamics of classical and quantum mechanical systems.

The determination of the eigenstates of a coupled system of nonlinear oscillators
has been attacked from several points of view. Major contributions have been made by
Percival [30], Berry [31], Miller [32] and Marcus [33] who have advanced the semiclass-
ical theory of bound states. These investigators have adopted the Einstein [34] general-
ization of the Bohr=Sommerfeld-Wilson quantization condition, namely

N
/
= i f Zpn =%,
(49)

where the integral over the invariant differential sum & pd% . is along closed curves .
| & in coordinate space that need not be classical trajectories. The usual Bohr-Sommerfeld-
! Wilson condition is defined for each separable coordinate @, , and the corresponding
action integral is taken around one cycle of the motion of the coordinate &, . This
condition depends on the choice of coordinates whereas Einstein's condition, which de-
fines an integration over all N action functions, does not depend on the choice of coor=-
dinates. It is readily seen that the Einstein condition can be applied to motion in the
region where the trajectory is quasiperiodic, but not above the KAM transition, since in
that domain D,  cannot be expressed as a function of the @£, . This has led Perci-
val [30] to classify the spectrum of a system into the categories regular and irregular, the
former pertaining to the domain below the KAM transition where the trajectory is quasi-
periodic, and the latter to the domain of apparent stochastic behavior of the trajectory.

Nordholm and Rice [25] have taken a different approach. In principle the eigen-
values of an arbitrarily complicated Hamiltonian can be computed by use of expansion
in a complete set of basis functions and evaluation of matrix elements, though an actual
caleculation may be very tedious. Noting this, the important question is how an initially
localized excitation spreads over the energy surface of the system. Nordholm and Rice
propose to classify a state of the system as ergodic if an excitation initially not uniformly
distributed over the energy surface becomes uniformly distributed as €-» co. This sug-
gestion is deliberately constructed to be in direct correspondence with the usual defin-
ition of ergodicity on a classical energy surface. It has the advantage of being easily
tested for any given set of basis states. It has the disadvantage that the conclusion of
a test for this kind of ergodicity is, in general, basis dependent, Of course, a basis
dependence can be connected to reality if there exists an excitation mechanism that
prepares the system in one or more of the basis states,

Nordholm and Rice [35] have studied several model systems of coupled nonlinear
oscillators. The Hamiltonians examined include examples with algebraic nonlinearities
and with exponential (Morse function) nonlinearities, and examples with degenerate
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and with nondegenerate oscillators. The basis states of the representation are,for each
Hamiltonian, chosen to be the states of the corresponding decoupled set of harmonic
oscillators. The calculations lead to the following conclusions:

(i) There is nonergodic behavior, in general, below a critical energy (possibly a crit-
ical energy region). The nonergodicity is more marked and persistent for nondegenerate
systems than for equivalent degenerate systems.

(ii) For degenerate systems there are occasional global states interspersed in the local
states. (A global state is one with amplitude uniformly distributed over the energy sur-
face).

(iii) For low energy, typically less than half the dissociation energy D , the asymptotic
distribution of amplitude over the equienergetic basis states is not very sensitive to the
coupling.

(iv) Initial states with comparable excitation in all oscillators tend to evolve to global
states, whereas extremal initial states with excitation mostly localized in one oscillator
tend to evolve to local states.

(v) For high energy, typically above half the dissociation energy, the asymptotic dis-
tribution of amplitude over the basis states is very sensitive to the coupling. In this case
the final states achieved tend to have mixed character (e.g. a wide but uneven spread
of overlaps).

(vi) From a very crude analysis of the time evolution of the model systems it is extima=
ted that in these cases it takes of the order of one to ten vibrational periods for an initia=
[ly localized nonstationary state to achieve its asymptotic form.

Clearly, the quantum dynamics of coupled oscillator systems is analagous to the
classical dynamics of these systems. In particular, a KAM transition exists. Note also
how conclusion (iv) is very like the prediction that if energy is initially localized in
one oscillator it requires a higher total energy to reach the region of overiap of nori-
linear resonances than if the same initial energy is spread over several oscillators (see
Figs. 4 - 7).

A connection between conclusions (iii) and (v) of Nordholm and Rice and Percival's
notion of regular and irregular spectra has been made in a calculation by Pomphrey (36].
He studied the sensitivity of the parameterized Henon-Heiles Hamiltonian (m =)

H= 4 (e pi) 44090 +90) +4(372.-£91)

(50)
to the value of & . In this case the dissociation energy is //612'. Pomphrey computed
the eigenvalues of (50) for the range 0.090< o £ 0,086 and examined the sensitivity of
the spectrum as a function of the energy. This sensitivity is measured by the second
difference

A8 |§E:(nl+4o<)—é:-(at)§ - $ & ()~ E:-(at-AaL)} |

(S1)
Perturbation theory yields the result

2
A; ~ & (47), 52)

The calculations show that for E < 16 = 0.74 D all second differences are very small.
This is the regular region of the spectrum, corresponding to localized asymptotic
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distribution over the basis states, and to quasiperiodic motion in the classical limit. For
E > 16 eigenvalues are found with corresponding A4, orders of magnitude larger,
i.e. the spectrum is very sensitive to small changes in a. . This is the irregular region
of the spectrum, corresponding to global asymptotic distribution over the basis states,

and to apparently stochastic motion in the classical limit (see Fig, 13). It is also illum=-
inating to compare the coverage of the surface of section by the apparently stochastic
trajectory with the region of Hilbert space wherein the spectrum is very sensitive to the
coupling. For the classical Henon-Heiles Hamiltonian the total area covered by unstable
trajectories up to energy & s

E
T(E) —_-fazI(E)JE
oy (B)=0, E< 0.68D; & (£)=3125(E )-2.25, E> 048D,

(53)
where "total area" means the relative area of the surface of section. The quantity
is to be compared with
. E
/
SCE) =5 Z772(E;)AE;>,
< (54)

corresponding to the part of Hilbert space where the spectrum is very sensitive to a
change in & ., Here ML (F) =/ if &, is very sensitive to the value of &,
Nz (&) =0  otherwise. Also,

<4E:> = 5 (&

Ve T

)
: (55)

As shown in Fig. 14 the quantum mechanical results follow, qualitatively, the shape of
the classical curve, ( Z(ZE) and SC& ) have different dimensionality, hence cannot
agree quantitatively..)

IV. Ergodicity and Reaction Rate == Model Considerations

Except for the comparison of the Oxtéby-Rice predictions with the distribution of
fragmentation lifetimes determined in Bunker's trajectory calculations. | have thus far
confined the discussion to the behavior of the bound states of a system of coupled non-
linear oscillators. | now wish to consider the influence, or lack of influence, of the
nature of intramolecular energy exchange on the rate of a fragmentation reaction. At
first sight it appears that, because the KAM transition typically occurs for EL D, the
rate of fragmentation should be accurately accounted for by a statistical model. A
deeper examination reveals that the matter is not so simple. First, the very nature of
the irregular spectrum suggests that a decomposition rate might not be a monotone func-
tion of the energy. Second, resonances in the localized states of the bond that breaks
could conceivably be derived from nonergodic states of the molecule interspersed
sparsely in the ergodic region of states, Third, the matrix elements coupling different
vibrations of the molecule might vary over such a large range that only a subset of all
vibrations is effectively coupled on the time scale of the reaction.

To determine if any of these possibilities is important Nordholm and Rice [37] devel-
oped an exact formal theory of the fragmentation reaction, and made calculations for an
approximate model. Consider an initial bound state [Y >4 , with time development
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2 |y> =<0 1p>
2|V =-% / 2

A
Let 2C  be the complete Hilbert space corresponding to A . Jhe space X contains
both bound and continuum states. Define a projection operator Pg  such that

A
P,}C = B,
where B is the domain of Hilbert space corresponding to bound levels. Then

W) = gwlﬁl LR Mﬁ,tl/»fu

(57)

(58)

is the probakility of finding the molecyle in a boynd level. We seek the equation of
motion of P. l 1,(’>t . Define éF = /- P‘ . Then

A A A . A A
ZRS= % Hus 1w — § Hye B 193,

A C A A A A
%P’I'W)‘ -'-'-%Hp;}’FlW){-% p;P‘I7//>t:
(59)
A A A A A A A A
Hgs = FgH Pg Har = By H Pg,
A A A A A . A A
Hee = Iz A Py, Hes = FeH Py . -

A
Suppose the molecule starts in the bound region, so that PF IZP>‘, =0 ., Then

t A
A —<SH__/h g I
Py, =- f:/se bl (3)Hes Pa 19>,

(61)
and

LA =-FHuf vy .

(62)

A A
Eq. (62) is easily interpreted: HF! PB ij)*_‘ measures the flow of amplitude from
B to F at ¢-s ., Then exf(."ﬁ /% ) propagates this amplitude within £
forward in time from 4-S-» ¢’ , anij measures how much of it is returned
to B at t . The integration sums these effects from ¢ = © . The term

¢ .
A _LH S
-7_‘;—"["’9”3"e L /ﬁ/?n ;"a ’w>é—:
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A

leads to a decrease in the norm of P, IZP>* , hence to dissipation, because the flow
out of B will exceed the flow in given fh2 amplitude is propagated away from the
boundary of y., by the actiog of exp (..4: s, s/t ) , diminishing the net flow back
into B . Note that when ﬁ is set equal to zero the formalism describes exactly
the relaxation in the manifold of bound levels.

The advantage offergd by the Nordhglm-Rice analysis is that at the formal level the
equations of motion of Pg /YD, and P lY Dy have been decoupled. The price
paid for this decoupling is that the equation of motion of By /¢ depends on the
"memory” of the motion. Nevertheless there is a net gain in that the structure of the
formalism suggests approximations to the N-body dynamics different from those suggested
by other formalisms, especially when the analogy with the statistical mechanics of irre-
versibility is exploited.

A'"simplest model"based on this formalism is generated as follows. Set

A ""/?Ff/ﬁ A
//”e HF

A A A
—> H,, 't.',_.',.//F3 Sts),
(63)

A

where T is an operator that measures the lifetime of the amplitude jn a transition
FE

region in" F , close to the boundary of B . In this transition region Hge ¥ © . Then

A C A A A N s A
;% RIv>, =":-'/'/86P3 2 - 7;"'- Har Tee Hrs Pa 1¥24 >
(64)

and in this (Markoffian ) approximation the projected bound state amplitude changes in
time according to the effective Hamiltonian

A A . A A P A A A
Hcﬂ i u‘*”n = Heg 3 Hsr Ter Hes +

A (65)
which has the dissipative component =< /‘/J, . This form will be valid if:
(i) the time spent in the transition region 7 where Hgpo # O s very short on the
time scale of the dynamics in B ,
(ii) escape from T~ into F=T s irreversible.

Condition (i) requires T to be small relative to 8 ; condition (ii) requires that
ﬁ e"". FF:/A- /? — O
8F FB

rapidly. Note that if the forces between separating fragments have short range a spatial

boundary can be used to define 8 and T -~ the approach is then reminiscent of the
-matrix approach to scattering [38]. However, other separgtions defining 8 and

T can be used as desired and as convenient, The Markoffian 2. has the same

character as phenomenologically postulated in the optical potential method applied to

the decay of atomic or molecular states [39]. As to the properties of off defined by

(65), the most important for our purposes arg the followjng:

(iii) For a reasonable separation of 2C ﬁ” (and Hp ) will vanish except in

]
small region '7; . An initial state localized to & — 7; can only dissociate if
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Apgt /% 4
8_‘ 88 propagates the initial amplitude to 73 . If the eigenstates of Hza
are ergodic such propagation will always take place; in contrast, nonergodic states com-
pletely localized to 8—7i lead to only partial dissociation or none at all,
(iv) Hegfa is not a Hermitian operator, and in ge eral is not a normal operator
hence A, ;s does not commute with its adjoint ( /5“ does not commute with #’ ).
Consequently ﬂe need not have a complete set of orthonormal eigenstates. How-
ever, for each r fof the characteristic equation there is at least one linearly indepen-
dent eigenstate and no more than 7t (the multiplicity of the root). If all the roots of
the characteristic equation are nondegenerate the operator will have a complete set of
Iineo;y independent eigenstates-- such operators are called semi-simple. We assume
that Hegs is semisimple. a
(v) The eigenvalues of h',# will, in general, be complex; the eigenstates will be

complete but not orthogonal.
| To actually compute the properties of a particylar model, an initial state is expanded in

% the basis of the eigenstates 3 JE>§  of , with E= Eg+<{ Ex . When
, the initial state is a superposjtion of the $12>3 " the decay will be, in general, not a
pure exponential form. If A, were normal (so the eigenstates are orthonormal), the

decay would be a multiple exponential, but this is not the case for a semi—simple H,

If the ergodic properties permit decay, and the initial state is deep in B , the decay

rate starts at zero at € =© and remains zero for a period while the packet broadens |
P and moves towards T~ : the rate of decay then rises to a maximum and falls off, perhaps {

in a non-monotonic fashign. This behavior derives from the noncommutation of Hag and
5, (nonnormality of Hegf ). The probability of finding the molecule in 8 s

W8 (t) = ¢<4’3, q’; >'t
. ’
o T Topck (B /K - (Er-E)E/R
& ¥ (66)
The phases (for & ¢ £/ ) can introduce coherence effects into the decay process.

A A A
A Of course, to evaluatg the properties of //, one must know H,, and Aj‘p : given
H this means choosing Pg , which implies knowledge of the eigenstates of # , and
this is just what is not usually available. A simple, crude, model can be constructed by
choosing Hgg and Hp classically. Nordholm and Rice considered a two oscillotor
coupled system for which

#c/asric.v/ .=zl(75 ,1+A’¢,7-) +Z/ [f :+ A"i: ) _,\%17; r BS ? )
=4 A) 41 (B AT) -2 % 9,7 % .*

(67)

Thus, one oscillator hes a cutoff at, say, &€, . Even wi%out the cutoff Hc,’,”;“,
descgibes a system that can dissociate, say at & =D . Hp isdiagonal in the states

of H(A =A0) for ES D :
HD"D"“M;) = J(‘”’;)lml, MLV

dim)) =0, hu(m+])<E, =292 ; dm)>o0, hw (m,+;’;)>/(§£.
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dcm,) should be calculated, e.g. by Fano's method. Instead, in the ¢rude mode!
ditm,) is gstimated from the classical halflife. The specification of ﬁcjj is now
complete; Lfgg and AHp can be obtained in matrix form using the basis states
Im,, m37> . The results of a calculation for which @c /D) =0.48 are:

(i) Ex varies over a wide range even for & > €. . The range of variation is larger
when the oscillators are nondegenerate; the variation is irregular,

(ii)  The states @, m,%> remain very much localized even at high energy.

(iii) Small values of Ez. are associated with local (nonergodic) states; large values
with global (ergodic) states,

(iv) Coherence effects lead to variation in the rate of decay as a function of ¢
(v)  Initial states deep in the bound region tend to decay in a nonmonotonic fashion;
initial states in the transition region decay monotonically. (See Fig. 15).

The results displayed in Fig. 15 are simply interpreted, An isolated resonant state--
one generated by embedding a zero order discrete state in a zero order continuum~-~decays
with a constant lifetime (inverse rate). The population decays displayed in Fig. 15,
corresponding to different initial states, are monotone, but the rates of decay are not,
The variation of the rates of decay is a consequence of competition between energy trans-
fer to the stable oscillator and fragmentation of the unstable oscillator. Clearly, the
more effective the localization of energy in the stable oscillator, and the more efficient
the energy transfer relative to reaction, the greater should be the variability of the decay
rate, just as observed.

Parr and Kupperman [22] have studied, using classical mechanics, the sensitivity to
variation of the initial energy of the rate of fragmentation of the model triatomic mole~
cule M3 . They find that with initial energy E < 1.58D in a bond of Mg that
does not break, there is delayed fragmentation. The energized My molecule undergoes
several (sometimes as many as 20 - 30) vibrations during which time energy accumulates
in the other two bonds, which then break. Moreover, the rate of fragmentation is ex=-
tremely sensitive to small variations in the initial energy (see Fig. 16), and is not @ mon-
otone function of the initial energy. Similar results are found for a model of CENO.
And, inclusion of rotational motion, and vibration-rotation interaction, does not alter
the high sensitivity of the lifetime of the energized molecule to small perturbations in the
lifetime of the energized molecule to small perturbations in the initial energy. Parr and
Kupperman conclude that there is not, in general, continuity of classical mechanical
molecular lifetimes even on the smallest scale of energy differences in the corresponding
quantum mechanical case, It is not clear to me that the sources of the nonmonotone rates
of decomposition in the Nordholm=Rice and Parr-Kupperman models are the same, but
the similarity in findings is striking. Both results clearly suggest that even when intra-
molecular energy transfer is rapid relative to chemical reaction the reaction rate may
not be adequately described by a statistical model,

A rather different approach to the study of fragmentation dynamics has evolved from
the theory of radiationless transitions [2], In this approach no attempt is made to direct-
ly study the molecular dynamics. Rather, a spectrum of zero order states and their coup-
lings are postulated, and this spectrum is assumed to incorporate all the necessary infor-
mation about the molecule. The dynamical behavior of the system is then described by
following the amplitude of an initially excited zero order level of the spectrum as a
function of time. The calculations can be carried out exactly for several different

———m
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Fig. 15 Probability and rate of reaction for Nordholm-Rice Markoffian model. In
the units used D = 6heo.
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Fig. 17. The skeleton spectrum of the Heller-Rice model. Each continuum ,ac
represents a different partitioning between relative translational energy and
internal energy of the products.
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assumed energy dependences of the matrix elements coupling the different zero order
manifolds. It is amusing to note that what is widely accepted as intuitively plausible
with respect to the behavior of these coupling matrix elements can lead to dynamical
behavior which is very different from that obtained from integrating the equations of
motion under conditions widely accepted as intuitively plausible with respect to energy
exchange between oscillators.

Consider the model spectrum of states shown in Fig. 17, It is assumed that the sys=-
tem is prepared by excitation of the zero order state @ . This state is not directly
connected to the fragmentation continuum. Rather, @g is coupled to the intermediate
dense manifold of zero order levels £ @g$ , and these in turn are coupled to the several
continua § @5 ¥ . This spectrum is designed to model a situation in which the initially
prepared state must relax to a different state before reaction occurs. The usucl expecta-
tion, derived from chemical kinetic arguments, is that the population of @5 will decay
sequentially to the continuum via intermediate buildup and decay of population in the
manifold of levels §@g8 . The simplest assumption that can be made about the coup-
ling matrix elements of this spectrum is that they are constants independent of the energy
[40], [41]. The dynamics of decay of @g under this assumption deviate grossly from
what is expected from the kinetic arguments cited. Because the matrix elements are con-
stant, ampiitude flows coherently from @ to the §@p¢ and from the {@,} to the
{¢:,} , and interference between the coherent amplitude components in the many lev-
els leads to parallel feeding of the intermediate and fragmentation manifolds. There is
not, in this case, a buildup and subsequent decay of amplitude in the levels £}, and
a buildup of amplitude in the continua {‘P:,} . Even though the assumed constancy of
the coupling matrix elements does not appear to be qualitatively incompatible with mole-
cular properties, it leads to decay kinetics which are peculiar,

Since the peculiar coherence effects just described arise from the assumption that
the coupling matrix elements are constants, and since no molecule is likely to have this
property, the consequences of other assumptions should be studied. Heller and Rice [42]
have examined the consequences of assuming that ¥} = V54 and V,= %:, have ran=
dom character. The dynamics have been worked out for the case of many coupled contin-
va, with each molecular level coupled to each continuum.

The difference between constant and random coupling models grises as follows: For
constant coupling flux from @; into {ﬂ! appears "near" the I, coupling region
but escapes almost as soon as it enters f¢,# , i.e. constant coupling leads to a steady

state situation in which the flux into the " K‘: coupled" region from @s is equal to
the flux out, hence both f¢2§ ond {f,':.} serve as escaping continua in the sense
that there is a flow out of a local interaction region into a non-interactive asymptotic
region simultaneously in both manifolds. Thus, constant coupling has the effect of re-
ducing the entire dense manifold, with all its symmetry variations, to the status of a
single escaping translational continuum. In the random coupling case sequential behav-

ior is obtained because there is an incoherent flow from @ into § Pgf , and the flux .
appears "uniformly in all of {%1 ." Because of the uniformity of the flow into {@¢} !
there is a linear buildup in the @} to {?:} manifold coupling. For € small the

probability of dissociation then builds up as €* , which is characteristic of sequential

flow. Note, for this to be true only K, V oo need be random, not Vgg, %:' sep-

arately. We note in passing that although the random coupling model predicts a
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sequential kinetic decay as expected, and a branching of population into the several
fragmentation continua, there is no a priori reason why that final branching ratio need
be statistical. However, when < ( V;:”')z > is independent of & the branching
is determined by the relative values of the densities of states in the several continua

{o%l.

The two examples cited represent extremes in the possible behavior of the matrix
elements, Little is known of more general cases. Muthukumar and Rice [43] have stud=
ied the consequences of the assumption that there are both systematic functional and
random coupling matrix elements; the former were treated as a perturbation of the latter.
As particular examples they analyzed mixing of constant coupling and random coupling,
and the mixing of Lorentzian coupling and random coupling. As expected, interference
effects alter the time dependence of the decay of the system. For the case of mixed
constant and random coupling these interference effects can increase or decrease the
width of the resonance, i.e. the time scale of the decay, depending on subtle variations
of the ratio of magnitudes of the matrix elements, Also, the time dependence is no
longer simple. For small € one finds a linear combination of ¢ and €*terms charac-
teristic of nonsequential and sequential decays, but the general behavior in time is more
complex. The case of mixed Lorentzian coupling and random coupling is designed to
mimic the situation when a few matrix elements are more important than others, but none
can be neglected. That is, there is tight coupling within some subset of levels, which in
turn are embedded in a dense manifold of levels, The calculated time evolution of the
population of the initially excited level exhibits two time constants for small € , and
is rather complex for large € . The shorter time constant corresponds to the redistriby-
tion of energy amongst levels which are nearly resonant with the initially excited level,
and the longer time constant corresponds to the relaxation to other levels.

Consideration of the behavior of the coupling matrix elements of a model spectrum
such as shown in Fig. 17 inevitably leads to the question: When can a Master equation
be used to describe intramolecular dynamics? | do not believe we have the answer to
this question, although sufficient (but not necessary) conditions for the validity of a
Master equation have been established. In the most complete of the attempts to derive
a Master equation for a strongly coupled finite system of oscillators, Kay [44] starts with
the usual decomposition of the Hamiltonian, H = Hg + V . However, unlike the usual
decomposition of H , in this case ¥ must not be small. It is necessary that ¥ simultan-
eously couple many degrees of freedom and lead to multiple (vibrational) quantum ex=
changes between the states defined by Ho , namely, Hylm> = E,, 1> . Because
of the complexity of the system, when the states Im> are ordered according to energy
E.n , it is to be expected that the character of | m=1% | and of IM+1D>  will
differ considerably from that of |mM> . This is taken to be a qualitative feature of the
many oscillator system,

Kay argues that three important energy ranges characterize the many oscillator sys-
tem:

(@) AE : Let the coupling be measured by Vopm =<1V ImMD | |t is assumed that
Voym and the vibrational density of states is sensibly constant over the energy interval
AE .

b) T"  : By virtue of nonzero coupling between the levels of H, these levels ac-

quire a mean width T7 ,
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(c) g€ : Let € be the mean spacing between the levels of H‘, , and @ a large
integer. Kay requires that averages over § adjacent levels be sensibly the same as an
average of the same quantity over A& .

The three energy ranges (a), (b), and (c) are related as T'«c 4 E, g€ << T A
Master equation describes an irreversible process. The required element of incoherence,
leading to irreversible flow of energy on the time scale of interest, is introduced by Kay
under the assumption that there is no correlation between coupling matrix elements Voym
and V‘)mv’ for |m> and |m'> less than A E apart:

9-' Z V-nm =0,

P nl<9/a

-l; V_”'”V"ml =0 ; 'Pn#:m/’ [E,,-E,,;[<AE. (69)

m-n,l <3/2
The two expressions f the assumption of incoherence can be combined to read

g-lzvm'n V'n-m‘ = Uzs-mm’ ) lE‘M-E"'"<AE'

n-nel <3 /2 70)

Condition (70) plays the same role in Kay's analysis as does the condition of diagonal
singularity in Van Hove's analysis. There is also a similar condition in the random ma-
trix theory analysis of Gelbart, Rice and Freed [45].

As a final condition Kay postulates that there is strong interconnection of states.
This means that any pair of states (>, im'>  closer in energy than @& is connec-
ted by a chain of couplings through intermediate states 17,%,17,>,... /17>, such

- - !
that V’y"j«'* © formn,=mn,  =m'and 4 )

—z-(Em‘f'E,.,l "je) < E,,',...,E,,“S z ( E,""'E:"l +j€ e
The coupling is characterized as strong interconnection when the intermediate sequences
of coupled levels are short enough and numerous enough that all states within g€ are
populated on a time scale €<< /§ where ['>> §>>§¢ |

With the conditions cited Kay shows that a generalized Master equation describes
the evolution of a function related to the occupation probability of a state representing
a certain property A, but having zero order energy specified only to A& . Transition
probabilities connect any @ consecutive levels in AE. Because V s not small
transitions do occur between states with different energies.

V. Some Inferences from Experiment

| remarked earlier that although there exist several sets of exoerimental data that can
be interpreted as indicating intramolecular vibrational relaxation is slower than chem=
ical reaction, the subsidiary assumptions necessary to the drewing of that inference
greatly weaken it, In closing, | will cite a very few examples of the kind of experi-
mental data that suggest the reality of nonstatistical behavior in some situations.
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(1) Mr. S. Michaelson [44] is completing a study of the dependence of the rate of
fragmentation of C#O5 on initial vibrational and rotational state. Although the 400
level of the C2O; state is 2082 cm=1 higher in energy than the 100 level, the rate of
predissociation is essentially the same. In contrast, although it has only 283 cm=! more
energy, predissociation from the 110 level is much more rapid than from 100, and also
more rapid than from 400. Also, predissociation from the level 010 is more rapid than
from 100, although 010 lies 418 cm=1 lower in energy. Even though the analysis is not
yet complete, these preliminary findings strongly suggest that the fragmentation of C€0;
from prepared rovibronic levels will not be accurately described by a statistical model.

(2)  Cantrall [47] has made a careful analysis of all the available data on multiphoton
dissociation of S F . He concludes, after a variety of trial calculations, that the
triply degenerate mode 34, dominates the al:zption process up to an energy ~ 0.7D.
Although this result supports the notion that up to A 0,7D vibrational redistribution in
SF, isslow on the time scale of absorption, it does not imply that the same is true at
the threshold for fragmentation, or above that threshold. The Cantrall conclusion, which
refers to the mechanism of absorption of energy, is not in conflict with the conclusion by
Lee and coworkers [48] that just prior to fragmentation there is a statistical distribution
of vibrational energy in the molecule, (Fig. 18)

(3)  Studies by Lee and coworkers [49], and MacDonald and coworkers [50], of the sub=
stitution reaction

F +Cy Hy —> CaHyF + H
are consistent with there not being complete randomization of vibrational energy in the
intermediate complex C2H4F’f This inference is also supported by the theoretical cal-
culations of Zvijac and Light [S1], who show that in the evolution from reactants to pro-
ducts a small subset of the total degrees of freedom of the system are tightly coupled to
one another everywhere along the reaction path.

(4)  When a large aromatic molecule is excited to a vibronic level of a singlet excited
state, and intersystem crossing to a lower triplet state occurs, that triplet is "born™ with
excess vibrational energy. Schlag and coworkers [52] have studied, by a generalized
flash photolysis method, the evolution in time of the vibrational distribution generated
by radiationless transition following excitation of the lowest singlet state of naphthalene.
It is observed that the vibrationa! distribution created by the radiationless process does
not change on the time scale between collisions, which is a Tas, If the radiationless
process is intersystem crossing to the lowest triplet that state would have about 11,000
cm=! excess vibrational energy. The estimated rate of intramolecular vibrational relax-
ation is rather like that suggested by Tric for quinoxaline with 10,000 cm=! excess ener-

gy. (Fig. 19)

(5) Grant and Bunker [53] have simulated the unimolecular decomposition of Cy Mg via
€C and CH bond scission on a "realistic” energy surface. The results, for several
energies and patterns of energization, reveal deviations from the predictions based on
statistical behavior of the energized molecule, The interpretation of these results is
based on the existence of differences in coupling strength between the various vibrational
modes.
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Fig. 18a Reaction probability

P(P) of SF4 versus laser fly=
ence @ . The symbols and la-
els refer to different experi-
mental groups. The curves re-
fer to calculations for different
numbers of oscillators active in
the absorption of energy.

From [47].

Fig. 18b Mean number of
photons absorbed per pulse,
<nY , versus laser fluence for
SFg. From [47].

Fig. 18c Reaction probability
versus mean number of photons
absorbed for SFg¢. From [47].
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Fig. 19  The time evolution of the T*e T| absorption spectrum in naphthalene h‘8'
subsequent to ISC at low pressure (o) (p = 68 mtorr N), The molecules were
optically excited to the 8(b]g) vibronic band of Sy, For comparison, a "high
pressure” T —T spectrum (o) (p = 68 mtorr N + 2.5 torr Ar) is given at 14 s,
The time scale is related to the onset of the exciting laser pulse. From {;251
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VI. Conclusions

| suggest that what we have learned from the various theoretical approaches described
is to not underestimate the complexity and subtlety of the dynamics of strongly coupled
oscillator systems, Although neither available experimental data nor the several kinds
of theoretical treatments provide unequivocal evidence for slow intramolecular relaxa-
tion in real molecular systems, the hint that such can sometimes occur is strong. The
principle lesson to be drawn is that there is unlikely to be a universally valid descrip-
tion of intramolecular relaxation and/or fragmentation of isolated molecules. Statistical
descriptions of the dynamics will certainly be valid in some energy range and for some
time domain, but nonstatistical behavior is to be expected in other cases, for example
when the time scale of the process of interest includes competitive relaxation processes.
There will be idiosyncratic differences between species, dependent on the nature of the
energy dependence of coupling matrix elements, etc. All of these factors must be in-
cluded in a fully satisfactory theory of chemical reaction rates.

it
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