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A review is given for a technique that relates the performance of the
CPU Main Memory sectién of small computers to standard design parameters
such as wordlength, number of registers, etc. The technique was constructed
from execution time and memory space data obtained by applying three small
benchmark program kernels to fifteen computéri. The data was used fo deter-
nine regression equations that provide a best fit to the data. Time and space
equations were developed for each kernel. Three or féur variables froﬁ the
set of design parameters were used as the independent variables in exch
equation. These variables were chosen, in each ca.se, as vthe ones that
accounted for most of the variation in the observed data.

‘ This report applies these equations to both the AN/UYK-20 and

AN/UYK-7 computers to predict their time and space values wj.th respect lto the
three kernels. The kernels have been programmed for the.;»e two machines and
the actual time and space values obtained are compared to the predicted
results, as well as to the actual results obtained for the fifteen computers

in the original study.
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1. Introduction

The authors have developed a techniquetl] based on regression equations
that can be used to predict relative execution time and memory space perfor-
mance neasures for the CPU ++ Main Memory section of a ra&ge of small
computers. The range is basically characterized as €kat of 8- to 24-bit
wordlength computers. In order to predict the performance of a particular
computer, only a few standard design parameters néed to be known, e.g.,
wordlength, number of register., byte-addressability, etc. The regression
equations were developed by applying three small benchmark program kernels
to each of fifteen computers. ;

The purpose of this repoft is to describe the results of the development
of the technique, followed by an application of the equations to predict time
and space performance of the AN/UYK-2{ and AN/UYK-7 computers on the three
kernels. The actual time and space requirements of these machines on the
kernels is then compared to the predictions.

In Section 2 of the report, the technique is described.

In Section 3, the details of the technique are documented, and the
results of applying the technique to the AN/UYK-Zd and AN/UYK-7 computers is
presented.

Section 4 discusses the general technique and offers specific conclusions
that may be drawn from the application of the technique to the above machines.

We do not review computer performance methods in general and we do not
attempt to justify the use of kernels in particular. These aspects can be
found by consulting articles in the bibliography compiled by Agajanianlz].
The text edited by Freibergerts] contains detailed discussions of the use of

statistical techniques in computer performance evaluation. Our work is in

the same spirit as this text.




2. Performance Evaluation Technique

We postulate that it should be possible to get some idea of the relative
execution times and memory space requirements for member; of a class of
computers when they are placed in a particular application environment by
examining their design parameters, e.g., wordlength, number of registers,
byte-addressability, etc. The method that the authors have developed to
quantify the relationship is briefly described as follows: :

(a) Choose a class of computers and select a representative subset.
[We selected fifteen computers from the 8- to 24-bit wordlength class; so a
focus on minicomputers, and a little above and below, was taken.]

(b) Specify, at the flo#-chart level, a few programs thét exercise the
- CPU +> Main Memory section of the machines. [We chose three small benchmark
program kernels trom the areas of high precisicn arithmetic. character
manipulation, and list processing, respectively. No input/output was
involved.]

(c) Code all kernels on all machines and evaluate the executior times
in memory cycles and the memory space requirements in bits.

[Execution times were determined by the use of an aBstracted trace routine
program. This tracer was constructed from the flow of control exhibited by
the flowcharts. Hand calculated values for execution times of the various
straight line parts of the kerne%i were input to the tracer. It then follow-
ed flow of control (looping and branghing) to accumulate=ihe—total execution
time. Some uniform assumptions were made about frequency of data dependent
branching, as required.]

(d) Choose forms of equations (regression fit analysis) that have
standard machine parameters as the independent variabies and time (T) and

space (S), as defined above, as the deperident variables. [The forms chosen




were either:

¢, €2 Cn
Y= cox1 X, e e xn or

2 2
Y co + cl,lxll’ cl.le * v ¥ cn.l‘n ) cn.zxn :

The first of these we will call the multiplicative form and the second we

will call the additive form. The machine parameter set, the x.'s, includes

i
variables such as wordlength, number of registers, byte-addressability, etc.
A total of six machine design parameters was found to be adequate.]

(e) Perform a standard regression fit of these equation forms to the
observed data in order to evaluate the < and cj,k constants. The least
squares criterion determines the best fit. [This results in six equations,
a T and S equation for each kernel. Some experimentation was used to deter-
mine i) the best form, and ii) the three or four xi's to use in each '
situation.]

(f) These equations can then be used to predict relative performance
among all machines of the class. [This report presents the results of such
predictions for the AN/UYK-20 and AN/UYK-7 computers, and the results of
checking the predictions by coding the kernels on each machine to determine

actual T and S values.)

3. Results

It is convenient to present the results in the same sequence as the
description of the methodology in the previous section.
(a) The fifteen computers of the original study[l] are listed in Table

1. along with their wordlengths. The two AN/UYK machines are also included.

* All tables and figures referenced in this section are collected together at

the end of the section.
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(b) In order to select appr?priate small benchmark program kernels, it
is necessary to consider some application areas and formulate a small
benchmark program in each area. The benchmarks must then be individually
analyzed in order to extract an appropriate kernel. A kernel is taken to be
a structurally identifiable part of the benchmark thaf accounts for most of
the execution time of the benchmark. A brief description of the benchmarks

and kernels follows. The Appendix contains more details, including flowcharts.

Benchmark #1: High Precision Arithmetic

The wordlength of the machinesAranged from 8 to 24 bits. As an indica-
tion of their ability to handle high precision arithmétié, this benchmark
performs 48-bit integer divisicn by a standard technique. Ovef 90% of the
execution time was spent in three subroutines named MULAD, MULSB, and SHFTM.

These routines constituted the kernei.

Benchmark #2: Character Manipulation

The crucial problem in character manipulation applications is to use
storage effectively, and at the same time facilitate fast processing. For
example, in a machine where the smallest addressable data unit is 16 bits,
two bytes or characters must be packed per data unit if good storage effic-
iency is to be maintained. However, this will impede the accessing of a
single character. Since memory space is usually limited in the minicompﬁter
class, it was decidedrthat on all machines maximum core packing of character
strings would be used in this benchmark. The actual processing problem was
the construction of a file of records to be printed. This print file was
extracted from certain fields of a base file. A format list specified the
fields to be selected. Linear searching of both the format list and the base

file were involved in the process of constructing the print file. A set of

—— b G e it




routines that accounted for about 65% of the total execution time was chosen

as the kernel of this benchmark.

Benchmark #3: List Processing

This benchmark exercises the ability of the machines to handle scattered
data items. An algorithm for binary tree insertion and balancing was used.

A kernel that accounted for 80% of the execution time was identified.

(c) In all benchmarks, the method of proceediﬁg to the determination
of an appropriate kernel was as follows. Flow-charts were constructed for
the complete benchmark without any particular machine in mind. Even though
these floﬁ-charts were reasonably detailed, there was enough flexibility at
the coding phase to exploit the particular strengths of the instruction set
‘and CPU facilities of a given machine. The benchmarks were actually run on
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only one amechias {the FIj. This estabilshed the iogical Corsocluess
completeness of the flow-charted algorithms and facilitated the extraction of
appropriate kernels. These kernels were then programmed at the machine
assembly level by a single programmer, Rannem, on the other fourteen -achines.
Rannem was also the programmer for the AN/UYK-20 aﬁd AN/UYK-7 experiments.
Because of the small size and easy understandability of the kernels, execution
times and memory space requirements were relatively easy to compute for these
kernels. As mentioned in the previous section, an abstracted trace routine
program was used to compute execution times. Memory space was recorded in
bits and execution time was recorded in number of memory cycles. The latter
pafameter allows a concentration on machine design features, and the actual
speeds of the various technologies used in the machines have no effect on the

results.

The time and space values for all machines of thec original study, as well

as for the AN/UYK machines are displayed in Table 2.




(d) The multiplicative and additive forms of regression equations have
been stated in the previous section. The dependent variables are execution
time, T, in memory cycles, and memory space, S, in bits. The final set of
six computer design parameters that were found to be adequate for explain-
ing the performance results are {isted in Table 3, along with their values on

each of the machines. We list brief explanations of these parameters here:

X): Memory Wordlength (bits)

The maximum number of bits per memory access. This normally

corresponds to the basic instruction length of the computer.

X7: Minimum Bytes per Memory Access

This identifies whether or not the machine has byte addressability.

x3: Add Time (memory cycles)

Most machines have a number of ways of determining an effective
memory address. We have standardized on a definition of add time as the
nuzber of memory cycles needed to perform the add instruction with one oper-
and in a CPU register and the other operand in a directly addressed memory
location, leaving the answer in the CPU. The memory cycle needed to fetch
the instruction is included. This definition of add time means that xj is
actually a general parameter that probably indicates the speed of execution
of other binary operations such as AND, MASK, SUB, etc.,.where one operand
is in memory, the other is in-a-CPUregistef and the result is left in a

-9tc

CPU register.

Xy: Registers

This is the number of wordlength CPU registers that can be used

generally for holding both opcrands/results and main memory addresses.
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Dedicated index registers and program counters are excluded from this count.

Xs: Address Reach per Memory Word of Instruction (bits)

This is the number of main memory addre;s bits per memory word of
instruction. For example, a 12-bit wordlength machine that can explicitly
name 28 memory locations in a one word memory referente instruction has an
address reach per memory word of instruction of 8, (= 8/1), while a 16-bit
wordlength machine that can explicitly name ilG memory locations in a two

word memory reference instructi n also has an address reach per memory word

of instruction of 8 (= 16/2).

Xg: Address Modification (b.ts)

The number of bits that are used in an instruction to determine the
addressing mode for accessing an operand. Examples are the indirect bit,

tne index bit, etc.

(e) Based on the data developed for the fifteen machines in the orig-
inal study, as recorded in Table 2, best fit equations for both time and
space were heuristically determined for each of the three application areas
represented by the benchmark kernels. This heuristic search involved trying
both the multiplicative and additive equation forms with various subsets of

machine design parameters as the independent variables. This process, its

accuracy, and its limitations are discussed in the next section of the report.

We present only the final results here. Table 4 lists the subsets of
parameters that were found to be the most significant in determining the

performance results in each benchmark area. In each case, the parameters




are listed in order of significance.

The regression equations are listed in Table S.

(f) The equations of Table 5 were determined from the data derived
from coding the kernels on 15 computers. We can now use these equations
to predict time and space measures for the AN/UYK computers. This is
done by substituting the appropriate computer parameter values from Table 3
into the equations of Table 5. The results a;e displayed in Table 6,
along with the actual values of time and space that were dete.mined by coding
the kernels on the AN/UYK computers. These actual values were also entered
in Table 2. There are no values entered fqr kernel #1 (high precisi'n
arithmetic) on the AN/UYK-7. This is because it is a 32-bit wordlength
machine and the #1 benchmark involved a 48-bit integer division. All other
machines have a wordlength that divides evenly into 48 <o that it would he
nisleading to try to fit a 32-bit wordlength machine to ;his program. The
suitability of including a 32-bit wordlength machine in the study will be
discussed in Section 4 of the report. :

In order to gauge the quality of the predictions listed in Table 6, it
is helpful to examine the closeness with which the regression equations
actually fit the performance values of the original fifteen machines. Three

questions that seem natural to ask about the original fits are:

Ql: What is the range of actual values of each of the performance

parameters for each of the kernels over all fifteen computers?

Q2: What is average error in prediction over all fifteen computers

~with respect to each performance parameter for each kernel?

Q3: What is the range of error in prediction over all fifteen computers

with respect to each performance parameter for each kernel?




Table 7 answers these questions. All prediction errors are stated as

percentages, calculated as follows:

|PREDICTION - ACTUAL|

Af.T.UAL x 100 = %ERROR

Another useful form for the presentation of a regression fit is via a
scatter diagram of the experimental data on which the family of curves
generated by the regression equation is supeéimposed.. Six of these diagrams
ave presented in Figures 1 through 6, one for each performance parameter for
each kernel. The format of all of these diagrams is the same. A perfor-
mance me.sure is the ordinate, and the most significant machine design
parameter for that measure is the absciss; This design parameter is listed
_ first in Table 4. Holding the other significant parameters at appropriate
constant values then generates the family of curves. These values cover ;
the range that occurred in the fifteen computers of the original study.
Therefore, the extent to which the curves span the space occupied by the
scatter points is a visual indication of the quality of the fit. The
unlabelled X's represent the data from the original fifteen machine study.

The predicted and actual values for each of the AN/UYK computers are labelled.




TABLE 1

Computers
Memory
Wordlength
Computer (bits) Manufacturer
Varian 520/i 8 Varian Data Machines
SPC-12 8 General Automation
Interdata 1 8 Interdata g
Datapoint 2200 8 Computer Terminal Corporation
PDE;SII 12 Digital Equipment Corporatiqn
H 112 12 Honeywell
PDP-11/20 16 Digital Equipment Corporation
Suparnova 16 Data Ceneral Corporatica
Modcomp III 16 Modular Computer Systems
DataMate 16 DataMate Computer Systems
Kongsberg 400 16 A/S Kongsberg Vaapenfabrikk
DC 6024 24 Datacraft Corporation
SEL 804A 24 Systems Engineering Laboratories
GE-PAC 4010 24 General Electric
SAM 24 Norwegian Defence Research Establishment
AN/UYK-20 16 Sperry Univac
AN/UYK-7 32 Sperry Univac
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TABLE 2

Time (memory cycles) and Space (memory bits) Results

Computer l Kernel #1 Kernel #2 Kernel #3

, Time Space Time Space | Time Space
Varian 520/i 23866 1576 1890 1352 19633 2192
i : SPC-12 33462 2064 2123 1752 | 23043 2928
| Interdata 1 41532 3016 2223 1456 50698 4248
Datapoint 2200 49345 2104 3086 1664 41294 3584
PDP-8/1 11448 1224 3627 1776 19305 2448
H 112 23475 1452 7027 1880 29767 2532
PDP-I1,20 6071 944 1597 1584 10796 2088
Supernova 5460 1072 2818 2192 10000 2416
Modcomp III 4616 1120 1012 1520 7256 1904

i DataMate 6280 1328 2533 1872 9440 2240' '
i Kongsberg 400 4809 1072 2515 1872 7805 2016
DC 6024 1365 768 936 1968 §778 2472
SEL 804A 1576 936 4989 3024 8942 3048
1 GE-PAC 4010 2962 1248 6793 3456 12615 3144
SAM 1535 864 4640 2904 7288 2640
| AN/UYK-20 5202 992 922 1040 7580 1808
; AN/UYK-7 not applicable 881 2240 5421 3136
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TABLE 3

Computer Design Parameter Values

Memory| Minimum | Add Registers Address Address

Word- | bytes/ Time Reach modifi-

Computer length| memory | (memory per memory | cation

(bits)| probe | cycles) ; word o? (bits)

instruction
X1 X2 X3 Xy X5 Xg

Varian 520/i 8 1 3 7 5 3
SPC-12 8 1 S g 6 0
Inicerdata L 8 1 3 1 4 1
Datapoint 2200 8 1 7 S 3.2 0
PDP-8/1° 12 2 2 1 8 1
H 112 12 2 4.5 1 8 1
- PDP-11/20 16 1 4.2 6 8 3
Supernova id 2 3 4 8 3
Modcomp III 16 1 3 15 8 4
DataMate 16 2 2 2 8 3
Kongsberg 400 | 16 2 2 6 8 3
DC 6024 24 1 2 S 15 3
SEL 804A 24 3 2 5 15 3
GE-PAC 4010 24 3 2 1 1S 4
SAM 24 3 2 10 14 4
AN/UYK-20 16 1 3 16 8 4
AN/UYK-7 32 1 2 15 16 7

12.
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TABLE 6

Predicted and Actual Performance Values for the AN/UYK Computers

I —

Computer Kernel # Measure Predicted Actual Error in
' Prediction
1 Time 4088 5202 21%
Space 1014 992 2%
~ AN/UYK 2 Time 1102 =922 20%
-20 Space 1430 1040 37%
3 Time 7741 7580 2%
Space 2039 1808 13%
1 e (not applicable on this benchmark)
Space :
-7 Space 2125 2240 5%
4 Time 3503 5421 35%
Space 3717 3136 19%
TABLE 7
Relative Quality of AN/UYK Predictions
Kernel | Measure Range of Range of A Averége Error Error in AN/UYK
] Actual Values Error in in Prediction Predictions
over original Prediction | over original
15 computers | over original | 15 computers | AN/UYK-20 } AN/UYK-7
15 computers
i Time 1,365 + 49,345 2 + 26% 10% 21% not
Space 768 > 3,016 5 -+ 37% 14% TR b e
2 Time 936 - 7,027 0 =+ 35% 11% 20% 22%
Space 1,352 + 3,456 0+ 13% 6% 37% 5%
3 Time 5,778 +» 50,698 4 + 29% 20% 2% 35%
Space 1,904 - 4,248 2 + 18% 8% 13% 19%
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4. Discussion, Use and Limitation of Results

In this section, we will first discuss some specific conclusions that
can be drawn regarding the AN/UYK computers. This discussion will include a
listing of the changes that result in the regression equaiions when the
AN/UYK-20 is included with the original fifteen comp&&ers. The general use
of the results, in particular the use of the six Figures of Section 3, will
then be sketched. Finally, some limitations of the statistical technique

itself will be mentioned.

4.1 Conclusions Regarding the AN/UYK-20 and AN/UYK-7 Computers

We begin with a summary evaluation of the AN/UYK-20 in each benchmark

area, as compared to the other five 16-bit wordlength machines:

(a) The AN/UYK-20 on Kernel #1 (high-precision arithmetic)

The range of execution times for the six 16-bit wordlength machines on
this kernel is 4616 -+ 6296 (see Table 2). The AN/UYK-20 is third best at
5202, slightly better than the average time of 5409. We should note that
only ADD and SUBTRACT arithmetic instructions were used in this benchmark
in performing division. Therefore, whether or not a machine has multiply

and/or divide instructions has no bearing on the results. The space range

among 16-bit machines is 944 -» 1328, with an average of 1088. The AN/UYK-20

is thus also above average on this measure, ranking second at 992,

(b) The AN/UYK-20 on Kernel #2 (character manipulation)
As can be guessed, the machines that have byte addressing capability
perform best here. The time and space ranges for 16-bit wordlength machines

are 922 + 2818 and 1040 -~ 2192, with averages of 2165 and 1680, respectively.
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The AN/UYK-20 is best among the 16-bit computers on both performance measures

on this kernel. The.time performance was reasonably predicted by the

: regression equations (see Tables 6 and 7) but the AN/UYK-20 is anomolously

good in space performance. Our brediction was high by 37%, whereas the
average prediction error was 6% and the range was 0 -*}3% over all “ifteen
computers in the original study. A possible reason for the relatively good
performance of the AN/UYK-20 on this kernel, that is not accounted for by
ov - equation variables, is the existence of a small (4-bit) immediate
operand field in one of the instruction formats. Use of this instruc-

tion type has lead to increased coding space efficiency in many parts of this

kernel.

(c) The AN/UYK-20 on Kernel #3 (list processing)

The time and space ranges for the 16-bit wourdleagthv computers are
7,256 + 10,796 and 1,808 +2,416, with averages of 8813 and 2079, respectively.
The AN/UYK-20 is again well above average, ranking second on time (7,580) and

first on space (1,808).

An overall ranking of the six 16-bit wordlength computers derived by

summing the time and space values for each computer over all kernels is:

Total Time, T Total Space, S

(over 3 kernels) (over 3 kernels)
Modcomp III 12,884 (1) 4,544 (2)
AN/UYK-20 13,704 (2) 3,840 (1)
Kongsberg 400 15,129 (3) 4,960 4)
DataMate 16 18,269 4) 5,440 (S)
Supernova 18,278 (5) 5,680 (6)

PDP-11/20 18,464 (6) 4,616 (3)
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If we take the Time x Space product, the ranking becomes:

TxS

(107)
AN/UYK-20 5.262
Modcomp IIT 5.854 :
Kongsberg 400 7.504
PDP-11/20 8.523
DataMate 16 9.938
Supernova 10.380

Since the AN/UYK-7 is the only 32-bit wordlength computer in the study,
the only point of interest is how well the regression equations actually

predicted its performance. The equations cannot be expected to be very

. accurate when applied outside of the range of parameters for which they were

the prediction errors for the AN/IVK-7 are not unreacanahle

when comp;red with the range of prediction errors over the original fifteen s

computers fsee Table 7). We should note that the execution times for the

AN/UYK-7 do not account for the fact that overlapped memory bank accessing is

possible in this machine, since the program can be stored in one memory bank,

and the data in another. Examination of the two kernels on which the AN/UYK-7

was evaluated indicate that execution times can be reduced by an average of

about 23% if instruction and data fetching are overlapped. <
Finally, as an indication of the sensitivfty of the regression equation

constants to a change in the sample data points, we have added the data from

the AN/UYK-20 to the data from the original fifteen computers and recomputed

the equations. The new equations, along with the constants from the old

ones (in parentheses) are:
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€2.29) (-?-26) (-6.275) (0.640)
T#L = 2.25 x 108(x,"2+27)(x, 0+250)(x,0:638)

(1.01) (-0.720) (-0.109)
Sh = 1.01 x 10%(x,~0:720) (x,=0-111)

(1780) (1.48) (0.687) (-0.155) (-0.290)
T#2 = 1830(2(2"50) (X3°'693) (x‘;o. 168)("1-0. 3010)

(2130) (-964)  (385)  (2.97)  (0.807) (-18.7) (-0.296)
S#2 = 2110 - 1020x; + 403x32 + 9.08x, + 0.587x;% - 0.0064x - 2.26x,2

(1.35) (-0.343) (-0.885) (0.497)

T#3 = 1.35 x 105(x, "0+ 345) (x,70.885) (x,0.%97)

(6140) (-658)  (33.3) (-149) (6.83) (-252) (41.7)
S#3 = 6110 - 654x5 + 33.1x5% - 268x, + 46.9x,2 - 138xg + 5.6OX52

4.2 (General Conclusions

The overall tendency of the performance curves given in Figures 1 - 6

suggests the following:

1. In the range of applications represented by the benchmark programs
in this study, the optimum wordlength is around 16 bits. Longer wordlengths
cannot be used efficiently, particularly in character-oriented applications.
Shorter wordlength results in a limited address reach. This leads to an

increase in addressing overhead because of the use of such techniques as
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paging, indirection, etc. Figures 1 and 4 illustrate the effect of wordlength
on performance most clearly, and Figure 6 shows an "optimum" space result

when address reach is around 8 - 10. It should be noted that address reach

is strongly éorrelated with wordlength. The range 8 - 10 in address reach

corresponds to a wordlength range of 16 to 18 bits.

2. The number of general purpose registers has a pronounced effect on
performance, as can be seen in Figure 3. Hoéever, increasing the number of
rclisters beyond about 6 or 8 seems to have very little effect. Possibly,
the programmer cannot make effective use of a larger number. While it may be
argued ‘taiat the threshold is programmer- and program-dependent, we do not
believe that a substantial change in performance can be achieved by increas-

. ing the number of registers beyond 6 or 8.

In what follows, we present a2 possible general interpretation for the J

results of this study. The design parameters used as independent variables -
. can be regarded as the '"raw material" for the computer design process. The

designer has to make optimum use of these parameters to maximize performance

which is measured by the memory space and execution time of the benchmark
programs, This interpretation is consistent with the fact that values for
most of the independent variables used are likely to be chosen relatively
early in the design process. These variables, for example, do not include
any reference to the specifics of the instruction set of the machine, with

the exception, perhaps, of the number of bits devoted to address modification,

x, . Therefore, it can be concluded that the curves obtained from the re-

6
gression analysis represent fundamental tendencies dictated by these
variables. On the other hand, the "scatter" of actual performance figures

relative to these curves represents the variations among different designs




that use the same raw material. This suggests that the distance between
actual performance points and the curves is a measure of the success of the
designer in optimizing the details of the instruction set. In this sense,
the small ‘amount of scatter in most of the figures given in this report

; indicates a rather surprising degree of uniformity in the design of commer-
cially available computers. Alt;rnatively, it can be regarded as an

indication that this aspect of the design process is close to being optimum.

4.3- Limitations of the Statistical Technique

Thice important limitations to the statistical techniques used in this

report are:

1. Small sample size.

3. Programmer variability.

Fifteen machines were used in the original studyll] . These machines were
selected rather arbitrarily. The main factor was simply the availability to
the authors of adequate information. The curves derived are representative
of true tendencies only to the extent that these fifteen machines are
typical of the class of 8 - 24 bit computers. The authors feel, however,
that 16-bit machines have been feasonably well represented.

The second important point is the choice of the benchmarks and the size
of the kernels. The kernels required about 100 machine instructions on
16-bit computers. It may be argued that these kernels are no{ large. enough
to exhibit the relative merits of the machines in the environment of much

larger programs. This, of course, is a general limitation of the kernel

approach. Because of the fundamental nature of the parameters used in this
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study we feel that the general tendencies exhibited in the performance curves ; {

are not likely to change with k;rnel size.

In order to test programmer variability the three kernels were coded on
one of the machines by a different programmer. An average variation of
the order of 20% was observed in space requirements. =In addition to
variability among programmers, we should also recognize a second factor,
namely, that a siﬁgle programmer may not be equally familiar with all
machines. There was an attempt made to minimize this effect in the present }

study by rechecking all programs after complete initial coding.

g 4
it e _‘.J
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APPENDIX: Flow-chart Listings

This appendix includes complete flow-chart documentation for benchmark ]
#1, and the main program flow-charts for the other two benchmarks. The main
purpose of providing these flow-charts is to give the reader a feeling for

the level of complexity of the kernels. The listing Includes: ;

Benchmark #1 : .9183.
Main program description ; A-2
Main flow-chart A-3

MULAD routine A-4
' MULSB routine e
SHIFTM routine A-6
LOMSB routine ik A-7

Bbenchmark i2

Main program description A-8

Main flow-chart A-9

Benchmark #3

Main program description : A-10

" Main flow-chart A-11 |

The kernel for benchmark #1 consists of the routines MULAD, MULSB, and
SHFTM. The kernels for the other two benchmarks are of the same level of

size and complexity as that of benchmark #1.




Benchmark Program No. 1

Divide

PURPOSE: To perform division between two multiple
precision (48 bits) unsigned numbers;

i
{ .C = A/B. (A, B and C can be anywhere in
z - core memory.) T -
INPUT: Address of dividend (A).
Address of divisor (B).
Address of quotient (C). "
OUTPUT: Quotient in C. .
Rermainder in A.
. - Divisor in B. .

ROUTINES: MULAD, MULSB, SHFTM, LOMSB.




i

TEMPL =0

———————

N
MTemers | ,

CNEMPITI
| SRS

o A=A-B
( cati MuLse)
—;A<8
l' AzA+3 (Call MuLap)
| TEMPO=0

e ek L Rl

TeMPL« wof bt
Posihons bSetwetn B=0

M38 of B and M3

| bitof B.
(Call LOMSSB)

8+0

A
TEMPO 3 wof bit
positons between
MR ef Aand MS
1 bitof A,

(Call Lorsg)

7

TEMPI = TEMP| - TEMPO

sShwft B
Posidians.

left TEMP| & of
(Cali SHETM)

.

— o

v

Y =0

| Involues clearinn N mamony
‘lecadions. (N=49 ord hng‘h)
!i-e. CPU dependent lvop

A8

, TEMPO = |

1
sh S+ guo?'-'!-\t &0 | position
left (Call SHFTM)

3 3

3

X
C=C+TEMPO

lSh-’ﬂ dinisor , B, | position
e T

| TEMPIT 1eNMPI - §

Divide

Retwrn
Normal




Set wp Poinf!"% to
A|eﬁhd (&

]

m\l. CNT=w
. #l/uofd‘c ng‘Hn)
CARRY

Get part of A

i
Add part of B

'

Add CARRY

A

|
¥ ILCAERYt new carru :

I

Store suwm in part of C

v

Lncremment pointers to A3,C

N
MULCNT=MWLENT =)

-..———J‘ el . . o
Retwrn Return
Overflow Normal

MULAD




Set up Po{n#ers 4o 3 l

MWLENT = \V
(W= 48/ wae 'ena“‘)

ot AR

Get part of B

S

bo

I's complement |

1‘

Add part of A |
i
.

A | Add cARRY :

b

A

LCARRY- new carry
T ;

i

iy

————

‘Store Sitin i pert of c

Yo

T

Y

Increment pointers to AB,C

'

\
i -r
: 2

MULCNT = MULCNT ! !

MULCNT=O
Y
Y N

&S

. -y -
Return B R"‘*"”" \

\ C he.j-\f.».s / ; \.s- :
MULSB




Enter . A-6

N=0 Return

N==N N Y
TEMPO = - | N3o
MULADR= acldr: of Mu‘ﬁp'g word

MULCNT =0 :
Clear 2nd register

TEMPO = +|

——
r

Get part of word

Rotate registes| A N Y . |Rotate registers
. b <L EMP: likgty
: | position left e | positian right

Y
2 )

"

{ = r .-
iReslsre part of word g

[Adjust 2nd register |

"'

MULADR = MULADR+ TEMPQ

v

MULCNT = MULCNT +1

LN N

Y

A




MULADR = AC
COuNT = ~ (48/wordlength)
PosN =0

f

LENG = - wordlength
AC= ind MULADR

POSN = PosN |
+ wordlenath

Shift AC | posn left

L
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POSN =POSN +i

LENG = LENG+!

MULADR = MULADR -+ |
COUNT=cOUNT +1

LOMSB

|

{ Retuwrw

\_ Normal!



Benchmark Program No. 2

Selected Field Listingp

3 PURPOSE: To print selected fields (actual I/0 not performed)
" of a batch of characacter~records as specified by
a format program and a list of field numbers.

Record specifications: 80 characters packed and
represented in ASCII or "6-bit internal ASCII"
(2 most significant bits chopped off).

Format Program specifications: Variable length
string specifying a maximum of 40 alpha and/or
nuneric fields. The first character £ an alpha
field is represented by "A". Subsequent characters
are represented by "B" or "nB", where "n" is a one
or two digit decimal number. The first character
of a numeric field is represented by "N". lub-
sequent characters are represented by "M" or "nM",

where "n" 1is as above. The string is terminated
by ” x" %
List specifications: The list contains maximum
- . 40 one or two cigit decimal numbers. Legal nucders ;
' gre: I to AU. The 1:is5t has Secn scttcd in =sceandias
: numeric order. The first item contains the length £
E of the list.
INPUT:
OUTPUT: The record batch is printed éccording to specifi-
cations.

ROUTINES: PRIFL.




RECADR = A(BATCH)
FORADR = A(FORPRG)
CNT = RECCNT
s :
|

LISADR = A(LIST)

v ,_

Print seiected

‘fields of a record
(Call PRIFL)

‘T

RECADR=RECADR +RECLNG

!

CNT=cNT - |
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Benchmark Program No. 3

Build a Balanced Binary Tree

kaPosbzfﬁ TB 1uaar::1nfornation items 1nto‘a binary tree
and balance the tree after each insertion.

Structure of tree: The tree has a dummy node
(called ROOT) serving as pointer to the root of
the tree. The information in this node is a
high number (usually the highest positive number
that can be represented within the information
area of the node). This means that when the tree
1s not empty, the root-pointer node (ROOT) has a
valid left link and a null right link The tree
is unthreaded.

Structure of nodes:

Left link Information| Right 1ink | Balance
(LLNK) (INFO) (RLNK) 1n?%33§or
Leagth of ] hivs {or Lanpth of S-«\x{-' ; ﬁ

address word more).Enough address word available ,

of particular to hold an of particu~ data format |

CPU. ASCII lar CPU. > 2 bics.

character. Must be able

to store and
dif‘erentiacte
between LEFT
(L), RIGHT
(R) and
BALANCED (B).

OUTPUT:

ROUTINES: INSRT, BLNCE.




ks

o va e’ "_. d

1

INFO(ROOT) = high number
LLNK (ROOT) = null
RLNK(ROOLT) = aull

PATH(0) = A(ROOT)
PoLrTR = A(PooL) -
TABINC = O

CNT = TABCNT

F—

\

INFO(NEWNOD) = TASLE(TAIINGD)

1

Insert symbol in +ree
(Call INSRT)
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Paol overflaur

L

# Balance e tree
( Call BLNCE)

:

TABINO = TARIND + sywmbul lCnaﬂo

:

CNT = CNT -}

T S

Build a Balanaced Binary Tree

\ e

End

1o e e i
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