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INTER NA L ENERGY TRANSFER IN ISOLATED MOLECULES :
• ERG ODIC AND NONERG OD IC BEHAVIOR

Stuart A. R ice
The Department of Chemistry and The James Franck institute

The University of Chicago
Chicago, Illinois 60637

I . Introduction

I have been asked to present a broad overview of current understanding of the nature
of intramolecular energy transfer in isolated molecules . In the short time avai lable
for this talk I can do no more than describe very briefly some attempts to answer the
major questions associated with this subject . In my opinion these ore:

1. Under what conditions, if any, is intramolecular energy exchange slow/rapid
relat ive to other processes, for example photon emission, or isomerization, or frag-
mentat ion ?
2. How does the intramolecular energy exchange depend on the energy of the mole-
cu le and the nature of the initial excitation?
3. If there are situations for which intramolecular energy exchange is slow relative
to chemical reaction, why does this behavior occur ? Does it derive from special char-
acter istics of the molecular force fields ? Are there dynamical or symmetry restrictions
on the spectrum of states in these cases ? Are these specia l situations commonly or
rare ly found?
4. Given the answers to (3), can we dev ise excitation methods and reaction condi-
tions that permit enhancement of the selectivity of the chemistry that follows ?

These questions are pertinent to all types of reaction dynamics . They are raised
at a conference devoted to laser chemistry because the laser provides a tool with which
one con construct exper iments that attempt to answer them . Prior to the development
of laser sources suitable for the preparation of isclated molecules in well defined non—
stat ionary states these questions could not be addressed. The kinds of phenomena asso-
c iated with the decay of incoherent superpositions of molecular states, such as is char-
acter istic of therma l energization of a molecule, are natural ly and elegantly described
by statist ical theories. The RRKM theory [11, w hich successfully accounts for the rates
of therma l unimolecular reactions and the vast majority of chemically act ivated uni—
molecular reactions, is a brilliant example of appropriate ana lysis. But the very suc-
cess of stat istica l theories has led to a too ready acceptance of their applicability to
sit uations different from the ones they were designed to describe . For examp le, one
of the most widely held 0F the current v iews concerning intramo lecular dynamics is
that vibrationa l relaxation is a lways rapid relative to all other processes except for
energ ies near the ground state . Furthermore, it is often assumed that the rapid random-
ization of vibrationa l energy fo llows automatically from the existence of ariharmonicity .

£p.~roved f c ”  r .
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The consensus concerning this assumption can be traced to the notion that it is imp lied
by the success of RRKM theory in the description of therma l unimolecular reactions .
But the data For therma l unimolecular reactions rarely require such on interpretation
because of the incoherent nature of the initia l thermal excitation . Chemica l activa-
t ion of unimolecular reactions in bulk experiments suffers from similar , but not as severe

• difficulties of interpretation vis a vis the initial state of excitation. The point is not
that intramolecular vibrationa l energy exchange does not occur in these cases, but ra-
ther that determining whether ft does or does not occur cannot be uniquely inferred.
Evidence that randomization of vibrationa l energy may not always be faster than other
processes is inferred from several different kinds of experiments on isolated molecules
[21. However, all of the inferences are indirect and they are based on the use of extra
assumptions in the ana lysis of the observations, hence they con be erroneous [31. Simi l-
arly, a lthough many theoretical models show that vibrationa l relaxation can in certain
c ircumstances be very slow compared to other processes [41, these models employ simp U—
fications that reduce their applicability to real molecu lar systems . In short , there are
now a number of hints, from both experimenta l and theoretica l studies, that suggest the
ex istence of some cases for which vibrational energy redistribution is slower than other
processes . The conditions for which this slow relaxation occurs , its generality, and its
relation to molecular structure are not known . Even the existence of the phenomenon
in rea l molecules is not unequivocally established because of inadequacies in experimen-
tal design, approximations in the interpretation of observations, and simpl ffcatfons em-
ployed in the theoretica l models. Despite these caveats, it is possible to assert with
assurance that there is not a universal form of statistical behavior characteristic of all
energ ized molecules . The picture which is emerging requires recognition of the exis-
tence of different dynamica l domains, each of which is important in a different energy
range and on a different time scale . As I shall show, there is little doubt that up to
about one half or two thirds of a typica l bond dissociation energy a molecule is not well
described by a stat istica l model, whereas for larger energies the statistica l model is ac-
curate for many purposes . In addition, even when the energy of the molecule exceeds,
say, a bond dissociation energy, if there are processes sufficiently fast to compete with
energy randomization, dev iations from statistica l behavior are to be expected. Although
t his statement is prima facia obvious, the acceptance of the notion that there might
ex ist processes that can compete with energy randomization, or t hat energy randomiza-
tion can be as slow as hundreds of vibrationa l per iods, has only recentl y been accepted
as a necessary port of the descript ion of reaction dynamics.

The brief discussion of the following sections is intended to draw attention to several
of the subtleties in the behavior of systems of coupled nonlinear oscillators . Wherever
possible, both classical and quantum mechanica l models ore considered . After survey-
ing the various theoretka l predictions it will be argued that some of the dynamica l
propert ies discovered in simple models are, in fact , robust, and are important for under-
standing intramolecular vibrational relaxation and reaction dynamics in real systems .
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II. A Few Properties of Nonlinear Dynamica l Systems

Any discussion of intramolecular dynamics 0f highly excited mo lecules must confront the
problem of describing large amplitude motions of the atoms , it is a cliche, though true,
that most of our intuitive sense for how systems of oscillators should behave is derived
from examp les for which a linear analysis or a perturbation to a linear ana lysis is poss —

ible, e.g. harmonic mot ion or weakly coupled harmonic motion. While this way of
thinking suffices for the descript ion of small amplitude motions of the atoms of a mole—

• cu le, ft is inapplicable to the description of large amp litude motions . The point is that
the nonlinearities of the restoring force field ore so important that the dynamics con be
qualitatively different from that predicted by extrapolation from the harmonic limit .
For example, it is not possible to predict the existence of solitary waves on a chain of
nonlinear oscillators with a perturbation theory analysis starting from the harmonic os-
cillator limit [51. The existence of qualitatively new phenomena in the large amplitude
limit suggests we rethink our analyses of intramolecular vibrational dynamics . It is not
yet established that these special large amp litude phenomena have important chemica l
consequences, but the hint that they are important is strong.

The remarkable developments of the past two decades in the analysis of nonlinear
dynamical systems are not widely known to chemists . For that reason I will presume on
your pat ience and sketch some of the ideas and results that appear to bear on the rate of
intramolecular vibrational relaxation, and its coupling to other processes .

I shall discuss the classical mechanica l case first, and t hen the quantum mechanica l
case .

A. Some P~operties of Trajectories (CM) [61
Given a dynamica l system with N degrees of freedom described by t he Hamiltonian
H(,b4) and the equations of motion

‘ fri (1)
and g iven t he initial values of the coordinates and momenta, 

~ 
, ,~b.’ the values of

at any ot her time ~

(2)
are unique under very weak conditions . Eqs. (2) can in principle, be solved for

(3)

which gives 2N functions of the phase space variables and the time which are con—
stant a long any trajectory of the system . Elimination of ~ between the equations (3)
leaves 2N— 1 functions of only the phase space variables; these functions also have
the property of being constant along any trajectory . This argument establishes the exis-
tence of 2N —I functions 

~
Z j  (i,,) which are integrals of the motion; attributing a

set of numerica l values to the C,,, is equivalent to completely determining t he system
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trajectory in phase space.

Saying that the set of 2N—l va lues of determine the trajectory is one thing;
finding the values is quite another I Of course, every constant of the mot ion must sot—
isfy the Poisson—Bracket relation

£ H~ Cj ~ 0,
(4)

but the only obvious solution is C, = Il (q.,ft) . Although it is in princip le poss-
ible to stepwise find 2 N—2 other functions which with C1 form a complete set of
functionally independent integrals of the motion, in practice this is impossible to exe-
cute even for very simple mechanical systems .

Note that C~ fl1 requires that the trajectory of a conservative system lie on
the energy surface = 6. in general, each of the equations

= J ’ ~ 
1)~~~~) i’l l

for given k~, defines a 2N—1 dimensional hypersurface in the 2N dimensional phase

space. The Trajectory of the system must lie entirely on each of these surfaces, hence

is determined entirely by their h~perdimensional intersection. Put in slightly different
words, fixing the value of any ~L j  restricts the region of phase space in which the tra-
jectory can lie. Specification of all 2N— 1 

~
‘j  reduces the allowable dimension—

ability from 2N to 1, which is the trajectory of the system. However, the integra ls of
the motion are of two types. Some are isolating, in the sense that the domain of
phase space to which they restrict the trajectory is compact and readily partitioned
from the full phase space—— the language used here is loose but the geometric visua l-
ization intended should be clear . The integral C,~’H(ç, fr) is of this type. Others,
apparently the vast majority, are nonisolating . The regions of phase space to which
they restr ict the trajectory pass tortuously through the full domain accessible under the
isolat ing integrals of motion. The distinction between these two classes of integra ls of
the motion is evident even for the simple system of two independent harmonic osci lla-
tors whose Hamiltonian is, of course (in ~ i ) ,

/1= ~ 
(fr &~ w,&f~~) ÷ ~~ 

.
~~
. 

2.
(6)

which leads to the equations of motion

Co3 4.  f + = ,4 ?
~ 4.~~~s’, Z .

CøS C . 1L — :, ,, = ~ q J (7)
Elimination of ~ , for each value of ~~~ , gives

— —

(8)

~



r Finally, elimination of t between the equations of motion for different .4. = 1,2 leads

too third integral of the motion, C3 . The nature of C3 depends on the ratio &3,/#Ji,

in particular on whether this ratio is rational or irrational. In the case that ~~~~~~~ is

rat ional the projection of the system tralectory on the q41q plane is a closed curve, in

fact a Lissajous figure. In this case D~~,p)is a multivalued function with a finite

number of branches . On the other hand, ic £.~/iJ, is irrationa l, the projection of the
F system trajecto ry on the q..,3~ plane does not generate a closed curve because there

can be no rational integer set whkh leads to matching of the periods of the two oscilla-

tors . As a resu lt, the motion of the system is not periodic, and the projected trajectory

in the f-~9~ 
plane posses arbitrarily c lose to each point lying within the rectang le de-

fined by the maximum amplitudes of the two oscillators. The trajectory thereby densely

fi lls the accessible ~.,95, space . A lthough the integral of the motion on C3 exists , it

is a pathologica l function, name ly a multiva lued function with an infinite number of

branches. Note that when t.’*/4~, is rational, the projected trajectory is a Lissajous fig-

ure that restr icts the motion of the representative point to a small portion of the ~~~
plane. In this case C1 is on isolating integral of the motion . But when ~~~~~~~~ is irra-

tiona l the existence of C2 does not prevent the projected trajectory from filling the en-

ergetica lly access ible region of the f-, ~~ 
plane. In this latter case C~5 a nonisolot—

ing integra l of the motion.

A different view of dynamics is given by the Hamilton-’Jacobi form of mechanics .

This representation of the dynamics is based on finding a canonical transformation such

that

~~~~~~~~~~~~ 
=~~ cP),

The new momenta Pg are integra ls of the motion, while the new coordinates are

linear functions of time. Note that only N constants of the motion are determined by

the canonical transformation, so the system trajectory is restr icted to an N — 1 dimen-

sional subspace of the full phase space, but not to a smaller space . For a bounded sys-

tem linear combinations of the ~, define actions ~~ and their conjugate angle va r—

fables 4~J! the ~ and 
~~ 

define the action—ang le representat ion of mechanics. It

is only for the case of a system of independent hermanic oscillators that the Ci)~ are inde-

pendent of P5 and constant . In more general cases we can, in principle, find

but the corresponding frequencies will not be independent of ~~~~~

Consider the situation in which the system Hamittoniari can be separated frito

H(~~& ~~H~~~~+A e 41,(
~~#) .

(1 0)

H~(’1) describes an integroble system, the trajectories of which densely cover regions

of phase space . As in the example of two harmonic oscillators with ~~~ irrationa l ,

we expect that when regions of phase space ore densely covered the frequencies

W4~~ (~b!.I~~~
) are not related by a set of rationa l integers . The term A ~1,c i # )

is a “small” perturbation. The traditional view of the influence of 
anharmonicity on the

motion of coupled oscillators suggests that AW , destroys the topological structure of

the trajectories corresponding to ,~1~C1) rio matter how small A H, , if only enough

I ,.
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time elapses . The idea is that A/I, causes t he trajectory to wander out of densely
filled reg ions corresponding to /i~(J’~)= constant, thereby filling oil 0f accessible phase
space .

A remarkable theorem, due to Kolmogoroff, Arnold and Moser (KAM) [71, implies
that the intuitive descript ion of the trajectory just given is incorrect . The theorem says
that provided A is “sufficiently small” and //~ (.7 ~ is analytic in ~~ and
in a given domain, the phase space can be separated into two regions of nonvanishing
volume. One of these is small , and it shrinks to zero volume as A-. 0 . The larger
of t he two reg ions has the structure characteristic of fi0(,7’). Thus, the KAM theorem
asserts that for the majo rity of initial conditions the trajectories of the system have the
same character as in the uncoupled osci llator case (Lissajous figures restr icted to N—i
dimensions). There is a small region (of instability) in which the trajectories are wild ly
erratic and can depart drastically from t he nearby confined traject~r~es.

To apply the KAM theorem we need to know what is “sma ll enough” wit h respect to
A or, equivalently, for fixed A how the topological behavior of the trajectory

changes as the energy of the system increases . At present all of our knowledge concern-
ing this crucial point is derived from numerica l solutions of the equations of motion of
model systems [81. Some hypotheses, based on ana lytica l considerations, have been
advanced to explain the results of the numerical studies [9], [101, [11], but these have
followed and cannot yet rep lace the trajectory calculations.

In a sense, it can be said that numerical solution of the equations of motion of some
system is intended to revea l the consequences of the breakdown of integrability and the
lack of isolating integrals of the motion other than the energy. Poincar~ [121 introduced
a representation of the results of trajectory analysis which permits visualization of these
consequences. This representation, which is most usefu l for two dimensiona l systems,
portrays the motion on a so—called (Poincar~) surface of sect ion. Consider, for simpli-
city, a Hamiltonian of the form (m 1)

/1= ~ Cfr,~÷ft~.”) ~~~~~~~~~
(11)

For fixed energy, H = E , (11) has only three independent variables . One surface
of section is defined by t he intersection of /I~ E with ~ C ; in that plane the
coordinates are fr~ 

and 
~ .2. . To each point in the surface of section there corres-

ponds a unique va lue of and 1’2’ 
and of £ and 0 . Then ~h, is deter-

mined except for sign since, from (11),

= ± Ez E —,b2’ - , o)

(12)

A given trajectory of a bound system will repeatedly cross the surface of section, since
that trajectory must repeatedly pass through ~~~ , half the passages with A >O and
half with 

~~~~ 0 . We now recognize two possibilities, if there exist isolating inte-
gra ls of the motion other than the energy, such as C1 with w1./ ~ i, rationa l for the
Hamiltonian (6), the system trajectory lies on a hypersurface of smaller dimensioriality

• ‘I

-.- — -.- —,~~~~~~-- , •~~
“ 

~~~~~~~~~~~~~~~~~
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than the energy surface. This hypersurface intersects the surface of section in a smooth

c losed curve —— closed because the motion is periodic. In contrast , if there is not any

isolating integral of the motion other than the energy, the intersections of the trajectory

with the surface of section will cover that surface. The pattern of intersections will

appear random, but is in fact not, since the trajectory satisfies the deterministic equa-

tion of motion. The two cases described are schematically sketched in Fig. 1.

To illustrate both the subtleties of nonlinear mechanics and the consequences of the

KAM theorem consider the Todo Hamiltonian [131

= ± ç~÷/:) ÷~ C~~~~~ ’ ~~~~~~~~~~~~~~~

(13)

• and that generated by expanding (13) to third order in $?,.~ and ~.2.1known as the

Henon—Heiles Hamiltonian [14],

H(~, fr ) ~ ~~ 
+ 

~ 
C3, 4. # — 

~~

• (14)

The trajectories corresponding to (13) were studied by Ford [151. The 
results, presented

as surfaces of section, are shown in Fig. 2. Given the exponentia l nonlinearity of b/,

the most plausible guess as to the motion under H is that the only isolating integral is

the energy. That expectation is wrong ! The surfaces of section for all energies c learly

show evidence of periodic behavior, and it was later shown by Henon [161 that other

isolat ing integrals of the motion do exist , and that (13) corresponds to a comp letely in—

tegrable case, despite the nonlinearity . Now (14) is “much less nonlinear” than (13)

and, given t hat (13) represents an integrable case and (14) is derived from (13), we

could reasonably expect (13) also to describe an integrable system . As shown in Fig. 3,

this is not the case [81. Since (13) describes bounded motion only for E( i/ ~ we con-

fine attent ion to this energy region. For low energy(~~~ I/,~.)t he motion is obviously

periodic, for intermediate energy, ~ ‘ Ci/g) it is most ly per iodic with some nonperiodic

reg ions, and when E approaches i/~ t he motion is apparently nonper iodic. Therefore

for, say, £$ / t  there is an isolating integral other than the energy, but not for all

E E ~ , j ust the behovkr described by the KAM theorem .

B. A Few Details: The Effect of Resonances (CM)

For fllustrative purposes consider again a system w t h  two degrees of freedom so that, in

angle-action variables,

~~~~~~~~~~~~ ~~~~~~~~~~~~~~ (15)

When V o , /1, generates a mot ion for which .
~~~~~, ~~ 

constants and

~‘S~ ~~~~~~~~~~~~ “~~~~ ~~~~~~ . The motion of the unperturbed system is

conveniently represented on a two dimensional torus where ~ , Ø~ 
are the ang le

‘ .•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fig. la Schematic representation of
a Poincare surface of section when the
trajectory is quosiperiodic .

p2

~ Fig lb Schematic representa’ion of

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ a Poincare surface of section when the
I 

, - tra1ectory is not quasiperiodic

~~~~~~~ ~~~~~ ~~~~~~~~~~~
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Fig. 2a Poincare surface of section for the Toda lattice . E = 1. From [81.
Fig. 2b Poincore surface of section for the Toda lattice . E = 256 . From [81.
Figs. 2c , 2d The separation distances versus time in momentum and position space for

two ini tiall y close trajectories of the Toda model. From [81 .
Fig. 2e The separation distances versus time for two initially c lose trajectories of the

Henon—Heiles model. E = 1/8. The lower curves are for trajectory pairs in the
quasi periodic reg ion , the upper curves for trajectory pairs in the ergodic region .
See Fig. 3b. From [81.
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Fig. 3 Poincare surfaces of section for the
Henon—Heiles model. From [81.
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coordinates and ~~ ~~ t he radii. If V is small enough and the Jacobians

~~ CC”, 
~

(16)
KAM show that the most of the unperturbed tori bearing conditionally periodic motion
wit h incommensurate frequencies continue to exist , being only slightly perturbed by V .
On the other hand, tori bearing periodic motion or very nearly per iodic motion, wit h
commensurate frequencies, or wit h incommensurate frequencies whose ratio is well approx-
imated by p’/s , l~ S small integers, are gross ly deformed by V and no longer remain
c lose to unperturbed tori . Furthermore,a lt houg h the unperturbed tori with commensur-
ate frequencies which are destroyed by V~~ 0 are everywhere dense, KAM show that
the majority (in the sense of measure theory) of initial conditions lead to motion on pre-
served tor i bearing conditionally periodic motion when V is sufficiently small . Thus,
KAM theory shows that for small V most Initial conditions lead to nonergodic motion .

What is the character of the motion not on preserved tori? Imagine H expanded in
a Fourier ser ies:

H ( ~~1 7)  -#-
~~~~,,,, c~~~~ )co s(,~i~~,÷n~~~)

(17)
In KAM theory the angle dependent terms are eliminated by successive canonica l trans-
formations, each of which is close to the identity transformation . The final Hamiltonian
isa function of transformed variables only and is “close ” to the original Hamiltonian . If
this can be accomp lished in some genera l sense, one finds that the unperturbed motion,
for the most part, lies on tori close to unperturbed tori .

To illustrate these ideas suppose the only important coupling term in (17) is
(as displayed) [17] . Then to eliminate the term ~ ~~~~ introduce the
canonical transformation

A (18)
with ~6’, 0 the transformed action-angle variables, and 3m~,’ 

to be determined, If
= ~ , then 

~~ ~~ 7 , 6. = . App lying F to N

/,~

~~~~~~~J ) j ~ ~~~~~~~ 
,~ , 4) (19a)

~~~~~~~~~~~~~ 
=

~~~~~~~
- .
-‘ (19b)

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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To lowest order, the angle dependent rerm is eliminated if

8 ~ J )  — ‘~,,, ~~~~~~~~~~~~

I” t — 

~~~~~~~~~~~~~~~~~~ 
‘

(20)
w hich requires that VY7 41~ ÷ fl~

1
11~~~ 0 or be very small compared to /,,,,,. If the de-

nominator is small compared to ~~~~~~ 
~~~~ is large, and the transformation is not

c lose to the identity transformation, fience the transformed motion is not close to the
unpertur bed motion. Consequently, if there exists a band of frequencies &‘~ for w hich

~~~‘ i ,C,,,,, (~;,J;.) I ,
(21)

then the angle dependent term grossly distorts an associated zone of unperturbed tori
bearing the frequencies satisfying the inequality . In genera l, if one Fourier compt~;ient
satisfies the inequality, there will be additional terms Ces (

~n’~~,#fl ’~~.) ink with

rat ios Y,s ’/fl ’ sufficiently close to rn/ n that the inequality is a lso satisfied for them——
hence the zone of unperturbed tori distorted by t he disp layed term will simultaneously
be affected by many ot her ang le dependent terms .

Note that the inequality cited is a kind of resonance relationship which, if satisf ied,
asserts that Cos (w~~,+ n~~ ) resonantl y coup les the oscillators when their frequen-
cies lie in the designated bands. When V is small , hence all f,,,,, small , such
resonance zones are narrow and the KAM theorem shows that the totality of all resonant
zones is sma ll relative to the measure of the allowed phase space . We expect that as

V and 
~~~~~~ 

increase , or as E increases, t he measure of the resonant zones will also
increase unti l most of phase space is filled by them. KAM theory thereby predicts an

amplitude instability for conservative nonlinear oscillator systems permitting a transition
between predominant ly quasi—per iodic and ergodic motion .

In genera l, it is found that:
(I) A Hamiltonian of the form

# / =  /10 Cz~~~
) ~~~~~~~~~~~~~~~~~~~~ (“4 ÷n~~~)

has an “extra ” wel l defined constant of the motion:

C

(ii) An W—~ resonance for 7
~
)
~~~ n introduces a chain of in islands in the J plane _

and a chain of n islands in the ,7; plane. (Islands are ovals surrounding points repre-
senting stable periodic orbits).
(iii) Isolated resonances distort the unperturbed tor i by introducing , in pairs, new stable
and unstable periodic orbits.
(iv) An ?f l —f l  resonance zone appears abrupt ly, in genera l at some ~~~ 0 , and
is bounded by a separatrix which passes through the unstable periodic solutions.
(v) The ‘si— n resonance zones decrease in size rapidly as i’s and ri increase.

L 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _
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Severa l models of coupled nonlinear oscillator systems have been studied [81, [181,
[191 by numerical integration of the equations of motion. A common feature of the re-
sults is the existence of isolating integrals of t he motion other than the energy at low
energy, and the apparent lack of such isolating integra ls at high energy. Also, the
transition from periodic to apparently stochastic behavior of the trajectory is smooth but

• abrupt as the system energy increases . The magnitude of the energy at the transition is
dependent on the number of oscillators in the system . For small coupled systems, say
two or three oscillators,it is about one half to two thirds of an oscillator dissociation
energy. For a system with many oscillators it is, typically, larger than an oscillator
dissociation energy, but only a very sma ll fraction of the total energy of the system,
and that fraction decreases as the number of oscillators increases.

Severa l interpretations of the dynamics underlying the KAM transition have been

proposed. T here is not time to discuss these, but a categorization of the ideas involved
is worthwhile . One, due to Zaslavski and Chirikov f ill, is based on the properties of
t he nonlinear resonances of the system. It is asserted that as long as there are no non-
linear resonances, the tra jectory of the system is rionergodfc . The KAM transition is,
then, assoc iated with the onset of overlap of nonlinear resonances of the system, which
over lap leads to ergodic behavior of the trajectory . Another, I think due to Ford [81,
associates t he KAM transition with a dramatic increase with energy in the number of
hyperbolic fixed points of the time evolution operator of the system . A third, recently
published by Duff and Brumer [101, associates the KAM transition with a local instabil-
ity, i.e. a region of the energy surface for which characteristic frequencies vanish .
A fourth, proposed by Mo [91, is not easy to characterize . It is know n that in the non—
ergodic region the motion of the system is such that two trajectories , start ing from
nearby points, separate linearly in time, whereas in the ergodic region two suc h tra-
jector ies separate exponentially in time , Mo has used a projection operator scheme to
generate an equation of motion for the separation between two trajectories. This form-
a lism is truncated at an early stage to yield a manageable approximate equation of
motion .

All of the proposed interpretations cited above appear to successfully predict the
KAM transition in many cases, but also to fail for at least one case . Clearly, we are
a long way from fully understanding the detailed nature of the dynamica l state of a
system near to a KAM transition.

C. App lication to Model Molecular !ystems (CM)

To see how the ideas mentioned in Sections lL& and JIB can be applied to molecu-
lar dynamics I shall briefly sketch an ana lysis by Oxtoby and Rice [201. This analysis
is intended to elucidate the relationship between nonlinear reson. dices and statistica l
behavior in intramolecu lar energy exchange . As throughout this section, c lassical
mechanics is used .

The molecular model considered consists of a “critical” nonlinear oscillator driven
by coup ling to “other ” v ibrational modes; rotation—vibration interaction is neglected .
Oxtoby and Rice choose bond—angle coordinates to describe the motions in the system.

When energy transfer due to interaction between non—bonded atoms is neglected

— •‘•- —•- ------- •~-
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the potential energy is separable in bond-angle coordinates, and the kinetic energy is
of the form [211

2.4 ,  
4 

~,/Il (22)

Q,~,
. depends on the bond lengths, ang les and constituent masses . Suppose G~4j is

approx imated by its value for the equilibrium configuration of the molecule, denoted

~4. Then the molecular Hamiltonian has the simp le form

= 

~~ 
f(.~ (p.) + 

~~ 7 ÷ fr~ f r i .

(23)
When Q~ vanishes, as in the coupling of bond bending and bond stretching in a
linear morecule, the next higher term in Q.. is retained and V is only slightly more
comp licated. Note that V is pairwise ad~itive between modes. Also, for a large
molecule many of the coup ling terms are zero since G has matrix elements only be-
tween nearby stretching and bending modes. Furthermore the perturbation averages to
zero over a vibrational per iod. Then the dominant effect of V wilt arise through
near resonant coupling of two modes. Oxtoby and Rice now transform to action-angle
var iables. Then V becomes

V Z J

# C.c.
1,

(24)

A resonance occurs when

or ~~~~~~~~~~~~ (25)

~~~~~~~~~~~~~~~~~ 7~) —
~~~~

,

(26)
For g iven tota l energy in the two interacting modes 4j , the resonance condition

defines a resonance center——denoted ~~ ‘ 7~~—— in phase, ~pace for each ~~~~ , ~~

Close to the resonance center the nonresonant terms in V ’~ can be neglected since
they are sma ll relative to resonant term . Then, near a resonance the tota l Hamiltoniari
simplifies to

a.

N,. ~ &~
‘ (4~~~) 

~~~~
,‘ ~~2) ~~. 

~~~ ~
.‘) 

~~

(27)

I ~
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wit h

~~~~~ 
f~~~’ \

~~ 
~~
‘ (28)

By virtue of conservation of energy in the two interacting oscillators

J -

• (29)
hence

= ÷ 
~~~~~ ~~ )

1

j  ~~~~~~ (30)

Note that (~~/~~
) is to be calculated subject to conservation of energy in the

pair of oscillators .4,j

The reduced form for H~ (30) is the Hamiltor~ian for a simp le pendulum. When
is small enough the restoring force in V,,~ wi ll pull the resonance back

toward the resonance center . The width of the resonance is determined by the range of
over which the “pendulum” is stable. This is

(31)
and the width in energy space is

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

= 4 c~..r) [J v J I /
/I4,.s +( ;TJ )C ’ , h IJ

(32)

When the energy lies within ~~~~~~~~ of the system will be stabilized and
w ill oscillate around the resonance center . Since for every choice of ‘s’i,~~ there is
a resonance, the set of resonance centers is dense in action space. But, the resonance
w idths decrease rapidly as ~~~~~ increase so that resonance overlap considerations can
be restricted to only the first few resonances.

Cxtcby and Rice propose that the molecu lar dynamics can be qualitatively classi-
fied according to the locations and widths of the nonlinear resonances (26). Phase space
is then divided into three parts:
(i) The representative point lies outside all resonances. Then the energies of the

— —
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different vibrational modes change slow ly.
(ii) The representative point moves under the influence of a sing le resonance. In this
case the energies in the resonantly coupled modes can, under certain conditions, change
rapidly, but the motion is periodic, and the resonance is stabilized.
(iii) The representative point is simultaneously influenced by severa l resonances: num—
evical studies indicate that then the trajectories appear to behave stochasticolly, errat i—
cal ty filling the phase space.

The behavior described under (IU) leads to the contention that the stochost city
ar ising from overlap of nonlinear resonances [111 leads to rapid energy exchange be-
tween vibrationa l modes, and is the ultimate j ustification for RRKM theory. Oxtoby
and Rice have studied this contention by examining simp le models. For examp le, sup-
pose that resonance between a pair of osci llators dominates the approach to stochasticity.
Take

H. ~ tU~ ~.) 
~~~~~ ~~~~~~ 

2 (33)

w here D~ is the bond dissociation energy and 4,, defines the length scale for the
potential. The frequency of small amplitude motion is

= (zD /a42 ) ’~
L 

(35)
In action-angle variables H,, is

(36)

~~~~~~
.4 (37)

Since

~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(38)

one can write

~~~~ 
(
~~ = n~ (‘— ~~ / 7~) . (39)

The corresponding momentum s
I,

~h~’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ,

~~~ 
(,_ g L/t2 ) a/is,,,~~. ’

(40)
where 

~ 
V 94 is the angle variable of the canonical transforma-

tion . Confinuing, (32) becomes,
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• ~~~(
O Ji. ~/4 ~

1’—~~’Jc~±1 41’—’-
~ /c4~~

]x LT~3j.cz~1
(41)

and

(42)

The results of numerical calculations for this model reveal the following:
(i) In typica l two oscillator resonance dominated dynamics there will be significant
non—random behavior over the entire energy range up to D,, . Slow energy redistribu-
tion occurs because the system can be “trapped” for many vibrational periods near the
centers of isolated nonlinear resonances . (See Figs. 4 and 5).
(ii) As the total energy increases the relative volume of phase space occupied by over—

• lapping resonances increases, so that energy redistribution becomes the behavioral norm.
(See Figs. 4, 5 and 6).
(iii) If one bond dissociation energy becomes large, the corresponding oscillator becomes
more harmonic, leading to a decrease in the width and (especially) number of nonlinear
resonances.
(iv) As the two frequencies ..(2,~, .CZ~ move apart, the number of nonlinear resonances
decreases, especia lly so at low energy.
(v) Resonance widths are proportiona l to

L1~
,
~’~j 1  f~~~ ~~j,/ J

so that large changes in masses and bond angles are necessary to affect the resonances
and their overlap.
(vi) Harmonic bending modes (especially low frequency modes) are strongly coupled to
the critica l bond stretch only when the critica l mode is very close to dissociation . Then,
a likely pathway for energy transfer to a breaking bond involves, first, transfer from
other bond stretching modes and, second, only when the critica l bond is close to disso-
ciat ion, transfer from the bending modes. (See Fig. 6).

What happens when there are many nonlinear oscillators ? For two interacting oscil-

lators the zeroth order energy surface is one dimensional. In this case there is only one
path from a given point to any other, hence narrow resonances do not overlap. For
n) 2. osc illators, the energy surface is of dimension i~ — ,  , and centers of resonances
are not points, but rather it — 2. dimensiona l surfaces .
(vU) Many oscillator case: Suppose one oscillator is singled out for attention . If a
large amount of energy s put into this oscil lator relaxation will proceed in two stages .
First there will occur transfer of energy to a few modes directly coupled to the critical
oscillator and, second, transfer from these modes to the rest of the molecule . We expect
the second process to be, basically, “stat istical” in character . The some argument
app lies to the reverse process, namely energizing some vibrationa l mode. The analysis
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of the first process leads to consideration of an ensemble of one -dimensional resonance
distributions, each member of the ensemble corresponding to a different distribution of
non—critical energy amongst the f l — I  oscillators directly coupled to the critical oscil-
lator. The general conclusions concerning stochasticity in t he two oscillator case are
found to remain va lid in the many osci llator case . (See Fig. 7). It is found that as the
number of oscillators increases, lb. energy of each one (on average) decreases. Conse-
quent ly, the noncritical oscillators are closer to harmonic and ~oc h one has fewer and
narrower resonances w ith the critica l oscillator. Thus resonance overlap need not in-
crease wit h the number of oscillators direct ly coupled to the critica l osci llator .(See Fig.
7).

A direct confirmation of the Oxtaby— Rice analysis can be obtained by comparison
wit h studies of dissociating trajectories on an energy surface. Identify ing the onset of
stoc hosficity with over lap of nonlinear resonances is in agreement with Bunker ’s mo lecu-
lar dynamics studies of linear triatomic molecules and the existence of a random distri-
bution of lifetimes against fragmentation. (See Fig. 8).

It is important to remark that the rapidity of mode to mode energy transfer depends
on the nature of the modes used to describe the dynamics of the system. In particular,
the small vibrationa l amplitude, normal mode, description so useful in spectroscopic
analysis breaks down for large amp litude motion . In the preceding paragraphs it was
argued that if bond stretching and bond bending coordinates are adopted there can be
localization of an initial excitation up to an appreciable fraction of a bond dissociation
energy. Parr and Kuppermon [22] have examined energy exchange between normal modes
in on anharmonic triatomic molecule . That is, taking the bond stretching to be defined
by a Morse potentia l, the same linear combinations that define small amplitude normal
modes in terms of bond stretches wer e used for large amplitude motion. Note that this
model includes diagonal anharmonicity within bonds, but no bond—bond interaction . For
a symmetric triatomic, i643 w ith half the energy of dissociation in the asymmetric
stretc h, half that energy is exchanged wit h the other (defined) normal modes in less than
one period of vibration. As shown in Fig. 9, there does not appear to be any regularity
in the pattern of mode to mode energy exchange. A simi lar model of C&VO[221 with
half its dissociation energy in the symmetric stretching mode, shows evidence of non-
linear resonance trapping of energy . (See Fig. 10)

D. Large Amplitude Motion - Solitary Waves [231, [24]

There is yet another consequence of the existence of anharmonic potential energy terms
in the Hamiltonian of a coupled oscillator system . Consider the fact that these anhar’-
monic ities correspond to nonlineorities in the equations of motion of the system. Now in
the case of continuum wave motion cor responding non lineorities ore known to y ie ld
loca lizing phenomena such as shock waves . Possibly, then, non lineorities in the oscil-
lator dynamics could, in some circumstances, counter the tendency for energy redistri-
bution into all avoilable bond vibrations. An example of this behavior is provided by
the Todo lattice [131 already mentioned. This model has the advantage over others thot
a lso support so called solitary waves [241 of being discrete , hence somewhat closer to
molecular systems than are continuum models.

Cons ider an infinite one-dimensional lattice of partic les of equal mass which

I
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~0

0 .~ .~~~ I
E / D c

# 3  #8
60~~~~
48 -~~~~ -~~~~~~ ______

60 66 72 78 60 66 72 78
E ( kcals )

Fig. 7 Resonance structure for CC stretch (1000 cm~~) coup led equally to the three
modes of Figs. 4, 5 and 6. E is the tota l energy in a ll four modes, E1 the energy
in the critical CC stretching mode .

Fig. 8 Resonance structures for Bunker ’s model #3 (a random lifetime distribution case)
and #8 (a nonrondom case). Critica l oscillator dissociation energ ies in both cases
are 60 kcol. Bunker investigated the energy range from 62.5 — 75 kcal.

I.
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Fig. 9 Normal mode energies of onharmonic M3 with the initial condition that the
energy in the asymm etric stretch is 0.5 D. — symmetric stretch, -——— bend,
— — — asymmetric stretch, — —— — sun of norma l mode energies. From
[221.
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Fig. 10 Norma l mode energies of anharmonic Cl NO with the initial condition that
the energy in the symmetric stretch is 0.5 D. — asymmetric stretch , ——— bend,
— — — symmetric stretch . From [221.
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w here ~ is the displacement of the bond from its equilibrium (43) length, and ~ and

are parameters. Note that as b—~ ~~ , the potentia l becomes harmonic with force
constant k , and as ~~~~~~~~ 0 the potentia l is equivalent to that between colliding hard
spheres. The classical Hamiltonian for this system is

/-/ = Z~~k ÷  ~~~~~~~~‘5 (4-4)
and the equation of motion is

— (x,~~ - Xh )J ~ — (
~~ —— e

(45)

Substitution of the new coordinates and time,

Q 

_ (x ~_x,,_,)/A~—I ,

T
(46)

yields an equation of motion of the form,

in (i-i- 
~~

) = 2 Q,~ — Q,,÷, — Q),_, .
This equation has nondivergent solutions of two types: (1) solitary waves (single and mul-
tiple) which asymptotically may be written as linear combinations of noninteracting sin-
gle solitary waves of the form [131

= S/n A Z / < S ecA Z Ck~tl ± &s inA k’~~g )
(48)

and (2) c—noidal waves . [131 The c—noida l waves may be represented as an infinite num-
ber of equally spaced solitary waves which mutually interact~; t heir dispersion relation is
different From that of the solitary waves. This is, of course, a loose c lassification for
both types of solutions may occur simultaneous ly and the motion can be difficult to inter-
pret .

For our present purposes, the behavior of both types of solutions in the harmonic and
hard—core limits are particularly il lustrative . In the harmonic limit the amplitude of the
so litary waves approach zero and the c—noida l waves approach the normal modes of the
infinite harmonic lattice . In the hard—core limit the amp litude of the c—no dal waves
approach zero and the solitary waves become sharper and sharper . The analogy between
this behavior and the vibrational processes which cccur in molecules is too appealing to
overlook. Large amplitude vibrations probe ports of the molecule ’s potentia l energy sur-
face which are possib ly better characterized by t he interaction between colliding spheres
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wit h short ranged interactions than by atoms loined by springs . It is important to note
that the properties of these local excitations cannot be treated in perturbation theory
beginning in the harmon ic limit since the differences in the forms of the solitary wave
and c—noida l excitations are equivalent to a phase transition and it is not possible to use
perturbation theory to predict properties across a phase transition .

Some characteristics of solitary waves are worth noting [24] :
(i) Solitary waves propagate for an indefinitely long time , hence a system in which
suc h a wave is excited will be nonergodic in the absence of externa l disturbances .
(ii) Solitary waves are, in most cases , stable under collision with other solitary waves
(when this is so they are called solitons).
(iii) The existence of solitary wave solutions does not , in my opinion, vio late the
KAM theorem since the initial conditions are rather special , hence probab ly exc luded in
the sense of measure theory from those for which the KAM topological analysis holds.
(iv) The soliton solutions for the Ida lattice are compressiona l waves . There ore not
any di lational solitary wave solutions For the Toda lattice . This fact is of importance
wit h respect to how boundary conditions influence the stability of solitary waves. For
example, at a free end a compressiona l solitary wave is reflected as a dilational wave ,
which will not be stable . In some cases, for examp le the continuum analogue of t he
Fermi—Pasta—U lam lattice, [251,both compressioria I and di lotiona I solitary waves exist .
Although it is not certain, it appears likely t hat lattices with harmonic and odd power
anharmonic potential energy terms support only compressiona l solitary waves, while lat-
tices wit h harmonic and even power anharmonic potential energy terms support both corn—
press ional and dilotationol solitary waves .
(v) In all cases for which the existence of solitary waves has been established rigor-
ous ly, the system has an integrable equation of motion . This is a crucia l point since
virtua lly all systems of physica l interest have nonintegrable equations of motion .
Zabusky [26] has discussed nonintegrable systems which support solitary waves , but
little is known of such systems .

What , if any, is the connection between solitary wave phenomena and molecular
dynamics? I do not know the answer to that question, but I can offer the following
tantalizing facts . First, the existence of solitary waves appears to be more genera l than
mi ght be expected from the statements of the last paragraph. Rolfe , Rice and Dancz
[271 have shown, by numerica l integration of the equations of motion, that large amp li-
tude motion on a one dimensional lattice of particles interacting with a Morse potential
or with a Lennard—Jones potential is described by solitary wave motion (see Figs . 11 and
12). Second, Dancz and Rice [281 have show n that the introduction of quantum mech-
anics to describe the atomic motion does not fundamentally a lter the situation——solitary
waves stil l describe the large amp litude motion of the one dimensiona l lattice. Third,
evidence is emerg ing w hich suggests that solitary waves can exist in three dimensiona l
systems [241. Fourth, and on the other side of the coin, it is not known if solitary
waves can exist on a lattice with a distribution of force constants and mosses . The pre-
liminary evidence available suggests that introduction into a one dimensiona l lattice of
a different mass leads to destruction of a solitary wave by scattering , [291, a lthough
presumably a regular sub—lattice of partic les with different moss will not have such an
effect. Finall y, it is not known what conditions will uniquely excite a so litary wave
in a mo lecu lar system, assuming suc h exist .
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S - - - lib Solitary wave on a Morse
Time lattice .

(oscillator Fig. 12 Solitary wave on a Lennard—Curve periods ) Jones la ttice .
1 0
2 0.159
3 0.318

T I  I I I  I I I

N
Morse Oscillator Lattice Morse Oscillator Lattice

~~~~~~~~~~ urv~~~osc p enods) 

~~~ periods )

Lennard — Jones Lattice Lennard - Jones Lattice

• s * u u . . .  - . _ u _ • _ .

Time

\ / Curve (osciilctor periods) 
-
~~~ t :380 (osci llator periods )

3 2 1  2 f :0J203

~~~~0

T T  T T ~~~~~~~ T T ~~~~~~~~~~ T T T T T ~~~~~~~ I 

- - ~~~~~~~----—-~~~~~~~~~~~~~~ --~~~~~



V . 

-.- -- - - -

~~~~~~~~

--

~~~~

.--

~~~~

-

~~~~~~~~~~ 

— - ---

25

Ill. Energy Transfer in Quantized Systems

In the last section it was shown that , for a system described by c lassica l mechanics, in
the absence of low order resonances among a set of coup led oscillators most trajectories
are stable and quasiperiodic for small enough energy. For a system of two , three,
osci llators the KAM transition between quasiperiodic and apparently stochastic behavior
is of the order of one half to two thirds a bond dissociation energy. The relevance of
this observation to the behavior of molecules depends on whether or not there are resem-
blances between the dynamics of c lassical and quantum mechanica l systems.

The determination of the eigenstates of a coup led system of nonlinear oscillators
has been attacked from severa l points of view . Major contributions have been made by
Perciva l [301, Berry [311, Miller [32] and Marcus [33] who have advanced the semiclass-
ica l theory of bound states. These investigators have adopted the Einstein [341 genera I—
ization of the Bohr—Sommerfeld—Wilson quantization condition , namely

= f~ fr~~4~~ 
-

(49)
w here the integral over the invariant differentia l sum ~~ ~~~~~~ is along c losed curves
in coordinate space that need not be classica l trajectories . The usua l Bohr—Sommerfeld—
Wilson condition is defined for each separable coordinate ~~~~~~ , and the corresponding
action integral is taken around one cycle of the motion of the coordinate . This
condition depends on the choice of coordinates whereas Einstein ’s condition, which de-
fines an integration over all N action functions , does not depend on the choice of coor-
dinates. It is readily seen that the Einstein condition can be app lied to motion in the
region w here the trajectory is quasiperiodic , but not above the KAM transition, since in
that domain cannot be expressed as a function of the 

~~~ 
. This has led Perci-

val [30] to classify t he spectrum of a system into the categories regular and irregular, the
former perta ining to the domain below the KAM transition where the trajectory is quasi—
periodic , and the latter to the domain of apparent stochastic behavior of the trajectory .

Nordholm and Rice [251 have taken a diFferent approach . In principle the eigen—
values of an arbitrarily complicated Hamiltonian can be computed by use of expansion
in a complete set of basis functions and evaluation of matrix elements, though an actual
calculation may be very tedious. Noting this, t he important question is how an initially
localized excitation spreads over the energy surface of the system . Nordholm and Rice
propose to c lassify a state of the system as ergodic if an excitation initiall y not uniformly
distributed over the energy surface becomes uniform ly distributed as t—~ cc. This sug-
gestion is deliberately constructed to be in direct correspondence with the usual defin-
ition of ergodicity on a classica l energy surface . It has the advantage of being easil y
tested for any given set of basis states . It has the disadvantage that the conclusion of
a test for this kind of ergodicity is, in genera l, basis dependent . Of course , a basis
dependence can be connected to reality if there ex ists an excitation mechanism that
prepares the system in one or more of the basis states .

Nordholm and Rice [351 have studied severa l model systems of coup led nonlinear
osci llators . The Hamiltonians examined include examp les with algebraic nonlinearli-les
and with exponential (Morse function) norilinearities, and examp les with degenerate

I—
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and with nondegenerate oscillators. The basis states of the representation are,for each
Hamiltonian, chosen to be the states of the corresponding decoup led set of harmonic
osci llators . The calculations lead to the following conclusions:
(1) There is nonergodic behavior , in genera l, below a critica l energy (possibly a crit-
ica l energy region). The nonergdicity is more marked and persistent for nondegenerate
systems than for equivalent degenerate systems .
(ii) For degenerate systems there are occasional global states interspersed in the loca l
states. (A g lobal state is one with amp litude uniformly distributed over the energy sur-
face).
(iii) For low energy, typically less than half the dissociation energy , the osymptotic
distribution of amplitude over the equienergetic basis states is not very sensitive to the
coup ling .
(iv) Initia l states with comparable excitation in all oscillators tend to evolve to g lobal
states, whereas extrema l initial states with excitation mostly localized in one osci llator
tend to evolve to loca l states .
(v) For high energy, typically above half the dissociation energy, the asymptotic dis-
tribution of amplitude over the basis states is very sensitive to the coup ling. In this case
the final states achieved tend to have mixed character (e .g. a wide but uneven spread
of over laps).
(vi) From a very crude analysis of the time evolution of the model systems it is extima —
ted t hat in these cases it takes of the order of one to ten vibrational periods for an initia-
lly localized nonstationary state to achieve its asymptotic Form.

Clearly, the quantum dynamics of coup led oscillator systems is analagous to the
class ical dynomics of these systems . In particular , a KAM transition exists. Note a lso
how conclusion (iv) is very like the prediction that if energy is initially localized in
one osci llator it requires a higher total energy to reach the reg ion of over lap of non-
linear resonances than if the same initial energy is spread over severa l oscillators (see
Figs. 4 — 7 ) .

A connection between conclusions (iii) and (v) of Nordholm and Rice and Percival’ s
notion of regular and irregular spectra has been made in a calculation by Pomphrey [36] .
He studied the sensitivity of the porameterized Henon—Heiles Hamilton an (M _— i )

41=
(50)

to the value of c~ . In this case the dissociation energy s i/ ~~~ Pomphrey computed
the e genvalues of (50) for the range 0.090~~~~* 0.086 and examined the sensitiv ity of
t he spectrum as a function of the energy. This sensitiv ity is measured by the second
difference

— 

~&;: c”Q— ~~~~~~~~~~~ I.
(51)

Perturbation theory yields the result

‘~ (52)

The calculations show that for E ~ 16 = 0.74 D all second differences are very small.
This is the regular region of the spectrum, corresponding to localized asymptotic 
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distribution over the basis states, and to quasiper idic motion in the c lassical limit . For
£ > 16 eigenvalues are found with corresponding 4~ 

orders of magnitude larger ,
i.e. the spectrum is very sensitive to small changes in ~~~. . This is the irregular region
of the spectrum, corresponding to g lobal asymptotic distribution over the basis states ,
and to apparent ly stochastic motion in the classical limit (see Fig. 13). It is also illum-
inating to compare the coverage of the surface of section by the apparently stochastic
tra jectory with the region of Hilbert space wherein the spectrum is very sensitive to the
coupling. For the classica l Henon—Heiles Hamiltonian the tota l area covered by unstable
trajectories up to energy E is

I CE)

• o~~ (E) 0, E~~ O.~ 8~~) 4c~ ) 3  12f(~ )_ 2.12(,

w here “tota l area” means the relative area of the surface of section . T he quantity
is to be compared with

E

~ Z~ zc~~ <
,
~~~>JA (54)

corresponding to the part of Hilbert space where the spectrum is very sensitive to a
• change in ~~ . Here ii

~~ 
tE) = / if £~ is very sensitive to t he value of ~~~~,

=0 otherwise . Also,

~ ~~~~~~~~~~~ (55)
As shown in Fig. 14 the quantum mechanical results follow , qualitatively, the shape of
t he c lassical curve. ( r(E) and SCE) have different dimensionality, hence cannot
agree quantitatively..)

IV. Ergodicity and Reaction Rate —— Model Considerations

Except for the compart~on of the ~xtoby—Rke pred cHons w l-h t he dtstr button of
fragmentation lifetimes determined in Bunker ’s traj ectory ca lculations. I have thus Far
confined the discussion to the behavior of the bound states of a system of coupled non-
linear oscillators . 1 now wish to consider the influence, or lack 0f influence, of the
nature of intramolecular energy exchange on the rate of a fragmentation reaction. At
first sight it appears that, because the KAM transition typically occurs For E,~ D , the
rate of fragmentation should be accurately accounted for by a statist ica l model. A
deeper examination reveals that the matter is not so simp le . First , the very nature of
the irregular spectrum suggests that a decomposition rate might not be a monotone func-
tion of the energy. Second, resonances in the localized states of the bond that breaks
cou ld conceivably be derived from nonergodic states of the molecule interspersed
sparsely in the ergodic region of states . Third , the matrix elements coup ling different
vibrations of the molecule might vary over such a large range that only a subset of all
vibrations is effectively coupled on the time scale of the reaction.

To determine if any of these possibilities is important Nordholm and Rice [37] devel-
oped an exact forma l theory of the fragmentation reaction , and made calculations for an
approx imate model. Consider an initia l bound state I ’4)>~ , wit h time development 
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~~ = - 14 I 7P>~ 

A 
(56)

Let )C be the comp lete Hilbert space corresponding to /1 . ~~e space X contains
both bound and continuum states. Define a projection operator P3 such that

Z (57)
where B~ is the domain of Hilbert space corresponding to bound levels. Then

• ~~~~~~~~~~~ j~~~J rp>~ =1I J ,?P>
*

II
• (58)
• is the probabilit y of finding the molec~le in a bo~nd level. We seek the equation of

• 

. 

motion of I ~Ji )P.~ • Define P~. E I— P1 . Then

~~~~~~~~~~~~~~~~~~~~

~~ p I 7v �( =-~~H~,P~J~~~- ~
• (59)

A A A , j  .4 #~~ -

A A . iA  4 4 . 4 4
NFF~~~~~~~~~

1
~~~~P )  1If l $~~~J ’JI~I I PJ ~

4 (60)
Suppose the molecule starts in the bound region, so that P~ I~L’>0 0 . Then

= _ J~s e
_ 

~~~~~~~~~~~~~~~~~ ‘~‘~>~-~
(61)

and

A

i~~ I / ~ >~ ~ (62)

Eq. (62) is emily interpreted: ‘~‘pg ~a ~~~~~ measures the flow of amp litude from
3 to F at ~—s . Then exfr (—4H~~.r/* 

) propagates this amplitude within F
forward in time from p~.-S —

~~~ ~ , and 4’ ~~~ 
measures how much of it is returned

to 3 at f . The integration sums these e~fects from é 0 . The term

• 
_
~~f , e f~1’*,~7,8 ,~ 

- •  ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .__ 1 i
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leads to a decrease in the norm of g
~~ I Tp ),t , hence to dissipot ion, because the flow

out of 3~ will exceed the flow in given thaj 1amp litude is propagated away from the
boundary of 3 by the actioR of ~~~ (—4 W~ç,,.S/* ) , diminishing the net flow back

into 3 . Note that when #i3~r is set equal to zero the formalism describes exact ly
the relaxation in the manifold of bound levels.

The advantage offer~d by the Nordhglm—Rice analysis is that at the formal level the
equations of motion of P~ / çS’>~ and Pp !7fr>.j have been decoup led. The price
paid for this decoupling is that the equation of motion of ,~ / ~~~ depends on the
“memory” of the motion. Nevertheless there s a net gain in that the structure of the
formalism suggests approximations to the N—body dynamics different from those suggested
by ot her formalisms, especially when the analogy with the statistical mechanics of irre-
versibility is exp’oited .

A”simplest model” based on this formalism is generated as follows. Set

A A A
/1
3, ~ 

—p N~, ~~~~ //,~ St’r ,
(63)

where is an operator that measures the lifetime of the amp litude An a transition
reg ion in F , close to the boundary of 3 . In this transition region /l~p ~~r 0 . Then

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(64)

and in this (Markoffian ) approximation the projected bound state amp litude changes in
time according to the effective Hamiltonion

A A A A
/1~ -.~ ~

1D 
- — ~1~p V~~ k/F, 7

A (65)
which has the dissipative component ~~~~ . This forr~ wi ll be valid if:
(f) the time spent in the transition region ~7 where H5, * 0 is very short on the
time scale of the dynamics in 3
(ii) escape from •T into F~-T is irrevers ible.
Condition (i) requires r to be small relative to 8 ; conditioii (ii) requires that

k~, e ‘s” ~~ —
~~~~ 0

rapidly. Note that if the forces between separating fragments have short range a spatial
boundary can be used to define 3 and 7 —— the approach is then reminiscent of the
R —matrix approach to scatter ing [381. However, other separ9tions defining B and
7 can be used as desired and as convenient . The Morkoffian has the same

character as phenomenolog ical ly postulated in the optica l potentia l me~hod applied to
the decay of atomic or molecular states [39] . As to the propert ies of defined by
(65), the most important for our purposes ar,~ the foIlow~rig:
(iii) For a reasonable separation of )C, Y~ (and Np ) will vanish except in
sma ll region .T 

. An initial state localized to 3— 7 can only dissociate if
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AA
~f ~~I4 

A
5.8 “~ propagates the initial amp litude to . If the eigenstates of //~are ergodic such propagation will always take place; in contrast , nonergodic states cam—

pIetel~ localized to 8 7 ~ lead to only partial dissociation or none at all.
(iv) is not a Hermitian operator, and in general is not a norma l operator

• hence N~ does not commute with its ad joint ( H58 does not commute with ).
Consequently 

~~~~~~ 
need not have a complete set of orthonorma l eigenstates . How-

ever, for each ro6f of the characteristic equation there is at least one linearly indepen—
dent eigenstate and no more than it (the multiplicity of the root). If all the roots of
the characteristic equation are nondegenerate the operator will have a comp lete set of
linearJ~’ independent eigenstates-— such operators are called semi—simp le. We assume
that He//~ is semisimp le .
(v) The eigenvalues of will , in general, be complex; the eigenstates will be

• comp lete but not orthogonal.
To actually compute the properties of a partic~ ar model, an initia l state is expanded in
the basis of the eiger~states L i E > ~ of H~,4( / wit h & E~ ~~~~~~~ . When
the initial state is a superpo~ t ion of the LI&)3 the decay will be, in general , not a

• pure exponential form. If were normal (so the eigenstates are orthonorma lkthe
decay would be a multiple exponent ial, but this is not the case for a semi-simp le H,~If the ergodic properties permit decay, and the initial state is deep in 3 , the decay
rate starts at zero at t~ 0 and remains zero For a period while the pocket broadens

• and moves towards 7 ; the rate of decay then rises too maximum and fal ls off , 2erhaps
a non—monotonic fashign. This behavior derives from the rioncommutation of 1(~ 

and
li p (nonnormality of ~~~ ). The probability of finding the molecule in 8 is

kV3 lf ) = •~(q;3 I tp3>~
2: zc,c ’  ~~~~~~~~~~ 

-

E E’ (66)

The phases (for ~~ ~ r E’ ) can introduce coherence effects into the decay process .

~ 
Of course, to eva luat,~ the properties of N,11 one must know ~~~ and ; given

H this means choosing P1 , which implies knowledge of the eigenstates of /1 , and
this is j ust~ ihat is not ujually avai lable . A simp le, crude, model can be constructed by
choosing U95 and h1p c lassically. Nordholm and Rice considered a Iwo oscfllator
coupled system for which

= ~ ~~~~~~ ÷~ 
(,b1# 

~~~~ —A ~~~~ ~ ,
~~~ 

)

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
. •>3c .

(67)
Thus, one oscil lator has a cutoff at , say, Q

~ 
. Even wit~put the cutoff ‘~ci~sr;c~ Idesc~ bes a system that can dissociate, say at E D . Hp is diagonal in the states

of N(A =v ) fo rE~~~l~ :

=

dtm,) =0, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a
1
(ln,)>0 , ~~~~~~~~~~~~~~~
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dCm,) should be calculated, e.g. by Fano’s method. Instead, in the ~rude model
SCws ,) is~ st imated from the classical halflife . The specification of M..~,c is now

complete; I/ag and ,Qp can be obtained in matrix form using the basis states
frm,, m3> . The results of a calculation for which

~~e /b) = 0.48 are:
(i) E5 var ies over a wide range even for E > 4 . The range of variation is larger
w hen the oscillators are nondegenerate; the variation is irregular .
(ii) The states lo, 7~ej> remain very much localized even at high energy.
(iii) Small values of are associated with local (nonergodic) states; large values
with global (ergodic) states .
(iv) Coherence effects lead to variation in the rate of decay as a function of ~(v) Initial states deep in the bound region tend to decay in a nonmonotonic fashion;
initial states in the transition region decay monotonically. (See Fig. 15).

The results displayed in Fig. 15 are simply interpreted . An isolated resonant state— —
• one generated by embedding a zero order discrete state in a zero order continuum——decays

w ith a constant lifetime (inverse rate) . The population decays displayed in Fig. 15,
• corresponding to different initia l states, are monotone, but the rates of decay are not .

The variation of the rates of decay is a consequence of competit ion between energy trans-
fer to the stable oscillator and fragmentation of the unstable oscillator . Clearly, the
more effective the localization of energy in t he stab le oscillator , and the more efficient

• the energy transfer relative to reaction, the greater should be the variability of the decay
rate, just as observed .

Parr and Kupperman [221 have studied, using classica l mechanics, the sensitivity to
var iation of the initial energy of the rate of fragmentation of the model triatomic mole’-
cole 143 . They find that with initial energy E .~~~ J.58 D in a bond of M, that
does not break, there is delayed fragmentation. The energized M3 molecule undergoes
several (sometimes as many as 20 — 30) vibrations during which time energy accumulates
in the other two bonds, which then break . Moreover, the rote of fragmentation is ex-
treme ly sensitive to sma ll variations in the initial energy (see Fig. 16), and is not a mon-
otone function of the initial energy. Similar results are found for a model of ~eNO.
And, inc lusion of rotationa l motion, and vibration—rotation interaction, does not a lter
the high sensitivity of the lifetime of the energ ized molecule to small perturbations in the
lifetime of the energized molecule to small perturbations in the initial energy. Parr and
Kupperman conclude that there is not, in genera l, continuity of classica l mechanical
molecu lar lifetimes even on the smallest scale of energy differences in the corresponding
quantum mechanical case . It is not clear to me that the sources of the nonmonotone rates
of decomposition in the Nordholm—Rice and Parr—Kupperman models are the same , but
the similarity in findings is striking. Both results clearly suggest that even when intra-
mo lecular energy transfer is rapid relative to chemical reaction the reaction rate may
not be adequately descr ibed by a statistica l model.

A rather differ ent approach to the study of fragmentation dynamics has evolved from
the theory of radfationless transitions [21. In this approach no attempt is made to direct-
ly study t he molecular dynamics . Rather, a spectrum of zero order states and t heir coup-
lings are postulated, and this spectrum iS assumed to incorporate all the necessary infor-
mation about the molecule . The dynamica l behavior of the system is then described by
following the amplitude of an initially excited zero order level of the spectrum as a
function of t ime. The calculations can be carried out exactly for severa l different
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• Fig. 15 Probability and rote of reaction for Nordholm—Rice Markoffian model . In
the units used D =
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INITIAL EXCITATION IN BOND (E/D )
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Fig. 16. Lifetime of metostoble anharmonic M3 as a function of the in flal poten-
tia l energy localized in bond 2. Bonds 1 and 3 break , eventually. From [221.

Fig. 17. The skeleton spectrum of the Heller—Rice model. Each continuum ifl ,c~represents a different partitioning between relative translationa l energy and
interna l energy of the products.
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assumed energy dependences of the matrix elements coupling the different zero order
mani folds . It is amusing to note that what is widely accepted as intuitive ly p lausible
wit h respect to the behavior of these coup ling matrix elements can lead to dynamica l
behavior which is very different from that obtained from integrating the equations of
motion under conditions widely accepted as intuitively p lausible with respect to energy
exchange between oscillators .

Consider the model spectrum of states shown in Fig. 17. It is assumed that the sys-
tem is prepared by excitation of the zero order state q~3 . This state is not directly
connected to the fragmentation continuum. Rather , ~~ is coupled to the intermediate
dense manifold of zero order levels 

~ , and these in turn are coup led to the several
continua ~ ç~ J . This spectrum is designed to model a situation in which the initially
prepared state must re lax to a different state before reaction occurs . The usual expecta-
tion, derived from chemical kinetic arguments, is that the population of q?~ wi ll decay
sequentia lly to the continuum via intermediate buildup and decay of population in the
manifo ld of levels €~Pe~ 

. The simplest assumption that can be mode about the coup-
ling matrix elements of this spectrum is that they are constants independent of the energy
[401, [41]. The dynamics of decay of q.’~ under this assumption deviate grossly from
what is expected from the kinetic arguments cited . Because the matrix elements are con-
stant, amp litude flows coherently from f~ 

to t he 
~ 

and from the 19~ to t he
f qi~~~ , and interference between the coherent amp litude components in the many lev-
els leads to parallel feeding of the intermediate and fragmentation manifolds . There is
not, in this case, a buildup and subsequen~ decay of amplitude in the levels 

~~~~ 
and

a buildup of amplitude in the continua (~,J . Even though the assumed constancy of
the coup ling matrix elements does not appear to be qualitatively incompatible with mole-
cular propert ies, it leads to decay kinetics which are peculiar .

Since the peculiar coherence effects just described arise from the assumption that
the coup ling matrix elements are constants, and since no molecule is like ly to have this
property, the consequences of other assumptions should be studied. HeIIer~and Rice [42J
have examined the consequences of assuming that k~ ~ ~~ and ~ l~,,, have ran-
dom character . The dynamics have been worked out for the case of many coup led contin-
ua, wit h each molecular level coup led to each continuum .

The difference between constant and random coup ling models arises as follows : For
constant coupling flux from ~~ into (q~I appears “near” the V,,, coup li ng region
but escapes almost as soon as it enters fç~ J , i .e . constant coup ling leads to a steady
state situation in which the flux into the “ V2~ coupled” region from 9 is equal to
the flux out, hence both ~~~~ and €p~~

} serve as escap ing continua in the sense
that there is a flow out of a local interaction reg ion into a non—interactive asymptotic
reg ion simultaneous ly in both manifolds . Thus, constant coup ling has the effect of re-
ducing the entire dense manifold, wit h all Us symmetry variations, to the status of a
sing le escap ing trans lationa l cont inuu m . In the random coup ling case sequential behav-
ior is obtained because there is an incoherent flow from ‘~, 

into £ , and the flux
appears “uniformly in a ll of .

“ Because of the uniformity of the flow into (q4}

there is a linear buildup in the ff~ to ~~~~~~~~~~~~~~ manifold coupling . For ~ small the
probability of dissociation then builds up as / which is characteristic of seq~sentia l
f low . Note, for this to be true only I~~ Y7,,, need be random, not I~j , fri,,, sep-
arate ly. We note in passing that although the random coup ling model predicts a
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sequentia l kinetic decay as expected, and a branching of population into the severa l
fragmentation continua, there is no a p~ ori reason why t hat final branching ratio need
be statistical . However, when <C V~,,,)

2> is independent of ~ the branching
is determined by the relative values of the densities of states in the severa l continua
1c~Is~~

.

The two examp les cited represent extremes in the possible behavior of the matrix
elements . Little is known of more genera l cases . Muthukumar and Rice [431 have stud-
ied the consequences of the assumption that there are bot h systematic functiona l and
random coup ling matrix elements; t he former were treated as a perturbation of the latter .
As particular examples they analyzed mixing of constant coup ling and random coup ling,
and the mixing of Lorentzian coup ling and random coup ling . As expected, interference
effects a lter the time dependence of the decay of the system. For the case of mixed
constant and random coupling these interference effects can increase or decrease the
width of the resonance, i.e. the time scale of the decay, depending on subtle variations
of the ratio of magnitudes of the matrix elements . Also, t he time dependence is no
longer simp le . For small ~t one finds a linear combination of t and t2 terms charac-
teristic of nonsequentia l and sequentia l decays, but the genera l behavior in time is more
comp lex . The case of mixed Lorentzian coup ling and random coup ling is designed to
mimic the situation when a few matrix elements are more important than others, but none
can be neglected. That is, there is tight coupling within some subset of levels , w hich in
turn are embedded in a dense manifold of levels . The calculated time evolution of the
population of the initially excited level exhibits two time constants for small ~ , and
is rat her comp lex for large t . The shorter time constant corresponds to the redistribu-
tion of energy amongst levels which are near ly resonant wit h the initially excited level,
and the longer time constant corresponds to the relaxation to other levels.

Consideration of the behavior of the coup ling matrix elements of a model spectrum
such as shown in Fig. 17 inevitab ly leads to the question: When can a Master equation
be used to describe intramolecular dynamics ? I do not believe we hove the answer to
this question, a lt houg h sufficient (but not necessary) conditions for the validity of a
Master equation have been established . In the most comp lete of the attempts to derive
a Master equation for a strong ly coup led finite system of oscillators , Kay [441 starts with
t he usua l decomposition of the Hamiltonian, H 1-1~ + V . However , unlike the usua l
decomposition of H , in this case V must not be small . It is necessary that V simultan-
eously coup le many degrees of freedom and lead to multi p le (vibrational) quantum ex-
changes between the states defined by H0 , name ly, H0 I,, ’> E,,, lv ~> . Because
of the comp lexity of the system, when the states lsw). are ordered according to energy

it is to be expected that the character of I~~s— I~). , and of I’vn+I > , will
differ considerably from that of Iw~> • This is taken to be a qualitative feature of the
many osc illator system.

Kay argues that three important energy ranges characterize the many oscillator sys-
tem:
(a) ~ E : Let the coupling be measured by V,,, ,,~~ <~ni V1”> . It is assumed that

~~ 
and the vibrational density of states is sensibly constant over the energy interva l

4 E .
(b) P : By virtue of nonze ro coup ling between the levels of H0 these levels ac-
quire a mean width 7’ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~ -,~••- •~~~~~. • • , • -• •• •. •• • - • -~~~~ -•• * -
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(c) ~‘C : Let € be the mean spacing between the levels of /4~, , and 
~9 a large

integer . Kay requires that averages over 3 adjacent levels be sensibl y the same as an
average of the same quantity over ~ E .

The three energy ranges (a), (b), and (c) are related as 7’<~ ~ E, 5’E ~~ . A
Master equation describes an irreversible process . The required element of incoherence,
leading to irreversible flow of energy on the time scale of interest , is introduced by Kay
under the assumption that there is no corre lation between coupling matrix elements V,,,,,
and V,,,~1 for lm> and i’m’> less than 4 E apart:

~~-‘ v~,,, =~~,

0 ; ,n~k ,,Y, IE,,-E~,,~l < 4 E .  (69)
lii—fl.J~~3/2.

The two expressions f the assumption of incoherence can be combined to read

~~~~ 
v,,,~ v~,,,1 uzç,,,,, ‘

~~~ ~~ ~~~~
.

in—s. D <g 2 (70)
Condition (70) plays the same role in Kay’s ana lysis as does t he condition of diagonal
singularity in Van Hove ’s ana lysis. There is also a similar condition in the random ma-
trix t heory analysis of Gelbart , Rice and Freed [451.

As a final condition Kay postulates that there is strong interconnection of states .
This means that any pair of states 1Is>~ Ic’ ’> closer in energy than 3E is connec-
ted by a chain of coup lings through intermediate states I71~)~ ~~~~~~~~~~~~ 

such
t hat 

~~~~~~ 
0 for ’ 0 m, v~~~,~~~s1’ and

f
The coupling is characterized as strong interconnection when the intermediate sequences

of coup led levels are short enough and numerous enough that all states within 9€ are
populated on a time scale ~~~~~~~ w here r5> S >> 5 C

With the conditions cited Kay shows that a generalized Master equation describes
the evolution of a function related to the occupation probability of a state representing
a certain property A , but having zero order energy specified only to 4E . TransUion
probabilities connect any 3 consecutive levels in 4E. Because V is not smoll
transitions do occur between states with different energ ies .

V. Some Inferences from Experiment

I remarked earlier that although there exist severa l sets of exoerimento l data that can
be interpreted as indicating in tramolecular vibrationa l relaxation is slower than chem-
ical reac tion , the subsidiary assumptions r~ecessary to the drawing of that inference
great ly wea ken it . In closing , I wi ll cite a very few examp les of the kind of experi-
menta l data that suggest the reality of nonstatistica l behavior in some situations .

• i~~
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(1) Mr. S . Michoelson [46] is completing a study of the dependence of the rate of
fragmentation of ~!O2 on initia l vibrationa l and rotationa l state . A lthough the 400
level of the CEO~ state is 2082 cm 1 higher in energy than the 100 leve l, the rate of
pred issociation is essentially t he some . In contrast , a lthough it has only 283 cm 1 more
energy, predissociation from the 110 level is much more rap id t han from 100, and a lso
more rapid than from 400. Also, predissociation from t he level 010 is more rapid than
from 100, a lthough 010 lies 418 cm 1 lower in energy. Even though the ana lysis is not
yet comp lete, these preliminary findings strong ly suggest t hat the fragmentation of C€01
from prepared rov bronic levels wil l  not be accuratel y descri bed by a statistica l model.

(2) Cantrall [471 has made a coreful ana lysis of a ll the available data on mu lti photon
dissociation of ~~~ . He concludes, after a variety of trial calculations , that the
triply degenerate mode dominates the c~::~ption process up to an energy O. 7.b .
Although this result supports the notion thc t up to .-~~‘ 0. 7D vibrationa l redistribution in
5~~ is s tow on the time scale of absorption, it does not imp ly that the same is true at
the threshold for fragmentation, or above that threshold. The Contrail conclusion, which
refers to the mechanism of absorption of energy, is not in conf lict with the conclusion by
Lee and coworkers [48] that just prior to fragmentation there is a statistical distribution
of vibrationa l energy in the molecule . (Fig. 18)

(3) Studies by Lee and coworkers [49] , and MacDonald and coworkers [501, of the sub-
stitu t ion reaction

are consistent wit h there not being comp lete randomization of vibrationa l energy in the
intermediate comp lex c2 H4P0’ T his inference is a lso supported by t he theoretica l ca l-
cu lations of Zvijac and Light [51], w ho show that in the evolution from reactants to pro-
ducts a sma ll subset of the total degrees of freedom of the system are tightly coup led to
one another everywhere along the reaction path.

(4) When a large aromatic molecule s excited t o o  vibronic level of a sing let excited
state, and intersystem crossing to a lower triplet state occurs , that tri p let s “born” wit h
excess vibrational energy. Schiag and coworkers [52] have studied, by a genera lized
flash photolysis met hod, the evolution in time of the vibrational distribution generated
by rodiationless transition following excitation of the lowest sing let state of naphtholene .
It is observed that the vibrationa l distribution created by t he radiation less process does
not change on the time scale between collIsions, which is 1,*i:. If the radiation less
process is intersystem crossing to the lowest trip let that state would hove about 11 , 000
cm 1 excess vibrational energy. The estimated rate of intramolecular vibrationa l relax-
ation is rat her like that suggested by Tric for quinoxa line with 10 ,000 cm~~ excess ener-
gy. (Fig. 19)

(5) Grant and Bunker [531 have simulated the unimoleculor decomposition of C1/-1~ via
CC and CH bond scission on a “rea flstic ” energy surface . The results , for severa l

energ ies and patterns of energ ization, reveal deviations from the predictions based on
statistica l behavior of the energized mo lecule . The interpretation of these results is
based on the existence øf differences in coup ling strength between the various vibrationa l
modes .

~~L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- —  ~~~— - - - - - -  - -
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• Fig. 19 The time evolution of the T*4_ T l absorption spectrum in naphthalene /t8,
subsequent to ISC at low pressure (a) (p = 68 mtorr N). The molecules were
optica lly excited to the 8(big) vibronic band of 

~~ 
For comparison, a “high

pressure” I — I spectrum (o) (p = 68 mtorr N ÷ 2.5 torr Ar) is given at l4p~s.
The time scale is related to the onset of the exciting laser pulse . From [521.
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VI. Conclusions

I suggest that what we have learned from the various theoretical approaches described
• is to not underestimate the comp lexity and subtlety of the dynamics of strong ly coup led

osci llator systems . Although neither available experimental data nor the severa l kinds
of theoretica l treatments provide unequivocal evidence for slow intramolecular relaxa-
tion in real molecular systems, t he hint that such can sometimes occur is strong . The
princ iple lesson to be drawn is that there is unlikely to be a universally va lid descrip-
tion of intramolecular relaxation and/or fragmentation of isolated molecules . Statistical
descriptions of the dynamics wi ll certainly be valid in some energy range and for some
time domain, but nonstatistical behavior is to be expected in other cases, for examp le
when the time scale of the process of interest includes competitive relaxation processes.
There will be idiosyncratic differences between species, dependent on the nature of the
energy dependence of coup ling matrix elements , etc . All of these factors must be in-
cluded in a fully sat isfactory theory of chemical reaction rates .
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