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ABSTRACT

The reference coordinate description of the general nonlinear differ-
ential equations describing the interaction of finitely deformable, polar-
izable, intrinsic n-type semiconductors with the quasi-static electric
field is applied in the study of acceleration waves in piezoelectric semi-
conductors. As a consequence, the mechanical and dielectric nonlinearities
are included in the treatment as well as the semiconduction nonlinearity.
The general equation for the propagation velocity of the disturbance is
obtained as a function of the state of the material immediately ahead of
the wavefront. 1In the special case of plane waves entering a homogeneous
steady state, the growth equation for the amplitude of the acceleration
wave is determined and, of course, the propagation velocity and coefficients
in the growth equation depend on the propagation direction, but otherwise are
constant. The relation between acceleration waves and the formation and
propagation of acoustoelectric domains is indicated. The solutions of the
growth equation indicate the formation of a shock in a finite time for
conditions conducive to domain formation except in certain unusual cases
possibly occurring with purely transverse acceleration waves. In the
course of the treatment the condition for the threshold field for domain
formation is determined under quite general circumstances. When the elec-
trical conduction equation, which can be quite general in this treatment,
is specialized to the simple form usually employed for anisotropic semi-
conductors, the aforementioned more general condition reduces to the aniso-
tropic generalization of the well-known elementary result. In addition,

the behavior of weak waves is discussed.
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1. Introduction

In a previous investigation the theory of one-dimensional acceleration
waves was appliedl”u:a one-dimensional version of general rotationally in-
variant nonlinear electroelastic equations derived earlier from a well-
defined macroscopic mode12 of deformable semiconductors. In that treatment1
an analytical description of the formation and propagation of purely longi-
tudinal acoustoelectric domains in piezoelectric semiconductors was obtained.
The analysis indicated that for electric fields above a threshold value the
amplitude of the acceleration wave would always increase without bound and become
a shock. A natural and logical extension of the previous one-dimensional
work is the treatment of three-dimensional acceleration waves, in which
acoustoelectric domains with transverse mechanical displacement components
can be considered. Recently, in the case of the quasi-static electric field
the general nonlinear electroelastic equations for deformable intrinsic
n-type semiconductor52 were transformed3 from the unknown present coqQrdinate
description to the known reference coordinate description, which is the form
needed here and in general for the treatment of problems.
In this paper the theory of three-dimensional acceleration waves4-12
is applied to the above-mentioned reference coordinate description3 of the
general rotationally invariant nonlinear electroelastic equations for de-
formable intrinsic n-type semiconductors in order to analytically describe
the formation and propagation of acoustoelectric domains, with both trans-
verse and longitudinal components of mechanical displacement, in piezoelectric
semiconductors subject to high electric fields. The analysis results in an
expression for the amplitude of the acceleration wave (or domain) which

exhibits the competition between dissipation due to electrical conduction




and the semiconduction and mechanical nonlinearities in producing decay or
growth of the acceleration wave (or domain). As in the case of the purely
longitudinal acceleration wave treated olrlierl, the possibility of the
amplitude of the more general three-dimensional plane acceleration wave
increasing without bound and becoming a shock is clearly indicated, How-
ever, in the special case of purely transverse acceleration waves, circum-
stances can exist under which it is not possible for the amplitude to grow.
Nevertheless, if any longitudinal motion is present in the acceleration
wave, the possibility of the amplitude increasing without bound always
exists, During the course of the analysis the expression for the velocity
of the wave (or domain) as a function of the state of the material immedi-

ately ahead of the wavefront naturally is obtained.

2. Basic Formulae and Equations

The macroscopic model of an elastic intrinsic n-type semiconductor
employed in Ref,2 consists of three interacting, interpenetrating continua,
which consist of (i) a lattice continuum which has a positive charge density;
(ii) a bound electronic continuum which has a negative charge density and
which can displace slightly from the lattice continuum and thus produce
electric polarization, and (iii) a free electronic continuum which has a
negative charge density, negligible inertia and is a conducting compressible
fluid which experiences a force of resistance from its motion with respect
to the lattice continuum,

Initially, the lattice continuum and the bound electronic continuum
all occupy the same region of space and, hence, have the same reference
coordinates X., The motion of a point of the lattice continuum is described

L
by the mapping

:
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Yi-yi(xl’..’t)’ y=yx,tv, (2.1)
which is one-to-one and differentiable as often as required. Here the ¥;
denote the present coordinates of material (lattice continuum) points and

X_, the reference coordinates, and t denotes the time. We consistently use

L’
the convention that capital indices denote the Cartesian components of X
and lower case inices, the Cartesian components of Y. A comma followed by
an index denotes partial differentiation with respect to a coordinate
g, -%— y,t), G, --aix“— Xy, t) (2.2)
f i ’ L
and the summation convention for repeated tensor indices is employed.
Since reference coordinates are employed in our study of the propaga-
tion of acceleration waves in elastic semiconductors, the integral forms
.of the equations required in this work consist of Egs, (2.41) - (2.44) of

Ref.3, which we reproduce here in the form

a
i “L“‘Lj*":.j'dre,j’dso'it' .,r Po¥y Vs s @.3)
o VO
[ iwil e,
s v
o] (o]
J w:dvos_r N @+ as_, (2.5)
v s
o o
a
l ng s =- & ‘_[; Rav_, (2.6)
(] (o]

where “L denotes the outwardly directed unit normal to a reference element
of area and S° denotes the surface enclosing the reference volume Vb.
Equations (2.3) - (2.6) are the reference integral forms of the conservation

of linear momentum of the combined continuum, the charge equation of
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electrostatics, the conservation of linear momentum of the free electronic
continuum and the conservation of total electric charge, In Egs. (2.3) - (2.6)
l&.j’ "Lj and fi‘ j denote the reduced mechanical Piola-Kirchhoff stress tensor,
the reference free-space Maxwell electrostatic stress tensor and the refer-

ence free electronic pressure tensor, respectively; v ﬁi, w: and yL denote

j!
the velocity of the solid, the reference electric displacement vector, the
reference local electric field exerted on the free electronic fluid and the
reference electric current vector, respectively; p , &, ¢ and cpe denote the
reference mass density, net reference charge density, electric potential and
free electronic chemical potential, respectively; and d/dt is the material

time derivative. The associated constitutive equations and additional re-

quired relations take the form
X S
K3 " Po¥y,x 3 > B A 1T§j ’

e X
Pry= %, 4P 5 B = TR By =0, o

e ezace e e
P = () ;;, ﬂL.m %, (2.7)
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X=X ,8,), €=efw®), ¢ =am /a8,

Q: - o: (u.e,w:, E pbL) (2.9)

denote the free-space Maxwell electrostatic stress

S
where 'rfj, Bt and C .

tensor, the material (reference or Lagrangian) strain tensor and Green's

deformation tensor, respectively; E,, § and Q: denote the Maxwell electric

i’ 'L
field, the reference (or rotationally invariant) measure of the electric

field and the rotationally invariant constitutive vector that accounts for




the relative flow velocity of the free electronic fluid, respectively; p°,
Xy »® and ¢® denote the free electronic pressure, a particularly convenient
thermodynamic state function related to the stored internal energy per unit
mass of the deformable solid, the free electronic charge density and the
storad internal energy per unit ~harge of the free electronic fluid, respect-
ivelt; and . is the permittivity of free space.

When the variables are appropriately differentiable, from (2.3) - (2.6),

we obtain the differential equations

Sm’n = po{rj, (2.10)
5 =i, (2.11)
»

w; - cp’L-b(p’QL, (2.12)
+hw0 (2.13)

bpp *H .

where

snj"&.j*"r.j'o;.j’ (2.14)

and we have employed the dot notation for partial differentiation with
respect to time. We now note that we have an additional relation between
the net reference charge density i and the free electronic charge density ue,
which can be written in the form

pegu® +°u', (2.15)
where opr is the reference residual lattice charge density, which is a

constant. From (2.7)6, (2.8)7, (2.9)2_‘ and (2,12), we can write

9L'9L(‘m3x’°x'“.) g (2.16)

where

GK-D,K . (2.17)
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5 (2.8) 5-6> (2.20) ang (,
b4

Y

22) that ye DAy write
e "
SLj .sLj (yj,x’du’“ 2, .&La.DL (EKM,GL) o (2.23)
and for latey use we note that the constitutlve Tesponge functions (2.16)
ang (2.23) as welj as alj the Otherg are c2~fhnctions of their arguments.
* Genera) Prbegrties of Acceleration Waveg
Let ¢ be a propagating Surface which may be represented in (g,t) Space
by the eQuatj
£(y,t) =g (3.1)
The unit¢ Vector horma) h

60
If we define i by13
X=x- “IEE /2 (2.1g)
then by virtye of (2.8)4_7, (2.9)1, the chaj, Tule of differentiation ang
the well-known relations
-1
‘ J = /det S5 & o :vrx,ixn,1 ) (2.19)
3
‘ we can Write
f(-i(zn, 8. (2.20)
wa, from (2.7)1_5, (2.8), (2.9)1, (2.14) (2.19) and (2.20) With the aiq
Of the dszerentlal Telatiop
3r x
W{Taaxx’l, m%a—xn’ixu,j 5 (2,21)
] s
' and the chain Tule of dlfferentlatlon we Obtain
‘ X e xR
®L3 “Po¥y 3, - e, 1P G 8 3 - S
It ig Clear from (2,7)
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n -—t.'ai_’ u ---aLat. - (3.2)
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Corresponding to 0, we have the alternative representation of the surface I

in (X,t) space by means of the equation
3(§,t)-f(z(§,t),t)-0. (3.3)

The unit vector E normal to £ and its speed of propagation U ” are given by

F % 3
W i R e : (3.4)
K 2N

EX BN

It is a simple matter using (3.2) - (3.4) and the chain rule of different-

iation to show that

N -ii-}-‘-ni— U-UI—flk—l--U/lr | (3.5)
X Je ol N I xLx' 2 .
where
Fix =¥ x »
and
U=u -y °n, (3.6)

is the local speed of propagation of the surface.
Let t(}\(’, t) be a function which suffers a jump discontinuity across
the surface I, but is a continuous function everywhere else, We define

the jump -.[.'—]\. in the function § to be
W=y -, (3.7)

where '.,. and ¢+ are the limiting values of § immediately behind and just
in front of a point lying on I, respectively. The surface I is said to
be an acceleration wave if the fields y; (X, t), v, (X,t) and F,p (X, t) are

continuous everywhere but (ri (x,t), i‘iL(}é, t) and F (X,t), as well as all

ir,M




higher order partial derivatives of Y; (X,t), suffer jump discontinuities
across I, but are continuous functions everywhere else., From the geometric
conditions of compatibility“ on the jump in the gradient of a continuous

16

function and the kinematic condition of compatibilityls, we can obtain

[F l]=s

ik, td = SN = 21 Fpfqrp g 51 l“x“npm, L

IF == s Ne=- UaFon (3.8)

2 2 2
l=Us =U a,, s Bnai’Bn’:FiKFaninj'

At this point it should be noted that we need make no assumptions with regard
to the continuity properties enjoyed by the electric potential PX,t) =
cp(x (X,t),t) or the free electronic charge density ue (X,t) apart from assuming
that at points not on I these functions together with their partial deriva-
tives of all orders are continuous. The vector a is called the amplitude
vector of the acceleration wave. If we write a=ar, where r°n20, |£| =1,
then if a>0 the wave is said to be expansive, while a wave for which a<0
is said to be compressive. If r=n the wave is longitudinal, while if r*n=0
it is transverse.

The jump conditions across a surface of discontinuity I can readily be

obtained from the integral forms in (2.3) - (2.6) along with the fact that E

i
remains bounded. The resulting jump conditions thus obtained consist of
Egs. (2.46)1_2, (2.47)1, (2.49) and (2.50) of Ref,3, which are required in
this work and we reproduce here in the form

N L9 - Oy =0, G.9)
lesle + pouu.!vj.].- o, (3.10)
©°1=0, [9)=0, (3.11)

N [-Dxl-O. (3.12)
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In view of (2.9)3, (3.11)1 may be written

) -3whH =0, (3.13)

and if we assume that a&e (ue)/axefo it follows (the argument is given by

Coleman and cmrtin6) that p° is continuous across Z, i.e.,

L] =0. (3.14)

~ ~

Furthermore, since (2.15) is of the form

p=ou®+ p¥, u° = constant (3.15)

it follows, since J=det F is continuous across I, that

iK

‘_[_ﬁl =0. (3.16)
Next, since ¢ is continuous across I,from the geometric condition of com-

patibilityu and (2.8)7, we have

lsxl-dnx, a--‘_['NLtp,Il . (3.17)

Thus, in view of (2,23) we may write (3.12) in the form
b 27

- T +

N B, 8y +TN ) - B (B 60 =0, (3.18)
and if we assume that 38 /38, # 0 it follows from (3.18) that =0 and, hence,
from (3.17) that

1=0, (3.19)

and thus the reference electric field § is continuous across X. Now, in
view of (3.14), from (2.17) and the geometric condition of compatibility
we have

- e
[G,] = DN W= [N} ] (3.20)
LGl = BN, ~L, LAY

so that, on using (2.16), (3.14), (3.16), (3.19) and (3.20), we may rewrite
(3.9) in the form

A +, - e 2 + e
Ned i Bpr s 8y Gp +ON ) - NKyK(ERL,dM,GL,u )=0, (3.21)




From the assumption that aﬁKIBGL#O it follows from (3,21) that @ = 0
so that

g 1=0, (3.22)

which means that GK is continuous across L. As a consequence of (2.16),

(2.8)5_6, (2.23), (3.14), (3.19), (3.22) and the definition of an accelera-

tion wave, we have
Bygl= B =1hl =0, (3.23)

and thus Egs. (3.9) - (3.12) are satisfied identically. Other important con-

ditions resulting from (3.19), (3.22) and the conditions of compatibility14-1s

are
'EsK,I-]--- Fonl " Yy 18] = U, = [NN® gl »
e . s
.!Gx,Ll-ju’nl-wNKNL,jcxl-_ UN“’NK’ w'-!“n“su,ns-]- . (3.24)
From (2.10), (2.22), (2.7)3’5, (2.8)5_6, (2.9)1_2 and (2.21), we obtain
AjKPLFPL,K ¥ BjKLGL,K i Hjxcx' povj ’ (3.25)
where "
Ayxpr = z:x & apazgp s apa (X, j)fae(ue) =8 S *
. pL jx° pL pL ’ )
* PyFostians = I X 5¥p, p ™ Xp, 9%k, p'P B) (3.26)
JN pS KNLS KjLp L, K, p .
a§ 2~ &
'SJK'J 3 X L
B = = - - = F R y (3.27)
3 L 2 apjxasr_, Bpjl( JNKNL
s l e
ik = ]: ""”&392; “, (3.28)
1 LTt
and
ai azx 322
S
- D C -p B - p < (3.29)
KL "o EKL ' "KNLS o SEer-:LS ' KNL ‘o ﬁLag'm‘
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Since S ‘xj(.,.,.) is by hypothesis a C -function, it follows that the coeffi-

cients in (3.26) - (3.28) are continuous across the singular surface I.

Thus, taking the jump in Eq. (3.25) across I and employing (3.8)1, (3.22)

i
and (3.24)1 we obtain

i
AijL“x“L'p jKL K L p U 'j (3.30) !
We now need the expression for o in terms of s. From (2.11) and (3.27) we
t
have W
+ -l :1
By xFir, x ")(L"L,x " (3.41) I
where 3 2+ @
K d X H
W T, " o WA, e i
L K L !'L
2 |
Since Jk(.,.) is a Cz-tunction, it follows that the coefficients in (3,31) |

are continuous across the singular surface I, Thus, on taking the jump in

(3.31) across I and using (3.8)1, (3.16) and (3.24)1, we find

a--CLisi, (3.33)
where

Ly = B e T TNk 7 O™ e
The substitution of (3.33) into (3.30) with the aid of (3.26) and (3.34)

yields the following propagation condition

(6jp-p v? 0305 0 (3.35)
where
6jp-6jp(rr1.’6x’ N,) =A jxpL Nt CL Lp- bj SN,
Py PR * iyt = &p (3.36)

is the acoustic tensor., We note that bjp is symmetric and for fixed n it is

a function of the deformation gradient F the reference electric field GK

rL’
at the wavefront, but is independent of ue, the density of free electronic

charge at the wavefront, It follows from (3.35) that the amplitude a of
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an acceleration wave traveling in the direction n in a piezoelectric semi-

conductor must be a proper eigenvector of the symmetric acoustic tensor ij

2
and the speed of propagation U_must be such that pOUN is the corresponding

N

eigenvalue of 6

P’
The equation (3.35) was derived by 'I‘!'\.xeadelll'7 for acceleration waves

in elastic media, It has since been derived by a number of authors for

acceleration waves in a variety of mediav-g. We note in particular that

g

the acoustic tensor (3.36) has precisely the same form as the corresponding
acoustic tensor which occurs in the theory of wave propagation in elastic 1

dielectricslo. '

Equations (3.35) admit a nontrivial solution if and only if

a 2
det (ij-pounéjp)-o - (3.37)

e

and this equation determines the possible speeds of propagation for a given
direction of propagation n. On the other hand, if the amplitude a of a wave

is known, then the corresponding speed of propagation is determined by the

formula
OOUS = ajpajap/aiai' (3.38)

Since the acoustic tensor ij is symmetric, it has three real eigenvalues,
However, at this stage it is possible that all of these eigenvalues may be
negative in which case no real waves will exist at all, We now wish to
record the conditions which guarantee the possible existence of at least
some real waves, A detailed analysis of the situation for purely elastic
materials has been given by Truesdellle, Truesdell and Nolllg, wang and
Trueldellzo, Chadwick and Curriezl.

Once the deformation gradient and electric field ahead of the wave are

known, it follows from (3.5)1, (3.29), (3.34), (3.36), (2‘8)5-6 and (2.9)1




that the acoustic tensor depends on n only. That is, we have

6jp(FrL’ BNy = 05 (), (3.39)

for fixed FrL and JK. If

Qij(E)ninj >0 (3.40)

for all unit vectors n, the material may be said to have positive longitudinal

piezoelectricity. 'rruesdell18 has shown that when (3.40) is satisfied there
exists at least one direction in which a longitudinal wave may exist and
propagate, If the acoustic tensor is strongly elliptic in the sense that

Qij (R)ui”'j >0, (3.41)
for all unit vectors n and |4, it then follows (Truesdellle) that there is
at least one direction of propagation in which a longitudinal wave and two
transverse waves with orthogonal amplitudes may exist and propagate. In
particular, it should be noted that if the strong ellipticity condition (3.41)
is satisfied and if the deformation and electric field are uniform ahead of
the wave then there exists at least one direction in which a plane longi-
tudinal and two plane transverse waves may exist and propagate for all times.
For propagation in all other directions under the above-mentioned circum-
stances the three plane waves are, of course, not necessarily either purely
longitudinal or purely transverse, but may consist of an admixture of all
mechanical displacement components, Nevertheless, in the most general case :
if the propagation velocities are distinct, the three plane waves have
mutually orthogonal mechanical displacement fields. In the next section,

we examine the manner in which the amplitudes of such waves vary as they

traverse the material,

—
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4. Growth and Decay of Plane Acceleration Waves

In this section we derive the differential equation which determines
the manner in which the amplitude of a plane acceleration wave varies as it
traverses the material, It is assumed that the material ahead of the plane
wavefront is at rest in a state of homogeneous strain, is subject to a
uniform electric field and that the charge density of the free electronic
fluid is uniform and constant prior to the arrival of the wavefront,.

The differentiation of the equation of motion (3,25) with respect to t,

with X fixed, yields

‘ ijpLFpL,K+Bjn&L’K+Hijx+cj-povj, (4.1)
; where
€3 = Axprapr, K am * Byxprafpr, x’gn
‘§ * @ e
1 +
§ *Hy o pr, ¥ Bjxpm.‘fn, K pM
. Bjxm‘sn, 1O * ¥y CxFpr
.e
Hjl(Gl? p (4.2)
% with P
i 3 SK
A xpram = arpLSFqM = % pfanrumn * 8 3q e romn
fo o
* O TN xnem t FNTpT QR KNLTMR JxM,q(xK,ij,p
e
-% X S P WO - T e
L] K;P)p B K, 9 M,j L,p K, j MpLq
e (4.3)
«f X % wk X X
L,aMJKp LJiKq M,p’p £
a’%x
Byxpry = SPPL5§M = 8y pBrrm * FynFpsPramsm
24
d“s e
K J
H il we JO. X o K 2.
LN S X0’ 38’
R
\ 3%s 2~e
K = 9 f
Byxem 57372; " FynBrem * Pyx™ " Tk, 3 Mu‘)i , |
i
. E
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and 3
9 s 333(
c Po BE_OE_oE__
xuaRt ~ 3E, 3B 7 Po E, OF OF
%8 3
o = TS " fo e - @4
1s%%u o 1s?%u
24 .
e 2%
wkn - 3838, T o 5Euxansau

In view of our earlier assumptions on the continuity of the response func-
tions gKJ("”')’ the coefficients in (4.3) are continuous across the singular
surface . On taking the jump in (4.1) across I, keeping in mind our assump-
tions concerning the uniformity of the rest state of the material ahead of

the wavefront and making use of the relation
+ +
¥l = [¥] +¥ (9] + [9] [V], (4.5)

and employing (3.22) we obtain

AkorlFor, kl * Bixp 10y, ol +Hyp (8l + [C51 =0 (7,1, e
where
€50 = AsxoramFpr, kb Faud * Byxprad For, 1l 184
*IE L1 Yt Bixeml%r, xl [yl - il

Since we are dealing with a plane wavefront entering a uniform state, from

the compatibility conditions and the definition of an acceleration wave,

2
we have .

YFrn, kl =PyN Mg B = INNFoy ol s

8s
o 2 2 i
lvi] = Uubi +2U

~ N &t e

Il-'

18, ol = PN Ny, B=- INgNs® gsl




where 8f/6t is the displacement derivntiv023 of f. Substituting from (3.8),

(3.24) and (4.8) into (4.6), we obtain
AP G D (e
Ao Ny, "oujp p " PPk kL T NNk T 2Oy e
" P prad % * 2O~ O By M= 0. (4.9)

We now need the expression for ® in terms of 8. To this end, with the

aid of (2.16) and (2.8)5_6 we rewrite Eq, (2,13) in the form

zxrr.rrn,x*zn":.,x*%cn,x* SSxth=0 , (4.10)
where
% af 3f
K K X
Tyrr I A
aﬁ aﬂ
O, = » S = — (4.11)

In view of the continuity assumptions on ﬁ%(.,.,.,.), it follows that the
coefficients in (4.11) are continuous across the singular surface, Hence,
on taking the jump in (4.10) across I and employing (3.8), (3.22) and

(3.24)1 4> e have

y
w-v(z me +a%m (4.12)

~~

where
=1
v= (QKLNLNK) v (4.13)
Taking the material time derivative of (2.15), we obtain
- . e @
TR TR T (4.14)

the jump in which, with (2.8)1, (3.8)5, (3.14), (3.22), the kinematic condi-

tion of compatibilityls and the definition of an acceleration wave, yields

& e
W1 == u"ox, (U N, (4.15)
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where we have employed the well-known relation

= My (Fiys (4.16)
in obtaining (4.15). The substitution of (3.33) and (4.15) into (4.12)

enables us to write

=V .
w Et’t’ (4.17)
where
.- + 4,18
r 2lu:l‘.. L K CEKLNKNLL JUN“ NK K, r' (4.18)

We now must express B in terms of s and b. To this end we take

the material time derivative of (3.31) to obtain

3 _=5 F _F

- F +
Binin, kP M, k7 PineskTrsTin, x

B i, x FiL‘fu, X’

L
”‘xm‘fnr.x (4.19)
where 3 3
"xem " W“" m g
| o e

which is continuous across the singular surface. Clearly, all the coeffi-
cients occurring in Eq. (4.19) are continuous across the singular surface T,
Thus, on taking the jump in (4.19) across I, recalling the time independent

uniform state ahead of the wavefront and employing (4.15) we have

- ﬁl . (4.21)




P —

Substituting from (3.8), (3.24), (3.33), (3.34), (4.8) and (4.15) into (4.21),

we obtain

B-Cx.b (,U.w.x iKi+tJ guijs sj (4.22)

where
= - 2
Mij ( BiLjHK * 2ch.1.1ij 28 "‘Lml‘il‘jmxur.“n : £ 50

We now substitute from (3.33), (4.17) and (4.22) into (4.9) and employ

(3.34)1 and (3.36) to obtain

: o=
(Q:i -poUNGm)bp 2,3&_,(:!N 5t +°’jpsp+°'quspsq’ (4.24)
where
e
ajp-cunau ijx N *wnnjx p? (4.25)
and
. +2 N .
°'3 pq =0 CLJMpq+U [A. SKpLaM 4] Kpmnq+ Cngn.MI‘qu] KNLNM (4.26)

Note that Egs, (4.24) serve to determine the components of the amplitude b
of the third order discontinuity induced by the acceleration wave. However,
for the moment, our primary objective is to use Egs, (4.24) to obtain the
differential equation governing the evolutianary behavior of the amplitude a
of the acceleration wave, In Sec.6 we study the solution of (4.24) in
greater detail and we discuss both induced discontinuities and higher order
waves,

Using Egs. (3.5), (3'8)4-6’ (4.23), (4.25) and (4.26), we may rewrite

Eq, (4.24) in the form

ba
= 2 3 & -
(ij ponjp)b 2p U Bt +oszap-o-c::i apaq, (4.27)
where
o -CU.'M Ljn +VUHjK1"sK x p’ (4.28)
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ijq - ua.jupq + (J(Aj M + 2le(pLHLq +C BjKI.NLqu] FerlLFthrnlnt . (4.29)

and
*; 2
Moa ™ Boxqui  2CBxnalq * € M FriFsrFen s e (4.30)
We may write 5 1

a, =ar

gmary, lxl =1, (4.31)
where r is the unit eigenvector of 6jp corresponding to the eigenvalue potJ:,

and recall that, since we are dealing with a plane wavefront propagating

into a uniform region, the components of r are constant. Equation (4.27)

may now be written

a 2 2 Sa - - 2
(ij pOUNGjP)bp 2p°U rj o (ajprp)a+ (aqurprq)a & (4.32)

If we now contract (4.32) with r, and employ (3.35) and (3.36), we find that

j
the amplitude a of the acceleration wave satisfies the equation

-g%--moa +Boa2, (4.33)
where

o _.;lP_:LP.2 (4.34)

B = —Jpajipg (4.35)

The implications of Eq. (4.33) are examined in detail in the next section,
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S. Implications of the Growth Eguation

Equation (4.34), which governs the evolutionary behavior of plane

acceleration waves oriented arbitrarily and propagating into a region subject
to a time independent state of homogeneous strain and uniform electric field
in a deformable semiconductor, is of the same form as Eq. (5.6) of Ref.l. ;
Clearly, we expect the behavior of the amplitude of a plane acceleration i%

wave to be, at least qualitatively, similar to that of a purely longitudinal |

wave, This is for the most part the case but, as expected, in contrast to
the situation prevailing in the one-dimensional case discussed in Ref.l,

the coefficients wo and Bo’ defined by (4.34) and (4.35), respectively, are
not absolute constants for a given material and state even though §, F and ue
are uniform ahead of the wavefront, but vary with the propagation direction n.
Of course, once g, g and ue are prescribed ahead of the wave then for a

given n, r is determined by n through Egs. (3.35). After the unit vector r
has been determined from Egs. (3.35), the coefficients wo and So are fixed.
Thus, for a given state ahead of the wavefront, i.e., values of F, § and ue,
w, and ﬂo are constants for a given n.

When neither of the quantities wo,Bo vanishes then the solution of

. (4.3 i
Eq. ( 3) is i

o
a(*:)*lo/[(lo/ao)-l)e +1}, (5.1)

T Sy

where

Xo=w°/B° ’ (5.2)

and a(o) is the value of the amplitude of the wave at time t=0., It is

clear that the behavior of the amplitude of a given plane wave is determinea

e e e

by the coefficients w, and Bo as well as by the initial amplitude a,- In

order to discuss all possible cases which may arise we first suppose that




then, in view of (5.2), we have

21,
w >0 and B #0, (5.4)
sgn )\O = sgn Bo’ (5.4)

and then from (5.1) three distinct possibilities arise:

then we have

i)*

ii)*

iii)*

i) If sgn a(0) =% sgn BO and ,aol < llol, then a(t) - O mono-

tonically as t — @,
ii) If a(0) = A(0), then a(t) = a(0).

iii) If sgn a(0) = sgn Bo and |a(0)] > IAOI, then a(t) — « mono-

tonically within a finite time t_ given by

We now suppose that

Co ™= (l/wo)% ek (ko/a(O))] . (5.5)
w <0 and B°7‘0, (5.6)
sgn X°=- sgn Bo’ (5.7)

and again from (5.1) three distinct possibilities arise:

If sgn a(0) =- sgn Bo and |k°| > la(0)|, then a(t) - Ao

monotonically as t — «,
If a(0) = )‘o’ then a(t) = a(0).

If sgn a(0) = sgn Bo, then a(t) = @ within a finite time EQ
given by

t,== (/0 )n [1+|A /a |1 . (5.8)

It is clear from the foregoing results that the number 7\0 plays a funda-
mental role in determining whether the amplitude of an acceleration wave
will grow or decay as the wave traverses the material., For this reason we
follow the usual custom and call }‘o the critical amplitude for acceleration

waves encountering a homogeneous steady state. We note that if wo >0,

Tremrs




then the behavior of an acceleration wave propagating into a piezoelectric
semiconductor which is in a uniform steady state is precisely the same as
that of an acceleration wave propagating into a homogeneously deformed ma-
terial with memory6’7. In particular, if the initial amplitude of the wave
is less in absolute value than the critical initial amplitude, the amplitude
decreases to zero as the wave propagates. On the other hand, if the initial
amplitude is greater in absolute value than the critical initial amplitude,
the amplitude of the wave becomes unbounded in a finite time. This, of
course, suggests the formation of a shock. As noted in Ref.l, the case w°<:0,

which has no mechanical analogue, is the case of primary interest and import-

ance. The foregoing analytical treatment shows that in this case the amplitude

of the wave either tends to Ao eventually or else becomes unbounded in a
finite time. Furthermore, note that in this case if a(0) and Bo have the same
sign, the amplitude of the wave always becomes unbounded in a finite time.
Moreover,since a(0) arises from the thermal noise, there are always some a(0)
with the same sign as Bo.

Let us now consider the behavior of a wave for which Bo vanishes. In
our earlier treatment of one-dimensional acceleration waves1 we noted that
the vanishing of Bo corresponded to a linear material. 1Indeed, while Bo also
vanishes identically here if the response of the material is linear, it may
also vanish because of a combination of other factors even though the response
of the material is nonlinear. For example, in a given material, once Q and F
are prescribed it may be possible to choose n [and hence r through Eq. (3.35)]
in such a way that Bo vanishes. In particular it is easily verified in the
relatively simple case of a purely transverse acceleration wave propagating
in the direction of the applied electric field and of a principal axis of

homogeneous deformation in an isotropic material that Bo vanishes even though

T R W
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the response of the material is nonlinear. 1In this simplest but extremely

important case Eq. (4.33) has the solution

-wot
a(t) = ae ’ (5.9)

which means that if LB > 0, a(t) is a monotonically decreasing function of

time and the amplitude of the wave decreases as the wave traverses the

material. On the other hand, if wo < 0, a(t) is a monotonically increasing !
function of t and the amplitude of the wave increases without bound as the

wave traverses the material., Of course, if = 0, then a(t) = a, so that ‘
the wave propagates at constant amplitude.

Let us recall from Egs. (3.28), (4.28) and (4.34) that

L [ 3"
% = 350 [Q" o Tt O Ziri;‘njrj . (3,20

In particular, Eq. (5.10) shows that wo vanishes whenever r is orthogonal

to n. Thus, if Bo vanishes, either because the response of the material is
linear or because f» F and n have appropriate values, then purely transverse
acceleration waves will propagate at constant amplitude and not grow and,

of course, purely transverse shocks will not form. On the other hand, in
this very special case of purely transverse acceleration waves, suppose

that Bo does not vanish for plane wave propagation in a prescribed direc-

tion n, then Eq. (4.33) reduces to

K = ﬁoa 5 (5.11)
so that
-1
a-ao[l- Boaot] 3 (5.12)

Of course, the solution (5.12) has the same form as the corresponding
solution for acceleration waves in nonheat conducting elastic media. Note

that if ao and Bo have the same sign then a shock will form after a time




t, = 1/Ba_, (5.13)

and, as already noted, since a(0) arises from the thermal noise, a shock
will always form for nonzero Bo when w0, is zero.

When Bo vanishes and the acceleration wave is not purely transverse,

it should be clear from the above discussion that the threshold condition,

at which the amplitude a(t) just begins to grow, may be defined by

& =0 (5.14)
where
e
s ..l fa® - i
Yo = 3p0 [C“ e N zi’i] . s A

A most important limiting form of (2.16) ([or (2.7)6 with (2.12), (2.8)7,

(2.9)3 and (2.7)5] is
=- 3°n,_4, - G (5.16)
Ix b o At < L .
where mKL is the mobility tensor and Dcn‘ is the diffusivity tensor, which may
be written in the form
(s e e
qu:.’- meap /3p , (5.17)

and, of course, we can have mengL(EKL’ GL). In this simple but important

limiting case, in which the current is given by Eq. (5.16) with the mobility

tensor L and diffusivity tensor Dc congtant, from (5.15), (4.18), (4.11),

KL
(4.13), (5.16), (2.21), (5.17) and the fact that Gy vanishes ahead of the

wave front we obtain
e
B s atey pEN X L, (Nm_ 6 +U) (5.18)
FTTASCRgES S i L"LRR T ON .

from which, with (5.14), we find that the threshold relation is given by

NmeGR'FUN- 0. (5.19)

R T - e ' . . ’II‘MV - ' ‘
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When the deformation is infinitesimal, we have
PILNGIL’ 6R~ stEJ. =E , U,SU=U_, (5.20)
which enables us to write (5.19) in the form
T T
Nmed'R =Nm E-=-U_, (5.21)

where it should be recalled that N (oxr 5) is the normal to the plane wave
surface, Equation (5.21) is the generalization of the well-known relation
for the threshold field obtained in Eq. (5.13) of Ref.l for the one-dimensional
case to the arbitrarily anisotropic three-dimensional case treated here for

the restricted limiting form (5.16) of the current equation (2.16).

6. Weak Waves and Induced Discontinuities

Following Coleman and Gurtin24, we define a wave of order N as follows:

A propagating singular surface I is a wave of order N if the field Yy X, t)
and its first N-1 partial derivatives with respe t to X and t are continuous
everywhere but the Nth order partial derivatives suffer jump discontinuities
at I, but are continuous functions everywhere else,

In particular, we note the case N=2 represents an acceleration wave,

If N> 2, the wave is said to be a weak wave.

Our object here is t; study the propagation and growth of weak waves in
a piezoelectric semiconducting material, It suffices to consider waves of
order 3, We confine our attention to the study of plane waves and we assume
that the material ahead of the wavefront is in a state of homogeneous strain,
is subject to a uniform electric field and that the charge density of the free
electronic fluid is uniform and constant prior to the arrival of the wavefront.

Since we are dealing with plane waves of order 3, from the compatibility

conditions across I we have
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Py, xl = Ve 1l =P Nx s
IFrr, el uNlbrNLNK"H ’
[F J=[v _)=- UNbrN 6.1)

i
rK, n!- = '\['vt, lm]» " dr“l(“l’.. ;- lNMNSFrS, >
6b
2 2 T
ﬁx\l UNdr ¥ 2UN 8t °

It follows from (2.11) and (3.16) in essentially the same way that (3,19)
followed from (3.18) that GL K is continuous across T and since 6L is con-
4

tinuous across I also, from the kinematic condition of compatibility &L is

continuous across I. From the geometric condition of compatibility, we have

=BN N, I8

B Lo 1% PNy, B= ~INgNg® gsl - 6.2)

In a similar manner (2,13), (3.8)2 and (4,15) imply that GK L is continuous
b4

across I and since GK is continuous across I also, from the kinematic condi-

tion of compatibility éx is continuous across I, but from the geometric

condition of compatibility and (2.17), we have

] = N

161 w= [NE] . (6.3)

K’
Since for weak waves aj vanishes, an immediate consequence of (4.28) is
that
@y, - poUat 30'P5= 0 6.4)
so that the propagation condition for weak waves is precisely the same as
that which governs the propagation of acceleration waves,

In order to obtain the differential equation which governs the evolu-

tionary behavior of the amplitudes of weak waves, we differentiate Eq. (4.1)




with respect to t holding X fixed,and on taking the jump across I in the

resulting equation and employing (3.34), (4.5), (6.1)2, (6.3) and recalling

the steady uniform state ahead of the wavefront, we obtain

6

b
-p W 5 +8 = - i
pounbjp)dp+al'j+wjx“x 2poUN e 0. 6.5)

(AijL"KNL

Similarly, taking the material time derivatives of (4.10) and (4.19), re-
spectively, taking the jumps across I in the resulting equations and employ-
ing (2.21)1, (3.34), (4.5), (4.8), (4.13), (4.14), (4.22), (6.1) - (6.3) and
the compatibility conditions and recalling the steady uniform state ahead

of the wavefront, we find that

- e -
B= Cugd; - UM%, Nb, , B=-UEb, . (6.6)

Substituting from (6.6) into (6.5) and employing (3.36) and (4.25), we

obtain
Q. -p U2, )d =a, b _+2p U b 6.7)
5p~ PN 3p’ % Yip b “Po'N Bt ° .
Let us write
2
bj.uncj’ cy=cxy, |£|-1, 6.8)

where r is the unit eigenvector of ij corresponding to the eigenvalue pOUlzq.

If we now contract (6.7) with r. and employ (3.5), (3.8)6, (3.35), (3.36),

i
(4.28) and (4.34) we find that the amplitude ¢ of the third-order wave

satisfies the equation

Sc
3{ = woc » (6.9)
which admits the solution
—wot
c(t) =c.e v 6.10)

It is now clear that the evolutionary behavior of the amplitude of a
weak plane wave is somewhat different from that of a plane acceleration wave

which propagates in the same direction at the same speed. In particular,
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the evolutionary behavior of a weak wave is determined solely by the sign
of w0, and is independent of the initial value of the amplitude of the wave.
As we have noted earlier, w, may be negative in certain important circum-
stances. When qoisnegative the amplitude of the weak wave will increase
without bound and become an acceleration wave as the wave traverses the ma-
terial. This behavior should be contrasted with the manner in which weak
waves behave in other media (see e.g., Ref.6). However, if the weak wave is
purely transverse, the amplitude will remain constant as the wave traverses
the material in accordance with the relevant portion of the discussion in
Sec.5.

Let us now suppose that there exists a particular direction n in which
three real plane acceleration waves may propagate. Let us denote the ampli-
tudes, unit amplitude vectors and speeds of propagation of these waves by

a(i), 5‘1) and U;i), i=1,2,3, respectively. It follows from Eq. (4,32) that

i of the third order discontinuity induced by the accelera-

(1)

the amplitude b

tion wave of amplitude a is determined by the equations

2
A (1) (1) (1)
- = P i
@ - 00y~ 8400 mdy, (6.11)
with
N BN G Dy e 2-(-2+5‘1’r‘“a‘1’+;‘1’r‘1’r‘“a‘1’2 oy
j Po j "ot jp 'p jpa’p Tq ’ :
where 5;;’ and a;;; are given by (4.28) and (4.29) with U replaced by
(1) (1)

Now suppose that the eigenvectors of 6ij(2) are distinct so that the

Nty (1)

vectors r in the form

form an orthogonal triad. We may now write b

3
p® . Y ) @ ®.13)

a=l

Rty - GNTRTT. WL, S
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(1) (1) 1)?
Since as a consequence of (4.34) dj is orthogonal to rj » even though UN
is a root of Eq. (3.37) Eqgs. (6.11) are consistent but do not determine the

(1)

component of b in the direction of 5(1) uniquely. Nevertheless, when

Egs. (6.11) are contracted successively with rgz) and r;3), respectively,

and (3.37) is employed, it follows that

2 2
)°_ M@ (2) )
Polly Ty by =r e,

2 2
(3) (1) 1) __(3)_(@Q)
Po (UN - Uy )b3 rj dj . (6.14)

Of course Egs. (6.14) determine uniquely the components of the induced dis-

continuity in the two mutually orthogonal directions which are also orthogonal

to the direction of the amplitude vector of the primary acceleration wave.
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