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ThE GRChfl’I1 OF WAVE DISCONTINUITIE S IN PIEZOELECTRIC SEMICONDUCTORS

M. F. McCarthy
National University of Ireland

University College
Galway, Ire land

R.F. Tiersten
Department of Mechanical Engineering,
Aeronautical Engineering & Mechanics
Rensselaer Polytechnic Institute

Troy, New York 12181

ABSTRACT

The reference coordinate description of the general nonlinear differ-

ential equations describing the interaction of finitely deforinable, polar—

izable, intrinsic n—type semiconductors with the quasi—static electric

field is applied in the study of acceleration waves in piezoelectric semi-

conductors. As a consequence, the mechanical and dielectric nonlinearities

are included in the treatment as well as the semiconduction nonlinearity.

The general equation for the propagation velocity of the disturbance is

obtained as a function of the state of the material immediately ahead of

the wavefront. In the special case of plane waves entering a homogeneous

steady state, the growth equation for the amplitude of the acceleration

wave is determined and, of course, the propagation velocity and coefficients

in the growth equation depend on the propagation direction, but otherwise are

constant. The relation between acceleration waves and the formation and
propagation of acoustoelectric domains is indicated. The solutions of the
growth equation indicate the formation of a shock in a finite time for

conditions conducive to domain formation except in certain unusual cases
possibly occurring with purely transverse acceleration waves. In the

course of the treatment the condition for the threshold field for domain

formation is determined under quite general circumstances. When the elec-
trical conduction equation, which can be quite general in this treatment,
is specialized to the simple form usually employed for anisotropic semi-

conductors, the aforementioned more general condition reduces to the aniso-

tropic generalization of the well-known elementary result. In addition,
the behavior of weak waves is discussed.
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1. Introduction

In a previous investigation the theory of one—dimensional acceleration

waves was applied
1 toa one-dimensional version of general rotationally in-

variant nonlinear electroelastic equations derived earlier from a well-

defined macroscopic model
2 
of deformable semiconductors. In that treatm ent1

an analytical description of the formation and propagation of purely longi-

tudinal acoustoelectric domains in piezoelectric semiconductors was obtained.

The analysis indicated that for electric fields above a threshold value the

amplitude of the acceleration wave would always increase without bound and become

a shock. A natural and logical extension of the previous one—dimensional

work is the treatment of three—dimensional acceleration waves, in which

acoustoelectric domains with transverse mechanical displacement components

can be considered. Recently, in the case of the quasi—static electric field

the general nonlinear electroelastic equations for deformable intrinsic

n—type semiconductors2 were transformed3 from the unknown present coordinate

description to the known reference coordinate description, which is the form

needed here and in general for the treatment of problems.

In this paper the theory of three—dimensional acceleration waves
412

is applied to the above—mentioned reference coordinate description
3 
of the

general rotationally invariant nonlinear electroelastic equations for de—

formable intrinsic n—type semiconductors in order to analytically describe

the formation and propagation of acoustoelectric domains, with both trans—

verse and longitudinal components of mechanical displacement, in piezoelectric

semiconductors subject to high electric fields. The analysis results in an

expression for the amplitude of the acceleration wave (or domain) which

exhibits the competition between dissipation due to electrical conduction 

~~~~~~~~~~~~~~~~~~
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and the semiconduction and mechanical nonhinearities in producing decay or

growth of the acceleration wave (or domain). As in the case of the purely

longitudinal acceleration wave treated earlier 1, the possibility of the

amplitud e of the more general three—dimensional plane acceleration wave

increasing without bound and becoming a shock is clearly indicated. How-

ever, in the special case of purely transverse acceleration waves, circum-

stances can exist under which it is not possible for the amplitud e to g row .

Nevertheless, if any longitudinal motion is present in the acceleration

wave, the possibility of the ampli tude increasing without bound always

exists. During the course of the analysis the expression for the velocity

of the wave (Or domain) as a function of the state of the material immedi-

ately ahead of the wavefront naturally is obtained.

~~~. Basic Formulae and Equations

‘The macroscopic model of an elastic intrinsic n-type semiconduct’r

employed in Ref.2 consists of three interacting, interpenetrating continua ,

which consist of (i) a lattice continuum which has a positive charqe denslty~

(ii) a bound electronic continuum which has a negative charge density and

which can displace slightly from the lattice continuum and thus produce

electric polarization, and (iii) a free electronic continuum which has a

negative charge density, negligible inertia and is a conducting compressibit-’

fluid which experiences a force of resistance from its motion with respect

to the lattice continuum.

Initially, the lattice continuum and the bound electronic continuum

all occupy the same region of space and, hence, have the same reference

coordinates X
L. The motion of a point of the lattice continuum is described

by the mapping

I
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3.

Yi yi (XL,
t), Z—Z (X,t) , (2.1)

which is one—to—one and differentiable as often as required. Here the yj

denote the present coordinates of material (lattice continuum) points and

XL, the reference coordinates, and t denotes the time. We consistently use

the convention that capital indices denote the Cartesian components of X

and lower case inices, the Cartesian components of 
~~
. A comma followed by

an index denotes partial differentiation with respect to a coordinate

~ 
G
,~ 

‘
~~~~~~

— (XK,t) , (2.2)

and the suammiation convention for repeated tensor indices is employed.

Since reference coordinates are employed in our study of the propaga-

tion of acceleration waves in elastic semiconductors, the integral forms

of the equations required in this work consist of Eqs. (2.41) - (2.44) of

Ref. 3, which we reproduce here in the form

N~ (X~~ +M~~ 
_
~~~~)dS0 ~~ 

j ’ P0
V~ dV0, 

(2.3)

J L dso S ~~~d’~1o , (2.4)

J w ~ dV0’~ f NL
(~~+p

e)dS
O , 

(2 5)

dS - 
~ dV , (2.6)

where N
L 

denotes the outwardly directed unit normal to a reference element

of area and S denotes the surface enclosing the reference volume V
0 0

Equations (2. 3) — (2 .6) are the reference integral forms of the conservation

of linear momentum of the combined continuum, the charge equation of

- — -~~~-- —
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4.

electrostatics, the conservation of linear momentum of the free electronic

continuum and the conservation of total electric charge. In Eqs. (2.3) — (2 .6)

~~~ ?1~ and denote the reduced mechanical Piola—Xirchhoff strees tensor,

the r.ference free—space Maxwell electrostatic stress tensor and the refer—

once free electronic pressure tensor, respectively, V
j~ D

L~ 
w~ and denote

the velocity of the solid, the reference electric displacement vector, the

reference local electric field exerted on the free electronic fluid and the

reference electric current vector, respectively ; p0, ~E , p and denote the

reference mass density, net reference charge density, electric potential and

free electronic chemical potential, respectively ; and d/dt is the material

time derivative. The associated constitutive equations and additional re-

quired relations take the form

Ic~,~
I’1 POY~ ,K~~~~ ‘ 

MLj ~~L, i~~ j

~~~~~~~~~~~~~ 
.
~L I € o~~~~ iEi _ P

o~~~~~,

~~~~~~~~~~~~~ ~~~~~~ (2. 7)

ES 1J d e t yj~~~, T~~
.€
0E~

E~ - 
~~

‘ ~~~~~~~~~~ v~ — -~~~~~-

Ej~~~ p~~, ~~~~~~ (C~~ — 6~~), ~~~~~~~~~~~~~~~~~~~~~~ 
(2.8)

~~ 
X(E~~,4~), 5

e 5e (~
e) q,e —

, (2.9)

where ?~~~, E~~~, 
and C~~ denote the free—space Maxwell electrostatic stress

tensor, the material (reference or Lagrangian) strain tensor and Green’ s

deformation tensor, respectively; E~, ~L 
and denote the Maxwell electric

field, the reference (or rotationally invariant) measure of the electric

field and the rotationally invariant constitutive vector that accounts for 

~- ~~~~~~~~ ~~~~~ _ .  ~. -. .- --
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the relativ, flow velocity of the free electronic fluid, r.sp.ctiv.ly , p°,

x, h~ and 5
e denote the free electronic pressure, a particularly convenient

th.r~~dynaaic stat. function related to the stored internal energy per unit

mass of the deformable solid, the free electronic charge density and the

stored internal energy per unit barge of the free electronic fluid, respect-

ivelt; and c is the permittivity of free space.

When the variables are appropriately differentiable , from (2. 3) — (2 .6) ,

we obtain the different ial equations

S
LiL 

— P~Vj 
(2.10)

— (2 .11)

S e
~~Y P Y ~~~~P f ~~ 

(2 .12)
‘~ , .

1.

~ 
+~~ — 0  (2.13)L, L

where
S
Lj

_ X
Lj +t

~~j
_
~~~j  ‘ 

(2 .14)

and we have employed the dot notation for partial differentiation with

respect to time. We now note that we have an additional relation between

the net reference charge density ~ and th. free electronic charge density 1~
e

which can be written in the form

~~~~~~ +~~~~~, (2.15)

where is the refer.nce residual lattice charge density, which is a

constant. ~roe (2.7)6, (2.8)7, (2.9)2 4  
and (2.12), we can write

(2 .16)

where

• (2.17)
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If  We define 
~ by

13 
6.

A

then by virtue of (2 8) 

~ — ~ -

the Well_k~~~~ re1at~0~ 

(2.9)
1, the Cha~j~ Zule Of diffe~~~ti 

(2.18)

1o~ a~~

-1
We can Write 

144 ~ 
C
RI %, ~~~ 

~~
(2 .19)

A

~ X (ENow, from (2.7) 
1CL’ L~~

1—5 ’ (2.8) , (2 9Of the different . 
relatio~ 

)~~, (2 .14) , (2 .19)  and (2 . 20) , With the 
:1:0)

~~~~~~~~ JX
1~~~, , 

~~~~~~~~~~~~~~~~
and the Chaj~ ZUle 

~~~~ ,
Of d

~ffer (2.21)
~~, We obtaj~

S
L~~lPy 

~~~~~~~~~~~, JX
LI( ~~~~~~~~~~~~~~~ ~~

~~ Cleai~ from (2 .7,~ , (2 .8 )  
(2 .22

1,5.6 , (2.20) 
~~~ (2 .22) that WeLj 

~j 
(y~ ~ 1~

e Xflay Write
and for later Use We no 

‘~~ ~~‘ ‘ 4
t 

~~~~~~~~~
and (2.23) 

~s tve~ 

te that the constit,~~. (2 .23 )
1 a~ all the Others are C2

~~ 

res~~fl se functi0~8 (2 .16 )UflCt ionS of th ie r arg
~~~~~

by the equati0~ 
Surface which may be x ePresented in (

~~~~~~~~~~ SPace

~~e unit vecd.
°~~~ and it8 5 (3.1)Peed of di P Lacement

n are 9iven by

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __
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n
i 

— 
~~ 

U . (3.2)
,k I ,kI

Corresponding to ~~, we have the alternative representation of the surface E

in (X,t) space by means of the equation

~ (X,t) — f(y (X,t),t) — 0 . (3 .3)

The unit vector N normal to E and its speed of propagation UN are given by

___ 
1~N = U —  (3 4)

‘ N

it is a simple matter using (3.2)— (3.4) and the chain rule of different-

iation to show that

_ _ _ _  

I f
- 

1k 1 

~ 
UN — ~ F

’ k u/I 
~kL~

.JJ ‘ (3 5)
FkLnkI ,1c

where

and 
Fj~~

E y
~~x

U=Un
_ V 

~ 
(3 .6)

is the local speed of propagation of the surface.

Let $(X,t) be a function which suffers a jump discontinuity across

the surface E, but is a continuous function everywhere else. We define

the jump ($3 in the function $ to be

= $
_

— $
+ (3 7)

where $ and $f are the limiting values of $ immediately behind and just

in front of a point lying on E, respectively. The surface E is said to

be an acceleration wave if the fields yi (
~ ,t) , vi (X,t) and Fj L (X,t) are

continuous everywhere but ~~~~~~~~ frj L(x,t) and Fj L M (X ,t) , as well as all

________________
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higher order partial derivatives of yi (X, t) , suffer j ump discontinuities

across E, but are continuous functions everywhere else. From the geometric
14conditions of compatibility on the jump in the gradient of a continuous

function and the kinematic condition of compatibility15
, we can obtain’6

— s~N~N~ — ajFpKFqLnpnq , 5i — (N~N~F~~ R~ ’

~~~~~~~~ UNsiNK~~
_ UaiF Kn , (3.8)

(~r J  — U~s~ U
2
ai, Si 

— B
~

a
~,B2 FiKFjKnln

~~.

At this point it should be noted that we need make no assumptions with regard

to t~e continuity properties enjoyed by the electric potential p(X,t) =

p(y(X ,t) ,t) or the free electronic charge density ~
e(X~~) apart from assuming

that at points not on E these functions together with their partial deriva-

tives of all orders are continuous. The vector a is called the amplitude

vector of the acceleration wave. If we write a— a r , where r ’ n �O , I E I — 1 ,

then if a > 0  the wave is said to be expansive, while a wave for which a < 0

is said to be compressive. If r — n the wave is longitudinal, while if r • n — 0

it is transverse.

The jump conditions across a surface of discontinuity E can readily be

obtained from the integral forms in (2.3) - (2.6) along with the fact that

remains bounded . The resulting jump conditions thus obtained consist of

Eqs . (2 .46) 1.2, (2 .47)~~, (2 .49) and (2 .50) of Ref .3, which are required in

this work and we reproduce here in the form

N~~~~j-U~JIi — 0, (3.9)

N
~~
S
KjJ + p u ~4v~J = 0 , (3.10)

~e1.0 ~~~~~~~ (3.11)

~~~~~~~~~ (3.12)

— 
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In view of (2.9)3, (3.1l)~ may be written

(3.13)

Ae e e .jand if we assume that ~cp (~ )/~ & ~ 0 it follows (the argument is given by

Coleman and Gurtin6 ) that 1e is continuous across E, i.e.,

. 1 (p~C1 — 0 . (3.14)

Furthermore, since (2 .15) is of the form 
L1

~~~~~~~ ~~r ~r — constant (3.15)

it follows, since J—det Fix, is continuous across E, that

(3 .16 )

Next, since cp is continuous across E,frorn the geometric condition of corn—

patibility14 and (2 .8) 7, we have

~~~~~~~ ~~— -~N~,cP~~j .  (3.17)

Thus, in view of (2 .23) 2, we may write (3 .12) in the form

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(3 .18)

and if we assume that /
~~ L~

10 it follows from (3.18) that ~~— 0  and , hence,

from (3 .17) that

(3.19)

and thus the reference electric field ~ is continuous across E. Now, in

view of (3.14 ), from (2.17) and the geometric condition of compatibility

we have

~
Gx1~~

WNx , U ’  
~~~~~~~ 

(3.20)

so that, on using (2 .16 ) , (3 .14) , (3 .16 ) , (3.19) and (3.20) , we may rewrite

(3.9) in the form

~dK
(ERL,~ M,

GL
+
~~ L,~~

) _ N~~K
(E~~,c~M,G~,4L

e) — 0 . (3.21)



10.

From the assumption that 
~Ic

/
~
GL~

i 0 it follows from (3 .21) that ~ — 0

so that
(G~~~— 0 , (3 .22)

which means that is continuous across Z. As a consequence of (2.16),

(2.8)5.6, (2.23), (3.14), (3.19), (3.22) and the definition of an accelera-

tion wave, we have

1SxjL k ~K! L9K ! 0 , (3 .23)

and thus Eqs. (3 .9 ) —  (3 .12) are satisfied identically. Other important con-

ditions resulting from (3 .19) , (3 .22) and the conditions of ccmpatibi1ity~
4
~~

5

are

~~~~ .~
‘,KIJ. ~~K

NL,!~X.1 U N~~K, RNs~~i~s!,

1GK,~~~~ 1~~ K~J.~~~ NKNL,1àK !_ _  UNwNK ,  w _ i N
RN

~~~R~ ! . (3 .24 )

Frost (2 .10) , (2 .22) , (2 .7) 3 5 ,  (2 .8) 5_ 6, (2 .9) 1_2 and (2 .21) , we obtain

+ K + HjXGK~ PoVj~ (3 .25)

where -

________ ~~~ eA
jK PL - — ~o ~~~~~~~ - 

~~~ 
(3X,~~j

)P (P. ) - ~~~~~~~~~~ +

+ FjNFPS
c
~~~~ 

- J(X
x,j

X
L,p

_ X
L ~~~~~~ 

(P.) , (3. 26)

8
jKL 

— 5~~~ ~o ~~~~~~ 
— -  FjN B

~~L , (3 .27)

H — __!i. — - .r~ •~a_ 4~
e) , (3 .28)j ~~e ,j~~~

and

S 
KL — ~o ‘ 

C
KNLS 

— PO ~~~~~~~ 
, 8

KNL 
— . (3 .29)

_,_ ._ ~~~~~~ —, -,--—-, -._~~~
__ j____ 

—.
-—

.
- ~~~~~~~~~~~~~~~ 

- - ,- ---—— A
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A 2Since S
~j
(.,.,.) is by hypothesis a C —function, it follows that the coeff i—

cients in (3 .26 ) — (3.28) are continuous across the singular surface E.

Thus, taking the jump in Eq. (3 .25) across E and employing (3 .8)i, (3.22)

and (3 .24)~ we obtain

Aj~~L
NKNL

s
p
_
~
3j,~

N
K
N
L

uu P
oU~

s
j
. (3.30)

We now need the expression for ~ in terms of s. Frost (2.11) and (3.27) we

have

- Bj~~
FiL,K ‘

~ ~XL~L,K 
—~~~~~ (3.31)

where 2— — - 0 

~~K~~L 
(3 • 32)

Since .aK (.
~.) is a C

2
— function, it follows that the coefficients in (3.31)

are continuous across the singular surface E. Thus, on taking the jump in

(3.31) across E and using (3.8)1, (3.16) and (3.24) 1, we find

(3.33)

where
L1 Bi~~

NLN K~ 
FiMB

~~JKNLNX~ C ~t~~NxNL
) ’ . (3. 34)

The substitution of (3.33) into (3.30) with the aid of (3.26) and (3.34)~

yields the following propagation condition

(Qjp~ P0U~6~~
)8~ ” 0, (3.35)

where
A
Qjp

_
~~Jp

(F
rL~
$
X~NM

) 
~
A
j~~L

Nx
N
L
+ CL~L~~- Ô

j p
SKLNKNL +

FjLFpM
c,~~~

Nx
N
R + — 

~jp 
(3 .36)

is the acoustic tensor. We note that is syttmi.tric and for fixed n it is

a function of the deformation gradient FrL~ the reference electric f ield

at the wavsfront , but is independent of the density of free electronic

charge at the wavefront. It follows from (3.35) that the amplitude a of

t
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12 .

an acceleration wave traveling in the direction n in a piexoelectric semi-

conductor must be a proper eigenvector of the syviunetric acoustic tensor

and the speed of propagation % must be such that p0U~ is the corresponding
eigenvalue of Q

~~
.

The equation (3.35) was derived by Truesde1l~
7 for acceleration waves

in elastic media. It has since been derived by a number of authors for

acceleration waves in a variety of media79. We note in particular that

the acoustic tensor (3.36) has precisely the same form as the corresponding

acoustic tensor which occurs in the theory of wave propagation in elastic
10

dielectrics

Equations (3.35) admit a nontrivial solution if and only if

det ~~~~~~~~~~~~~~~~~ ~ (3 .37)

and this equation determines the possible speeds of propagation for a given

direction of propagation n. C*~ the other hand , if the amplitude a of a wave

is known , then the corresponding speed of propagation is determined by the

formula
2

POUN — Q~~a~a/a1a~~. (3.38)

Since the acoustic tensor is sysusetric , it has three real eigenvalues.

However, at this stage it is possible that all of these eigenvalues may be

negative in which case no real waves will exist at all. We now wish to

record the conditions which guarantee the possible existence of at least

some real waves. A detailed analysis of the situation for purely elastic

materials has been given by Truesde1l~
8
, Truesdell and Noll19, Wang and

?ruesdell20, Chadwick and Currie
2
~ .

c~ ce the deformation gradient and electric field ahead of the wave are

known, it fol lows from (3.5)~ , (3.29), (3.34), (3.36), (2.8)5.6 and (2.9)i

—- L I
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that the acoustic tensor depends on n only. That is, we have

Q
j p

(FrL~~X~
NM

) — Q~~~
(
~

) ~ (3 .39)

for f i xed F and c~ . IfrL K

Qj j (
~

)n inj  > 0 (3 .40)

for all unit vectors n, the material may be said to have positive longitudinal

piezoelectricity. Truesdell~
8 has shown that when (3.40) is satisfied there

exists at least one direction in which a longitudinal wave may exist and

propagate. If the acoustic tensor is strongly elliptic in the sense that

~~~~~~~ 

(~~ )P.~~P.~~ > 0, (3.41)

for all unit vectors n and p., it then follows (Truesdell
18
) that there is

at least one direction of propagation in which a longitudinal wave and two

transverse waves with orthogonal amplitudes may exist and propagate. In

particular, it should be noted that if the strong ellipticity condition (3.41)

is satisfied and if the deformation and electric field are uniform ahead of

the wave then there exists at least one direction in which a plane longi-

tudinal and two plane transverse waves may exist and propagate for all times.

For propagation in all other directions under the above-mentioned circum-

stances the three plane waves are, of course, not necessarily either purely

longitud inal or purely transverse, but may consist of an admixture of all

mechanical displacement components. Nevertheless, in the most general case

if the propagation velocities are distinct , the three plane waves have

mutually orthogonal mechanical displacement fields. In the next section ,

we examine the manner in which the amplitudes of such waves vary as they

traverse the material.

-

~ 

- - -  ~~~~- —-- — -- — -- -- - 
~~~~-- 

_1~~~__ 
-
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4. Growth and Decay of Plane Acceleration Waves

In this section we der ive the d ifferential equation which determines

the manner in which the amplitude of a plane acceleration wave varies as it

traverses the materia l. It is assumed that the material ahead of the plane

wavefront is at rest in a state of homogeneous strain, is subject to a

uniform electric field and that the charge density of the free electronic

fluid is uniform and constant prior to the arrival of the wavefront.

The differentiation of the equation of motion (3 .25) with respect to t ,

with X fixed , yields

(4.1)

wbere

C A  ~
‘ +~~ 

W
j j Kpt4M pL, K qti j lcpLM pL, K M

+ Hj,~,L
FpL ~P. + BjKpML

$
L X~

’pM

+B cS ~~ +H G F
jKLM L,X H jKpL lcpL

(4 .2)

with 2
- 

~~PL
3F

qM 
- 6

j pFqN
C
~~;_~ 

+ 6
j q

F
pN

c
~~.~ N

+ 8~~ FjN
c,~~~~

+ F
jN

FpTFqRC
~~ LT~~~

_ 
~~~~~~~~~ i

XI:. p

- XL ? K P
)T) 4 J (X K q XM j

X
L p

+X
K j

X
M p

X
L q

- XL q X
M,j

XK,p
X
L,j

X
K,q

X
M ,p

)P
~~ 

(4.3)

- 

~~PL~~M 
— 6

jP~KLM 
+ FIN F

PSB
~~~~ M ,

_ J(Xx,j
X
L,p

_ X
L,j

Xx,p
) ~2_

~~
SK ~2Ae

— 
~~L~’M 

— F
J$
B.
~~ M , 

H
p

— -  3X
x,j  ~( e)2
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and 2A
_ _ _ _ _C1c:L1.~RT - ~~~~~~~ 

- 
~o ~i E ~~~E~~

8
XNLSM 

— 

~~LS~~M 
— 

~ 0 
~~~~~~~~~~~

NK 
_ _ _ _ _ _B — _ _ _ _  _ _ _ _ _ _tuaai 

~~L~~M HK~~L~~M

In view of our earlier assumptions on the continuity of the response func-

tions ~~~~~~~~ , .) , the coefficients in (4.3) are continuous across the singular

surface E. Q~ taking the jump in (4 .1) across E, keeping in mind our assump-

tions concerning the uniformity of the rest state of the material ahead of

— the wavefront and making use of the relation

~~~~~~~~~~~~~~~~ (4.5)

and employing (3.22) we obtain

Aj,~ IJ!frPL KL + B 1,~~~ ~;j 
+ ~~~~~~ + (c~~— ~~~~~~ (4 .6)

where

!CjL - AJ~~II~ 1!F L KL !~
‘qMi + ~~~~~~~~~~ K~

+ 

~~~ £~ M, IGL1 
+ B

jI(LM~
c
~L Xi ~~~~~ 

(4.7)

Since we are dealing with a plane wavefront entering a uniform state, from

the compatibility conditions and the definition of an acceleration wave,
22we have

xi = b
rNLNK~ 

br 
— !NMNSfr rM SI ‘

2 2 6
~i

iL_ %1i +2U N -w ~ (4.8)

~~~ 
(N~Ngcp~~gi ,



— -~~~~ -- --- - - - - - - -. . - -  - - --- — — - --- —

16.

where 6f/6t is the displacement derivative23 of f. Substituting from (3.8) ,

(3.24) and (4.8) into (4.6), we obtain

(Aj~~,LNxL~ 
- P0U~6~~ )b~ + ~

Bj~~
NXNL - UNUIIjXNX - 2p0u~ j~.

- UN
A
jXpLqMNKNLNM

5
p
5q + 2UN~~j~~~~ NXNLNMsp - UNc

~
2Bj~~ MNXNLNN

_ 0 . (4 .9)

We now need the expression for (~ in terms of s. TO this end, with the

aid of (2.16 ) and (2 .8)~~~ we rewrite Eq. (2 .13) in the form

EICrLFrL, K + E
~ J6L K + Q

~~
G
L K + 

~~
G
K + _ o  

, (4 .10)

where

ZKrL — 

~~rL 
- ~~~~~~~~ ~~~~ 

— 
~j— , E~~ —

~~K
— ~~~~~ 

‘ ~~e 
(4. 11)

In view of the continuity assumptions on 
~~~~~~~~~~~~~~ it follows that the

coefficients in (4.11) are continuous across the singular surface. Hence,
on taking the jump in (4 .10) across E and employing (3 .8) , (3.22) and

(3.24)~ ~~ 
we have

, 

w — v (
~
•EXrLN N S  + ~E~~N N  - !~I~ (4.12)

where

v (cL~N~N~Y ’. (4 .13)

Taking the material time derivative of (2 .15) , we obtain

— ~~~~~~~ (4.14)

the jump in which, with (2.8)1, (3.8)3, (3.14), (3.22), the kinematic condi-
tion of ccmpatibility~

’5 and the def inition of an acceleration wave, yields

(~~~J — —  P.
e
JxK,~

UN
s~NK , (4.15)

—~ --- .- ---= .-- -- - - - _ _

- 
- - ~~~~

—-  - -- .- - --- --

~

—- ---~~~~~ --- - - - -  ‘ - - -—  ---- ,--
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where we have employed the well-known relation

— (4.16)

in obtaining (4. 15) . The substitution of (3.33) and (4.15) into (4. 12)

enables us to write

(4 .17)r r

where

- E
KrL

N
L
NK - C xz?4xt4LT

~r 
+ 3u

~~~
N
~
X
~ r 

(4.18)

We now must express ~ in terms of a and b. To this end we take

the material time derivative of (3.31) to obtain

8iLK~
’iL, K 

+ “KIflL, K 
- ~~~~~~~~~~~ 

~

(4.19)

where 2A A

— 
~~L~~ t 

— 
~ ‘ 

(4. 20)

which is continuous across the singular surface. Clearly, all the coeff i—

cients occurring in Eq. (4.19) are continuous across the singular surface E.

Thus, on taking the jump in (4.19) across E, recalling the time independent

uniform state ahead of the wavefront and employing (4.15) we have

- Bi~J~~
FiL, XI + ‘

~XL1.~L, ~J 
- Bi~~ SK..~

FrS! !FiL, xi
- 

~~~~~~ !FiL,Xi 
+

+ kKLz44 ,4~. 1~ L, Xi (4 . 21) 

_ _ _
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Substituting from (3 .8) , (3.24) , (3 .33) , (3.34) , (4 .8) and (4.15) into (4 .21) ,

we obtain

— CL~~ , - CUNJi~~XK,iNK
s
i +UNCMjj

s
i
sj, (4.22)

where

M.~~= (_BiLj~~ + 2CBjL~~
Lj  + C

2
~~..~LiL . ) N KNLNM . (4 .23)

We now substitute from (3. 33) , (4 .17) and (4.22) into (4.9) and employ

and (3.36) to obtain

(~ j p  
- P0U~8~~ )b~ — 2p0U~ ~~~~~ + ~~~~ + 

~jpq
5
p
5q’ 

(4.24)

where

~jp 
= CuNJ~~LjXK,pNX + VU

NHjXNKEp , 
(4 25 )

and

~jpq 
= UNCLj Mpq + UN(Aj~~,~~M 

+ 2
~~jKpLM

Lq + C
2B

jK.~~L
P

LqJN XNLNM . (4. 26)

Note that Eqs. (4.24) serve to determine the components of the amplitude 1,

of the third order discontinuity induced by the acceleration wave. However,

for the moment, our primary objective is to use Eqs. (4 .24) to obtain the

differential equation governing the evolutionary behavior of the amplitude a

of the acceleration wave. In Sec.6 we study the solution of (4 .24) in

greater detail and we discuss both induced discontinuities and higher order

waves.

Using Eqs. (3.5) , (3.8) 4_6, (4.23) , (4.25) and (4. 26) , we may rewrite

Eq. (4.24) in the form

2 2 6a
(Q~ - PoUN5

~~,
)bp = 2p0U _~~1 + ~~~~~ + &j~~

a
p
aq, (4.27)

where

~ j P i n
P

+
~~~~j KF’SXnSE

P , (4.28) 

-----~~~~~~
. 

~— -- -
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L

— U L ~i~~ + U (Aj~~~~M 
+ 2B j )~~ JjLq + C

2Bj~~~ hip1~q1 ?rXFsLFtM fl rflsflt~ (4. 29)

and

— E_B
pKql:JuI + 2CBPXXJ4Lq 

+ ~~~~~~~~~~~~~~~~~~~~~~ (4. 30)

We may write

a~~~ ar~~, rJ — 1 , (4.31)

A 2where r is the unit eigenvector of Q~ corresponding to the eigenvalue POUN,

and recall that, since we are dealing with a plane wavefront propagating

into a uniform region, the components of r are constant. Equation (4 .27)

may now be written
A 2 2 6a — — 2(Qjp

_ P
oUN6Jp

)b
p~~

2PoU rj ~~ + (~~~ r~ ) a +  (aj~~ rprq)a . (4 .32)

If we now contract (4.32) with r
j 

and employ (3.35) and (3.36) ,  we find that

• the amplitude a of the acceleration wave satisfies the equation

(4.33)

where

U) — 
~j rj r 

(4.34)
° 2 p U

0

-~~ r r r
— 

j p q j p q , (4 .35)
2 p U 2

0

The implications of Eq. (4. 33) are examined in detail in the next section.
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5. Implications of the Growth Equation

Equation (4.34) , which governs the evolutionary behavior of plane

acceleration waves oriented arbitrarily and propagating into a region subject

to a t ime independent state of homogeneous strain and uniform electric field

in a deformable semiconductor, is of the same form as Eq. (5.6) of Ref. l.

clearly, we expec t the behavior of the amplitude of a plane acceleration

wave to be, at least qualitatively, simila r to that of  a purely longitudinal

wave . This is for the most part the case but, as expected , in contrast to

the situation prevailing in the one-dimensional case discussed in Ref. l ,

the coefficients U’0 
and 

~~~~
, defined by (4 .34) and (4 .35) , respectively, are

not absolute constants for a given material and state even though ~~ , F and

are uniform ahead of the wavefront, but vary with the propagation direction n.

Of course, once 6, F and are prescribed ahead of the wave then for a

given n, r is determined by n through Eqs . (3 .35). After the unit vector r

has been determined f rom Eqs . (3 .35) , the coefficients U’0 
and are fixed .

Thus, f or a g iven state ahead of the wavefront, i.e., values of F, 6 and

w and ~ are constants for a given n.o 0 -.
When neither of the quantities w0,80 vanishes then the solution of

Eq. (4 .33) is 
~a( t ) =- X / ( ( X / a ) — l ) e  ° +1], (5. 1)

where

x = w/ 
~~ 

, (5. 2)

and a(o) is the value of the amplitude of the wave at time t— 0. It is

clear that the behavior of the amplitude of a given plane wave is determined

by the coefficients U’0 
and as well as by the initial emplitude a0. In

order to discuss all possible cases which may arise we first suppose that
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U’0 >0 and 
~~~~~~~~~~~~~~ 

(5. 4)

then, in view of (5 .2) , we have

sgn A0 — sgn ~~,, (5. 4)

and then from (5.1) three distinct possibilities arise:

i) If sgn a ( 0 ) — ± s g n  
~~ 

and J a J  < 1X 01, then a(t )  - 0  mono—
tonically as t -.

ii) If a(0)  = X ( 0 ) , then aCt )  = a(0) .

iii) If sgn a(0) = sgn and I a ( 0 ) I  > IX~I, then a(t) -. ~~ mono—
tonically within a finite t ime t~ given ~~

t~ =— (l/w )~n [1— (A /a(0))J . (5.5)

We now suppose that

<0 and # 0, (5.6)

then we have

sgn 
~~~~

=— egn (5.7)

and again from (5.1) three distinct possibilities arise:

i)* If sgn a(0) =— sgn and I > I a ( 0) I ,  then a(t) Ac,
monotonically as t -‘ ~~.

ii)* If a(0) = Ac,~ 
then aCt) = a(0).

iii )* If sgn a(0)  = sgn 
~~ 

then a(t) -. ~ within a finite time ~~
given by

- (1/tv )2n [1 + A/a ) I . (5.8)

It is clear from the foregoing results that the number 
~~ 

plays a funda—

mental role in determining whether the amplitude of an acceleration wave

will grow or decay as the save traverses the material. For this reason we

follow the usual custom and call A0 the critical amplitude for acceleration

waves encountering a homogeneous steady state. We note that if U)
0 

> 0,

- -- -~~~~~- - ~~~~~~~~~- - -~~~~~~~~~~~~~~
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then the behavior of an acceleration wave propagating into a piezoelectric

semiconductor which is in a uniform steady state is precisely the same as

that of an acceleration wave propagating into a homogeneously deformed ma-

6 7terial with memory ‘ . In particular, if the initial amplitude of the wave

is less in absolute value than the critical initial amplitude, the amplitude

decreases to zero as the wave propagates. On the other hand, i-f the initial

amplitude is greater in absolute value than the critical initial amplitude,

the amplitude of the wave becomes unbounded in a finite time. This, of

course, suggests the formation of a shock. As noted in Ref.l, the case w0<0,

which has no mechanical analogue, is the case of primary interest and import—

ance. The foregoing analytical treatment shows that in this case the amplitude - -

of the wave either tends to A0 
eventually or else becomes unbounded in a - 

-

finite time. Furthermore, note that in this case if a(0)  and 
~~~, 

have the same

sign, the amplitude of the wave always becomes unbounded in a finite time.

~treover,since a(0) arises from the thermal noise, there are always some a (0)

with the same sign as

Let us now consider the behavior of a wave for which ~ vanishes. In

our earlier treatment of one—dimensional acceleration waves1 we noted that

the vanishing of corresponded to a linear material. Indeed, while also

vanishes identically here if the response of the material is linear, it may

also vanish because of a combination of other factors even though the response

of the material is nonlinear. For example, in a given material, once 8 and F

are prescribed it may be possible to choose n (a nd hence r through Eq. (3.35)3

in such a way that vanishes. In particular it is easily verified in the

relatively simple case of a purely transverse acceleration wave propagating

in the direction of the applied electric field and of a principal axis of

homogeneous deformation in an isotropic material that vanishes even though 

- -  -~~~~~~~--~~- - -
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the response of the material is nonlinear. In this simplest but extremely

important case Eq. (4.33) has the solution

a ( t)  — a0
e 0 

, (5.9)

which means that if U’0 
> 0, aCt) is a monotonically decreasing function of

time and the amplitude of the wave decreases as the wave traverses the

material. On the othe r ha nd , if < 0, a(t) is a monotonically increasing

function of t and the amplitude of the wave increases without bound as the

wave traverses the material. Of course, if U’0 
= 0, then a(t) — a0 so that

the wave propagates at constant amplitude.

Let us recall from Eqs. (3.28), (4.28) and (4.34) that

~

0 
1 [~~

e
~~~~~~~~~~~E 1~ (5.10)

In particular, Eq. (5. 10) shows that U’0 
vanishes whenever r is orthogonal

to n. Thus, if 
~~~~ 

vanishes, either because the response of the material is

linear or because 8, F and n have appropriate values, then purely transverse

acceleration waves will propagate at constant amplitude and not grow and,

of course, purely transverse shocks will not form. On the other hand, in

this very special case of purely transverse acceleration waves, suppose

that does not vanish for plane wave propagation in a prescribed direc-

tion n, then Eq. (4.33) reduces to

— ~~~~~ (5.11)

so that

a— a (l—~~~a t J ’. (5.12)

Of course, the solution (5.12) has the same form as the corresponding

solution for acceleration waves in nonheat conducting elastic media. Note

that if a and ~ have the same sign then a shock will form after a time
0 0

- _ _ _ _ _
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— ~~~~~~ (5.13)

and , as already noted, since a (0) arises from the the rmal noise, a shock

will always form for nonzero ~ when U) is zero.
0 0

When van ishes and the acceleration wave is not purely transverse,

it should be clear from the above discussion that the threshold condition,

at which the amplitude a(t) just begins to grow, may be defined by

(~) — 0  (5.14)0

where

— 
~~~~~~ [ci~~r.irj  - ‘1 

~~~~~~ 
Ei~~] . (5.15)

A most important limiting form of (2 .16) (or (2 .7) 6 with (2.12), (2.8)7,

(2 .9) 3 and (2 .7)~~J is

— - - 3D~~G~J~ (5. 16)

where is the mobility tensor and is the diffusivity tensor, which may

be written in the form

D~~~”-  ~~~~~~~ (5.17 )

and, of course, we can have m = m
~~

(E
~~,

$
L
). In this simple but important

limiting case, in which the current is given by Eq. (5.16 ) with the mobility

tensor m~~ and diffusivity tensor constant , from (5 .15) , (4 .18) , (4 .11) ,

(4. 13) , (5.16 ) , (2.21) , (5 .17) and the fact that G
~ 
vanishes ahead of the

wave front we obtain

(1)
0 

— - -
~~~~~~~ 

V ~~~ J.eNXJXX 1r~ (NLm
~~~R + UN) (5 • 18)

from which, with (5.14), we find that the threshold relation is given by

• 
N
L
m
~~
$
~ 

+ UN — 0 . (5 • 19)

r 

- —-~~~~~~~~~~~~ —~~~~~ ~~~
- - — - — ---~~~~~~~~~~~~~~~~ -
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when the deformation is infinitesimal, we have

~
‘rL 6rL’ ~R 

6
Rj

Ej  ER ,  UN~~
U U O , (5. 20)

which enables us to write (5 .19) in the form

NLmU~
c
~~ 

= N
L
m
~~
E
~ 

= - U0 , (5. 21)

where it should be recalled that N (or n) is the normal to the plane wave

surface. Equation (5.21) is the generalization of the well—known relation

for the threshold field obtained in Eq. (5.13) of Ref .1 for the one—dimensional

case to the arbitrarily anisotropic three—dimensional case treated here for

the restricted limiting form (5. 16) of the current equation (2 . 16).

6. Weak Waves and Induced Discontinuities

Following Coleman and Gurtin24
, we define a wave of order N as follows:

A propagating singular surface E is a wave of order N if the field

and its first N—i partial derivatives with resp*. t to X and t are continuous

everywhere but the Nth order partial derivatives suffer jump discontinuities

at E, but are continuous functions everywhere else.

In particular, we note the case N=2 represents an acceleration wave.

If N >  2, the wave is said to be a weak wave.

Cur object here is to study the propagation and growth of weak waves in

a piezoelectric aemiconducting material . It suffices to consider waves of

order 3. We confine our attention to the study of plane waves and we assume

that the material ahead of the wavefront is in a state of homogeneous strain,

is subject to a uniform electric field and that the charge density of the free

electronic fluid is uniform and constant prior to the arrival of the wavefront.

Since we are dealing with plane waves of order 3, from the compatibility

conditions across E we have 

— . - -  ~~~~
-- - - — - — -- — - -  - —

~~~~~~~~
- -~~~~~~~~ _ _ _ _ _ _ _ _
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1~rL, xl — .L” r i.xl — b N LNX ,

.FrL, XML 
- - U;¼rNLNKNM,

iFr . t ~ r,it
LuI _ UNbrNL~ 

(6.1)

iYri - U~
br

i~rK,b r ,K drNICNL~ dr ~~
NMNSi~rSM L~

-‘ ôb2 2 r( i — U  d +2Us r”- M r  N ot

It follows from (2 .11) and (3.16) in essentially the same way that (3.19)

followed from (3.18) that S
~~~ ~ 

is continuous across E and since is con-

tinuous across E also, from the kinematic condition of compatibility 
~L 

is

continuous across Z. From the geometric condition of compatibility, we have

- $N~J
N~ , 

~~ 
- 

~
NtNx , 

~ 
— 
_
.iNRN$~

ó 
R~~i~~ 

(6.2)

In a similar manner (2 . 13) , (3 .8) and (4 . 15) imply that G is continuousK,L
across E and since is continuous across E also, from the kinematic condi-

tion of compatibility &~ is continuous across E, but from the geometric

condition of compatibility and (2.17), we have

w ~~~~~~~ (6. 3)

- ~- Since for weak waves aj vanishee,an imeediate consequence of (4 .28) is

that

(6.4)

so that the propagation condition for weak waves is precisely the same as

that which governs the propagation of acceleration waves.

In order to obtain the differential equation which governs the evolu-

1 ~ tionary behavior of the amplitudes of weak waves, we differentiate Eq. (4.1)

- - ~~— - - -- -
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1

with respect to t holding ~ fixed, and on taking the jump across E in the

resulting equation and amploying (3.34), (4.5), (6.1)2, (6.3) and recalling

the steady uniform state ahead of the wavefront, we obtain

2 — — 2 6b
(A

jXpLNXNL 
- P0%ô~~)h1~ + + LII~~N~ - 2P0% -

~~~~ - 0 .  (6.5)

Similarly, taking the material time derivatives of (4.10) and (4.19), re-

spectively , -:.aking the jumps across E in the resulting equations and employ-

ing (2.21)1, (3.34), (4.5), (4.8), (4.13), (4.14), (4.22), (6.1)— (6.3) and

the compatibility conditions and recalling the steady uniform state ahead

of the wavefront, we find that

~~
— CL~d~~- ~~~~~ X~~~N~

bi,  W =  -%vE1b~~. (6.6)

Substituting from (6.6) into (6.5) and employing (3 .36 ) and (4 .25) , we

obtain
8b

(Q~ 
- P0U~6~~)d~” ~~~~~~~~~~~ -~~~~~~ . (6.7)

Let us write

cj
_ cr j ,  rI — 1 , (6.8)

2where r is the unit eigenvector of corresponding to the eigenvalue POUN.

If we now contract (6.7) with rj  and employ (3 .5) , (3.8)6, (3.35) , (3.36) ,

(4.28) and (4 .34) we find that the amplitude c of the third-order wave

satisf ies the equation

.
~~~——c%c , (6.9)

which a~ sits the solution

0(t) — c c 0
. (6.10)

It is now clear that the evolutionary behavior of the amplitude of a

weak plane wave is somewhat different from that of a plane acceleration wave

which propagates in the same direction at the same speed. In particular,

I- ’
—- ---- -~~~~~--
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the evolutionary behavior of a weak wave is determined solely by the sign

of w and is independent of the initial value of the amplitude of the wave .

As we have noted earlier, w may be negative in certain important circum-

stances. When w0 isnegative the amplitude of the weak wave will increase

without bound and become an acceleration wave as the wave traverses the ma- 
—

terial. This behavior should be contrasted with the manner in which weak

waves behave in other media (see e.g., Ref.6). However, if the weak wave is

purely transverse, the amplitude will remain constant as the wave traverses

the material in accordance with the relevant portion of the discussion in

Sec. 5.

Let us now suppose that there exists a particular direction ii in which

three real plane acceleration waves may propagate. Let us denote the ampli-

tudea, unit amplitude vectors and speeds of propagation of these waves by

and ~~~~~ i —  1,2 ,3, respectively. It follows from Eq. (4 .32) that

the amplitude of the third order discontinuity induced by the accelera-

tion wave of amplitude a W is determined by the equations

~~j p  ~~~~~~~~~~~~~~~~~~~~~ , 
(6.11)

with

— 2p 0U ~~~~~ 
8a~~~ + ~~~~~~~~ +~~~~~r

(
r~

1) a
(
~~

2
, (6 .12)

where and are given by (4.28) and (4 .29) with U replaced by

— ~~~~~~~

Now supp ose that the eigenvectors of ~jj(fl) are distinct so that the

vectors ~~~ form an orthogonal triad. We may now write in the form

— b~
l)

E
(
~
r) 

• (6.13)

I
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29.
I

(1) (1) (1) 2
Since as a consequence of (4.34) d~ is orthogonal to rj ,even though UN
is a root of Eq. (3.37) Eqs. (6.11) are consistent but do not determine the

component of in the direction of r~~~ uniquely. Nevertheless, when

Eqs. (6.11) are contracted successively with r~
2
~ and ~~~~ respective ly,

and (3.37) is employed, it follows that

p
0
(u,~

2)2_ u~~~
2
)b~

1) 
— r~

2
~d~~ ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (6.14)

Of course Eqs . (6.14) determine uniquely the components of the induced dis-

continuity in the two mutually orthogonal directions which are also orthogonal

to the direction of the amplitude vector of the primary acceleration wave.
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