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I. Introduction 1
During the period between 1 April 1974 and 30 September 1978, a

number of topics in the general area of the interactions between

electromagnetic fields and piasmas were conducted at the Polytechnic
Institute of New York, under the AFOSR grant AFOSR-74-2668. Basically,
the topics are divided into two general categories: (a) the study of

a nonlinear plasma wave excited along a glow discharge column by a

high amplitude (=~ 2 KV/cm) and extremely sharp (=~ 0.2 ns) electric field
pulse; and (b) the study of parametrically excited decay instabilities
in a plasma column imbedded in a magnetic field. Most of the significant
results have been published in a series of five journal papers with one
more submitted. In addition, nine papers have been presented at APS and
IEEE conferences.

In Sec. II of this report, a review of the activities during the
period will be given. Section III is devoted ro the details of the work
on the high speed pulse excited plasma waves. Section IV describes the
experiments on the parametric decay instabiliries wirh emphasis on the
time evolution of the growth and saturartion of rhese insrtabiliries.
Section V consists of a theoretical analysis of a rhree wvave decav process
in a magneto plasma which is applicable to all wave types This remains

the only theory which has this geners! spplicabilirny Experiments sup-

porting the theory are also inc luded




II. Review of Activities

II-1. Principal Scientific Achievements

A number of topics have been studied under the support of the Grant.
A listing of the publications given in II-2 shows the breadth of activi-
ties. Two of these topics represent efforts of particular significance:
(1) first real life demonstration of group splitting of wave packets
propagating in nonlinear dispersive media; and (2) the establishment
of a general vector theory of parametric decay instabilities in a plasma
with magnetic field.

(1) Group splitting, or wave packet bifurcation, was predicted by
the theory of modulation*. It is predicted that in a nonlinear dispersive
medium, if certain conditions are met, there would be two distinct group
velocities with their difference proportional to the wave amplitude. If
a wave packet is launched to propagate in the medium, it would split into
two packets. The modulation theory is a general nonlinear wave theory
developed heuristically and formally based on the assumptions of some
conservation properties of the amplitude and phase characteristics of the
wave packet and the nonlinear dispersion relation. The group splitting
effect was the most astonishing prediction not known to exist‘at that
time. The experiment by Kunhardt and Cheo was the first real-life demon-
stration of this phenomenon. This demonstration, together with some
computer simulations, has thus provided the confidence in the validity of

%%
the modulation theory. Details of this work are elaborated in Sec. III

* G.B. Whitham, ''Linear and Nonlinear Waves'", John Wiley & Soms, 1973;
pp. 489-490

%% G.B. Whitham, ibid, pp. 519-520




and in Publicatiomns (1), (2), (5).

(2) Parametric decay instabilities have been studied extensively
for many years. Two recent review articles* have each cited over one
hundred references. The basic form of the coupled mode equations was
first derived by Nishikawa for a plasma with no magnetic field and the
same theory is applicable to the ordinary mode excitation in a magnetized
plasma. Because of the complexity of the modal structure in a plasma
with magnetic field, previous efforts in.this area are only limited to
the longitudinal waves where the electrostatic approximation E = - Voo
is applied.

Because the parametric decay instabilities are thought to be an
important process in rf plasma heating, and that in many applications
such as in ionosphere heating or in various magnetic field confined plasma
devices, interactions among hybrid waves do take place. A more general

vector theory is therefore needed. The general vector theory developed

by Kuo and Cheo {3] is capable to deal with these cases and remains to
be the only such theory available.

The approach is based on Poisson bracket relations of the Hamiltonian
densities of the decay waves. It is shown that the general vector coupled
mode equations obtained can be reduced to those of the special cases ob-

tained previously, and compared favorably with experiments. Section V of

this report shows the detailed development of the theory and the supporting

experiments. Essence of this work is given in Publication (3).

* M. Porkolab, Physica C 82, 86, 1976.
M. Porkolab and R.P.H. Chang, Rev. Modern Phys., vol. 50, #4, pp.
745-795, Oct. 1978.




II-2. Publications

(1) Journal Articles:
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E.E. Kunhardt and B.R. Cheo, '"Observation of Wave Packet Bifurcation
in a Magneto-Plasma Column'", Phys. Rev. lLetters, vol. 37, 25, 1688;
Dec. 20, 1976.

E.E. Kunhardt and B.R. Cheo, '"Propagation of Nonlinear Waves Along

a Magneto-Plasma Column", Phys. Fluids, vol. 20, 9, 1499; Sept. 1977.
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Soc., vol. 23, 7, 818; Sept. 1978.

(3) Reports:
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E.E. Kunhardt and B.R. Cheo, '"An Experimental and Theoretical Study
of the Propagation of High Amplitude Pulses in a Bounded Magneto-
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Reports (cont.)

T.Q. Yip and B.R. Cheo, "Evolution of Parametrically Excited
Instabilities in a Magneto-Plasma Column', Poly-EE/EP-77-028;

June 1977.

II-3. Graduate Students

There have been seven graduate students participating in the research

program. Three have obtained their Ph.D. degrees and four are progressing

toward this direction. All three graduates are presently successfully

placed in the general scientific community.

E.E. Kunhardt, Ph.D., June 1976. Dissertation: 'An Experimental

and Theoretical Study of the Propagation of High Amplitude Pulses

in a Bounded Magneto-Plasma'. Present position: Assistant Professor
of Electrical Engineering, Texas Tech. University, Lubbock, TX.

Was elected the new professor of the year. Participated and ini-
tiated a number of research activities.

S.P. Kuo, Ph. D., June 1977. Dissertation: '"Studies of Parametric
Decay Instabilities in Magneto-Plasmas''. Present position: Research
Assistant Professor of Electrical Engineering, Polytechnic Institute
of New York, Farmingdale, N.Y. Participated and generated activities
in the new fields of MHD generation of electric power and ionospheric
heating and modification. Worked on EBT at ORNL.

T.Q. Yip, Ph.D., June 1977. Dissertation: 'Evolution of Parametrically
Excited Instabilities in a Magneto-Plasma Column'. Present position:

Member of Technical Staff, Bell Telephone Laboratories, Holmdel, N.J.




Student Graduates (cont.)

Began a new career in communications. Continued to collaborate
with the Poly group in plasma work (no compensation).

R. Faaland: A second year graduate student. Teaching fellow in
the EE Department. Actively involved in the effort of building a
new ECRH plasma station and electronics associated with the system.
C. Hechtman: An advanced graduate student. Passed qualifying
examination. Currently research assistant in the program. Built
the capacitor bank for the exploding tube experiment. Published

a paper on the topic.

H.M. Huang: An advanced graduate student. Passed qualifying
examination. Currently research fellow in the program. Working
on the microwave generated and sustained beam plasma. Doing both
theoretical and experimental work. Presented a paper at APS Plasma
Division meeting.

B.R. Poole: A second year graduate student. Teaching fellow in
the EE Department. Has been an active participant in the program

for several years. Passed qualifying examination.
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High Amplitude Propagation on a Plasma Column
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III-1. Introduction

The general problem we are concerned with is that of the inter-
action of a plasma medium with an electromagnetic field. At linear
level of excitation, the various problems of wave propagation have been
explored at length and a fair amount of understanding has been reached.
At nonlinear levels of excitation, due to the lack of a general method
of attack, the analysis made to date are mostly ad hoc and under various
forms of idealization and approximation. The purpose of this investiga-
tion is to study some of these interactions both theoretically and ex-
perimentally. The resuits have yielded new data and insight into the
problem of the competition between dispersion and non-linearity in 2 num-
ber of plasma configurations. The comparison between theoretical
result and experimental data is generally favorable.

Theoretical studies in the linear and weakly nonlinear regimes
may be grouped into two categories, namely, analysis in unbounded
and bounded plasmas. Experimental investigations on the other hand
must be performed with plasmas of bounded geometry. There are ex-
periments, however, where the pertinent dimensions are such that to
a good approximation, the waves under consideration may be thought
as propagating in an infinite medium and the results behave as predicted by
unbounded plasma theory. (1) Studies in unbounded plasmas have been
many, and several text books have been written on this subject. Com-

(2) (3)

prehensive expositions have been done by Ginzburg and Stix for

the linear regime; and for the weakly nonlinear regime by Tsytovichsm

(5) (6)

Davidson and F. Einaudi et. al.
The bounded geometry considered in this investigation are:
a circular plasma column imbeded in an infinite dielectric (iree space)
and a circular magneto plasma column surrounded by a conducting
waveguide of the same dimension as the plasma column. These struc-
tures are known to support numerous types of waves. The work in
this study is concerned with the propagation of the slow mode whose
characteristics do not depend on ion motion. These waves are some-
times called ''space charge' or "electron plasma' waves. They difier
from the ''true'' electron plasma waves in an infinite plasma since the

boundary conditions posed by the system have altered the wave




structure. Practical interest in these modes are the possibilities of

(7,8,9)

applications in laboratory plasma diagnostics , high gain micro-

(10, 11) (12)

wave devices , and plasma heating

The basic experimental results of linear slow wave propagation

have been well documented (13, 18) and good agreements with theoret-

(15, 16)

ical analysis have been obtained However, the situaticn is

different for the weakly nonlinear regime. Very few theoretical analy-
(17,18,19, 20) The

emphasis in most of these studies has been on the nonlinear coupling
(21)

sis of the boundary value problem have been done
of waves, in particular three wave interaction This problem
takes a variety of forms. Perulli, et.al. (22) studied the decay of a
slow wave into two other slow waves with different azimuthal variation.

‘a8 used the method of the averaged Lagrangian to analyze

Larsen
the interaction of three slow waves. Kuhn(24) formulated the same
problem from a coupled mode £or'*-n—nlism. A—side from experiments

on surface wave echo (spatial)(zs), experimental work has been confined
to the mixing of two pump waves of different frequencies to produce a
third at the beat frequency(ze).

All of the theoretical and experimental efforts mentioned thus
far have one feature in common: they are all concerned with steady
state situations. Recently, transient techniques have been employed
in the experimental investigation of wave propagation in plasmas.
Voltage steps and pulses (base band and RF) have been used to excite
transient waves. Schmitt(‘Z?) was one of the first experimentalists to
use pulse excitation to study plasmas. He observed the dispersion of
base band pulses propagating through a plasma filled coaxial line.

(29)

Proni, et. al. (28) and Tregruis, et.al. used microwave pulses to

excite transient electron plasma waves in systems where the boundary

had no effect. The only reported applications of base band pulses to
study the propagation of space charge waves were by Anicin, et.al. 193

1.(31)

for the symetric mode, and by Demokan, et.a for the dipole

mode. Recently Landt et.al. used various types of transient inputs to

study the linear properties of these modes(32).

These experiments
were limited to the linear regime.

In the nonlinear regime, pulse excitations and time domain

12
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observations have been reported by Sindoris, Cheo and Grody(33) in a

Tonks-Dattner type structure using a home developed device called a
Bouncing Ball Generator (BBG), which produced baseband pulses 120
picosecond wide at 1. 1 KV into 50 ohm. Other nonlinear transient work
S

(34) of the propagation of elec-

includes the observation by Ikezi et.al.
tron plasma waves excited by voltage steps, and the observation by
K.Saeki et.al, (48) (49)

has studied the development of finite amplitude electron plasma waves ‘

of electron plasma wave shocks. Manheimer

in a bounded plasma with infinite magnetic field using the method of
expansion in terms of a complete set of linear solutions. He did not
include the effect of dispersion, but predicted the steepening observed
in (48).

The work in this effort consists of a comprehensive investigation
of linear and nonlinear phenomena affecting the propagation of very short
base band pulses along a glow discharge magneto plasma column. The
advantages of this approach over nonlinear steady state studies are: 1)
by keeping the duty cycle low, heating of the background electrons (a

major problem in CW experiments) need not be considered; 2) if the

transient response is short compared to ionization times, background
electron density changes will not occur; 3) the ability to observe short-
lived phenomenon is greatly enhanced because of the expanded time re-
solution. The major advantage of transient studies both large and small
amplitude excitations is that we can observe the development in time or
in space of an initial disturbance produced at some point. Tremendous
insight is gained into the competitive effects of dispersion and nonlin-
earity, 4

The source that was used to excite the transient waves is an im-
proved version of the BBG mentioned in the experiment of Sindoris

(33). The new BBG produces a pulse 0.50 nanosecond wide at

et. al,
3. 2KV into 50 ohm. This generator and the techniques developed
presented us with the unique tools for such comprehensive studies.

In III-2, of this report the experimental program is presented.
To analyze the experimental cbservations a nonlinear theory for wave
propagation along plasma column was developed. This theoretical

analysis is presented in HI-3. In IOI-4, the experimental

results are then analyzed.

13




III-2. Experimental Program

The basic experimental set up is shown schematically in figure
2.1, where the plasma is the positive column of a glow discharge con-
fined in a glasss tube 175 cm long, with A and K the anode and cathode
respectively. M-M' represents a set of coils providing an axial D.C.
magnetic field up to 1. 2K Gauss. WG is a removable conducting wall
surrounding the plasma tube. L is a pair of parallel plates connected
to the pulse generator (BBG) which establishes an impulse like elec-
tric field in the plasma. The wave evolution in space-time as 2 func-
tion of initial pulse strength is monitored by the receiving structure R
on a sampling scope. The work was done in two stages. The first
consisted of a comprehensive investigation of linear and nonlinear
phenomena affecting the propagation of pulses along the positive
column of a glow discharge. The second stage involved the addition of
a uniform longitudinal magnetic field variable up to 1.2K Gauss and
the surrounding of the plasma column by a -conducting wall. Subse-
guently, a description of the experimentz. apparatus and procedure is

given.

2.1 Description of the Apparatus

2.1.1 the plasma

For a plasma, the positive column of a hot cathode, glow dis-
charge in argon is used. Fig. 2.2 shows a layout of the discharge tube
and its associated vacuum and electrical systems. The discharge
tube comprises two Western Electric mercury vapor cathodes con-
tained in a round flask and connected by means of a quick glass to glass
joints-to a 175 cm long glass tube, the end of which is terminated with
a hallow anode. Because of the quick .coupler, glass tube sections of
different diameter may be used.

It was necessary, due to the type (sampling technique) and
amount of measurements that had to be performed, to provide a clean
and stable discharge. By allowing Argon gas to flow through the dis-
charge tube at a slow rate; contamination, due mainly tc ion bombard-

ment of the cathode, is reduced since such impurities are constantly
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removed from the tube. To provide effective regulation of the gas
pressure, the argon inflow is regulated by a flow meter valve and
needle valve and the evacuation rate by a high vacuum valve. Adjust-
ment of these valves provide the desired pressure,

Once the discharge is operating, the desired range of electron
densities is obtained by varying the current through the pentode re-
gulator circuit. Stability of the system, over all range considered,
was excellent.

Basic parameters of the positive column, i.e. electron tempera-
ture, density, and collision frequency, were measured. Electron
temperature is obtained using the well known method of Langmuir

(33). To measure average electron number density, the cavity

(9)

perturbation method is used "'. The cavity is mounted in a carriage

probe

which can move along the plasma column. The electron density varia-
tion along the column is found to be less than 0.5% . During the ex-
periments, the density is constantly monitored to prevent drifts from
the operating point, due primarily to pressure variations.

The cavity is also used to measure the total collision frequency
of the electrons. By measuring the change in Q of the microwave
cavity due to the plasma, this parameter may be calculated(%). The

collision frequency of electrons with ions and with neutrals is also

calculated using the equation(37)
v =n, @ v 2=1
s "7 Qep i
where
3 = implies ions or neutrals
QeB = collision corssection for collision of electrons with
3-type particles
T 1/2
v =average velocity given by St
= g g , Tm
nB = density of 3 particles
For neutrals, at 20°c:
A 1= 273

B3 = 32400 760 293

where A =6.02x 1023 particles /mole

P = pressure in mm.
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Table 2.1

Typical Discharge Characteristics

Radius of column

Neutral density (at 1)

Percent ionization

Electron neutral collision frequency
Electron neutral collision time
Debye length RD
Electron thermal speed
Electron density

Electron cyclotron frequency

Electron plasma frequency

.66cm

3.3:~:1013cm-3

.01%
17.2MHz
100nsec.

lmrq
1.5x108 cm/sec.
2x101% e 3

.632GHz

1.3GH=

18




Typical parameters obtained using the experimental technigues

mentioned above are shown in table 2, 1.

2. 1.2 The pulse generator

A Bouncing Ball Generator (BBGQG) is thé source for the pudses
used in the experiment. This generator has previously been used in
time domain studies of EM precursors and in impulse stimulated
emission from plasmas(33). The generator, at the time of those ex-
periments, produced base band pulses with peak voltage of 1.1 kilo-
volts and a risetime faster than 120 picoseconds. For this experi-
ment, the BBG was modified and is now capable of producing pulses
with peak voltage of 3.2 kilovolts with approximately 200 picoseconds
rise time. The peak power into a 50 ohm line is 259 kilowatts. The
average power, however, is 4 milliwatts because of the short pulse
duration. The display of the BBG output pulse shown in Fig, 2,3 is
an X-Y recorder plot of the oscillogram from the sampling scope.
To obtain such an oscillogram, the pulse, after being attenuated 63d B
is applied to the scope through a 60 nanosecond delay cable (RG-9B /u)
of 4,4dB insertion loss. The output of the scope is then used to drive
the X-Y recorder. Also shown in fig. 2. 3 is the voltage spectrum of
the pulse, This is obtained from Fourier analysis using a computer of
the time domain signal. The spectrum is extremely wide, extending
from D, C. and almost flat to 1 GHz,

To control the amplitude of the pulse, wide band attenuators
(GR type 874-GL) are used at the output of the BBG. Also at the out-
put, a pre-trigger pick oiff has been installed to obtain a trigger sigral

for the scope.

2. 1.3 Parallel plate structure
To couple the BBG pulse to the plasma, a section of parallel
plate transmission line is used. The parallel plate coupling structure
consists of a wide band coaxial to parallel plate transition which opens
up to a length of uniform transmission line, then tapers down again to a
coaxial line. The line is then attenuated by 20d B and terminated with
a 50 Q load. The dimensions of the structure are such as to keep a

constant 50 ohms characteristic impedance along the structure over a
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wide range of f{requencies. The plasma tube is inserted perpendicular
to the plane of the plates through holes made at the center of the plates,
as shown in fig. 2.4. The holes are made to fit tightly around the
column.

The plate structure is a very good wide band coupler with an al-
most flat passband extending from 50 MHz to approximately 2 GHz.
This feature of the structure made it a suitable coupler in the pulse
experiments because of the wide bandwidth of the exciting pulse. A
similar structure is also used to couple the propagating wavepacket to
the sampling scope. The receiving plates are mounted on a carriage to

allow for movement along the column.

2. 1.4 Sampling scope and recorder

To observe the input pulse and the propagating wavepackets, a
Tektronix 564 storage scope with sampling plug-ins is used, To
facilitate further analysis, the observed oscillograms are also re-
corded using a Hewlet-Packard X-Y recorder connected to the output
of the storage scope.

It must be remarked that the sampling technique for observing fast
transient time phenomena requires that each experiment be identical.
This in turn demands that the input pulse be identical for each experi-
ment and that the plasma relaxes to its initial state before the follow-
ing pulse arrives at the launcher. The last condition may be ascer-
tained by comparing the width of the packet with respect to the pulse
separation. However, considering that the BBG is an electromechani-
cal device, it is remarkable that the pulses it produces are identical
within a few percent of each other, to the extent that the technique

was succesful,

2.2 The Experiment
2.2.1 Zero axial magnetic field

For the investigation, the apparatus described in section 2, !
was arranged as shown in fig. 2.5, The output pulse of the BBG, after
attenuation to the desired voltage, is coupled to the plasma through the
wide band parallel plate structure. A A0 nanosecond delay cable is

used between the generator and the plates. For high amplitude pulses,
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difficulty is encountered with reflections from the plates (due to a
small mismatch), that travel back to the BBG. At the BBG, these are
once again reflected (the BBG is an open transmission line) and re-
turn to the plates generating unwanted signals. By introducing the de-
lay line, the reflection arrives at the plates 120 ns after the original
pulse, long after the observations are made.

The plasma column is inserted perpendicular to the plane of the
plates through the holes at the center. The holes are made to fit
tightly around the column. As the pulse propagates along the parallel
plates, the region of plasma within the plates (1 cm separation) feels
uniformly around the column the effect of the electric field of the pulse.
The field is directed parallel to the axis of the column, such that elec-
trons are accelerated towards the anode.

With this mode of coupling, circularly symmetric waves are
excited in the plasma and they propagate along the column towards the
anode. To prevent waves from propagating towards the cathode, the
section of plasma between cathode and launcher is surrounded with a
copper sheet and no wave can propagate under those conditions.

More will be said on this in chapter III. Since the tube is of finite

length, wide band microwave absorbers are used at the end of the

column to prevent possible reflections from the anode and into the
receiver.

The receiver is mounted on a carriage and can be moved along
the whole length of the column. These plates pick up the longitudinal
electric field associated with the propagating wave. The field strength
is displayed on the sampling scope and also plotted on paper using the
X-Y recorder. A trigger pulse from the BBG is used to properly
synchronize the time of sampling.

Two types of oscillograms were recorded. First, fora fixed’
position of the receiving plate, oscillograms in time were taken. The
analog output of the scope drives the Y axis of the plotter, while the
scope's time base is used to drive the X axis. In this manner, a replica
of the trace that appears on the scope's screen is plotted. Secondly,
the spatial distribution of the waves, for fixed sampling time, were

obtained. The Y axis of the plotter is driven as in the time measure-
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ments; the X axis however is driven by a voltage proportional to the
position of the receiver with respect to the launcher. The arrangement
is shown in fig. 2. 6. A constant voltage is applied across the potentio-
meter. As the crank is turned to move the probe, the arm cf the
potentiometer rotates a distance proportional to the probe's motion
along the axis of the column. Thus the voltage of the arm is equivalent
to the distance of the probe with respect to the structure. This voltage
increases continuously as the receiving structure moves away from the
launcher.

Both types of oscillograms were taken under different operating
conditions. The argon discharge was operated over a range of neutral
gas pressure and D, C, discharge current, The pressure was varied
from 1 to l0p Hg and the current between 20 and 300 mA. In this
domain, the electron temperature ranged between 2.5 and 5 eV. (the
high temperature corresponding to the lowest pressure), while the

9_1010 cm'3

average electron densities were of the order of 10 (the
low densities corresponding to the lowest pressures and discharge cur-
rents). The range of electron collision frequencies has been tabulated
in sec. 2.1.1. To investigate the effect of column radius on the propa-
gation of the waves, column section of diameters; .6 cm, .352 cm

and 1. 32 cm, were used.

Finally, the characteristic of the waves as a function of exciting
pulse polarity and amplitude were investigated. A BBG was also
constructed to produce negative pulses. For a negative pulse, ions
are accelerated towards the anode, Since the amplitude of the BBG
pulse (both positive and negative) is constant, attenuators are used to
obtain the lowest desired level of excitation (this corresponded to ap-
proximately 100 volts). Then, the peak voltage of the exiting pulse
(numerically equal to the longitudinal electric field the charged
particles between the plates feel) is progressively increased (by re-
ducing the attenuation) to its maximum value. In taking the oscillo-
grams, each time the exciting pulse is increased, the received waves
are attenuated by a corresponding value to keep the gain of the system
fixed, allowing direct comparison of the profiles of the received

signals.
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2.2.2 Finite axial magnetic field

To study the propagation of large amplitude pulses along magneto
plasma columns, a uniform magnetic field of strengthupto 1.2 K
Gauss was added to the set-up of fig, 2. 5. The field was produced by
seven ESI 49 coils &rranged in such a fashion that the magnetic field
variation over the test region was only + 1% . Moreover, the test
section in fig. 2.5 was surrounded with a conductor, except at the
launcher, and receiver locations.

Initially, the same method (i.e. tube inserted perpendicular to
the plates through holes made in them) was used to couple the pulse to
the magneto plasma column. It proved to be very inefficient in excit-
ing propagating bulk waves due to great coupling losses. The tube sec-
tion was then redesigned and copper rings were inserted such that the
parallel plates were in direct contact with the plasma. This improved
the coupling greatly and proved to be necessary to launch the waves.
The modified set up is shown in fig. 2.7. Similar recordings as for
the case of no magnetic field were obtained under different conditions
of: plasma frequency, magnetic field strength and background neutral
pressure,

Before presenting the results of the experiments (both with and
without magnetic field), an analytical formulation and analysis of the
experimental conditions will be given in the next chapter. In the light
of knowledge acquired from such analysis experimental data will then

be presented and analyzed.
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III-.3. Analyvtical Formulation of the Experiment

The problem posed by the experiment is as follows: a plasma column
of circular cross-section of radius b, and infinite length, either in free
space or surrounded by a-conductor, is exci{ed at z = 0 by a finite ampli-
tude source of electromagnetic radiation, In gerneral, a finite axial D, C.
Magnetic field is present as shown in Figure 3.1, The spatial and tem-
poral evolution of the excited bounded modes is investigated. This analysis
involves the adoption of an approriate idealized model which is mathe-

matically tractable.

3.1 Analytical Model

Consider a homogeneous plasma column imbedded in the gas from

which it is formed by partial ionization. The plasma is considered to be
a cold electron gas moving through a stationary neutralizing background
of ions, The dynamical interaction between electrons and the background
is described by a constant collision frequency Ve The interaction is as-
sumed to be such that there is no loss of electrons due to ionization, re-
combination or attachment. Since the percentage ionization of the discharge
is low (. 01%), it may be assumed that Ve is basically the electron neutral
collision frequency. The fact that the background density of the discharge
is dependent on radius, undermines the assumption of 2 uniform plasma
column, but a compromise is necessary if the finite amplitude analysis is
to be mathematically tractable., The effects introduced by the inhomo-
geneity will be discussed at the proper place.

Quantitatively, Euler's equations will be used to describe the dynam-

ics of the electrons(37):
dn+7e+nv=0 (3-1)
mnd,v + . + . E+nvrxpy H =0 ] -
ndt. mav Vz mav v +enk M L _ (3-2)
where
1n{z, t) = electron number density
v(r, t) = average electron velocity
¥ = collision frequency for momentum transfer between
electrons and neutrals
E(r,t) s electric field intensity
H, = background magnetic field intensity
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When stated in the form of (3-1)-(3-2), a series of assumptions must
be appended to the exact Euler system. These assumptions may be found
in a standard text on plasma dynamics(sm

Since it is our interest to study the interaction of the above plasma
model with an electromagnetic field, Maxwell's equations must besadded

to (3-1) and (3-2):

VxE=-p d H (3-3)

VxH=e, d,E+], (3-4
where

.Il'e = electric current source.

J’e involves all electric current densities present, applied or induced. The
Y

interaction of plasma and EM field occurs through the quantities d. and

ne E in a self-consistent manner. "Explicitly

Ee i -‘-Iapp +£c (3-5) .
where

gapp = externally applied electric current

J'c = electron convection current in plasma and is

i given by

do® < eny (3-6)

Other contributions to J.Ie (such as polarization, currents, drift currents
due to plasma inhomogeneities, E x H drifts, etc; and conduction currents)
will be neglected, Equations (3-1)-(.‘;—6) form a determinate system of
equations through which any interaction problem may be studied, once Eapp
is specified,

Redefining the product av as a new variable:

u = nv (3-7)

and considering n which is a function of space and time as composed of
two parts: a time independent part or background and a time dependent

part or fluctuating term:




n(zr, t)=n+ ;(s, t) (3-8)
where

background electron density

time varying electron density

8 Blp
1]

and x >n,

The system (3-1)-(3-6) simplifies t0(39),

dt; +V . o 0 (3-9)
md&«f-%: Vv - Bu=-neE-ey uxH -myu (3-10)
VxH=edE-ea+], (3-11)
Vx§=-p°dtlj (3-12)

To this set of equations, we also add

€gV*E=-el@-n)=-en (3-13)
and

VeH=0 (3-14)

Formally solving equations (3-10) to second order in u (see Appendix 1)

and using the results in eqs. 1l1; the system is reduceg tos

VxH=e€' E+NE)+7J (3-15a)

app

um

"7xE=—u.°dH (3-15b)

~ t~

where € is a linear operator given by:

-

and N(E) is a2 nonlinear term in E given by:

€
N(E) -—rr(E2 Y+ DEINE -n—"-ET~ E)
o s n Bt B o ~ =
with o

1 s unit dyad




and

M@ Hv) 2 (md ] -ep H, x1-my

Decomposing the gradient operator as 7/ = 7: + dz Z E 3-15 may
be cast into a form appropriate for gided wave analysis

Written in operator form:

(L+idzr)z/;=N (t.’/)+iJ'app (3-16)

where, for p < b (where b is the radius of the column)

€ d I -efl Yox= 1 E
o t= £ = -
S| ' ¢iz, t) (3-162)
_'7tx1 -'uodti H
0 -z 1y N(E)
T— i N(# )—i (3-16b)
z x 1 0 0

for p>b, n = 0 and the equations reduce to Maxwell's equation in
free space.
Along with these defining equations, boundary conditions must be ;
specified. These are:
For a column in free space
a) plasma boundary is assumed sharp
b) at p = b, tangential E and H fields are continuous
c) solutions must be finite everywhere

d) conditions at the source will be deferred until later

When the column is surrounded by conductor, the above conditions
apply except that b) must be restated as: Tangential E and H fields

are zero @ p = b,

Now we proceed to obtain.a solution to the above posed problem.
As a matter of convenience, the source term in £q. 3-16 will be
dropped until the time it needs to be considered to interpret the
experimental results.

Taking Fourier transform in time of 3-16, one obtains:

L(=-1w, 7t) v_f,'(}_', w)+1i rdz U (E,...)) =N {w(';,;.))] (3-17)
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where the transformed operators are obtained from Equations 3-17
by recognizing that dt—o- iuin the transiorm domain and that the
transform of a product is the convolution of the individual transform
(see Appendix 1),

We shall seek solutions of the problem in the form of an expansion
in terms of the eigenfunctions of the transverse, lossless operator LO,

where Lo = LI Assume that y(r, w) lies in the space spanned

= 0.
Ve
by the transverse, lossless eigenvectors; moreover, that the operators
in Eq.(3-17) act on this space. Then ¢ (r, w) may be represented

as:

wr,w)=) @ (z,0)y (r,w) (3-18)

Q

where the eigenvalue prcolem for the U, is defined:
L, (-iw, V) v, =k, (@) Ty, (3-19)

the eigenvectors wa possess the orthogonality property

= o - T
Wy Tug) =84 (3-192)
Using this property of the wm's, the amplitudes in Eq. (3-18)
are found to be given by:
a,=w, Iv,) : (3-20)

where ¢ is the actual nonlinear, lossy field. The equation for
determining the co-efficients aa may then be obtained as follows:
Scalar multiply Eq (3-17) by wa and (3-19) by ¢ and subtract:

(f//a,: LKZ/) - (W, LOUJQ) + ’-az (r’//nd/a)*' Kd (w)(r'f’and/) [N(w), U/QJ

or
v, (L-Lo)w] +i9, <w,1“.-ba)+ Ko@) (w,l‘wa) =[N @), waj

identifving (L-Lo) as the loss operator vy, using Eq. (3-20) and then
replacing 1 (p,w) by the expansion Eq.= (3-18), we obtain for the

amplitudes:
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9, @, (z,0) +/<a(w)aa (z,0)+ iv(0) (L, (2, 0)= i(E_, NG E)] (3-21)

« %
where v(w) = (wa, léwa)

Thus, the solution of the field problem is cast into a study of the
evolution in z of the modal amplitudes. To arrive at an explicit form,
we must evaluate the two inner products involved. To do this, an
explicit form for the eigenvectors, Uy must be obtained. Keeping

in mind that the goal is in the analysis of the experimental results, we
are interested in obtaining a set of eigenvectors to represent the guided
field produced by an electric current source directed along z 2 and
independent of §. These are obtained in Appendix 2, for both E.# 0,
and Ho = 0. The results are sumrnarized below:

For zero magnetic field, the discrete spectrum contains a single

eigenvector and the corresponding eigenvalue, i.e., a=1. The
properly normalized eigenvector, i.e., normalized as in Eq. (3-19a),

is given in component form:

/2 /2 N
(Ka(m)/wEo) (1/2 B) " e o<b i
K
B = (3-22a)
ap
I(g b} K& »p)
' 12 e B2 B 1'% 2 .
(Ka(@)/ QEO) (1/ 21('3) Q(K.'. Zb) P p P >b
) I(k, »)
1
(@ € /x (2 (/2 8) 2010/ 0?) L p< b
P KJ'I
Hy = (3-22b) |
" y I(x, b) Kk p) {
1 P - N e - 2 |
(U) €O/K(2(w)) (1/ ZH) K (K_L b) K_L p> o 1
0 "2 2 g
si(l/weo k (N2 /28)* 1 ke e<b
0
E = (3-22¢)
az ( » p I (K-L b)
: 1 Ye - 0 1
1(1/“’60’(@(“’)) (1/28) xS KO(K;ZD)Q >b
0“2
; 35




Il’ IO' Ko, Kl' are the modified Bessel functions of the given order,

K , K
] & .
eigenvalue; however, it will be retained on the eigenvector so as to

and the eigenvalue K(w) (the @ may be dropped from the

differentiate it from the total field) are related as follows:

g . .5 By 2.2 -
'&1' K -(1-ap/u ) K (3-23a)
2 2 2 2 2
KL KT ity Ko = « K€ (3-23b)
Ik b) K (k D)
5 IE L
- u;/uz) - 1 -— 5( o= 0 (3-23¢)
I b 2
K‘LIO(K‘LI) L9 O 1,

For low Magnetic fields (wc < wo), column surrounded by conductor,
we make the assumption that the waves are slow and therefore are
primarily of a TM type. (8) The exact eigenvectors are then approxi-

mated by the quasi-static eigenvectors:

E =1iAJ (k 3-24a)
az o J_lp) (
63 JI(KJ.IP) 3
Ea = AKae— e (3-24b)
P 1 .Ll
’II(K p)
t1 (3-24c)
H = Aw€ € -2
ae o 3 K
i

ug ug 5 263
= - — = - — Ve - — b= D
53 Eo 1 53| 61 3l —3 KJ- K2E and K © pn (3~244)
w 7w w 1 1 s

P, is the nth zero of .Io. The normalization constant is given (from
Eqg. 3-19a) by:
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K
L1

B = 173 (3-25)
(@ Kaeo/ €) €3DJ1(K‘L lb)

In the limit of large magnetic fields; i.e. uc/w >> 1 uc/wp >>1;

the eigenvectors are obtained from the exact equations and are given

by:
Ea = 1A'J°(KL p) (3-29a)
z !
I(af
= [P -
Ea A > JI(K.L p) (3-26b)
P J.l 1
u€°€
= ! -26
H, A . JI(K. o) (3-26¢)
] ‘Ll =i
where
y 2 2, 2
K= e BE, - K) e-l-\..p/-u
K b=p
‘I'l n
and the normalization constant given by:
K
!
A' = /2 (3-27)
CLIN) Ele(K b)

3

For completeness, the properly normalized eigenvectors for the case
of a column in free space with an infinite magnetic field present are
also derived in Appendix 2, but not reproduced here.

Using these eigenvectors, the various terms in equation 3-21]
can be evaluated explicitly. Expanding the various inner product, the

amplitude equation may be rewritten as:

I




idzaa(z, w) K, (a2, w)*iv@)ad,(z, <)

= -Osf.f(w,wl, @) aa(z,wl) aa(z,uz)é(u -w l-uz)du ldw - (3-28)

where ZL(w, W, 2) is the Kernel of the integral operator. The

effects of colhsmns have been neglected in R.H.S. y(w) and L(w,«,,@))
are given by (see Appendix 3):
For zero magnetic field, column in free space,
2
ot ERE D :
- oy (P(w, Y p) - Wiw,w,,w,, p)] pdp (3-29)
where
2
k(0 K(0y) k() 1/2 LR Wl
Pl,w,w,, p) = 3 5 (3-292a)
1772 > w-w€323ﬂ15250 K(2) (2) K(l)
ST, L Ly i
1
) k(@) k() e mits T
W(w, w,,ws, p) = K(w,) - I
1’72 1 (o Jo :.u_u)€323[3 5152 0 K(O) K(O)
2 l 2 Qo ‘Ll Ll ¥

(2)
+ Koy V2w e o Lo
K(wl)K(w)w1w2w€223ﬁ 31;32 0 "0 "0 K(') 0

+1
(3-29b)
(1) d
£ —-f(wi) i=0,1,2; @ -w, and the prime denotes _CG and
2
I(x )
PR P2
y(w) = 5 u2f3 Pdp+ p) pde
w + [o} K

For small axial magnetic fields, column surrounded by a

conductor:
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2 2 2 2
. % 9. e “p + D
m A ,")' B
up'ﬂdc wuluz .du)l (..Jp‘?\-h)c,
e 3 . =
Ko (©))A()) Alwy) A) oijO(KHp) odp (3-30)

this form of £ is obtained by using the assumption that the maximum
contribution to the nonlinear term is due to the coupling of the longi-
tudinal component of the total field. This is consistent with the quasi-
static assumption (see Appendix 3). When the axial field goes to

infinity,

jb33(;< opdp (3-31)
o
o =1

Note that equation 3-30 reduces to the above equation in the
limit @ —o.
c

The collision term is given by:

9 9 W v€°
Y(w) = A%(@) I (k p)pdop -9—"‘-7 (3-32)
- A 2002
o 1 w +y

The above forms of £ and v apply for the column in free space,
with an infinite axial magnetic field present. However the proper
normalization A(w) must be used (see Appendix 2).

To continue the analysis, the functional dependence of K, on «

must be obtained.

3.2 Functional relation between Ky and w

a) No axial magnetic field:
Since there is only one mode present, the functional relationship

may be obtained from equations (2-23). This set of equations is

A

~




transcendental and an explicit solution for k  interms of « is

impossible. Computer solution of these equations is shown in figure
3.2. In order to carry analytical methods further so as to gain
insight into the phenomena, an approximate analytical function of
will be used for « . The approximation is derived from the behavior

of Keq in equations 2. 23 for large and small w.

For w—0, equation (2-23c) reduces to:(lé)
I (Ko} 2
2,2 2,2 23 2 51/2 . o w
X (Kab K.ob )ln(Kab Kob ) Kp II(KP) :Z
P
w_b -
where Kp = P By &% S8 speed of light.
c
Equation (2-23c) may be further reduced to
5 -
I_(Kp) uib“ 1/2 e
K - (3-33)

= \Kp s )
a Il(Kp) 52 <
thus for w—0, K, and w are linearly related. Moreover, for
m*up/ﬁ , a resonance is observed. The appropriate choice of

approximate equation must take cognizance of these facts. Such a

choice is given by:

2 {
o B s d t
vo\1-2 ww |
o P q
where 41
2 2\

5 e I (Kp) w’b
v2 = uzbz (Kp o + D,) ) ’
Rupo® I,(Kp) 2¢° q

1(

the values of K, obtained from (3-34) were compared with those
obtained by computer solution of equations (3-23) and (3-34). The

values of % obtained for a best fit were:

(.5163422) upb for 14 point fit
v = (3-32a)

(.67163) »pb for 21 point {it
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Since for the range of interest ~<w-,; equation (3-34) may be expanded
as: -
w ., 2, 2 .
g, m== (4w /~D) {3-35)
° F
where only the positive mode will be considered. Eguation (3-33) is
the desired relationship for the no static magnetic field case.

b) Weak magnetic fields; column surrounded by conductor

From equation (2-24d); solving for the propagation constant(s)

D 2 2( A 7 O
v - W ~Ww W )
(« -wp) (w -wc)

For w, < c.ap, the low frequency passband of equation (3-36) is
similar to equation (3-34), except that resonance now occurs at w.
For w < @, < w_ and fixing on modes moving in direction z > 0;

equation (3-36) may be approximated by an equation similar to (3-35)

as:
= . W 272 , 5
K (@) = Kk () = v (1+1/20%/a7) (3-37)
where v =—E—,m——a:—cm
s pn (u-+w
P €

When the magnetic field goes to infinity, K, is given by:

2
- =
- . o B ¢

again, in the region of interest, i.e. slow waves, the above becomes:

k2,22

K, =—=

T (1-0?/wd)
P
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or

2; 2
= - @ g e 2
K, =K (@)= (1+1/24 /"p’ (3-38)
*
Where ¥ /K and KL-p / b. (3-38a)

By equations (3- 35), (3 37) and (3-38), the coefficients that appear in
the amplitude equation (3-28) have been explicitly defined. In the next

section the final form of the amplitude equation is obtained.




3.3 Final Form of Amplitude Equation

Using the approximate relations, derived in 3.2, between
a

and w; Eq. (3-28) may be written in its {inal form.

A. No Magnetic Field:
Using Eq. (3-35), Eq. (3-3a), and the results of Appendix 3 in

Equation (3-28), we finally obtain for the modal amplitude:

id_Q (z,w) + -2 4 o Q (z,w)+i Ze QA (z,w)
o Pp
9 gV
=C1Jw1m2w aa(z,wz)a.a(z,ul)dx +CZ _gwlmaa(z,wl)aa(z,mz)d)\
Q B Q
-l-C3 E})wzml Qa(z,wl) Qa'(z,wz)d\-i-c_4 6fw20,a(z,w2)aa(z,wl)dx
(3-39)
where: dN — § (w -wl-wz) dwldwz
Lf2
» e B l =
C1 " m 5 {w2V6V3 } (3-39a)
2 p d O€0
1.7/2
e b 1 .
b T S { 5 5 } (33967
2 W
p d oo
e b ui 1/2
C3 =+ —y -Z—;- {u Vé y 3 } (3-35%¢)
pd 0 €o
€ 1 Vo 1/2
C4=-;E{u2vb } (3-39d)
p d €5

and i is given in appendix 3,

Multiplying by -i, and recognizing that -iw — at , the above equation

transforms to the time domain as,
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2 2 .
+ C,d, (aad O.Q) +C.d O.,a(z,t)d aa(z,t)rcéo.a(z,t)dt&a(z,t).

Expanding the R.H.S. of the above and collecting terms:

1 1 3 e e
dzaau,m Tdtaa‘z'“' ——5 4 Q (2.t + O (z,t)
(o] v W Qo
°o'p
! 2 3
=C} dtaa(z,t)dt Q,(z,t)+C, Q & O.Q+ C4G,4,0, (3-40)
1 =
where C1 = ZCI-!-CZ-!-C3

this equation is the final form of the amplitude equation. It holds for
times such that aa (z,w) =0 for w>Q2 ., Moreover, the linear damp-
ing term must be modified for cases where aa(z, w) #0 for w< "

These implications will be discussed in section 3. 4.

B. Infinite Magnetic Field,

The final form of the modal amplitude equation for this case is
obtained using equations (3-31), (3-38) and the results of appendix 3
in equation (3.28). Note that {rom Appendix 3, it has been assumed
that only a single mode (the lowest order) is propagating i.e., the

a's reduce to only one. For the case of 2 metal conductor sur-

rounding the plasma column,

3
id @ (z,u)+<w + == ,)O{z,a)aﬁ.c a.iz,u;\
zZ a v o S e

. 2v w
© D
Q
-t ( 3 " \ i T
-C4 gwlaa(z,ul)a.&lz,uz)d\ (3-41)
B
k O\ 3 v I 1°k 5)0d
where C! = 22 "\ I - e T Sk
4 " m 5 J 2 N ¢ .
w o J 3 (& D)
o 1
and C_ given in Appendix 3.
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since

multiplying by -i and transforming into time domain:

IR Ui
a4, A (2,0 —— 4, a_a(z,t) : > 44 2,0+ C_A,(z,¢)

© 2 V{20

r
= C4 Q(Z.t)dt&’.a(z,t) (3-42)

f
when there is no conducting wall present, the constant C-L above is

i 3 e Ve
C4 e 3 > (3-43)

where v_, is given by: {3-38a)

given by:

Equation (3-28) is a Kortweg-de Vries equation with a damping term
for the modal amplitude. It is valid only up to times when the frequency

spectrum of CLQ(z,t) contain frequencies close to wp,

C. Weak Magnetic Field, column surrounded by a perfect waveguide.
The derivation follows the same fashion as that leading to
equation (3-4l) (see Appendix 3), with the exception that the constant
coefficients are different. From egs. (3-30), for the nonlinear term;
equation (3-37) for the dispersion relation and (3-25) for the normali-

zation constant, we have from appendix 3:

4 & (z,¢) §t d Cz,t) - ——1-7 dt3@|:z,t)
z o Vs T 2v w & Q
8 €
= c"Cl(z,t)d,C(z,¢) (3-44)
47 o t o
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where CC a3 collision coefficient and is approximately given

by (3-39)

%3
f J “(k p)ds
C" - ( > +u 'VS OJ " i
$" m w L Jf(k b)
‘e
e ' VS d9+w
"o e
Ci 23— > k 5) 3
o W

Equation (3-44a) is also a Kortweg-de Vries equation for the model
amplitude., For this case, it is valid up to times when the frequency

spectrum of aa(z, t) contain frequencies close to the Cyclotron

frequency, w .




3.4 Analvsis of the Amplitude Ecquation

Comparing the magnitude of the terms on the right hand side of
equation (3-39), we find that the last term [the term whose coefficient
is C
s 4]

serve that this term arises from the nonlinear coupling of the longitu-

is the dominant one. From equation ¢-370of Appendix 3, ob-

dinal electric field of waves of different frequencies. Since, from
equations (2-21), the magnitude of the longitudinal field is greater than
the transverse field, it is expected that the strongest nonlinea rity would
result from interactions involving only the longitudinal components of
the field. Neglecting the other two terms in the R.H. S, of (3-39), the
resulting equation has the same form as equation (3-42), i.e., Eq.
(3-39) reduces to the K-de V equation,

Thus the evolution in z of the modal amplitudes is described by
an equation of the K-de V type. This results in the recognition that
propagation of large amplitude slow waves and surface waves along a
plasma column belong to a very general class of nonlinear wave phe-
nomena, i.e., nonlinear dispersive waves, It is important to note
that the sign of the nonlinear term in (3-42) is opposite to the corres-
ponding one in (3-39). This difference results in qualitatively different
behavior of the solution which will be discussed in the next section.

Noting from Equation (3-18) that, since for each case we are
only considering a single mode, the field solution is:

0

Y (B’ t;z) =X faa(zv "-9) 'Jza(P: w)e-iwt é—‘l;;
-0

where da(z, w) and wa(p,u) are given by Egs. (3-39) and (3-22) res-
pectively, for surface waves and by Eqgs. (3-24) and (3-42) respective-
ly for body waves., In particular, for the longitudinal elsctric field

of the waves:
EZ(D, .‘);Z) - [(Q(z' U) EQ(D' -H)

Putting in the value for Ea(p, w) for either case, we find in the regime

Klb<1

Ez(p,;.;z)"‘ const « iw Qa(z,;u) (3-45a)
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or from inversion:

E (p, t;z)~ - const 3 "/Z‘a (z, t). (3-45Db)

2!
This resultis very convenient since it allows the solution of Egs.

(3-42) or (3-39) to be immediately associated with the longitudinal elec-

tric field of the wave. Thus the Modal Amplitude acts as a potential

whose time derivative is proportional to the longitudinal E field.
Rewriting equations (3-42) and (3-39) as

1 3 . !
2,2t + 5 8, Ly lat) - Gy Ay (2 t) +C L, (2 t)

<" q 5.4 (z,t)= 0 6
=g Q(z’ t) " Q/z’ )= (3-46)
where
v B =0
o il
vl = N ?0 =0
* v Weak B
s o
1/ wgvo No magnetic field
- .2 G S pe
Cd = 1/2\»pr Infinite magnetic field
1/2 Vg i Weak magnetic field
4 vc/vo No magnetic field
Cc column sur-
5 1 rounded by per-
Cc = Infinite Magnetic field{ fect conductor
Cc column in {ree
2 space
C Weak magnetic field
N 3

49




T Y P e

No magnetic

o
(N1
3o
<
ml0<J
Aol ™

field
o
v Infinite mag-
%-e- iB s netic field;
= vy - o column in
Cn free space
I :
k v Infinite mag-
el =l o 1 e
1. 08 ol il = Tk ) netic field;
‘“’p Ve column surrounded
by perfect conductor
3 2 2.3/2
\: 36 e E(_L_ (“’B T rv—s' 1 Weak magnetic
3 m b 3 € J. (k,b) field
W, wp o 1~

With the observation made in (3-45), Equation (3-46) may be
used as the starting point for the study of pulse propagation, of limited
band-width and finite amplitude, along a plasma column with infinite
axial magnetic field, or with a weak magnetic field, respectively.

Ikezey et a134, using quasi-static approximation derived a2 K-de-V
Equation for the evolution in time of the potential of an electron acous-
tic wave propagating in a cylindrical plasma column in an infinite mag-
netic field and surrounded by a perfect conductor.

The K-de-V equation can be obtained for other kinds of plasma
waves, for example ion waves in a cold plasma for the case w__>> u [41]
hydromagnetic waves[42], and for other wave phenomena[4 ] For ape
comprehensive survey of K-de-V literature see [44].

As previously pointed out we could not operate the experiment
in the regime Yoo >> wpe' Results were obtained only for . 0 and
Ben < wpe' Even though the dispersion relation for symmetric body

waves in the regime f < fpe can be approximated by an equation of

the form (3-37), the s::ucture of the properly normalized and exact
eigenvectors is rather complex and is not amenable to analytical mani-
pulation, The coupling coefficients in the equations for the modal
amplitudes (more than one mode has to be conside red[lé’]) ‘7ould not be

simple functions of frequency, and numerical solution would have been
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inevitable., By properly approximating the exact eigenvectors, the

coupling coefficients in the modal amplitude equations could be
simplified, and the analytical result in the form of Equation (3-46)
was then possible.

Since no attempt is made here to solve the K-de-V equation
either analytically or numerically the equation for the modal ampli-
tude will be subsequently normalized so that the results obtained by

others[42]

may be used to enable us to rephrase the results obtained
in Chapter III,
Introducing new variables, and restricting ourselves to experi-

mental conditions:

m
= + upbl C4 l Qa (z, t) No magnetic field
da (z, t) = (3-47a)
nt
- w b c, l a, (2t Weak magnetic field
-g— No magnetic field
z! = (3-47Db)
e Weak magnetic field
up(t - z/vo) No magnetic field
th = ' (3-47c¢)
wc(t = z/vs) Weak magnetic field
We obtain from (3-46) and (3-47):
~ e P,
8, A (2 t") +bC A (2" ) 0,4,z t')
3 AN
- a9y L[z t) =0 (3-48)
wub/ LA No magnetic field
where o' = .
;.;cb/ sz Weak magnetic field




Equation (3-48) is in the "standard form?" (neglecting the collision term)
(42]

discussed by Berezin and Karpman They investigated the evolu-
tion, for different values of ¢', of a disturbance at z = 0, radiated for a
b:unded time interval A, i,e., Eiven &\.a(o, g~ (t'/4). How does
da(z', t') depend on A and «, if Cba(z', t') evolves as in (3-48).

The boundary condition for (3-48) may be obtained from the ex-
periment as follows: from figure 2-7, as the BBG pulse propagates
in the parallel plate structure, part of its energy is coupled to a2 radia-
tion field, part to a plasma guided field and the rest is dissipated by
the termination. The amount of energy that goes into each type depends
on how well the parallel plate couples to that mode. Even though we
measured the coupling of energy by the parallel plate structure to the
guided field as a function of frequency, an absolute measurement on
the percentage of energy of the initial pulse that goes into the guided
field could not be done. The unnormalized modal amplitude at z = 0,
da (0, t) is related to the longitudinal electric field component of
guided field, excited by thg pulse, by equation (3-45a), and therefore
from equation (3-45b):

a) No magnetic field:

v

= l (e b :
I {CQ(O, L) ey <'-— —)Ez(b, 0, %) (3-49)

m 2
o)

Note that the factor in parenthesis has the dimensions of (coul-secz)/

(kg-cm) or of (electric field)-l as it should, Since

V= upb(.67165):
8,2, (0,t) = - 19503 x 10" —— E_(b, 0, ') (3-50)
(>3 wa Z
D

with
; -1
W in sec
b in cm

E o in-SkeSE =
Coul-sec

S5e




Ez(b, 0, t') is the longitudinal field, evaluated at the boundary of the
column of the "already set up® guided field at z= 0. It is not the ac-
tual BBG pulse. However, since the field is applied for a finite amount
of time, we expect that the guided field at z = 0 also possess this char-
acteristic in time, but as mentioned before, its absolute strength is
unknown.

b) Weak magnetic field

From (3-24), E_ (p, 0,0) = E_ (0,4) T (k )

>
2 2
~ un+wc -
9,4 (0,t') =+ (3.664 x10") E (0, t') (3-51)
tt o Z 2 z
upwcb

Looking into the physical consequences of the above theory, let us

first consider the linearized equation obtained from (3-48) when the
”~~N ~

nonlinear term, [(a at, aa’ is neglected. The resulting equation is

the Airy equation with 2 damping term

9, U, (2 t) +bc'c47;(z', #) - a9, (Z;(z', t)=0

whose solution is:

[o o}
~ g i(k(w)z' ~wt')
a, (=, t')-__Laa () e % (3-52)

with
it .
K(w) = dw” - ib Cc

N
and the normalized amplitude Aa (w) is given in terms of the boundary

condition (3_-50) or (3-51):

e 1 © ot
Aa (w) = -(—_m -Ja; (const) EZ(O, t) et dt

and from (3-45), we get for the actual guided field:

ifk(w)z' ~wt') dw

&

0
E, (2!t = f (const) E_(0,w) e

-3

or




..
Ez(z', t') = (const) e-chz' f Gizt, t =1t) EZ(O, £} e (3-53)
-%

with
1
G(z', t') = Ty Ail-
(3dz’) SQ'z

where

0 3
Ai(x)z'zl'?r {- ST /3+\:T)d
-0

Since the initial width of the applied signal is sufficiently small,
then for large z', G(z',t') is a slow varying function, and the solu-

tion (3-53) of the linearized equation can be written in the following

form[42]:
-bC_2"
5 #!
E (z2',t') ~ (const) £ Ai |- ———r-\ for large z'(3-54)
: (32t (3212 )"/

Ez does not depend on the character of the initial radiation as long as
its width is small. However, for small z', the solution depends
strongly on the boundary condition. The solution (3-54) represents a
wavepacket moving away from the launcher with the first peak moving
with velocity Vo for §°- 0, and v, for §°\ 0. The packet spreads
and its amplitude is reduced as it moves. Figure 3-3 shows a plot of
the velocity of the first peak as a function of plasma parameters, i.e.,
wp and w The solution (3-54) is discussed further in Chapter III in
relation to the experimental results,

Next, for the full nonlinear equation, the nonlinear parameter

(42]

typical experimental conditions, assume the boundary conditions for

o provides a measure for the nonlirear effects. To compute ¢ for
Eq. (3-48) to be given at z= 0 + Az, i.e., 2 few centimeters to the
right of the launching plates. Placing the receiving plates close to the
launcher, we observe a wave packet of four oscillations extended over
an interval of time T . Thus, take as the boundary condition for
&\a(z', t') a function of the type:

-~
4’:(0 (AZ', t')= +aod)(t' /"'-Nl) (3'

[ 1}
wm
-~
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Plasma frequency
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f where
|
g A' (L9503 x 10%%) (l/u;b) B =0
‘ dg" 2 e 5p® . (3-36a)

B' (3.66 x10°) —2—=—= (1/wZb) B_ 50

wg P
and
w B =0
P [o}
w, =
1
W, BOE\ 0

A' and B' are unknown constant amplitudes in volts/cm which depend
on how well the BBG pulse couples to the mode field. From [42],

Va'

Putting in for £_ and o*

o)
For B = 0:
~0

e = 4.455x10° T/A" (3-57)
For goxO: ’ N 1/2
w +*w
¢ 74467 210" * —?;2"- /B
1
o W

Taking widths of the order of 5 nonsec., w_ ~ 10. 49 x 109 rad/sec.,
w, ~ 5,18 = 109 rad/sec and o ~ L 4 (see figure 3-4 for the behavior

of a)t

f.ZZ.Z.\/A_" B, =0
o=
\.3654}3" B %0
[42]

From numerical solutions of the K-de-V equation, it is known*

(3-59)

that

a critical ¢ = T 12' exists in the sense that qualitatively different

; ; . 42 .
solutions are obtained for = >> o and ¢ << ¥ H ] Foro > T
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nonlinear stationary solutions of the "solitary type™ are permissible,
whereas for ¢ < 7, "nonsolitary" solutions corresponding to rapidly-
oscillating wave packets are obtained.

Experimentally, the maximum field amplitude available at the
plates (due to the 4, 4 dB attenuation of the 60 nansec, delay line) is
1. 92 kilovolts/cm. Even though absolute field amplitude of the excited
wave is unknown, i,e., A' or B', the first nonlinear effects which
begin to be observed is in the region o < L Therefore in the first
assessment of nonlinear effects, we proceed as in [45] by expanding

the solution of the K-de-V and the wave number as:

é(a(z,t)= € [/(;(6) e 4:(9)+...
(3-60)

k) = K ) e xl(w)+ez Kylo) +a

where

AN
B-Kaz-wt ande-_-e(ﬁa)_

N\
and Kl(u) is chosen to be zero to avoid a secular expression of ZZQ.

In a straightforward fashion, we obtain for the coefficients of

the expansion:

~ -~ 1
dy = cos 8 Uy = =———s o8 28
12 Cdw b

3

I
Ko(w)=-‘7w+Cdu (3-61)

1

(w) = 1.2 2

i
Z4Cdup b w

The critical difference between these results and the linear results in
equation (3-52) is the dependence of the dispersion equation on the am-
plitude. The specific consequence of this observation is that the char-

acteristics of the modulation equations[45]

become doubly degenerate,
i, e., it predicts the eventual splitting of a wave packet into two separate

ones propagating with characteristic velocities given by:
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C+ = 7 for the slow wavepacket
1
o
J“o('“’) *3e b
¥ (3-62)
1
C = for the fast wavepacket.
= 1
Q
e
KO( ) 2 wp b
where f% is the normalized amplituce of the nonuniform wavetrain, and
K‘;(u)=d+“ixo. Using these velocities, we can get an upper estimate as to the
; 2. ) : 45]
distance away from the source at which this separation can be observed:[ :
C
z= C+ ~ T
C+ -C_

or using (3-62):
@w. BT
=

T = m———
=2 b
(o]

For weakly magnetic field, from equations (3-47) and (3-56a); Note
that for surface waves we obtain a negative value for z. The conse-
quence of this result is discussed in the next chapter.)
/
w3 b~ wz
c

P &

3.66:{101‘5 w2+u2 2B
o) c

=

For the typical experimental pa: Heter previously considered!
3

2.06 x10 .
= T (3-03)
thus for a wavepacket of actual field strength of 50 volts/cm, separa-
tion of approximately 3 nansec. will result at 61 cm away from the
boundary.

These results are used in the analysis of the experimental ob-

servations which are discussed next,
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III-4, Results
In light of the analytical results derived in CRapter III, the data ob-
tained using the apparatus described in Chapter II will be subsequently
presented and analyzed. The results for the no anial magnetic field case
are presentecd in section 4.1; and in section 4, 2, the results for the weak
axial magnetic field case are presented, As previously menfioned, there

are two fundemental differences between these two cases:

1. Even though a Kortweg-de Vries type equation describes the
evolution in space-time of a given disturbance, different qualitative re-
sults will be obtained in both cases for the same excitation. This is due
to the fact that the signs of the nonlinear terms (or of the normalized
initial distribution in Eq., 3-46) are opposite. In interpreting the results
of this chapter, it is important to note that the Electric field at the launch-
ing plate points in the - z direction for what has been referred to as the
positive pulse in the preciding chapters.

2. The coupling structures used for either case were different.
The set up shown in Fig, 2-5 was used for the no magnetic field case,
where as for the weak magnetic field, the set up is shown in Fig, 2-7,
In the latter case, the addition of the brass rings allowed for the pulsed
field to be directly coupled to the plasma, improving the launching ef-
ficiency for the body waves. For Bo = O, surface waves were strongly
excited without the need of the brass rings, For these waves, the fields
are concentrated at the plasma boundary.

Each of the above sections, i.e., 4.1 and 4.2, are divided into two
subsections. The low amplitude or linear results are presentad in the
first subsection; while in the second subsection, we presenat the finite
amplitude or nonlinear results,

4.1 Zero Axial Magnetic Field
4,1.1 Linear Regime

For experiments in this regime, the peak pulse electric field at the
launching plates was kept below 192 Volts/cm, At these field levels, the
integral solution, equation (3-53), obtained in section 3.4 is valid. From
this equation, the mechanism that affects the propagation of the pulse is
dispersion,

The vital experimentally controlled parameters which appear in the

solution (3-33) are: the background neutral pressure (i.e., collision fre-
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quency), initial pulse polarity, plasma frequency and plasma column

radius. As a matter of organization, the effect of each of the above
parameters on the propagation of the pulse will be sequentially pre-
sented and quantitatively compared to the solution (3-53).

Pressure effects had no particular quantitative interest to us ex-
cept from the point of view of being able to launch the waves, Due to
the increase with pressure of electron-neutral collision, it was difficult
to launch the waves as illustrated in the sequence of Fig. 4.1, High
attenuation, column striations, and loss of statistical sampling coherence
are the factors responsible for this behavior. For the rest of the ex-
periments, the pressure was kept at a point where collision related ef-
fects had the least influence on the wavepacket characteristics.

The effect, in this regime, of pulse polarity is trivial: it merely
changes the sign of the solution (3-53). In Fig. (4.2a), we displav os-
cillogram in time obtained at z = 56 cm for the ;'positive” pulse and in Fig,
(4. 2b) for the ''negative'' pulse. Figure 4,2b is just the negative of Fig.

4.2a., The polarity of the first oscillation is as predicted from the solution

(3-54). Quantitative differences in the freguency of oscillation and am-
plitude are due to slight differences in plasma irequency and initial pulse
characteristics., In Fig. a, the 'positive' pulse generator produces, at
the launching plates, an Electric field pulse in the negative z direction,
its strength is approximately 192 volts/cm and its duration is approxi-
mately 1 nanosecond. The ''negative' generator, in the other hand, pro-
duces a field in the positive z direction and its duration is approximately
. 3 nanosecond. The seemingly reverse naming comes from the fact that
the labeling is appropriate for the voltage of the front plate with respect
to the ground plate., The evolution in space of the initial disturbance is
shown in Fig., 4. 3. The a)sequence corresponds to the positive pulse
whereas the b)sequence correspond to the negative pulse. This sequence
is explained, in terms of equation (3-53) as follows: at z = o, the
launcher position, a wave is radiated for a bounded time interval. As the
pulse travels to the right, i.e., z> 0, it rapidly breaks into oscillations
due to strong dispersive effects. Since the dispersion is negative, the

long wavelength are observed to propagate at a higher speed,
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Tigures 4.4 2,0, and C show oscillograms in time for different
b >

positions of the receiver. The part of the oscillogram marked with an
A corresponds to free space electromagnetic radiation propagating at
the speed of light. This radiation is observed even if the plasma were
not present (see Fig, 4,2 ). From these curves, we again observe the
negative dispessive propérties of the system. This property is further
displayed by fourier analyzing the wave forms of Fig, 4.4, From the
relation
At Aw~1

where At = spread of the wavepacket in time

Aw = spread in frequency

Thus, as the packet propagates and spreads in time due to dispersion,
its fourier transform becomes narrower. This is displayed in Fig,
4. 5}).

As the averaged plasma frequency is changed, the packet charac-
teristics, are also observed to change. The speed of propagation, fre-
quency of oscillation, width of the packet and the normalized amplitude
increase as a function of £ . Time oscillograms for various averaged
plasma frequencies are shown in Figure (4.6). Figure (4.7) shows a
plot of the velocity of the first peak of the wavepacket as a function of
plasma frequency. Two different methods were used to calculate this
velocity, The first uses the fact that the first observed disturbance r
corresponds to the free space electromagnetic radiation travelling at the
speed of light, By comparing the time of arrival at the point of observa-
tion, of the first peak of the wavepacket with respect to the EM signal,
the speed of propagation is obtained. The second method uses the time
of flight of the first peak between two points. Also plotted in Figure
(4.7) is equation (3-34a), As was pointed out in section 3.4, the speed
of propagation of the first peak is given by Ve The experimental values
differ from the theoretical by 20%, This difference lies in the manner
that v, was obtained, i.e. by numerically fitting the solution of the dis-
persion relation to equation (3-34a), In Equation (3-34a), 14 points were
used to determine the low frequency or linear slope of equation (3-34a),

i.e., Vo If fewer points are used, a large ¥ is obtained (see equation

(3-34b) for example) and a better approximation to the propagation speed.




.

REEERRESEPERIRL ~

e i N | e

Lo

S Niec.

@A A

-

W »

=

""positive"

a)

NO PLASMA

vulse

tive"

(]
i1}

Hne

o)




taf
o

P

4.3 EZvolution

=) ||3

=9

o]
®
vy

b
s

'
w
-t

time =

tine =

Tance

.

|
{
{




e i .

—_—-—‘.‘__A e
: ) g
. —— e — 1
- e —————— e t~
- - E . ik o -
i e et Tmes S trec —— i N
! s Ny
. ‘~ ik
~ 1% e e
~ =\ e = ey mmw L N IEN Y WL .
; " e - £
) ” e &

3 SR, T
—_———— e e
] - - t= " - Tae . 0 miac AT ik
- — e 5 e
= At s X i o Searrueh
. - — — e

ot

’.l.
(2
(0]

: - 4.Times 20 trec

-
=

iz. 4.3 Evolution in space of initial

o) '"negative'" pulse

66

e = 5 nsec

e = §0 nsec
-~ S wa
= ]/ idsec

nsec

#)




B S —————_—— o R — i R—

uﬂﬂ """" ‘_ i .

A‘W hd‘-lr‘-f (g P =

Fig. 4.4 Linear

1

lograms

Oscil

for different

Receiver positions

(positive pulse)

£ = 1.4 GHz

p

¢) z =90 ca




riy

DISTANCE 20CM
INPUT PULSE AMPLITUCE 322 VOLTS

o ...
i .
b i
z i
x
[
& : .
o
(2] ]
5.5— .
; ®
o L]
a [}
2 y
2 . ;
0 L] L]
.o °
(o I T o R O I see
.68 408
FREQUENCY (X10%)Hz
DISTANCE : 32.5 CM
- e INPUT PULSE AMPLITUGE: 320 VOLTS
- ° <fp> = | .2 GHz
2 o8
=
=
= °
-4
5 .
w ]
5.5k .
= L .
g [
g . i
Q
5 .
.
< . A .
O o opa, e, 1 1 .‘.L :
68 1.3§2.042.72 3.4 40
FREQUENCY (X 108) Hz
curier transform of wavepacket Ior
different positions




Fig. 4.6 Linear Oscillograms
for different plasma

frequencies z = 27 cm.

= - \
e b e ! Fime
" 1 T 1 —
e b ool o} el T, s S m e mng S At - |
: \ T E =
e U e e =

69




Velocity of first peak (x 109 cm/sec)

(3%

Velocity of First Peak
vs
Plasma frequency

qu (3"34)
® Eg,(3-34a)

‘ Experiment

l il l l R SO S W |
v? L0 f.t 1.2 1.3 1.4 5 1.6 L7 1.8 1.9

Figure 4, 7




For receiver positions far away from the launcher, i.e., at large

values of z, the far field solution, equation (3-34) is applicable. This

‘J
{
|

implies that the observed oscillograms should behave as Airy functions

of argument @ B (t-2zf vo) /¢ 3 o'z b)l/3 . Using the asymptotic ap=-

proximatioa for the Airy function, the solution (3-54) takes the form:

syl 1 sin [2/3 t'3/2 - H/4]t>z/v
z - 1/-4 Q
Jr (3dz't")

1/3

where t'=wp(t-z/v°)/(3a'z') z'=z/b

the zeros of the above equation cccur at: ;

2/3 (342} 3 (4-1)

Wl dhay ol 2 2o
These values can be directly compared to the properly normalized zeros
of the observed oscillograms, In Table (4-1), we tabulate the zeros ob-
tained from equation (4-1) and from two differeant oscillograms. These
are also plotted in Figure (4-8). If instead of using the average plasma
frequency as measured using the Cavity method, a plasma frequency is
chosen as to fit the nth experimental crossing to the nth theoretical
crossing; we observe that all other (n-1) crossings fall to within 6% of
the theoreticallv predicted values, Larger deviations are obtained for
then=0and n = 1 crossings where the asymptotic expansion does not
provide an accurate representation, The value of w  obtained in this
fashion is 20% off from the value measured by the Cavity method. The
discrepancy lies in the fact that, the Cavitymedmod'measures the aver-
age plasma frequency of a non uniform plasma column, whereas the @
obtained by matching the nth zero is obtained from a theory that assumes
an uniform column. The plasma frequency thus derived corresponds to
a value near the edge of the non uniform column. Thus, we have de-
veloped a method for measuring the plasma frequency, near the edge of
the column, from the zero crossings of the observed time oscillograms.

It has a higher resolution than the Cavity method as seen from Figs.

!
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Table 4.1

Parameters:

Receiver distance (z)

Column Radius (b)

1}

54.375cm

66 cm

Normalized distance (z') = 82.386

’
a

1 (experimental)

1.48887
3.895x107 cm/sec.

fp (from cavity) = .9GHz
Experimental t’ Experimental t’
(w, measured (wy chosen so as to
Zero crossing (n) £ u3ing cavity) fiz% nth zero crossing)
(a) (b)
0 9.14898 12,16 9.623 9.8
1 19.02 28.16 22.28 28,7
2 33.43 43,34 34,33 34.99
3 45.19 2.1 *45.19 46.0
& 55.56 69.33 54.85 55.9
5 65.020 80. 63,30 64.528
6 74.01 90. 65 7371 73. 10
i 82.3131 102.07 80.75 *82.3131
8 90.2908 8 88. 89.7
9 97.899 1211 95.82 97.68
10 105.1395 130,293 103.08 105.06
11 112.28 139. 4490 110.32 112. 45
119.158 148.55 117.52 219 79
125.821 156, 187 123,56 125.9

£
nth zero matched

fp corresponding to column %

(a) = .7T12GHz

(b) = .725CHz2




PPN

Q *F 2anidy

A: a/7-1) a_l 5

051 0F1 oLt o0gl 011} 001 06 08 0L 09 0% (1% 0t 0

I | | _ I _ [ _ 1 _ R

208/ (0F X Gog'E = A /
ZI[) 6 ° = Aouanbaay euase|q /
wo G268 °pg = asuejsi(l x
4
s1a)aRa v [epuaturradxy / Fuissoao
x d :
/ u Funiy woay ) judturaadx
/ C:vu_:
» —aanseauwr Aj1aed woay o) juauaraadxyy
\\ Aroay g,

UEIRERISIELIK!

X
\Y

Jjo s0a9z Jo uonjisod durL], pAZIVIUION

™

6

0l

o
~

i




—— O T Oy o T g ‘1‘!

(#.8). The average plasma frequency as measured by the Cavity was

.9 GHz for both oscillograms, whereas due to small background pres-

sure change, the number density had drifted slightly causing a change

in the propagation characteristics of the wavepacket. The drift cor-

responded to a 37 change which was not detected by the Cavity,
Qualitatively, the behavior of the envelope of the observed oscillo-

graras is as predicted by equation (3-54). However, quantitatively, the

rates of decay of the envelopes do not agree. In Figure (4-%9), we dis-

play the envelope amplitude as a function of time. Two rates of decay

are observed. For rates just to the right of the maximum amplitude,

-3/4

: -1
the decay goes as t , whereas for large times the rate goes as t ,

The asympiotic result of equation (3-34) predicts an uniform decay rate i
of t'1/4. To account for the difference, two fundamental assumptions
made in the derivation of the theory must be modified if a quantitative
description of the amplitude is desired. First, in the desivation of the
collision term, the dependence of (;‘a. v -_'a) on frequency was neglected
in order to get at analytical results. Secondly, sheath effects which in- '
troduce strong landeu dampling of the slow waves at high frequency
must be included in the theory. The high attenuation (~ t'l) observed
for the high frequencies is an indications that this mechanism may be
present,

The last parameter considered was tube radius. Figures 4-10a
and 4-10b display recordings in time and space obtained using a tube of :
radius .325 cm. The behavior of the packet is as predicted by the theory
1 of chapter III with the proper value of radius b, A large discrepancy
is noted (see Fig., 4-11) between the zero crossings of the observed
oscillations normalized to the Cavity measured plasma frequency and 4
those computed from equation 4-1, Also shown in Fig, 4-11 are the
crossings computed by normalizing the experimental nth crossing to the
corresponding theoretical value. The large difference for this tube be- ]
tween the Cavity measured 'op and the ath crossing computed dp is con-
sistent with the previous explanation given for this difference. It lies in

the fact that the small column has a stronger transverse inhomogeneity

in the number density than the larger tube,
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4,1,2 Noalinear Regimaes

As the amplitude of the initial pulse increases, nonlirear effects
start to play a role. Experiments in this regime were carried out using
peak field strengths greater than 600 volts / cm, at the launching plates.
It is important to note that for all experiments (both zero and finite mag-
netic fields), the signals observed in the oscilloscope are normazlized so
that if the response were linear, the observed oscillogram as a functicn
of input pulse strength will coincide. This is accomplished by keeping
the total attenuation, in the path the signal travel, constart. Thus to go
from the linear to the nonlinear regime, the attenuaticn is transferred
from the input of the launching plates to the input of the oscilloscope. In
this fashion, effects that are clearly amplitude dependent are identified,

In Figure 4-12, the profile in time of the wavepacket is shown as
a function of input pulse amplitude. The positive pulse was used as the
source, Qualitatively, these diagrams are similar, although gquantita -
tively they differ in the law governing the decrease of the amplitude in
time and in space. Moreover, the characteristics of the first two
oscillations have changed. Note that the maximum normalized ampli-
tude of the nonlinear response is less than for the linear case, implying
that the surface wavepacket has reached saturation. In Figures 4-13 and
4-14, the behavior of the amplitude as a function of space aad time for
the linear and nonlinear cases are displaved. The slower decay rate ob-
served for the non linear case is explained from the dynamics of the pro-
pagation as described by the mcdel developed in section 3.3. For posi-

tive pulse, EZ(O, t)~ = | Ep(O,t) |, where Ep is the pulse field strength.

Thus for any value of o, the solution of the K de V equation is always
oscillatory ?nd the character of the solution is very similar to the linear
result, (42 ] A physical understanding of the processes taking partin
the propagation of the high amplitude pulse may be gained from the
fourier transform of the observed oscillograms as a function of plasma
frequency and receiver location. In Figure 4-15, we display side by
side the nonlinear response, and the corresponding power spectrum

as a function of plasma frequency. In Figure 4-16, the plasma frequency

is kept constant and the recordings are shown for 3 different positions.

These diagrams show the channeling of energy from the lower fre-
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quencies to the higher frequencies which in turn are strongly attenuated as
explained in section 3-3. This accounts for the saturation phenomena ob-
served. Note that the region of interaction (inflection point retion in nega-
tive slope side of the power spectrun) is a function of the time of interzction
between the different frequency comporents of thg packet. For a fixed
receiver position as the plasma frequency is decreased, the packet
velocity decreases thus increasing the interaction time., Similarly, for
a fixed plasma frequency, the further away from the launcher the more
time the components had to interact. This phenomena causes the in-
flection point in the power spectrum to move toward lower frequencies.
The effects described above were not observed when the negative
pulse was used as the exciter., Even though for this polarity Equation
3-48 predicts quantitatively different results, the maximum amplitude
available at the plates and the width of the pulse were such that ¢ is al-

ways much, much less than v.. Figure 4-17 shows the plasma response

for the maximum pulse strength available with the negative generator,
Also shown is the power spectrum of the response. As can be seen from
the diagrams, nonlinear effects were not observed using this excitation
as expected from the values of the nonlinear parameter for this pulse,
4,2 Finite Axial Magnetic Field

4.2.1 Linear Regime

Since all experimental "'idiosyncrasis'' have already been discussed.
In this and the following subsection we need only present the results,
Pulse amplitudes corresponding to field strengths of 61 Volts /cm were
used to excite the linear Bulk Waves. The pertinent parameters for this
series of experiments were the plasma frequencies and axial field strength.
In figure 4. 18, we display time oscillograms, recorded 48 cm away from
the launcher, as a fuaction of plasma frequency with Bo fixed and in Fig,
4,19 as a function of axial field strength (with plasma irequency fixed).
Again, the region marked with an A in these oscillograms, corres-.
pond to electromagnetic radiation that will still be observed if the plasma
were not present. From these diagrams, we compute characteristic

parameters that describe the propagating wave packet and compars them

with the theoretical values obtained from equation (3. 34).
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When the DC axial magnetic field is applied, the wavepackets

are observed to be noisier than for the zero field case (compare the
oscillograms in figure 4-18 to figure 4-2 for example). Therefore
care must be exercised in processing the data. To calculate zero
crossings and to digitalize, the waveforms are retraced so as to
smooth out the jitters, In fig. 4-20, the zero crossings of the experi-
mental wavepacket are compared to those of equation 3-54. For this
case, choosing the values of 2 and w. so that one theoretical zero-
crossing is matched with the c5rrespondi.ng experimental value, all
other crossings are matched to within 10% of each other. The
chosen value of up is within 20% of that measured by the cavity and
w_ is within 8% of that measured using a Gauss meter. Another
characteristic of the wavepacket is the velocity of the first peak.
Fig. 4-21 shows the behavior of this velocity as a function of plasma
and cyclotron frequencies. The behavior is as predicted by the theoret-
ical model (see Fig. 3.3). The quantitative dependance of amplitude
vs. time was not determined gualitatively however, the waveiorms
behave as expected from eq. 3-54.

For this regime, the experiments compared quite favorably to

the linear theory.

4. 2.2 Nonlinear Regime

As the input electric field is increased from 61 volts/cm, gross
nonlinear phenomena begin to occur. From figure 4-22, one observes
that signals arrive sooner than the linear waves and considerable
modification of the original wavepacket begins to take place. lose
examination of the lower trace, for which the exciting puise is largest,
show what appear to be superposition of two wavepackets. Note the
discontinuity in phase between oscillations. That this indeed is so
can be seen from the Fourier transform of the oscillogram. The
spectral amplitude and phase for each waveform in figure 4-22 is
shown in figures 4-23 to 4-26. At linear levels (figure 4-23), only
one peak (C) is shown corresponding to the wavepacket of figure 4-22a.
The slope of the phase represents a time delay irom some reference
point (the point of arrival of EM signal for example). It can be -

used to calculate the group velocity of the packet since the distance

the signal has travelled is also known.
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At higher amplitude two distinct phenomena occurred (figures
4-24 to 4-26). First is the appearance of a low frequency peak at
f=.14 GHz (A), and second is the splitting of the original peak (C)
into two ((B) and (C)). Recalling the technique used in obtaining these
oscillograms (loop gain constant) it is evident that these changes are
due to nonlinear phenomena. Moreover, the possibility of these peak
being higher order modes was ruled out by the fact that:the group
delay for these modes is much greater than for the lowest order mode
(see equation 3-37), 3

From this figure , the amplitude of peak A is observed to in-
crease very rapidly as the input level is increased. The frequency
shift is negligible. No further analysis has been made of this packet
but it is suspected that it belongs to the class of solitary waves.

The main concern is with the splitting of the packet (C). As the
input level is increased, there is a shift to higher frequencies of the
original peak. A gradual appearance of another peak B at the low
frequency side indicates another wavepacket. From the slopes of the
phase at these two peaks the difference in group velocity has been
calculated. The higher frequency packet (C) was fournd to have a longer
delay and hence a lower velocity. According to the modulation theory,
the difference between the time of arrival is proportional to the
amplitude (see section 3.3). This is clearly shown in figure 4-27;
moreover the observation that the higher frequency wavepacket
travels at a lower velocity is also in agreement with the modulation
theory results.

Since there is no absclute measure of the field strengths in the
plasma, a quantitative comparison of this velocity difference between
theory and experiment is not possible. But f{rom the measured time
difference and the group velocity of the wave, we can calculate the
required field amplitude. From equation 3-63 ,to achieve the .
largest observed separation of 3.4 ns over a distance of 56 ¢cm, the
wave amplitude of the wavepacket required is about 50 v/cm. This
field represents a total energy of about 1. 3:-:10'9 joules in the wave-
packet. The energy contained in the exciting electric field impulse is
about 3x10.5 joules. Since most of the energy of the impulse goes

into the dummy load and radiated to outside the parallel plate structure,
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it is of interest to estimate the coupling efficiency, i.e. how much ]
energy can be coupled into the plasma. As a rough upper bound
estimate, assume that when the impulse field arrives at the plasma
tube, the 2kV/cm field is applied to all electrons in the region between
the plates during the pulse duration (At= 0.4 ns), and each electron
would gain 2 momentum of eEAt. The total kinnetic energy gained by
all electrons in the region in this way is of the order of 9x10™ ' joules.
Comparing the orders of magnitude of the three energy levels, the

50 v/cm field required to produce the measured separation of the
wavepackets is certainly reasonable for the experimental setup used.

The modulational splitting of the wavepacket has been observed.
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ITI-5, Concluding Remarks

In the foregoing, we have described an experimental and theoretical

investigation of the propagation of finite amplitude slow waves excited by

high amplitude baseband pulses. The subject of symmetric slow mode
propagation nas been incorporated into the framework of noniinear dis-
persive waves. Theoretically, it has been shown that for typical experi-
mental conditions (i.e., I Q, w < up’ @, >> up), the propagation of the |
symmetric slow mode is described by the Kortewig de Vries equation, with
the magnitude and sign of the various coefficients of the KdeV equation
being different in the various regimes considered. This implies that

given equal initial conditions, different effects in the propagation mode
will be observed. The close interplay between theory and experiment leads
to a good understanding of the experimental results. Although linear
experiments on the propagation of this mode have previously been done,(3l)
far better resolution has been obtained here. To our knowledge, neither
the experimental nor theoretical results of the ncnlinear problem have been

previously reported.

There are two areas which need further investigation. The results
of that investigation will further substantiate the theory developed here i
and will aid in the experimental verification of the general theoretical 3
results obtained for non-stationary waves propagating in accordance with

the Kde V equation .( ) ‘;

First, as mentioned in Section 4.3, 3, the nature of the initial peak :
in the frequency spectrum has not been determined and second, nonlinear
experiments where the polarity of the exciting pulse is negative must still
be performed. We will not consider the first area further and instead
comment only on the second problem. The first implication of reversing

the polarity is that, theoretically, the phenomena observed for the weak

field case should now occur for the zero magnetic field case and vice versa.
This is a consequence of the sign of the nonlinear term in equations (3-47)
and (3-48).

In conclusion, it must be noted that in order to experimentally

obtain a wider range of parameters, the experiment as described should
be modified in two ways: the duration of the pulse should be increased,
and the cathode arrangement changed. Increasing the pulse duration

enhances the nonlinear effects (see equations(3-57) and (3-58)), whereas




changiﬁg the cathode, to a flat cathode for instance, will eliminate the

rotational instability of the column, cbserved at high magnetic fields.




III-6., Apvendices

6.1 Formal derivation of overators

Equation (3-1C) may be written approximately up to second

order in the field variables as:

E=E(l)+‘i(2) 6-1)
where,
mdtg_(l) + mz/c\_x_(z) = - enOE_.‘_ - euog(l) x Ho (6-2)
and
mae® b ® s B D ge gy @y
) (6-3)

Formally solving (6-2) and (6-3),

1) 4 -1
1)« - mat - ey x ) +my D) en 2 (64
2 - - _
- fmdl, ] g B 1 [ﬁ s ‘i“)‘i(l)+e‘ E] {6=3)

Defining the inverse operator:

n (dt’ Ijo, UC) = (mdté -ey +my 1) en (6-6)

= m - . = - - =,
g -ME+—V. #E7E-Z2EV. E} (6-7)
n_e Qo

which is used to arrive at equations (3-153).

Defining the time Fourier transform of a field variable as:

~iwt dw
2

fr,t) = | fmle

=L

Applying the above to equations (6-6) and (6-7), we obtain:
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-, oy o= =
: : ' (ep H [ r)
im*w l-—--—o-_——-—
2
o
f(w,Hyv)—~| M, @ 0 (6-8)
’ n_ e noe(ep.oHo/m*)
0 mn, = :
im*w 2 (e H /m*)
- 2 0o 0
m>w 1- e
@
=l E _m
w(@,w)= Q(wlljo,vc){g(iz,w)*'nze
o

€

e

SO B v )Ee T 5, B,y )E 4d
[ Ew V.Ew d\}
en ~ 1= 2

where m*=m(l +ivc/ w)

(6-9)

and for any two vectors E(Q, t) and (_._“:(*.‘_2_, £},
JEo Guott = [E(r0)) Glr, 0 )blw-w -u,)dw du,
Using (6-8) and (6-9), the transform of L in equation (3-16) is given by

L(-iw, ‘7t —- i

iwe (1+=— (o, H_,v )]
o= €°vJ = Q C

v.xl

1uu°l~_
Evaluation of the eigenvectors

The eigenvalue equation (3-19) may be expressed solely in terms
of the transverse components ofwa as:

6.2

-

(40)

=t o A E-c>x\/t:vtxz--c:)‘ ga: KaI:-Iaz %25
AR t t
o)
(6-10)
1 1 -
wp l, - —5 T ) (R - L O P
o=t w “e 5 t€3 t o) at a~0

where




e

..-—“——v—,ﬂw‘wv—‘—-.

w7

G

e
@

+

-

g(u,Ho,vc) p<b

§=§t+z~o?‘~o€3 = (6-11)

p>b

h—

and the longitudinal field components may be obtained from the trans-

-1 e
R 4 4 E
c ~X/Qt
Har
z
: -1
ey ) - V %2 - /\gat

Note that since the operator Lo takes different forms in the range

verse components via:

o] (iu€3€o)

0 < p< =, likewise ‘u_‘:'a‘s will have different representations.
In general, the total field corresponding to E, and H  will
have both E (40)
%z

TE or TM mode representation is possible; therefore a complete set

and Haz components. This implies that no

z
of modes must be composed of TE and TM modes. In the following
analysis, we will restrict to the cases: a) zero static magnetic field,
b) infinitely large magnetic field and c¢) weak magnetic fields, i.e.

te
first two cases result in substantial simplification in the form of the

w <;upe, and the column is surrounded by a perfect condition. The

eigenvectors and eigenvalues. For these cases, Egs. (2-3) can be

satisfied with either Ea or Ha equal to zero. This implies that

two independent solutiong are poszsible. Since neither the nonlinearity
nor the boundary couple the two solutions and since initially only E
modes are generated by the electric current source, only these will
be considered in the field representation. For the low magnetic field
case, we make the assumption that the waves are slow and, therefore,
are primarily TM type, i.e., the actual field eigenvectors are approx-
imated by quasistatic eigenvectors.

An implicit assumption, when representing the total fields as a

superposition of modal fields, is that the modal set (or eigenvectors)
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is complete, i.e., they form a basis in terms of which any arbitrary

vector may be represented. A statement of completeness may be

expressed as follows:Ho)
1
Y4 g, @ =18 -0 (6-13)
a t ¥

The sumation in (6-13) is to be interpreted as an integral for the case
of continuous spectrum and as a sum for the discrete spectrum. A
direct procedure for determining the spectrum utilizes the character-
istic Green's function for E modes. (49 The properties of the
Green's function in the complex K, plane are investigated; and from
pole and branch singularities, which contribute to the integral of
Green's function along a suitable contour in the complex Ko plane,
the eigenvectors are obtained. In this case, the question of complete-
ness is assured although normalization as in (3-19a) is not. This
procedure will be used subsequently for the determination of the mode
vectors of the zero axial magnetic field case.

For the other two cases, we proceed directly to obtain that part

of the spectrum associated with guided waves.

6.2.1 Eigenvectors for zero magnetic field

When Ho is zero, then tensor € degenerates into a scalar
. . 5 ©p L s
quantity. In the plasma region, € — 1 (1 -—5"). Since foran E

W
oxEq = 0, we have (from equation (6-10) for the scalar

Green's function:(40)

mode ‘\7t .2

7.8 +€g = - 8(o-p") (6-14)

where

2.2 € < b
KJ_. T 9 K,Sg ey, P
i

2

K =

i

: 2 2 2
K 2w € =K p< b
.L2 U'o [o] [+
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Boundary conditions for g may be obtained from (6-14), since it is

valid for all p. By integrating across p= b and p = p', we have
the conditions:

1) g is continuous at p=b and p= p!

o!
€ +
2)——-‘7g/ =5
2 v /el (6-15)

&4
+
€ b=
K -
+4
-+
for a symmetric source of electric current located at p = b, the

solution to (6-14) satisfying (6-15) is:

f
-J (k b)J (k p)
943 % 14 5 <h
A
g = < (6'16)
9
-J;(K b) HO(K b) Ho(/c p)
11 J.2 L?_ o >b
Rl b 2
\ 9 5y
€ Jl(K_L b)Ho(KJ_ b) JO(KJ_ b) Hl(ﬂ b)
e 1 2 1 2 a
where A = - (6-17)
K K
L1 L2

and Jl, IG, Ho’ Hl are Bessel functions of the first and second kind,
respectively.
The spectral representation in (6-13) may now be obtained by

integrating the scalar Greens function along a contour that eacloses all
(40),

singularities of g. The desired relationship is given by




d’a(x‘ P18y L, p) = e QZg(p,p'; ko) d K,

1 °© 1) L]
i ZTi § A
& (6-18)
2 2 D
. ¢ JO(Kle) HO(KLZD) HO(K_sz)d Ky
ert c Hz(K. b) =
[e] J_Z

the transverse component of ‘Ea is obtained from d):‘ using,

K 1 p< b
— = § is= (6-19)
¢ K~ we 2 p>Db
&

The integrand in (6-18) is analytic everywhere except for a finite
number of poles and branch points. For real Ky only a single pole
exists at A = 0; the branch point corresponds to x =0 for which

b Ky = tw JE . The pole contribution gives rilsze to a guided suriace
mode, while the branch cut contribution gives rise to a radiation field. (46)
For the excitation problem both contributions must be included,
specially at the source. In the far field we only consider the guided
wave, but as observed in Chapter III; we do not know the absolute field
strength of the guided mode since we neglect to include the amount of

energy extracted from the source by the other mcde types. For guided

modes, k = ilk [, « =1ilk | and from (6-18), we have for the
: L & 12 L2
guided moées:
I
°(KJ-1 G
_— o<b
/ 3 A
“a
o * )
JE_,(KL b) KO(KJ_ o) p>b
g 1 2
I, KO(KJ_Zb) a( o
, Ta




with Kq given by:

€l (k b)K (x b) I (k b)K(k D)
L1 %L ° 1 i2
- + - = 0 (6-20)
=1 +2
From (6-19) the transverse field components are given by:
f K Ié(xil P)
P p<b
we _k o A ~
® a3 K,
&, = < (6-21)
t 1
IO(KL 1b) Ky KO(K"'ZP) :
- P P>
k K (KJ_ b) —
g =2 sze o,}aKaA
4 Il(x p)
€ +1
- 8 p<b
&y ,/3" A
5 { a (6-22)
bl ® Kl(K*zp) 8 b
- e P>
~ KO(KL zb) “L 2“/ 9 x A
a

Even though the potential functions are orthonormal; the transverse

components of the eigenvector do not satis

normalization is introduced by defining a normalization factor as follows:

Izl(:c ple
L1 Q
Na=2f > pdp +
o x‘L , 8/( A we
1 a

the above can be rewritten as:

" Zﬁoca
P

a w€°3

where

fy condition (3-1%a). Proper

-

Pk b) _ Kilx p)
> L1 i2 odp
2.
Ki(;izb) ﬁz%’/a"aa :
(6-23)




Bk p)e 2k b) = Kix p)
1 S Ly 1y
2 o 2
o K X%k b) P
L1 ° L L2

(6-24) is evaluated explicitly by using the formulae(47):

° T 1.2
JI(k plpdp=-3b {11 (k D) -(1+ =)/« b)}
° *3 *3 kb £l
B
g 2
2 Dot
Jx2(k prpdp =3bPKL(x B) -1+ )Kik B}
) =2 +2 kb +2
2

the characteristic equation (6-20), and the approximate dispersion
equation (3-15). In the region « b< 1, we can expand the Bessel
L

functions in the small argument relgime and obtain:

2 mzvz

b) —Lf— (6-25)
1 W

b
p = 2 IO(K_L

where

= = - 5 with v_ given by (3-34)
u.:pvo C

A pofr—

and C speed of light.

The longitudinal component of the eigenvector as defined in (3-22) is
obtained from (6-23), (6-21) and (6-12).

6.2.2 Eigenvectors for large Magnetic fields
In the limit of large magnetization, i.e., u(/u >>1 w >> u.)p;

transverse electron motion is effectively inhibited and the plasma be-

comes non-gyrotropic. The tensor € in equation (6-10) for p <b

reduced to:

1§ 0
€ Q 1
= wDZ
0] 0 l-—z—
W
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The guided eigenvector components may be obtained from a
potential ¢ as:

K
= 2
E, =~ = Vt o _ (6-26a)
t K
« *2
and we |
"""t= —“a zZ, % Za, (6-26b)

where ¢ obeys the equation:

Vi (D+Ac2 ® =0
5

(6-27)
i
QZ
with o= 1-3-) k% pch (6-28)
=t w +2
-
K=
J‘i >
KLZ = (WP e, - Kg) P>D (6-29)

equation (6-27) is solved subject to two different boundary conditions:

1) column surrounded by a perfect conductor and 2) column in free
space.

1) for a perfect conducting boundary the solution with proper
behavior at p= 0 and p=b is:

$=AT (k ) (6-30)
L1

with k b = P, where Py is the nth zero of the Bessel function J’o.

L
Using (61-26) and (6-12), the eigenvector components are given by:
2

K w
=2 (1-—5-) 7T,k plp +iJ (k p)z
Ly @
¢ Al (6-31)
e WE 0)2
= (1- =B~ ) I, (x p) @
K e
i1 W

10




bl st s i s P, . 5 ra—— o e
? v = _ e ———

the normalization constant is determined from the orthonormality

condition (3-19a):

fb{ o W€ u_)é - 2 iweo{ u?']z W *
1=A" | {(ix) (1- ) I (k pltik (—==[l-=] J7(x p)) }pdp
o - KZ uz 3 & aKZ uz 1 +1
J.l .Ll
for K4 real , we have
K
L1

A=

2
()
,/uxa'eo' (1- u—_,E) le(KJ.lb)

If the @ index is separated into two indecis: m = mode type,

n = mode in mode type; we have:

- 4 -y  since only E modes are considered.
a mn n

2) Column in free space
The solution (6-30) of (6-28) is still valid in the region
o < b, the plasma region. For g > b, the solution that satisfies
boundary conditions at p = b and appropriate to the discrete spectrum

is:

J (« Dbl

PP iF K 6-31

o=A K (k b) O(K; p) (6-31)
o J_Z 2

where ¥ and « are real and given by (see 6-29):
2 el
2 _ .2 uZ x
K"'Z = Ka Hoo

and the boundary characteristic equation

& J.(x B) xK(k b)
Bl 4+ & 4.21 L
T R e T -
J (k b) T OB iR 8 B
o ;1 Q _Ll

from (6-30), (6-31) and (6-26); the field components of the eigenvector

are:




’ 2 2 2
-xweown ve 3 €, 2
(w2+ t;c)wz (w2+ vg)
YV=L-L = i
= o
0 N 0
in the regime Vc/w << 1,
2
W VCEO .
Lo u2+Vi
0 0

: ‘/p % “’Dzvceo
yw)= (,xd)=i | E - E pdp
a'="a s a a w2+_v2
2
2 1 I
g i “’p‘-’c Ka {jb I(KJ.lp) 4 +f O(K IP) . }
¥ 2, 2 w2p 2 i g
W +v Q K o K
< "'l a

The integrals in the bracket are evaluated using the formulae

in section 6. 2. After approximating in « b< ! region:

2.2 ‘1
inU & b IO(K,L b)
yw) = B < a 1
(w2+V¢2) - ni

using the expression for B from 6.2 and the linear approximation for

B 1.8, K. =~ ,
a + %a W/

)
. 2
vw) = ==t
(w +Vc)vo
forv./w < 1,
iv
yw) ~ Vq independent of frequency. (6-35)
o

1z
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for p < b,

Jo(x b)
+1
E =iA ———— K (k¢ p) (6-33a)
a, h°(‘<¢2b) ° L,
JO(KL]_D) <, h
Ea - 'A K (K b) K l(‘L P) (6‘33b)
P 9 Lo L2 2
Jo(ﬂlb) we_
H"e = -A T 0 & z(l(tcL p) (6-33¢c)
° 12 2 2

for p > b, solution (6-31) holds. The normalization constant A' is

obtained via (3-19a) as follows:

Zx b)

3
2 K W€ b 11 } 1 cc,
L= 287" =2 2{/— Ilz(x plpdpt—>—— f&f(x plpdp)
i oKk L1 K%k b) d 3
2 "'2 e} ‘LZ

evaluating the integral as in (6-24); the approximate value for the

normalization constant is:

K
+2 W
Al = - (6-34)
u)pr'o(K.le) K€

the desired eigenvector is given by (6-31), (6-33) and (6-34).

6.3 Explicit evaluation of nonlinear and collision operators

Using the eigenvectors derived in the previous section and the
approximate dispersion relations presented in section 3. 2, we can
explicitly evaluate the collision and nonlinear operators in equation
(3-28).

6.3.1 Zero Magnetic field

When I:_Io =0, the operator Y in equation (3-21) takes the form:
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TRy

the above equation is the same equation obtained by Trivelpiece et al(s)

Ok
a

oW
Neglecting the effects of collisions, the nonlinear term in equation

since 5 Rk forw<< w

(2-21) is expanded as:

\
i[Ea(w).N'(:(aE_Ja(w))]

1 e€° wg eeo uz wl o
- 7 = o
== [{2 530, + =2) [2,(z.0))q,(z.0,) 9 E5E, . Eg’)

W, W +
+a, (203, 4 (50,)E P (E L ERD)]
2
- Wy wy)
+wlwzm QG(Z'UZ) [E-:a '(anzgu(z'ul)ga
c"‘2 Gy Wy .
+[(a(Z,U1) Ea : VTE_JQ e §a}0(u-w1-w2)duldu2

W
L 3 . 5 " -
where ‘Ea is the eigenvector associated with the amplitude ~(a(z.ui). In

order to simplify the above equation, we expand ./(a(z,ul)az;’(a(z,uz) up to

second order as:
UglZ 9112, 4 (2,0,5) =4, (2,0)) ik, (W,)F (z,0,) (6-36)

Using this expansion, the first square bracket term becomes zero

while the second is expanded to:

2
e€ W (z,w,)H(z,0w5) B W W W ) W wE
- oj_faa 1% Z{f[EzaElE +EZaEle
mw Wy w, - g a@app ap Tap ap p ap ~az
Wy Wy w* wz Wy w*
*ik,W)E Eap Eap +ik, W )E E - Eaz] pdp}o(u-ul-uz)culdwz

(6-37)

putting in for the eigenvector components f{rom section 5-2 we obtain

A
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equation (3-29).

Putting in for $ from section 6.2 and letting II(K pl~3k 2,

1 ~1 L1
.[(2') (2)/" I(k p)i.e. k b <1 regime, the nonlinear term
Mg "1y Ly
corresponding to P 1is evaluated as:

ulwzub4 e
A ¢ i (W-w. ~&.)dw,dw =
f T3 (2.0 Glz.0,)8wmw) -0, o du,  (6-38)
u vdv b € )
where 2
v
o)

v
d (l_vg/cz

and for Ka(hi) the linear contribution has been used. Similarly the con-

tribution due to w 1is evaluated

2 (2) ; (0); (1)
g 3[{ wy W 1 | beo L b
B e Bty e a Ul Plg KL(I” x;l(°)
-(1); (2), (o)
vV W b L1
ey 1 (1),(2), (@) _ (1) 1 »
e A ey e R s A, o e
(vob vdeo) o o o & 1y
Q (7504 (2,0,) 6(w-w,-w,) dw,du, (6-39)

K
L
letting Il- 2—1 Io and expanding Io to first order (for k b< 1),

the integrals in (6-39) can be readily evaluated. Combining the result

with equation (6-38), we arrive at equation (3-39).

6. 3.2 Infinite Magnetic field.
When the magnetic field is large, the nonlinear term in equation
(3-21) reduces to:
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S 2“’3 g b Wy W, W
UNGE e Bl oy JUGE + 09 up0, qaop f2, %718 pep
: 22 2 z Z z

E, pdp} dw-w,w du,du, (6-40)

2!

uZ
— : D
7 E = -ig (1 -=—)E
qg ~ap a uZ a,

Using above equation and the expansion of (6-36) in (6-39), we obtain

for nonlinear term:

e i 7
€ . 2“)9 W
+

y j{( 'le UZ W= 3
muw wlwz o

e T do;
a a_“q PP
- R

Ll W] (G I V)

E
) i Ka<“1>aa<2'”1>ci‘2».“z>g E

Hw Wy -uz)dwldu 5

Putting in for Ea from section 6.2,

z
€ e 2w wz
i '1:,) f{(w 3 + g ) Ka(wl)(az(z,ul)%(z,wz)A'(w)A'(uZ)A'(uB)
i 152 wy
2 3
W el ‘.
(/)‘Jo (Kllp)pdp,. 6 (w W, uz)dwldua (6-41)

the form of (6-41) is the same for both cases: column in free space and
column surrounded by perfect conductor. The difference lies in the
explicit form the normalization coefficient A'(w) takes. When the column

is surrounded by a perfect conductor the normalization is (from section

6. 2)¢ K
Al) = =1 L (6-42)
b 2
SRRE T
Wk €)°(1- o ) b Jl(‘“:’)
w N
where x b = Pn - P, is the 5 zero of J,+ Assuming that only the
L1 f -

16




lowest order mode is present (higher order modes are slower and

34
consequently attenuated at a faster rate)( ),

k b = 2.405
=1

and equation (6-41) becomes:

; 1
e pp MBI RIS] B2 42 4080 5 L] -
=+EJ{ 4 (E—-) I3 3 S (Z.'u)l)
w o b J (kD) =
] C(a(z.wz)é(w-wl-uz)dwldwz (6-43)

In the above derivation, it is assumed that w < wp. so that the linear
portion of the dispersion equation gives the maximum contribution to
the nonlinear term. For the column in free space,
“
2 / ®
Al(w) = WPbJO(Kle) < (6-44)

and (6-41) becomes i

b 3
(20, 40,) [T [Ttk plede
-E.f{___.l___z_ £ 50 -0, YA (2,w,) A (2,w.,)8w-w.-w,)dw  dw
= 3.3 Ve I Hg \Be R Rl o Sl b
1

m ) 3
Lupvxb o} JO (k b)

L

(6-45)
where the same assumptions leading to (6-43) have been used. (6-43)
and (6-45) lead to (3-42).

The collision operator for large magnetic fields is given by:

/ -iwe €' 0
o=

"<
"
[—c
'
t—‘
o
n
-

o] 0
where 0 0 0
€' = 0 0 0
a_ . 2 2
0 0 "¢ ®p - Vvd? 1
! 3 > Bk, epe—
W /u4+L%) W (W +eD)
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The collision term takes the form (for v /w < 1),

{b % w Ceo
Ww.»u)l)=1 | E E ( ypdp
Ll s %% 9 w2+V§

putting in for the longitudinal component of the eigenvector,
2

. b 2 7 Yy e € 2
=i fA' ) JO(K P)pdp] S - (6-46)
) 41 Wt v

Again, the above form applies for both column in free space and column
surrounded by conductor. Using (6-42), the collision coefficient when

the column is surrounded by a perfect conductor is,

b
« 2o [Tk elede
L1 o =
y(w) = 5 = forv./w< 1
w%b 72k b)
P 1 .Ll

and again we have assumed that w < w, . SO that the major contribution

to Ky arises from the linear term.
Similarly, for the column in free space:
v b
c 2
y(w) = = fjo(ﬁlp"’d"
o

"ecb J (K-‘-lb) o

6.3.3 Weak Magnetic field.
To obtain the Kernel given in (3-30); the nonlinear term in
equation (2-21) is expanded in component form, and consistent with the

slow mode assumption, we only retain the term arising from the coupling

of the longitudinal electric field. Forw < w, < wp , this term is given




Using the expression for the z component of the eigenvecter (from 6. 2. 3)
& >

to explicitly write the irner preduct:

2 2 2 2
1 e . wp up Wl W . i
= ™= J[(2~ 202 ) R i 2. 2 2 Ka(‘“l)“/a(‘”ul)'f:‘:'wz)
w tw 1=2 W, (W_+w )
P 17p e
R 3
. Aw) Al AW) 0{30 (K‘Llp)pdp 8 (w-w; -0, ), du,

Putting in for the normalization coefficient A(w) and proceeding as in

fe 6. 3.2, we arrive at the final form (3-44).
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IVv-1. INTRODUCTION

The parametric excitation of instabilities in plasma
has been the subject of intensive and extensive studies,
both theoretically and experimentally in the past decade.
A recent surge in interest has been prompted by the fact
that anomolous absorpticn of microwave power through

parametric interaction can be an effective method of

heating the plasma.l_s A complete survey and review on
this subject can be found in a recent work of Porkola’:.6
Essentially we can group the results into unmagnetized
and magnetized cases, and a brief summary on its develop-
ment is given.

In a parametric interaction, a pump wave supplies the

energy to the coupled modes to overcome their natural f

(=0

damping mechanisms. These decay instatilities in turn
may act as a pump to generate other oscillations. The pro-
cess can be viewed as the background plasma being modi-

fied by the external microwave pump of sufficient power;

1

the threshold level is arrived when the imaginary part of

the complex frequency of the wave (assuming a time va-
riation of exp(-iwt)) becomes zero. The existence of
this threshold level is an important characteristic of the
parametric decay phenomenon; any further increase in power
above this level drives the excited waves unstable.

B .

There has been numerous work done on this sub

e
ecv.
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Nishikawa.7 using a general coupled mede formulation,

obtained the expressions for the growth rate, frequency,

and threshold for the onset of the instabilities, when two

natural modes of the system are coupled and driven unstable

by a third oscillation. Then these results are applied to
fluid model electron-ion plasma, in which a microwave

pump drives an electron plasma wave and ion acoustic wave un-

stable.a Dubois and Goldman derived <he non-linear sus-

st ’ Wk -
ceptavilities using quan*um, statistical-mechanics approach,”
2 10 : : - :
and in a later paper, using the collisionless Boltzmann-

tum -statistical method used in [9], Lee and Sul‘ obtained
the same resulis using the fluid model of an electron-ion

plasma. In anisotropic medium, the derivations are much
more involved sin the model used is the kinetic descrip-
tion. Aliev, €% al used the Vlasov equation to obtain

the background and perturbed distritution, solving by transfo-
mation into an oscillating frame. The electrostatic approx-

mation is wused to obtain the dispersior

SO )
wnicn

s
(1]
,_.J
[\
t
e
(o]
]

Fe

is valid for longitudinal modes only. Porkolad analyzed
this dispersion relation for different sets of coupled modes.

A new theoretical development using the Hamiltonian approach

Hy

or the parametric mode coupling is performed as a con-

i 4 4
effort to this pro;ect.l

(@]
ck

urr

(0]

n

+ha

The first attempt to parametrically excite the decay
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(energy) conserved, i.e.

but also is the wave number (momenta):

For K, = 0, we have k; = -k

For Eo # 0, the conservation equations given above

obviously hold, asshown by the dashed lines in

eneral process of

e

with the unprimed quantities. The

oy

decay process can zalso be represented in a scattering

diagram, as in fig. 2.

FIG. 2: SCATTERING DIAGRAM OF PARAMETRIC DECAY INS

+3

In a four mcde interaction, we can describe the
menon as a combination of two three-mode processes in

similar fashion. Then the pump at w_. couples energy

)
into ogcillations at @_, and @, + @y, With w. = W,
s o - %“s 0 s
being the Stokes, and W, W, the anti-Stokes
frequencies. From the dispersion diagram, we can see

551

(1.1

S

(1.2)




the electromagnetic wave can decay into a2 combination of,
either elsctromagnetic and ion-acoustic waves, or electro-
magnetic and electron plasma waves. The first process is
called Brillouin Scattering, and the latter, Raman Scat-
tering. Also, in an overdense plasma, i.e., pump frequency
Wy is less than the plasmz frequency wp » & non-oscil-
latory instabilify, the Oscillating Two-Stream Instabi-
lity may bde excited.7’ 8, 20
Turning attention to a magneto-plasma, the number of
natural modes which can exist, is much greater; therefore,
we expect the possi
in 2 parametric decay interaction is no longer as limited
as before. In an infinite, homogeneous and two-compcnent

plasma, with a static magnetic field, B, orien

in section 4%.4. The values of the w 1laveled in the dia-

La]

gram are defined as follows, often simplified with prope
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i
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Thus, in the presence of

fields,

Over
been performed with the microwave pump at a wide
frequencies, corresponding to one of the natural

and many of them have also ovtained evidence of plasma hea-

the years, a great number of expe

Fa

ting. However, to succeed in

(S0

c

matched,

tation experiment, not only

often a well defined

d to parametri

achieving a parametric

must the momensa Xk

wave number

Then thiswould yield decay 1instabilities

quencies of highly sp

P 5 2
range of frequencis

3 s 1

153

1

¥ ikxed spectra, rather
s being sxciged.
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25

Hiroe and Ikegami performed their experiment in a
mercury plasma discharge tube inserted in a waveguide.

The fixed microwave pump frequency is close to the upper
hybrid mode, and when the pump power exceeded the threshold
power level, sharply spiked spectral components appear, with
frequencies corresponding to upper hybrid and lower hybrid
modes; these are traveling waves. In experiments performed
and Franklin, et al.33 the microwawve

by Poerkolab, et al,

3 v : 16
launcher used, like in Stenzel and Wong's, is composed

of a parallel grid. A Lisitano coil is also often used to
launch a spiraling slow wave as done in [34]. In a well
confined magneto plasma of sharp boundaries such as the Poly-

technic Hollow Cathode Discharge device, it is possible %o ex-

<

cite parametric instabilities with a high power microwave
signal. It is with this interest in mind that the present
research was started.

The plasma device, which utilizes a small hollow tube as
a cathode, produces an argon arc discharge tetween the
negatively biased cathode and the grounded taffle anode.
This anode is hollow at the center, thus allowing part of
the plasma, which has escaped the magnetic mirror at the
source regicn , to flow into an experimental drift region.
By controlling the voltage applied to the cathode, and/or

the magnetic field strength, and/or neutral gas flow, we

can gradually change the characteristics of the background




r' i el

plasma such as density from 1013 4o 1011/c.c. A horn

antenna is mocunted on the anode end plate such that the
cross section of the plasma beam is being shined by the
microwave field. The electric field is polarized in a

direction perpendicular to the beam and the static magnetic

}oe

field. With all the btackground parameters adjusted to ideal
conditions for the excitation of the decay instabilities,
the microwave pump power with frequency at 9.23 GHz, is
increased gradually. When the power exceeded a definite
value, excited signals are cbserved simultaneously at two
frequencies, one close to the pump frequency, and the other,
at about 260 KHz; the threshold power level is experimentally
estimated first, and later confirmed by calculation, %o be
about 65 watts, which corresponds to zn electric field
strength of 16 V/cm. The microwave signal is square wave
modulated in such a way that for about S0% of the period,

he power is fixed at a level above the threshold, and the
remaining 10%, the power level is varied gradually over a
range of wvalues. As the power is switched to a level below
threshold, the amplitude of the electrostatic ion cyclotron
wave decays from a saturated levél into noise. Decay rates
thus obtained enable us to confirm their linear dependence
as a function of power; the threshold power and the natural
damping rates are also calculated. The growth rate for =ach

power level is also obtained as the power exceeded the thres-




hold; from the saturated amplitude and the phenomenolecgical
model, it is found that there are two competing saturation
mechanisms, namely the anomolous diffusion or the harmonic
generation. The dispersion relation of the modes involved
in our parametric interaction are also derived, zand it is
found in the range of our parameters, these modes are

the third harmonic of electron cyclotron and the electro-
static ion cyclotron waves. -

In 1IV-2 , @ detailed description of the plasma

device and the microwave system is given. The experiment
of parametric excitation and typical observations are in
Iv-3 : Iv-4 contains the analysis of the data,
the presentation of the phenomenological mcdel which not
only describes the growth and decay, but also the satu-
ration of the waves, and the derivation of the dispersion
relation for the modes involved. A brief conclusion and

possible future research are given in 1IV-5,




1V-2,PLASMA AND MICROWAVE SYSTEMS

A- Plasma Device

The experiments cf the parametric decay instabilities

are performed in the Hollow Cathode Discharge (HCD) device
built a few years back. It has been used to study the

s 6
charged particle loss processes,35' 3 and low frequency

7i )
3 g. 4,

Hy

instabilities. This linear device, as shown in fi

consists of two regions, a turtulent source region, znd a2

relatively quiescent experimental region immersed in an

uniform magnetic field. The plasma is an argon arc dis-

charge between a hollow tantalum cathode and a baffle anode.

The neutral gas is fed into the hollow cathode where,

through the application of a RF breakdown oscillator and

a high negative bias, it breaks down initially. After the ;
plasma is started and becomes self-sustaining oy ther- i
mionic action at the cathode, the electrons are accelerated

towards the vaffle ancde. Part of the electrons which are

not collected, flow through a hole in the baffle ancde znd

enters the experimental drift region. Ions then follow into

<
®
(e}

the region, and the quasi-neutrality condition is achie
While many features of this HCD are similar to others, it

—

is distinguished from the rest due to its leng*h ( 2 2 m long

(o

vacuum chamber) and due to the capability of maintaining a

pressure ratio (10:1) between the 2 regions through the
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action of the baffle anode and the differential pumping

systems. Thus a high density plasma can be generated in
the high-pressure source region, yet in the experimental
region, the gas flow can be independently controlled in
order to obtain various degrees of ionization. It has the
capability of achieving an almost fully ionized plasma
(90% or more).

The confining magnetic field in the drift region is
spatially uniform to within 1% over an axial length of 1
meter. Mirror coils placed over the baffle determine the
plasma transport from one region to the other. The mazg-
netic field is provided by 2 set of 15 water cooled PEM
coils (capable of 3 KGauss strength) of very low resistance
(.030Q each). The 4 source region coils and the remaining
11 in the experimental region are independently powered by
2 HuMac power supplies with a power output of 320 KW,

The 4 source coils are connected in series with a low
resistance of 0.250 so that the operating load for the
supply is within the safe operating region.

Once the discharge is on, the plasma density can be
varied by changing the cathqde voltage, which in turn
changes the plasma current IB’ from the cathode to the
baffle anode. Although the range of the baffle current I3
can go from a low of 14 A to 2 maximum of 40 A (corresponding

101l

to a density range of to 1013 per c.c.), the magnetic
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B

be readjusted

\+
(]

field in the drift region may have %o
correspond to the optimum conditions for a stable plasma.

The experimental drift region is normally terminated by a
movable water cooled anode, which can be grounded or flozted;
however, in our experiment it is replaced by an insulating

plate onto which a microwave antenna horn is mounted. Thus

this experimental set-up vresembles that of a Q-machine,

e

except the source is of arc origin. -

3- The Microwave System and Power Measurement.

|4

The electromagnetic pump required to exc

o

te the plasma
instabilities is provided by a microwave system as illu-
strated in figz. 5. The source is an x-band signal ge-
nerated by an ultra-stable microwave oscillator (LFE, model
814~ S), with a power output of 80 mW. This oscillator is

a highly stable, wide band source (8.5- 10 GHz), with a
klystron oscillator and a stabilizing feedback loop, which
consists of a tunable reference cavity and a low noise d-c
amplifier. Through the action of the cavity and a diffe-
rential amplifier, any klystron frequency change is con-

verted into a voltage change, which is in turn applied %o

O

the repeller electrode of the klystron. Thus any flu

tuation in frequency will be offset by a change in the
repeller voltage, and the output can be held very close %o

the originally set frequency.
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Through a series of variable attenuators, this micro-
wave signal is fed into a highly sophisticated, self-contained
microwave generator built by G.E. . This unit, which can b
operated either as a source generator or a 50 dB amplifier

4

with a maximumpower output of 1 KW CW , consists mainly of

(=N
0]

Varian klystron tube, VA- 922 series. Each tube

»

factory tuned to a specified center frequency, and has =2

15 MHz ©vpandwidth. It incorporates a series of protective
circuitry that automatically shuts off the system if any
failures unexpectedly occur. At the input arm, a pin diode
switch (HP 8735A series) is employed for the necessary sig-
nal modulation. Thus, through the action of this fast micro-
wave switch (rise time of 20 nanoseconds) and the seriss of
microwave attenuators, the power level of the pump signal
can be changed accurately from one level to another by simply
varying the bias to the pin diode switech. The amplified
microwave signal is then fed into a horn antenna (US Army
Signal Corps AT- 158/U, 3" W, 2%" H, and 4 " L), mounted to
the ancde end of the plasma device. Since the plasma beam
ends exactly at the throat of the horn, it must be electri-
cally insulated in order to avoid drawing current, thus
changing the characteristics of the plasma system. This

is accomplished by connecting a thin teflon sheet between

sections of waveguide. A microwawve pressure window is also

connected for a hermitical seal of the plasma system.
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Power level of the pump at CW mode of operation

measured Irom the output arm of the microwave generato

1, -

amplifier by picking up a fraction of the signal

’

through a directional coupler of 30 4B rating and =

v

attenuator (exact value only 49.6 db at 9.234 GH
thermoelectric power meter (Microwave Associates
Lska). However, in our experiment, the power lz

first set to a level above the threshold for the

jae
se

ot

the parametric decay instabilities. A power
¥

¥

is made after optimum operational conditicns, wh
the sharpest peak in the frequency spectra, zare

1

Then the pump signal is square wave modulated, w
the period at this level, and the remaining 10%
riable power level. Therefore, the direct power

ment method can no longer bte done. This is done
g

lined in fig. 5, by displaying via a diode detect

modulated output, after passing through a fixed
attenuator, and a precision variable attenuator

in a dual trace oscilloscope. With the variable

set at zero, the 2nd trace of the scope used for relers

z),

3a7
y Mmocdel

vel

+h

4 il

is made to align with the top level of the squars wave,

which corresponds to the power level read from %
meter at CW . Then, the variable attenuator is
until the lower level of the square wave aligns

-

trace. The value on the variable atte

by

re

"
erencse

QO

N
nua

he power




therefore simply corresponds to the number of d3 the power

level is away from originzl CW power readings.

Since the variable power level is controlled by the
pin diode modulator, which in turn is controlled by the
negative bias supplied by a pulse generator (GR mcdel 1340),
one can minutely and accurately change this level. & final
note on this must be added. Since the original rpower rea-

- -

btained by assuming a 50 d3 attenua
d

ct

. ~
10N Deiore

o

=

ding is
the power meter to simplify rea

actual 49.6 dB at this frequency), and the horn is zbout

o}

11 £t away from the cation where power is read, a cor-

g

rection factor of 1 db (attenuation due to waveguide is

t38)

V4,

0.06 dv/ must be subtracted from the meter reading

[

to arriv

[

at the actual power.

C- Basi

1]

Plasma Paramets

"3

.

The HCD device is operated with no major modifications
compared to the system previously used, with The exception
of the horn antenna replacing the movable anode, and of the

low percentage of ionization encountered in our esxperiment.

Therefore, many of the previously cbtained plasma parameters

example, the radial profile of the density and temperature

(fig. 6a). It should be noted that, since the microwave
pump frequency is factory set (no attempt is made %to change
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5

-
it even though the klystron tube is tunable - 360 MHz

around its center frequency), the plasma parameters must

be meticulously adjusted until all the conditions are

1

proper for the parametric excitation to take place. It

3

is due to this that the gas flow, magnetic field and baffle
current must be properly set to specific values. Therefore,
with this in mind, we obtain the variation of density as a
Tunction of baffle current IB' -

The electron temperature and den

the single or double probe technigue. This Langmuir

prove method is simple to use. Essentially, a vtias voltage

[}
‘g
(o]
i
=
ct

s applied between one probe and another referenc

(=8

vhich can be another nearly identical probe (for double

m

probe measurement), or a point in contact with the plasma.
As the voltage is changed, the current flowing through the
probe also varies, thus giving us a V-I characteristic

curve from which the density and temperature is obtained.

.
v

B

ectron collection

}_l

In a2 magnetized plasma, however, the e
area of the cylindrical probe must be modified fo only the
rectangular cross section of the provte, and the double
probe must be oriented perpendicular to the magnetic
field Bog,otherwise, a electron retardation can occur if
the 2 probes are along z. A typical plot of the density

b

versus baffle current I:_3 is in fig. 6b. Since the density

iz particles/c

of approximately 10

(@]
5 4
(1]
', 4
.
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FIG. 6b: DENSITY VARIATION AS A FUNCTION OF
BAFFLE CURRENT I.
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o

quency T

pe cf 9 GHz, the baffle current IB below 254 is
chosen to be the operating range for the experiment (the
microwave pump frequency is fixed at 9.234 GHz).

At the operating condition of Iz = 154, a2 static mag-
netic field of approximatgly 1l KGauss, and a neutral pressure of
2 micron of Hg, the parametric instabilities are excited
when pump power exceeds the threshocld level. The electron
temperature and density are found to have increased little
with the microwave pump on, approximately 20% and 50% re-
spectively. At zero power, electron temperature (density)
is only 1.86 ev (5 x lolz/cc), and at 100 watt, 2.2 ev
(8 = lolz/cc). Further increase in power (up to 350 watt)
yields no appreciable change:on beth parameters as shown
in fig. 6c; other basic plasma parameters pertinent %o

the operating region given above are summarized in Table 1.
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Table 1

HCD Plasma Parzmeters

- Neutral Density (at 2u) 6.5 x 1013 /em3
Percent Ionization 12.5%
Magnetic Fisld 3, 1088 Gauss
(at 1%504A; 100A =680 Gauss)
Electron Cyclotron Frequency 1.92 x logo/sec
. =05 x 107 He
g
Ion Cyclotron Frequency 2.61 x loi/sec
L.15 x 107 Hz
- i o 12 3
Electron (Ion) Density 8 x 10°%/cm
Electron Temperature 2 eV
Ion Temperaiurs 6 eV

Ly

lectron Plasma Frequency

Electron Thermal Speed

Icn Thermal Speed 1.9 x 105 em/sec

Electron Larmor Radius Bed X 1072 em 1
; Ion Larmor Radius .76 cm
| A 3

Debye Wavelength Fa7 X LG cm
3 Debye Wavenumber 1.69 x 103/cm
f
i
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Table 1 (cont'd)

HCD Plasma Parameters

Microwave Pump Frequency 5.80 x loéo/aec
Y.23 x 10° Hz
Third Harmonic Electron 5.76 x 9 /sec
Cyclotron Frequency 9.17 x ;O Hz
Electrostatic Ion 1.6% x 5/=ec
Cyclotron Frequency 2.60 x 107 Hz
Electron Neutral 2.59 x lob/sec
Collision Frequency
Ion Neutral 1.64 x lcs/sec
Collision Frequency
Wave Number ki 7.5/cm




Iv-3 EXPERIMENTAL SET-UP AND RESULTS

A- The Experiment

The experimental study of the time-evolution of the
~

parametric instabilities is conducted in the HCD device

described in the earlier chapter. Fig. 5 shows the micro-

@

»

wave system and the whole experimental set-up. The back-

ground conditions are initially adjusted so that the micro-

wave pump can parametrically excite the electrostatic ion
cyclotron wave. These parameters ars readjusted until the
oscillogram of the waves being *the most coherent, cr equivalently

D N

peak in the frequency spectrum being the sharpest. After

P
il

(]

these adjustments, the pump signal is modulated as shcwn

in fig. 7, and the instability grows or decays depending
on the power level. A typical frequency of the square

wave is 1 KHz, with its total period T of 1 msec. divided
into an on-off ratio of 9 to 1, i.e., during 90% of the
time, the microwave power is at a level abcve threshold

power, Pruswhile the remain

=
-

s

ng 10% of the %time, the power
level is varied over a range of power levels. This type
of modulation is often called unsymmetrical squars wave
medulation, and the chosen duty cycle assures us of a fairly
constant background, and the time period of T2 loﬁg enough
for the instability to reach steady state.

Two sets of distinct experiments are performed although

1

toth are often conducted together. The first se

v

y tOo mea-
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FIG. 7: MICROWAYVZ POWER MODULATION AND GROWTE AND
DECAY OF ELECTROSTATIC ION CYCLOTRON WAVE
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sure the decay time of the parametric instability, is done
with the power level P2 varied gradually from 0 watts to
about 65watts, the threshold power level; and to measure

-~
the growth time, the power level P2 increased from P,.. to

P
Pl level. Thus, during the period T,, the electrostatic
ion cyclotron waves reaches a finite steady state. At the
end of time Tl’ the microwave power is switched to a2 new

level P2' if P2 is below PT"’ then the amplitude of the

&

>

wave decays into noise. IT P2 is above PTF’ the wave

-
amplitude decays from one steady state level to another
non-zeroc level. An important fact must be considered in

order to conduct the

n

e experiments for measuring the deczy

and growth time. As the pump is switched, the rise and fall

ct

times of the microwave signal must be smaller than those of
the waves. This is assured since the pin diode switch and
the square wave generator which drives the modulator have
rise and fall times in the nanosecond region (30 ns. zand

5 ns., respectively); therefore, %the modulated microwave

signal has a much smaller value compared to those of the

instabilities which are in the microsecond range.

B- Detection of Waves

).

The detection of the instabilitie

1]
K
(6}
o}
O
')
)]
(> 4
<
(o]
o'
mn
[
Ly
|

vations in the {time domain through oscilloscope, or in the 1

frequency domain through spectrum analyzers. The parame-




D

trically excited high frequency signal, the 3rd harmonic
of the electron cyclotron wave, i1s observed through the
reflected signal from the waveguide, with its frequency
spectrum displayed in a high frequency spectrum analyzer.

The high frequency spectrum typically shows a center peak

at the pump frequency of 9.234 GHz. When fthe pump power
exceeds the threshold, two sidebands, appreoximately 250 KHz
from the peak, simultaneously appear. These correspond o

the Stokes and anti-Stokes frequencies.

The electrostatic ion cyclotron wave is observed
through electrostatic or Langmuir probes. These prob
connected to a Tekironix 551 scope, which is equipped with
a isolation transformer. Therefore, the probes are floating,
and no appreciable current is drawn through them to locally
disturb the plasma. One probe is connected Tc a homemade
50 Q coaxial tube capable of rotation and movement along the

plasma beam. ZEssentially the probe is made of a fins

tungsten wire (10 mil thick) which is electrically insu-




identical probes, it is found that the transverse probe
picks up a much larger signal strength of the instabilizty,
even though by comparison, the longitudinal probe is more
sensitive. Therefore, we conclude that the observed in-
stability is transversely polarized. In a similar ex-
periment but different mode of operation in this d

-

the same result and conclusion have been obtained.

ignal can also be observad opti-

cally as done by Klein. Using a lens focused to the
center of the plasma beam, light intensity change is de-

density increases, the number of electron-neutral collisicns

increases, causing the bound electrons of the neutrals to

ve excited into a higher energy level. When these electrons
relax back to the ground state, light is emitted. There-

q
This method is no%t used extensively btecause the signezl
strength is too weak .since the location of the optical
fivers are away from the plasma beam, and Decause of

- 1

other signals being also picked up. These low frequency

instabilities, which often mar the intended observatilions,

|
|
i
|
|




G

3 ns

are thought to be inherent of the arc plasma. This

method of detection provides an alternative to compliment

the observations through electrical probes.

C- Typical Observations

Since there are inherent instabilities, which are
originated from the source region and are all under 100 XHz,
we must try to filter them cut in order to study the elec-
trostatic ion cyclotron wave at about 250 KHz. This is

accomplished by using a variabl:s electronic filter set

or without the incorporation of the filter. 1In picture =,
with no microwave pump nor filter, the only coherent signal
existing in the plasma is a low frequency oscillation of
below 50 XHz. With pump power increased to 150 watts, well
above threshold, the parametric interaction takes place

as shown by the frequency component of the electrostatic

ion cyclotron wave at 260 XHz; the 50 KHz signal has been

suppressedbu
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the 2nd harmonic of the signal is barely visible at approxi-

mately 520 KHz. It is beyond doubt that there is indeed

e

a oscillation at 260 XHz, which is excited only when the

'y

microwave pump is sufficiently high; the filter merely helps

to eliminate other unwanted signals. When the power level
is further increased to 200 watts, the higher harmonics be-
gin to appear (fig. 9). In the time domain, the signal is seen

as a coherent oscillation with a period of approximatel;

<

4 usec. as shown in fig. 10.

The electrostatic ion cyclotron wave is more evident
when the pump power is switched from one level above thres-
nold to one below in the fashion described earlier. As

redicted by the parametric theory, the parametric decay
instabilities can only be excited when the power level is

above the threshold; this is illustrated in a series of

napshots of the oscilloscope in fig. 11. As opposed to
fig. 10, these are double and single trace photographs.

Only a portion of the total period is shown. In a, the
lower trace of the square wave corresponds tc a power level
of 0 watts, and the upper line
as shown, only noise of random frequency exists durin
time Tl’ and the amplitude of the ccherent signal begins
to grow and reach a steady state level after power is
switched on. The same process 1s depicted in b, except

for a change to greater sensitivity.




\

P = 200 Watt Scanwidth = 100 KH?/cm (uncal.)
Randwidth = 10 KHz/cm

9: FREQUENCY SPECTRUM OF ELECTROSTATIC ION
CYCLOTRON WAVE AND ITS HARMONICS

- . 2 P A FAT
FIG. 10: ELECTROSTATIC ION CYCLOTRON

IN TIME DOMAIN
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a) Square wave and
H = 20 usec/cm

FIG. 11: EVOLUTION OF ELECTROSTATIC IC‘;\E?CYCI:CTRCN
WAVE WITH MICROWAVE POWER MODULATION
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c) Instability decaying into noise
level, single trace

FIG. 11: EVOLUTION OF ELECTROSTATIC ION CYCLOTRON
WAVE WITH MICROWAVE POWER MODULATION (Cont'd)
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are superimposed on the previous two photographs, in ¢,
we have two single trace pictures, with the scope reset
to show the on-cycle first. In this last picture, we

see the amplitude of signal oscillates 13 more cycles be-

fore decaying to noise level even after the pump has been

shut off (set to be exactly at the middle of the screen).
The frequency dependence of the electrostatic ion
cyclotron wave on power and on temperature i1s depicted-in

the next series of photographs on fig. 12. Although the

sequence shows only a variation in power, it has Zeen shor

in section 2.3 that we found a2 temperature rise of 25% zs
power is increased from QO to 100 W; therefore, a power

variation corresponds also to a temperature change (recel

that we found only a initial increase only, no further tem

perature change as power increased above 100 W). In
the first 3 pictures, we must discount the first peak sin

it is due mainly to the response of the electronic high p
filter set at 200 KHz. As power is increased, the generz
noise level rises, but the filter cuts off Irequenciss Dde
low the preset frequency, therefore giving a false pezx.
At power level of 79 W, the 2nd peak corresponding to
the excited instability begins to rise out of the noise.
This peak becomes clearer in picture ¢, with power level

set at 87 W; also the 2nd harmonic is veginni

And in the final two pictures, at power levels of 117 and
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. 12: LOW FREQUENCY SPECTRUM AS A FUNCTION
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d) Power = 117 Watt

e) Power = 222 Wat+
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. 12: LOW FREQUENCY SPECTRUM AS A FUNCTION
OF MICROWAVE PUMP POWER (Cont'd)
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Horizontal Scale 100 KHz/div. (Uncal.)
Signal Frequency = 260 KHz
520 XHz

780 KHz
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220 W, the pezks oI the Iund
become clearly defined. It

slight shift in frequency of
3 snapshots, we see the peak

at 2.0 divisions in the last

change from 235 XHz to 260 XHz.

D- Decav and Growth of Electrostatic Ion Cycloftron Wave

amental and

.
3

s of interest to point out the
the instability. In the first
at 1.8 divisions while it is

two; this corresponds to a
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ographs are used to average out

square wave at 1000 cycles per second, 2 camera sexposurs

time of 1/50 sec. gives us 2

0 traces; and at 2000 cycles

per second, it gives us 40 traces. Thus, the data are
ootained ty using this pnotograph averaging technique,
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in frequency due to temperature increase has been menticned
earlier. Effects of cther parameters, such as neutral
pressure, baffle current, or static magnetic field, are

not obtained because of the limited range these variables
can be varied. Any change beyond this detunes the plasma

background, making it no longer conducive for parametric

decay instabilities.




IV-4 INTERPRETATION OF RESULT

)]

A~ The Phenomenological Mcdel

It has been shown in numerous papers that a high Ire-
quency electromagnetic wave with power exceeding the thres-
hold level can parametrically couple and drive various na-
tural modes of the plasma unstable. These waves grow

“
oeen

n

time from the noise level. This ha

(=0
3

exponentially

shown in our sets of experimental data in the previous chapter.

Most of these theories, however, show the exponential growt:
of the instability out of the noise level, aﬁd not from
another steady state level already in existence; often
the saturation phenomena is not incorporated into their
theories even though the experimental results invariably

D

S hEs e L s v ooy du i Pl i 1 ;
SNOwW that insvapbllltles saturave. The theory we pian To

(8

use ners has veen develope

Cheo;lg’

taking the saturation into account. Aside from the simi-

larity in the quasi-exponential behavior and saturation of

(12
}ae

v~
il

the amplitude, our model shows a drastic differenc
form which agrees well with our experiment; this is dus

to the difference in the saturation mechanism.

Before we embark intoc the develcpment of the rhencme-
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nological model, the quasi-exponentizl form becomes more

ct

evident if one plots the ampliti
ion cyclotron wave from a set ol decay photegrapns, Versus
time on semi-log scale, as shown in fig. 15. The plots

D

show a straight line behavior; therefcre, the evolution
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A(t) = —= (4.2)
3 AO 03 (eny‘t l) l/n
y
where Ao = A(0), the initial amplitude of the wave.
¥ = GF - G (4.3)

v 1s the imaginary part of the complex frequenc: cf the
=3 & 33 w

electrostatic ion cyclotron wave, namely

]

@ =Q * iy (L.b)

and Qk is given by the dispersion relation

k - i T —=——2F
2.2
1 + !
RO /kDe (4.53)
with Qi = ion cyclotron frequency

wave number of the electrostatic ion cyclotron wave

n

temperature of the electron, in eV

ks
Te
M ion mass

— 7 v . TmA
kDe Debye wavenumber

~

Equation (4.2) describes the evolution of the wave
amplitude. The value of y is critical to determine whether
the wave will grow or decay; it can be written as

Cl(P - Proy) (4.6)

S
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i

nearest integer, which is found to be 2.

Therefore, our experimental obssrvations are best des-

cribed by the following egquations

da _ yA - c3A3
dt (4.11)
yt
A(t) = Aoze 5 -
& YT 2
[1 TN l)]
¥ {(4.12)
and
2 2
Mo) = (Z) = &2 (F - Pry)
3 c 2
3 (4.13)

From the expression for A(t) and from fig. 15, it is

[}

apparent that the amplitude indeed follows the exponential
form only for small values of t. For y negative, the ampli-
tude decays quasi-exponentially; the deviation from the
regular exponential curve depends on the ratio AOZCBAyb

or, in terms of power levels, PTH/l P - Py
is obtained by using a typical value of P= 2P.,, for y po-
sitive case. A plot of A(t)/A  versus y%, for Ppy = 65 watt,
and for various values of A02C3/ ¥]s» is shown in fig. 17.

An exponential decay curve is alsc shown for comparison;

it is obvious that the curves can not be approximated oy an

exponential, especially for those power levels close to the

threshold. Therefore the results obtained by using the expo-

« This last result
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nential curve give us incorrect values; for example, the
value thus obtained for y-intercept, i.e. values from
fig. 15, is found to be about twice the natural damping
term from the expression (4.12). As for y positive, the
amplitude of the wave definitely grows and saturates

. according to (4.12). The steady state amplitud

£
(D

by (4.13), independent of the initial amplitude A . Now
we have developed the proper model to describe an observa-
1 tions, we then proceeded to analyze the data for ths decay

and growth process.

B- Calculation of Decav and Growth Rate

The set of decay photograpns in fig. 13 is used to
evaluate the decay rate y. Since we have already discussed
in the previous section, we can not use the method of e-
folding time, i.e., the time for the wave amplitude to
decay to 0.37 of the initial amplitude A

obtaining the exact decay time for the wave amplitudes to

reach the noise level., However, the envelope of the de-

caying amplitude can be followed quite clearly through

/ the photographic averaging technique. Using the experimental
values of Pp. and P, the normalized amplitude A("t)/AO

* obtained from (12) is plotted first. Then the experimen-
tal data from fig., 13 are fitted, by trial and error, into

N

these calculated curves by choosing the proper values of y.




The procedure is illustrated in fig. 18, where a series

15}

of experimental data is being fitted on the curve calcu-
lated for each pump power level. The decay rate y is tI
obtained by simply dividing the graphical scale yt by the
corresponding experimentally measured value of t.

A set of values for y is plotted against the pump
power; a linear dependence of y on power agrees well with
the proposed theory and model, as seen in fig. 19. Other
information may also be inferred from this plot, such as
the values of Cl and C2, the slope and intercept of the

straight line respe
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be obtained, which is simply the point corresponding to

The same procedures are used to calculate the linear growth
rate. As mentioned earlier, the linesr growth rate is calculated
from the data of the wave amplitude decaying from one
higher level to another, rather than growing to a higher
amplitude level. ig. 20 shows the curve fitting procedurs
for each value of power. The smooth lines correspond to the
curve calculated from equation (4.12), rewritten into the

following form:

A(E)
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where A, is the experimentally o
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The electric field strength inside the plasma cor-

responding to threshold power PTH is obtained by using
TElo mode c¢f analysis. Knowing that the plasma bteam is

small compared to the cross section of the can (radius of !

1l cm. and 8 cm. respectively, or cross sectional ratio
of 1 : 64), we can assume the electric field is uniform
throughout. Using the Poynting theorem, we obdtain an
expression relating the power and correspcnding electrjic

field as:

n

P =

ty

§

c x A in cgs units (4.15)

Qo

m

where P is power expressed in ergs/sec.
¢ is the speed of light

and A is the cross section of the can, approximately

equal to 64 cm2

-

E is the field strength expressed in stat-volts/cm.
Since 1 stat-volt is equal to 300 volts, rewriting the

expression, with P in watts and Ep in volts/cm., we obtain

Ep2 =3.75 x P v°/cm.? (4.16)

2
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C- Physical Intervretation of Ql. 92 and g3, d

Saturation Mechanisms

The time behavior of the electrostatic ion cyclotron wave
is governed by the phenemenological model which includzad
some terms of physical importance. These terms, which
can be easily calculated from the plot of the decay or
growth rate y versus Dower as in fig. 22 , are compared
with the theories so that some physical insight can ve
gained.

In terms of the power P, the decay rate near thres-

hold is given by (%.3), as
R L (4.18)

The value of Cg is obtained simply frem the slope of

the straight line in fig. 22,

Cl=A'y=yl"Yﬁ2.
AP P, - P,

where Ay = difference between two decay rates

and AP corresponding power difference

A typical value of C; is 1.15 x lOB/Watt—sec.; it
is simply a coefficient coupling the pump and excited
waves.
The constant C2 is found by extrapolating the straight line

to obtain the intercept of the ordinate. This point, which

193




corresponds to power P = 0 W is the natural damping rate

Cz. The value obtained from the graph is 7.5 x log/sec.
The intercept of the abcissa, corresponding to a

decay rate of zero, yields the value of threshold power

PTH' which is found to be around 65 W (average value).

In terms of threshold power, equaticn (4.18) can be

conveniently expressed as

¥ Gyt iy (4.20)

and the natural damping rate as

c, = C,P

2 17 TH (%.21)

These results have been used earlier in (4.6) to obtain
the expression for the saturated amplitude.

The physical interpretation of the term CZ can ve
Lo

obtained from the coupled mode theories,’ as

Cy o -4
2= (4.22)

Therefore the natural or linear damping frequency V.
ping q ¥ ¥s

is twice the value of the intercept at power P = 0, more

specifically, :

v; = 1.5% lOs/sec.

Now this value is used to compare with the dampin

o

due to all possible mechanisms. Zven though the ions are

rotating around magnetic field lines, the electrecstatic |
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ion cyclotron wave, consists of ion bunching, and the elec-

trons play no role but to conserve the charge neutrality
and field shielding. Therefore the main contribution to
the damping of the wave in question is due to ions only,
while for the high frequency mode, electron involvement

is predominant. There are two kinds of damping to be con-
sidered, either the collisional or Landau damping. The
Landau damping for both species is negligibly small, not
only because of the large ratio of kD/k. but alsoc because

of the direction of wave propagation of X being perpendi-

(o))
=

3

cular to static magnetic field. Therefore, the dcminant

phenomena, with values close to our experimental results,

N

'_l
<
)
3
®

can be collisional damping among the species, namel
collision due to electron-neutral and ion-neutral; others,
such as electron-ion, ion-ion and electron-electron ars
too small to be involved.

The value of the electron-neutral collision fre-
quency v » which plays an important role in the damping
of the high frequency instability, is obtained by assuming
the thermal speed of the electron to be 1.03 x loacm/sec,
which corresponds to our experimental electron temperature

48

of 2 eV. From [BrOWn], we have the relation

Ven = PofeVe (b.23)

where Pc = probability of collision, related to the cross

195




4 section by

@ = 52/,

o)

0o

TS

- 2 ad
1 in“1 9
4
where ¢ = 1.2 =% 10

their wvalue.

and v. = ion thermzl

(B0

collision frequency.
experimental result (C

less than a 104 differ

{
0
Y
m
5
‘-J.
0
' b
H
o
-y

;
damping me

oy

wave is du

[}
&
()
'J.
=
[
O
<l
O

“le obtain the wvalues of 1.6 x 107/

(L.24%)

D. is the neutral pressure in mm of Hg,

n_. is neutral density per c.c.

A ke = L 3 N
em., 5 TOval Cross ssecwvion lncluding

charge transfer from [37] by assuming the ion tem-

spesd

& = o .
B & Q e i
eC 2CL ®WS Lofi=heuvrel

)

ctk

Y & any ibis 8 S . -
he electrostatic ion cyclotron

= ¢ o &
e ZeR=NSuslal Qi
>

196

e




e

The last coefficient, namely C3, can also be experi-
mentally calculated using our phenomenological model.
However, it is not of interest to solve for C3 exclusively;
we choose to obtain the term C3A2 for teing more experi-
mentally feasible and physically meaningful. The first
point lies in the fact that, although one can measure the
voltage oscillation on the scope easily, in reality A is
the electric field strength of the wave. The sscond point
becomes apparent by examining (4.1), rewritten here with

slight modification

dA L 2

gt St R (4.26)
Thus, C3A2 is simply the non-linear damping term causing
the saturation of the wave as explained earlier; now, we

proceed to solve for this value.
At saturation or steady state, we obtain from above

2

gl =y (4.27)

For a fixed power level P2 which gives y = ClP2 - C2

positive, the amplitude of the wave begins to grow with no
influence from the saturation term. Therefore, to obtain
a reading of y, one must use only small t. A snapshot of
the growth experiment is shown pfeviously IR figs ALpy fon
this purpose. The amplitude is growing from 0 W to 180

W. The growth rate y is experimentally ob%ained from

1o I




fig. 11b; and we have obtained a value for the non-linear

damping C3A2 = 1obk 2 los/sec.

Now, we proceed to find a saturation mechanism which
agrees with our experimental findings. Recalling in fig. 16,
the plot of saturation amplitude versus power, we have
found that the proper value of n is 2. Among the ex-
perimental results, we have observed the harmonic gene-
ration process take place (see fig. 12). Thus, we should
examine whether this is indeed the phenomenon which can
contribute to the wave saturation. The harmonic generation

process can be described mathematically, in a simplified

form, as
dA
ey B 2
aT T ViRp = Cy AT (4.28)

where A2, Al are the amplitudes of the 2nd harmonic and
fundamental signal,
24 is the linear damping term of the 2nd harmonic
and CA is a constant coefficent:CA Alz is Jjust the

energy acting as a pump to the harmonic generation process.

So, at steady state, we have: .

o)
Yihs = Cpdy (4.29)

Now, at equilibrium, the energy being lost by the funda-

mental 7NLA12’ must be equal to the energy gained by the




harmonic to overcome the natural damping rlAzz. where
yNL is the non-linear damping term of Al.

Writing this equiliobrium condition, we have

A S
T 2
) e S T (4.30)
i 3 ing (&
Solving for 7y, and using (4.29)
AA
12 2
14 ( ) CLA
C2
whers we have st Cy = o
il
Therefore, we have shown that the harmonic generation pro-

cess does give us a non-linear damping which is proporiional

Experimentally, this value can be obtained frem (4.30)

Since the value of 4,/A; is approximately 0.53, taking

pandwidth into account, consequently 7NL=:2.1 b ;Ou/sec is
more than one order of magnitude smaller than C3“
(Lo % ’Os/aec), and we conclude thet har:orl generaticn
is not the dominant saturation mechanism.

A second phenomenon which also corresponds to the

n = 2 case is the anomalous diffusion. This diffusion

process is not due %o binary collisions of different species




as in classical diffusion. Briefly, we can use the quasi-
particle point of view to explain. As the excited insta-
bilities can be treated as corresponding to bunches of
quasi-particles, the number of quasi-particles are
related proportionally to the square of the amplitude.
These extra quasi-particles thus can give additional
pressure to the plasma, and cause the ions to diffuse.
Using the results developed by Kuo,la we have an _

expression for the non-linear damping due to anomalous

diffusion,
D
b4 & c? kiz raZ Az
NL — 4p 2 2C
) 2 (4.33)
F where ¢ is the speed of light

B, is static magnetic field strength, equal to 1088 Gauss

1 ki is the wavenumber of the electrostatic ion cyclotron

' wave, calculated from (4.3), its value is found to

be 7.5/cm

' A is the amplitude of the wave, in stat volts/cnm,
calculated experimentally from the oscilloscope

signal strength of 0.12volt, i.e.

= ki x 0.12

A= —~360 — in stat volt/cm

02 is the experimental natural damping rec%e, wnich equals

0.75 x 105/sec
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e, is cocefficient relating the two field components,

and is greater than 0 or less than 1; i.e.

A =r1r_A

~

It is the y- component of the field that causes

the anomalous diffusion.

Since we do not have the value of r, or Ay, we can
still check whether the non-linear damping is caused by
diffusion if we substitute all kxnown parameters into
(4.33) and find out later whether P is in@eed less than 1.

From (4.33), we obtain

D ¢
- ' 5 2
yNL = 6.L2 x 10 ra /sec (4'34)

Now, the total non-linear YNL has been found to be
H
1.4 x los/sec and, yNL' damping due to harmonic generation

is 0.21 x 105/sec then,
D H
ot » T = Tp » L2 10°/sec

From the last two equations, we have . 0.43, which
is a reasonable value. Therefore, we can conclude with a
degree of certainty that the non-linear damping mechanism
is due to anomalous diffusion.

Applying this value of rato another set of data, with
voltage amplitude of 0.14 volt and the non-linear damping

s 5 . 2
CBAl term to be 1.1 x 105/sec. the anomalous diffusion

termis found to bve i




YBL =1.7 x 105/sec
The two values are of the same order of magnitude, and
this further bears out our hypothesis that the anomalous

diffusion proecess causes the saturation of the electrostatic

ion cyclotron wave.

S
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D- Derivation of Modes Involved in the Parametric Experiment

In this section, we derive the dispersion relation for a magnetized,
infinite, and homogeneous plasma via the kinetic model, and show that
the modes involved in our experiment are indeed the harmonic of electron
cyclotron and the electrostatic ion cyclotron waves. Although the formal
derivation starts with the set of Vlasov-Maxwell equations which provides
a complete kinetic description of the plasma, we use the perturbative
method to obtain the macroscopic plasma response to 2 given electromag-
netic disturbance. The dielectric tensor, which contains all the informa-
tion about the electromagnetic properties of the plasma,.is determined
from the calculaticn of the plasma response to an electric field disturbance
6E, which gives us an induced current 6:1; = %[G (k,@)-L.6Elk,» )]

We start with the Vlasov equation

af af qQ v of
[ofe) go g ey go o
3t tyv. 5r +mcr (E-rc.g). v =0 (1)

where 0 = e,1, designating the species involved, and the distribution

function is already normalized as

ng (5,t) =n_ ff  (z,v.,t)dy . (2)

Assume an electric field disturbance of the form
SE exp[i(}s.{-w t)l + cc (3)

Then, associated with this, and through Maxwell's equation, we have

6B exp [i(k.r - wt)] + cc =

tlo

Wkxb6EY exp [i(k.r - wt)] +cc (4)

e

" Equations in this section are renumbered sequentially
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Responding to these disturbances, the distribution functions are departed

slightly from their stationary values, 2s
£t 6% (v) exp [ik .x -wt)+ce] - (5)

and éfo_ (v) can be obtained by substituting egs. (3), (4), (5) with eq.(1)F
After some calculation, collecting the terms linear in 6{:’3 and § fao (g_), we

have the linearized Vlasov equation in 6fc (Y.) as

, 9 3 :
b [-8-—t+x —a-:-l-f?. (vxz) 8_‘;] L6 (v) exp[ilk.r - v t)] i
95 %5 S =z '
, =- ——= (522 ). (- Z5F)L + 571 6E exp [ifk.£ --wt)] (6)

where , static magnetic field B =B _z

qa B
g o

@ moc
c

, the cyclotron frequency, including the sign of the
charge q -

In order to solve for éfc (—Y.) , we define

dr dz -
g6 YL e SRT Teliea) =
!
' This set of equation determines an unperturbed free orbit of 2 charged
particle in a uniform magnetic field B,
Then,along this trajectory, eq. 6 becomes
d ; Iy afo’o E'Y. E.Y.
Et—ﬁo. (v) exp[x(‘ls.'x;-wt)] il — (_3_‘(_— Js [ (I-T ):.]-' + —:—] .8E exp
3
RN s g (8)
} —
“Refers to equation 1 of this section-




and integrating, we obtain

% thfco(vl) 1 k, v kvl o
6f (v)exp[i(k. z-wt)]=- . - (l- =—)1 + == |.5E exp [ if
Agemplite z-sele o J [ | [0 S50+ Lo

or
9 Profge ! iy A o
6fc(:{_)=-m _j[ 3! }.[(1- - 1} & = jl S§E exp‘.-w(-r)]d- (3)
¢ o ~
where
o) (rl=2k. z-g') ~w ¢ r= r(t) v = v(t) . 2
==t =t ) r'= r{t') vi= v(t')
Now, we can obtain  an expressiox'x for the induced current §J irom
the expression for §i (v), as

(=) (a3 ~
2 -
9 _n 2w % % e af _ (¢") 7] i k. !
=-L—22 [de Jv dv [dv _/d-vl— §°, s '(1--‘-‘-:)1_-
s s o ad Lo B g ~L )4 l_ o iy
3

Since , by definition, we know

6£= gSE (11.a)
and ¢ = L-% g tile B)

The expression for the dielectric tensor ¢ is simply obta

.

ing egs. 10 and 11, or
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w? 21 ® ©  wm o (v kv ko'
exo)=ley =29 [defv av [av /a--\ = i.{u- —— )L + =
= '~ = P v ¢ b 1 e ov \ - = -

c o= “—-x% o 2 L J
exp[ -i0(T) J
> 4ﬂq:n
with « = g, the plasma freguency (12)
o m

[*]

Before carrying outtheintegrations, we choose the orientation of the vector

k , without losing any generalities, on the x-z plane as shown infig. 23,7

then
k= k x+k z (13)
il L ]
Assume the distribution function fo is Maxwellian for each species
g as; > >
) m . 3/2 v, =R
fo(}{_) = xo(v v =R 5T ) exp| - (14)
= il 2(T /m)
Cmitting the algebraic calculation, we find
. o]
gc s g G c "‘ c2 ~ ‘\i
4 - L% ™ e - = - v &
g (E)“‘) o I: = e 2 _,. c = (36 1 z- 'n) [ l \V(zn) zO z Z> (15)
g @ n=-xX z
: J
n f . ol lo)
where - » (3") in /\_1(;30) —‘i—— —_ z_ .-\_1(3r\
2 s ' e idp = 20
g v 12 ; k, G
ﬂ(a B s n) = -in A (,3 ) . A (B )'2r3 N (.3 ) -t 13 = N 1B )
- T N Pg nee > lkl\}‘:n“(*’c
i
x o k :
,_LL_ --2-— zv1 /\1(30’) = _:,’_ ‘,3 /\_. ljr.\ zJ N (B.)
ik !. Jrjg - EK ! o a o Q a n g
pon 1
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FIG. 23: CONFIGURATION OF VECTORS WITH RESPECT TOC
STATIC MAGNETIC FIEZLD 2 ORIENTED ALONG 2z
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1 0 o\
1=(0 1 0 , the unit tensor
]
T k2T
zg i " 1/2 ! Bo = —% ’ An(Bc) - In{Bc) exp (- '80')
lk"l("ralmc) He g

where In is the modified Bessel function of the nlCh order

1 / X ex ( xz» dse =
X-z 8 e ko R O
i

Wi(z) =

where ¢ is the integration contour, which is deformed in such a way that
point z is always above the path of integration.

From the dielectric tensor ¢ (”5 ,« ), we can now obtain the dielectric
response function, EL(k,w) which gives us the longitudinal properties of the

plasma, and the dispersion relation of longitudinal modes

2 .
k. €k, @)k k w -nf -
~ =~ ~ Do @ r g
€, (ko) = S 1+, W( -nJA 3.)
L e ko Loqa | ER nq
1&g
o m
2]
(16)
ke 2
det]g-(i—) ;-,lao. (17)

From the dispersion relation, we can now consider waves propagating

perpendicular to the magnetic field. For this case, k =0 and k #0,

I i
and using the same configuration as given in Fig. 23 , the dielectric
tensor is written in the following form:

/ € -t 0
3 4 £ »
:§-1 (k,2) ie €, 0 (18)

0 g €




Y Y Y T T

where
o kIZDG' (nQO')Z qQ
€ kw)=l-7 ===1 ommy A (B)) (19.2)
g k
klz'Jc (nac)z Zﬁi ;
ez(k,:o)=1-2 > 3. o g )[z\n(Bc)- —Z--An (Bc) ] (19.b)
g k n g = n
iic ©
€ 3(k) =1-L —5 L =54 (B) ' {19.¢)
g @ n CF:
wgc W L
€, k,0) =% " L oo t4, B, (19.4)

Substituting the result for € (}i ,w) into eq. 17, we obtain two equations:
kKc
#) (V=) =€ (20)
This coresponds to the ordinary mode, with polarization (transverse mode)

E_ #0 and E = E_ =0
z x

2
€.,6€ 5-€
B) (£&)2. L2 x (1)
1

This is the extraordinary mode, with polarization (hybrid mode).
-

2
2 w )

K¢
E =0 Ex = i ' (22)
’ .

€
b 4

From eq. 21 and eq. 22, we note the following:

1) ask—-ac,€1—°0 or E -0
b

Therefore, in the limit of large k, we have the E‘{component only, or purely

-
-

longitudinal mode as the direction of propagation k = kx




2) as k— 0, we have, from eq. 19 El =€2 , and from eq. 21, el=is

X
E_
or —E"‘ = +i, the wave becomes right or left hand circularly polarizec. ; j
¥
Examining the individual cases in greater detail:
BT - *¥ For k— w, or €1=0*
a) for high frequency case, neglecting the ion terms,
klzf)e (nQe)Z '
= i T -
€ =1- R Sl -ni )An (Be) 0 (23)
e
Assuming also that we have strong magnetic field and cold plasma, i.e.,
k2T
== << 1 ;
Be = a2
e
% In the frequency range of Qe <w<?2 -’.?e
Foamn
eq. 23 becomes 1- 2A (B)=0
kZ w(w-QZ) \1 e k
e
KT (2wl
since ey (B~B, = "l = == >
e k Q
De e ,
2
2 2
k ~ W
we obtain further approximation of 1- D?e kD.)e > 2€ . = 9
k_ ;:J“-u-
Or finally, we have =
: 2 2 2
Upper Hybrid Resonance: W= Qe + wpe (24)
* In the frequency range of =n|Qe|(1+’_\n Y » B 3 2 . eq. &3 becomes
2 2 2 2
kDe pata” 2“\1('365) kDe (nQe) '\‘n(se) _
b - e S 2 ot
k w(w -Qe) k ‘ LnQe) An
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w? kZ A
or 1 - —=25— . De = =0
ol 2 An
w -9
e
solving for Sn = s z SL Y
k2 pe

, And for warm plasma,as k — =, '3e >>1 are kZ > > kée
2 2
kT n YA -
eq. 23 becomes: l - ]:Z)e e2 E ~ 0
k (nQe) An
2
ke N (B
or, again, Ans= _D_e__g____e_ <<l (25.2)
k
Thus, knowing An < <1, we have
Bernstein modes: w =n i"el (L+an) . (25.b)

b) for low frequency case, no longer rejecting the ion terms, we have,
for . <w < ,
i e

from eq. 23

2 R 2 . .
1 - m2)" A (B, s B e -0

2 ~ w(w-nl) T2 & Tolw-nf)
n e n L

Since w << Qe » and 3, << 1 for cold ions, we have

z
g (n&2 )" A (B,) e
w(w=-nQ ) e °
n e
and 2 Ny (B ~By

Then, the equation can be further recduced to

-
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1 - pe Di 1 1 -
LE 2 2 o2
Q k- w(w™=R.7)
e i
or
2
wpe wni
1+ - = 0
QZ wZ-QZ
e i
\_02 /,\2 +") (9]
5 wS +02 Q,
Solving for A - -0 —DBe_ei (26)
5 i 2 et o2 =12
o8] .o <+ W
1+ pe (= pe
QZ <
e

which corresponds to Lower Hybrid Resonance

B2-% for k — 0, or €

:ie

1

Considering only high frequency modes, thus rejecting ion terms,

X

case a) for €y =~ right handed ¢ircularly polarized waves, using

eq. 19, we obtain

krz)e (nQe)Z wie' I

= = - T — A (f 7)

- kZ & witer-a ) ‘\‘n(Be) 2 S we-n® n.\n(3e3 (2
n e w n e

As k—0, 3 <<1, setting u:n;Qe[(l-!-_\n), where &n < <1 (28)

>
2
For n =1, wvalues substituted into eq. 27 would give AT Dze , then
Qe
conditions set on eq. 2z would not hold, therefore n cannot be 1.
For n 2 2, w =n]Qef (1+An) , and An <<l eqg. 24 yields
> ) 2
;.:2 k= nQ [2;\ W< wf w "~ nwA'
§ = pe De = o pe e + ne n (29)
- > =- : 3
...Z-Q'Z‘ ‘<2 inQ | " An “)2 uZ-QZ uz |nQe}_§vx

After some simplification, we obtain
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W ~ W -
] pe e }
1. —B< s - A+ —BE_
n(a-L)22 An T2 e nJ
e 2
2
Lk kge (Be _ BeAn )
T An k2 n n-1 n
iy
Eote | _BE
An m\eZ n-1
Solving for Anp
woze 1
Ans= :9—2 An_l(se) T— << 1 (30.a)
“e 512, pe
1)
n(n- )-e
and
we have w =ane! (1+An) for n> 2 (30.b)

It is of interest to point out that equation 30. 2, for given plasma
frequency, Ap changes sign from - to + » Which is important when we plot

the dispersion curve later in this section.
case b) for €y 5 € left handed circularly polarized waves.

Similar to previous case, the same development i followed, and we

obtain
w =n[sze1(1+ An) forn > 2 (3l.a)"
and
w? 2%, (5]
An = —-&2 Lg:_ (31.b)
nf w :
e De

n(n-i-].)QT2 e
e

with An always > ¢ .
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Now, we turn to equation 16, and conside:

Q<.)<<P y

e
el < <1 ,
’E
e L=
i .
-nQ
and
Ikl/
3e<<1 and

vt

the range of frequency as

and these range of v .ues

et il e
| | _'
k,/—— -
it mi.

for # 0

Bi<<1

w-n
W<°—U_ =0for n# 0

n
ag

Using these values in eq. 16, we obta 1:
2 2
k K. nQ2
De Di 1
(knw)-l = [Z A ‘)] =0
k2 kZ S w-nQi B i
(32)
2 2 2
1+ %De B ki X Ti/mi "
K° k2 wl.g?
i
which finally leads to
2
kT :
wZ o QiZ + Ze/ML (33)

This is the electrostatic ion cyclotron m

Summarizing these results obtainec

from the dielectric tensor

-

2
Ikp,

ie.

n this section, we have derived
), the Lispersion relation.

€ (}5'. @ From the
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e

range of frequency and direction of propagation of interest to us , we ob-

tained the expression for the modes which are involved in our pararaetric

experiment, namely,

As k—
) 2 2 2
Upper hybrid modes, from eq. 24: w® = Qe + wp, :
Bernstein Modes, from eq.25.b: o = leef (1 +23n) where, from eq. 25.a:
2
kD A (B)
An - .&_Zn_e_ & < 1
k
2 > ’-»2. w2 +Q Q
Lower hybrid modes, from eq. 26: w =0+ 2L — -q o _—2¢€ ez
i 2 e’i QZ+ "
] +—Re e pe
2
e
As k— 0
Right handed circularly polarized waves, from eqg. 30.b
w =nine}(1+ An) , n>2
%
where, from eq. 30.a: An = e An-l(‘Se) Lz <<
< 1« =P8
n(n-l)‘?.:

Left handed circularly polarized waves, from eq. 31,

@ = n|Q [(1+An) for n>2
2

s A(B)
where, from 3l.b: An = —BE g
2 2
nf w
€ Y e S
n(n+l)$22
€
and i 8
Electrostatic ion cyclotron mode, from eg. 33,
Z g .
w?l =Qf + k™ Te/Mi
2n2
k¢
1+ /kDe
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The dispersion relations of the modes we have just

derived are plotted in fig. 24. In our experimental set-
up, the electron cyclotron frequency Qe’ for Bo = 1088
Gauss, i1s 3.05 GHz; the microwave pump and the high fre-
quency instability with frequencies around .2 GHz, are
very close to the third harmonic of the electron cyclotron
wave. Using the electrostatic ion cyclotron dispersion
relation (33) and the experimentally observed parameters,
such as instability frequency of 260 KHz and electron
temperature of 2 eV, we obtain a value of 7.5/cm for the
wavenumber of the electrostatic ion cyclotron wave. These

values and othershave been tabulated in Table 1(pagel50).







IV-5,SUMMARY AND CONCLUSIONS

We have described an experiement in which microwave

induced parametric decay instabilities have been investigated.

Although parametric theories predict the excitation of de-
cay instabilities with a sufficiently large pump which can
supply enough energy to the coupled waves to overccme

their natural damping, it has been fcound experimentzlly
this is nect an easy task. In the Polytechnic Hollow Czthode
Discharge device, there are many variables that must bte

ad justed to their proper values for the interaction to take
place. However, conce this is achieved; the parameiric ex-
citation takes place, and various characteristics of the
interaction have been observed. ZEmploying a fast pin diode
modulator to switch the microwave pump from one fixed level
above the threshold to one below, the decay process of the
electrostatic ion cyclotron wave is studied. Continually
increasing the variable pump level until it exceeds the
threshold value, the instability nc longer decays into noise
but to a definite steady state amplitude. This not only
illustrated the existence of the threshold power level,
which is an important characteristic of the parametric pro-
cess, it also demonstrated a linear dependence of the decay "
or growth rate with the pump power. A phenomenclogical mo-
del, which incorporates all the observed features of the

wave evolution including saturation, is used to interpret
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the data.

From the plot of y = ClP - C2, the threshold power
level has been accurately found, and also the linear dam-
ping term evaluated. This experimentally obftained na-
tural damping frequency, compared to the values of the pos-
sible collisions that can cause the damping of the electro-
static ion cyclotron wave, is found to be close to the ion-
neutral collision frequency, thus indicating the dominant

decay process is due to charge transfer. An important fin-

ding of the present research is the saturation mechani

of the wave. Using the phenomenlogical model and the ex-
perimentally obtained values of the saturated amplitude as
a function of power, we have found the nonlinear term
proportional to the square of the wave amplitude. Plausible

mechanisms include the harmonic generatio

3

»

1. But comparison
of the value from experimental observaticns to the theore-
tically calculated value excludes the harmonic generation
process as the cause for the saturation process. Another
mechanism which also corresponds to the n = 2 case, i.e.,
saturation term proportional to the square of the amplitude,
and turns out to be the dominant saturation phenocmenon in
our experiment, is the anomalous diffusion.

Areas possible for future investigations as a continua-
tion of the present effort are several. First ion and elesc-

tron temperature measurements must be done carefully =2z ion
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heating due to parametric interaction is a desirable result.
The measurement of the wave number k is still to e done.
With this, the k-matching condition can be checked. The
HCD device has built-in capabilities of mixing and feeding
other gases. Changing to a different gas to recheck our

%

findings is also a possibility. From the presen

ct

mode of
operation, the plasma has been switched to become a microwave
induced system, this has also showed promise because =

less noisier plasma is attained. Some work has alrezdy

been done as an extension tTo the present research.
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V-1, INTRODUCTION

Plasma parametric instabilities occur when the pump amplitude
exceeds a threshold which depends on the set of coupled modes and on
their damping effects. It has become of special interest following the
recognition that such processes play important roles in the absorption
of electromagnetic powerl. Experimental results showed that parametric
instabilities may form a channel for efficient transfer of electromagnetic
energy into a rather large size hot plasma, and the nonlinear effects of
these instabilities may introduce a2 mechanism which heats plasma more
efficiently thaa classical collisional abSOrptionZ. Therefore, most of the
experimental effort has been expended on observing the plasma heating
rates. Besides plasma heating, theoretical and e xperimental studies of
parametric decay instabilities will also yield information about the linear
and nonlinear damping rates of the instabilities, and the development of
plasma turbulence. In the previous report3, a detailed experimental study
of the dynamics of the process had been given. Klein and Cheo3' = introduce
a technique for experimentally determining growth and decay characteristics
of parametrically excited plasma waves. They found that the dominate

linear damping mechanism of the ion acoustic wave in their plasma is due

to ionization collisions, not due to ion-neutral collisions which is the usual
phenomenon. Theirs is a unmagnetized plasma, while this effort is the
continuation of their experimental study into a magnetoplasma. Therefore,
different modes are involved. Since there are no available theories for our
experiment, a general theory is also developed by using svstem total
Hamiltonian approach to deal with the problem. Comparison with our ex-
periment has also been made.

Indeed, the detailed ways of implementation of the ideas of pararetric

decay instabilities to plasma heating is still developing. Grek and Porkolab ,

(89}
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Porkolab et al. 4, and Okabayashi et al. had performed experiments by
shining microwave power onto a plasma column in the extraordinary mode
of propagation in the region of the upper hybrid firequency. Wavelength
measurements oi the decay waves showed decay into upper hybrid waves
(and Bernstein waves) and lower hybrid and/or ion acoustic waves. It was
shown that significant ion and electron heating occurred only above threshold
for parametric instabilities. There were also several experimentsé’ 7,8
performed in the regime of lower hybrid frequency which showed parametric
decay incto lower hybrid waves and ion acoustic waves, ion cyclotron waves,
ion quasi modes, or drift waves may occur. Again, strong plasma heating
was observed above threshold for parametric instabilities (both ion and
electrons). Experimental technique to observe the plasma heating rates is

by using a2 multigrid energy analyzer to measure the modified electron and

ion distribution function. Another technique is also developing by switching
the pump power between two levels and using the Fabry-Perot interferometer
to measure the ion temperature growth rate.

In the parametric process, the incident pump wave is couples to two or
more natural modes of the plasma by satisfying both conservation of frequency
and conservation of wave vector relations. The frequency mixing allows
energy supplied to the system at one frequency to be converted to another.

The physical origin of mode coupling mechanism is fairly easy to understand
on a qualitative basis. From linear wave analyses, the dielectric tensor of
the plasma is density dependent. Hence it will be modulated by the presence
of the vibrational modes of the plasma, resulting in a mixing action such that
the input radiation and vibrational modes beat together to produce sum and
difference frequencies. These in turn may act as sources for parametric

excitations if the frequency and wave vector matching conditions
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are satisfied.

By assuming exp(-iwt) time behavior for the mode of interest, decay
or growth of the mode will be decided by the dispersion relation of the
system. Therefore, most of the theoretical investigations are directed
toward finding the modified dispersion relations with the presence of 2
pump wave in the system. The first work is done by Silin. ? His theory is
largely based on the hydrodynamic equations for a cold plasma. DuBois and
C}oldrnan10 analyze the parametric coupling of Langmuir and ion-acoustic
oscillations based on a Green's function perturbative method (harmonic
approximation), which is restricted to the case when the radiation-induced
energy of the particles is small compared to their thermal energy. They
showed that the plasma can be unstable to certain applied frequencies
for pump power above a threshold, a characteristic of parametric excitation.
Later, Nishikawa,ll and Lee and Su.lz used hydrodynamic model and obtzined
same conclusions. However, in order to justify the harmonic approximation
for greater intensities, J'ackson13 pointed out that it is important to estimate
the range of frequencies which produces instabilities when the intensity is
large.

Parametric coupling of electrostatic waves in 2 magnetized plasma

have been treated by Aliev et al. ,14 by Amano and Okamoto,1 » and by

Porkolab,lé’ = and others. These authors used the linearized Vlasov
equation with self consistent potential field, which can be solved easily
after transformation to the oscillating frame of reference. Alieve et al.
found the frequency range of a pump wave in which the plasma is unstable
turns out to be much broader than in the case of 2 unmagnetized plasma.

Amano and Okamoto extend the theory to inhomogeneous cases. Porkolab

analyzed the resulting dispersion relation of Aliev et al. in the limit of
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3 weak coupling, and obtained threshold powers to excite the upper and

lower hybrid (cr ion acoustic) modes simultaneously. He also introduced

a new type of kinetic-dissipative instability. All of the above investigations

are based on electrostatic approximation for the plasma modes and hence

valid only for longitudinal waves. In the presence of a static magnetic

field, most of the plasma modes become hybrid, and the electrostatic approxi-

mation holds only in the limiting case,

1 In this investigation a general formulation of the parametric coupling

4 equations in a homogeneous magnetized plasma is developed ty using
Hamiltonian approach.18 The coupling coefficients of the parametric
equations are derived from the collisionless Boltzman-Vlasov equation.

With transformation method and trajectory techniques, the induced

polarization currents are derived. Applications to various forms of
madal coupling are given, and comparison with experimental works is
made whenever possible.

A set of experiments in the Poly HCD plasma was performed. A
microwave horn is mounted at the end of the plasma beam. In order to
obtain a quiescent plasma, 2 new technique to create an ultrastable micro-
wave sustained plasma is introduced. When the pump signal, at 9. 23 GHz,
is above the threshold level, the second harmonics of the electron cyclotron
wave and the electrostatic ion-cyclotron wave are simultaneously excited.
The time evolution process of the electrostatic ion-cyclotron wave is
studied by switching the microwave pump power from one level to ancther.
Linear damping rate, initial growth rate, and the threshold power can be
obtained.

In addition.the nonlinear saturation mechanisms observed in the

experiment are discussed. An analysis by using the guiding center

230




technique 18 was made and it is established the nonlinear damping is due

to the anomalous diffusion produced by the ponderamotive forces of the

instabilities. Comparison with experiments is favorable.
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V-2, GENERAL FORMULATION FOR THE PARAMETRIC EXCITATION

1. Overall Physical Features

It is well known that the vibrational modes of a medium will modulate
the permittivity or polarizability of the medium. Assume that there exist
two normal modes or waves,S and L (e.g., a phonon and a plasmon) in
the medium with frequencies w and w, in the linear regime; then they
will modulate the polarizability of the medium resulting from the density
perturbation of the medium. The problem can be treated mathematically
by expanding the electrostrictive polarizability @; in a Taylor's series in
terms of normal mode vibrational field égs related to S and EE‘! related

to L

Ao da. .

: T T | ij S encul
-y aij&(BSEso_)o éEso-+(86E10_)o SEI & where i,j,0 =1,2,3 or x,v, 2

where the Einstein summation convention is understood. Hence the totz2l

induced polarization due to the presence of a third wave field E is

da. . da. .
t: = °+ ._IJ_ - ...__"J_ = 0.4. &=
Pi=ayE;= [ (aﬁEso_)o B o (aaEM Vo 8By | Ey=P +8P, + 80,
da : 5 By ; .
where 5Pi— (a_LéEso-)o Eso'Ej and pi-(a_LaE”)° sElan are the induced

polarization associated with the Raman and Brillouin effects. Here we

have assumed ]EI>>IS§S] and |E] >>]6§11

2. Hamiltonian Approach
We first normalize both S and L waves. Assume the particles

associated with S and L have reduced masses M and m, momentum

K and Jf, displacements Q and U respectively. The displacement and




T

T

ST T——

momentum variables are the canonical conjugate pairs. Hence the unper-

turbed Hamiltonian density Hf)ks) and HSIC) are

2

K (k) 12
U A VI T (%R b
2
© 2
Hg) “é'? [xam *mu, (k) Uf(’é)] (2.2)

! 1
where ws(l_c_) and w, (k) are the resonant frequencies of the system without

the pump field, and the field associated with the corresponding modes are

2.
sE, 0 =- 2 L w29 Qe - —= K x2 (2. 3)
P edn_
o (o]
om0 =2 —L W2 (9 o + —2 g (2. 4
“ & i,

where us(_1_<_) and w, (k) are the resonant frequencies with the presence of
pump field. n is the background electron (or ion) density. 2, and Qi
are cyclotron frequencies of the two species including the sign of the
charge. Here we also assume that a uniform magnetic field Bo‘i is
applied, and the plasma is singly ionized. It is easy to show that the

Poisson bracket relations hold:

Sk, k) 5 | (2. 5)

"1
(Qm , K @) ;

(U (k) , #.(k)}=5(kk)s (2. 6)

Ll G o3

The pump field is assumed to be spatially homogenecus (dipole approxima-

tion). Hence the induced polarizations corresponding to the frequency
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components in question can be expressed as

B

5PN = —2) sE; (0 E] +ec (2. 7)
S1 861-:1 (k) o g ]
.l
~
(k) B -
8P, = (——H—) 6E] (W) E+c.c. (2. 8)
85350-(5) o so j

where the superscripts ''+'" denote respectively exp (tiwt). Then the inter-

action Hamiltonian densities for S and L are

12 . -
— v (0Q, (k) * (K(k)xz), ]

n e yn
e] o

H sp®sg () = sp (M
S S1 s1 = sl e

(2. 9)

A
YK). eo (K) _ ao(k)m 12 B i

2ite i 2
o fe)
(2. 10)
The total Hamiltonian densities of the S and L are
1
u(k) g gy () (2.11)
s os s
(k) _ oo(k) L oo (K)
HI Hol +Hl {2. 12)

It is known in general that the equation of motion for any cononical variable

A is
dz d 2
['—2+2F§+r ]‘A‘-‘{{A,H}v H} (2'13)
dt

where 1/7T is the phenomenological relaxation time, and H is the total

Hamiltonian density. (2.13) together with (2.1) to (2. 12) can be used to
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S

derive the coupled mode equations:

(K
s

Evaluation of the Poisson bracket { {Qi(‘ﬁ), H . H(sk)} with the

aid of (2.1), (2.5), (2.9) and (2.11) yields

2
\ ' w _(k)
(e, ), vy -0 P00 - == e
€ Jyn
o

Therefore the appropriate equation of motion for Qi(‘ﬁ) is given by (2. 13),

Q.(k) +2T Q. (k) + (I +w (X)) Q. (k) = ﬁap“‘) 2. 14
i_)' 5 i(_)T( s us Ao i(_)--e - Si (' )

(o}

with the dot denoting %
Similarly by evaluating { {K;(), H} , HE)) with the aid of (2. 1),
(2.5), (2.9) and (2.11) we have:
Q

(k) ), "2 g Mo X)
(g , 85, 5y =20 2K, 0 - Mo 2 —— @ x 528),

eJn
o

and

" Q.
(k) K. (K) == Mo 2(k) —— (2 x 5PX))
= A =s
o]

K e 2.2
K i(5)+ZI‘3K1(1§) +( 1"s o

. (2.15)
k&

Equation of motion in the variable 6§_S(5) can be obtained by combining

(2. 14) and (2. 15) with the aid of the relation (2. 3). The result is

4 LA 2
2 - Muw _(k) Mo _(k)Q,
[L5+2r, Eorde o P00)16E, (0 - —25— 520 = L (3 5p )
dt n e n_e
> - (2. 16)

Similarly for the L mode we obtain:
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-
[—s-dz +2T, S+ (P +u,(x)] OE, (X) i L
o L dt L 9= == nez =1
o
!) 2
mo , (k)2
: 1 =""e (k) 2 ~
+—— (2 x §P.) x £ (. 17)
< =4
noe

Thus, we get two coupled wave equations for S and L modes with the

presence of the third wave E. When the pump power is near or above
threshold level, collisionless model can be used to calculate the coupling

1 2
coefficients and replace I‘i*'usz(}_(_) and r‘i + w.,! “(k) by the shifted resonant

frequencies. Then equations (2. 16) and (2. 17) become

!
2 Mo 2 i M,,Sz(g)cz_.z o
[—5*2T, dtm 2 ]8E ) = o S R (  §P ) 2 8
dt n e n e
= ° (2. 18)
g’ me (0 me, 90 (k)
[==*2T, dt (k) — 8B, t——— (£x EP, ")x2 (2.19)
dt n e n e
o o
. 1 1
where o2(0) =T2+0 20,  w (k) *T:+w) ()
Using the following relations
SE (k) = 8E (k) +c. c. spK) - SP (k) +c.c.
e DedBE - =s Sy -
5E, (K) = 6E, (k) + c. c. 5B =521 + e c

—

and combining the relevant components, equations (2.18) and (2. 19) can be

rewritten 2 s

d’ 4,2 Moglo oy 09
[Sz+2T +o, (K]SE,(k )--—,—525(5)———7——(£~g SP_(k))x 2
dt ne" n_ e
" ad (2, 20)
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a® d, 2 e - SIS +
[T3%2T G+e, W18E, () = — 5= 5B, () + —L—5—2(2x 8B, (k) )x 2
dt n e n e

2 (2.21)

Here (2.20) and (2. 21) fit the standard form of parametric coupled wave

equations with 8P remaining formal, which is to be derived in the next

section,




V-3, KINETIC APPROACH TO CALCULATE THE
COUPLING COEFFICIENTS

1. Transformation of the Vlasov Equations to the Oscillating Frame of
Reference

. aq. . aa. .
To derive the coupling coefficients (86E” )o\and (55—}:1-3—) for
Lo so

determing 3P, we start from Vlasov equation for a homogeneous back-

ground distribution function f(o):

(o4
at®) o ; a£(°)
] —_— 9 | - T
% EHPRE =B e 500 (3. 1)
a a

where e , m and v are respectively the charge, mass, and velocity of
[~4 a =@

a particle of species 4. The corresponding solution can be written in the

form
(o) = eg- t 1 ty t o >
v Lt 2 v - [ dt'R (t-t") * E(t'),t) =f (v,t) (3. 2)
@ "o a0~y m = = = @0 —
23
where cos Q ¢ sinQ t 0
a (o 4
R (t) = sin 9O t cos O _t 0 {3 3)
@ a a
0 0 1
e 3
Q =2
@ I ¢
[>4
e ft
- o el ' - By e !
v Xa o | Gt éa(t th) » E(t') (3. 4)
@

Hence in the oscillating frame equation (3, 1) reduces to

of o(z,t) e f (v,t)
=0 TR sIEB g 0 %5
) v




Since any function of IXI satisfies (3. 5), therefore, let's assume
f (v,t)=f (v,,Vv:), a Maxwellian distribution.
@' 20 -

It can be shown easily that to the first order equation for the pertur-
bative distribution function &f (v ,r ,t) is

a

96f(v , r ,t) 6f (v ,r ,t) e ) 38f (v ,r ,t)
2 - . o S 4 Rl e — T
dt Xc, or + m [-F—‘(t) g @ qugo] ov
o3 o] =
e 3f<°)(z ,t)
+—2 §E(r ,t) » —<4—2 =9 (3.6)
m —— aX
a o

For convenience we transform the original variables (v ,r ,t) to (v, r,t)
)= ok,

4
of the oscillating reference frame and introduce the function

b (v, r,t)

(]
=8f (v ,r ,t)=68f (vr—= 5 Q'R (t-t') - Et'), £+ 1)
a a "o T« a = ma _0 =@ i - Ta
(3. 7)
where x =gl
a a
e
and g == % oat" R (¢'-t") ¢ E(t") (3. 8)
(>4
with
3 0 v ,x ,8) e ¢ 96t (v ,xr ;t)
o = o o IR Y % t JE 2 O - N - Moke -
3t (L, 5 0) % m E®Y [ @' R (t-t) e
A B5f (v ,r ,t)
g el ® > ke o o o 4
dat or
[«

From (3. 6), the equation for ¢ (v, r,t) is then
Y
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2, Integration along the unperturbed trajectory in the phase space. 3

Equation (3. 9) can now be solved by the method of characteristics.

In this method the perturbative distribution function is calculated in the

Lagrangian system of coordinates.

of the particles as

KL' A
o l"‘

RS
The solution of (3. 10) is

v'=R {t'<t)- ¥
T

and
R .
r'=r+—1 (t'-t) * v
Pl - Q "y
@
where sinQ t
a
L (t) = -(l-cos t)
= @
0
and
rEet) , xexit’) ,

Let's define an unperturbed trajectory

Hence along the unperturbed trajectory (3. 10) equation (3. 3) may be

written

4 e

—_ (v B o bl

dt Q,(-’ Et) m
a

(3. 10)
(3.11)
(3.12)
l-cosQ2 t 0
a
sin2 t 0 =520 | tB_ (Tidr
ad & o =
¥ . (3.13)
xr3lt) , X 23t
Af  (v)
D,
= (3.14)




Substituting (3. 7) in (3. 14), we obtain

e

i W S t J41 £\ t -
ae SRl [ R (et)c E() , r+g b -
& =<
e of O(V)
- —X% SE(r+14 ,t) o —&—— (3. 15)
a7 == ov.
@

Because of the spatial homogeneity of the background, we may assume a

dlce
coordinate dependent of the non-equilibrium increment 5f ~e < and
ike r &
the perturbed field SE ~e ¥, Then (3.15) becomes
. CE ik (L) e
T of (x+=% F dt'R (t-t'): E(t"), k, t)e 4 = . L 5E(K,t)
T R e et . o ma o
a

(3. 16)

Let us, however, restrict ourselves to unstable (ocrowing solutions. We
’ (=} o

can thus invert this differentiation by integrating (3. 16) with respect to

time along the unperturbed particle trajectory as

e e
,(pt gk [ GHR () (E@) kot <o o

1% sEx, t)
a = o bl

!
of O(V )eik. (Ex -r
tov!

ik [L () - £ ()]
)e 2 o dat' (3s 17)

From equation (3.12), let

¢ (M oke(zog')oeatk L («1)+ ¥ and Tetad (3.18)




;.
;
?

ST

Then equation (3. 17) becomes

e e
£ oc
e ' 1Y o Y = Tk
éfa(v : [ dt Ra(t £y » Bt'), k, ) [ T8E (k,t-7)

& -C & o}

of
o aQ‘O[COS(Q T+08)X+sin(Q T+6) 7]
VJ_ (4 o

of -i¢ (7) ik-[ L (t-7)-L (1)]
+ a—L Zfe S e & " dr (3.19)
Vi
where we have used following relations
vy=v, cos 6% +v, sin@ § +.v,, 2
and
v'=v,cos (Q T+6)%k+v, sin(Q v+ 0)V+v, 2
= a = o
then
af o(v') of o(v) of a
X = - % + si 3 — a0 4
5 oV, [ cos (Qa. +8) %+ sin (Qar +e) ¥y 1+ =
Let the time dependence of the pump electric field be
E(®) =2__E;1 sinmot-!-ZEZ CQSwot {3, 20}
then
e t t!
ke[£ (t-7) =L (t) ] ==& [ 4t' [~ dt'"k-R (t'-t")* E(t")
o c
= (aal+baz) [sinw ot -sinw o(t-f}’]
- b |
+(aa2'bal) [cosuot-COSuo(t-.)] {3. &1}
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P e, 4 e w = 2 +
— ! £} . [ ST R e = o 5
=2 " R (et Eft') =i (&, (E]*E3)- & - (E] +E)) ]

o - a W 'Q
E el (3. 22)
where
1
e k-A *E e Q
a1 e DR G o S : S e T txk-E , i=1,2
al m 2 2 ol 2 — —
o w =< a w (w 'Q)
o a
! and
.
' wi-Qi
A =%%x+%7y+ 2 % 3.23
& RFYY S 2 ( )
o
and
_ -iw t + iw t
Eyrily e Eys-ify=
(3. 24)
. -iwot & iw ¢t
BBy e iy e
and
Q .oi-QZ
- & : ﬁ_ ~ A~ N ~ o~ o A o~
éa XX+1w &y -3%+ > % 2
o W
o
(3. 25)
*
éa is the complex conjugate of éa.
We may then calculate the total induced current from (3.19) as
S ¢
6J(k,t)=Yn e fdv v+—ZL f° 4t'R (t-t')
ha ad a «a - m_ ~a
& -2C
¢ t
‘E(t')]6f (v+=2% [ dt'R (t-t')*E(t'), k,¢t) (3« 25)
= o= ma e = = &




With the aid of (3.21) and (3. 22), (3. 26) becomes

2

n e e W
= x . o - - o
6J(k,t) =~ g ;:1 % fdw I d"'&"'l"r;l& - g [é—a (E +§_2) = ‘:ez
o o o @ =L
o «
coilmei s of
. i S & s 0 >, o ~
(§1+E2)]} {Bv, [cos (Qa. 6) % +sin ( a'r-’-e)y] + B, %}

-i¢ (1) i{la b ,)[sinw t-sinw (t-7)
6E(k, t-T)e 2 e @} @ ° ot

¢ - ‘ - )
-!-(aaz-bal)[ cosw t-cos “"o(t 1}

(3. 27)

Since

’ ) .- T : 3 R TRT
el{(aa1+ba'2)[ sin w_t - sin .oo(t -7)] (aa“2 bal)[cos w t-cos “'o(t Y1}

+oe = & i(h+q)wot -igw T
=¥ (—1)°Jh(a 1-T-b 2).]’Q(a 1+b 5)e e J
h, q=-cc al « 2 T
+e i(fffgw t -igw 7
.\ 8=f o = o o
fzg::-x(l) Jf(bal aqz) Jg(bal aQZ) e e
mot -imo-.')
= l-‘--z[(a 1+ba2)'1(b 172 2)] e (1-e
1 -iwot iwo'r
- = + 4 - - 2
> [(aal-l-baz) l(bal aaz)] e (1-e ) (3.28)

where J. J_., 3,
jo S F

Jg are Bessel functions and we have assumed
|

Iaail<< ,’ 'bai [<<|'

For the parametric interaction, we have

Wy Twg tw, for the conservation of energy

and




e a— *""'_"———_—m—‘

Es = - _151 =k <for the conservation of momentum (dipole approximation)
where wg and w, are the characteristic frequencies of two plasma modes in

a collisionless plasma with the presence of pump field.
Therefore, the induced current density for the S (or L) mode due to

the coupling between L (or S) mode and the pump wave can be obtained with

the aid of (3. 27) and (3.28) as

in e3 @ 2 of "
2 P i A - S ST LY ] 1 )
sis(.lﬁyf) ; 7 g é:z (E.l EZ) fav [ dr{ v, [COS(LQ""Q)q
m W =3 o -
a o a
of -iw, T =-i¢p (1)
+sin (Q ™90)¥] + =22 3le b .
‘ “« v vy
k é (E,+E ) & of E of n
| - [vav fTdr{ 83', [cos (:'Za.—-'-e)ﬁc-'-sin(ﬂar—e)“‘/ ]+ 5;” %}
o o L,
-isz ip (7) fwor @
e e (l-e )3 e 5§_£ (k, t) (3.29)
and
; 5
- _ine’ wg Iaf s
Ggl(g_,t)-%—-g—ﬁz 2 == {_é (E E )fdvf *ar J—a [cos(Q a-."-u)x
m w_ =8 o)
@ o «
of 5 ims'r -id)a(T)
+ si ~0)y 1+ =222
sm(Qa“-e)y] v, te e
(EI—Z af of o
- [-——-Q'-o—-] fvdvf dT{ [cos (« 1-’-9)\: sin(Q f*e)y“——a—i"-; 2}
ius'r -ip (7) -iuo'r g
e e % (l-e ) Sgs(_l-_t_,t) (3. 30)
In carrying out those integrations, we specifically choose the wave vector
k on the x-z plane and write
k=k, X+k, 2 (3s 3 1) -

L
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Equation (3. 18) becomes
éa(f) =ja[sin(fzar+ e) - sing ] kw1
where

ja =k v, /Ra

then we have
+oe oo

n=-o«c n'=-c

Therefore, we obtain following relation

of of il .
oe o = N &1 +--2 81 ~igl7) w7
[ vdv /A dT{c”—v_,_ [ cos(QT+8)%x+sin(QT0)¥] Fr e-
+x Zo % >
= o] § e 1.3 2 a X
n=-w “n

for a2 Maxwellian distribution function fo "

where
z =202 3-8 T/ma’ and A () =1 (3) e B
n 2 = & e
k, (T/m)
and
2 2

oo ] s 2 -~ . ~ A
(g, Zn;n)=EB—An(a) %% + [%— AL(B)-28AL (8) 19% + Z,A_(3) 22-inA! (3) (&Y -

ik, @

(3. 32)

(3. 33)

exp [-i6 (1]= % T J(2).(7)expl-ia( re)-n'ek,v, 1}

(3.34)

{3. 35)

(3. 36)

k2 | Y o )
+ Tear J—“_; Z A (3)(x272%)+ Team J8 Z A (32-%%)  (3.37)

Substituting (3. 35) ian (3. 29) and (3. 30), the results are

)




3
new

Q
8 Sk t)=7 ——“—2—7 SE (k, t)- 3[_ m[l an)'l{m\.n(sa)?c
I T mT ) n
I a «@ o ‘2
wezg,)
ig A3 )¥]+ AR )z|A
+1eaz\.n(sa)y'l L n(ﬁa) ]._.
2
3 QZ [ 1 Z?O 1
e 29)1- zz|[k-A
+kauglz k, (W, +nQ ) ;{ga,zm;n)[l-W(zm)] k,w zz][h =
= 0 n R | 1o 1
’ 2 2
BaQa[v 2 s ,2% .a)1-w(z2%)] Zso *z'z] [k-A ]
) ety kl(us-nﬁa) =('Ba’ a1 sn ko = =
. (E‘.; +§2) ‘ (3.38)
and 3
Q
£ AP IS (k, t) [1-w (2% )nA (3 )%
81" [, t) o7 wreiien® [b "
a a a
w(z?)
; sn = *
+ig A (B )] - . A (aa)z] _4a
2
3 02 1 o Zzo ;.
(= 4 7 & ~n 1 ‘A.
" ka..a [Z k, (w_-nQ )'—l’(B ’an’ a)(1- W(Z )] kiw ]L‘( —:,]
L%0*n a - s
8 o 1
P - 2 4 P, TS & - WIZ2
T ['— o ma e, 2yl -W(zg )]
2
2 *
Lo ‘i‘] (k-4 1t (E1‘Ez) (3. 39)
<L~J£
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where

wl+n.Q W _-nQ 2 > |
anz-—_Li A zan:——s—L.z - 6 :k'T/mQ ‘
k(T Jm )2 k(T fm ) E L 1
a, a a |
(3. 40) ﬁ
i
whence the induced polari itions are obtdined as
- i - - 9 « -
8P_(k,t)=—8&8J (k,t) OE, (k,t) +(—=—): E (3. 41)
E=Shett N Gl s == - =
s 98E
—=
[ + 3 # 5 o a +
8B, (k,t) == == 83, 5,t) =8E (k) - (—) E (3. 42)
¥ 36E
where
=ET+E, and E =E@ +E,
E 2EyvEy; emd E SE; +E;
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V-4, DETAILED ANALYSIS OF THRESHOLD POWER AND

INITIAL GROWTH RATE

1. Conditions and Properties of the Instabilities Occurring on the Basis

of a General Form of the Coupled Mode Equations

In the following paragraph we will show that the coupled wave equa-

tions (2. 20) and (2. 21) derived in Section II can be reduced to the following

scalar form similar to those introduced by Nishikawa“:

a2 d =

—d—2+2fsd—t+ws X =iAYE (t) (4.1)
T

a? 4 . 2 +

E + 2f2 It T Y = -ipXE (t) (4. 2)

where for simplicity, we treat only the case with

Au = real> 0

Taking the Fourier transform of (4.1) and (4. 2), we obtain

e_uz - ug + 21'.1"5‘.»] X(w) = REOY(u-uO) (4. 3)
f(w-u )2 - w2+ 2iT ) (w-w )-] Y(w-w )= pE X(w) (4. 4)
0 o £ 2 o’ | o o .
where
mdu ~iut
X(t), Y(t)= _fw 32 e T X(w), Y(w)

Setting the determinant of the coefficient matrix equal to zero, the disper-
sion relations which determine the frequency and damping (or growing) of

the waves under consideration are obtained, namely,
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e A i e

[@2-w2+9ir bc‘.' '-('u.)-.d )2-'2+9ir (;u-u ).'\ E2=0 (4, 5)
L S i © o ! bk g ) e ™ i

If the solution of (4. 3) is written in the form
@= x iy (4. 0)

then x and (-y) are the frequency and damping rates, respectively, of the

new normal mode with parametric coupling effect. It becomes unstable if
y> 0 (4.7)

Considering first the threshold case in which y = 0, Eo = EC ancd (4. 3) can

be separated into two equations

r 2 21 . 2.8
rsx !-(x—wo) - wﬁj + Tﬁ (X‘wo) (x -us) = 0 (4. 8)

2 2 2 21 2
(x%-w)) i-(x-uo) - “Jz_], - 4L, T, x(x-w ) - AuEZ = 0 (4. 9)

Since I's and I“(Z are arbitrary, the threshold intensity of the pump field

and the frequencies of X and Y are given by

X = w (4. 10)
X - e = e, {4.11)
4T T',w w
2 gL £
= )
EC pn (4. 12)

Thus under the condition of f{requency match, there is no frequency shift
of X and Y at the threshold.

With the pump field Eo > Ec' we no longer can set y = 0. Sub-
stituting (4, 6) in (4. 3) and separating the real and imaginary parts, we

obtain
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i i—

3.2 4. - N P :
- - - r - - t - r | e - r 3
(x7-y -l -I‘sy) [(x -5 “ -I“L.yj 4x(x -o)(wl‘s)(y*l‘i)
- xuzi =0 {4.13)
x(y+I ) r(x-'.. )2 -y .42 -, y| + (x~w ) y+T )(xz- 2-...2-21" y)
Triy l_ o ¥ 4 £ o’y L s g

=0 (4.14)

If the frequency shift is small compared with «, then (4.14) can be ap-

proximated as

-2 {-ui (x-ws)-!-ri yl @ (y+rs)

G T R _ "
x“-y“-uS-2ly = =T, = 0 (4.13)

and (4. 13) becomes

i SNEET N Yt 2 ,
4(y+Fs)(y.I’£ )ws Wy = lqu (4.16)

After some algebraic manipulation, we find

2 2 e
AT A (T +ME /e g
v = 2
& / - E2/’"2
= -(rs ri) +T‘ (rz'r‘s} Lt -H—SPE o’ LC 2 =
= 5 (4.17)
y(y+2T)
X = W +T (+.18)
s
In general 1"‘E is much larger than I"S, therefore we may express (4.17)

and (4. 18) in the vicinity of the threshold as

s’ ]
yo Il =%t (4.19)
E; ‘;




The initial exponential growth rate and the frequency shift are linearly
proportional to the pump intensity. These results are, however, valid only
when the frequency shift is small compared to ~s and the pump intensity is

near the threshold. These phenomena had actually been observed in Stenzel

20 y :
and Wong's™" experiment in an unmagnetized plasma.

2. Parametric Decav into Longitudinal Mcdes (electrostatic approximation)

Thus we can write

. s s . I it
SE[(k t) = -ikd_(kt) and GE,(kt)= -iko, (s t) (4. 21)

and substitute these relations in (2. 20) and (2. 21). We have




(2) When the pump wave is the ordinary mode and the decay waves

are ion acoustic mode and electron plasma mode

-

= 28 W 1. e = )
Let E(t) 2E,cos w btz (i. e., gl 0
and (4. 24)
k=kz (e, ky=1i k =0, B, = 0)
and the substitution of (4. 24) into (4. 22) and (4. 23) will yield
r 7 o 4 3
2 ) ! _ iMo X e ~
Lo S el ol —2 s — (o —L
d 2 S 2 P - e’k em T o
t no a o k T im
L o
@ - B
- W) E 0, (& t) (4. 25)
k/ Ta7mcz J
i 4 3
2 im(u’ n_e -
%+2r2§€+“f(5)'¢;(-}5’t): 2£: aQZ Wi / s"_ )
‘.dt I n e k amaTa % L K TQ/ m
- wi- —L—PEds (1) (4. 26)
k/ Ta m,

Since the decay modes we are considering are in the frequency domains

such that

T/Ti/M << ms/k <<1/Te7m << wi/k (4. 27)

then (4. 25) and (4. 26) become

! d2 q 9 L kewf " }
| =5 + 21"S at e q)s(k, ty= i 3 9 (k t)E (t) (4. 28)
dt muo
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. vt

R
4 g ot L ke Td - +

where we have used relations

4m e2 4rn e2
20 2= 2. 2 _ e 2 280 “o
w_ = k Te, M, W, = (“pe Fe—— and kd = -——Te (4. 30)

Equations (4. 28) and (4. 29) had been obtained by Nishikawal 1, who worked

with a hydrodynamic model. If we take the Fourier transform of (4. 28)
and (4. 29), the results would be the same as DuBois and Goldmanl 0,
Ju, 3 531 15 : L3 .
Nishikawa™ ", Lee and Su” °, and Jackson's conclusions.
Therefore, the threshold field is given by
E IR0
th & ’ sul (4.31)
q 9]
8v T Te s [/
= =
where Ey 2E2.
{o) When the pump field is extraordinarv mode (EiB ) and
1| > w g
e pe
In this case we may write
E = " i - G i ¢ i = = = - £ :
E 2Eo(x cosw t ysm.aot) e §2 XEO, gl .:_o,)
and (4. 32)
k=k x+k z
i il
Substituting (4. 32) in (4. 22) and (4. 23), we obtain
d2 a 2' _ iMu: ) E
S+l gt [ (k)2 —s—= (kéP L+ Kk 6P
7.2 Bigef  pra e T e T RO
L j 0
id Iw’sz.’lf :
+ 2.2 k' épsl (4. 33)
n_ ek =




4
2 s
q° d af & sral,
= +2T, + +w’|¢ (_15,:)=-—-—(k Pt +< §PT_)
4e2 2dt TY |9 noezk 41 23
. 2 =2
! O
Mhisiiod T "SR (4. 34)
n el l a4l
(o]
where ) Qar
fr . naeauo(l+:z) 3 ) chz o "
§P .= 4 ¥ , b 1o 1-w(z?% )
sl - 22 (m -r“lQ) @ 7 £n
s o maTcz(‘“o'Q;) n o _!
’ 2 2
n“CA_(B) nQ A _(B) [
gon e @ @ : o n'"a o |
= 3 1-W(zsn) + W(zm)z\n(sa)wt——_w_ JW(z“) |
o' s (o7 ] e} . i
-iw t
Lo +
- W (an)] ¢,k tIE e (4. 35)
-
Q
3, 2
] naea“’o(l w k, | A (B :
P .= -~ & 2 5 .= wiz% )
83”7 T (@2-F) n Ki) @ 2" % yn
n ma awo-.a n | (o]
+ -lw t
+uSW(Z:n)] ¢, 0E e © (4. 36)
3 o E -
€W (1 + ) o [
a a o w n A (8 ) nQ !
6P;l=-wiz = (“_’;p‘;’ (1- “\;1-mz
£ a m,T (w-) n T N J
2.9
oS A _(B.)
-8 e i}, wz )J -wz%)a (8,
uo(u2+n9a)
nQ A B) T iw t
o ¥ -
S —LRE iy (z? W(zfn)]‘ 6.k t)E e © (4.37)
i s
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naeauo(l =} % A BT
T 1 s | n "o gy
0P z =T Z - = w, W(Z )
£3 w & T (,-_92) 3 w i In
ma 1o -JO -C( n I \ Q 2
o i..)ot
& F(Z 1
“eWI(Z ) | Dol (k 0)E e (4. 38)
(i) Decay waves are electrostatic ion cyclotron wave (ion
acoustic wave) and upper-hybrid wave
/m @
Thus, we may assume- 3 <k /k <<1 such that Wz, )= o,
h i
and W(Z. )=~ 0 foralln and W(Z¢ )= 0 for n+ 0, W(Z° JA (B )= L
sn sn so”" 0o

With these approximations, equations (4. 35)-(4. 3 8) may be re-

duced to
noe3 k2
6P, = b
sl 2 2
% -
-wﬂmTe kd
_ n e3 k
BE 8= =
2 2w.mT K.,
£ e :
(4. 39)
, noe3 ) b
6P~ - R+R% k)
41 omT -
- e 2
3
AP ~
6F 23 = 0
and (4. 33) and (4. 34) become
l 2 IMEU ) ) 3w €t
s & 02| 5ot - 1 +k°/k“)E e ° o (kb
d s dt s| s 2 { d £
t 2kmT <y =
¥ (4.40)
f- 2 d 2.!" -iew, (1 + k /ki) t
- & i " =) “ B s
(g2 iToa tey (oS KT Bo®  Oglle®)
] (4. 41)
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Therefore, the threshold field can be calculated as

E T

e (4. 42)
8Y mn T, s £ Tpe
5 k?Te/M sze/M 08
where E. = (2E )., o_=Q. +—— =~ — and k“°/k5 =~ 1. This
b (LA 1+k“‘/k§ 1+k2/k:21 g e
5 4 X

had been obtained by Porkolah2 1.

(ii) Decay waves are lower hybrid and upper hybrid waves

In this case k /k << /—1;14—1, therefore W(Z‘_x) = 0 for all n.
| - be

oL
IQeI e 2 lo wge
i ¢ = 1 _— & it ~ - — =y w
Since “ 5 + (2 ) 4 L"pe = "'el + IQei g + " and
k2 2 2
B=k2T/m.‘22=—£'-zE>l u:lQ'i--:le—-\(ﬁ)z]OI
e L e e k2 SN I=nai =i el T | 3Me e
d ‘Ze e
> uz = |Q ,.u
pe e' s
2, |
) i N 2 “ e
and  w, = [Qel +w (B 1<l ~k;

With these approximations, equations (4. 35)- (4. 38) become

3

_ noe + -imot
P =2 ¢t Ege
mT w
e pe
5P, s 0
o 3 (4. 43)
& n e ; iuot
i’ i Z P EtE e
mT @
e “pe
o+
6P} 4 = 0

and (4. 33) and (4. 34) become




- . 4 '
d2 d ° 4 1Meus " -lwt
- * 21"3 s +u; q)s(’é,t) =——-———2—Q)‘2 (l(_,t)Eoe (4. 44)
at” kmT w
L € pe
2 2iew iw t
d d 2]+ 0 - o
s *2l, mru; | @ (k,t) = s —~—a=—dh"(k . tIE e (4, 25)
dt2 £ dt £ 2 Teugek s o

Therefore; the threshold field can be calculated as

Eth . rerZ “be (4. 46)
8Yan T Y 9s®y 2w D
o e s'e

2
which also agrees with Porkolab's"1 result,

2 wze * !Qeqxi 2
where E, = (2E_),,» w = [Qeni[ E +92 = o
pe e

(c) For a forced linearly polarized pump field with upper
hybrid and lower hybrid waves as decay waves

In this case we write E= 2E_cos w tx (i.e. E, =xE ; E. = 0)
= o) o i o —I
andk=k x+k z (k /k <<M§)
- & i e M
9
Singe wo - + w2 , B = KT /mi® mwl /G2 << 1 and w =~ ..
o e pe e L e e pe' e s pi
With these approximations; equations (4. 33) and (4. 34) become
2 1 i.”\/Iecu4 -iw t
d—z' +21‘sdit +u§ e ¢Z(_l_<_,t)]:':oe = (4. 47)
dt mT kw
e pe
\ 2 l -2iew iw t
d d 2 + _ L - o
|53 ¥ g tey okt = 5 —— Tk@s(g,tnj:oe (4. 48)
- | pe e
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Therefore, the threshold field is given as

E 1 g w
—t . [ L __pe (4. 49)
8'/:rno'I’e Y9 V2 w

£

S
3. Parametric Decav into Electrostatic Ion Cyclotron Wave and Har-
monics of Flectron Cvclotron Wave (Hybrid Mode) in a Uniform
Magneto Plasma

For the harmonics of electron cyclotron modes, k| is small
- f € ~
(k| <ky) such that B <L and W(Z§ )=~ 0 forall n.
Since the electrostatic ion cyclotron mode is longitudinal wave, we
may assume 5§;Q<_,t)= -il_<¢;(1_<,c), where k = k x+k z with
L i
m ] | e ! e
— << < = 2 b 7 B Y= 1.
1/M < ,k“ /kL| << 1. Therefore, W(Z_ )~0fornz0and W (zso).\o(se> 1
Because the nonlinear coupling due to electrons of the plasma is
much stronger than due to ions; therefore we may neglect the ion terms
of equations (3. 41) and (3. 42). The resulting components of the induced

polarizations can be simplified to

_ : n eSw & 8 mjas y
KroP ik, o) = - & R g R
= Y mT (w°-2%) k w fus-a%)
o) £ e
u3e$'22u 2 _ b ‘!
+ - - - k- 4 E (4. 50)
e 2\ "k o % - e =
k_):)o“{@(wl 'e) "o .l
_ e + -8 w w% -
k 6P, ls t) = - o~ ———5=5 §E, >
— “s mT (w°-0%) k w_(ws-0%)
e o e N - e
2
-iw B (w)-0%w 2 ) iBQ o r = 1
- 2 s . tk x- A P_'-1
kK o (w3-2%) ¢ o5 8 Sl Gl
- o -




D g T

3 oy
n e w <B @ _
INE L (k t) k St X
2 mT (0°-Q7) k o (w,-R7)
e o i & <
9
if 2 w 3 1
- -~ - S -+
AR | 052
k‘Lmo(m} -Q;) =l )
3 . 2
n e’w ) -iB R oW, .
PG k)= - —2 2 5 (k1) & eed %
= “7 mT {w_-R7) k w (w05 -Q%)
o 1=g" 2 e
B Q2Q)£ - Q —-\ - b .;.-
i eez 5 y—iké Z X« A K (4. 53)
k. o (w =07 1% i i
e e 4,
s8% o vy =2l ——3913:0—"—-— (& t) [‘ A E-; (4. 54
g3\ =¥ =g 3 3 P |Er g, = dhoabi
£ mTe(‘Qo-Qe) - -

and the coupled mode equations are given by equations (4. 33)and (2. 21). From
R

(#.52), (4. 33) and (2. 21), we obtain the relation 6E, ,(k )= i— §E} (i, t),
thus the dispersion relation for the L mode is given as
2 2 2
h Eé:}: (nQe) An(Be) . Q_e . - @, n\' 2 3 o 4
2 w,(w,-nR ) w 2 w , -n “hte Vi
k™ n A e 0 w, n £ e

let w, ® ]n.Qel 1+ An) where n > 2 and substitute into (4. 55), we have

ki(n+l).f\n ;
A s (4. 56)
n 2 2
9 (n"+l)w %
x%nl -
b2 2

2 2
(n -1)&'2e

)

Since the polarization of the harmonics of electron cvclotron wave can be

determined from linear dielectric tensor as




+
i F 1 .
+ - k 5 2 ( . 5’)
6E£ 1 ' a) - .‘)De L
i 1 i (k (1 - -~—2)
e
S
thus the linearly polarized pump field can be written as +
2
[ “fm; 1
" / E cos w
E x +zk A_L wz-Qz - wz 2 o Cos oF
S TR o
w
L £

Therefore, the resulting coupled mode equations are given as

r 1 r
d2 d _ Mu e i
Sy 4+ 20 — +u_ | 5 t)h= ~ ’
dt? 8 E*mT (w -;. )| e
L 1- 1 B Y
2
e t
e | |, it
= 8E ) (k )E e (4. 583)
s o
J
&) g
2 Wi (w520 )e flas it
3— + 2T, dci +ui 6E;1(§,t)‘ £ 22 T ¢.Ee © (4.59)
at2 T (-5 5 °
e e
and the threshold field can be calculated as
y _-1/2
& 1/2 2 2 _ |
“th B (Erﬁ) Wy g el . l:2iQe, i
S Yo w 2 .. 2.1/2 2 W W |
Sw/rmoTe s ¢ (wz-f-Qe) ""pe % (2)2(1-» e, s 0 ;
kC 2 {
-4)2 J
(4. 80)
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4., Comparison Between Theory and Experiments

a. In the case of parametric decay into electrostatic ion cyclotron
wave and second harmonics of electron cyclotron wave in a uniform mag-
neto plasma. (My experiment)

With the aid of (4.60), the value of parameters can be found from

Table 2, the threshold field Et‘n is calculated as

E., =13.7 volts/c
th 3 volitls/ cm

Near the microwave horn, the pump field is almost uniformly distributed
on the cross-section of the chamber, hence the theoretically predicted
threshold pump power may be calculated as
E2
th

] I 2
Threshold pump power = gy ¥Trixc= 44 watts
‘

where r = 7.5 cm is the radius of the chamber.

The threshold pump power, experimentally determined, is about
47.1 watts as shown in Figure 10. This value is very close to the theo-
retically predicted value, and the extra 3 watts is believed to be used to
sustain the plasma.

b. In the case of parametric decay into lower hybrid wave at upper
hybrid resonance with a linearly polarized pump. (S. Hiroe and

H. Ikega.mi'522 experiment. )

T =4eV T, = 300°K N=3.4mtorr
4 - -
.= 21 % 3.5%10 sec1 »,=2:x4.1x1095ec1=u
s Y 0
3 -1 9 -1
B0= 1350 Gauss Qi= 2irxl. 0510 gsec Qe=27x3.85x10’sec




w =2.-rx1.4x1095ec°1, o= 27rx2.48x1065ec'1, n =2 42x10!%m3
pe pi o
L = V. m T
L otenml o o 7 =1 el B E T 4 -1
1"12—--—2 = 3. 810" sec I's-———z =3 =, Te Len-—O.leO sec
- j ~
m_=0.91x10 g m, = 200 x 1. 67 x 10" 2%

From (4. 49), the electric field associated with the threshold power can be

calculated and the result is
Eth = 2.25 V/cm

and the experimentally measured threshold field is about 2 V/cm.
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V-5.DESCRIPTION OF EXPERIMENT AND RESULTS

5 9
Although the t:heec:ries9 13 and experiments

of parametric

coupling between longitudinal electron plasma waves and ion acoustic

waves in an unmagnetized plasma have been treated extensively by various

2 : 25, 0,122
authors, only recently did experiments® ' '’

in magnetized plasma re-
port on the decay instability. Porkolab and his colleagues have done a

series of experimental studies of plasma heating due to the parametric

ey

decay instability of plasma waves in a magnetic field and a high-frequency
electric field. These decay waves have relatively short wavelengths and
broad spectra such that quasi-electrostatic modes may be assumed and an
anomalous heating process can be achiéy'ed. In our experiment, we have a
relatively small sized plasma beam. W:Srking on the slab model, the ex-
cited waves are of standing wave type with well defined boundary condi-
tions. Therefore, the frequency spectra of the unstable waves are sharp-
ly spiked. The object of the present work is‘ to study both experimentally
and theoretically the threshold and saturation bf the parametric decay in-

stability of the second harmonic of the electron cyclotron wave and ion

acoustic wave,

1. Experimental Apvaratus and Procedure

The experiment is performed in a hollow-cathode-arc-discharge
3 s s 5 5
(HCD) plasma source®”, 15 cm in diameter and a vacuum chamber 2m
in length, as shown in Figure 1. The 2m long stainless steel vacuum
chamber is separated into two sections, a source region and a drift re-
gion, by a baffle. In order to get a highly ionized and confined argon
plasma beam in the drift region, the magnetic field in the source region

is 2 mirror field, hence it is hard to get a totally quiescent plasma. In
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el e e e

our experiment a new procedure is introduced to create an ultrastable
microwave sustained plasma. An antenna horn is mounted on the anode
and to send the high power microwave (150-200 watts) into the HCD plas-
ma beam. Increasing the drift magnetic field and background gas pres-
sure to a suitably high range (1.5 KG-2KG, { p - 1.5y of mercury pres-
sure), we can then shut off the source plasma completely by setting the
cathode gas flow and baffle current to zero. Yet the plasma still exists
in the drift region sustained by the input microwave. This plasma is
very quiescent and well confined in 2 beam. Adjusting the experimental
parameters (such as drift magnetic field, drift gas pressure, microwave
power, etc.) to proper values to achieve optimum operating conditions,
we obtain a spectrum as in Figure 3, showing the instability and its har-
monics due to parametric excitation.

A simplified block diagram of the experimental apparatus is shown
in Figure 2. A frequency stabilized Klystron unit, operated in x-band is
used as the microwave source. For the measurements of the growth and
decay times of the excited waves, a fast PIN diode switch having 20 nano-
second rise and fall times is used to modulate the microwave signal which
is fed into a Klystron amplifier, capable of 1K watts cw output at the fre-
quency of 9.23 GHz. Between the PIN diode and the source two variable
attenuators are used to adjust the output levels.

Microwave power is transmitted through waveguide into the plasma
by means of a horn. Since the EM wave in the waveguide is TElO mode,
the electric field in the chamber is linearly polarized in the direction
perpendicular to the uniform magnetic field and almost uniformly distri-
buted at the cross-section of the chamber near the horn. The diagnostic

devices employed in this experiment include axially and radially movable

Langmuir probes.
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FIGURE 3:

FIGURE 4:

FREQUENCY SPECTRUM OF ELECTROSTATIC ION CYCLO-
TRON WAVE

First Peak is the Zero Reference, Center Frequency = ws/27r =
= 228 KHz, P=1.2u, £.= 9.23 GHz, P, = 1713 W (cw), limear
Vertical Scale, 90 KI—Ez,?Division Horizontal Scale

TIME DOMAIN BEHAVIOR OF ELECTROSTATIC ION
CYCLOTRON WAVE
P=1{.2u, £ = 9,23 GHa, P

= 173 W (cw), Horizontal
Scale = Z’us}%m, Vertical Scdle =

.5 V/em
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In order to parametrically excite the electrostatic ion cyclotron

waves efficiently, the external dc magnetic field is suitably adjusted such
that the frequency of the pump field is near or just above the harmonic of
electron cyclotron frequency. We find that in the HCD device, the plasma
is very unstable due to the existence of various types of low frequency un-
stable modes which are suspected to be: resistive drift, ion acoustic, and
electrostatic ion cyclotron instabilities. It is believed that the energy
source responsible for the onset of these instabilities must come from the
excess of the free energy contained in the plasma not at thermodynamic
equilibrium. In this regard, we find the possible deviations from equili-
brium occurring in the velocity space are due to the mirror field in the
source region, and not to the configuration space. This conclusion follows
from the fact that all the low frequency unstable modes disappear after the
source plasma is turned off completely.

Strongly enhanced signals at the acoustic wave frequencies are ob-
served only when the pump power exceeds a threhold level. This is the
characteristic of parametric excitation. With the background gas pres-
sure readjusted to about 1.2 1, the electrostatic ion cyclotron wave be-
comes most coherent in time domain as seen on a scope (Figure 4), or
becomes sharpest in the frequency domain as seen on a frequency spec-

trum analyzer (Figure 3).

2. Measurement of Growth and Decav Times of Electrostatic Ion Cvclo-

tron Waves

The growth and decay times of parametrically excited electro-

static ion cyclotron waves are measured as a function of microwave pum

iId

@)

power by modulating the pump as illustrated in Figure 3. uring tire

T, , the power is at level P1 > P, (threshold power) such that the

t’ th
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LPUMP POWER

ELECTROSTATIC ION
CYCLOTRON WAVE

' AJI >
(a) P2< Pfh
PUMP POWER
il i
P>
PTh ——————————————————————————
AELECTROSTATIC ION
CYCLOTRON WAVE
aniPas T - TIME
(b) P2< Pin
FIGURE 5: GROWTH AND DECAY OF ELEZCTROSTATIC ION CYCLO-
TRON WAVES AS A FUNCTION OF PUMP POWEER




electrostatic ion cyclotron wave grows to a finite amplitude as shown in

the sketch. At the end of time Tl and the beginning of T,, the power is

switched to a new level P,. If P, < pth’ the wave decays to zero during

time T,, providing that T, is of sufficient duration, as shown in Figure
Sa. H B> P
2 th

plitude excited by P1 to a new nonzero steady state amplitude corres-

and }?1 > PD, the wave decays during T, from the am-

ponding to P2 2s shown in Figure 5b. Modulating the power as described,
the growth and decay times, and the amplitude of the electrostatic ion cy-
clotron wave, are measured as a function of P2' for both below and above
the threshold. The total time T, + T2 of the microwave signal is appro-

i

ximately 2. 3 milliseconds and T  is typically 75% of this period.

1

Photographs containing many traces of the electrostatic ion cyclo-
tron waves are used to obtain the growth and decay time. Since the plas-
ma beam is isolated by a large vacuum chamber, the signal detected by
the optical system (through optical fiber bundles to the photomultiplier
tube) is too weak to overcome the inherent noise of the photomultiplier
tube. Due to this, a Langmuir probe to detect the electrostatic ion cyclo-
tron waves is used. The results thus obtained are fairly good even with
the slight difficulty of synchronizing the excited signal with the modulating
signal. This probe detection technique is also used to measure the steady
state amplitude of the potential oscillation, thus enabling us to obtain in-
formation‘on the saturation mechanism.

A series of photographs containing the average growth and decay
of the electrostatic ion cyclotron wave is shown in Figure § where the
pump power is modulated as in Figure 5b with T, = 1.7 ms and

1

T,= .6 ms and both Pl and P2 are above the threshold level. First,

P1 is set to a level such that the instability is most coherent with the
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(b) P,=75.5W, P
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(c) P,=65.5W, P, =1{73W

2 1

FIGURE 6: DECAY AND GROWTH OF ELECTROSTATIC ION CYCLOTRON
WAVE FROM ONE STEADY STATE AMPLITUDE INTO ANOTHER

P=1.2u, fo = 9. 23 GHz, Horizontal Scale= .2 ms/cm

T2=.6ms, T1= 1.7 ms

FIGURE 7: PHOTOGRAPH SHOWS THAT THERE IS A TRANSITION
PERIOD BEFORE WAVE REALLY STARTS TO GROW




T

lowest possible neutral gas pressure. We then progressively increase

the voltage amplitude of the modulating signal (which is applied to the
PIN diode switch) to lower the P, level, and the series of photographs
are taken with the scope trace triggered to start when the power is

switched to P,) level. The initial decay rate of the instability, when

power is switched from P1 to P2, is difficult to be calculated because
of its strong dependence on the initial amplitude of the instability; there-
fore, the average decay rate as shown in Figure 8 is calculated by aver-
aging over the e-folding time, i.e., the time it takes for the amplitude
decreases to 1/e of its initial value. Figure 6 also shows the existence
of a transient before the wave starts to grow. This may be explained ty

-

noting that during both T1 and T_ of the growth experiments, the electron-

2
neutral collision frequency is much larger than the average decay rate of
the electrostatic ion cyclotron wave shown in the Figure 8. During T2
the electron temperature of the plasma is lowered because of decrease in
pump power, and at the end of T2, the electron temperature rises back
quickly to its original level, but it takes finite time for the frequency of
the instability to switch back. A typical multiple trace photograph shown
i

in Figure 7 clearly displays this kind of delay phenomenon. Nevertheless,

the linear relation between the initial growth rate y and P_ is clearly

2
demonstrated in Figure 9. The curve in Figure 8 shows that as P, pro-
gressively decreases, (as noted in the series of photographs) the decay
rate increases. Eventually P2 reaches a power level such that it takes
the wave the period 'I‘2 to decay to zero as shown in Figure {0, and this
corresponds to the threshold power.

Decreasing T2 and increasing the total period T1 <z T2 (i.e., de-

creasing the modulation frequency) of the microwave signal, it is possible
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FIGURE 10:

DECAY OF ELECTROSTATIC ION CYCLO-
TRON WAVE FROM STEADY STATE AM-
PLITUDE INTO NOISE FOR PUMP POWER
JUST BELOW THRESIICLD LCVEL

P2= 47.1 W, P1 = 141 W, 'I'2= . 2 ms,

T1 = 2.1 ms, Horizontal Scale = .{ ms/cm
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to lower the power level P2 to almost zero. Single and multiple traces

photographs shown in Figure {1 display the growth (and decay) of the elec-
trostatic ion cyclotron wave as power P2 is varied from 0 watt to 173
watts. Only a portion of the total period is shown in the photograph. The
wave starts to grow only with the pump power exceeding the threshold
level, and it becomes an eigenmode of the collisional plasma. During
the initial buildup of the potential oscillation, the energy density arising
from spontaneous emission of the background plasma is comparable to the
energy density produced by the parametric interaction. Tlerefore, to
determine the initial growth rate we must calculate the growth time only
after the wave has a small finite amplitude. I}.‘&is value is also shown in
Figure 9, and is consistent with the theoretical calculation from equation
|08

There are two kinds of damping in our system. Linear or natural
damping occurs when the pump is below the threshold level. Once the
threshold level is exceeded, the amplitude of the instability would theo-
retically grow to infinity. However, due to the nonlinear damping, the
wave always reaches a saturated state. Therefore, the nonlinear damp-
ing would exactly balance the initial growth rate of the wave at that parti-
cular power level. If the pump power is suddenly reduced tc zero as in
the case in Figure {1b, its initial decay rate must be equal to the sum of
the linear damping rate and the initial growth rate of Figure {1a. Hence
we have a linear damping rate of about 0.6 x 1055ec_1 for the electro-
static ion cyclotron waves; this value is consistent with the value calcu-
lated from the tail of the decay diagram. From this value, we can con-
clude that the linear damping mechanism is due to ion-neutral collisions

with the ion temperature of about 0. 6 eV. This value of ion temperature




(a) SINGLE-SHOT PHOTOGRAPH
Py=0W, P =173 W, P=1.2y,
Horizontal Scale = 50 us/cm

(b) MULTIPLE-TRACE PHOTOGRAPH
P,=0W, P =173 W, P=1.2y

Horizontal Scale = . { ms/cm
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(c) MULTIPLE-TRACE PHOTOGRAPH
P1 = 173 W, P2= (08 SR = s (1
Horizontal Scale = 2 us/cm

FIGURE {1{;: GROWTH AND DECAY QF ELECTROSTATIC ION CYCILO-
TRON WAVE FOR =173 WAND P,=0W




has been verified experimentally in Kristal's“” thesis by using a Fabry-

Perot interferrometer.

3. Freguency of Electrostatic Ion Cyclotron Wave as a Function of Pump
P
Power

The frequency shift of the electrostatic ion cyclotron wave due to
pump power has also been investigated. These experiments are con-
ducted with cw microwave excitation, and the frequency is measured on
the low frequency spectrum analyzer.

lectrostatic ion cyclotron frequency is shown as a function of
power in Figure 12 for a fixed pressure. As shown in Table {, the fre-
quency shift is linearly proportional to the change of electron temperature
with some discrepancy. This can be explainec from the linear parametric
theory, which indicates a frequency shift due to finite growth rate. After
substituting all the known parameters into equation (4. 20), this discrep-
ancy becomes more evident. However, with a minor correction, the
linear relationship between the frequency shift and electron temperature
change is clearly shown in Figure 13.

Electron density with the presence of the pump wave is zlso mea-
sured by using the probe technique. As shown in Figure 1% the electren
density at the center of the plasma column decreases as the instability

increases. But the pump power increases over some level, the ionization

4. Summary of Experimental Parameters

Table 2 summarizes the basic experimental parameters

given are for 2 rnagnetic field of 1. 54 kilograms and for a ors
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FIGURE 13: MEASURED ELECTROSTATIC ION CYCLOTRON FRE-
. QUENCY SHIFT AS A FUNCTION OF ELECTRON TEM-
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FIGURE 14: PLASMA DENSITY AS A FUNCTION OF PUMP POWER

284




TABLE 2 - EXPERIMENTAL PARAMETERS

Quantity Symbol Value
[on (Electron) Density n 8.8 x 10! 1/cm3
Neutral N 3.9 x 1013/cm3
lon Temperature Ti 0.6 eV
Electron Temperature Te 6 eV
eB
lon Cyclotron frequency 1\759' Qi 3. 95 x 105/sec
eB 10
Flectron cyclotron frequency Q 2.9x 10 "/sec
mc e
Tlectrostatic Ion cyclotron frequency .
. sze/M 1/2 .
0+ g} W 1.3x10"/sec
: 1+k2AD _
Second harmonic of electron cyclo- 10
ron frequency @ 5.8x 10" /sec
Pump frequency @ 5.8 x 101o/sec
on-neutral collision frequency e ZI"S f 2% 105/sec
flectron-neutral collision frequency W oti = 21"2 5. 2% 106/sec
4rn &2 172 :
on plasma frequency (—5— ) @ 1.95 x 10" /sec
" 21/2
- e 10
Zlectron plasma frequency(——r;——) wpe 5.3 %10 "/sec
T, /2 -3
Jebye length — ) )'D 1. 93 210" em
4wn°e
tadial scale length lr .48 cm
7/ave number {— k 3.3/cm
r
8T, 1/2
on Larmor radius (m) /'Qi T1i .48 cm
8T, 1/2 -2
‘lectron Larmor radius (—— ) /Q X +H71 10  ecm
Tm e Le
3T, 1/2 «
»n thermal speed (51 ) Vg 2.1 x10"cm/sec
3T, 1/2 3
lectron thermal speed (— ) Ve 1.8x 10" cm/sec
n mass M 6.68 x 10'23gram
lectron mass m 0.9t x10°% gram




Note that Vin includes charge transfer, which accounts for about

half of the total collision rate. A cross-section of 1.3 x 10'14 crn2 is

used in the calculations.

5. Evidence of Parametric Excitation of Electrostatic Ion Cyclotron
Wave

Experimental evidence and data are presented here to show that the
electrostatic ion cyclotron waves are indeed parametrically excited by
the microwave pump. Itis found that:

a. The polarization of the excited low frequency wave is in the direc-
tion perpendicular to the dc magnetic field.

b. It is a standing wave.

c. The excited low frequency wave is the electrostatic ion cyclotron
wave.

d. The excited waves start to grow only when the microwave pump
reaches threshold power.

e. Its growth and decay rates follow the theoretical linear dependence
with power as predicted by parametric theories.

a. First the axially movable probe is calibrated with respect to the
radially movable one. Then both probes are used to measure the
field strength of the wave at the same point but in two different
polarizations. We find that the axial field is much smaller than
the field component in the direction transverse to the dc magentic
field.

b. Using the radially movable probe to measure the amplituce of the
transverse field as a function of the radial position, the amplitude
is found to be maximum at the center and reduces to zero just out-
side the plasma beam. Hence we conclude this excited mode is of
standing wave type, and its wave number may be calculated from
the diameter of the plasma beam.

c. To support the contention that the excited low frequency wave is
electrostatic ion cyclotron wave, we note that the observed fre-
quency is almost independent of the plasma density and dc magnetic
field; therefore the possibility of exciting lower hybrid wave or har-
monics of ion cyclotron wave is excluded. We also note that the
observed electrostatic ion cyclotron frequency matches the one de~-
termined by the linear dispersion relation with known wavenumber,
electron temperature, ion mass and dc magnetic field. Since the
linear dispersion relation of the electrostatic ion cyclotron wave is




T
25 -9 2 e 2.2
w 'Qi+k —Mi/1+k XD

the frequency shift due to the change of electron temperature may
be expressed as

k2

af= 41r<.uMi

AT
e

This linear relationship has been shown in Figure 13.

d. Multiple trace photographs shown in Figure 6 and Figure 10 display
both decay and growth phenomena of the electrostatic ion cyclotron
wave. Decay waves have finite steady state amplitude only for pump
powers above a threshold. -

e. Possibly the most convincing evidence of parametric excitation of the
electrostatic ion cyclotron wave lies in the main theme of this effort,
i. e., the growth and decay rates of the excited ion acoustic waves
are linearly related to pump power as shown in Figures 8 and 9,

6. Simplified Theoretical Explanation

The linear parametric theory derived in the preceding chapter gives
us 2 consistent prediction of threshold power and initial growth rate.
Since it does not include the saturation effects, it fails to describe the
growth or decay of the unstable wave from one saturated amplitude to
another. Nevertheless, the result given in Eq. (4.19) leads us to pro-
pose a phenomenological model for wave growth and decay in the presence
of saturation effects as the pump power is near threshold. The amplitude
A of the electrostatic ion cyclo‘tron wave may be governed phenomeno-

logically as

EZ
da _ o n+i
_—dt'rs —Ez-i A-csA (5. 1)
&

whnere r..i is the square of the electric field in the plasma produced by

the pump and Eg is the square of the threshold field. I's is the linear
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damping rate and 4:3;4.n is the phenomenological nonlinear damping rate

and n is an integer of unknown value which may be determined from the

experimental data.

The exact solution of (5.1) for n > 0 is

Aoey‘t
A(t) = (5.2)
Alc 1/n
| ot 3 (e“yt 1)1
.
oy :
where y = I‘s ——% - 11 is the linear growth (or decay) rate and A°= A(0)
E
c

is the initial amplitude of the wave.

As t - <

E:
An(m)=l.= s 5. () for y>0 (5. 3)
c c
3 3
and
Ao) = 0Q for y <0 (5. 4)

Hence the value of n can be experimentally determined by plotting the nth
power of the steady state amplitude of the electrostatic ion cyclotron wave

as a function of pump power for y> 0 as shown in Figure 15. Withn = 2,

this graph becomes linear, and is in agreement with the prediction of (5. 3).

Setting n = 2 in (5. 2) and (5. 3), we obtain

A eyt
Alt) = 2

2 /2 e
{

A

{ ﬁu—;’,-c-i(ez"t . 1)
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1/2

and Eg
T ( -1) :
t/2 Ex for >0 (5. 6)
A= () = | ¢ '
c c
3 3
respectively.

Now we proceed to explain the experimental results shown in Fig-
ures 8 and 9 by using (5.1).

Assuming the pump power is switched from P1 to P2 (or P2 to Pi)
as in the case shown in Figure 5b, then the wave decays (or grows) from
original steady state amplitude A(0) to another steady state amplitude A(x).

Rewriting Eq. (5.1) as

-

2 2 4
E E°«E

d4A | e -3 e des 2 .2

3t - rs(EZ -1) - c3A A= l"s( E2 )+c3(A°-A ) 1A (5.7)
(= C

for the growth case

where E, and E2 are the field corresponding to P1 and P2 respec-

1
=,
e !
S EZ it
tively, and Ag = CC is the steady state amplitude of electro- :
3 :

static ion cyclotron wave at PZ power level, and

r 2 1 i 2 .2

E E -E
dA _ 2 2hae 2 2 .2
at - l“s(——Ez 1) - C3A A= - rs(——--Ez )+c3(A -Ao) A for
- c - - <
decay case {5 8)
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ion cyclotron wave at P1 power level.

291

cay rate) is linearly proportional to the power level P

2
1 where A; = is the steady state amplitude of electrostatic

Then Egs. (5.7) and (5. 8) show that the initial growth rate (or de-

9




V-6, NONLINEAR SATURATION MECHANISM

1. Introduction

We have so far considered only linear parametric theory and a phe-
nomenological nonlinear equation which describes the low frequency unstable
wave. Since saturation phenomenon is always present in experiments, an
important question must be raised in order to describe the kind of nonlinear
damping mechanisms which cause the instabilities to saturate. There have
been earlier attempts to describe the mechanism as due to induced scatter-

i.ng27’ 28, and ca.sca.dingzg’ 30, 31

of the side band into even lower frequency
waves and resonance broadening32. Other possible mechanisms include
pump depletion and quasi-linear effects (i.e. ,. heating). There is no
generalization to be applied, because the nonlinear effects may vary for
different experimental systems. As an example, if one nonlinear damping
mechanism, among other competing phenomena, becomes dominant and
cause to saturate before the pump depletion, then we must rule out pump
depletion due to priority, or if the unstable wave is coherent, then we must
reject the mechanism due to the cascading of the sideband. Therefore,

the dominance among different mechanisms depends greatly on the geome-
try of the individual system, and the mode-types involved. Disregarding

the effect of inhomogeneity, systems may be classified into three classes:

(1) Infinite plasma

When the dimensions of the plasma is much larger than the wave-
length of the instabilities, boundary conditions need not be considered.
Therefore, the excited modes are traveling waves, and the spectrum may
be strongly broaded. In such a case, the saturation of instabilities may be

due to the pump being depleted to the threshold level. Another possibility




e Ty g

is the interaction of the excited large-amplitude oscillations among them-
selves, causing a continuous flow of energy toward the large wave number
region. This oscillation energy is eventually dissipated into heat by col-

lisional damping, or via collective effects. The threshold level of the in-
stability is thus increased, and 2 nonlinear saturated state may eventually

be reached.

(2) Bounded plasma with sheath

If the spectra of the excited modes are sharply defined because of the
confines of the boundary, the potential oscillations of the low frequency
waves may carry the ion bunch into the sheath region. Therefore, recom-

bination of ion bunches at the sheath may be the dominant nonlinear dampin

g

mechanism in this case. Since the recombination rate is linearly propor-
tional to the density of the ion bunch, this nonlinear damping process cor-

responds to the n=1 case.

(3) Bounded plasma without sheath

Excited modes are of the standing wave type, producing a well defined
frequency spectra. From supercritical stability theory, anomalous diffusion
of the plasma due to the low frequency unstable oscillations may be one of
the nonlinear damping mechanisms, which corresponds to n=2 case.
Another possible mechanism is the nonlinear harmonic (or subharmonic)

generation, with second harmonic generation corresponding to n=2 case.

2. Theory

In this section the description of the nonlinear damping mechanisms
for case (3), bounded plasma without sheath, will be given. The experi-
mental results in Chapter V show that (a) 2 density decrease in the central

portion of the plasma column coincides with an increase in amplitude of
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the instability. When pump power is increased over a certain level, the

ionization rate would cover the enhanced diffusion rate, causing the density
to increase. (b) Harmonics of the instability are also excited. The ampli-
tude relative to that of the fundamental is small if the pump level is low,
but increases with an increase in pump power.

It should be pointed out that since the excited mode is an electrostatic
ion cyclotron wave, these harmonics are still in the resonance region, and
they have the same linear damping rate as that of the fundamental mode.
Neglecting the nonlinear damping of the harmonics, the nonlinear damping
raté oi the fundamental instability due to its harmonic generation may be

defined as follows

: 2 2 2
N = ho w w )| /
erl 6Es(h’ws) Ausl -er{ 6}35(2_:_\_,2 S)! o s2” 6E=(3‘—’3w=‘ ,\Ns3+
(6.1)
or
6 ‘. 2 A : 31
FN s {A“’sz Es(‘ZI—{-’ZJs) + Aws3 _6_?5( k,3,) 2_,_ )
51 = % ¥ RE SE (k,@ ) Ao 5% (k, @ ) et
sl s = s sl g = s
(6.2)

where the left hand side of (6.1) is the effective instability enerzy deple-
tion rate, and the right hand side is the damping rate of the energy of the
excited harmonies in steady state. Aw - (i=1,2,3...) is the bandwidth of
each spectrum. Experimental observations indicate that such an infinite
series may be truncated after the third harmonic when pump power is not
too strong.

Knowing that the nonlinear damping rate in steady state must equal

Yoo lad N
to the initial growth rate. I

g can be calculated from (6. 2) and Figure 3,
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however, this value is much smaller than the initial growth rate calculated
from (+.17). We may conclude that there must exist another kind of non-
linear damping mechanism which dominates in the saturation process.

It is well established that diffusion exists in a magnetically confined
beam plasma, and usually pure coherent longitudinal modes does not cause
an enhanced plasma loss across the magnetic field. With the plasma dimen-
sion smaller than the wavelength of the oscillation in question, magnetic
field causes the charged particles to gyrate and move towards the side
boundary to produce a field which causes the oscillating mode to become
elliptically polarized. This induced field may cause an enhanced diffusion.
While ordinary diffusion of electrons and ions across a magnetic field is
caused by collisions with non-identical particles, it has been observed that
certain oscillations seem to enable the plasma to acquire an enhanced dif-
fusion rate. The behavior of 2 low temperature plasma is then largely
governed by the diffusion pf‘ocesses33 involved, but the anomalous diffusion
can be visualized as a consequence of additional par.ticle collision with the
electric field of the oscillating instability. This can also be regarded as
made of E x B drift motion of the particles, and most readily understood
from the test - particle point of view. Let's write the equation of motion for
a single ion moving in a wave field with the presence of a uniform magnetic

field BOE as follows:

dr
T
(6. 3)
dv 1 5 i -
Md—t- = e{_g(ift),t)-ﬁ-;_szo; = eg(_x_'_(_t),tH.\IQ.lg(gt),t)xz

and the solution of (6.3) may be expressed as
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L(z@)t) =R(t) . ¥ o>+-—jd R, (t-t'). E(z (¢"), ")

(6.4)
t
o e & '
I(t) =r(0) + g L; (t). w(0)+5 [dt' L. (e-t"). E(z(t"), )
1 o0
where F 7 "
cosQ.t sinQt O sinQ. ¢t l-cosQ.t *
1 1 1 ) 8
=L d = i Q - :
I;Qi(t)-f, It ]_;..i (€)= -sm‘.it cosQit 0 %i(t) =|-(l-cos Qit ) stit 0
0 0 1 0 2t

and the transverse drift velocity of the guiding center is given by

dR (t)
¥ @Eht) s — = - -g—o ZxE (z(t),t) (6. 6)
h t
i R (®)=R x [dt'E(z(t"),t) (6.7)
L o

with the aid of Eq. (6.5), \_[J. (r(t),t) may be expanded with respect to the

center position R(t) as

V(21 6)=Y RE),0)+ 5 zxylt) . UV (RE),t) + ...

i (6.8)
=- 5—2x {ER®),t)+ 51- Xy () VERC)t)1+.. .}
(o]

This would give the following relation immediately
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V ([R(#),t) = - 5 2xE R(E),¢) (6. 9)
L o

where &J_ (t) may be approximately expressed as

c
E.L (t) -R;o - Bo X

N

[dt'E (R(t'), t") (6. 10)

O __ ot

therefore, in the Euler's coordinate system we have

V. (R.t)=- 5 ZxE [R,¢) , (6.11)
v,R g
and .
C
TEa e (6.12)

Due to the spatially dependent force field, there is a force difference
between two different points, i.e., finite excursion of the oscillating ion
brings itself into regions of different field intensity. The explicit expres-

sion for the statement above is given by

2 2 - it
at Vx(gz’t’ T oAt Vx(lil't) =g ® at Vx(&l't) ©6.13)
where 6_&:5_2 -&1

now let's define a force due to the force difference

4 V(z)(R £) 2 ¢ s V(R t) otV (B, t)uciR. T =V (R, t)>
gt x 1" T Pt Cxeepe gt ==l T e T ge x =)
(6.14)
where < > 1is meant to ensemble average
let ” ¢ .5 "
- s ! 1% 5 - 1 1 1y
R=- F 2x [dt'E (R ,t +2{v (Ot+ G Jdt Jat E Rt (6.15)
o o o ©
and assume
Ey(&l,t)=Aycos_Ig. 31 sin (wt+ 9 ) (6. 16)

297




where k = kX and ¢ is a2 random phase which is a constant during the
period of two successive collisions.

Substituting (6. 15) and (6. 16) in eq. (6.14), yields

(2)
2

dV_(R,t) 5 f

= 1 . 1 .

it =< > kAy[-c{dt cos (E.Rl)sm(wt +q:)]sm(}_<_.R1)cos(mt+o Jw>
o

sinh.glcos '5.31[ cos (wt+d )-cosd Jcos(wt+d )>

z -
£ kAzysi.n 2k.R (1-cos wt) (6.17)

4B?
o

(2)

therefore, the maximum contribution to V\: (Bl) between two successive

collisions is

(2) c2 2
V. (R,) = kA~ sin(2k.R,) = (6.18)
3= 4B2 y ==l e
o

and with the assumption

]
bt = (6.19)

where 1 _ is the collision time.
c (2)
Because of the spatial dependence of V“ (E_{l), it will give an additional

damping to Vx(gl,t) .

In fluid limit , R, is not the initial position of the particle trajectory, it is

1

an independent variable. Thus

3R
TR (6. 20)
since
: = c d "
va(gl’ t)+Vx(Blyt)-V[ Vx(&l.t)*"fx (Bl)]=§; EEy(Bl’t)' inVx By t)

(6.21)
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This may be written as

' 2
3« - <4 < .2
EVX(E_ll,tH'Vx(gl,t). \,Vx(BI,t)-Bothy(El,t)-Uian(Bl,t)- 2BZk AY
o
cos(Zk.R,)r V_(R,,t)
si-SF R..4)-u.. V R4 (6.22)
B dt y =17 et x =1 ’
1
where VU, = =
n L K
c
and
) c? 2 .2 '
Yot = Vin * -2—5-5_ k AY cos (2k.R ) = (6.23)
o

Hence at center, where Bl =0 and

2

x .2 :
Vett = Vin b ZBZ k Ay / Yin (6.24)
o

Assuming AY = § A, where A is the amplitude of Ex and 0<g< 1,

the nonlinear damping rate 1":‘2 of the electrostatic ion cyclotron wave due

to the anomalous diffusion becomes

2
r:,f y c'z K% g2 A?'/ZI‘S (6. 25)
4B

3. Comparison between Theory and Experimental Results

As mentioned in Chapter V, the nonlinear damping rate at steady state
must equal the initial growth rate. From Figure 9 the initial growth rate
y = 1.5x10% /sec for P = 173 watts is obtained. The amplitude of the
potential oscillation for Pl = 173 watts-can be found in Figure 4. Since the
amplirude of the potential oscillation is the integration of the amplitude of

the field oscillation, then A =1.05xk=3,5 volts/cm is found.
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First let's calculate the nonlinear damping rate due to the harmonic |

generation. From Figure 3 and Eq. (6.2), we find

I'le = .32x105/sec (6.26)

with the aid of Table 2 and Eq. (6.25), we have

rf?f = 10 £2x10°/feec (6. 27)

since

N, N 5 :
I'32 =y =1,5x10

we find

Qi
£ =.34 o
s




V-7, CONCLUSIONS

The physical origin of mode coupling mechanism in an infinite plasma
is described as electrostrictive effect. Based on this physical viewpoint,
a general approach to analyze the parametric decay processes of plasma
waves is presented. A set of coupled mode equations is derived by using
Hamiltonian approach, and the coupling coefficients are derived from the
collisionless Boltzman-Vlasov equation. The threshold for parametric
amplification of an electrostatic ion cyclotron mode (longitudinal wave)
and a harmonic of electron cyclotron mode (hybrid wave) in the presence of
external radiation of an appropriate frequency has been found.

An exp'eri.meng‘}is performed in 2 microwave sustained plasma. The
properties of the process are in qualitative agreement with the theory.
Sa.tufation of the instability is also observed in the experiment, and the

nonlinear mechanisms are found to be anomalous diffusion and harmonic

generation, again, in agreement with the theoretical results.




V-8, APPENDICES
APPENDIX A: NORMALIZATION OF THE ACOUSTIC MODES
The first step in the quantization procedure is to write down the
Hamiltonian density. Let's define a lattice for a homogenous medium of
mass density p = no.\/I , where ng and M are respectively the ion density
and mass, then attach a dressed vibrating ion to each lattice point. Let the

deviation of the mth ion's position from its equilibrium position X be

given by q.,» weare led tc write for the acoustic :'nod.es35
Hlnf —-pfzn +C, g coa ¥ (A.1)
Tt Eal ™ L “9m+1 9m A

Where for the m=n term, 9 41 59 because of the periodic boundary
o

= m ( nL-) and CL is the force constant.

o

conditions and P_=Mq_, x
m m m

The first term in the brackets corresponds to the kinetic energy of the
oscillating ions, the second to the potential energy associated with the
Hooke's law force. We shall now proceed to rewrite H so that it has the
same form as the Hamiltonian for the linear harmonic oscillator. Let us
express the coordinates q,, anrd momenta Pm in terms of the traveling

wave normal mode expansion

= ik.x
(k) _ 1 2 ' Em e (k) :
U = | Zn Mol ) (3 e ) and 9m .5 9m (A.2)
0 k k
(k) (k) Mml'< % Lk.ﬁ_m + -ik. - (X)
Pm = qu =a1 ( zno ) (a-ke -ae )and Pm= Z;(Pm (A. 3)
where we nave ;k = - jw !k ak a,: = iu'k a:




Y o g M 1 dox . cikex Mo/, 1 k.x
" E P2l [<)F 0= ) (@ e -a e W-1)Z ( ) (ay 1@
m=1 @ m=l k 2n° k k! Zno k!
-ik'.x w!
'alt'e o Zk 5 k (aka.k- a a. 'a‘k a, + a; a; ) (A, 4)
and n o
2 _ k +, _+ + +
g 1" %) =L 3T G T Tl N R ok,
; | . + ., _+

3 H_Z %{mk (akak+ak ak) (A.6)

If ay and a; are now defined in terms of the new variables Q(k) and K(

as follows:

(k)
a = (25 e Ko (a.7)
1
(k)
k
af - <2w, 2 @) i K (a-8)
then above Hamiltonian reduces to the harmonic oscillator form
2
(k) 2
- bR 12 A (k)
H-ZZL N +kaQ ] . (A.9)

With the Hamiltonian in the form above we proceed to quantize the acoustic

k) (k)

vibrations by postulating that the Q are operators that satisfy the

1
poisson bracket relations { Q(k), K(k ) } = 6kk' .

Now let us normalize the field produced by the acoustic vibrations
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i
|
[l n : n n - 1
' o ik.x . S o o'M 5 ik. x -ik. x
| nesE=el TeENe” ™23 pPHay © gigtae Thae ™
, m=1 k m=1 k km=1 o
LL (A.10)
| .
E R, R, BE o "o ikx -m %o e E
I » fee =e T o 2 o 2 el TS g
F m=l m=1
| n n 1 :
E o ik.x o w! M = ik.x
? &% T ESlgT e, 3 o) )z(ak+ak)e o
I m=1l k km=1 o
n il 1 '
o w!'M = = ik.x
=% X w'k (Z—k—)Z(ZMw’k)ZQ(k)e s (A< LT)
k m=1 %o
t
‘ ng 1
1
e (nl iZMw'Z Q(x) ik X
km=1 "o
(k)_ 2 1 2 (k)
SE' 'za — — w'" Q (A.12)
e ,no k
Where ui( is the resonant frequency of the medium without pump field.

If the pump field presents in the medium and near threshold level or above,
the resonant frequency will shift to undamped frequency @ in this case

we can keep the unperturbed Hamiltonian Ho as before, but change w‘k to

‘ @ for the relation between SE(k) and Q(k) .
| ’ 2
i (k) &
| Y 22 | B s Mmo? ® ] (A.13)
‘ (k) M 1 2 Alk)

§E - = = w, Q (A. 14)
lp‘ e J‘n; k
[
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It is easy to be generalized to three - dimensional case

(k) _ 1 0 (k)2
- om— g [} 12
.Ho —ZZO' N -erk QO’ (A.15)
k) . M 1 2. (k) ,
SE = e J“; “‘"kg ; (A. 16)

We can also generalize above procedure to an anisotropic case, for

example, if there is a uniform magnetic field Bo in the z direction

2
LoHY L z[ Z—+ M wfQl® ] (A.17)
A0




APPENDIX B: NORMALIZATION OF THE OPTICAL MODES

Because of the big difference between the masses of electron and ion,
ion cannot follow the high frequency electron oscillation, hence we can con-
sider this kind oscillations are optical modes in which electrons and ions

vibrate against one another. Let's expand the displacements of the individ-

ual electrons in terms of the normal coordinates Uk and Ak ; AZ
: 1
lk.v ¥ -tk 1
: i (k) —= U ity ik T e L
ie gy, = = T U’e = % .)(Ae"-+A ) (B.1)
1 ‘no o E 2n ka k

In terms of these normal coordinates we may write the total energy at any

time
= C A
x ! El. . 2 .—l. 2 !
Lot =2 | T T+ 27 (61) | (B.2)
Al
_1l <o +
k k
(B. 3)
where we have A, =-iQ'A A+-iQ'A+
k ! k™ k 'k
L o o i S S 7, ey ciky
¢, - T U 2 ¥ ¢ )T (Ae t A e )
Jo_i=l k k izl 2n mQ'
o o k
n 1 . :
o = ik. -ik.
1 2 =X =Li_n
=T ¥ (——57)(A e  ‘:+ate )
kiml "ot K k
B & ik.y, ik y_
- 1 2 o). + e ‘i.
-E 1Z= (-——Zn e ) (A e tA e )




1
i (k) 1 2 . ot
= U m (e T (A 4 AT ) (B. 5)
o =
. (k) ey - TEME o +
M 2m U = g ) (s - A (B. 6)
s om o2 ? Pk e, ke, £
AL = o @°U i O i A
k m
+ m_ o207, T em . Bk ) (k) 0P
AkAk=-z-Q—,L:(Q'kU B et A 3 S TR 5— )
X
2
r k) 2
H:%Z £ +mQ'iU‘k) l (B.T)
L™ : J

Now that we have obtained the Hamiltcnian classically we may move directly

(k)

: Al : o
to canonical operator form. Thenf and U( ) become canonical variables

satisfy the Poissan bracket relation

() ol oy
{U :-/r J‘-"ékkl

The final stage is to normalize the field produced by the optical vibrations

o}
o]

o ik. y. o ey,
-en OE =-e 225E(k)e 1‘:2 E-mf-"i L k), X
=1 i=l k J—n'—o
2
Ql
se® - L 2k 4 e
. z == . | B
J o
For the same reason, if pump field is present and near or above the thresh-
old level
2
~ MK 5
o LI AT g2 s
o 2 m k J




i T m“i (k)
spl) . L ko (B. 10)

’n e
o

In three dimensional case we have

(k)
c 2
H“”:-l-z"ira— +maid g ® (B. 11)
o 2 C’L m k a
2
¥rl
se) _ L i gk (B. 12)
— n e -

We can also generalized above procedure to the case that there is an

uniform magnetic field Bo in the z direction

2
(k)
2
{h, 5 __J_‘._,._,__ 2 -.(k)
HO -1 zc[ = +mQ|k UG J (B.I3)
2
me Q AL
GE(k) % k U(k) i it ./f(x)xz (B.14)
= em = &Py
-eB (k')
* ) (k)
where S'Ze = m_c {Uc , Jfﬁ } = ‘5kk1 60';3
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