
F ~ AO AQ 7O 955 CARNEGIE—MELLON UNIV PITTSBUR6H PA DEPT OF COMPUTER —ETC F/S 9/2
11 THE REPRESENTATION OF FAMILIES OF SOFTWARE SYSTEMS. (U)

APR 79 1 W COOPRIDER Fk4620—73—C—00714
UNCLASSIFIED CMU—CS—79—116 AFO S R—TR— 79—073 2 NL I

t056I ‘a

p

S

A)

H

I I III
III~t’!QIQ~

.25 III~I~ ~
V ‘N I

— ‘- - -k-
~~~~~~~~~~~~~~~ Peg. ~



a—— . .~~~~acstr- ~~~~~~~~~~~~~~~~~~~~~~~~~~~

CML’-CS- 79- 116

~1fOSR —

The Representation of
Families of Software Systems

Lee W. Cooprider

14 April 1979

0 U ri ~ ~

~~~~DEP ARTMEN T
of
COMPUTER SCIENCE

IF>
Carnegie~MeIIon Universit y

4~p r vd for public r.i.aa~ j
~~ ~~~~~~~~~ ~~~~~~~~~

~~~~~~~~

- .,.~~— -

- -

~

. • - - -

~

- -- 
---

~~~~~~~~~~~~~~~~~~~~~-



~~~~~~~~--—.—~~~~~~~~~~~~~~~~~~
- —-- - -

~~~~
- . -

~~~~~
-

~~~~~
- - -—~~~~~~~~~

-
~~~~~~~

.-

~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ (Wh •n Dee. ~nt.redI

,,-~WORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 
-

1. Rt N 2. GOVT ACCESSION NO. 3. RECIPI ENT’ S CATALOG NUMBER —

(
~ 

)
~~~ ~~~~~~4. TITLE ( id  SubIitl.) S TYP E OF REPO RT & PERIO D COV ERED

-

HE 4EPRESENTATION OP FANILIES OF .~OFTWARE I / _~ Inter iin ~
.0

(~~~~~~~~~~
. ~YSTEMS o _

~

—•-

~~

i ~~~~~~ ~~~~~~~fifORMI~~~~~ E~~~~~EPOR T NUMBER

7 AUTHOR(s) - ~ UN T RA L I ~ WGR A T NUMBER(S)

F .
~~~~~~ 

‘
~~~~~~/Co~~~~~~ / ~~~ ‘f  / 

~~~~~~~~~~~~~~~~~~~~ 
-

~~~/ ‘f r  ~j ~ R 7 L/_ ~2 L~ /~73
9. PERFORMING O R G A N I Z A T I O N NAME AND AODR~~~~ - -

~:
—

~~~ 
- / ‘

~~~~~ 1& PRp AWZ~~~M€NT.

Carnegie—Mellon Un iversity ~~ j
I’ .1

~~ / A R E A & WORK UNIT NUMBERS

Compu ter Science Departm ent 61101E
Pittsburgh , PA 15213 A0246617

I I . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Def ense Advanc ed Research Proj ects Agency April ’i979 7
1400 Wilson Blvd 13. N U M B E R O F P A G E S

Arlington, VA 22209 194
~4~~ UON%TORING AGENCY NAME & AOORESSO E dIU.rwt item Controll ing Of fi ce) 15. SECURITY CLASS. (of this report)

Air Force Off ice of Scient if ic Research (NM) UNCLASSIFIED
Boiling AFU , D.C. 20332 15.. DECLAS S IF ICAT IO N 000WN G RAOI NG

SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report)
—

Approv ed for public rel ease; distribution unl imited

I?. DISTRIBUTION ST. 4E NT (of abstract entered I~ Block 20, If differen t from Report)
—

IS. SUPPLEMENTARY TE S

19. KEY WORDS (Continue en ren ts. side if n.ce.ury wd id.ntify by block number)

Software system, family of systems, module int erconn ect ion , software
engineering database , system description language, software construction,
version, automated programming, maintenance.

20. AB STRACT (Contln u, or, reverie side if n.c.asary and id.ntify by block number)
Programaming languages are notations for the representation of algorithmic

infromation they are tools for “programming—in—the—small” DeRe76 System
description languages are notations for “programmin— in—the—large ” , Because
sof tware systems of ten exist in several versions simultaneously, a system
description language must accomodate parallel versions of systems and permit
the natural expression of the information sharing among those versions .

The construction of software system s involves sequences of construction
tVn~ m UlE’

,. .~~ FORM s j .,~LJLJ I JAN ~ UNCLASSIFIED
- -

,

/ - / (“
.i (,, / SECURITY CLASSIF ICATION OF THIS PAGE (Ii?u.n Dee. Ent.r.d)

1~

20. Abstrac t (cont inued)
processes such as text editing , compilation, document production , linkage
ed iting , and cross—reference generation. Automation of these processes has
been inpeded by the use of inadequate models of software construction and
maintenance. As a resoult , the enforcement of design decisions described
in a system descript ion language has been left to human agencies 1

We develop a notation for describing the subsystem interconnec tions
of entire systems, the differences between versions of those systems,
and the mec hanism s by whic h the systems are constructed . Subsystems
are pbjects which provid e a set of resources to other subsystems and
requ ire a set of resources tha t are suppl ied by other subsystems, Each
interconnec tion netMork can be instantiated in several versions . Versions
are organized hierarchically so that similar versions share part of their
descriptions.

Detailed system construction processes, such as tex t editing , com-
pila tion and document gereration, are expressed in a functional form .
Resources and source files are combined accord ing to construction rules to
create the concrete objects tha t are the tang ible (executable or readable)
form of a software system. The construction processes are controlled by
the interconnection structure and version spec ifications in which they
are def ined .

This representation is the basis for the design of a software con-
struction database. The database manager automatically performs system
construction processes, propagates mod ifications to system components,
and maintains construction histories. The database user can establ ish
invariants in the database by attaching polic ies tO each database object~
the policies supply a set of actions to be preformed when events in
the database affect the object (e.g. a component has been modified).

An extended example is presented to demonstrate the appl icabi l i ty of
th is presentation to a real system . Several types of system construction
problems are d iscussed , and directions for improvements to the notat ion
outlined .

UNCLASSIFIED
SE C U R I T Y CL A S S I F I C AT ION OF THIS PAOF(Wh.n t)at a Knlet.d I

_ _ _ — - - p
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~



cMU-CS- 79-L.

The Representation of
Famikes of Software Systems

Lee W. Cooprider
-ç~’

) ‘~T. - —

~

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213
ARPAnet address: CoopriderGCMU- 1 OA 

.

14 April 1979

Submitted to Carnegie-Mellon University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Copyright -C- 1979 Lee W. Cooprider, Pittsburgh, Pennsylvania

This research was funded in part by the National Science Foundation under Contract No.
• DCR74-244573, In part by the Advanced Research Projects Agency of the Office of the

Secretary of Defense under Contract No. F44620-73-C-0074, and In part by the Software
Engineering Division of CENTACS/CORADCOM, Fort Monmouth, N..L

AIR F~)F~ -~ F ~CIENT IF !C RESEAR CH (AFSC)

T.’ . . r ;. ‘ . ‘— . - - 
~~~~~~ 

j~~
- ~ (7b).

Di. - r ~~.

A. ~~. ~~~~~

L Tecth;jca]. Infornatlou

_ _ _ _ ~~--~~~~ -- --~~~~~-—~~~-..-

,— ~~ -~~~~~~~~~ -~~~~~

~I
Abstract

:rogramming languages are notations for the representation of algorithmic information;
they are tools for programming-.n the-small tDeRe76]. System description languages are
notations for programmung-in-the-large . Because software systems often exist in several
versions simultaneously, a system description language must accomodate parallel versions of
systems and permit the natural expression of the information sharing among those versions.

The construction of software systems involves sequences of construction processes such
as text editing, compilation, document production, linkage editing, and cross—reference
generation. Automation of these processes has been impeded by the use of inadequate

- models of software construction and maintenance. As a result, the enforcement of design
decisions described in a system description language has been left to human agencies.~ .

We develop a notation for describing the subsystem interconnections of entire systet~~, the
differences between versions of those systems, and the mechanisms by which the systems
are constructed. Subsystems are objects which provide a set of resources to other
subsystems and require a set of resources that are supplied by other subsystems. Each
interconnection network can be instantiated in several versions. Versions are organized
hierarchically so that similar versions share part of their descriptions.

Detailed system construction processes, such as text editing, compilation arid document
generation, are expressed in a functional form. Resources and source files are combined
according to construction rules to create the concrete objects that are the tangible
(executable or readable) form of a software system. The construction processes are
controlled by the interconnection structure and version specifications in which they are
defined.

This representation is the basis for the design of a software construction database. The
database manager automatically performs system - construction processes, propagates
modifications to system components, and maintains construction histories. The database user
can establish invariants in the database by attaching policies to each database object; the
policies supply a set of actions to be performed when events in the database affect the
object (e.g. a component has been modified).

An extended example is presented to demonstrate the applicability of this representation
to a real system. Several types of system construction problems are discussed, and
directions for improvements to the notation outlined.

Keywords: software system, family of systems, module interconnection, sof tware
engineering database, system description language, sof tware construction, version, automated

• programming, maintenance.

-

~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~

I..4 ‘~f . t
.53 • -.o . .
~ ~~~~~~ - . I

0 f~~ -

~~en ~

~

‘

~~~~~ _ _

—- - —-— - - - --•• . .- -~—~~~~~~~~~~~~~ - ,-- —-.- --- .~~~~~~~~~~~~~~~~~~~~~~~ • .- - -~~~~~~~---~~~--“
- -.-

~~~~~~~~~


r - —--..
~
--.-.-.-..-,.-,.- ~~~ ... ~~~~~. - ~~~~~~~~~~~~~~~~~~~~~ - ,,. ~~~ -,

~~~~~~ 
- ._ - .. ... __.. - -.

Acknowledgements
This dissertation was developed with the guidance of Nico Habermann and a thesis

-

- / committee consisting of Mary Shaw, Charles Eastman and An ita Jones. Dave Parrias
contributed to my general research direction and Frank DeRemer contributed a semester of
valuable discussions early In this project. Dave Notkin and Mark Faust assisted with the
implementations. The author benefitted from the personal and scientific excellence that
characterizes the Carnegie-Mellon University Computer Science Department. The preparation 

I)of this document was facilitated by the Scribe program, a product of Brian Reid’s experience
and diligence. Various personal demons were banished with the assistance of Mame Novotny
and other members of the Pittsburgh Re-evaluation Counseling Community.

Li



Table of Contents 
- 

Page I

Table of Contents
Th.sis Sumrn.ry 5

1 - IntroductIon 5
2 Development of Notation 5

1 Subsystem Interconnection 5
2 System InstantIation 6
3 ConstructIon 7
4 Acquire M chanusm 8

3 Software Construction Database 8
4 Exampl.
5 Conclusions

I Introduction 11

1. Software Engin.er ing 13

1.1 An Attack on and Defens. of Technological Research 13
1.2 Pioducing and Maintaining Software 14

1.2.1 Development 15
1.2.1.1 Design 16
1.2.1.2 Implementation 17

1.2.2 Maintenance 17
1.2.2.1 Error Repair 18
1.2.2.2 Enhancement 18
1.2.2.3 Performanc e Improvement 19
1.2.2.4 FamilIes of Systems 19
1.2.2.5 Documentation 19
1.2.2.6 Tb. Mechanism of Modification 20

1.3 Software Methodology Approach 20
1.3.1 Programmer Discipline 21
1.3.2 Structured Programming 21
1.3.3 Modularization 22
1.3.4 Hierarchical Structure 22
1.3.5 Language Design 23
1.3.6 Verification 23

1.4 Software Technology Approach 24
1.4.1 General vs. Specialized Tools 24
1.4.2 Abstraction-providing Tools vs. Transpare ncy 25
1.4.3 CompatIbility of Tools 25
1.4.4 Abstracting from System Components 26

1.5 Theory vs. practice 26
1.6 Introductory Conclusions 27

2. Goals for the Thesis 29
- , 2.1 Goals for the Thesis Elabor at .d 29

2.1.1 IntegratIon of Design and Construction DescriptIons 29
2.1.1.1 View from the Bottom 29
2.1.1.2 View from the Top 30

2.1.2 kerarchy of Design 30
2.1.3 Families of Systems 31
2.1.4 Exclusions 32

2.2 Review of related work 33
2.2.1 Krutar Flexors . 33

- —  ~~~JL 1 ... -- ~
— 

- 



Peg. II Table of Contents

2.2.2 Par nas ’ System Families 33
2.2.3 Software Factor y 33
2.2 4 Boeing Softwa re Design Validation Tool 34
2.2.5 Deiong System Building System 35
2.2.6 Habermann System Design and Maintenance Control System 35
2.2.7 DeRemer and Kron Mu 36
2.2.8 Thomas MIL 37
2.2.9 Tichy MIL 37
2.2.10 Clear/Caster 37
2.2.11 Programmer ’s Workbench 38
2.2.12 CLLJ 39
2.2.13 Mesa 39
2.2.14 Transformation ImplementatIon 40
2.2.15 PUSS 40
2.2.16 Software Engineering Data Bass 41
2.2.17 Ad Hoc 42

II System Descri ptions

3. Software Syst.m Structuring Pr.limlnari•s 45

3.1 The Nature of a Software System 45
3.1.1 Construction from Components 45

3.1.1.1 The Nature of System Components 45
F 3.1.1.2 Components vs Construction Information 46

3.1.2 Manifestations of a System 47
3.1.3 Information SharIng 47

3.2 The Nature of a Family of Software Systems 48
3.2.1 Dimensions of Variability 48
3.2.2 Documentation of Families of Systems 50

3.3 Information Sharing 50
3.3.1 Explicit versus ImplIcit Sharing 50
3.3.2 Common Representation 51

4. Software Family Description Concepts 53

4.1 Overview of Software Family Description Concepts 53
4.2 The Interconnection Level : Subs ystems 55

4.2.1 Specification of Subsystem Interconnection 55
4.2.1.1 Subsystem Interconnection Examples 56

4.2.2 The Interpretation of Subsystem Interconnection Constructs 58
4.2.2.1 Subs ystem and Resource Names 58
4.2.2.2 Resource List Overlap 58
4.2.2.3 Subsystem Nesting and Scope of Names 58

4.2.3 More Subsystem Examp les 59
4.2.3.1 Symbol Table 59
4.2.3.2 Input Section of a Theorem Prover 60
4.2.3.3 KWIC Index System 60

4.3 The Construction Level: Concrete Objects 61
4.3.1 Rules for Primitive Concrete Objects 62
4.3.2 Rules for Compound Concrete Objects 63
4.3.3 Deterred Concrete Objects 63

4.4 The Instantiation of Systems: Versions 63
4.4.1 The Sp.clficaHan of System Vers ions 64

4.4.1.1 IndIvidual Versions 54

4
- - 

—~~~~~~~
- -- - - - - -



Table of Contents Page iii

4.4.1.2 SelectIon of Version 66
4.4.1.3 Definition of Concrete Objects 67
4.4.1.4 Substructure of a Version 68
4.4.1.5 Hierarchical Organization of Versions 69

4.4.2 The Interpretation of System Instantiation 69
4.4.2.1 Definition of Concrete Objects 69
4.4.2.2 Scope of Names and Selections 70

4.4.3 Examples of System Instantiation 70
4.4.3.1 In-line vs Out-of-line Implementation 70
4.4.3.2 Alternat Ive Specifications 70

4.4.4 Representation Exploitation Mechanism: Acquire 70
4.5 Complete Examples 71

4.5.1 Name/Value Pairtn g 72
4.5.2 Procedure Definition 76
4.5.3 Systems Sharing a Subsystem 78

4.6 Summary 81

5. A Software Construction Facility $3

5.1 Overview of the Software Construction Facility (SCF) 83
5.2 Description of the Database 83

5.2.1 Low Level Database Types 84
5.2.2 High Level Database Types 86
5.2.3 State of the Database . 89

5.2.3.1 Histories 90
5.2.3.2 Mailboxes 90
5.2.3.3 To Do List 90

5.3 Command Language 90
5.3.1 Interrogation 91
5.3.2 Construction 91
5.3.3 Entry Editor 92
5.3.4 Policies 92

5.4 Central Facilities Implementations 94
5.4.1 Acquire 95
5.4.2 Construct 98

5.5 Summary 101

III Discussion k02

6. Example Target System 1O~
6.1 Description of the Target System 103

6.1.1 Purpose of Target System 103
6.1.2 Environmen t of Operation at Target System 105
6.1.3 Available Implementation Tools 106

6.2 Selection of the Target System 106
6.2.1 Size of Target System 106
6.2.2 Reality of Target System 107
6.2.3 Implementation Complexity 108
6.2.4 System Content 108

6.3 Target System Construction Processors 108
6.4 Examples from the Target System 110

6.4.1 The Printer Support Software Top-Level System 110
6.4.2 Text-Oriented File Format 112
6.4.3 Text File Format Control Codes 114



-- -- - --7-
Pag. iv Table of Contents

6.4.4 Graphics-Oriented File Format 117
6.4.5 PrInter Scanllne Interpreter 119
6.4.6 Character Set Definition and Directory 123
6.4.7 Scribe Document Preparation Program 126
6.4.8 Spacs Picture Drawing System 127
6.4.9 Document Typer 127
6.4.10 Select Pages Program 127
6.4.11 Driver--Master Side 129
6.4.12 Remote Print Program 130
6.4.13 Driver Command Language 130
6.4.14 Help Command Executor 132

7. Analysis and Evaluation 135

7.1 Basic concepts 135
7.1.1 Resources 135

7.1.1.1 Content of Resou rces and Source 135
7.1.1.2 Resource Representation 135
7.1.1.3 Explicit Naming of Resources 136
7.1.1.4 Structured Resources 136

7.1.2 Subsystems 138
7.1.2.1 Interconnection Mechanisms 138
7.1.2.2 Nesting of Subsystems 138
7.1.2.3 Circularity 138
7.1.2.4 Scope of Names 139

7.1.3 Realization Section of Subsystems 139
7.1.3.1 Separation of Types of Information 139
7.1.3.2 Version Hierarchy 139

7.1.4 VersIons 140
- 

- 7.1.4.1 Resource Objects vs. Component Objects 140
7.1.4.2 Deferred Objects 141 - -

7.1.4.3 Version Selection 141
7.1.4.4 Additional Provided Resources 142
7.1.4.5 Environment Definitions 142
7.1.4.6 Complete Version Independence 143
7.1.4.7 Appropriate Use of Versions and Resources 143

7.1.5 Construction 143
7.1.5.1 The Acquire Mechanism 143
7.1.5.2 Non-transparent Resource Transmission 144
7.1.5.3 Functional Rules 144
7.1.5.4 Shared Rules 144
7.1.5.5 Side-effect Files 144
7.1.5.6 Processor Versions 145
7.1.5.7 System Output Objects 145
7.1.5.8 ConstructIon Uses vs. Algorithmic lJses 145
7.1.5.9 Accessing Deferred Objects 146
7.1.5.10 Access to Component Objects 146

7.2 Costs Associated with System Structuring 146
7.2.1 Develo pment and Implementat ion Cost 146
7.2.2 Storage Costs 146

7.2.2.1 Database Entry Storage 146
7.2.2.2 File Stora ge 147

7.2.3 Processin g Time - 147
7.2.4 Cost Reductions 147

-

~

-- - - - - .---- ---- -- ~~~—- -~~-~~~~-~~~~~



Table of Contents Page v

7.3 The Effects of Structuring 148
7.3.1 CentralizatIon vs. Control 148
7.3.2 Separation of Function 148
7.3.3 Installation Requirements 149

7.3.3.1 Interactive Terminal Communications 149
7.3.3.2 File System Facilities 149
7.3.3.3 Processor Design 149
7.3.3.4 Processor ‘-~‘erf ace 150

A. Conclusions and DIrections 151

8.1 Results 151
8.2 Conclusions 151
8.3 Topics for Further Research 152

8.3.1 Specifications 152
8.3.2 Program Generation Techniques 153
8.3.3 Representation Details 153
8.3.4 File Structures for Software Construction 154
8.3.5 Database Issues 155
8.3.6 Programming Language and Compiler Design 156
8.3.7 The Difficulty of Multiple Abstraction 156
8.3.8 Interactions with Other Technologies 157

IV Appendices and References 158

I. Edit Global Facilities 159

LI Text Utilities 159
1.2 Snobol Code Generation Utilities 160

II. Text-Oriented File Format Macros 161

11.1 File: Sail Toff Can Macros 161
11.2 File: Sail Toll Dcd Macros 161

III. Control Cod. Subsystem Sours. Files 163

111.1 File: Sail CC i~dits 163
111.2 File: Sail Version of CcGenerate Resource 165
11L3 File: Sail Version of CcDecode Resource 168
11L4 File: Sail Version of CcStateSet Resource 170
111.5 File: Sail Version of CcPrint Resource 170

- IV. Select Program FIles 173

IV.1 File: Select Program Source 173
P/.2 File: Select Program Sail Text 176

Ref erenc•s 189

- - -
~~~~~ -—-- .- - - —-~~- - -~~~—-- -~~~~~~~- . - -


Table of Figures Page vii

Table of Figures
Figure 4-1: PLOT--A Simple Subsystem 53
Figure 4-2: PLOT--A Simple Version Collection Example 53
Figure 4-3: PLOT--A Simple Concrete Construction Example 54
Figure 4-4: PLOT--A Simple Source File Example 55
Figure 4-5: Subsystem Inter~. .iinection Syntax 56
Figure 4-6: LIST--A Subsystem that Provides Resources 56
Figure 4-7: D8--A subsystem with Internal Subsystems 57
Figure 4-8: LISTUSER--A Subsystem with an External Clause 57
Figure 4-9: S--A Subsystem that Defines a Resource Environment 57
Figure 4-10: A, AA~ AAA--Transparent Resource Transmission 58
Figure 4-1 1: Nested Subsystems 58
Figure 4-12: ST--Symbol Table using Library Resources 59
Figure 4-13: TPS--Theorem Prover using a Resource Environment 60
Figure 4-14: KWIC--Resource Usage among Internal Subsystems 61
Figure 4-15: Construction Process Syntax 62
Figure 4-16: Realization Section Syntax 64
Figure 4-17: Version Syntax 64
Figure 4-18: COMPILER--Subsystem with Three Versions 64
Figure 4-19: MAIN! --Version Selection Example 66
Figure 4-20: MAIN2--Environments and Version Selection 67
Figure 4-2 1: ABC--Resource Representation Example 67
Figure 4-22: ABC--Deferred Object Example 68
Figure 4-23: ABC--Component Object Example 68
Figure 4-24: Si--Subsystems within Versions 68
Figure 4-25: HASH--Version Trees 69
Figure 4-26: FCN--In-line/Out-of -line Procedures 70
Figure 4-27: SORT--Parallel Alternatives 70
Figure 4-28: A,B--Acquire as a Processor 71
Figure 4-29: Terminal Type Bit Patterns 72
Figure 4-30: TT Subsystem Configuration Skeleton 72
Figure 4-3 1: iT User Subsystems - 72
Figure 4-32: Contents of <Program! Source> 72
Figure 4-33: Contents of <Program2 Source> - 72
Figure 4-34: First Ti Subsystem Configuration 74
Figure 4-35: Terminal Type Identifier Resource 74
Figure 4-36: Terminal Types Array Resource 74
Figure 4-37: Second Ti Subsystem Configuration 75
Figure 4-38: Third Ti Subsystem Configuration 75
Figure 4-39: Fourth TT Subsystem Configuration 76
Figure 4-40: Fifth TT Subsystem Configuration 76
Figure 4-41: Canonical Procedure Definition 77
Figure 4-42: Procedure Definition Subsystem 78
Figure 4-43: Use of the Procedure Definition Subsystem 78
Figure 4-44: QUEUE--Shared Version Problem 78
Figure 4-45: PC--First Attempt to Share QUEUE 79
Figure 4-46: PC--Sharing QUEUE via an Environment 79
Figure 4-47: PC--Successful Sharing of QUEUE 80
Figure 5-1: Definition of Type List 84
Figure 5-2: Definition of Type Event 84
Figure 5-3: Definition of Type Message 84
Figure 5-4: Definition of Type RuLe 84

~~ -— - - ~~~~~~~~~~~~~~~~~~~~~~~~ - --~~~~~~ -

Page viii Table of Figures

Figure 5-5: Definition of Type Selection 86
Figure 5-6: Definition of Type Policy 86
Figure 5-7: Definition of Type Subsystem 86
Figure 5-8: Definition of Type Version 87
Figure 5-9: Definition of Type Concrete Object 87
Figure 5-10: Definition of Type FiLe 89
Figure 5-11: Acquire--Top Level Algorithm 96 -:
Figure 5-12: Acquire--Loop Body Refinement 96
Figure 5-13: Acquire--Loop Test Refinement 96
Figure 5-14: Acquire--Found in Version Subsystems Refinement 97
Figure 5-15: Acquire--Found in ... Subsystems Refinement 97
Figure 5-16: Acquire--Found in Environment Refinement 97
Figure 5-17: Acquire--Provides Predicate Refinement 97
Figure 5—18: Acquire--Requires Predicate Refinement 97
Figure 5-19: Acquire--EnvIronment Predicate Refinement 97
Figure 5-20: Acquire--Relevant Sections of Build 98
Figure 5-21: Acquire--Side Effects Refinement 98
FIgure 5-22: Construct--Top Level Algorithm 99
Figure 5-23: Construct--Housekeeping Refinement 100
Figure 6-1: Top-Level Subsystem 110
Figure 6-2: Text-Oriented File Format Subsystem 112
Figure 6-3: Control Code Table 114
Figure 6-4: Control Code Subsystem 114
Figure 6-5: Graphics-Oriented File Format Subsystem 117
Figure 6—6: Scan$ine Definition 119
Figure 6—7: Scanl~ne Definition Table 119
Figure 6—8: Scanline Interpreter Subsystem 121
Figure 6-9: Finite State Machine Generated Program 121
Figure 6—10: Character Set Definition Subsystem 124
Figure 6-11: Character Set Directory 124
Figure 6-12: Definition of Type Kset 125
Figure 6-13: Scribe Subsystem 126
Figure 6-14: Picture Editor Subsystem 127
Figure 6-15: Document Typer Subsystem 127
Figure 6-16: Select Pages Subsystem 128
Figure 6-17: Driver--Master Side Subsystem 129
Figure 6-18: Remote Print Subsystem 130
Figure 6-19: Command Language Subsystem 130
Figure 6-20: Help Command Executor Subsystem 132
Figure 7-1: TRIG--Hierarchical Resource Subsystem 137
Figure 7-2: PROC--Interface to Operating System via Resources 140

_ _ ~~~

Thesis Summary Page 5

Thesis Summary

1 Introduction
Recent software eng ineering research has addressed the problem of developing software

that Is correct , efficient, reliable, and modifiable. Software system implementors now have
the guidance of programming methodologies and soon will be able to exploit the
expressiveness of new programming languages. A central theme of this research Is the
decomposition and encapsulation of information.

The components of a software system that has been decomposed must be recombined to
form operational systems. Many components participate In several systems , and may exist in
several forms themselves. Research on subsystem interconnection languages has begun to
Illuminate the problem of representing the way In which decomposed systems are structured.

Many softwar . systems exist in several versions simultaneously. Current subsystem
Interconnection notations do not adequately represent the close relationship between
members of such system families. Without such a representation, the problem of maintaining
parallel versions of systems I, difficult If not intractable.

We develop an integrated repr.sentation for families of softwar. systems that Includes th.
subsystem Interconnection information and permits the specif ication of multiple versions of
systems and the control of shared Information. We encompass the details of system
component construction such that an automated sof tware construction system can be built
around the representation.

2 Development .øf Notation
The representation of software systems Is divId ed Into three levels. The first level

descr ibes subsystem interconnection In the style of prevIous interconnectio n languages. At
the second level, each subsystem description can be Instan t iated ; each Instant IatIon
corresponds to the intu it ive notion of hlversionN. Each version consists of several concrete
objects suc h as source files, compiled programs, or documents. The construction of th .se
objects is described in the third level of the notation and Incorporates the traditional
proce ss.s performe d by compilers , editors and linkers.

I Subsystem Int.rconn.c tlon
A subsystem is an object which provides a set of resources to other subsystems and

requires a set of resources from other subsystems. A resource Is some Information , such as
an algor ithm , a data representation , a tab le, a grammar , a f inite stat. machine , or an Integer.
The resources required by a subsystem can be supplied by constituent subsystems , which
are textually nested in the definition of the original subsystem , or by external subsystems
such as library I acl~ities. In some cases , resources can also be supplied by an enclosing
subsystem.

Here is a very simple example of a subsyst.m (PLOT) that provides a plott ing faci l it y using
the trigonometric functions provided by another subsystem (TRIG):

subsystem PLOT provides PloeRoutin.s requires Tr&gFcns external TRIG
realization . . . end PLOT

A subsystem that Is com pos .d of a group of subsystems textually encloses that group. it

- — — ~~~~~~~~~~~~~~~
-
~~~~~

--- - -
~~~~~~~~~~~~~~


Page 6 1 Subsystem InterconnectIon

may supply a set of resources to the entire group by defining a resource environment.
Resources provided by Internal s ubsystems may be passed through to users of the enclosing
subsystem. The following subsystem exemplifies these features. Th. subsyst em provides
two sets of operations on processes; each of those sets is actually provided by en Interna l
subsystem. The enclosing subsystem obtains th. definition of som. operating system
primit ives from the OPS subsyst em and provides them to both Internal subsystems via a
resource environmen t.

subsystem PROCESS provides OynanticProc.ss.a, Proc.asCorarols
requires OynamicProc.ss.s , ProcesaControla
environment Op.rrstingSyst.ntPrirnttives external OPS
subsyst. m OP provides OynarnlcProc.sses . . . end OP
subsystem PC provld.s Proc.ssControls . . . end PC
realizat ion . . . end PROCESS

2 System InstantiatIon
Each version of a subsystem adheres to the s ubsystem interconnection structure.

However , there may be substantial variation In the cont ents and organ izat ion of each version
of that subsystem. Individual versions may vary in implem entation language , algorIthmIc
strategy , capacity , specifications , measurability and so for th. There are three aspects to a
version defInition: the concrete obj ects which are used to comprise the version , the selection
of versions for resource providing subsyst ems , and additional resource requirements specific
to the versIon .

Each subsystem contains a tree of versions. Versions at the leaves of the tr ee associate
resources with concrete objects. For example , the resource Trig Fcru might be associated
with a file containing Fortran subroutines for sine, cosine and arctan gent functions.
Intermediate versions Isolat. Informat ion shared by subsidiary versions. The entIre tree Is a
powerful mechanism for controlling the relationship between the abstract resource domain
and the concr.te construction domain. Here is the TRIG subsystem from the prev ious
example with a possible collection of version s. Let us assume that these programs are used
in source form In Fortran , Algol and Pascal programs and that each versi on Is stored In a
separate file.

subsystem TRIG provides Trig Fcns
realization

v•rsion Fortran
-

version Soure. resour c•s flle (c Fortr~n Source>) end Source
version Debug resources tile(<Fortron Debug Source’) arid Debug
end Fortran

version AlgoL
version Standard resources file(cSeandard Algol Sowee>) end Standard
version LocaL resources fils(cLocaL Algol Source)) end Local
end Algol

vers ion Pascal resources file(’cPeacrgl Soure.)) end Pascal
end TRiG

Each subsystem uses resources from another collection of subsystems; ~. follows that each
version of a subsystem uses resources from specific versions of those other subs ystems.
Each level In the version hierarchy selects a group of versions suffic ient to com pletely
specify the origin of resources used In the creatIon of co ncret. objects specified at that
same level. The following subsystems descr ibe usi rs of the PLOT subsystem and Include

-- - - -~~ — -- — - --- -— —a-- — _r

2 System Instantiation Page 7

version selections.

subsystem ARCHAIC provides Histogram r.qu lres PLotRouwws external PLOT
r.alizallon

version Rusty select PLOT—Backup.Fortram, .. . end Rusty
end ARCHAIC

subsystem MODERN provides Sketc hPad requIres PlotRou*&nies extern al PLOT
realization

version Sluny s.lect PLOT-Cw~ramttPascr4.. . end Ski sty
end MODF.RN

3 ConstructIon
The concrete objects listed in the versions of subsystem s must be constructed using the

types of software tools normally available, such as editors, compilers and linkers. Each of
those objects Is defined in the notation at a point that corresponds to Its use , suc h that
objects used only In the construction of one version of th. system are defined within that
version. Each concrete obj ect Is the product of a processor . Special processors IU and
acquire permit dIrect access to files and resources. A compiler or ot her general processor
takes two kinds of param eters , concrete objects such as source fl ies and output from other
processors , and strings , such as compIl er con trol parameters.

fil.(cOld Fortran Source>)
ecqulr.(TngFcns)
Fortrags(tile(cOLd Fortran Source>))
ALgoL(tIIe(cOLd ALgol Source>)) with wBoustdsCh.ckOn

Any place a concrete object is needed, the constructIon rule can be writte n. It is also
possible to giv e names to concrete objects and then use the name as a parameter to a
construction rule. Simple block structured scope on object names achieves th. desired
locality on most concrete objects.

Here is the same example modified to include th. constructIon information. Suppose that
the development version of these routines Incorporate programs that translate Fortran to
Algol and Pascal (IncludIng resolution of resources), and that <Plot Routine Source> is a file
containing the Fortran program. FortranResolve Is a program that Inserts resources into
Fortran program text , keying on a special comment indIcator “Ce .

subsystem PLOT provides PtotRouwt.s requires TrlgFcrss external TRIG
realIzation

version Backup
version Fortran select TRJC-Fortran Sowc.

r.sourc.s FortroinR.,olv.(Tjle(’~OLd Portrost Source>))
end Fortran

end Backup
version Current

version Fortran select TRI C-F ortra rsSourc.
resources FortramtR.solvealle(<Cwrerst Fortran Source>))
end Fortran

end Current

~

- - — ~~~~~~~~~~~~~~~~
— -—-

~~~~~~ ~~~~~~~~~



Page 8 3 ConstructIon

version Developme nt
concrete object Original-f ile(CPLot Routino Sourc. )
version Fortran select TRIG -Ponran.Source

resources Fartra stR.solv.(Or&ginaL) end Fortran
version ALgol select TRIG .ALgoLSowce

resources Fortr ~st ToAlgoS(OriginaL) end Algol
v.rslon Pascal select TRIC-PoscaLSource

resources FortrttnToPascoliOrlglstcil) end Pascal
•nd Development

end PLOT

4 Acq ui re Mechanism

The acquit. mechanism converts a resource name into a string that conta ins the
representation of the resource. In the I II. cPtot Routine Source> shown below, the phrase
Acqulr.(TrigFcns) directs a Fortran processor to convert the resource name “TrigFcns into

a string containing program text by looking up the resource In the TRIG subsystem. It Ii
possible to invoke the acquire function in the construction descriptIon as well as from w ith in
a process or (no example shown here).

C Plot Rout ri. Sour.. FIb  — F.rtr.n i~tth R.sour.. Rsqulr.m.nt.
C

Subrou t lns PIetlf f i ,I,C)

End
C

Subrout In. Pb.t 2(D ,C ,F)

End ¼

C
CS $ceulr.(TrlqFcns)
C
C End of Plot aoutln. Sourco FbI.

3 Softwar . Construction Database

The concepts described above are used in the design of a software construction database.
Tb. database consists of typed entries corresponding to subsystems , versions , concrete
objects , and other linguIstic structures. The database manager is capable of automating
significant aspects of the software construction and maintenance process.

The user modifies the database objects Interactively and invokes construction processes on
versi ons of subsystems. The InterpositIon of the database manager prevents uncontrolled
manipulation of files, compilation steps and system descriptions. Although th, user may
request only that a particular component of a particular system be built, the database
manager may determine that ot her objects must be built to satisfy the user request. Of
special Interest is the automatic construction of the represent ation of resources upon request
from a processor

Th. database manager Is also able to automatically perform other maintenance tas ks. Using
instructions supplied by the user In the form of pollcies , the database manager can
propagate modifications to affected modules, check consistency of test resu lts for modified
programs , and notify the user of potential Incompatibility in the system.

--



--

3 Software Constructicn Database Page 9

Two central mechanisms of the database are the construct facility, which controls the
construction of a concrete object , and the acqusr. facility, which obtains the representation of
a resource. The construction of a complex system component begins with the invocation of a
processor. At some point, that processor may issue a call to acqiur. to obtain a resource
definition. The database manager will construct the requested resource definition, using the
construct function to invoke another processor; that construction may In turn request
resource definitions. This stack-oriented construction model contrasts strongly with the
conventional sequential model. The Implementations of acquir. and construct are presented in
detail. Versions of both functions were implemented and ran on a simple database.

4 Example

Without an extended example , It is difficult to determine whether the notation Is
appropriate for a significant proportion of the system structures actually encountered by
software engineers. A collection of examples are drawn from a real system, the sof tware
support for a scanline prInter. Included In the collection are the top-level system description,
a number of intermediate subsystems which provide substantial functionality, and a number of
low-level resources which are widely used throughout the system.

The top-level subsystem collects together the resources provided by Its constituent
subsystems. It contributes no additional resources but serves to delimit the system
Intuitively perceived by the user community. Some resource provided by constituents are
hidden from general usage and exploited only within the confines of the top - evel system
description.

One intermediate subsystem extracts pages from a document formatted for the scanllne
printer. The representation for this subsystem is augmented by the complete construction
process for the source program. Two of the resources used by this program are encoded as
macros, and one of those sets of macros is generated automatically from a tabular definition
of part of the document format definition. Some of the abstract operations used by the
original source program do not fit an abstract data type model.

On. of the low level subsystems maintains a list of character sets used to descrIbe the
output of the scanline printer. This relatively simple subsystem enforces the consistency of
the various representations of the character set list by generating each of the
representations from ~ tabular representation. Policies attached to this table can cause the
complete reconstruction of all programs that use the table any time a modification occurs.

The printer driver subsystem exemplifies several complex version relationships. One such
problem arises because the driver can either operate the printer directly or queue requests
for later processing. The command languages for the two versions of the driver are
different , and therefore the data tables for the driver help command are different. The union
of the command language keywords Is stored in a file from which the relevant subsets are
drawn during construction.

5 Conclusions

An integrated design/construction representation is feasible arid can be directly processed
by a database manager. The representation developed here addresses many of the issues
which arise from sharing Information among families of software systems.

A central feature of this representation Is the handling of system vers ions. The manner in

~

- -

~

-.- - —---

~

- -

~

- - — - --~~~~~~~ - - —-~~~~ -~~~~~—~~~~~~~~~~ - ~~~~~~~~~~~ 



- Page 10 5 Conclusions

- which we have defined versions seems to correspond to intuitIve notions of version In many
- cases. Improvements on the definition of version should permit it to encompass other

systems relations.

New developments in system representation and the automation of construction wilt depend
on feedback from the softwar e engineering community. Implementations of software
construction databases should be developed and applied in real production contexts.

I

_ __ _ _ _ _ _ _



I Introduction Page 11

I Introduction 

- -~-— ——---~~~~~~~~~~~~~~~~~~~*- -~~~~~- - --~~~~~~~~~~ - - --~~~~ “-~~~~~~~~~~~~~



- -‘,-~~ -- --v—-- - ,—.. - - - -

Page 12 . 

1 Software Engineering

II -

- - -—- - -

~ 

-~~~~~-— -. ~~~-— ~~~~ - -~~~



1 Software Engineering Page 13

I. Sof tware Engineering
This chapter presents the author’s view of the field of software engineering and the

problem of software construction. It is offered a context for the work presented In later
chapters but is not directly referenced. A statement of goals and a review of related work
appears in Chapter 2. The actual introduction to the technical results of the dissertation is In
Chapter 3.

1.1 An Attack on and Defense of Technological Research

The term “software engineering” is a pretentious term which implies that there is an
organized collection of techniques for the design and construction of software objects. No
such discipline exists, but there are many people contributing to it; perhaps the field will
soon deserve its name.

This is a technical thesis, and concerns itself only with the technical details of some aspects
of software construction, those commonly referred to as “programming”. In a broad sense,
this is a mistake. The pervasive technological panacea myth has led some to believe that the
problem of software construction will be solved by the construction of good compilers,
automatic “verifiers”, and flexible run-time environments. Proportionally, too much attention
has been given to these issues; poor systems can be constructed using any facilities[Fion75a3.

On the contrary, the most important topics in software engineering involve the organization
of information and human beings in a manner which is conducive to the production of good
systems. Among the issues to be addressed are the managerial decisions, such as the
structuring of groups of people, leadership of those groups, information distribution,
motivation and responsibility (Tayll 1, Wein7l3. In addition, the financial arid temporal
constraints on the resources available to the software project pose a set of crucial problems
outside the domain of “programming” and critical to the production of good software. The
difficulties of establishing what a system is intended to do, and what is not to do, are often
apparent only when the delivered system fails to accomplish its task or, If it does that, falls
to be adaptable to the problem which now exists.

Further, there are political arid economic questions seldom explicitly resolved about almost
all software systems. The reliability of a mass transit system, the feasibility of an
anti—ballistic missile system, and the ramifications of electronic funds transfer systems all
affect the production of those systems. What responsibility does the implementor of a
program have to guarantee that it is appropriately used? How is a software team organized
which will construct an information storage and retrieval system in which will be recorded the
criminal histories of citizens? For an extreme example, what is the reliability of a piece of a
defense system constructed by a draftee?

These are some of the important topics in software engineering. In comparison, the details
of the software production process seem of rather mundane scope. Why, indeed, should
attention be placed on the technical methods and tools for software construction? There are
three reasons for the research in this thesis, plus a confession.

The first reason is an instance of the standard justIfication for automation, the second
regards the state of the computing research, and the third concerns the organization of
science research. The confession will follow naturally!

First, the technical probl.rns of software construction are so great at present that they
completely occupy the attention of software production personnel. As an analogy, consider
the plight of a impoverished citizen: while the poverty is severe, most of the attention of the 



-

Page 14 1.1 An Attack on and Defense of Technological Research

citizen is devoted to acquiring the necessities of life, and little is paid to the reasons for his
or her poverty. Often it is after the pressure for survival has been slightly alleviated that
the citizen is receptive to political programs, union organizers or revolutionaries. Similarly,
when the work necessary to merely accomplish the production of a software system swamps
the intellectual capabilities of th. programming group, the individuals are not excited about
th. additional constraints under which they should operate in order to make their product
maintainable, fault-tolerant , modifiable, verifiable, or otherwise attractive. A dirty system that
works brings more satisfaction that a pretty one that does not. Hence, the development of
good technical methodologies and tools is a step toward the “liberation” of th. programmer.
With some of the mental complexity organized, the programmer can pay some attention to
more important design, managemen t , and political issues!*

Th. second reason for doing research on the technical aspects of software engineering Is
that there is a body of understanding of this topic upon which research can be predicated.
The body of knowledge that includes informal prescriptions on programming “sty le ’TK.rn74)
as well as the more rigorously defined notions of abstract data type(Wulf 76, Llsk76], has
developed over the last several years, arid although there were probably necessary
digressions into trivial controversies, there has been also the clarification of the nature of
specifications vis-a-vis implementations, for example, and the acceptance of “simple is
beautiful” principles in software methodology and tool design. Many of the basic underlying
principles are quickly applicable to the design of tools other than programming languages.

The third justification of this line of research is that the present researcher has a
significant amount of experience in this field and can contribute more immediately to the state
of the art in the technical aspects of programming than to other more difficult realms. This
fact is related to the confession: it is easier to do technical research than social, managerial,
and political research in technical areas , especially within the context of current specialized
academic departments. Technicians and humanitarians are not encouraged by the structure of
academia to interact, and the technical exper t who knows even the history of her own field
(much less her civilization) is rare. The population of historians who comprehend a
technological field is similarly sparse. This researcher is committed over the long term to the
elimination of the condItions that cause technical research to be done In isolation from
humanitarian, political and historical information.

This is, to reiterate, a technical thesis. It contributes to the technical process of
constructing and maintaining software. Even the technical scope is limited; only scan t
attention will be paid to the important technical processes of verification, testing,
measurement , and documentation (although the process of documentation is dealt with in
parallel to the process of programming ). The focus is on the production arid maintenance of
software systems, wIth emphasis on the simultaneous existence of several versions of the
systems at hand.

1.2 Producing and Maintaining Softwar.

The lit, of a software product is often arbitrarily divided into two unequal halves. The
first half , lasting from the conception of the problem to the day of delivery to the application,

‘Tb~I. .Iat.m.n* of ib~. vsIus of .utom.t,on is. unfor*uns*.Iy. MivO. It.. not ~.nerally tho case th.t II.. sutom.tion
of se ..p.cf of a p.rson s ~ob rosults in .*p.n.ion of the p.reon’e sco pe of conc.,~ In this Soc..,, the oppo.ito Ii
the CCS•; either directly, or indirectly, automation resuils in the narrowrn~ of lb.. attention of an individusi
we,lie,’.(Brev 7mJ 1her.f o~~, lb.. d ab,,. just mad, can only bo just ified in the co ntent of chun~e in the econo mic system In
which pvo~ ram~~in~ is don..

H 



1.2 Producing arid Maintaining Software Page 15

Is called “development”. Great amounts of intellect, managerial skills, computing expertise,
computing time, and money are invested, and the first phase of the product’s existence is
concluded with well deserved congratulatory parties and occasional bonuses. Satisfaction
with a job well done is felt by all concerned. All that is left now Is -- maintenance.

The designers of the system , who are usually the people with t he greatest experience and
experti s. in computing, probably left th, project before delivery; they have taken leave from
their current projects long enough to enjoy the festivities. The prImary implementors, second
in the competence hierarchy, are quickly reassigned to other desperate projects. The
rank-and-tile programmers, perhaps competent but with limited understanding of the entire
process , assume responsibility for fixing errors in the system and adapting the system to the
new requirements of the users as they expand the application domain or the role of software
systems In it.

This phenomenon reflects the perception that although designing is hard , fixing and
modifying is easier. Experience indicates otherwis.(Boeh73, BrooTh). In fact , the conclusion
being reached by some is that a system must be continuously re-designed during its lifetime
or it will descend into a whirlpool caused by repairs that increasingly do more harm than
good(BelallJ. Far from being intellectually complete, the “finished” system is the starting
point for another difficult task: the coordination of repairs, modifications, redesigns, and
growth. The statistic s are beginning to show that maintenance is in fac t the larger of the two
sections of product lifetime, not only in time but in human effortfBo.h73)

1.2.1 Development

Production of sof tware is a complex process. Usually, it is assumed that the initial conc ept
derives from some vague desi re to meet a need within the context of an application. Starting
with that concept, -various transformations occur until a programmed product, perhaps
complete with documentation, is delivered -and runs (2e1k78, Dund75). In some cases, these
transformations are given names, such as requirements analysis, systems analysis, system
design, specification, and coding. Then, are those who claim that the activities should
progress from general concept, through levels of design, until implementation follows as a
straightforward extension of a good tow level design.

In a good system development environment, the processes of anal ysis , design and
implementation are ilerated, as feedbaci rom one aspect of the process impacts decisions In
another aspect. Within small development groups, this process occurs naturally and smoothly ,
since the value of the necessary pauses, reconfiguratlons, and accomodations is obvious.
Even in larger contexts , the value of design iteration is acknowledged, as in Brooks’ dictum
“ plan to throw one away~ Broo75 J and Newell’s belief that a human “can only design well that
which he has designed already ’[Newe77). Brooks points out, however, that the flexibility of

• change In the process decreases as the level descends from conceptual design to detailed
implementation. This inertia Is due to the effort involved In changing individual design
decisions after they have been intertwined with others in the lowest level representations of
the system.

This inflexibility is a great frustrat ion. Not only are actual modifications difficult and
error-prone, but many excellent redesigns of systems (even the necessary Ones) are often
not implemented due to concerns about cost and reliability. Furthe rmore , many design
improvements are not even deve loped because the designers are aware of the futility of

‘This is a special case of the mor. ~enerai statem ent that a human ‘can only ~~ w 1  th,t which he he. done b.f or..’

-~~~~~~ - - --~~~~~



Page 16 1.2.1 Development

proposing radical design overhauls. The development of the first system too often means d.
facto design of all succeed ing systems.

The relative immutability of the implementation compared to the design is not unique to
software. It is rather the apparent malleability of software that frustrates the sensibilities.
It is no su rprise that a bridge , once built , cannot be upgraded to carry more weight, since
stee l beams are expens ive and bridges are sequentially assembled over a period of years.
But software , it seems , can be changed by an act of will, suitably mad. manifest. The bits
discarded are not waste d; the new ones are no more expensive than the process of
sp.cifying them. It is not the cost of the mater ials that prevent us from re-implementing to
improve des ign, it is our inability to do so with an effort somehow proportional to the “size”
of the change.

Nonetheless, systems are developed. That is, the first version is built and
delivered(Dund75]. Despite our desires for iterated design, the implementation gets
completed (occasionally before the design) and the product ‘exists ’. Let us assume ,
unrealistically, that the design and implementation are separate act iviti es , sequentially
ordered in time. What distinguishes design from implementation?

1.2.1.1 Design. Design of a software system follows the establishment of the requirements of
the system. It is generally assumed that the task that the system is to perform is reasonably
well understood (althoug h see[Parn76a , Habe76J for important limitations to this). However ,
the task is always tod complex to be addressed immediately by programmers. The task must
be divided into parts that can be considered in partial isolation from the entire task , and the
newly established parts must be mentally recombined to determine if they can in fac t interac t
in such a way as to solve the ori ginal problem. And, for apparently robust managerial
reasons , the substructure of the system must be such that it can be paralleled by a similar
substructu re in the human organization that will implement it.~ This process repeats , as those
parts of the total system are again divided into parts , and those again divided, until the parts
are sufficiently small that a human being can comprehend each one completely, albeit
individually.

Errors are inevitable in this process. There are errors of many forms, such as
misunderstanding the original requirements, dividing along lines that provide little gain in
comprehensibility, and hypothesizing parts that are not tractable (e.g. a fast algorithm for the
traveling salesman problem). The first division fails perhaps by the third level of design, and
a new one is tried. Eventually some design is deemed successful arid given the title “The
DesIgn”. From this instant, redesign is difficult.

What are the criteria by which design decisions (divisions) are made? Generally it is not
the case t hat all the multiply instructions to be used in the system are assigned to a
subgroup to implement. Rather, some coherent aspect of the system (from the standpoint of
the application ) is portioned of f. For example , in an operat ing system , the storage of
Information on secondary storage is relatively independent from the mechanism for allocating
processors to processes; therefore those two aspects of the system will be considered
separate subdivisions of the system. In practice, the subparts tend to be functional aspects
of the system , parts that “do this” and “do that” . Parrtas proposed an alternative
crIterio n(Parn72a] arid has been acknowled~ed as the originator of the now popular

‘The. is a somewhat opl,mistic way of pvttin~ this Normally it is noted that the struc ture of systems reflect the
•tructure of the or~emestione that implament the~s I sin presvmin ~ tIenb4sty on the por t of the .isna~oment to respond
to the work of the d...gners.

- - -

~ -



1.2.1.2 implementation Page 17

“information hiding” approach to subdivision (modularization).

1 .2.1 .2 Implementation. When a given portion of the system has been anal yzed and The
Design has been determined, the actua l process of implementation begins. Some software
development groups take pride in completing the design before the coding begins, for this
signifies that they have thought through the problems before making poorly conceived
attempts to solve them. Although service is paid to the idea of “doing it t wice, w hen
possible”, the “when possible” admits the underlying assumption that desi gn , once
implementation has progressed to a certain point, is not a profi table activity.

There is no justificat ion for subjugating implementatiL i to design. Quality of
implementation is, in fac t, necessary for realizing the promise of a high qi ality design.
Implementation is not all “coding ”, if that term is meant to connote the mechanical translation
of detailed programming specifications into a given programming language. The
implementation of one level of design may require the design of lower level facilities. Hence,
the implementation of high level aspects of the design involves almost all the decisions in the
system! Some of those decisions, such which data structure to use, may entirely determine
the performance characteristics of the system. Two seemingly arbitrary implementation
decisions, furthermore , can interact to cause problems, for example , storing a sparse matrix in
row order and processing it in column order.

The imptementor can be considered to be in the intersection of two sets of constraints.
One is the system design we have been discussing; the other is the means by which the
implementation is to be accomplished, this provided by the accepted methodologies. The two
sets are not coextensive. Programmers often debate whether to accept a solution that is
workable but not neat, or a solution that meets the methodological constraints but does not
meet well the system goals (e.g. performance).

The implementor of a family of systems must write a family of programs and provide a
mechanism for selecting members of the family. Techniques for program family writing must
be developed, since single version programs will soon be as unusual as single instruction set
computers, single matrix size statistics packages, and single command language terminal
interfaces. The focus of effort should be on the development of tools that permit the clear
specification of abstractions from programming structures.

1.2.2 Maintenance
The mainte-ance of software systems is increasingly the major effort of a software

project. While painfully obvious to the programmers who find themselves doing more and
more maintenance , the software project planners seldom consider as costs the resources that
they are obligating to maintenance.

Since human beings all enjoy the process of solving novel problems, it is not surprising
that they generally pay more attention to developing the first solution to a problem than to
providing for the adaptation of the system to future situations. Among sophisticated software
engineers, the latter problem can, however, be considered a problem itself , and some degree
of energy is reserved for that task. There is, of course, no support for this expenditure of
effort; seldom, in the history of software projects, has the customer walked in to the
software group meeting and said, “Pleese postpone delivery of my system until next quarter
so that you can adequately plan for maintenance.’ And rare is the executive who willingly
postpones income from the product today in deference to increased reliability and saleability
of the product tomorrow. With the additional financial and scheduling pressures, it is only the

_ _  ~~~ ---- — -• - - - -• —~~~~~- -



Page 18 1.2.2 Maintenance

stalwart system designer/ implemeritor who reserves any attention at all to providing, In the
design and initial implementation, for the maintainability of the system.

1.2.2.1 Error Repair. Immediately upon the delivery of a software system (and during field
testing, if any), the avalanche of error reports descends upon the programming staff. These
range from complaints about trivia (e.g. words misspelled in prompt messages) to notices of
system disasters (e.g. data bases destroyed).

For some reason, “bugs” and their fixes are considered to be small. Perhaps if we called
them fungi or corps delicti their nature and the means for eradicating them would be better
perceived. True, some error are “simple” problems cf missing statements, inverted signs, and
forgotten checks. Most, however, reflect flaws in the design (Boeh75). Unfortunately, they
can sometimes be repaired by a procedure analogous to that used for the repair of simple
problems, i.e. insertion of a statement or the check for a special case. But the repair violates
design principles and the system has begun its entropic descent. The reported monotortic
increase in the number of global variables in a system is a clear illustration of this
phenomenon(Bela7l].

Why are redesigns not effected when bugs are produced that illuminate the flaws of the
current design? First , the people responsible for repairs are not designers, and may not
even realize that the error is inherent in the design; their ability to insert a fix insulates them
from this shock. Second, the reimplementation is expensive and error prone because tools
for recording and reusing implementation information are inadequate. Who wouldn’t make the
one line fix under these conditions, even though another variable becomes global in the
process?

An additional difficulty results from the managerial pressures for quick error repair. The
repairs are often needed immediately and cannot wait for the next version of the system,
even though there are interactions between the repair and the new features. In addition, the
repairs for two different errors may interact or be dependent on each other. Reintegration
of repairs with development versions is a notorious problem; it is addressed in part by
DeJong(0eJo73).

The existence of bugs cannot be prevented, even by scrupulous care in the preparation of
programs; “there is no such thing as a bug-free program, only one in which the bugs have
not yet been found.” In programming, as in medicine, we can benefit greatly from partially
successful efforts at prevention, but we must also provide flexible methods for repair.

1.2.2.2 Enhancement. Along with the error reports come a variety of requests for system
improvements. Like error repairs, some enhancements can be made within the design of the
original system. Often, however, the enhancements are of a scale comparable to aspects of
the original problem, and hence should be considered in the corresponding level of ‘ the
design. Especially as enhancements accumulate, the incapacity of the original design to
comfortably encompass them becomes more apparent.

It must be reiterated that enhancements are usually forced into the old design despite the
arguments against doing so. The reasons are the same ones described in previous
paragraphs: there is no one available to consider design level problems, and the human
reprocessing required to propagate design decisions into implementation details Is expensive
and unreliable.

IL 
_ _ _ _ _ _



1.2.2.3 Performance Improvement Page 19

1.2.2.3 Performance Improvement. One class of enhancements that is particularly likely to
result in detriment to the implementation quality of a system concerns performance
improvements. The overall goal of the system development team Is to get a system that
works, albeit slowly or with large storage requirements. Sometimes explicit decisions are
made to postpone some performance considerations until the maintenance phase (“when we
get some data” or “once we know that it works”). Design decisions significantly impact
performance, however, and occasionally the first Implementation of a particular modularization
or hierarchical structure results in unacceptable overhead. The performance Improvements
are often made by crossing the boundaries of the design, using the “hidden” Information and
recognizing the actual limitations under which the current system (but not necessarily later
ones) operates.

The above is not intended to imply that performance should or even can be adequately
predicted before the system is operational. In many cases, the complexity of the system is
such that various measurements must be made before it is known even how the system is
expending its resources of time and space. In particular, the interactions of various
implementation decisions may produce highly anomalous behavior that can only be understood
by a detailed examination of the operation of the system. An entirely appropriate approach
to this problem is to-construct several versions of the system and compare their behaviors to
determine what efficiencies can be obtained. This very process, however, must be envisioned
in the high level design, so that variations in the systems to enhance performance are made
at the design level and then reflected in the Implementation.

1.2.2.4 Families of Systems. One particular variety of enhancement is especially important
within the context of this thesis. Sometimes the enhancement requested by one user Is
Incompatible with the expectations of another, and a separate but similar system must be
constructed to exist simultaneously with the original. (As discussed in section 3.2.1, this
construction occurs spontaneously in systems that have development, backup, debugging and
instrumented versions.) Most of the information in the two systems is the same, but
substantial design or implementation details differ. In (Parnl6a, Habe76), this situation is in
fact a goal of the design.

The explosion of interconnecting detail in such families either prevents the family from
developing altogether, or forces on the programming staff the need for techniques for
building members of the family. Examples of the latter are given
in[1RM72, Mabe76, Erma77, Rein77).

1.2.2.5 Documentation. It is possible that the documentation of a given system reasonably
reflects the actual design and operation of the initial version of the system. After the
maintenance phase for the system is underway, confidence in the correspondence between
the system and the documentation becomes weaker and weaker until, In some cases, the
documentation is considered more misleading than helpful.

The documentation is usually maintained separately from the system, with some form of
communication established between the technicians who design and implement the changes,
and the technical writers, who maintain the documentation. This separate maintenance
mechanism is unsuitable for the documentation of evolving systems or families of systems.
We will consider the documentation to be a parallel implementation of the design of the
system. A system and its documentation, then, are enough to establish a system family.

Documents, it should be noted, have an additional property that complicates the problem of

‘--~~~~~~~~~~‘-



Page 20 1.2.25 Documentation

correspondence: they are occasionally print.d on paper and distributed over a large
geograph ic area. We will shed no light on the problem of updating paper documents , but will
help coordinate the modification of a system and Its documentatIon.

I .2.2.6 The MechanIsm of ModificatIon. Once a system Is bui lt , modifications are made to the
system by changing a system component (perhaps by editIng the source program for that
component ) and by reinte grat ing that component into a version of the system. For large
system , It Is not feasible to reconstruc t the entire system from source , even w ith increas ingly
inexpens ive computing capab ili ties. TypIcally , some member of the programm ing team
understands the module Interconnections and can Instruc t those who would modify th. system
In the proper Incantations. This process has all the faults of Its medieval co unterpart. The
wizard may cIte the spell clearly, but th. sorcerer ’s apprentice may repeat it Incorrectly, or
apply It to a situation for whIch It was not appropriate. Also , the wIzard may err in
developing the Incantation, resulting In potentially Irreversible deformi ties in the system. And
If th. wizard gets hit by a truck, the hapless novIces an often lift mumbling whatever th ey
can recall that sounds like what the w izard used to say.

Most software projects are forced , after several unpleasant conf usions , to adopt so me
control over the modification of system components and the systems themselves. Usually,

— some form of “signing out” a program is tried, with or without a mechanized enforcement
procedure. However, desI gn level Information and construction Instructions, not being
recorded in single files in the dIrectory , canno t easily be “sIgned out” . For managerIal
reasons, Isolating system decisions In separate fIles and grouping hierarchically dependent
sys tem components In dIrectorIes Is necessary to permit the coordination of people who are
simultaneously working on the system.

1.3 Softwar e Methodology Approach

In the terminology of Newell and Simon [N.we72], design is a “search ” through a
multi-dimensional space ; the target of the search is one of those points In the space that
corresponds to a viable solution to the problem at hand. For software system design , the
space of search Is Initially constrained only by the natur, of the (virtual) machine for which
th. system is being constructed. Since those machines are often described as “general
purpose ” computers , operating systems , or programming languages , they are, by def inItion ,
designed to be as free as possible of a prion constraint. Hence they are only vaguely
organized for finding a solution to a given application problem.

Methodologies are principles and technique s f or guiding a sear ch throug h a design space.
They direct the search to regions of the spac. that are probabl y dense with adequate
solutIons, although not necessarily to the region containIng the best solutions. They consist
of general design principles as welt as specific knowledg. from various levels of the doma in
of the design. Lessons from experience are accumulated and transmitt ed in this way from
programmer to programmer.

Several fundamental methodologies for program construction have developed in the past
several years. Those of importanc. to this work are discussed b&ow. In addition, new
methodolo gies are in the process of being proposed and •x ploi d some of th. more
promising of those are also discussed. Other methodologies have come and gone. No
attention will be paid to “goto-less programming” or “one page limit ” methodologies here.
Th. bankruptcy of such proscrIptiv, approaches becomes obvious when they are
scrupulously followed in the text of clearly terrIbl, programs. The nature of a methodology
Is as a guide, not a law. 

.- -



1.3.1 Programmer Discipline Page 21

1 .3.1 Programmer Discipline
Almost alt methodologies begin as a set of policies enforced by a programmer on the

program structures permitted in programs. This is necessarily the case, since no
programming facility can incorporate an unknown policy! The excellent programmers in an
installation often develop these policies as a technique for representing some underlyIng
order that they have imposed on the organization of the program.

The surface nature of these policies are often not apparent even to the programmer who
d.vetoped them. The shoals on which these methods run aground are the beliefs that
programming recipes can replace understanding. Even If the programmer does not hold this
view, It is likely that the programming manager does.

The appropriate use of programmer discipline is to permit the construction of well
organized systems even with primitive or difficult tools. The reiterated claim that excellent
systems have been constructed with macro assemblers Is well taken; the structure has been
defined by the engineering staff and adhered to by the implementation team with the help of
the “standards”.

At the point that the nature of the methodology enforced by discipline becomes well
understood, the general principles that it embodies will be assimilated into a more fo rmal
methodology. For example, the discussions of restricted control flow constructs have now
abated and the questions are now resolved in each specific instance by balancing the clarity
of the program containing the construct with the complexity of the verification rule necessary
S or Its use. This happens not because simplicity of program and ease of verification are both
inherently Important , but because both are well correlated in experienc. with reliabi lity end
maintainability of programs.

1.3.2 Structured Programming -

“Structured programming”, perhaps the most abused term in the modern computIng
literature , derives from the work of Dahi, Dijkstra and bare (Dahl72]~ Due in part to some
unfortunate remarks in Dlj kstra ’s paper (Dij k72], some people came to believe that structured
programming was any one of goto-less programming, stepwise refInement, topdown design, or
programming in ALGOL-like languagøs. The essence of structured programming, which Is
expounded below, was temporarily lost to the literature.

- - The profound aspects of structured programming concern the use of techniques f or -
reducing the complexity of the programming problem. By emphasizing the “structure ” of
algorithms, program sections, or data structures, It becomes possible to separat. the behavior
of the program at one level from the details of each of the components. Hence, for example,
It is useful to refine a program in steps because the skeleton of the program can be shown to
behave correctly given some properties of the (unexpanded ) subprograms. Each of the
subprograms can then be considered In turn, in isolation from each other and from the
program skeleton in which they are embedded.

Stepwise refinement is an example of a structured programming technique. It is a tool by
which a programmer can record one aspect of the complexity of a program in order to direct
attention to another aspect. The process of organizing the complexity of the problem is
accomplished by the programmer, not by the technique! Other important techniques In
structured programming include the definition of abstract data
ty pes(Wu lf 76, Fion7 5b, Jens 74] hierarchical ordering of program segments, and use of 

~~~ -~~~~~~~- - -~~~~~~~~~-- - - -~~~~~~
-
~~~~~~~~~~~~ -- -~~ - - - . ~~~~~~~~~~~~~ -—~~~~~~~~~~~ --— ~~~~~~~- - .

~~~~~~~~~~~~
-_______

Page 22 1.3.2 Structured Programming

verifiable control structures and Operators.

1.3.3 Modu larlzatio n -

Parnas consolidated the informal concepts of modularization (Parn72a). Other concepts,
such as separate compilation, are not now included under this term. Th. primary attribute of
a module Is that It hides a unit of Information. This ma~ be a small implementatIon deta il, such
as the actual location of a logical device, or a major desi gn decisIon , as in whether to sort a
KWIC index before printing It or at the same tim.(Parn72b].

Modules contain and hide information. Sometimes they can be encoded as programs or
program segments, but not always. For example , the method for ensuring data Integr ity over
procedure calls (the “calling sequence”) can be contained In a module, but the actual method

- - may not be the same for two different caller/callee pairs. The syntax of a command
language , for another examp le, is independent of th. means by which it Is represented in a
program.

The recent exploration of abstract data types is an important contribution to the process
of modutarization. For many purpo~~s, a module can take the form of a data representation
combined with a set of permissible operations on that representation. Properly described , it
serves as an Implementation of a mathematical object that can be discussed separate from Its
implementation. This permits the abstrac t behavior to be made available to a program that
used th, data type while hiding the mechanisms by which those behaviors are accomplished.
This form of modularizatlon Is so widely applicable that it has become the primary emphasis
in the design of several new programming languages
(L1sk76, Wuif 76, Wirt77, Lamp77, Do077, Gescl7, Amb177].

The process of modulanistion esuits In fragmentation of th. system representation. When
systems were mono lithic expanses of source code, recompiling the system was aU that was
needed to integrat , the system into a runnabte form. The problem of syst .matlcsli y
combining modules into systems Is basically unsolved , although the Mesa designers have had
some succ ess(Gesc77).

1 .3.4 Hierarchical Structure

The division of systems into levels is most often attributed to DijkstrafDijk6$). Most of the
experience in this f ield has been provided by operatin g system
projects (Lisic 72, Habe7S, Saxe76, Neum74]~ Parnas(Parn7 6a) and others have argued for such
organization of other systems.

A hierarchically organ ized system has an enforced partial ordering on some objects In the
system. Such a system may be described as a sequence of levels , each level being defined as
the class of objects that are inferior (according to the lation) to objects In higher levels and
superior to those in the lower levels.

Careful selection of objects and relations can result in a system with some very nice
pro pert ies. By using “processes” as the objects , and “provides wor K to ” as the relation ,
freedom from deadlock in the system follows immediately(Dijk68). If “functIons” are
restricted by “calls” relations, so that function cal ls always descend a level in the system ,
stack depth can be limited to a known maximum. And, If sets of functions are ordered by
“functional dependency~ Habe76], each layer corresponds to a vIrtual machine that can be
programmed without depende nce on the upper levels.

-
- - - --- - - - -- --~~~

1.3.4 Hierarchical Structure Page 23

Hierarchy in a system is of ten ‘established within the Information hiding lines. Although this
has the advantage of simplicity, difficult y arises in real systems either with establishing a
hierarchy at all, or in efficiently implementing the system along the hierarchy established.
Since the two concepts are not dependent , hierarchy can be established “orthogonally” to
modularization, and the benefits of both structures will obtain In th. resulting
system(Habe76).

The clear specification of the hierarchical relation is necessary to a clear understandIng of
the system structure that wilt result(Parn74].

1.3.5 Language Design
A natural development in the consolidation of a methodology is that It be incorporated In a

notation. In the case of programming methodologies, it is usually assumed that this notatIon
will be processable by a program , such as a compiler (althoug h see(Schw79] for a different
use of notations). The abstract data type methodology is currently in this phase of
development , and several languages are being designed around the concept.

Generally extensible languages, In which a variety of methodological constructs might be
developed, do not serve the same value as languages that incorporate specific methodologies.
The nature of a methodology is both inclusive and exclusive , so that a language that permits
the prescribed structures and facilities must also prevent or discourage th. proscribed ones.
Furthermore, for a compiler to be constructed that both is efficient and produces efficient
programs, the information about the probable use of the language must be available. Hence,

- Alphard(Wulf 76), CLU(Lisk76], and Mesa(Gesc77], as well as others, have the abstract data
type concept integrated into the language and compiler design.

Not all software methodologists believe that this is a necessary or even appropriate step
for a methodology to take(Parnl7). Any rigidity in the programming tools around a specific
methodology results ‘In diff lcu ity in constructing programs or systems that either do not fit
into the methodological framework or need extensions of the methodology not supported by
the tools.

Our view is that languages are an important stage of methodological development. The
primary reason is that languages bot h define and confine the realm of discourse , and such
restriction Is valuable to human beings in organizing complexity. Secondarily, constraint on
the possibilities makes automation of various aspects feasible, and that Is one of the tasks
before us.

1.3.6 Verification
A technique for improv ing software quality that is popular in academic circles is the

application of mathematical proof techniques to the behavior of programs. Often mistakenly
called “proof of correctness ”, the actual achievement is a proof that a semantic interpretation
of the program has certain properties in a abstract model of the domain of the program. The
correspondence of that model to the actual domain (e.g. range of integers) must be
established ad hoc. More profoundly, whether that model and the now guaranteed properties
correspond to the desired behavior of the program is a matter for deep meditation and
frantic handwaving.

Program verification is an important conceptual breakthrough. For certain critical system
components, and and those with particularly tractable mathematical properties, there will be

-- --~~~--~~~~~ --~~~~
- -- - .

age 24 1.3.6 Ver ificatIon

substit ute for exploitation of mathematical techniques. Recent developments in formal
er ifl cation have shown that mathematical rigor Is not restricted to greatest common divisor

programs , and that ass ert Ions can be proven that have a close connection to the expectations
we have of programs (F1on773.

It is also true that almost alt program code will not be processed by the long awaited
automatic verifiers. large amount of system code are concerned with information processing
that Is not mathematicall y tractable. The effort that would be put Into constructIng a
mathematical model of the real situation, If applied Instead to the program itself , would result
In a much more trustworthy conviction that th. program would behave as desired.

We will contribute to th. valIdation of systems by recording construction procedures. As
elucidated in(Flonll], one can establish a variety of useful properties of a system it one
builds the system with components that cannot invalidate those properti es. F~r example ,
suppose the operations on processes provided as part ,of an operating system are of the
form “move process from lit I to ti st2 ” . It can easily be established that If processes in the

- system are initially in one and only one list, then every process will always be on one and
- only one list. This form of verification of properties of systems , I.e. designing such that
- invalidating th. property is impossible, has its analog in system construction. We will

propose , for examp le, that the operations on language procedures be of the form “get
procedure specifications” and “get procedure definition ”, so that It wilt be impossibl. to
construct an external reference to a procedure that Is not compatible with the actual
precompi led procedure body.

1.4 Software Technology Approach

With th. construction of the first symbolic assemblers , the technological attac k on system
construct ion was initiat ed. In the intervening twenty years, a wide varie ty of programs have
be•n develop ed w ith the primary func tion of assisti ng programmers to construct other
programs.

1.4.1 G.n.raf vs. Sp.cl,Aize4 Tools
Each software system project generat es a collection of tools useful in that proj ect (Kern76] .

Depending on a variety of factors , such as programme r presci. ,~ce arid avai labkHty of t ime,
the tools may be useful to other projects either as they are or with modification.
Occasionally, some resources become available to generalize the work, and tools of wide
applicab ility are generated.

The evolution of tools from specific to general occurs in parallel with the cont inuous
addition of features intended to solve specific problems encountered in the work of the
programmers. Occasionally, the ad hoc addition of features swamps the trend toward
generality, and a software tool stagnates or I ails into disuse. Enhancement of tools Is
different from enhancement of other systems only in that , because they are “in house ”
products, reliability arid maintainability are often given even lower priority than for customer
systems.

The tradeoffs among generality, simplicity, and applicability are particularly acute in
sof tware tool construction. Historically, software tools have been either overrestr ictive in
the capabilities provided In exchange for clarity and simplicity of the toot and its product (e.g.
Pascal) or so over-general that the features of the tool interact dangerously and the
production of efficient products Is difficult (e.g. P1/I). Only partial success has been achieved
In moderating over-general tools, such as In the command procedure libraries for common job

-

I

- -- - - -~~~~~~~~~~~~~~~ - - ~~~
- - - - - - - -

~~~~
- - - -

1.4.1 General vs. Specialized Tools Page 25

cont rot language sequences. And providing features in an overrestr icted system, if possible ,
Is usually done at the expense of some of the usefulness of the underlying system, as when
directory systems are built on top of a basically inadequate file system.

It is perhaps inevitable that , before the working domain of a software tool Is well
understood, the pendulum must swing toward generality untIl relationships among elements of
the domain can be explored, and toward simplicity until the limits of the model of the domain
can be delineated. Over a large scope, design must be iterated and the knowledge obtained
by using too ls cycled back to the designers.

1.4.2 Abstraction providing Tools vs. Transparency

The builder of a software tool attempts to provide some facility not immediately available
in the environment. Often this facility abstracts in a useful way from the details necessary to
accomplish a task. For example, a compiler abstracts from the instruction set and from specific
memor ~ locations by providing such constructs as expressions, procedures, records, and data
types. Usually some capability available in the underlying system is no longer available in the

-
- abstract environment (Parn72c].

The removal of capability requires justification of the most convincing form. The
elimination of arbitrary transfers in programming languages, for example, must be
substantiated by arguing that the remaining language is “adequate” in various senses for all
reasonable programs, that significant gains can be made in analysis of the programs so
constructed, and that no real cost has accrued.

Even the lowest level tools tend to make otherwise simple operations become difficult.
Programming languages typically remove from the domain of the programmer the hardware
stack, the reg isters and the procedure invocation mechanisms. Implementation of features
that require control of these resources are accomplished, ~f at all, by subverting the compiler
or exercising a “descent to machine code” operation and observing the caveat ins pl.m.ntor
sign that Is attached.

Perhaps the most common case of capability loss occurs in the operating system iriterf ace
of compilers. In almost all languages that provide I/O facilities, a large proportion of the I/O
capability of the operating system cannot be exploited by user programs. The number of
high level languages that allow use of the job control block, the communication buffer , or the
contents of directories is exceedingly small. These restrictions either prevent use of the tool
for these applications or cause subversions.

The designer of a programming language, or other abstraction providing tool, should
explicitly record those capabilities of the underlying system that will not be available to users
of the tool. While it is clear that the general registers can not be manipulated by the user of
a programming language, one must warn a user that synchronization prImitives, iriterprocess
communication, direct access disk operations, real—time clock requests, arid so forth, are
beyond the reach of programs in the language. Not only does this alert the user to potential
limitations on the applicability of the tool, but helps the designer to understand the
ramifications of providing features that depend on restricting the user.

1.4.3 Compatibility of Toots

Software tools are much more useful if they are compatible with each other. For example,
a compiler that produces a symbol table in the format used by the Interactive debugger for
another language can mike feasible the use of that debugger for its object programs, and



Page 26 1.4.3 Compatibility of Tools

facilitate the creation of a general interactive debugger for the languages available In an
Installation.

Compatibility of tools is achieved routinely with object code formats that are defined by
th. linking loader. Command processors, editors, macro processors, documentation programs
and compilers seldom share even rudimentary concepts, such as the definition of a lexeme.
Accomplishing Integration wIthout removing important flexibility from the individual tools may
require the establishment of a total programming support environment in which th, design
problems of the entire tool collection ire considered.

1.4.4 Abstracting from System Components

Programmers abstract easily from the domain of system. Told that the domain is airplanes,
a programmer will quickly (perhaps too quickly) develop images of the required abstra ct
features of airplanes in the context of the system. If it is an airline reservation system,
“aIrplane” means as seating arrangements, flight equipment, food service requirements, and so
forth. If it is an airplane maintenance system, “airplane” consists of part;, subsystems.
service histories, etc.

On the other hand, only a few programmers effectively abstract from the tools that they
are using to abstract from the domain of the system. Presented wIth an algorithm for
constructing a part of a program, it is likely that the programmer will •zecuti the algorithm
rather than encod. the algorithm for another program to execute. Suppose that a
programmer is given an algorithm for describing the seating arrangement of an airplane: “for
each aircraft chart , create a list of rows, where each row has a number, a
smoking/no—smoking indication, a class, and a list of seats , and where each seat has a letter
and an indication of whether it is a window, aisle or internal s.at ’~ Rather than reflect upon
her own actions, the programmer will likely sit at a desk, keypunch, or terminal, and write the
code for the specified structures.

Some programmers object to spending their time in such activities, and note that changes
to airplane descriptions (Or the addition of new airplanes) will result In changes in the

• program that represents them, rather than to an airplane description notation. Using the
macro processor of the programming language, they will attempt to develop some
program-like mechanism for converting an airplane representatIon to the desired
programming language constructs.

Tools for the task of abstracting from programs have generally been poorly engineered.
Prior efforts attempted to provide these tools within programming languages. The result is
often an inordinate amount of attention paid to evaluation order, internal compiler processes
arid distinctions between linguistic types (e.g. the definition of a lexeme, the difference
between a character string and the characters in the language that repr esent a charac ter
string constant containing the same characters).

1.5 Theory vs . practice

All knowledge comes from interaction with the natural world(Mao48). Theory, as the
development of an organized model of features of that world, serves to provide structure for
knowledge and to guide the search for new knowledge. Theory follows from, and does not
precede, experience.

This pattern applies to any scientific field, but is particularly relevant toward guiding
res•arch in engineering disciplines. Tb. collected experience of the thousands of

---

~

-

~

-

~

-- - - -- --



.~~~~~ - - --—-~~~~
--—

1.5 Theory vs. pract ice Page 27

programmers is the source of the information from which a theory of software engineering
can be distilled. The criterion for success of an effort in software engineering must I -

eventually be the applicability of the result to the construction of software products. This
cycle insists tha t software engineering theorists must interact with software practitioners,
and the best understanding can be achieved by theorists who are being involved with real
software projects.

The ex tension of knowledge by theoretical exploration is occasionally productive. One step
in that direction usually suffices to exhaust the actual information supply, however , while two
or three are indication that large amounts of vacuous research is being attempted. For
examp le, further exploration of the mathematical qualities of simple programs is unlikely to
produce significant improvement system reliability, modifiability, or perf ormance at the
present time.

It is also necessary that academicians not limit their scope to software projects in academic
environments. The problems of the software engineer are often masked by the flexibility of
the user community, the fuzziness of the accounting mechanisms, and the uniqueness of the
implementa tion. A typical phenomenon: documentation of systems in academic environments
is often fragmentary or non-existent , and folklore plays an important documentary role in
these isolated subcultures.

1.6 Introductory Conclusions

The central theme of several current methodological movements in software engineering is
the organization of information. Under such terms as “abstract ion”, “hierarchy” and
“structuring”, these methodologies emphasize techniques for expressing, encapsulating, and
separating aspects of the complexity of systems.

As a natural development of a methodological movement , tools have been developed that
incorporate the concepts and techniques of that methodology. The progress in programming
language research exemplifies this process w ith respect to abstraction.

The system integration problem is a result of the decomposition of systems into modules,
levels, data types, and so forth. The techniques for describing programs have not been
applicable for describing how modules are interconnected, how different versions of module
are related, how systems are constructed and how system families share information.

There is a present need for a technique for describing the integration of systems. The
benefits of modularization can be fully achieved only if the process of constructing systems
from modules can also be clearly expressed. The evolution of tools supporting these .1
techniques will ease the process of developing and maintaining systems. In addition, the
implementation process can be partly recast as a construction process. The same tools will
reduce cost of reimplementation and thereby reduce the cos t and risk associated with the
design/ implement loop.

Programming languages contribute to system reliability, maintainability and flexibility by
improving the way in which program information is expressed. The development of equally
appropriate system integration languages (and language processors) will produce equally
positive results. And by correctly addressing simultaneous maintenance of system families, a
new dimension of flexibility and engineer productivity can be achieved.

Th. most reliable basis on which to develop techniques for system integration is the
experience of veteran software engineers. This work is an attempt to collect some of those

_



~~~~~~~~~~ - —-..-- ~- - -~-

Page 28 1.6 Introductory Conclusions

•xperience Into a coherent framework,. At some time, it w ill be reasonable to develop a
theory of sof tware system descriptions as has been done with programming language syntax
and semantics. At the present tim., however, more information must be collected about the
processes of software system constructIon.

2 Goals for the Thesis Page 29

2. Goals for the Thesis
The primary goal of this thesis is to develop a representation for families of software

systems. In support of that representation, a rudimentary system has been constructed
which lends credence t o the claim that the representation is useful. To illustrate the efficacy
of those efforts , we have applied the tec hniques to some aspects of a real system that is
known to contain some difficult system construction aspects.

The particular representation developed here is an intermediate between an ideal user
interface and an internal data structure. This selection will provide us with some insight into
what is required in both directions for future systems.

2.1 Goals for the Thesis Elaborated

The selection of a representation for a system is determined by the purpose that the
representation is to serve. The primary function of this representation Is to facilitate the
itera tion between design and implementation and to assist in the maintenance of multiple
coexisting system versions. It will take some effort to bridge the gap between the design of
an entire system famIly and the specification of the construction of the lowest level detail of
the implementation.

2.1.1 Int.gration of Design and Construction O.scriptions

2.1.1.1 View from the Bottom. The representation that is developed here must not only
permit the automation of the system operations necessary to the actual construction of the
sys tems at hand (e.g. compilation, editing), but must also be organized in such a way that it
elucidates the structure of the system along lines meaningful to the designers and
programmers of the system. Compilation of a program, for example, results not from a
command which directly invokes a compiler, but rather from a command which builds a
particular version of a particular system for which that compilation is necessary.

Wha t is a reasonable view of the processes involved in the construction of software
systems? What restrictions on implementa tion form can we propose and which must be left
unconstrained? From the transparency arguments in 1.4.2, we must not restrict implementors
unless we can provide Important advantages that can only be obtained by such restrictions.

- Language s. The choice of implementation language is a difficult and important
aspec t of the implementer ’s task. To preempt any aspe ct of this choice is to
limit the variety of implementations that can be considered for each individual
task. There is no justification even to restrict the implementor to s~sme one
language (although there are advantages to working in a single language which
should be considered). The case is obvious for systems that operate on two
different hardware configurations simultaneously. In section 6.1 we see an
examp le in which a common high level language for a general purpose computer
must interact with a program for a mini-computer constructed in assembler
language. Vet another example of multiple languages is forced by the interaction
between the system and its documentation; it is quite unlikely that there will
exist a language for which compilers exist for generating machine code and also
printable documents!

- Targ.t Machines. Many systems are intended to run on the same computer arid
operating system as that on which they were constructed. Others, however , are

-

~

-

~

-- ~~

Page 30 2.1.1.1 View fr om the Bottom

not, especially those constructe d for small computers with little or no
sophisticated software construction apparatus. Therefore, we will construct
systems without necessaril y having control over the execution environment of
the system nor the ability to obtain information from that environment.

— Installation Specific Data. There is a large collection of information that is specific
to a given installation which is used for system construction. Accounting
procedures, job control languages , and file sys tem format s must be exploitable
by programmers , although no uniform methods for abstracting these details exist.
We isolate such aspects from the processes inherent in system construction
without preventing intelligent use of the operating system resources.

2.1.1 .2 View from the iop. Conversely, the representation must clearly portray a significant
aspect of the design of the system, while providing the capability of specif ying the most
mundane details of how that design decision is actually carried out. High level design
languages that are not integrated with the actual construction process are useful to
designers, but do not provide the flexibility necessary to iterate design or maintain system
families.

— Design Languages. The specification of notation suitable for recording some of the
design decisions in a system is one of the explicit tasks established for this
thesis. This is not intended to exclude the use of complementary languages and
sys tems for other dimensions of the design. Other researchers and software
pr actitioners are actively exploring design languages and tools
(Ross77, Teic77, Carp75). We will include at least those aspects of the design
necessary to control the software construction processes.

- Tb. Natur. of Resources. The notion of module or subsystem has become familiar ,
but the methods f or interconnecting modutes are riot well understood. It is fairly
common to conceive of a subsystem as “providing” a set of resources to users of
the module, but there is no consensus about the attributes of “resources ”. We
will permit resources to represent any facility that the system designer can
represent as a char acter string. Other information must be converted to
character string form by special tools.~

2.1.2 Hierarchy of Desi gn
The implementation of one level of design requires the design of the next lower level.

Despite the implications of a previous section, design and implementation alternate in a
hierarchy parallel to that of the system itself . The representation must reflect this
alternation by permitting the designer to specif y at any point in the system only that

— information appropriate to the particular context. Hence, the relationships within the
information necessary to construct subsystems of a system must be invisible to the
representation of the higher level system, and construction details for subsystems must
likewise be hidden from th. construction of systems that use them.

“Th. t•~m “r..ouvc.” do.s ~.t .vely. wi thi s coøt.iut, I. 1k. co,~auffisbl. s,A,,tsnc. s tr.ditioii.lly sllocsl.d by
oD.r.tIr~5 •y.I.~~s •;. st°’.i. ,p.c. siid cofuipu~st,oIi

- ~ii~a-~~
-

~ - - -~~
- -- ~~~~~~~~~~~~~~~

2.1.2 Hierarchy of Desi gn Page 3~.

Suppose that program PrintCustomerList will use the operation
ApplyFunctionToListElements (MAPC in a LISP environment) to invoke the PrintCus~’.~mer
operation on each of the elements in the customer list. The PrintCustomerList program will
be constructed in some manner determined by its own structure. The method by w hich the
ApplyFunctionToListElemerits operation is made available to this program is not relevant to it.

In the context of the ApplyFunctionToListElements program, however , the choice between
providing a set of macro definitions or a set of references to external routines must be made,
and the origin of those routines must be specified. All of this information should be as
independent as possible of the potential users (such as PriritCustomerList) and of the
mechanisms necessary to construct those users.

It is not possible to completely isolate these dependencies, of course. If PriritCustomerList
and ApplyFunctionToListElements are written in incompatible languages, there may be no way
to interconnect the two. Furthermore, linguistic constraints may make it necessary for a
subprogram to know something of the context in that it will be compiled. The first problem
we address in this thesis, while the second will wait for the results of other researchers
(Tich8O, Schw79).

2.1.3 F amili.s of Systems

In section 1.2.2.4 the notion of a system family was introduced. The concepts and system
developed in this thesis are primarily motivated by the difficulty of maintaining multiple
versions of systems in a consistent state. It is not sufficient , however, to duplicate
information in order to duplicate systems. The implementor of a system family must be able
to maintain a module or subsystem as a single unit, regardless of the different systems in that
it is incorporated.

Suppose that a graphics plotting subsystem is incorporated in an executive planning
system. The plotting subsystem makes use of lower level subsystems such as a command
processor , graphics line and curve drawing routines, mathematical subroutines, and so forth.
The plotting subsystem, in fact , exists in two versions, one for a raster scan display and
another for a vector display (we will ignore for the moment the possibility of alternate
versions of the low level programs).

The specification of the system structure for the executive planning systems will include
subsystem interconnections and construction information relevant to building the system at
that LeveL Included will be an indication that the plotting subsystem is required. The system
structure for the plotting package w ill likewise specify the organization of subsystems
necessary for plotting to be done; that structuring is, we hypothesize, independent of the
raster or vector orientation.

The mechanisms for construction of the planning systems that incorporate the plotting
packages must be such that changing either the algorithm for a particular plotting function or
the relationship of subsystems within the plotting subsystem is registered in the two
executive planning systems. Providing a single system representation that can be copied to
form “families ” fails to accomplish this goal. The common implementation knowledge shared
by members of a family must be encapsulated within the context of the system
representation.

- - -

~

- - - ——--- — - -

Page 32 2.1.4 Exclusions

2.1.4 Exclusions

The following areas are not directly address in this thesis and these descriptions are
boundaries on the thesis scope.

— Environmental Systems. Systems such as APL, LISP, and La incorporate their own
system building mechanisms. By preempting the editing and interconnection
aspects of system construction, these systems are left insufficiently flexible to
integrate into a unified system structuring system.

— Algorithmic Knowledge. Some of the knowledge about systems consists of
algorithms and data structures that comprise the system. We will use specific
algorithms or data structures only as examples of the kind of system components
that could be connected together to form a software system.

— Programmer Knowledge. A model of the programming process or of programmer
knowledge. We attempt to automate some programming procedures but not to
attempt “automatic programming.”

— Environment Specific Techniques. The concepts provided in this thesis are
hopefully general and independent of particular languages, compilers, document
generators, and so forth. Therefore , details of specific techniques applicable to
specific processors will be avoided except when used as illustrations of how a
general facility can be tailored to a particular processor.

— Verification of Component Specifications. Certification that format specifications of
a subsystem meet the requirements of its users. Other researchers are
currently examining this aspect of the problem (Tich8O].

— Type Checking. A specific form of specification matching is often performed
during linking of system components (Gesc77, Wulf 76, Lisk74a], namely, checking
that the types of arguments and parameters are compatible. Since this analysis
is completely dependent on linguistic features of particular programming
languages, the programming language facilities will be invoked to perform such
checking.

— Text Editing/Macro Expanding Capabilities. A good text processing facility, text
editor and/or macro expander is crucial to high productivity of programmers and
to the implementation of many of the concepts advanced in the thesis. We
assume that we have such facilities available.

— File System Capabilities. A good directory or catalog combined with a flexible file
representation can contribute directly to increased programmer capability. Good
ideas in this area are described in [Alme77, Roch74, Orga, Rich74].

— Access Control to Files. Much of the control of system evolution can be
accomplished through restricting and recording access to the files that represent
the components of the system (l4abe77]. In particular, file histories provide a
rather good approximation to program histories.

— Integration Techniques. Once the abstract modularization of a system has been
accomplished, the task of representing each of the modules begins. Much of the

~~~--~~~~ -~---- ..~~~~~~~ 



-~~

2.1.4 Exclusions Page 33

concern over this representation hinges on the mechanisms by which modules
will be recombined to form entire systems. Some of the examples will make use
of particular methods of editing text, combining program segments, linkage
editing, and so forth, in order to illustrate the application of our approach- to
conventional integration techniques.

- Dynamic Modification. In order for a system to be modified during its execution,
special hardware and software facilities must be established. Such mechanisms
are independent of the structure of the systems which might utilize them.

2.2 Review of related work

Very little research and only a modest amount of engineering has been devoted to the
topics explored in this thesis. The following sections review several efforts, some directly
related and others philosophically sympathetic.

2.2.1 Krutar Flaxors

Rudy Krutar has explored some unusual types of system modifications and proposed some
implementation rnechanisms(Krut75). The particular examples he discusses are extracted from
his experience with a variety of software systems. He represents the various versions of the
systems as data flow graphs with coroutine nodes; a node can be replaced with another node
or a subgraph to implement a modification.

The par t icular “flexors ” he develops (a character set redefinition facility, a method of
defining programming language semantics , a method for creating lexical analyzers, etc.) are of
interest in this context as examples of portions of systems which are usually cast in concrete.
By providing such flexors as librar~ facilities, construction of complex systems which must
have, fo r example, a Jexical analyzer, becomes more economical.

Krutar intuitions are similar io those of the present author. His implementation techniques
are one approach to achieving the flexibility that is his primary objective. We will attempt to
represent statically the flexibility he achieves dynamically with coroutines.

2.2.2 Parnas’ System Families

Dave Parnas introduced the “software system family ” term and justifies the consideration
of system family design(Parn76a, Parn76b). He argues that similar system can be designed
together, so that the facilities which they all require can be designed and implemented once
(Or a small number of times) rather than repeatedly within the context of each system.

Family design is facilitated by rigorous application of some particular design methodologies,
namely modular decomposition and hierarchical design with a well defined hierarchical
relation. The independent application of those two methodologies results in a rich set of
alternative systems. Some of these concepts were adapted to design a family of operating
systems(Habe76].

2.2.3 Softwar. Factory
At System Development Corporation, Bratman and Court have developed a software

development database with a integrated collection of tools for manipulating it , collectively

— — --— ~- 
~~~—- --


Page 34 2.2.3 Software Factory

called the Software Factory(Brat75]. The database includes not only system integration
information but several types of management information, such as schedules, test results,
dc’ .~npmont status and specifications.

The factory has a common command language and several processors which operate on the
database. The command language system also accumulates statistics about the development
process, such as computer resource usage, test run results, and module sizes.

A management tool produces information about schedules, milestones, component status,
and resource dependencies; it incorporates management techniques such is PERT. By
Incorporating some system design information in the management part of the database, the
reports and schedules are organized parallel to the software design structures. Thus the
Impact of a design modification can be evaluated in terms of the management resources
implied by the design change.

More technical facilities are provided by the engineering tools which operate on the
program representation part of the database. A documentation tool generates program
documentation from specially formatted comments in the program text. A program flow
analysis and measurement tool automatically inserts measuring hooks into programs that can
produce execution profiles. A test case generator automates the process of exercising all
program statements. And a top-down design tool allows partially implemented programs to
be executed with program stubs in place of actual components.

Integration of the management and technical aspects of software development In a single
database system provides considerable leverage on the control of software development.
The authors have paid particular attention to the management control of development
although some of the management techniques parallel the technical techniques. The database
system proposed in this thesis would be an extension of the technical portion of the software
factory database ; it could presumably be integrated with the other dimensions.

2.2.4 Bo.ing Software Design Validati on Tool
The Software Design Validation Tool (SDVT) developed at Boeing Computer Systems

(Carp75] is a partially automated design representation tool. A system Is functionally
decomposed into a tree, that is, a set of functions is decomposed into a set of more
elementary functions. Each level in the tree is augmented by a transit ion diagram that
explains how control might flow between the various program components at that level.
Modification of global data is represented by noting within the transition diagram the type of
operations that might be performed on each “data parcel”; a parcel can be created , read,
modif led or destroyed.

This representation of the system can be processed to determine If the system Is
consistent according to such criteria as “can It terminate?”, “Is every design state reachable?”
and “are

-
there collections of states with no exit?” A system, called DECA, processes the

descriptions and matches the specifications of system components.

Like the system developed in this thesis, DECA processes a design language. It is typical
of commerc ial design languages In that it concentrates on control flow aspects of a program
rather than information distribution aspects. While there is a real need for this type of tool,
it would be an adjunct to a system of the type proposed here.

The SDVT notation is not connected in any way to the process of system construction.
Thersfore , the design goals established by the notation are Implemented In the conventional

_ _ _ ________ -~~~~-

2.2.5 Deiong System Building System Page 35

manner , with programmer discipline and management intervention.

2.2.5 DeJong Syst.m Building System
The System Building System developed at IBM Research (DeJo73J is a system for the

automated construction of systems. Systems are viewed as executable collections of files
generated from source files, represented in P1/I or IBM assembler language. In fact , the
system parses P1/I and assembler programs to determine what resources they require. SBS
is implemented as an extension to CP/CMS. Under user control, the system performs system
compilation and linking operations. Information about the system structure is maintained in a
relational data base that is updated by SBS when construction steps are completed.

An interesting feature of SBS Is Its attention to multiple versions of systems. Each f i le and
system is assumed to exist In several versions, many of which are act ive simultaneousl y. The
versions of files are numbered, so simultaneous existence of versions of f lies is a temporary
condition; at user designated times, divergent versions of files are “synchronized” Into a
single completely updated file. System versions are organized into trees, with the
operational version at the top, and various development trees appended to it; at user
specified times, systems are “promoted” from a lower development status to a higher one and
the changes to the various subtrees are combined by “synchronizing” the files that comprise
them. -

Updates to files that are maintained by SBS causes automatic invalidation of system link
files that depend on the changed files. There are mechanisms for preventing or delaying
these modifications, and for controlling the combination of divergent changes to files.

The definition of higher level construction operations is similar to the proposal put forth
here, as is the central data base from which information about construction Is extracted. This
system deserves special credit for addressing the problem of multiple versions, although only
a restricted concept of multiple version is considered.

The weaknesses of SBS include Its PL/I specific implementation and the narrow view of
system construction that derives from considering source programs in a particular language
as the objects from which systems are constructed. The command language, and other
aspects of the system, are quite crude and unnecessarily restrictive. The derivation of
system structure from the actual references that modules make on each other Is Inferior to
the explicIt designation of module interconnections.

The worst problems of the system, however, stem from its strengths. In attempting to
solve some multiple version problems, a “production” model of a system was assumed ; that is ,
each version of a system is a part of the development of the single “operational” version of
the system. Only with this model do the concepts of “synchronization” and “promotion” make
any sense. Furthermore, it is difficult in SBS to share information between independent
system trees , especially if that information exists In several versions as well. Also, the SBS
data base does not naturally facilitate the representation of hierarchical system design; all
objects within the data base are at the same level In all respec ts.

2.2.6 Hab.rma nn System Design and Maint.nanc. Control System
In the SOC system implemented by Haberm.nnfHabe77], the notion of “typed oblect i~extended to the files that comprise the modules of a system. A system is composed of

modules each of which is an abstract data type , or a collection of abstract data types with
additional faci lities that relate the types in the collection. Programs implementing the module~

- - - —---—- -
~~~~~~~~~~ - - -~~~~~~~ _ _ _ _ _ _ _



Page 36 2.2.6 Habermann System Design and Maintenance Control System

reside in files that are organized in a tree structured directory. A protection mechanism
regulates access to the files.

The files of a module are organized into two groups: the “basic” files, original source
information or history, and “working” files, produced from the basic files. Operations on a
module result from user commands such as “update source ”, “print history log” or “copy
source file”. The system enforces modification policies by checking the commands against an
authorization list provided by a manager. Maintenance of backup copies of modified f iles,
definition of testing environments, some module interconnection specifications (within module
definitions) and automatic invalidation of working files that are out of date are also provided
by SOC.

This system, and the one proposed in this thesis, share the Idea of a central system
construction data base with high level construction operators. In addition, the auxiliary files
that are a part of a module in this system reappear In our system as “histories ” and
“mailboxes”, each with a set of operations defined on them.

The system is limited in that the primitive “module” In the system is assumed to be a
programming language object , and we consider that model Insufficient for a general module
implementation. The descriptions of entire systems do not appear In the SDC context. We
will separate the module interconnection information from the module definition both for
philosophical reasons and to make possible the definition of multiple versions of systems, an
issue not addressed in the Habermann system. We will also pay more att.ntion to th.
automatic generation of system construction activities.

2.2.7 O.Rem.r and Kron NIL
An Immediate precursor to the concepts explored in this thesis Is th. module

interconnection language (MIL.) proposal of DeRemer and Kron (D R.76]. They argue
convincingly about the difference between programming-in-the-small, for which a
programming language is appropriate, and programming-in-the-large, for which a module
interconnection language is needed.

The MIL that DeRemer proposed is oriented around a tree model of system composition.
Each system Is divided into subsystems, each of which might likewise be subdivided.
Resources are explicitly routed from the “provider” of a resource to the subsystems that
“require” them. A subsystem can “provide” a resource by “originating” It or by “deriving” It
from an offspring system. Access to resources supplied by siblings Is controlled by the
parent system. Resources available to a system are usuall y availab le to the offspring
systems , but resources do not bubble up unless specified to do so. Programs are attached to
subsystems as the mechanism for “originating” resources. (The resources are considered to
be functions, or other programming constructs.)

The MIL “programs” are submitted, hypothetically, to an MIL “compiler ” that produces
completed systems. Tb. MIL compiler checks module boundaries for compatibility, verifies
that resources are used only where they are available according to the MIt. program, and
displays actual resource usage patterns (eliminating the multistep access path).

This thesis extends the notion of the MIt. to Include several other concepts necessary for
multiversion systems constructed from fully general modules. The existence of a processor
for th. Mu was also derived in par t from DeRemer’s suggestion. However, the notion of an
MIL compiler has been discarded in favor of a system construction data base processor
supporting an Interactiv , system construction environment. The res trictive assumption about



2.2.7 DeRemer and Kron MIt. Page 37

the contents of program files, and their attachment at spec ific node sites, has been eased, and
the specificat ion of construction procedures has been made explicit.

2.2.8 Thomas MIL
Thomas also developed a module interconnection notation and discussed a possible module

interconnection processor (Thom76l His approach was to build a module interconnection
language (MIt.) that defined “environments” of accessible names; some of these names refer to
resources while others denote modules, subsystems, or nod•s in the MIL The resources are
assumed to be CLU-like resources (i.e. clusters or procedures) that are, even tuall y, provided
by source code modules. Each module provides a set of resources and may require a set as
well. Modules can be combined into subsystems that act (almost) like modules within the MIL.

- A node in the MIL describes an environment, or set of accessible resources, and a group of
modules that will share that environment. It resources are used by those modules, they are
either acquired from “successors ” of this node, specified within it, or from the node that Is
using this node. (The latter alternative Is the source of a greet deal of complexity and
difficulty in the implementation of this MIt. system.)

Thomas also discusses a system that performs the interconnections described by the MIL
To him, the most cogent issue is whether to determine which actual module is to be used for
a given resource at compile time or at link time. Since Thomas is bound to the compile/link
paradigm, those are the only real alternatives available. Within this thesis we will explore
many different binding schemes and not be limited to the conventions of any one compilation -

.

system.

2.2.9 Tichy NIL
.

In related work at Carnegie-Mellon University, Tichy is developing a module
interconnection language and exploring several issues relating to system construction[Tich8O).
The three primary foci of the module interconnection language, the lnterf ace between the NIL
and the compilers, and the organization of asynchronously evolving multi-version systems.

The NIL itself is similar to those of Thomas, DeRerner arid this thesis. The resources are
constrained to be programming language objects such as data type definitions or procedures,
and the interfaces are specified within the module interconnection language. Part of the
responsibility of the NIL processor in this system is module boundary type checking.

It is planned that portions of the systems can be compiled separately in any order, but that
complete Interface checking will be provided. In order to accomplish this, the NIL processor
must have additional information available from compilers. The C compiler is being modified
to test the feasibility of asynchronous compilation.

Tichy’s project complements the current work by exploring how processors might be
designed to make system descriptions more convenient and flexible, and by developing NIL
strategies for organizing the asynchronous development of parts of a system. - -

2.2.10 Cl.ar/Cast.r
The “Controlled Library Environment and Resources” system and the “Computer Assisted

System for Total Reduction of Effort ” system were developed as internal tools for IBM
development proje cts (Brow7O]. Clear maintained a database of obje cts containing programs,



-~~

Page 38 2.2.10 Clear/Caster

macros, specifications, documentation, and messages. A major motivation for this database
was the control of the development process from a management viewpoint. Caster extended
Clear with a terminal-oriented interface that provided interac tive access and modification of
the database, remote job entry and conversational debugging.

Included in the Clear/Caster context are several special facilities: Multi-version files can
be stored with “deltas”, cross-references are extracted, program libraries are maintained, a
do’cument preparation program facilitates manual writing and others.

Clear/Caster is an old system and exploits none of the recent methodological advances. It
Is unclear that a new system wo~Id incorporate any of the detailed struc tures of
Clear/Caster , although the underlying principles are sound.

2.2.11 Programmer’s Workbench
The Bell Labs Programmer ’s Workbench (PWB) is described in

(Dolo76a, Mash76a, Mash76b, DoIo76b, Knud76, Bian76, Roch74]. It is an entire computing
system dedicated to the process of preparing programs and documents for system that run
on other computers connected to the PWB machines via hardware communication tines.

- 

- The authors argue convincingly that the facilities needed by program developers are
dissimilar from those required by program users. In particular, the large scale equipment,
complex operating and file systems, protection mechanisms, and “compatible” architectures
that are crucial to the operation of systems- are contrasted with the small, flexible, interact ive
environment ideal for program development. For example, systems are often constructed to
handle massive amount of data and therefore the data base facilities of the host for such a
program should be sufficiently rich to permit maximum exploitation of the hardware. Program
development data bases, however, are typically small, and the benefits of a simple, uniform

— 
data base facility in terms of the ease of constructing new tools to operate on it, far
outweigh the inefficiencies that may be inherent in It.

The facilities currently supported by the PWB are a source code control system, a remote
job entry system, a document preparation system, a modification request control system, and
drivers that simulate user conditions for testing. The source code control system is a file
storage system that records, in the same operating system “file ”, the various versions of a
text file; this is accomplished by recording the original version plus interleaved modification
descriptions (“deltas”) that can be applied to create more up-to-date versions. The remote
job entry system provides the interface between the PWB system and the host systems on
which compilation and system testing are carried out. The document preparation system
includes the usual facilities for defining filled and just ified text , sections, references and other
report format operations; it lnterf aces not only to line printers but to more flexible printers
including phototypesetters.

The PWB system is clearly a friendly environment in which to do conventional program and
system construction. The power of the command language and the UNIX shell allow
programmers a great deal of flexibility in organizing the construction process. While there
are facilities that are difficult to provide with this architecture, (the authors specifically
mention the absence of interactive debugging), there is no inherent limitation on the features
that can be included in this system. Most of the tools provided are available in other good

• system construction environments; the integrated nature of this system makes the whole
greater than the sum of the parts.

There is no central structure - In PWB which records and controls system construction, and

-



2.2.11 Programmer ’s Workbenc h Page 39

no uniform method for describing systems. The programmer must, as In standard systern~,provide the commands to build an externally represented system. (A recent addition to the
PWB called Make provides some of these capabilities. Unfortunately, a complete description
was not available in time to review.)

2.2.12 CLU

The CLU system [LIsk74b, Lisk74aJ incorporates a facility for interconnecting modules as
defined within CLU. Modules are either clusters or procedures, and each module has
associated with it a d.scripeio,i uitit (DU) that contains all the computer processable
information about a module other than the program f or the module. Among that information
are path definitions that are used for resolving module usage by a given module.

Description units include comp iler information, such as the type identifier of the module - 
-

(the name of the type in CLU that it implements), the types of parameters to the module, the
module name, and the object code for the module. This amount of information makes possible
strong type checking between modules when they are linked together. Descriptions units
also cont ain documentation, specif ications, debugging information, and a list of users permits
notification of module changes.

The CLU system considers each module to be a part of its domain, and therefore has In fact
a central data base of system information, including the modules and their DU’s. The entire
Interconnection scheme of a system can be determined by tracing the system from the root
DU, determining the set of modules used by it, and proceeding recursively on each of those
modules.

The CLU mechanism permits the definition of multiple versions of modules in the sense that
module definitions can be copied and the associated DU modified to include a different —

resolution of the modules used by that module. A slight reconfiguration of the scheme would
permit multiple DU’s for modules, increasing the flexibility of the mechanism. Systems could
then be constructed by specif ying the appropriate DU for each subsystem.

The definition of a module in CLU, however , restricts the interconnection mechanism to
CLU-sty le modules. The definition of module used in this thesis is much broader than that of
CLU, so the notion of module interconnection is also less restricted. Including the
Interconnection mechanism within a particular language will be seen to be an Incorrect
approach for the general problem of specifying system information interconnections.

2.2.13 M.sa

The Mesa system, developed at Xerox PARC (Gesc77J, is primarily a programming language
supporting a data type definition facility. Some attention, however , was paid to system
construction as it affected the data ty pe definition aspects of the language and considerable
success has been achieved in providing type-safe intermodule linkage.

Modules, in Mesa, are either “definition modules or “program” modules; some program
modules “Implement ” definition modules. Programs that need resources provided by a module
specify a definition module; later , a binding process provides an implementor for that
definition. Type checking is performed as a part of binding. The authors of Mesa correctly
emphasize the importance of separate construction tasks , such as compilation and binding.
They solve the problem of plugging in multiple implementations of a given set of
specifications , and f or checking that the implementation provided “matches” the module that is
expected by the caller.



- ~~~~~ . -- -. . ,~~~~~~~~ - --- . - .  - - - - — -

Page 40 2.2.13 Mesa

The decision to address the construction issues from within the context of a particular
programming language violates one of the principles of this research. Not only is It InevItable
that other languages will be used (in non-programming contexts , If not other programming
languages), but some information that is used in a system may not be naturally recor ded in a
programming language.

The Mesa mechanism also provides no facility for providing versions of system that vary in
their specifications. Since providing multiple implementations of a single set of specifications
is only a small percentage of the family variations, solving that problem results in only minor
progress on the whole issue.

Finally, there Is no design level description of the interconnectIons. Binding in Mesa Is a
dynamic searching process that follows “paths” that are established by the user who issues
the “bind” command. The origin of system components may not in fac t be easily determined
once the system has been built because the path need not be retained. Furthermore, while
module interfaces have been checked carefully, no assurance is available that global system
design constraints have been obeyed.

(A librarian facility for Mesa is currently under development at Xerox. Some of the
problems mentioned above will be addressed by that system).

2.2.14 Transformation Impl.m.ntation

The Transformation Implementation (TI) system developed by Balzer(Ba1z76] is included
here because the concept of verification it implements is similar to the notion of verification
via construction. In that system, a programmer writes a rigorous, procedural, but abstract
(with regard to representation of computation objects) program that is verified to perform - -

the desired functions. Then, with assistance from the system, the user optimizes the program
using source-to-source transformations that have been verified to preserve certain
properties.

The basic approach, then, is to verif y the original program and each of the transformations ,
arid deduce from that collection the properties of the final, concrete program. ModificatIons
to the programs are made to the original, abstract programs and the transformations , if still
valid, are reprocessed. Later in this thesis, we will propose that various system properties
be established not by examining the actual system components and “verifying” that they are
correct, but rather by examining the information that was used to construct the systems and
the mechanisms by which the construction was carried out, and from that deduce that the
systems will exhibit the desired properties.

In general, it will be necessary to extend the transformational implementation approach to
handle information that is originally represented in formats other that program text.
Recording and reusing the transformations takes on great significance In the context of a
system construction driver, especially the application of transformation rules to families of
input information.

2.2.15 PLISS
White and Anderson describe a system for supporting construction of systems implemented

in PL/ I(Whit77]. The system controls the compilation of PL/I programs and maintains a data
base about the interconnections between program segments. The system depends on use of
a PL/1 extension that permits the flexible definition of PL/I modules.

H



2.2.15 Pu SS Page 41

The authors consider the P1/I language insufficient for system construction due to the
rigidity of the INCLUDE feature (which copies files into programs) and the lack of type
checking on parameters of external functions. Therefore, the authors propose meta-modules
that define P1/I modules in such a way that the system can check usage of external
procedures. (A similar technique will be proposed in this thesis). In addition, a relational
data base Is used to store information about the interconnection of program segments. The
actual programs and linkage files are stored in other files.

The central system construction data base is similar to that proposed in this thesis,
although it is much too general and contains unnecessary and unduly constraining information.
Unfortunately, many types of objects intuitively handled by programmers are not manifest in
the data base. Having the system take partial control of construction is also compatible with
the concepts of this thesis, as Is the establishment of a “meta-language” to augment the
virtues or overcome the limitations of the available language processors. The use of a
graphical representation of system structure In this system is also appropriate.

The primary difficulty with using this system as a base is the myopic view of system
construction adopted by the authors. The entire system is oriented toward the compile/link
paradigm as available on IBM OS/360 systems (or MVS/370 systems) with PL/1 as the
programming language. Operating from within this world view prevents one from perceiving
the more general information interconnections in systems, and the multitude of ways in that
the information might be transformed other than compiling.

2.2.16 Software Engineering Data Baa.
Researchers at Softech have proposed a software engineering facility (SEF)(Irvi77J. An

SEF is defined as an integrated collection of subsystems that assist the software eng ineering
process, from requirements analysis to maintenance and enhancement of a system. The SEF
as discussed in the reference is a proposal, not an existing system, although there is
indication that some aspects of the SEF are implemented.

The central feature of the proposed SEF is a software engineering data base that contains
all relevant information about the system in a machine processable format. It Is intended that
the various phases of development be sufficiently integrated into the data base that there is
no need to “enter ” the information into the data base from some external source, but tha t I t
naturally appears in the data base as the processed occur. In other words, the data base
Itself becomes the filing system, design document, record keeping system, and so forth.

Several subs ystems proces s the data base in a variety of ways. A “ requirements
processor ” facilitates the rigorous definition of system requirements. A general “system
analyzer ” is a facility for examining program structures, extracting Information from the data
base about system structures (e.g. total space requirements, dependencies among
subsystems) and simulating control flow. An “interf ace auditor” checks module boundaries,
verifies that subsystem boundaries are not violated, determines the effect (in terms of
modified modules) of a modification, and records modul. histories. Ther. are additional
subsystems proposed for generating reports about the system and for applying test
protocols. It is the view of th. designers of the SEF that other subsyst ems can be Integrated
Into this data base to extend the functionality of the SEF as a whole.

The work in this thesis contributes directly to the goals of an SEF. The central data base
for software engineering Is reintroduced in Chapter 5. It is appropriate to define the system
information as a structured data base with a wide variety of processors to actually handle

-

~

--- -----

~ 

~~~~~~ - -  —-~~~~~~~- -~~~~~~~~~~~~


Page 42 2.2.16 Software Engineering Data Bas•

the information, because the information is viewed very differently by different people in
different phases of the development cycle. Furthermore, it will not be possible to predict the
uses to which the dat a will be put, so that new subsystems will continually evolve to add new
capability to the SEF.

It Is also important to t reat alt documents of the software engineering task as flexibly and
automatically as program text. Th. apparent immutability of documents normally printed on
paper and read by humans compared to the relative plasticity of those read by mach ines
reflects the effort that has been applied to the two domains. Recent work in programming
languages has made the flexibility of programs even more remarkable; requirements
documents , program logic manuals , user guides , system measurements, online help facilities,
and other objects of relevance to the system , should also be integrated into the automated
facility.

This thesis extends the SEE philosophy by “filling out” some of the details of the data base
with some new concepts In program structuring. The SEF proposal designates that “system
structure” be recorded in the data base, but no actual technique for representing “system
structure” is presented. If a system stri.1cturing technique can be inferred from the
description, it is a primitive mechanism with little abstract coherence. The necessity, within
th is scheme , for a subsystem that “checks” that subsystem boundaries have been honored ,
Indicates that the subsystem definitions do not coniroZ the construction process. The system
described in this thesis will have construction control completely dominated by subsystem
d.scription and such a tool would be superfluous.

The notion of sharing arises in the SEF proposal, hut the authors do not analyze the nature
of sharing. It Is the opinion of this author that shared information is the most difficult
problem In making feasible a system description, especially in the context of simultaneous
multiple versions of information and systems.

2.2.17 Ad Hoc
Many of the specific goats of the work presented here have been achieved in part icular

cases by the use of ad hoc techniques. In fact, some of the motivation for this research has
come from observing efforts of various clever technicians meet their needs with the tools
available to them (Ermal7, Re1n77].

The following generalities are extracted from those observations:

— The methods that have resulted from those efforts have sometimes achieved
fa irly mundane goats with iricommesurate amounts of ingenuity and computation.
The success of the effort is likely to be appreciated less for its ostensible
function than for the achievement of the function given ~~ ~~ jj~~I facilities. A
prototypical example is the introduction of type checking on parameters into a
language that does not support such checking across compilation units, by using
the compiler’s macros facility to redefine procedure declaration syntax.

— Another characteristic of many of the ad hoc techniques is that their
representation is convoluted, obtuse, fragile, and often not documented. These
attributes derive not fr om the laziness of the programmer but from the
awkwardness of the facilities.

— Application of similar techniques to new problems is dIffIcult due to the lack of a
uniform framework for representing the application of the techn iques. A

2.2.17 Ad Hoc Page 43

programmer , attempting to decipher a piece of program or system tex t , must
independently know the construction processes which will apply to it.

- Since the ad hoc facilities are embedded in other processes (e.g. macros
processed during compilation), they are not easily separated from those other
processes and are therefore hard to design and maintain. Without well
established vocabularies of abstractions and transformations in the domain of
system construction, the programmer promulgates those confusions.
Considerable confusion attends the distinction between objects of the following
pairs of types: files and directories, program tex t segments arid facility or
resource names , procedures and procedure names, “external” names and macro
names, text editing commands and compilation instructions.

As mentioned in section 1.5, theory derives from practice. The greatest contribution to this -

work has been the (occasionally introspective) observation of programmers struggling to
understand their activities and to implement tools that capture, within specific contexts, those
intuitions. This thesis is primarily a generalization of the work of those people.

I

~

--,-—.-.—- ----_--..
__________________ ~~~~~~~~~~~~~~~ - —~ .—-.~~~----- Lii

Page 44 2 System Oescrl pt ions

II System Descriptions

—~~

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

3 Sof tware System Structuring Preliminaries Page 45

3. Software System Structuring Preliminaries

3.1 The Nature of a Software System
White there is much intuitive understanding about the nature of software systems and

families of those systems, this chapter attempts to make explicit the model of software used
in this thesis. It definitely does not include alt software systems that currently exist , and may
exclude a large class of useful software systems. However, it does accurately reflect the
model of software that predominates in the “production” style of programming that
characterizes almost all commercial, military, and computer vendor systems.

3.1.1 Construction from Components

One crucial characteristic of software systems is that they are constructed from original
descriptive components, such as program segments. In other words, the systems can always
be reconstructed from its source. These components are usually contained in files in the
operating system environments, processed by compilers arid other processors, producing the
actual software system. The notation of the system components is usually completely
independent from that of the resulting system (except possibly for debugging information that
retains some of the original notation). The interface to the resulting system is supplied by
that system, not some universal software. The executable portions of these systems are
programs that run either directly on computer hardware (with or without assistance from an
operating system) or are interpreted as if they were running on a special computer
customized for the particular language.

Non-executable portions of systems are constructed in analogous ways, and while the
resultant objects do not execute, they are stored in files , printed on paper, written onto a
magnetic tape, transmi tted across a communication link, or disposed of in some other
(presumably useful) manner. For the duration of these sections, we will discuss systems as
though they were comprised only of executable programs, although the reader is encouraged
to remember that this is only to keep the prose from becoming ponderous with parallel
alternatives.

3.1.1.1 Tb. Natur. of System Components. In conventional system construction environments,
the components of a system are “source” files encoded in a particular programming language
(or group of languages). There are usually two groups of source files: primary input to the
compiler and secondary fi les that are included during compiler execution. Primary input files
generally produce actual object code for a main program or group of procedures, or the
definition of variables and constants. Secondary files define facilities; in some cases these
are necessarily macro definitions, while in other cases they are macros (or similar definitional
material) by convention. In some cases, the programmer specifies secondary files directly,
while in others the compiler maps names to files.

The same view holds in state-of-the-art system construction environments, both real and
hypothetical, although the secondary files have been replaced by a more rigorous definition
facility that provides encapsulation of information. By exploiting the additional structure of
the secondary files, the compiler and supporting programs can match specifications between
module and user (Gesc77, WuIf 76], permit multiple implementations of facilities
(Gesc77, L1sk76], and preprocess auxiliary files (Wu lf76, Gesc77, Liskl6).

The view of system component that is taken in this work is more general than either of the
above. A system component is a file that contains some unit (or collection of units) of

Page 46 3.1.1.1 The Nature of System Components

information about the system. This Information will probably be encoded in some way, but
quite often

~~~ 
in a programming language, since that is an overly constrained and often

unnatural representation of the information. For example , suppose the information contained
in a system component is the definition of the finite state machine that characterizes the
operation of some object in the domain of the program (e.g. identifiers in a language,
Illumination patterns of a traffic light, operation of an elevator). There are several standard
representations for finite state machines, none of which is acceptable input to a programming
language compiler. The conversion from one of those representations, such as an adjacency
matrix, into a programming language might be a straightforward task, but clearly combines
two pieces of information, namely, the particular finite state machine and its implementation in
a particular language. 5

There are many ramifications to generalizing the notion of system component. The
“source” of a system is no longer presumed to be directly processable by a compiler; in fact ,
the compiler input files might well be generated by programs whose function is to combine
various pieces of information into a syntactically valid program. The auxiliary files that
contain definitional information are also encoded in ways natural to the information contained
within them rather than in ways convenient to a compiler. A great deal of information in a
system is concerned with the translation of information from one form to another.

3.1 .1.2 Components vs Construction Information. As indicated by the preceding paragraph,
there are two kinds of information in conventional systems. First, there are the components
that contain algorithmic and data information. Second, there are the instructions by which
these items are manipulated into a runnable (readable, distributable) system. The former are
almost always encoded in files; the latter are seldom encoded, but are st ored instead in the
heads of the implementors or written on paper as instructions for human beings to execute.

Irnpiementors increasingly record construction information in command files or command
procedures that can be directly utilized by the operating system command language or the
individual processors that perform the construction tasks. Rudimentary, however, is a mild
word to apply to these facilities in the context of the information that they repute to
represent. We can get an idea of the amount of effort that has been applied to the
construction problems relative to the algorithmic problems of a system by contrasting the
syntax, flexibility and appropriateness of even crude programming languages with that of the
control languages for operating systems, linkage editors, text manipulations programs,
compilers and other tools.

If encoding of system construction information is rare, however, encoding of design
information is virtually non-existent. Design documents are almost always intended for human
processing exclusively and the enforcement of design decisions is a tedious part of a project
manager ’s job. There are a number of proposals for making system design descriptions more
rigorous (f or example, see (Rossl7, Te1c77)), but these are primarily intended for improved
human-to-human communicat ion.

Finally, given the rarity of machine processable representations of design and construction
information separately, it should come as no surprise that there are no systems that provide
for the integrated representation of design and construction information. In this work, we
attempt to unify all three kinds of information within a single framework , so that design
decisions can be exploited during the automated construction of systems built from

“0th. , ci... •,. no$ •o simpi.. Con.id.r the •mount of effort that his b.. ,, devoted to coiw,rtin~ deci.io,, sbu s
into COBOL pro;rs ms or mschins cods, or BNF ~,smmsrs to psv..r~ 

~~ —~~*---~



3.1.1.2 Components vs Construction Information Page 47

components that contain domain-specific Information.

- - 3.1.2 Manifestations of • System

In ordinary conversation about software systems, it is usually assumed that the
manifestation of • system is a collection of executable programs and possibly some auxiliary
data that is shared by some of the programs. In reality, however, the system takes many
forms that have widely varying construction mechanisms. It is also clear that the concepts
presented in this thesis, while derived from experience with software systems, may be
applied to other objects constructed with similar processes, e.g. a complex document.

A system takes a very different form when it is distributed for installation at other
computing sites. Depending on management policies and technical necessity, some collection
of source objects , par tially processed objects, documents, system construction procedures,
Instructions and test procedures will be packaged on a magnetic tape (for example). The tape
certainly contains the information of the executable version, for it is intended that the
executable version be created from it, but the process of packag ing is different from that of
linkage editing.

The information of a system takes yet another form in the documents for a system. Some
of the information of a command language, for example, is reproduced in the user’s manual for
the system. The module designs, module interconnections, and various aspects of the
components of the system are reproduced in the program logic manual. The operator ’s guide
contains yet another collection of information. With current technology, documents are
prepared by procedures very similar to software systems, and therefore we can clearly
include documents in our scope.

In conventional environments, of course, the distribution and documentation of systems
occur as activities independent of the software construction process. Where great expertise
is devoted to the construction of the programs, the task of constructing the manuals is left to
the people who can write but who may not know much about using the computer as a tool at
alt, much less exploiting the representation of the system components in the manuals. The
distribution problem is generally handled ad hoc, with the massive exception of the SYSGEN
(1BM72) and derivative mechanisms.

3.1.3 Information Sharing
As alluded to above, the construction of a system will involve the manipulation of

information into forms suitable for compilation, document preparation, or whatever the
immediate goal dictates. It could be the case that each piece of information was used in a
particular manner in the system, such that we could consider the information units to have
associated with them single transformations that were performed during the integration of
the system. However, it turns out that information is often used in more than one way even
in a single version of the system. For example, consider the information that associates with
an aircraft type Its seating arrangement. In one context , these arrangements may be bound
to identifiers such as “SeatingBoeing727” as compile-time constants. In another context , the
two values might be placed in separate fields of a record. In a third, aircraft types might be
listed by total seating capacity.

One of the major problems in maintaining a system is ensuring that the various forms of
the same information In a system remain consistent. Usually it is the responsibility of the
programmer to systematically modify the various representations individually. In cases where
the information is clearly contained in a single location, this task can be manageable, but even

IL - ~~~~~~~~~ ---~~~~~-— 
- -



Page 48 3.1.3 Information Sharing

then the programmer is charged with ensuring that this is the only place the information Is
defined.

3.2 The Nature of a Family of Software Systems

A family of software systems is a collection of systems that share design or implementation
Information. Families of systems evolve naturally. Although they are almost never planned,
they arise from common situations. For example, the development version of a system
coexists with the public version. Although the development version could be isolated from
the public version, users often demand correction of errors and even additions of small
features in the public version before the development version Is ready for release. Hence,
the two systems actually coexist in source form as well executable form. Maintaining
consistency between these versions is diffIcult; customers of one large computer vendor
complain that a bug found in release k (and for that a temporary fix Is perhaps widel y
distributed) is fixed in release k+1 but reappears in release k+2 due to interleaved
development phases.

System families evolve due to the parallel development of features by independent
programmers, changes to perform measurements on the system, demands made by customers,
and changes in the hardware or operating system. The designers of the implementation ,
however, tend to imagine the existence of only the “current” system and seldom make
provisions for the multiplicity that actually occurs.

3.2.1 Dimensions of Variability

How are members of a system family related? The concept of system family is a very
general and it is quite possible that a particular example •of a technique could be
misinterpreted to cover the entire notion. This has occurred often in the history of
programming met hodology : goto 4ess programming for structured programming, abstract data
types for modules, synchronization primitives for the synchronization problem.

Replaceable subsystems are a significant and important technique for accomplishing system
families for some types of variability. The replacement of one object module with another
during linkage editing is a technique as old, relative to system construction history, as the
closed subroutine in programming history. But providing replaceable subsystems, as has
been quite flexibly and successfully done in (Gescl7, Lisk74a3 does not result In the richness
of system family desired here. In order to more fully condition the intuitions of the reader,
there follows a partial list of dimensions along which two versions of a system might vary
(possibly simultaneously). These dimensions are not completely Independent, and
considerable overlap exists among them.

- Implementation Language. Two versions of a system might be implemented in
different programming languages. Consider a random number generator that has
been programmed in Fortran, Pascal, PL/I, Snobol4, APL, Algol, Cobol and several
other languages.

— Underlying (Virtual) Machin.. Some systems are capable of exhibiting similar
behavior on several computing systems. These systems might contain different
computer hardware, operating systems, or versions of the operating system.
The Snobol4 family of systems [Gris72) is a family of this form, as is the Pascal
complier (Wirt7 l). This issue is generally given the stature of a separate

• problem called portability.

- ----—~~~



3.2.1 Dimensions of Variability Page 49

- Tailoring. When systems are sold to customers, they must be tailored to meet the
particular needs and whims of the customer . Furthermore, these custom
modifications must be maintained or enhanced through later releases of the
system. Since customers seldom consider the conflicting needs of other
customers, this form of system fragmentation is hard to control and often results
in significant compromises with the design.

- Instrum.ntation and Debugging. If the behavior of a system is sufficiently complex
or expensive, an e f fo r t  may be undertaken to analyze the performance of the
system. In some cases , program modifications are necessary to provide the data
in a convenient form. These modifications must extend through the various
sequential versions of the system but not exist in the production versions. A
similar problem arises if additional program text must be added to provide
debugging information, or if compilation and linking options must be specified to
enable the built-in debugging functions of the language and/or operating system.
These are, of course, independent of the instrumentation modifications and may
need to coexist with them as well.

• — Fl.xibl. Specifications. Overlapping or conflicting application environments f or a
system foster versions of the system with different specifications. The Sysgen
(1BM72] associated with some operating systems allows the customer to modif y
the specifications by taking subsets of functionality, providing values for various
system parameters, or naming alternative mechanisms for some system
capabilities. A sysgen is more restrictive than tailoring since the options are
specified from a menu of alternatives or attached to “hooks” at special points in
the system.

- Parallel Implementations. Several implementations may coexist that meet a single
set of specifications. Such implementations are often called “replaceable” or
“repluggable” versions.

— Configuration. Even the same actual programs can be organized in different ways
to provide different behaviors. For example, the distribution of data among the
levels of the storage hierarchy could accommodate the system to various loads,
constraints , or desired responsivenesses. Concurrent processes might be linked
via shared storage, message queues, coroutine discipline, or a network. The
functionality of the system does not change, but the methods for organizing the
system are potentially quite different.

- Substructur.. A simple version of a system might be appropriately implemented
as a monolithic expanse of source program text. Without requiring any complex
facilities, it may find the built-in resources of the programming language
adequate for its task. The same problem with a larger scope might reasonably
be subdivided, making use of library facilities such as symbol tables, f i l e
directories, indexed file organization, common command parsers and so on.

- Exp.rim.ntal Systems. Within a development or maintenance group, individuals
might experiment with different portions of the system. Each of the different
versions will be based on the “current ” version of the system with a particular
portion replaced by the new, improved information. Maintainers who are testing
error repairs produce similar smal l deviation systems. These systems are
characterized by their evanescense and, for some of them, their eventual



Page 50 3.2.1 Dimensions of Var iability

integration into other versions of the system.

— Sequential Releases. The most familiar family relationship among systems is
succession. Every commercial system evolves through a sequence of “released”
versions, possibly with intermediate update levels. This is the only dimension
along which there is necessarily an ordering to the versions; for this reason it is
particularly tempting to progress from one version to the next in a manner that
destroys the previous versions, or makes them difficult to maintain. However ,
many pressures have developed in the field to make the simultaneous
maintenance of several successive versions necessary. First, new releases are
occasionally unstable and customers are unwilling to use them until they are
seasoned. Second, many users modify their systems to accommodate their
particular needs, and will only upgrade those modifications when a truly valuable
new fac ility has been added or reliability has been significantly Improved. Third,
various systems in the installation may rely on idiosyncrasies of the early
version that were deleted in later releases. Since users insist on error repairs
and minor enhancements to “old” releases, systems must be actively maintained
in several successive versions simultaneously.

- Shared Subsystem. Two systems can be related only because they share a
subsystem. -

Even though the dimensions along which versions vary may be reasonably independent, It
does not follow that the Implementations are independent. Therefore, the existence of three
versions that vary along two dimensions does not imply that the “missing fourth version
could be implemented.

3.2.2 Docum .ntation of Families of Systems 
-

The documents for a single system also form a family. Consider a timesharing system with
a quick reference card, a reference manual, an users’ primer, a system maintenance manual,
and a console operator ’s manual. The development and production of this family of
documents is similar to th. development and production of systems wi th parallel
manifestations.

Generally the documents for a system exist in a single version, with th. except ion of
successive documents for successive versions of the system. With the increasing plasticity of
documents, It is possible to create a family of documents to reflect the family of systems.
Suppose, for example, that there are several subsets of the command language for an
operating system. The reference card for a user could be tailored to reflect the command
language actually implemented at his site.

3.3 InformatIon Sharing

3.3.1 ExplicIt v•rsus Implicit Shari ng
Some information in a system is shared implicitly among the components or versions of that

system, I.e. by duplication, assumption, coercion or coincidence. Some information is explicitly
shared; a tape record format encoded In Cobol and placed in a library is explicitly shared by
th. library pointer In the text of each user program. It Is impossibi. to explicitly share all

_ _  - -~~~~~~~~~~~~~~~~~



3.3.1 Explicit versus Implicit Sharing Page 51

information both because there is so much shared information in any system but aiso because
each occurrence of explicit sharing is accomplished by an ImplicItly shared mechanism.

One of the difficult tasks of a designer is to determine what information to share explicitly
and what to share implicitly. For examp le, suppose that the word size of the target computer
is used in various places in the system. Should this value be tagged with an identifier , placed
in a common file, and explici tly shared by each component of the system that makes use of it?
If the program is a general purpose program that can operate on many different machines,
this might be quite appropriate. On the other hand, if it is an operating system for a POP-I 1,
It is quite likely to be a nuisance that clutters up otherwise clear programs or, worse, an
illusion that misleads the reader of a program into thinking that the program is independent
of the word size.

This serves to remind us that the reason one wishes to control the use of shared
information is that it may change or be redefined. Any information that cannot change is
non-information (its information-theoretic content is no bits). The information for which
explicit sharing is justified is that information that is likely to exist in more than one version,
eit her simultaneously or success ively.

The boundary between these two classes of information is occasionally fuzzy. Due to the
difficulty of representing the information, or lack of rigor in utilizing It, explicitly shared
information might also be implicitly shared. In addition, some information may be in the
process of crossing the boundary; perhaps it has been implicitly shared but the process of
collecting it together into a unit is not complete. Part of the process of redesign is moving
pieces of information from one side of the boundary to another.

Information thought to be contained within a system sometimes becomes generalized or
dispersed. For example, suppose a program init ially stores some data in a format known only
to Itself. At some time, it becomes necessary to observe the operation of this program with
an external monitor. The knowledge of how the data is stored may need to be made available
to the monitor in order that it be able to measure the most relevant information. Similarly,
when it becomes necessary to establish a parallel version of a system, almost all of the
system information suddenly becomes shared between the two versions.

Such reorganization of information also results from the fact that systems with any large
degree of novelty cannot be well designed bef ore they are implemented. A designer may
manipulate a set of ideas for several years before formulating the correct organization of
those ideas. Obviously, the system will have been developed using the inferior design
principles but should, If possible, be reorganized along the improved lines.

3.3.2 Common Representation
In order for information to be shared, it must be represented in a manner that is

intelligible to all users of the information. One of the most important users of the information 4
is the individual who is responsible for understanding and specif ying that information. It
would be nice if the information was intelligible to that user as well.

Programming languages are not always the most natural means for representing
Information. As those who have tried to do simple operations on program text can attest ,
even simple programming languages have grammars so complex that full lexical analysis and
usually some syntactic analysis is necessary to perform such simple tasks as identif ying
procedure definitions, re-indenting or cross-referencing. (The presence of arbitrary macros
is sufficient to prevent any significant acti on without complete text processing and parsing.)

_



__ —~~~~~~~~
- -  

~~
•

Page 52 
• 

3.3.2 Common Representation

Construction of program text , on the other hand, is quite straightforward.

In conclusion, shared information is best stored in a format that is natural for the human to
interpret and modif y, and that is easily processed to produce the specifically formatted
representatIons necessary for specific purposes. It is likely that many of those
transformations will be common across many applications; examples are the construction of
records , case statements , arrays, parsers , table s, lists , and expressions. Other
transformations will be for special purposes.



4 Sof twar e Family Description Concepts Page 53

4. Software Family Description Concepts

4.1 Overview of Software Family Description Concepts

We will develop in this chapter a three-level software description notation that will bridge
the gap between software design and software construction. The highest, most abstract,
level of the notation defines the interconnections between subsystems or modules (there is
no distinction). The intermediate level describes instantiations of system versions conforming
to those interconnection structures. And the lowest, most concrete, level describes actual
system construction operations buil t on a reasonable file and directory system.

We will propose a simpte language with which we can describe many software families.
However, we will not attempt to obtain a complete or even wholly consistent language with
an elegant syntax and formal semantic specification; to attempt such a task without
substantial experience in the use of these system description concepts is premature.

Subsystem Interconnection. The abstract portion of. the notation corresponds to the
subsystem interconnections languages proposed by DeRemer(DeRe76], Thomas[Thom76) and
Tichy(Tich77). Each subsystem provides a set of resources to other subsystems and requires a
set of resources; in addition, is may be decomposed into constituent subsystems. Each
subsystem obtains some of its required resources from the subsystems that constitute it
(downward reference), others from externaL subsystems (horizontal reference) and the
remainder from the subsystems of which it is a contituent (upward reference). Figure 4—1
shows a simple subsystem (PLOT) that provides a plotting facility using the trigonometric
functions required horizontally from another subsystem (TRIG). -

subsystem PLOT provides PIotRoutthe.,
requires TrigFc ns external TRIG
realization . . . end PLOT

Figure 4-1: PLOT--A Simple Subsystem

Although the division of subsystems leads naturally to tree or acyclic graph structures, it is
possible to interconnect subsystems in arbitrary directed graphs. We presume that the
system designer determines what subsystem relationships are reasonable and we do not in
any way restrict the designer. As noted in section 7.1.2.3, cyclic use of subsystems does not
necessarily result in either confusion or recursion.

Subsystem Versions. An actual , tangible, readable, runnable or demonstrable software
system is an “instantiation” of some subsystem interconnection graph. We use the word
version to denote such an instantiation, so two systems sharing an interconnection structure
are defined to be versions of that subsystem. Because subsystems use resources from other
subsystems, a specific version of one subsystem uses specific versions of those other
subsystems. The instantiation level is the crux of the flexibility of this representation of
software families rests; we shall devote considerable space to showing that it is adequate for
describing many software system families. Figure 4-2 shows the previous example extended
with a collection of versions. In this case, t here is .a version for each language in which the
set of subroutines is implemented.

Subsystem Construction. The concrete level shows how the interconnection graphs and their
associated versions are implemented using the underlying file system end the programs that 

- - ~~~~~~~~~ ~~~~~~~~~~ --



Page 54 4.1 Overview of Software Family Description Concepts

subsy st.m PLOT provid es Plot Routin.s requires TrigFcr..v external TRIG
realization

version Fortran . . . .nd Fortran
version Algol . . . end Algol
v•rsion Pascal . . . end Pascal

end PLOT

Figure 4-2: PLOT--A Simple Version Collection Example

actually transform collections of characters into systems. Compilation, editing, linking and
other construction processes are introduced as operators on concrete objects, some of which
are source files. The abstract resources defined in the interconnection level are here reduced
to mundane character strings; compilers and other programs integrate these character strings,
creating the “core %mage,” “document or other tiles that are the final form of each system.
(Due to forward referencing problems, this level will be discussed in detail In section 4.3,
while section 4.4 will discuss system Instantiation.)

A mechanism (acquire) will be introduced as a part of the construction level to exploit the
flexibility of the interconnection and version descriptions. When a resource is needed during
a specific construction process, the acquire function retrieves the proper string
representation of that resource for the context from which it was requested.

In Figure 4-3 we have extended the previous example to include the construction
information. Suppose that the plotting programs are used in source form in Algol, Fortran
and Pascal programs. Let us assume also that there are programs that translate restricted
Fortran to Algol or Pascal (including references to resources), and that <Plot Routine Source>
Is a file containing a Fortran program. FortranResolve is a program that inserts resou rces
into Fortran program text. The file <Plot Routine Source> is outlined in Figure 4-4. The
comment line beginning with “Cs” is an instruction to FortranResolve and the translation
programs to acquir. the ThgFcns resource.

subsystem PLOT provides PlotRouwtes requires Trig Fcri.t ext.rnal TRIG 1’
realization

concret. object Ori g inal—f ile(<PLot Rouun. Source>)
version Fortran select TRIG -Fortran..Sowc.

resourc •s FortranR.solve(Original) end Fortran
version ALgol select TRIG —AlgoLSource

resources Fortran ToAlgol(Ori ginal) end Algol
version Po.tcal select TRIG—PascaLSource

resourc •s Fortran ToPascoMOriginal) end Psscal
end PLOT

Figure 4-3: PLOT--A Simple Concrete Construction Example



- ~~. ~ -~~-— -  -~-.

4.1 Overview of Software Family Description Concepts Page 55

C Plot Rout Ins Soure. r u .  —— R.str tctsd rortran wI th R..ourcs RsquIr .M.nt .
C

Subeoutin. Plotl(R ,B,C)

End
C

Subrou tln • Plot2 (D ,E,F)

End
C
CS Acqu Irs (Yr lg Fcnc)
C
C End ot Plot ~outln . Sourc. F ib

Figure 4-4: PLOT--A Simple Source File Example

4.2 The Interconnection Levet: Subsystems

The subsystem is the basic buitding block of the description notation. In this section we
will describe the structure of subsystems, define a syntax for defining them, and show how
they can be interconnected. The following is the essence of the concept of subsystem.

A subsystem provi des a set of resources that are available to other subsyst.ms and
may require a set of r.sources from other subsystems. An internal sub syst.m Is one
that is nested within another subsystem and provides Iti resources only to tha t
enclosing subsystem.

Resources are the currency of exchange among subsystems. They define how the
information contained in a subsystem may be used outside that subsystem. A simple examp le
of a resource is the interface description of a abstract data type. Resource formats can be
designed to incorporate whatever information the designer deems appropriate.

As an example of a pair of interconnected subsystems, consider a subsystem that provides
a pre-order tree traversal algorithm in the programming language Yfpl.* This resource might
contain such operations as “traverse tree and apply function F to each node” and “traverse
tree and collect balance statistics ” encoded in a manner that is independent of a particular
implementation of trees. Therefore, this subsystem requires a resource that defines a tree
representation; that resource is provided by a subsystem that encapsulates trees.

Subsystems may contain other subsystems. The enclosing subsystem defines what aspects
of the internal subsystems are provided by it to its users and establishes a common resource
pool for the internal subsystems. -

Each subsystem is instantiated as a set of versions (we will discuss these in detail In
section 4.4). Therefore , each subsystem may represent several related “systems” as seen by
users. We anticipate, for example, that there will be one STACK subsystem with several
versions rather than several subsystems each providing a slightly different stack resource.

4.2.1 Specification of Subsystem Interconri.ction
The first part of a subsystem description defines the interconnection structure; the second

‘Yfpl is, .f course, Your Fr.or ii. Pr c.dursl L.n*.p.t., such a. *1501, P1/i, Seal4 a... mbl.r isviu t. or For~r.a

— — --.

~

. - -—

~

-— — . -

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


Page 56 4.2.1 Specification of Subsystem Interconnection

part , following the bracketing keyword realization, contains the definitions of the versions
and the instructions for building them. This section addresses only the interconnection
portion, for which the syntax is given in Figure 4-5.
subsystem

~~~~~~~~~
stem 4onn~

ct ions realj zatj Ofl~~~~~~~~~~ ~j name

connections

provllst
__

J..t 1.-.,.~
__

reqlist
__
,:l~ ~~ envlist 1_t 1

~~~ J_ extrnlist

provlist

3.~~~~~
’
~7f1J rsrc-name]

reqlist
rsrc-name

‘ 0 <envlist
__________ ___________

extrnhst
___________ _________________ *(~n ironm~~)~ >Fsrc-name

I
> _>Cexter~D_ç~4 subs-na~~~ >

- I c c i cc
Figure 4-5: Subsystem Interconnection Syntax

Each subsystem has a name and three (possibly overlapping) sets of resources. The
members of the first set are provided by this subsystem to its users. Those in the second
set are required by this subsystem from other subsystems. The third set is an environment
of resources available to all internal subsystems. -

-

Each subsystem A also identifies those subsystems that provide the resources that A
requires. Either those subsystems are nested within A (if they represent internal
subsystems) or they are named in the external clause of A. In either case, the origin of any
one resource is determined by the overlap of the resource lists associated with the
juxtaposed subsystems. .

4.2.1.1 Subsystem Interconnection Examples. For a simple example, consider a subsystem that
provides sets of list operations but requires no other resources, as shown In Figure 4-6. We
will refer often to this subsystem in later examples.

A more complex example is the database transaction and query system in Figure 4-7 that
has been divided Into user interf ace, transaction and output subsystems. The database
subsystem provides a command language implementation and requires the resources

__ ___________ -~~~ ~~~~~ -- ~~~

_ ~~~ ---—~~~~~~~~~~~~
-
~~~~~~~~~~~~~~~~~~~~

- - - -
~~~~~~

-
~~~~~

4.2.1.1 Subsystem Interconnection Examples Page 57

subsystem LIST provides ListBasic, LinSeo,ch, ListAp pLy
realization .. . .nd LIST

Figure 4-6: LIST--A Subsystem that Provides Resources

implemented by the three internal subsystems.

subsystem 08 provides CommandLang~~ge
requires LanguageDef&nitiort, Transaction, Query, Report
subsystem CL provides Languag.O.finitwn realization . . . end CL
subsystem XA provides Transaction r.alization.. . .nd XA
subsyst.m RP provides Report, Query realization . .. .nd RP
r.alization . . . end OB

Figure 4-7: DB--A subsystem with Internal Subsystems

The Interconnections between the subsystems in the previous example result from thenesting of XA, CL and RP within 08, and the overlap between the requires list of D8 and theprovides lists of each of the nested subsystems. If a subsystem requires a resource that isnot provided by one of its own internal subsystems, it must name the subsystem In Itsexternal clause. For example, the subsystem in Figure 4-8 uses resources provided by theindependent subsystem LIST given above.

subs yst. m LISTUSER requir es List8asic, LutApply external LIST
realization :., end USTUSER

Figure 4-8: LISTUSER--A Subsystem with an External Clause

If a subsystem S is organized so that all its internal subsystems should share resourcescommon to the entire subsystem, then S may define a resource environment. Within S, asubsystem that requires a resource in the environment of S but does not specify whence it isprovided, obtains that resource from S. In Figure 4-9, the list processing and symbol tableresources are used everywhere within the subsystem S. The list processing resources come
fr om the subsyst em defined in Figure 4-6 whereas the symbol table resource comes fromanother internal subsystem of S.

subsystem S provides Usefull, Use fu,12
requires ListBa.uc, Symbol Table, Otherl , Other 2
environment ListBasic, SymboLTobL. external LIST
subsystem ST provides Symbol Tabl, realization.. . end ST
subsystem SI provides OtherI requires ListBo4ic, SymbolTable

realization . ..  end Si
subsystem 32 provid es Oth.r2 requires L&stBasic, SymbolTabL.

realization . . . end 32
realization . . . end S

Figure 4-9: S--A Subsystem that Defines a Resource Environment 

-~---—. ~~~~~~~~~~~ -——



Page 58 4.2.1.1 Subsystem Interconnection Examples

In review, subsystems provide resources for use by other subsystems. There are three
basic methods for interconnecting subsystems such that provided resources are available
where required: a) a provider can be nested directly within a requirer , b) the provider can
be named in a external clause in the requirer , and c) the provider can be named by a
subsystem that encloses the requiring subsystem. In other words, the pool of resources
available to a given subsystem are those provided by its internal subsystems, those providec~by the subsystems named in its external clause, and those in the environment clauses of all
subsystems that enclose it.

4.2.2 The Interpretation of Subsystem Interconnection Constructs

4.2.2.1 Subsystem and Resource Names. A subsystem name is an arbitrary tag that
distinguishes this subsystem from all others. For subsystems that are not nested in any
other subsystem, the names must be distinct. The names of nested subsystems need only be
distinct within the subsystem in which they are nested; they are referenced by prefixing the
enclosing subsystem name.

Resource names are likewise arbitrary tags that must be distinct only if a conflict would
otherwise result. For instance, subsystems A and B could communicate a resource X as could
subsystems C and 0. The two X resources are independent.

4.2.2.2 Resource List Ov.rlap. The set of resources provided by a subsystem may include
resources that are also required it; in fact , resources marked with an asterisk in. the provides
list are automatically appended to the requires list. Resources that are both provided and
required by a subsystem are considered to be the same resource passed transparently
through that subsystem. In some cases , the user is unaware of the intermediary while in
other cases the user can exploit it to gain flexibility. In the subsystem of Figure 4—10,
resource a is provided to users by subsystem A but it is in fact provided by MA.

subsysism A provides a*
subsystem AA provides a~subsystem MA provides a

end AM ..  . end AA ..  . end A

Fi gure 4-10: A, AA, AAA--Transparent Resource Transmission

The environment list must be a subset of the requires list. This restriction simplifies the
definition of acquire (see section 4.4.4) without removing any capability; a new internal
subsystem can always be inserted to provide the necessary resources to the environment.

4.2.2.3 Subsyst. m Nesting and Scop e of Names. Nesting is the textual indication that one
subsystem is a part of another. Scope rules for internal subsystems are analogous to scope
rules in languages with type definitions. Suppose that subsystem A’ is textually nested within
subsystem A, but that subsystem X is not, as shown in Figure 4-11.

- resources provided by A’ are avai lable to A.

- -

~ 

- - -  



I

4.2.2.3 Subsystem Nesting and Scope of Names Page 59
Subsystem A Subsystem X

Subsystem A’

Figure 4-11: Nested Subsystems

- resources in an environment defined by A are available to A’ but not to X.

- resources provided by A’ but not by A are not available to X.

- resources provided by A’ and both required and provided by A pass through
and are available to X.

— If X must refer to A’, it uses name A.A’.

The external clause of a subsystem A contains names of other subsystems in the block
structured environment of A, Library subsystems, those available to all subsystems, are
assumed to be defined in the implicit outer block. Subsystems nested within other
subsystems must be referenced with a qualified name.

4.2.3 Mor. Subsystem Examples

4.2.3.1 Symbol Tabl.. Figure 4-12 shows a symbol table subsystem that requires resources
HashFunction and ListBasic. Both those resources are provided by subsystems (HASH and
LIST) which are in the library. The definition of liST was given in Figure 4-6. Because ST
names HASH and LIST in its external clause, and the resources In ST’s requires list are found
in the provides lists of HASH and LIST, ST is able to use resources HashFunction and
LlstBasic.

subsyst.m ST provides SymbolTabLe
requires HashFunction, ListBasic .xt.rnal HASH, LIST
realization . . . end ST

subsystem HASH provides HoshFunction realization . .. end HASH

Figure 4-12: ST—Symbol Table using Library Resources



Page 60 4.2.3.2 Input Section of a Theorem Prover

4.2.3.2 I~iput Section of a Theore m Prover. The system shown in Figure 4-13, transcribedfrom DeRemer(DeRe76] is a theorem proving system composed of three subsystems each of
which is also subdivided. The input section, a second level subdivision, is expanded In full
below; the other sections are abbreviated. Note that LanguageExtensions is a resource thatIs provided by the LE subsystem, defined in an environment In TPS, and therefore av ailable to
INPUT which is nested within ACTIONS which is nested within TPS.

subsystem TPS provides
requires LanguageExtensions ,. . . environment LanguageExtensions, , . .
subsystem LE provides Lan guageExtensions . . . realization.. . end LE
subsystem CLAUSES... realization . .  . end CLAUSES —

subsystem ACTIONS prov ides . . . requires...
subsystem THM. . .  real ization . . . end THM
subsystem OUTPUT . . . realization . . . end OUTPUT
subsystem INPUT provides InputPars,r

requires Scanner, Parser, PostProcessor , Langu~geEzteniSon,
subsystem PARSE provides Parser

require . Scanner , Lan guageExt.nsions
external SCAN
realization . .. end PARSE

subsystem SCAN provides Scanner
requires LanguageExtensions
realization . . . end SCAN -

subsystem POST provides PostProcessor
requires LanguageExtension.,
realization . . . end POST

realization . . . end INPUT
realization . . . end ACTIONS

realization .. . end TPS

Figure 4-13: TPS--Theorem Prover using a Resource Environment

4.2.3.3 KWIC Index System. The example in Figure 4-14, transcribed from Thomas(Thom76]
who obtained it from Parnas(Parn72d), represents a KWIC index system that is subdivided
Into an subsystems for input, line storage, circular shifting, alphabetizing and output.



- - -~ --.~ -~
- - - ,-- 

~~~~~~—~~~-
- -- - .-“ -- -

~~~~~~~~~~ ~~~~~~~~~~~~ - -~~-—~~~~~~~ --- —-- ---- -- ~~~~~~~~~~~~~ -~~~~~~~~-- - - -- --

4.2.3.3 KWIC Index System Page 61

subsystem KWIC provides Kwic requir es InputLin., ALph, It!; Out putLirte

subsystem INPUT provides InputL&n.
requires Luze, InputtrrorHandier external LS, IEH
realization .. . end INPUT

subsystem LS provides Line
requires Storag.ErrorHandl.r external SEH
realization.. . end LS

subsystem ALPH provides Al ph, Ith
requires CsSetup, ShiftedLines external CS
realization .. . end ALPH

subsystem CS provides CsSetup, Shift.dLM..s
requires Line external LS
realization . . . end CS

subsystem OUTPUT provides Out putLine
requires Shift.dLines, Ith external ALph, CS
realization . . . end OUTPUT

subsystem IEH provides InputErrorHandler realization.., end IEH
subsystem SEH provides StorageErrorHandl.r realization . .  . end SEH
realization . . . end KWIC

Figure 4-14: l~WlC--Resource Usage among Internal Subsystems

4.3 The Construction Level : Concrete Objects

A system implementor must specify, directly or indirectly, the processes by which a system
is constructed. In this section, we provide a notation for specify ing common varieties of
these processes. Figure 4-15 shows the syntax for construction processes and the follow ing
are definitions of the terms employed in this section.

A concrete object is a generalized file. Som. concrete obj.ct s ar• in fact the
source files of a system. Others are the intermedia te object s such as the output of a
compiler or macro processor. Still others are the final system objects such as
executable machine code or a formatted document.

A file is a member of the fil. system on which interpreters of this notation operate.
We uss them only as reposItories for source programs and dat . portions of other
concrete objects.

A processor is any program that produces a concrete object. Usually it has at least
one parameter that is also a concret , object. Common processors inc lude compilers ,
assemblers , cross reference generat ors , linkage editors , document formatters , sort
programs, printing programs, macro expanders and text processors .

A ruLe shows how a concrete objsct Is constructed. Rules are functional in form
and may be nested. Special rule. are used to co rce resources and tiles into concr.t.
objects.

L ~~ - - -—-~-“-—- 



r
Page 62 4.3 The Construction Level: Concrete Objects

A given concrete object may be the result of several construc tion processes, and therefore
Is a maximal element in a lattice of concrete object s. The min imal elements of this lattice are
called source files.

As we will see In section 4.4, concrete objects will belong to (versions of) subsystems.
Although the construction lattice of a given concrete object can include concrete objects from
many different subsystems, access to concrete objects is carefully controlled.

~~~~~~~~~~~o~~ flame

_ _

path

spec-rule
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1__*(

—

~::::~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

proc-rule

object

L~~~~~~~~~~~~~~
ç

~~~~~ 
L

~ Cw&tO_~(_ string

Figure 4-15: Construction Process Syntax

4.3.1 Rules for Primitive Concrete Objects

The parameter to the file operator Is a file name. We will use a name within ~~ brackets
to represent a full directory path in the file system supported by the operating system; this
may include a multi-level name, a project identifier, a library identifier, and/or en account
number. It is Important here only that it uniquely specify a single f ii.. For very short files,
we will occasionally write in quotation marks the contents of the file in place of the file
specification. This is interpreted to mean the name of a file containing the given character
string.

tll.(CSource File Name>)
j u.at a few character?

Th. acquire operator converts a resource from anothe r subsystem Into a concrete object

L. . 
_ _ _ _ _



4.3.1 Rules for Primitive Concrete Objects Page 63

in the local context. Although the resource is a primitive concrete object in this local context,
it may have been the result of a complex construction process In its own subsystem.

acquire(tisefulResowce)

4.3.2 Rules for Compound Concrete Objects
• New concrete objects are created by processing others. If a program is written in

language YfpI, the Yf p1 complier would produce a new concrete object from the file contaIning
the program source. Some processors have several concrete object parameters.

VfpL(file(<Program Source>))
VfpI( “begin print( ‘done’) end )
M,rge(fll.(<OriginaL Source>), file(cUpdates>))

These rules can be embedded as deeply as desired. Suppose there are preprocessors
which convert management specifications to decision tables, decisions tables to branching
networks, branching networks to block structured Fortran, block structured Fortran to ANSI
Fortran, and ANSI Fortran to Pill. The rule for processing a management specification Into a
runnable program would be as follows:

Linlc(PL1 (An si TaPLI(Bsf ToAnsi(BnToBsf(Dt ToBn(Ms ToDt(fiIe( ~Manage Specs’)))))))

It is often convenient to provide additional information to a processor with a set of strings.
Suppose, for example, that if a program Is Included In the debugging version of a system, the
compiler must be instructed to include symbols and debugging linkage. The ordinary and
debug rules follow.

VfpL (flle(cPro gram Source Text>))
Vfpl(file(cProgram Source Text>)) with Debug”

4.3.3 Deferred Concrete Objects

Although we have formulated construction as a completely explicit sequence of functions,
some concrete objects participate implicitly In construction processes. Separately comp iled
subroutine bodies are th. prototypical example. During compilation of a program that uses a
collection of subroutines, the compiler will use a resource containing external procedure
declarations. The use of that resource implies that later, during linkage editing, the compiled
code bodies of the procedures will be needed. The deferred operator retrieves all objects
that have been implicitly associated with its parameter object.

In the context discussed in the next section , we can give names to concrete objects; the
following represents the construction of a program which uses a resource that has deferred
objects associated with it:

con cret . object UserProgram~ YPPL(file(CUser Program Source>))
concrete object Us,rEx.cutabLe.’Linka.Js.rProgrom,dsf.rred(TJa,rProgrc1m))

4.4 The Instantietion of Systems: Versions

Real systems are tangible objects; they may be moved, read, executed , or in some way
manipulated. The interconnection structure of a subsyi t ‘m does not show this corporeal
aspect of real systems, while a collection of concrete ob; cts, In IsolatIon, does not capture

-
~~~~~~~

- -
~~

Peg. 64 4.4 The Instantiation of Systems: Versions

the gestaLt of a system. We are in the gap between the blueprints and the bricks, in need ofa way to describe contracting. We must bridge the chasm between information relationshipsand bits reflecting the intuitions we have about how software technicians view the objectswith which they work.

Th. realization section contains all the information pertinent to th. tangible form ofa subsystem, primarily a list of vers ions.

A version is an instantiation of a subsystem or a group of such instantiations, Eachsubsyst.m has at least one version. Each version consists of several coll•ctions ofconcr.t. obj ects that are its physic al for m.

Because system versions share the same interconnection structure, we prevent duplicationof identical information, clearly portray differences between versions, and centralizemodification sites. If we were instead to copy system descriptions and perform smallalterations, modification of the shared portion would necessitate modifications to each copy ofthat portion.

There are three visible collections of concrete objects in a version: a) objects essential tothe existence of that version of the subsystem, b) objects that represent resources , and c)objects whose use is associated with the use of a resource (deferred objects). For example,consider a subsystem that provides a central error message and diagnostic ‘ ‘cdity for asystem. The essential object for a version of the subsystem is the file cor~ ir ‘he errormessage texts; the resource is represented by a file containing exter i - - duredeclarations; and the actual coda bodies for those procedures are an object ~ ~se isassociated w ith the use of the resource.

4.4.1 The Specification of System Versions

4.4.1.1 Indivi dual Vers ions. The instantiations of a subsystem are contained in the secondsection of the subsystem notation following bracketing keyword realization (see Figur e 4-5).The syntax for the realization section is given in Figure 4- 16. The primary component of therealization section is the list of versions of the system; the syntax for version definitions isgiven by Figure 4-17. Each version has a name, unique within th. subsystem, and a collectionof Infarmation that distinguishes this version from all other versions of the subsystem. Inaddition, versions can be organized hierarchically, although we will postpone an example ofthis until section 4.4.1.5. Figure 4-18 shows an example subsystem with three versions.

subsystem COMPILER provides .. . require s
• r..Iizatio n

version Backup . . . end Backup
version Cwr.nt . . . end Current
vets ion Development . . . end Development

end COMPILER

Figure 4-18: COMPILER--Subsystem with Three Versions

-—~~~~~~~~~~~~~~~

-
~~~~ ~~~~--— ~~

-
~~~~~ 

- ---
~~ - -- - - - — —

~~~ - - -
~~~~~~~~~

4.4.1.2 Selection of Version Page 65
realizat ion _________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ objl ist 
~ 14 v.rsionj I ~

sellist _____________

D 
>1 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
I

objllst

:~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

rule

Figure 4-16: Realization Section Syntax 

~~~~ -~~~~~~~~~~~- - -~~~--•~~~~~


Page 66 4.4.1.2 Selection of Version

version

__*~~~~~~~
“
~~on [name ii

_ _ _ _ _ I _ _ _ _ _ ~~ ~~~~~~~~~~~~~~~~~~~~~~

name

s.Itist J_J 1-...) objlist l__~.Jv~5~].J - •

vcli.ts
~

cmps i_I l’4[rsrcs_ J_I 1__*J dird
__J
j ’

1

Liversion
~~~~ 

subs~~tem~~< ~~~~~ 

• 

• -
~

cmps

— L)(c~mponent~)~ ){object t dfrd

rerca ~~~~~~~~~~~~~~~~~~~~ F

(r ~sources ~~
)_

~~ J bject I - 

I~3

Figure 4-17: Version Syntax

4.4.1.2 Selection of Version. During construction within a version, resources are obtained
from other subsystems, each of which may have multiple versions. The select clause specifies
a version for each relevant internal subsystem and external subsystem. It may appear within
the realization section, in which case it applies to all versions, or within a version, in which
case it applies only to that version and those hierarchically below It. The example of Figure
4-19 shows simple version selection of both forms. In this case, version Al of subsystem A
and version 82 of subsystem B will be used by both versions of MAIN1. However, version ~3
of subsystem C will be used in the first version, whereas version C4 will be used in the
second version. .

Selection of version for subsystems that supply environment resources must be made In
the realization section of the subsyst em that estab lishes the environment, since the name of
the supplying subsystem Is not known in those subsystems in which the resources are
actually used. In Figure 4-20, subsystem EW provides the environmental resources and its

_ _ _ _ _  
= ---



4.4.1.2 Selection of Version Page 67

subsystem MAIN 1 requires rsrca, rsrcb, rsrcc external A, B, C
realization select A—Al , B—82

version first select C—C3 .. . end first
version second select C— Cl ..  . m d  second

end MAIN!

Figure 4- 19: MAIN1--Version Selection Example

version is selected at the MA!N2 realization level, whereas REG provides regular resources
and the version selections can appear within the versions.

subsystem MAIN2 requires En,,!, Env2, rag! , rag?
environment Envi, Env2 external ENV, REC
realization select ENV—Env

version Main2a select REG—Regi .. . end Maina
version Main2b select REG—Reg2 . . . end MoAn.b

end MAIN2

Figure 4-20: MAIN2--Environments and Version Selection

4.4.1.3 Definition of Concrete Objects. Versions of subsystems include collections of concrete
objects, as suggested in sec tion 4.4. A concrete object may be defined either where it is
used, or within the version to which it contributes, or within the realization section of its
subsystem. Those objects accessed by the subsystem’s users are divided into three
categories, those that are representations of resources, those that are associated with the
use of a resource, and those that are essential parts of the version.

When a resource is actually requested from a subsystem, a particular version of the
subsystem will be specified. The resources list of concrete objects within that version
specifies, for each resource, which concrete object contains its representation. For example ,
within version Abc l in Figure 4-2 1, we see that resource a Is represented by concrete
object xl.

subsystem ABC provides a, b, c
realization

version Abel con crete object <definitions of x l , yl , :1>
resources a—xl , b—TI , c—zI end ,4~~1

version Abc2 concrete object <definitions of x2, y2, :2>
resources a—x2, 6—72, c- z2 end Abc2

end ABC

Figure 4-21: ABC--Resource Representation Example

If a single concrete object represents a single resource, the associations between the two
may be specified as above. In cases where a single concrete object represents multiple
resources, they may b. grouped in parentheses. If all resources are contained in a single
concrete object , the resource names can be omitted. In the first examp le below, both a and b



Page 68 4.4.1.3 Definition of Concrete Objects

are represented by xi; in the second example, ~~ resources are represented by x.

resources (a, 6) —si , c—x2
resources x

Concrete objects that must be integrated into a system later, but are associated with the —

use of resources, are called deferred objects and are listed like resource objects, except that
each resource may have several objects associated with it. Each object in the deferred list
for a resource is attached to the requesting object as a deferred object when that resource
is used. For example, if a resource is represented by a set of external procedure
declarations, the compiled code for the procedures is attached to the using object until a
linkage editing program can assimilate It. See section 4.4.4 for more details on this
mechanism. In Figure 4-22, object wi is associated with the use of any resource from
version Abc 1.

subsystem ABC provides a, 6, c
realization

version Abc! concrete object <definitions of xl , y l, zi, wi>
resources a—si, 6—yl , c—il deferred (a, 6, c)—wl end Abel

version abc2 concrete obj.ct ~~~~~~~~~ of x2, y2, z2, w2>
resources a—x 2, 6—72, c—z2 defarr.d (a, 6, c)—w2 end abc2

•nd ABC

Figure 4 -22: ABC--Deferred Object Examp le

The components of a version of a subsystem are independent of the use of resources.
Whenever a version of the system is built, each component will be constructed. In Figure
4—23, x4 and y4 are objects that are a part of version Abc2 but are not related to resource
usage.

subsystem ABC provides a, 6, c
realization

version Abel concrete object <defin itions of x3, y3>
components x3, y3 end Abel

version Abc2 concrete object <definitions of x4, ~4>
components x4, y4 end Abc2

end ABC

Figure 4-23: ABC--Component Object Example

4.4.1.4 Substructure of a Version. One version may basically share the structure of other
versions, but perhaps require additional resources. For example, the instrumentation version
might require access to the resources provided by a data collection subsystem. In these
cases, the additional subsystems can be included only within the relevant version. Any
resource provided by such a subsystem is assumed to be required by the version. The select
clause for the version must also include selections for these subsystems. In Figure 4—24,
subsystem Si’ is a conduit bringing the Collect resource from INST to the Instrumented
version of SI without impacting the requirements of the Regular version.

- ~~~~~~~~~~--~~~~~~~~~~ - -- - -~~~~ -~~ —-- -•—



4.4.1.5 Hierarchical Organization of Versions Peg. 69

subsystem SI requires Rsrc3 provides Rare! , Rsrc 2 external S2realization
version ReguLar select S7—xx . . . end Regular
version Instrun*tnted select S2—xx , S1’ —Fort ran

;ubsyst.m SI’ provides Coliect* extern al INST
realIzation version Fortran select INST’.Portr~~ end Po,tra ,*end $1’
end Instrumented

...end SI

Figur e 4-24: SI—Subsystems wit hin Versions

4.4.1.5 Hierarchical Organ izat ion of Versions. Versions may be organized into trees. Onlyleaves of the tree can contain the resources, deferred and component lists; non-leaf versionsmay contain select clauses and concrete object definitions t hat apply to all versions in thatsubtree. All versions may contain subsystem definitions. A particular version is denoted bythe path of nodes in the version hierarchy. For example , the quick Fortran version of thesubsystem in Figure 4-25 would be designated “Quick.Fortran”.

sub syst .m HASH provides HashFunct ion
realization

version QU,ICIC
versio n Fortran resources f ile(<Fortran Quick Hash>) end Fortranversion PascaL resources flle(cPascaL Quick Hash>) end Pascalversion ALgol resources file(<AL9oL Quick Hash>) end Algolend Quick

verSion CareFul
version Fortran resources file(cPortran Careful Hash~) end Fort rasiversion PascaL resource s f ile(<PasceJ Careful Hash>) end PoscoLversio n AlgoL resour ces file(CALgoL Car,JW Hash>) end Algolend Core flU

end HASH

Figure 4-25: HASH—-Version Trees

4.4.2 The Interpre tation of System Instantia tion

4.4.2.1 Definition of Concrete Objects. A concrete object may be defined in the realizationsection of a subsystem or at any level in the version hierarchy. Concrete objects may useonly those resources that are available at the same level, that is, resources fr om subsystemsthat have been selected at that or a higher level. This restriction Is necessary because aconcrete object that uses one definition of a resource usually differs from a concrete objectthat uses another definition.

There are cases, however, in which two definitions are equivalent and therefore result inidentical concrete objects. For example, two versions of externally compiled procedures are



~~~~~~~~~ - -~~~~~~~~ -~~~~~~~~~~~ ---— ~~~~ -

Page 70 4.4.2.1 Definition of Concrete Objects

invoked from a program using identical external procedure declarations; the resource objects
will be identical but the deferred objects will differ. We rely on an optimization-style
anal ysis to allow us to avoid reconstruction of such identical objects.

4.4.2.2 Scope of Names and Selections. There are three ways in which the version of a
subsystem can be specified. First, it may be named in the select clause of a specific version
at any level. Second, it may be named in the realization section of the subsystem. Third, it
may be named in the realization section of a subsystem in which this one is nested; this last
option is used only for environment definitions. Usually only one specification will apply. If
there is -a conflict , the NclosestN specification is used; version-specific selections override
global selections, which in turn override nested selections.

Concrete objects are local to the subtree In which they are defined. If necessary, concrete
objects defined in subsystems within which the current one is nested may also be used,
provided they are not within a version in that subsystem.

4.4.3 Examples of System Instantiation

4.4.3.1 In—line vs Out-of-line Implementation. A set of functions may be compiled in-line, as
with macros, in which case the code for the functions is inserted into the context of each call.
Alternatively, they may be compiled out-of-line, in which case they would be invoked using
the procedure call mechanism of the programming language. If the language does not
accomodate this flexibility internally, different program text for the functions is needed for
each of these cases. The construction of the concrete objects indicated by the text in “(p In
Figure 4—26, which Illustrates this example, should follow a paradigm like that proposed in
section 4.5.2.

subsystem FCN provides Functions
realization concret, object PcnDef~file(cFunction Source Text>)

version InLine
resource (construct macros from FenD. F)
end InLine

version OutOfLin.
resource (construct external decLarations from FcnD.f}
deferred YfpL((construct procedures front FcnDef})
end OutOjLuie

end FCN

Figure 4-26: FCN--In-line/Out-of-llne Procedures

4.4.3.2 Aflernativ. Specifications. Suppose that a sort facility can be efficiently implemented
without recourse to disk storage if the amount of data it must accornodate Is limited, whereas
In general disk storage would - be required. The disk version requires additional library
facilities provided by the RA subsystem. Figure 4-27 contains a description of this system.

4.4.4 R.presentat ion Exploitation Mechanism: Acquire
The crux of our scheme for representing systems is the flexible combination of resources

- -

4.4.4 Representation Exploitation Mechanism: Acquire Page 71

subsystem SORT provides SortFile
r.ahzation

version Tin y Files resources fi le(cIn Cot. Sort>) .rid TinyFiles
version HugeFiles select RA—irelin.

resources (construct sort pro grani }
subsystem RA provides Ra.~dornAccessOisk

realizat ion
version InLine . . . end InLine
version OutOJLine .. . end OutOJLine
end RA

end Hug.FiL.s
end SORT

Figure 4-27: SORT--Parallel Alternatives

at the concrete level, along lines established at the subsystem level, according to alternatives
presented at the version level. The mechanism that exploits this flexibility is called acquire
and is available as a processor for converting resources to concrete objects, and as a
subroutine for to processors that run under the control of the system that monitors
construction. As a processor , acquire obtains the representation of a resource and makes it
available, for example, as input to another processor or another resource definition. (The use
of acquire by processors will be discussed in Chapter 5.)

Suppose that an object that provides a resource from subsystem A is constructed by
running program Munge on a resource provided to it by subsystem B, as shown in Figure
4—28. Here acquire is used as a processor to coerce y, a resource , into a concrete object as
needed by Munge. The output of Munge is the representation of the Aonly version of the
resource x that is provided by A.

subsystem B provides y
realization

version Bonly
resources file (<defl nitjon of 7>)
end Bonly

end B
subsystem A provi des x requires y external B

realization
version Aonly select B—BonLy

resource Munge(acquire(y))
end AonLy

end A

Figure 4-28: A,B--Acquire as a Processor

4.5 Complete Examples

The following sections present some examp les that clarify the operation of acquire and the
use of versions.

- -~~~ ~~~~~~~~~~ - -.~~~~~~~~-~~ — - - - - -

Page 72 4.5.1 Name/Value Pairing

4.5.1 Name/Value Pairing
Device descriptions are a part of many operating system interfaces. If they are not

available to a normal user, they are probably used between levels within the operating
system. These descriptions may have many attributes, subdivided in abitrarily complex ways.
For example, limiting the domain to disk-style devices, a programmer could wish to exploit
such information as the number of tracks per cylinder, the hardware block size, the number
of heads , the physical address of the device, the capacity of a pack, the paths by which It
may be accessed, whether the device Is protected against writing, and so forth. Similarly,
confining our attention to terminals, the description would include page width, character set,
direct cursor addressing capability, memory capacity, hardcopy capability, and so forth.

Without loss of generality , assume that there is a bit pattern representation of each device
type within the group, and a corresponding name and code. For example, for a collection of
terminals we could have the values giv en in Figure 4-29. For the time being, we shall assume
that there is no decomposition of this bit pattern that is meaningful, only that there is a
one-to-one correspondence between names and bit patterns.

Name ~jj Pattern

M33 Model 33 Teletype 000000010001
M37 Model 37 Teletype 000000110001
IBM IBM 2741 110000010001
INF Infoton CRT 011000101000
BEE Beehive CRT 001000101000
3RG 3 Rivers Graphics 111111111110
ADU ADM 3 CRT 101000011000
T17 TI Silent 700 000010010001
POD Diablo 00010001000 1

Figure 4-29: Terminal Type Bit Patterns

For our first example, let us hypothesize that two programs use this information. The first
needs a set of identifiers, one for each type of terminal, to test the terminal type (as
returned by the operating system) and decide how much output to print. The other program
prints the terminal type using a pair of vectors in which it looks up a bit pattern to find a
corresponding string description. The general structure for this facility, omitting the actual
construction rules, is given in Figure 4-30. The subsystems that use this facility are shown in
Figure4-31. The file <Programi Source> contains a program with the skeleton shown in
Figure 4-32. The file <Program2 Source> contains a program with the skeleton shown in
Figure 4-33.

In each program, the declaration ACQUIRE TerminalTypes” instructs the compiler to
replace that declaration with the representation of the resource lerminalTypes . In the first
case , the program expects that “Term inalTypes ” will cause the declaration of identifiers of the
form “Tt” followed by the conventional three character code for each terminal. The second
program , however , expects that two vectors, “TtBitpattern” and *TtName , both of length
available in the identifier “TtNum”, be declared and initialized to have the obvious values in
corresponding entries.

_ _

4.5.1 Name/Value Pairing Page 73

subsy st .m T T provides TerminalT ypes
realization

version Identifiers resources Termir&al Typesw4ruie) end Identifiers
vers ion Vectors resources TerrainaLTypes—{ruLe } snd Vectors

end TT

Figure 4-30: U Subsystem Configuration Skeleton

subsystem PROC I requires Terminoj Types external TT
realization

version Progl select TT—Id.ntiflers
component VfpL(fi le (r.Programl Source>))
end Pro gi

end PROG I
subsystem PROC2 requires TerminoLT ypes externa l TT

realization
version Pr og2 select TT-Vectors

component YFPL(fila(cProgram2 Source>))
end Prog2

end PROG2

Figure 4-3 1: U User Subsystems

BEGIN “ program I”
OECL Term inalsiri t .ger , Sty le s Tsr,., Norma l, Verbossi ;

RCOU IRE Termina l Types

T.rmina l Cstl.rmtnallyp.O; Comment operating system call ;

IF Termina l • 1t1133 OR Ter*ina l • Ttfl3l OR
Termina l • TtPOD OR Termina l s ltTIl OR Terminal • TtIBfl
THE M Style ~ Terse;IF Term inal • TtBEE OR TermInal — Tt POfl OR Termina l • TtINF
ThEN Sty le Normal;

IF Termina l — Tt3RG ThEN Style ~ V.rboie;

END “program 1-

Figure 4-32: Contents of ‘Program 1 Source>

-L

Pag. 74 4.5.1 Name/Value Pairing

BEGIN “ program ~DECL Teeminali int eg. r , Termi naiNam .ssl ring ;

A CQ UIR E Tsrmi n aiT yp.e~

T e i • CeIT .rminal T ype~~; Comment operating system cal l ;

Termin alNem. - “unknown ”1
FOR I IN Ii. .TtNum 3 DO IF Te rmi na l. T t8ltp a tt. rn(l)

THEN T,r*in~ iNau,. • TtN am e tII 00
UriteLegI”Us.r 1 .rmlnal Types , Tsrml na lNa ms 1

END “program Z

Fi gure 4-33: Contents of <Program2 Source>

How might these two versions of th e resource be provided? The details of four possible
methods w ill be defined brilow; each is an advance along Information hiding lines over the one
bet ore. In the first case , each of the two versions of the resource Is contained In a separate
file. A slight Improvement results from combining them Into a single file , and using a program
to extract the proper version. The next step Is to store one version, and use a program to
convert it to the other version. Finally, we store a canonical form of the resource , and use
programs to generate each of the two actual resources.

Figure 4-34 show the complote TT subsystem for the first case , wherein the two versions
of the resource aro maintained In st~parate f iles . The contents of f ile <Term inal Typo ldents-
would be of the form shown In Figure 4-35. The CONST notation is derived from Pascal , and
thts “I” character begins a “here-to-end-of-lIne ” comment. The result of Including this
segment into a program is to declare sever al identifiers and bind them to the integers
represented wi th binary iiterals. The contents of file <Terminal Type Vectors would contain - -

this Information irs the form shown In Figure 4-36. Again, CONSI indicates compile -time
binding; the structures are assumed to be arrays due to the Index type provided In the
declarat ion , and the i ni t i a l values of the array elements are provided sequentially following
the “~~~~~ Initialization specIfIer.

subsystem TT provides TermutalT ypes
realization

version Idestt~ft.rs r.sourc.s (il.t< T.rrninaL Tip. Id.nts~
) end ld.vttifi.rs

version Vectors resources fU.(< T.rm~naL Type V.ctors>) end Vectors
end TT

FIgure 4-34: First TT Subsystem Configuration

CONST T INum , intaqar .55

C.~NST T tSe tp a t t a r nh l . . T tNum) s l n teq . r . (S f lOS tOO p L . sH1l~~e1 . sil ets ee: , soueiess ,ss•i:iaa e , sut iiii u , ilstIie es , sisaie.ii, , oe.i::tt~~
CONS T YI N ..s(I..TtNumlsstrinq. (”rtodsl 33 !s le t~pe ” . “flod.l 37 Teisty pu ”, “1511 ~7~ 1” ,“!n.., .~ CIT” . P..hiv e CR T , “3 River , Grapi~ies ”, AOfl 3 CRY” ,

t ; IiI.a I 7••~

hgure 4-36: Terminal Types Array Resource

IL _
—

_

4.5.1 Name/Value Pairing Page 75

CONST
Tt11 33s irst eg. r—SGSIIUh l , I “llode i 33 is iet y pe ”
Tt1137s integer.SOSIISSSI , I “Itodel 37 Teis type ”
TtIBIlsInte q.r .ILISIOSSI , I “ 1511 2741”
T t 1N~ iin teger S~OIB1BOS , 1 “Info ton CRY ”
TtB(Es inteqer .ISSIIISSS , I “Beehive CRT
T t3PGslnteger.SLIIIIU$, I 3 R ivers Graphics ”
TtRDI1i Int.q.r.IIII11I~I, I “P011 3 CRT
T4TI7,int.g.r.IIIIIIISI, I “TI Silent ill”
TtPOOs lnteg.r—SISIIIIU1 I “D iab lo ”

Figure 4-35: Terminal Type Identif ier Resource

This method is primitive because both files must be kept up to date individually, arid the
addition of a terminal type to one does not guarantee that it will be added to the other. If
we can encourage the programmer to see the two t iles as a single file, we can Increase the
probability th is t the programmer will change one when the other is changed Suppose that
the two files above are separate pages of a single file, and that the program Extract extracts
individual pages of files. The revis ed subsystem for TI, shown In Figure 4-37, reflects this
new concrete coj ect configuration.

subsystem TT provIdes TerminalTypes
realization

concrete object Trns Types~.fii.(cTerminaI Typ. Defutiti.r*s>)
version Identifiers resources Ex trdct(TrrvsTypes) with I end Id.nt&flors
versI on Vectors resources Eaeract(Trns Types) wIth 2 end Vectors

.nd TT

Figure 4-37: Second TI Subsystem Configuration

Now the two versions are linked by reference to the common file. Even this textual
adjacency cannot guarantee that the two pages will be correctly maintained in parallel. It
would be reasonable to store only the first file, with the assignment statements , and write a
special purpose program (in a text editing language) to create the second file from the first.
Sup pose that the program Edit does general text editing on one object as specified by
parameters, and that file <Terminal Type Edit’ contains editing Instructions including !dloVec,
which will perform the desired transformation. Figure 4-38 shows this third configuration.

subsystem TT prov ides T.rminalT yp.s
realization

concrete object Trm Typ.s.file(c T.r,ninal Type Defuiitioiu>)
TrmEdits-fii. (<Termirsa 1 Type Edit>)

version Identifiers resources Trs n Types end identifiers
version Vectors

resources Edit (TrnsTypes, TrrnEdaes) with “IdToVec ”
end Vectors

end rr
Figure 4-38: Third TI Subsystem Configuration

I’
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - -

- - - - ‘-~~~

Page 76
-

4.5.1 Name/Value Pairing

We cars further separate the three distinct aspects of this resource. The fourth and final
configuration is obtained by decomposing the information into three parts, a) the actual table
values of Figure 4-29, b) the format of the values tor Programi , arid c) the format of the
values for Program2. The symmetry of this decomposition is represented by the subsystem
shown in Figure 4-39. The file <Terminal Type Definitions> contains, in canon ical tab le format
(columns separated by tab characters , for example), the information In the table in Figure
4—29. The file <Terminal Type Edit> contains editing instructions, Tabloid and TabToVec ,
which produce, from the table values, the identifiers and the vectors, respectively.

subsystem TT provides Term&ssoLT ypes
realization

concrete obj.ct TrmT ypes—f ile(<T.rininaL Type Definitions >),
TrmEdit—IIl.(<Terminr4 Type Edit>)

version Identifiers
resources Edit(Trm Types ,TrrnEdit) with “TabToid”
end identifiers

version Vectors
resources EdSt(7rm Types ,TrrnEdit) with “TobTeV,c ”
end Vectors

•rd TT

Figure 4-39: Fourth IT Subsystem Configuration

We shall now add a bonus to the example. Suppose that there are two systems, with two
different collections of allowed terminal types. The table of terminal types, therefore, is a
resource with two possible versions. We Introduce in Figure 4-40 an internal subsystem that
provides one of the two sets of terminal types from a tile that contains each list on a
separate page.

Clearly, this process of refinement and expansion can proceed in many directions. The need
for flexibility In the actual problem will dictate which of the many routes of decomposition will
be followed.

4.5.2 Procedure Definition
This example iUustrates the use of a subsystem to provide a program in four forms, three

that can be processed by a compiler arid one by a document generation program. We assume
that the procedure defined here, a mathematical function, is sometimes compiled in-line arid
sometimes out-of-line, and that the text of the procedure is printed in the documentation
using the Algol-60 reference language (using boldface and italic characters).

This program is assumed to be written in Yfpl, with a compiler that can separately compile
procedures. In order to compile a procedure cail, however , the procedure header and
parameter specifications, bracketed by the words “External” and “IarsretxE”, must be inserted,
Into the calling program. A procedure that is compiled separately, but available to other
p rograms, must be prefixed with the word “Global”. Furthermore , we assume that the Vt p 1
compiler also has a macro facility arid that prefixing the procedure declaration with the word
“ Macro ” causes the code to be compiled in-line, with the same semantic implications as an
out -of-line invocation (although we presume that a faster implementation will result).

4.5.2 Procedure Definition Page 77

subsystem TT provides TerminaLT y pea requir.s Terminat.S.t
s ubsystem TTS provides TermutatSet

realization
concrete object TrmSets~ f ile(c TerminaL See Definitions>)
version S.t I resources Extract(7rmS.ts) with 1 m d Seti
version S.t2 r.sourc .s Extract(TrmS.ts) with 2 end Set2

end TTS -

realization
concr.te object Trrr *Edit.file(c Terminal Set Edit>)
version Identifiers 1 selsct TTS—S at I

r.sourc.s Edit(acquire(Ter,ninaIS.t) ,TrinEdit) with “Tab Told”
end Identifiers I

version Identifiers2 select TTS—Set2
resourcas Edit(acquire(TerminsLS.t)TrntEdit) with “Tab Told”

- end Identifi.rs2
version Vectorsl select TTS—Setl

resources Edit(acquir.(T’erminalSet),TrniEdit) with “Tab ToV.c ”
end Vectors I

virsion Vectors2 select TTS—S.t2
resources Editt’acquir.(T.rmir *a/.S.t) ,TrmEdit) with “TabToVec ”
end Vectors2

end TT

Figure 4-40: Fifth IT Subsystem Configuration

We suggest that the procedure be stored in a canonical format , such as a bracketing word
“ProcedureDefirtition” followed by a group of header lines, followed by a blank line, followed
by the body of the procedure followed by the close bracket “nointinifeDerudecorP.” An
example of such a procedure is shown Iri Figure 4-41. (We shall ignore the presence of
comments for the time being.) Let us also assume that reserved words are surrounded by
apostrophes so that they can be identified for special treatment in the document processor.

ProcedureDef m t ion
‘Procedure ’ Hauhrunction (Keys ’Strmn 9 ’, N s ’Int.ger ’);

‘Beq in ’ Nash
c here is the body of the procedur e >>
‘End’ Nash
nd t Ini I eDerudecorP

Figure 4-4 1: Canonical Procedure DefInition

We can easily construc t tour sets of editing instructions that convert the canonical form
into the four desired formats. The f irst , which we will call ProcGenExtrn, extracts the header,
deletes the apostrophes, and places the “external” brackets around it. The second editing
command set , ProcGenGlobal, prefixes the procedure header with the word “Global” and
deletes apostrophes from the header and body. ProcGeriMacro prefixes the procedure
header with the word “Macro” and deletes the apostrophes. Finally, ProcGe riDoc replaces the
apostrophes with special marks that cause the reserved words to be printed In boldface and
all other characters In italics. All four functions are contained In the file

-~~

Page 78
4.5.2 Procedure Definition

‘cYfpl Procedure Edits>.
The subsystem in Figure 4-42 provides these procedure editing facilities. It Is usable byany subsy stem th at wis hes to defi ne procedur es in this particular manner. It Is used by thesubsy stem in Figure 4-43 in conjuntion with example procedure from Figure 4-4 1. Note thatresources In this subsystem Include both program text pieces, such as the text tha trepresents the particular algorithm for computing the hash function, and constructionInf ormati on, namely the rules for constructing the different formats of a procedure.

subsys tem PROC prov ides Proceduje~~~5realization version Vfpl resource s flle (<VfpL Procedure Edits>) end Vfpiend PROC

Figure 4-42: Procedure Definition Subsystem

subsyste m HASH provides HashFunct~~ requires Procedw..Edit, external PROCrealizati on select PROC—Vfpl
concre te obj ect Text—fj le(<Hnsh Progr4m Text>),Edits ~~~~~~~~~~~~~~~~~~Versi on OSAIOfl.jne

resour ces Edit(7.xt ,E~,~it3) with “ ProcCen~Extrn ”deferr ed VfpL(Edj t(Text,Edits) with “ProcCenCLobal”)end OutOfl..s ~,versi on InLin, resour ces Edit(Text,L~dits) with “ProcC,nMoc~~” end InLineversi on 0oc reso urces Edit (Text,Edjt,) with “ProcCenC oc” end Docend HASH

• Figure 4-43: is, of the Procedure Definition Subsystem

4.5.3 Systems Sharing a Subsyst em
A common description problem occurs when two subsystems share a third subsystem, andIt is necessary that the same version is used in both contexts. Suppose, for purposes of anexampl e cont ext , that a producer and consum er communicate via a queue, and th at there aretwo versions of the queue, One using shared memory and another using a communication link.The QUEUE subsystem is show,, in Figure 4-44.

subsyst.m QUEUE provi des Insert, Rem ot erealization
versio n Memor ry . . . end Memo,-j
version LinJc .. . end Lu’Jcend QUEUE

FIgure 4-44: QUEUE--Shared Version Problem
CertaInly the produc er and Consumer must agree on which version of the queue isselected, but riO Other subsys tems are inv olved in this decision. It Is natural to define a

-- -.--— - —--~~~~~ - - -- -,-- -- - _ _ _ _ _ __ _ _ _ _ _ _

~

4.5.3 Systems Sharing a Subsystem Page 79

subsystem that combines the three subsystems together and provides all the resources
provided by the producer and consumer individually while delimiting the scope within which
the queue is visible.

There is an approach that seems reasonable at first , but fails for reasons that will help
elucidate a difficult problem in system family construction. The difficulty is in actually
constructing the programs that use the resources provided by QUEUE, and therefore might
need a representation for Remove or Insert. Because there are two representations for each
of those resources, we cannot “use” them in constructing concrete objects tot the user
programs without determining the appoprlate version. The skeleton shown In Figure 4-45
represents the erroneous approach to describing the system.

subsystem PC
provides PrA*, PrC*, PrC*, CnC*, CnC*
subsystem PR provides PrA, PrB, PrC

requires Insert external QUEUE
realization version OnLy . . . end Only
end PR

subsystem CN provides CnA, CnB
requires Remove external QUEUE
realization v.rsior t OaLy ... end Only
end CN

realization
version LinJc select QUEUE—Link . . - end Link
version Memory select QUEUE—Memory . . . end Memory

.nd PC -

Figure 4-45: PC--First Attempt to Share QUEUE

This seemingly reasonable configuration specifies that the selection of QUEUE is specified
In the version of the system to which it applies, and that when that version is constructed,
the appropriate version of QUEUE should be selected. However, whets constructing pieces of
PR, which actually ~~~ the resource, it is not known in which higher level system this version
of PR will be used! In fact , it could be used in several higher level system versions, each of
which specifies a different selection for QUEUE. The hierarchical nature of the system
descriptions causes versions of lower level systems to be independent of the locales in which

-
- they are referenced via selection clauses. In sections 4.4.2.2 and 4.4.4, we specify the

restrictions on the notation that are violated above.

There are two mechanisms for properly solving the problem. One applies to the uniform
use of a pervasive resource, in which case the environment structure is used. The other is
more general and involves art additional construction concern.

Suppose that a producer/consumer system is built using the global queue resource, and
the memory version of the queue is used uniformly throughout all versions of the system.
The PRDCNSM subsystem appropriately includes the queue resources in a resource
environment and specifies the version of QUEUE for all versions of PRDCNSM. This structure
is given in Figure 4-46. Since the version of QUEUE is selected Iri the realization of PC, It is
pervasive throughout PC. Hence, when PR and CN are constructed, it is completely clear what
version of QUEUE to use.

This mechanism is troublesome when the variation In the versions of PC Involves variations

Page 80 4.5.3 Systems Sharing a Subsystem

subsystem PC provides PrA:1 , PrB*, PrC*, CnA~, CnB*
requires Insert , Remove environment Insert , Remove external QUEUE
subsystem PR provides PrA, PrB, PrC requires Insert

realization
version Pr! - . . end Pr! -

version Pr2 . .. end Pr2
version Pr3 . . . end Pr3

end PR
subsystem CN provides CnA, CaB requires Remove

realization
version Cnl - .. end Cnl
version Cn2 .. - end Cn2
version Cn3 - . - end Cn,3

end CN
realization select QUEUE—Link

version Pc13 select PR—Pr! , CN—CrJ . . - end Pc13
version Pe12 select PR—Pr ! , CN—Cn2 .. - end Pc12
version Pc32 select PR—Pr3, CN—Ca 2.. . end Pc32
version Pc22 select PR—Pr2, CN—Cn2 .. end Pc22

end PC
- Figure 4-46: PC--Sharing QUEUE via an Environment

in the choice of QUEUE as well as variations in the choices of PR and CN. Therefore, the
resources needed from QUEUE cannot be fully determined until a version of PC is constructed.
If we reconceptualize the situation, we see that it is really PC that requires and uses the
queue resources, even though there are references to them in the text for PR and CN (arid
we hope that rio significant modification must be made to PR or CN programs to accomodate
this description change). The workable subsystem for this type of system is shown in Figure
4—47. The environment clause and assbciated global selection are gone, and PR and CN no
longer require resources from QUEUE. This implies that concrete objects of PR and CN can be
constructed without resolving the queue resources even though, viewed algorithmically, they
use them. The concept of “use”, from an algorithmic standpoint, may or may not be the same
as “use”, from a construction standpoint.

In effect, the components of PR and CN are skeletons of the actual program or document
text. The system implemerttor must provide a mechanism for partially constructing the PR and
CN components with the queue resources “unbound” until such a time as a PC system is built.
The construction of PC will then complete the definition of PR and CN components and
combine them appropriately. Note that this is not a specious inconvenience; it is necessary
due to the actual difference in the content of PR and CN programs in the two PC systems.

The responsibility o~ the system impiementor includes ensuring that the organization of the
system construction steps makes the structure implied by the system description feasible.
The type of flexibility required by this example has been achieved usually oniy within the
context of macro processors that permit the definition of macros within other macros. Since
there are many holes into which macro programmers fall related to evaluation and binding
time, that approach is not acceptable for a reliable general purpose mechanism. Good
solutions to the problem of partial program processing are yet to be developed.

Fortunately, there are several cases in which the apparent division above is in fact

- -~~~~~~ -

4.5.3 Systems Sharing a Subsystem Page 81

subsy st.m PC provides PrA*, PrB*, PrC*, CnA*, CnB*
requires Insert , Remove external QUEUE
subsystem PR prov ides PrA, PrB, PrC

realization
version Pr! . . . end Pr!
version Pr2 .. . end Pr2
version Pr3 . . . end Pr3

end PR
subsystem CN provides CnA, CaB

realizat ion
vers ion Cal . . . end Cst l

-
I version Cn2 . . - end Ca?

version Cn3 . . . end Cn3
end CN

realizat ion
version Pc13 se lect PR—Pr! , CN-Cn3, QUEUE—Link . . - .nd Pc13
version PcI? select PR—Pr! , CN—Cn2, QUEUE—Memor y . . . end Pal?

• version Pc32 select PR—Pr3, CN-Cn2, QUEUE.’LinIc .. - end Pc32
version Pc?? select PR—Pr2, CN-Cn2, QUEUE—Link . . . end Pc22

end PC

Figure 4-47: PC--Successful Sharing of QUEUE

unnecessary. For example, suppose that both of the queue resource versions were
Implemented as ex~ernaIIy called procedures , and therefore the actual resource
representations were the same—oniy the deferred objects were different. We leave It to the
Implementor of the construction system to optimize such construction details.

4.6 Summary

In this chapter, we have presented a set of concepts usef ul in the repres.ntation of
software systems. Some of the major features are listed below:

- Subsystems provide and require resources; those resources required by one
subsystem are provided by another.

- Versions of subsystems share the interconnect ion st ructure (wit h possIble
additions specific to each version).

• - The versions are organized In a tree. Leaf versions contain definitions of
concrete objects that represent the resources provided by the subsystem.
Non-leaf versions circumscribe Information shared by a group of leaf versions.

- In the construction of any subsystem version, resources from other subsystems
may be needed. The versions of the providing subsystems are specified by the
requiring version.

— The construction rules for concrete system components are Included In the
definItIon of the subsystem versions. Construction rules are functional
applica tions of programs on other concrete objects.

Page 82 4.6 Summary

— Resources cart be “acquired” directly in a construction rule or indirectly during
the execution of a construction program.

We set out to develop a representation that integrated the subsystem integration
information, an aspect of the system design, with the detailed system construction rules.
Some of the examples of this chapter demonstrate that we have accomplished this task. In
Chapter 5, we will sketch the design and implementation of a software construction database
based on this representation, adding support to this conclusion. And In Chapter 6, we will
apply this notation to an extended example, indicating the diversity of problems to which this
representation applies.

_
~~~~~~~ 

_



~~ - - 

5 A Software Construction Facility Page 83

5. A Sof tware Construction Facility
The notation of Chapter 4 would be but a modest Improvement over conventional methods

for organizing information about software systems If there were no automated facility
supporting it. In this chapter, we propose such a facility and discuss its implementation. It
will not be our purpose here to describe an ultimate user facility but rather a framework
within which the “ultimate” system can evolve. The process of system construction is still
dominated by ad hoc configurations of processors and tools, and until substantial experience
with integrated systems has been acquired, only limited design progress is possible.

5.1 Overview of the Software Construction Facility (SCF)

The software construction facility (SCF) that we will propose is organized as an interactive
system that maintains a system construction database. Database entries correspond to the
subsystems, versions, concrete objects and other constructs of the notation developed in
Chapter 4. Programs such as compilers and editors, operating as subroutines of SCF, perform
the detailed manipulations of system construction.

- The user of this facility interacts with it by a) supplying the database with initial system
descriptions in the notation of Chapter 4, b) modifying the database entries to reflect
changes in the software configuration, and c) directing the facility to construct a software
system or some component of one. A database snapshot includes the current system
descriptions with annotations showing which concrete objects have been constructed. The
construction history, status of each modification in progress, and usage patterns are also
available to the user. -

Much of the behavior of the system is defined by user specified policies. In addition, the
user supplies special processors other than the standard, built-in processors.

• Much of the implementation of this facility will be sketched by describing the abstract data
types that would be involved in the implementation. The operation of commands will be
defined in terms of those data types, and from this we can establish the properties of the
database that the system must maintain. All of the standard database problems of -

synchronization, deadlock, interference, protection, backup, consistency, fault—tolerance and
flaw repair apply to this database and must be solved, but are outs ide the scope of this
thesis. An approach to the some of these problems in a software database context can be
found in (Habe77].

The framework established in this chapter will not, by itself, satisfy any actual system
programmer because too much information used by programmers is omitted. Some of this
information, namely the matching of specifications between programming languages objects, is
already being addressed by other researchers tTich77). Other information permits the full
exploitation of the particular compilers, linkers, editors, and so forth, that are present in a
given installation. Finally, in a multiproject environment, there would need to be a mechanism
for providing a substructure to the facility to reflect the project domains while still permittIng
sharing between projects.

5.2 Description of the Database
The two repositories for information about a software system are the file system and the

SCF database. Ssource information, such as programs, data collections, documentation, and
processing instructions, Is stored in the file system and can be manipulated In the ways
commonly used by programmers. The SCF database contains subsystem descriptions,

-

~

•——

~

•. •

~ 

~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _

Page 84 5.2 Description of the Database

construction processes, and construction histories. Some of the database information Is
provided directly by the user , some of it arises from software construction operations, and
the remainder is generated by the software construction policy enforcer.

5.2.1 Low Level Database Types

The following data type definitions are provided here for reference during the discussion
of the more complex data types. Part of the reason for presenting them is to introduce the
programming notation that will be used in this chapter.

The notation we will use to describe these program segments is derived from current
programming language research. Unfortunately there is no single language with the sufficient
currency to be the prototype for such a notation, in the manner that Algol-60 served for the
~Algol-like” languages. The list module in Figure 5-1 will serve to illustrate, In a context with
which we are all familiar, the notational conventions used in this thesis.

Two possibly unfamiliar notations are used. The first, an &“, indicates a type argument to
a generic type definition. For example, the definition of type “Stack of &r permits the
declaration of “Stack of Integer ” or “Stack of PersonneLRecorvL” The other notation is an
exceptional exit; for our purposes It need only have one or two values, called here succeed
and foiL A routine can also be declared to either return a value or fail, meaning that either
it computes a value or it raises an exception and has no value. An on clause specifies, for a
block, the action to take If an exception Is raised within the block. Unless otherwise
specified, a foil exception raised within a block causes that block to raise a Jo.U exception.
Other possibilities include providing a value for a failed block (e.g. “on fail use NIL”) and
providing a value for a block in which an exception is raised (e.g. “on f all return(f also)”). The
List type, given in FIgure 5-1, provides simple lists with uniformly-typed elements; i.e. the list
element values may be of any type, but all elements of a given list are of the same type.
There are operations that scan, search and merge lists , and that apply functions to the list
element values. Some lists are used to implement sets and stacks, and therefore set and
stack operations are also defined.

Many of the transactions on the database are recorded by events. These events will be
defined very simply in Figure 5-2 although the structure of an event in a real system would
be more complex.

type Event
exports When. Timestamp, What: String, D.taiLs: List of String
end Event

Figure 5-2: Definition of Type Event

Events are entered into histories attached to each database entry and are included in
messages (see Figure 5-3) sent to database entries. For example, if a change is made to a file
that is used in the construction of concrete object x that is a resource definition for version
y of subsystem z, an event is entered into the history attached to x and messages containing
the event are sent to each of y and z recording the change.

The construction rules are also database objects; the type definition is given in Figure 5-4.
Each rule specifies a processing program, a list of concrete object parameters and a list of
string parameters.

~
~~- - - -

5.2. 1 Low Level Database Type s Page 85

type List of & T I define List type
type ListNod.

exports VaLue: & T, Next: ret(L4stNod.)
end ListNod.

var First: ref(ListNod.) initially NIL
Last: ret (ListNode) initially NIL
Count: Integer initially 0

comment List-style operations;
let (L,Ll ,L2) be List, E be &T
operations

NewList of &T returns List I creates a new List header
Clear(L) I deletes o.Ll elements of List
Append(L,E); I appends element to List;
Lop(L) returns 1sT or fails I truncates head and returns vaLue
Find(L,F) returns 1sT or fails I returns first entry E satisfring F(E)
AppLy(L,F) returns List I creates list of P(E) for each E us L
Conceit (L1,L7) I attaches list2 to end of List 1

comm.nt set-sty le operations
let (S ,Sl ,52) be List, E be 1sT
operations

Empty(S) returns Bodlean I true if set has no members
Ins.rt(S,E) I insert element into set
Remov.(S,E) I remove element from set
Union(SI,S2) returns List 1 creates new set from aruors of sets
Intersect (S1,S2) r.turns List I creates new set from intersection of sets
Merge(S1S2) I merges elements of 52 into SI
Member(S,E) returns BooLsan I tru. if element is a member of the set
Subset(SJ,32) returns Boolean I true if Si a subset of 52

comment stack-style op.ro.tiorss
l.tSb.Lsn,Eb. &T
operations

Push(S,E) I pushes £ onto stack
Pop(S) returns 1sT I pop element from stack

end List

Figure 5-t: Definition of Type List

type Message
exports Code: String R.ason.~ ref(~vevst)
end Message

Figure 5-3: Definition of Type Message

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _  _ _ _



Page 86 5.2.1 Low Level Database Types

type RuLe
exports Processor: <processor description>

ConcreteParms: List of ref(ConcreteQbject)
Stria’sgParms: List of String

end Rule

Figure 5-4: Definition of Type Rule -

A selection specifies an association between a subsystem and a versions of that subsystem.
The specified version is always a leaf of the version tree. This type Is given in Figure 5-5.

type Selection
exports Subsystem. ref (Subsystem)

Version.~ ref(Version)
end Selection

Figure 5-5: Definition of Type SeLection

A policy is a condition and a set of actions , as shown in Figure 5-6. The condition is a
boolean expression on the database entries and the actions are SCF commands. Policies are
used to enforce consistency in the database and inform users of modifications to database
entries.

type Policy
exports Conditions: <Boolean Expression>

Actions: List of <Command>
end Policy

Figure 5-6: DefInition of Type Policy

5.2.2 High Level Databas e Types

Each of the major constructs of the system structuring notation has an analogous entry
type in the database. The translation is straightforward; lists of xxx in the notation become
Lists of xxx in the database entry. In addition, each entry has structures used by SCF in the
Implementation of construction processes, mailboxes, and histories.

The subsystem type, shown in Figure 5-7, exports, in addition to the visible values such as
the version list of the subsystem, as set of standard operations and a set of special
operations. The standard operations are defined in all high level types and may be invoked
by the command language of SCF to eff ect a user request to create , modify, display or
destroy an instantiation of the type. The special functions are used internally by SCF and
includ, operat ions to perform the mappings implied by the subsystem description (e.g.
resource to provider, subsystem to version).

The Version type in Figure 5-8 has, in addition to the standard operations , special

- - -

~

- - ~~~~~~ _ -_ -—— - - _ - -- _



5.2.2 High Level Database Types Page 87

type Subsystem
exports Name: String

Rcquires ,Provides,Erwj ron~~e~~ List of Resource
Nested: List of Subsystem
ExternaLs: List of ref Subsystem
Objects: List of ConcreteOb feat
SeLections: List of Selection
Versions: List of Version
Policies: List of Policy

internal Context: ref (Subsystem) I EncLosing Subsystem (if any)
Usage: List of ref Subsystem I Subsystems that use this subsystem
History: List of Event I Complete history of this Subsystem
MaiL List of Message I Messages to this Subsystem

let sbs be Subsystem, rsrc be Resource, target be ref (Subsystem)
operations

NewSubsystem returns Subs ystemi creates a new subsystem
Display (sbs) I dis plays a subsystem
Modify(sbs) I modify for description editor
Destroy(sbs) I destroy a subsystem
FirsdSeiect(sbs,target) returns r.f(Version) or fails

- - comment FindSelect determines which version of the target
subsystem has been selected in the realization section of sbs

define Test(x) : Subs ystem (x)— target
return(Versj oa(Fj nd(SeL.ctions(sbs),Test)))
end FindSelect

FindExternalProvider(rsrc,sbs) returns ref (Subsystem) or fails
comment FindExternaLProvider finds which subsystem in the

externaLs List of sbs provides the resource rzrc
def in. Test 1(x k begin on fail return(fals.)

define Test2(y) y—rsrc -

Find(Provides(x l ),Test2) true end
re turn(Find~Externali (sbs)j estj ))
end FindExternalProvider

FindNestedProvider(rsrc,ths) returns ref (Subsystem) or fails
comment FindNestedProv&der finds which subsystem in the

nested List of sbs provides the resource rsrc
define Test 1(x ): begrn on fail r.turn(false)

define Test2(y) : y—rsrc
Find(Provides(x) ,Test2) true end

return(F&nd(Nested(sbs),Tes tj))
end FindNestedProvider

end Subsystem

Figure 5-7: Definition of Type Subsystem

operations to perform the mappings of subsystem names to versions, resources to concrete
objects , and resources to internal providing subsystems.

The Concrete Object type in Figure 5-9 has only the standard high level object operations.
However, the Construct operations, discussed in section 5.4.2, can be considered an operation
on this type.

~

-

~

---

~ 

_ _ _ _  
___________



F *D—A070 ~~~ CARNEGIE—MELL~N UNIV PITTSBI~~GH PA DEPT OF COMPUTER ——ETC F~ 6 9/2 1TIlE REPRESENTATION OF FAMILIES OF SOFTWARE SYSTEMS. (U)
APR 19 L W COOPRIDER Ffl620—73—C—OQ 7le

UNCLASSIFIED CMU CS 79 116 AFOSR—TR—7 9—0 732 NL

2 c 3

I

I ‘I
I 

__  

I



•
0

A )

A S  S.

Hill o
I I

11111’
I •:‘ 5 II~II ‘ ~ )lll) ~

p.,. 101
8.5 SummarY



Page 88 5.2.2 High Level Database Types

type Version
•xports Name: String

Selections: List of Selection
Objects: List of ConcreteOb feet
Subsystems: List of Subsystem
Versions: List of Version
Corn ponents,Resources,Deferreth List of r.f ConcreteObject
Policies: List of Policy

Internal Scont.xt: r.f(Subsystem) I Subsystem of whic h this is a version
Vcontext: r.W/ersion) I Version of which this is a version (if any)
History List of Event
Math List of Message

t.t vet be Version, rsrc b. Resource, target b. ref (Subsystem)
operations

New Version returns Version I creator
Destroy(ver) I destroy a version
D isplay(ver) I dispLay version definition
Modify4’ver) I for the description editor
FindSeLect(ver,target ) returns ref(Version) or tails

comment FindSelect determines which version of th. target
subsystem is specified in the version selection clause

dot inc Test(z) : Subs ystem(x)—target
roturnO/ersion(Find(SeLectiorts(ver),Test)))
end FutdSeiect

FindResource(ver,rsrc) returns ref (CoacreteObf ect) or fails
comment FindResou.rce gets the concrete obj ect which is

associated with rsrc in the resource? list of ver
defin. Test(x) x=rsrc
retur n(Find(Resources(ver) ,Test))
end FindResource

F&ndDeferred(ver,rsrc) returns r.f(ConcreteObfect) or fails
comment FindOeferred gets the concrete object which is

associated wit h rsrc in the deferred’1 list of ver
define Test( ’xk z—rsrc
r.turn(F&nd(Deferred(ver),Test))
end FindDeferred

FindProvider(rsrc,ver) returns r.f(Subsystem) or fails
comment FindProvi4er finds a subsystem within ver

which provides rsrc
•nd Version

Figure 5-8: Definition of Type Version

II



5.2.2 Hig h Level Databa s e Types Page 89

type ConcreteObje ct
.xports Name: String

Construction: Rule
• Policies: List of Policy

Int.rna l History: List of Event
Mai L.• List of Message
Sconteet: rel(Subsystens) I Subsystem containing definition
Vcontezt: r.f(Veruon) I Version containing definition (if any)
Location: Fil, or Temporary I Contents of Concr.teOb feet
Usage: List of r.I(Concr.teObj .ct)

I ConcreteOb Jeers using this
Corn position: List of ref(Concret.ObJect)

I ConcreteOb feet: used by this
Deferred: List of r.f(Concret.Ob feet)

I Concr.teObject s attached to this
operations

NewConc returns Concr.teOb fact I creator
Modify (coric) I description edit or
O.stroy(conc) I destroy a ConcObf
Di, play(conc) I display a ConcObj

end Concr.t.Ob feet

Figure 5 -9: Definition of lyp. Concrete Object

The type File, shown in Figure 5-10, is a database entry that mainta ins the status of a file
within the f II. system. Assuming that .11 access to such files ii done v ia SCF, th. standard
high level type information is available about them.

type File
•xports Path: ccatatog entry > I File system catalog path

Policies: List of Policy
Interna l History: List of Event

MoAk List of Message
Level: Int.gerPasr I Update level indication
EdieControL• < ...> I Locks, authorizations, etc.

end fi le

Figure 5-10: Definition of Type File

5.2.3 Stat. of the Databas.
We view the softwar . construction activ ity as a continuous, dynamic activity. At any time,

different versions of each system may be undergoing changes, possibly at a rapid rat.. Since
substantial comput ing is required in order to construct a system, changes to the data baa.
canno t be considered to be Instantaneo us ; the n, will oftsn be a set of constru ct ion processes
in progress. Some of the processes are th. direct result of the requests of the (potentially
numerous ) users , but others are the spont aneous outgrowth of user defined poli cies.



Page 90 5.2.3 Stat . of the Database

The dynamic state of the database is maintained by SCF us;ng a to do List (a queue of
construction processes) and a communication mechanism in which events are recorded in
histories and mailboxes that are attached to major database entries. These state variables
may be interrogated directly by the user or indirectly with user-defined policies.

5.2.3.1 Histori... The history of each entry is recorded in the databas . as a sequence of
events. For all entries, the history shows when th. entry was created, how and when it was
modified, and how and when it was involved in construction processes. For a file entry, It
also indicates when and by whom the contents of the file was modified (and in what manner,
If that information Is available).

Histories of this kind are typically large and cannot be stored online forever. Therefore,
policies refer only to some recent subset of the history, perhaps some number of entries for
“usage” history and a similar number of •ntni.s for “change ” history. Som. historical
Information is summarized for policy use; for example, the list of users of a concrete object is
recorded in the corresponding entry even though the history for th. usage events has been
migrated to the tape library.

5.2.3.2 Mailboxes. Each event Is packaged In a message and sent to each database entry that
might be affected by the event. SCF initiates some messages, such as file modification,
database entry modification, and “alarm clock” messages. In addition, user policies generate
messages as one result of receiving messages.

The mailbox of an entry is managed by the user and the policies associated with th. entry.
It is intended that mailboxes, unlike htstones, remain sma ll and continuously avaiable for

• Interrogation. Policies might dispose of most messages immediately, but users may need to
dispose of unusual messages or handle difficult situations.

By having “human being” entries in the database, the user can specify that SCF send
messages to individual people under certain circumstances. Such a scheme could minimize the
database monitoring necessary by, for example, sending a message to the subsystem manager
wheil a version loses its last user or the size of its mailbox exceeds 50 messages.

5.2.3.3 To Do List. User commands and policy actions enter construction processes in a (to
do list. Most of these processes are independent of each other and can be executed
simultaneously. On occasion, however, a construction step may need a concrete object f or
which an entry is already in the to do list; that step must wait.

SCF checks each compi.t.d construction step and, if it is successful , activates any
construction processes awaiting it , sands a “construction complste ” message to the database
entry for the object and may send a “component change” message to users of the resulting
object. If a construction step fails, e.g. a compiler detects a syntax error, a “construction
failure” message is s.nt to entries for the object itself and any waiting objects.

5.3 Com m and Language
The user of this system has a command language with which to direct the behavior of the

sys tem. It is not within the scope of this thesis to define a particular command language;
command languages should be compatible with similar languages available to users of the
operating system and should reflect local user sty le. It could be a simple command/operand

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
~~

- -—
~~~~~~~~~~~~~~~


5.3 Comma nd Language Page 91

imperat ive language or a general expression evaluation language; it might requ ir.
specification of parameters on the command line , or prompt for them Individually. This
section discusses th. functionality that the command language must provide.

5.3.1 Inte rrogation

Users interrogate the database to examine the actual •nt ries, pr.dict SCF behavior, and
extrac t data. The Interrogation commands for these operations use d iffer ing amounts of
information about the database and its manager.

In display mode , the user examines Individual entries In the database (possi bly with
sub.ntri .s expanded). For example , the user might display a version entry to determine what
concrete objects constitute its resources , or a concrete object to determine if it was original
source or generated text. These commands use only the type definitions of the database
entries.

Resolution mode commands exploit an understanding of the SCF op eration and the
semantics of the acquire function. Such a command could list the complete collection of
versions or concret . objects that would be used by a particular construction process or
explicitl y name the origin of all resource requests in a subsystem.

Other interrogations are built on a base of primitives combined with a query language.
Operations to ex tract history and mailbox entries and to ennumerat. various types of objects
permit the user to answer such questions as

- What construction was performed between Monday and Wednesday?

- In what contexts is the YFPI compiler used?

- What files have not been used for a year?

- When did Fred last modify the system?

- What did Fred do to the system last wee k?

5.3.2 Construction
We use the term “construct” to mean th. invocation of processes that create a parti cular

concrete object. These processes may be th. nul l s at of processes (if the object already
exists) or may be a lattice of processes terminating in the creation of the concr et . object.
The term “build”, on the other hand, is defined to mean to invocation of the set of processed
that cause the construction of alt concrete objects in the component list of a version and of
the selected versions of all internal subsyst ems.

The user of SCF normally specifies what system versions are to be “built”, letting SCF infer
the concrete object constructions that are necessary. However , the explicit construct
command provides additional control over the sequence of construction processes for testing
or optimization.

We make it an SCF policy that a resource can be used only if the version that supplies the
resource has been built. This is necessary It we want any constructed program to execute
successfully without additional construction commands being necessary “on th. sIde.”

Page 92 5.3.2 Construction

Theref ore, not only do “build” commands cause the construction of concrete objects, but
“construct ” commands can cause the building of versions.

5.3.3 Entry Editor
Subsystem descriptions entered into the database are, like all aspects of a system, likely to

change. These changes reflect new system design, improved construction techniques, or
additIonal variants. The database entry editor provides a mechanism for selectively modifying
the contents of the database.

The editor does not operate on the textual representation of the system description but on
the typed database objects themselves. Each database type provides a Modify operation that
permits the user to change field values, add or delete elements from lists, and to modify list
elements (thereby invoking the Modify command from the type of the list element). Objects
contained within other objects (as opposed to referenced by them) cannot be modified

• without modifying the containing object. Conflict between construction and modification can
be prevented with synchronization techniques on such a hierarchical database.

Entry editing results only in local modifications in the database. However, many non—local
objects constructed with resources from the modified subsystem are potentially incompatible
with the new description. Modification of a subsystem description causes user subsystems to
be notified in a manner similar to that caused by modification of a source file. See section
5.3.4 for the effects of modifications on the database.

5.3.4 Polic .-

L

Often, if a source file for a system version is modified, the system version itself must be
rebuilt. However, it is not the case that system implementors generally wish those
modifications to occur Immediately. Suppose that there are several versions of a system
active, all executable; one is available to custcmers, one is backup, and five are for
development by five programmers. The project leadership might determine that no
modification should ever be propagated into the backup version, while modifications may be
installed in the customer version on explicit request. Of the five programmers, two may
permit modifications to their test systems whenever any programmer changes any subsystem,
while another may permit only overnight upgrades and the other two wish to have complete
control over modifications to their test systems.

Even more complex conditions might govern the non-executable portions of systems.
Consider the documentation files of a system, some of which are online, and others at which
are prrnted on paper and distributed. The former should be forced to change In parallel with
the executable program available to users, while the latter need only be upgraded when a
documentation update is produced.

• For another example , consider the distribution tape sent to customers who install the
system at their installations. This tape might contain a frozen version of the system, with a
set of comments about recent modifications; this would reflect a conservative approach with
high priority on uniform distribution. Alternatively, it could be regenerated each time a tape
was created, causing each customer to get the “most recent” edition of the system. A third
possibility would be to incorporate In the distribution tape any modification that had been
installed on the local system for at least thirty days.

In short, the user must be able to specify policies that control the propagation of
modIfications thoughout the entire database , and many of those policies are specific to

- - - •—--—•- - • -- - -—— - - —- - - - - —- •— —~~~• . - -•-—-.-- --•--—•—- •• - - - -•-— --• .--&- -•—- -~~~~%

5.3.4 Policies Page 93

particular versions of particular systems. SCF provides a mechanism for enforcing policies
specified by the users.

Policies are attached to objects within the databas. or to a limited number of special
objects , such as a clock. These polIcies are able to detect certain conditions in th. database.
A completely general mechanism for determining conditions within a database is, of course,
extremel y expensive 1 so our goal wilt be to cap ture as many of the types of conditions that
are needed as possible within the framework of a simple, efficient mechanism.

We select a notation for policies that is known to be general; efficiency will therefore
derive from restrictions on the timing of policy usage rather than the scop. of possible
policies. Each policy shall be described by a set of productions of the form

condit~o,i . act soot
where conditions are predIcates on elements of the datab as. and actions are sequences of
command language statements. We shall use prose conditions and actions in order to avoid
excessive concern with syntax.

Conditions include tests on mailbox entries , history files of the assoc iated object , and
possibly history t i les of other objects. Suppose that version A of subsystem B has a
concrete object C that uses a concrete Objec t that has been modified. As described in
section 5.2.3, a “component change” message would b. sent to the mailbox associated with C.
A simple policy that specified immediate reconstruction of this object upon any modification
would be written

upo it receipt of a “compoiient cMsige” message, coiutruct C

To specify conditions, a set of operations must be defined on histories, events and
mailboxes. Th. primitive operations permit extraction of entries according to various
conditions (e.g. age of entry, identity of programmer) and use of th. contents of entries (e.g.

• testing the type of message). We assume a reasonable set of such primitives In the .xamp les
below.

The action clauses differ from command strings issued by the user only in that they are
executed automatically when conditions arise. They may operate concurrently with each
other and with user command sequences.

We limit the time necessary to evaluate the policies by doing evaluations of conditions only
at times when it is likely that some conditions could becom. true, or when consister is
particularly relevant. Most often, conditions become true when a partIcular event o~~urs
within the scope of the database. By requiring that events send messages to objects that
might be affected, we can operate only on the policies associated with objects that have
received messages. Some of these messages will be sent automatical ly, whereas others will
be the result of policies within the originating object.

An automatically generated message would result , for example, from the modification of a
file. Suppose that a file is submitted, under system control , to an editor so that a user can
make modifications to it. When that fil , is returned to the environment after editing,
messages are sent to all objects that were constructed using that file and to the version and
subsystem in which it was defined. Policies associated with each of those objects would

• further refine the meaning of the event, and possibly result in a set of actions to be
performed by the system.

• As an example of a policy generated message , consider the online system command

Page 94 5.3.4 PolIcies

descr iptions that chan ge only when the current user system changes. In this case, a policy
within th. current user system object would specif y that a message should be sent to the
online command description object whenever a modIfication to the system occurs. With in the
online command description object, a policy would specify that If a message is received
dictat ing an update, and a message already is present indicating that a component change has
occurred , then the online command description object should be copied to a backup and
recreated.

Some conditions within the database will become true due to the passage of time. Hence, a
special object within the syste m, a clock, can also be programmed to send messages to
objects that have time dependent policies.

Another special time to check policies Is at the time that the object is used. If no other
trigger has caused evaluation of the policy conditions, usage of the object can be made
conditional on the satisfaction of a policy. For rarely used objects , this facility can be used
to recreate only those objects that are actually used, even though many more may have been
affected.

Combinations of policies can be used to accomplish some optimization,. Suppose that
object x is derived from object y, and Is used in object z. When object y changes, object s
must be recreated , and normally so would object z. But it might be the case that object s is
identical before and after the change to y. If y is a procedure definition, and s is the header
extracted for external linkage, a change to the body of the procedure does not change the
header. There is certainly no need to regenerate z since no constituent of z has actually
changed. A string comparison program can provide a predicate that permits the policy
associated with z to terminate the propagation of the modification.

- PoIIcy(y) - upon modijlco.stosi, send “component change” message to all objects
generated front

~‘

- Policy(s) - upon receipt of “component change” message, copy s and regenerate
x. If new s differs f r om old a, send “component change” messag. to all objects
generat ed from a.

- Pot icy(z) - upon receipt of “component change” message. regenerot. s

5.4 Central Faciliti.. !mpl.m.ntations

It would not be appropriate to outline the entire Implementation of SCF in this thesis.
Much of the implementation Is obvious, other aspects are unimportant , and still other parts
are arbitrar y and could easily be replac ed by other, equall y valid , implementations. However ,
a few of the facilit ies are truly fundamental to the concepts that this thesis addresses, and
we can clarify them by discussing implementation in detail.

The following sections present details of the implementation of the acqtur. algorithm, which
obtains that representation of a resource that is appropriate for the environment from which
It was requested, and the construct driver, which causes the construction of a concrete
object. The programs have been simplified to assume a sequential SCE construction process
manager such that the to do list is subsumed by the SCF call stac k.

• • ~~~- • •

_ _
_ __ _

5.4.1 Acquire Page 95

5.4.1 Acquir.

The acquire mechanism resolves resource names by obtaining representations of the
resources It may be invoked directly in the definition of an object (see section 4.4.4), or it
may be invoi’ ed during the operation of some other processor , such as a compiler or editor.
In either case, acquire is always invoked as an aspect of the construction of some concrete
object. Therefore , the complete construction context for an acqtur. Invocation is always
known a priorq we consider it a val ue g lobal to the invocation of acquire, called
AcquiriContes:. The resource that acquir. has been called to resolve Is a parameter to the
invocation.

Here is the set of conditions necessary for the success of acqure:

- The resource must be present In the require list of the subsystem within which
th. object is defined (the current subsystem).

- The resource must either be present in the provides list of a subsystem
immediately nested within the current subsystem , or In the provides list of a
subsystem ref erenced in the externals claus, of the current subsystem, or in the
environment clause of a subsystem that textually encloses the current
subsystem.

- The version selector must be available within the scope that contains the object
being constructed. In the case of objects defined within a realization section,
the selector may be in the realization section of the current subsystem. For
objects defined in a version, the selection may also be specified in any version
which includes the version in which the object is defined. Finally, If the resource
is a part of a resource environment, the selection is provided In the subsystem
that establishes the environment.

By definition, acquire obtains a resource in its final form. It may not be able to do so by
finding, according to the above criteria, the subsystem that immediately provides the
resource, because that subsystem may in turn require it from some other subsystem. In such
a case , acquir. must repeat the search until it arrives at the eventual providing subsystem.
At each step, the proper version is determined simultaneously, and therefore the correct
version of the eventual providing subsystem can be identified. All that remains is to look up
the resource in the resources list of the version at hand, and produce the object th.it
corresponds to it.

That object , however, may not hive been constructed or may have become obsolete; in this
case Construct is recursively invoked to construct the object. As a result , acquit. might also
be recursively invoked to resolve resources for this new construction.

When the construction is successfully completed, Acquire returns the string contained in
the target object to the calling site (within AcquireContext). In addition, deferred objects
corresponding to this resource are merged into the deferred obj ects list of AcquireContext. -

-

Finally, history entries are made to record th. usage of the new object by the one being
constructed.

The algorithm for Acquir. Is outlined in Figure 5-1 1. The loop body dictates th. priority of
providing subsystems. If we permit ambiguity about the origin of resources (and this i~ not
necessarily a good id.a) then we should establish how to pick th. correct subsystems. Tb.

- - --w ~~~ ~~~~~~~~~~~
-•-- -

~~~~~~~~ 
-- - -- • -~~~~~

Page 96 5.4.1 Acquire

following list shows the priorities Implemented In Figure 5-12:
1. internal version subsystems

2. internal subsystems

3. external subsystems

4. environment subsystems

Within any group of subsystems, the most closely nested subsystems has the highest priority.
Within a nesting level, the first subsystem listed has highest priority.

glob al var Acquir.Conteat: reftConcr.t.Ob)ect)

procedure Acquire(rsrc: Resource) r.tu rns String or fails
var sbs: ret (Subsystem) initially NIL

ver: ref(Ves sion) Initially NIL
conc: ref(ConcreteObject) initially NIL

sbs .- Scoat.xt(Acquir sCont.xtt)
ver .- Vcentext(Acquir.Corssexrt)
repeat <sat “sbs” and “we,” to the providing subsystem and version>

until <“rsrc” riot required by “sbs/ vsr ”>
conc ~

- F indResource(vert ,rsr c)
<enforce “conc policies keyed to usage)
Construct(cenc) Build(ver)
<side effects of Acquire>
r.turn(Cont.ntsfLocaUo,slconct)))
end Acquire

Figure 5-11: Acquire—Top Level Algorithm

repeat
if not <found in version subs ysterns>
th.nif not <found in nested or external subsystems>
thenif not <found in environments>
then fail ii

until <“rare” riot require d by “abs/vet ’>

Figure 5-12: Acquire--Loop Body Refinement

There are two cases for which a resource is required by a version of a subsystem: a) It is
named in the requires list of th, subsystem or b) it is named in the provides list of a
subsystem within the version. Therefore the program in Figure 5-13 implements the test at
the end of the loop.

The <found in zaxax> clauses can be considered boo lean expression s with side effects on
abs and vet. If we presume some simple list manipulatIon procedures for handling the
substructures of the subsystems arid versions, th. code sections in Figures 5-14 to 5-16 will



5.4.1 Acquire Page 97

<“rare” r,autred ~~ “sbs/ v,r ”>

define ReqLook(y) on fail use NIL
def ine ReqLook(x) <“rare” in provides Lists of it>
r.turmTind(Subsyse.ma(v,rt),R.qLookh’NIL or

<“rare” in requires lists of sbst>)

Figure 5-13i Acquire--Loop Test Refinement

suffice for the loop body pieces.

<found ~~ version ~~~~~~~~~~

var a: ref (Subsystem) , v,hv,tv ref (Version) initially NIL
on fail use NIL; I failed routines return NIL
if ver.NIL the n return(fa ls.)

else v ‘- ver
repeat a FindProwider(rsrc,wert)

hv.~ v~ v ‘- Vcentest(v)
until si’NIL or v—NIL

if s—NIL then return(f ala.)
else v .- ver; tv ‘- FindSelect(s,verf)

wh ile tv—NIL and v,~hv do
v .- Vcontest(v) tv .- FistdSelect(s,wt) od

If tv—NIL then fail else sb.t .- a; ver .- tar; return(tru.) f l u ti

Figure 5-14: Acquire--Found in Version Subsystems Refinement

<f ound ~~ nested ~~ exter nal subs,st,,ns?

var w,tv: ref(Version), s: ref (Subsystem)
on fail use NIL
a ~ FindNestedProvid.r(rsrc sbst)
if s—NIL then a ~ F indEzt.rnalP rowider (rar ic,tbst) fi
If s—NIL then return(f alt.)

else v e- ver; tv .- FindSel.ct(s,vert)
while tv—NIL and v,~NIL do

v ‘- Vcontext( ’v l)
If v,’NIL then ii’ .- Find3ej.ct(vl,s) fi od

if tv—NIL then tv e- PindSelect(sbs l ,s) ti
If tv—NIL then fail else sbs .- a; v.r i- tv; return(tru.) fi fi

Figure 5-15: Acquire--Found in — Subsystems Refinement

The boo lean expressions used above are expanded in Figur.s 5-17 to 5-19 for
completeness. The expression <resource In xxx list> Indicates that the resource can be
provided from the resource in the specified list.

_ __ _ _ _ _  -‘ -~~~~~~~~~~~ —— - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r
Page 98 5.4.1 Acquire

<foun d ~~ snvirorimvit>

var v: ret (Version), s: ref (Subsystem)
on fall r.turn(f ala.)
a ~ sbs

• 
. while not <resource in environment of st> and Context(sth’NIL do

a .- Context (st) od
if <rare jot in e,wirontnent of at> then h u h
abs 4- a; ver 4- NIL; return(trua)

Figure 5-16: Acquire--Found in Environment Refinement

<rsrc ~ provides ~~ 91 tbsP

on fail retu rn ft alt. )
define Test(x) x—rs rc
Firid(Provides(sbst) .Test) return (true )

Figure 5-17: Acquire--Provides Predicate Refinement

<rare 
~fl 

reauires ~g 91 sbst>

on tail r.turn(false)
define T.st(x) v-rare
Find(R.qtur.s(sbst),Test); return(true)

Figure 5-18: Acquire--Requires Predicate Refinement

<rare ~~, environment 91 ~~~
on fail return(f else)
define Test(x.~ i—rare
Find(Environmertt(at) .Teit) ; return(true)

Figure 5—19: AcquIre--Environment Predicate Refinement

Referring again to Figure 5-11, the Build procedure constructs each of the components of
the version that supplied the resource. The details of policy enforcement and history for

Build are om itted in Figure 5-20; they are similar to those of Construct (see section 5.4.2).
Finally, we present in Figure 5-21 the definitions of the side effects of Acquire.

F 5.4.2 Construct

Th. operation Construct invo kes all processes necessar y to construct so me one specific
concrete object. It can be invoked by the user via the command language, by the system as

• result of enforcing a policy, or as a side effect of another construction either directly (as

when an input object must be constructed), or indirectly (as during the operation of Acquire).



5.4.2 Construct Page 99

Build Prpcedurt Skeleton

• procedure Buiid(ver ref (Version)) succeeds or fails

Apply(Componesus(vert) ,Corutruct)

end Build

Figure 5-20: Acquire--Relevant Sections of Build

<side effects 91 Acquire>

Insertajsage(eonct),AcquAreCont.zt)
• Insert(Compositi.on(AcqtureContextt) ,conc)

Merge(Deferred(AcquireContexzt ),Deferred(conct))
Insert (H istory(conct),

Evenz(ctimestamp>,”ussd as resource”,
Concot (Append(NewList of String,Name(AcguireCor&textt ),Naxne(rsr&),

SubRsrcs(rsrc))))

Figure 5-21: Acquire--Side Effects Refinement

The system alternates between Construct and Acquire during the construction ~,f any complex
system component.

Construct Is a function whose only parameter is the name of a concrete object. Since each
concre te object is defined within the context of a subsystem and (optionally) a version, the

• context within which the concrete object is to be built is unambiguously identified; in fact, it
is that disparity in context that distinguishes two concrete objects that are constructed using
the same rule on the same input objects.

Acquire always operates as a subroutine for Construct. The parameter to Construct
establishes the global context within which Acquire is called. This is more than just a

• linguistic concern, because the Acquire call may come from within a compiler or editor.
Constructions necessary to complete the Acquir. function will be for different objects, so the
context established for Acquire must be stacked at each entry to Construct. We will explicitly
portray this in the programs in Figure 5-22 to emphasize the relationship between these t wo
central facilities.

Construct also performs the housekeeping operations necessary to maintain the validity of
the database. These include deleting previous usage links, entering history information, and
notifying current users of the modification.

The optimization test first determines if a vahd CO7~ of the object is already available. If
• it does, it is either In a file in a temporary object (which might also be a tile). If not, it may

be because it has never been built, or because the user destroyed it, or SCF destroyed it as
the result of a policy, or because the f ile system destroyed It due to an error or a
management policy. (In systems where purges or migrations occur as a matter of course, an
interf ace between SCF and the file system can greatly enhance the effectiveness of the

_ _  -- --



_____

Page 100 5.4.2 Construct

var ACStack: Stack of ref (ConcreteObject)

procedure Construct (conc: ref (ConcreteObj ect)) succeeds or fails
if Location(conct )—N IL

then Push(ACStack ,AcquireContext)
AcquireContext+~conc
<preliminary housekeeping>
<invoke processor on parameters>
AcquireContexti-Pop (ACStack)
If <processor successful>

then <success housekeeping>
else <fai Lure housekeeping> hi hi

end Construct

Figure 5-22: Construct--Top Level Algorithm

purging or migrating facility.)

The “processor” named in the rule for the construction of the object is either a special
processor or a gener~ processor. The special processors are acquire, deferred and file; all• other processors are programs generally available to users of the installation or special
purpose processors built by individual projects or programmers.

The special processor fiLe determines that the named file exists. If necessary,
authorization is established, validity is checked, and any other properties deemed necessary
to reliable operation of the system are established. No actual “construction” is performed
unless special formatting is necessary. For example, if the editor maintains files in an
“original plus delta” format , so that the previous copies of the file are maintained with the
current copy, the current copy must be extracted before being passed on to a compiler.

The special processor acquire creates a concrete object from a resource. Depending on -the representation of concrete objects, this may be as simple as pointing at the file that
contains the resource object, or as complex as converting- from a segment to a file, or a fi le
to a string. The acquire processor is, of course, implemented by an internal call on Acquire,
which is described in section 5.4.1.

The deferred special processor makes a new concrete object fr,m those which have
accumulated in the deferred list of another concrete object.

General processors are such programs as compilers, editors, linkers, document production
programs, database processing programs, and special purpose programs such as
BNF—to—parser converters, finite-state-machine-to-program converters, catalog display
programs, cross reference programs, test programs, flowchart generators, and other tools for
manipulating the objects that constitute systems. The interf aces to these programs are
highly idiosynchratic, and therefore must be provided in a processor definition table
maintained by the SCF user. The parameters in this table include the input files and a set of
processor parameters. The interf ace prepares an invocation sequence appropriate for the
processor and invokes the processor in such a way that the state of the database is entirely
maintained. Remember that during these general processor executions Acquire will be
Invoked, and the context must be known to SCF at that time.

• •~• •  - - -  —• —  -- — 
_~~~~~~~S-~~t~~~~



5.5 Summary Page 101

<,,reim4nGry houseke,rnna >

define Purge(s): R.move(Usage(st),cono)
Apply(Composttion(conct),Purge)
CL.ar(Compos~t~on(conct))
Clear(Defwrred(conot))

<success housekeeat ni>

def ine Send(s): SersdMaiL(xt .NewM.ssag.rcomponent clsange”, e))
• .- N.wEv.nt(<timestamp>.”con.,truc:.d” ...)
Append(History (eonct) ,e)
SendMail(conct ,NewMessagerhsstor, entry ”,~ e))
Apply(tlsag.(concl ) Send)

<failure housekeesiine>

e e NewEv,nt(<tirnestamp>.”constructlon fai l”, . . .)
App.nd(History(conct ),e)
SendMatl(conct,N.wMessageChutory ensry”,~ e))

• Figure 5-23: Construct--Housekeeping Refinement

5.5 Summery

In this chapter we have exp lored the representation propose d in Chapter 4 by designing a
software construction facility around those concepts. By exploring, albeit cursorily, the basic
design of several aspects of the facility, its feasibility has become clear. We presented the
Implementation of those portions of SCF that are both complex and central to the usefulness
of our particular representation.

Several parts of this system have been Implemented and run on a PDP-10 computing
system. Although a consistent version of alt of these parts has never existed simultaneously,
we have tested various versions of the acquire function, a language processor , a datab ase
entry editor , the construct function and the message sending mechanism. Major aspects
discussed in this chapter but not implemented include the policy enforcer and the control of
concurrent actions In the database. 

—~~~~~~~~~~~—--- - - - • — - —-—•- -—~~~~ - .—~ -— ~-——•.•-- —--- —--- • • - • . -



Page 102 3 Discussion

UI Discussion

L ~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - _ _



6 Example Target System Page 103

6. Example Target System
The concepts presented in the previous chapters are intended for use in the

representation and processing of real families of real systems. In order to explor. the
application of the concepts , and demonstrate their feasibility, we will present the
representation of portions of a real system in sufficient depth to understand the details of
the system construction process for this system.

There are multIple goals for this chapter. First, we hope to substantiate the claim that the
concepts are generally useful in application to complex systems. Second , by treating the
system in -depth, we shall provide additional detailed information not necessarily apparent
from the general descriptions in Chapter 4. FInally, we shall determine some of the
limitations of the concepts as presented, and find problems for which better solutions are
necessary.

The target system is not a toy system. We will discuss the target system enough to make
the representation meaningful, justify the choice of the target system, and then represent
significant portions of it.

6.1 Description of the Target System
The target system is the softwa re support for a scanline graphics printer s. The printer is

capable of printing arbitrary graphics on continuous eight-and-one-half inch paper, placing
black points at the resolution of 200 points per inch. The graphic pattern for text
information is determined by using the ASCII character codes to look up rectangular grids of
points In a “character set ” definition. Less structured information is displayed by supplying

• the actual bit patterns to be printed (“graphics” mode).

The printer Is driven by a dedicated minicomputer that is a slave to a general purpose
timesharing system and is connected to it by a communication lInk. Users on three other
computing systems access the printer v ia a network.. The software suppor t for this system
consists of the printer driver programs interf aces for a variety of other programs.

6.1.1 Purpos. of Targ.t System

The target system provides five primary services for the community of users. The central
facility is the ability to print formatted documents. The other facilities include the users’
manual, the interf aces for document preparation systems , character set manipulation facilities,
and Intert aces for programs which process printable documents. These will be discussed in
turn in the sections which follow.

I
Driver Programs Users print documents on the scanline printer with the assistanc e of a

driver program set. There are two kinds of documents, text-oriented documents and
graphics-oriented documents. The text documents consist primarily of characters , although
there are often control codes embedded in the stream to invoke features such as cha racter
set selection , paper cutting, spacing, headings, justificat ion, underlining, overstriking,
tabulating and subscripting. In addition, a graphics-oriented document can be embedded in a

Th. ~~ you •rs r..d,n5 iu sii •MSMpI. of *. ouput.



Page 104 6.1.1 Purpose of Target System

text -oriented document, as when figures are placed in running text.5 Graphics documents
consist mostly of scanline descriptions, with occasional control codes that allow cuts and blank
lines. The scanline descriptions themselves are encoded either as bit strIngs or run codes
(alternating counts of black and white bits), or a combination of the two; they are encoded in
the format interpreted by the printer hardware.

The driver is a pair of programs. One program runs on the minicomputer and is
responsible for controlling the printer, translating character codes to scanitne descriptions,
and performing many of th. comple x functions listed above. The other program executes on
the host computer and provides a command language that humans use to direct the activity of
the driver system. The two programs communicate via a communication link. The messages
that cross the link. include control messages, documents to be printed (both text- and
graphics-oriented) and character sets.

Document Preparation Interf ace In order to make effective use of the printer, document
preparation programs must build specially formatted documents. There are two collections of
such programs: one collection produces text documents and consists of three generally used
programs, while the other collection produces graphics documents end consists of a few
generally used programs and a larger group of special purpose programs. The system
provides, therefore , a collection of interface operations used to build text- and
graphics-oriented documents.

Document Analysis Interfac e Several programs must interpret documents intended for the
scanline printer. One program is provided for debugging documents (or document preparing
programs!) and prints documents on ordinary terminals with the control codes decoded into
readable form. Another program extracts portions of a text-oriented document for selective
printing. A third program displays a page of text on a graphics terminal. A fourth combines
several graphics -oriented files to produce a composite graphic.

In order to support these and other programs, the system provides a set of functions that
allow the orderly decomposition of documents. These functions are also used internall y, in
the driver, to decompose the documents for transmission and printing.

Character Set Manipulation One of the primary strengths of the printer system is its ability
to use arbitrary character set definitions. The system therefore provides programs that
process character set definitions, allowing members of the user community to create and
modify character sets on a graphics terminal (with a tablet input device).

In addition, the system maintains a collection of standard character sets with known
attributes. Some of these character sets are resident on disk. attached to the minicomputer
while others must be transmitted from the host before being used by a document.

Character sets are also useful outside the context of the driver. There are programs that
permit users to label portions of graphic documents with the character set flexibility normally
available to the text-document user. And various ways of displaying the character sets are
devised by people who design new character sets. Therefore, a “type” definition of a
character set is also exported for genera$ use.

Documentation There is a manual that describes the hardware arid software systems that
constitute the printer support system. The printer operation is described both for general
interest and for the driver program specifications. The driver system and character set

‘This di.ss,istion Is s i. ~i-or*~t.d Ill. will, .mb.dd.d ;rsphics-ori.nt.d fit..

~ 

~~~ ~~~~


6.1.1 Purpose of Target System Page 105

editor are documented from the viewpoint of a user of the system. Examp les of many of the
standard character sets are displayed to assist the user in character set selection.

There are also some other documents for the system. A list of character sets is displayed
in the terminal room. An on-line “help” command prints a short description of the system and
a pointer to a documentation file. The driver program also has a help facilIt y and contains
text designed to assist the user of the program while it is operating. Another set of
character set samples , more complete than the set in the manual, is maintained in a binder
near the printer itself.

• 6.1.2 Environment of Operation of Targ.t System
In general, the details of the environment in which the system operates are riot particularly

Important. However, it can be useful for those who are familiar with various components of
the environment to make those aspects more concrete, to more firmly establish the context in
which this system operates. Therefore, we present here some of the specific characteristics
of the environment in which the printer resides.

The printer itself is a prototype Xerox Graphics Printer. Tb. minicomputer stores scanline
descriptions in a buffer shared with the printer; the printer interprets these descriptions to
produce a sequence of black and white dots. The black. dots are transferred, v ia a CRT, to a
xerographic drum like those used in duplicating equipment. Th. drum transfers Ink. In the
same pattern to continuous paper that is cut at arbitrary intervals. It produces
approximately six eleven-inch pages per minute.

The POP- b host computer is a general timesharing facility, one of three PDP-1O’s at the
Carnegie-Mellon Computer Science Department installation. All three POP-jO’s use the
TOPS-lO monitor system with many local enhancements. Other machines in the installation
include .C.mmp and Cms (parallel architecture research computers), POP-i is operating UNIX,
and a large collection of special application PDP-lls. The three POP-lOs and C.mmp are
connected to the ARPAnet , and all host systems are available from common front-end terminal
interf ace system.

The connection between the POP-lO and the PDP-il that controls the printer is a two
wire link, one byte oriented communication link similar to those used by terminals, and a
higher speed burst device. Local I/O devices on the POP-il include only a DECtape drive, a
small disk., and a console terminal. The disk is buffer storage for character sets and
documents.

The environment also contains a set of vector graphics terminals. Graphics programs exist
for drawing arbitrary pictures, engineering diagrams, and plots that are eventually printed on
the scanline printer. The character set editor runs on the graphics terminal as well as
ordinary terminals.

There are three document preparation programs of varying degrees of sophistication
(Runoff, Pub and Scribe), and a couple of programs to prepare plots from tables of data.
Various research projects have special programs to display data , such as speech waveforms
or multiprocessor utilization charts, on the printer and/or graphics terminal.

The community of users is quite diverse. They include secretaries, graduate students,
faculty members and technicians. Within each of these groups there are IncorrigIble hackers
(Weiz76] as well as people who seldom write a program. The system is continuously subject
to recommendations for its improvement (or demise).

- — - --•• - ~~~~~~~~~~•—--- —-—--- ~~- -

Page 106 6.1.3 AvaIlable Implementation Tools

6.1.3 Available Implementation Tools

The implementation environment for this system Is the same timesharing system that acts
as host In the printer system. It has been intensively used in support of programming
projects for many years and therefore has a well developed collection of programming tools.
While the tools are generally more sophisticated than those available on commercial systems ,
they incorporate no concepts that have not been within the state of the art for several
years.

— Bliss and Sail for POP-lO implementations. Bliss is a sparse, machine oriented
language that produces rather efficient object code (Wulf 703. Sail Is a
semantically rich language with a large run-time support system (Reis76). Users
of both languages have contributed to program libraries for general use.

— Bliss—i 1 and Macro—i 1 for POP-li implementations. Bliss-il is related to Bliss
and produces quite efficient object code (WuIf 723. The Macro-i l assemblers are
preferred by some programmers (DIgI733. Public tools for Bliss-i 1 support are
available , althoug h most of them are oriented toward the C.mmp/Hydra
environment (l..evI77]. (Users of the UNIX systems use C exclusively.)

— Two text editors, Lined and T.co(D1g172], are used exclusively as Interactive
editors; there Is no convenient batch-sty le editor or update program.

- BH data base program(Newc743. This batch-style program permits the definition.
of simple collections of information in a one level structure. While Inadequate for
many purposes, it accomplishes sort/ report-styl. functions.

- Interactive debugging facili ties for POP-b programs. Both Sail and Bliss are
served by special interactive debuggers , arid th. operating system prov ides
another.

Th. driver for th. system we are discussing Is Implemented in Sail (on the POP-lO side)
and Macro-il (on the POP-il side). The driver was designed by one group of people,
imp lemented by person not a member of the design group, and has been maintained r.c.nt ly
by yet another person. Various people have contributed the remainder of the system.5

6.2 Selection of the Target System
The representation we have developed needs to be applied to a substant ive target system .

However , examples for thesis use are notoriously hard to select. The example must be
sufficiently small that It can be contained in the thesis , and that th. quantity of necessary
detail does not swamp the Important points of the thesis. But it should not be a “toy” and
therefore raise doubts about the relevance of the thesis to “real” systems.

6.2.1 Sine of Target System
Th. size of a system is very difficult to express. We will present some trivial objective

Ths p,,.. ,
~
l .ulkor w.. nsl wivolvod Mi s~iy ~~~~ Mi 1k. dsvsl.pwi.nl iv m.mliv,.wcs of 1k. sy.*.m

6.2.1 Size of Target System Page 107

data and some accurate subjective descriptions.

Objective Size The driver program consists of approximately 256,000 characters of
program text , about half each in POP-i l assember language and Sail. This total does not
include the text of library routines used by the Sail program but represents only program
text concerned with controlling the printer.

The character set editor consists of approximately 140,000 characters of program text , of
which 2/5 is POP-li assembler language and 3/5 Is Sail program. Some of the POP-li
program is concerned with the graphics display; the rest of the system is character set
functionality.

The manual for the system contains fifteen fairly dense pages that describe the command
language for the driver. In addition to the actual commands, there are about 40 parameters
that the user can modify to control the behavior of th. driver system.

Subjective Evaluation of Size The purpose of the system Is simple--it provides a facility for
printing formatted documents. The conceptual size of this aspect of the system Is so small
that we will not need to devote more attention to it.

The number of different concepts contained within the system is substantial. Aspects of
the system address issues in graphics, communication protocols, networking, permanent object
definition (the character sets), text processing, command language interpretation, hardware
description, user-visible “system state ” and operating system interf ace. The conceptual size
of the implementation is therefore quite large for the program sizes given.

This contradiction, between the simplicity of the purpose of the system and the complexity
of the implementatIon necessary to achieve it, makes the system appealing for use as a
demonstrator. It Is still too large to handle conveniently, but difficulty in that direction is
preferred to applying the techniques to a system that is not capable of exploiting the full

• range of flexibility.

6.2.2 RealIty of Target System
This system is not a “toy” system. It meets the real needs of a diverse user community on

a dail y basis. It is actively maintained for error repair and system enhancement.

It is clear that the functionality of the system is not mathematically tractable; input/output
specifications for the system would not capture the behavior of the system as viewed by Its
users. For example, the recent changes to the system have been alterations in the character
set configuration, adjustments due to ~ardwar . alterations , Improved robustness of network.
protocols, and smoothing of the user interf ace. Therefore, we have not constrained ourselves
to a target system that has only formal requirements.

The system is definitely complex. The original implementation required a person-year of
work by an expert programmer , plus desIgn contributions by a number of other sophisticated
computer scientists. It is also clear to users of the system that the design and
implementation are neither adequate nor robust; the original effort , then, was not sufficient to
produce a high quality system.

Finally, motivation for multiversion representation is present. Various versions of the
system have been implemented to handle different communication links, character set
configurations, additional features, and general enhancements. It is easy to extend the
dimensions along which members of this system family could develop; for th. driver alone , we

r

Page 108 6.2.2 Reality of Target System

could rep lace the POP-i 1 with a Nova, conver t from TOPS-lO to TENEX, Install a new
communication link protocol, and so forth.

6.2.3 ImpI.m.ntation Compl.xity

Th. complexity of th. printer suppor t system does not result entirely from algorithmIc
richness. If we look at the problem of constructing this system , we can find several sou rces
of comp lexity.

- This system is implemented to run on more than one typ. of hardware; In fac t,
two parts of it mus t operate simultaneously on two different computers.

- Parts of the system run on the sam host on which they were constructed, whIle
other parts run on a slave machine. The Interf ace sectIons must be Implemented
for yet a third host.

- The implementation languages are real rather than imagined. Th. problem of
system structuring is Independent of the implementation language , althoug h the
representation of components might well be improved if an abstraction-oriented
compiler were availabl e.5

- The syntax and semantics of the languages are completely incompatible. The
documentation language Is incompatible with all of the programming languages, as
might be expected.

6.2.4 System Content
Th. types of objects that constitute the system include a hardware descr Ipt ion (the printer

behavior), operating system descriptions, user interf ace descriptions, and a variety of data
types, such as character sets, text documents, graphics documents, and links. Objects of the
various types exist over long Intervals and compatibility is a concern for many users.

Th. actual objects of the system include values for particular character sets, memory sizes,
time limits, and control codes. Protocols, such as the link protocol, document shipping
protocol , character set shipp ing protocol, arid the handshake /abort /restart protocol are
non-trivial and shared by several sub~iyst.rns.

63 Target System Construction Processors

In order to be able to write the examples in the next section, certain processors must be
referenced. This sectio n contains a brief descri ption of each general processor and its
p.ram.ters. In correspondence with our construction notatIon, the concrete obj.ct are
specif led within parentheses, while the string parameters are implicit and will be specIfied In
the “with claus • of a construction rule

Descrietion

D.f.nln~ Issuec I. the pPoV.wilwEnt ~~~~~~~ is i,ol only pr.ctlcefly nnlve, bul ...uwies th.t sowi. ssn~l.
Miuigu.~. wIN .ddrno .5 of 1k... Misuse. Any on. ~~~~~~ however, wiN sddvess only a e~è.st of ths
Mit ,..lMi ~ Issues, m d the,. iv. i.vsnl problewi. Diet eve eutsid. 1k. ~~~I.ist .f s pv.~rswi in5 Mint a~. ond
wIN thevef... n.y., b. ..Iv .d hntuisU~~Ny.

6.3 Target System Construction Processors Page 109

SaiI(source) This is the compiler for the Sail language discussed above. The concrete
object provided as its parameter is program text and it produces
relocatable object code. Optionally a listing file can be produced as a
side-effect. String parameters to the execution of the Sail processor
control the generation of debugging code, execution profile code, spec ia1
lIsting information , and a variety of minor details.

BIiss (source) This Is the compiler for the Bliss language also discussed above. The
concret. object provided as Its parameter is program text and i~produces relocatable object code. Optionally a listing f~Ie can be
produced as a side-effect. String parameters to the execution of the
Bliss processor control the generation of debugging information, the
generation of routine timing code, specIal listing Information, optimizatIon
strateg ies, and a variety of minor details.

LInktObj,obj) The Link processor Is a linkage editor for relocatable programs such as
those produced by Sail or Bliss. The first concrete object parameter Is a
relocatable program (or possibly a colfection of such programs). The
second is another collection of relocatable programs that are to be
included If th. original program refers to symbols contained In them
(continued transitively). String parameters to this program control the
normal complement of details.

Edit(text,cmds) This processor is a text editor. Unfortunately, no conventional notations
exist for describing editing operations. We will therefore use the
cumbersome notation of Snobol4, which is at least widely understood.
Edit performs text editing operations on the first concrete object
parameter using Snobol4 program definitions provided by the second
concrete object parameter. The string parameter to Edit specifies which
program to execute from that set of definitions. Appendix 1 contains the
definitions of several programs available in the Edit program to all text
editing programs.

Expand(text ,defs) Some editing operations are more conveniently expressed as macros to
be expanded in the source text. The Expand processor uses the Snobol4
program definitions in the second concrete object parameter as macros
to be expanded in the first concrete object parameter. Macros in the
text will be delimited with the characte rs “tr and the delimited text will
be considered a Snobol function call . Expand evaluates the innermost
macro first , and continues until none remain; therefore macros may
produce text that represents another macro call. The programs in
Appendix 1 are also available to all defined macros.

Scrib.(I.xt) Scribe is a document preparation program that produces a document from -
the descrIption provided in Its concrete object parameter.

BH(data) 81-I maintains and processes simple data bases. The concrete object
parameter is the data base definition, while string parameters control the
input and output processing. In some cases below, the RH processing has
been sufficiently simple (list it has been replaced by text processing
Instructions; the primary capabilities of BH that are useful here are
sorting of the data base, selection of subsets of the data , and generation
of t.xt.

Page 110 6.3 Target System Construction Processors

Extr .ct(obj) Extract uses the string parameter to decide what portions of the
concrete object parameter to extract. This simpl, processor is used to
represent operations tha t might be more complex. For example, a
program that can parse Vt p1 programs might extrac t a set of routines.

Resolve(obj) Invokes acquire at each place that a resource Is required In the concrete
object parameter. This program is used to force resources to be
acquired within a particular context even though no other processing Is
needed. Resource resolution is usually accomplished during some other
processing step such as compilation.

6.4 Examples from the Target System

The examples that appear below are taken directly from the the scanline printer support
system. However, for purposes of explication, some compromises with the form and content
of the exam ples has been necessary. Those compromises are of two forms, simplification and
Idealizat ion. Portions of the system have been simplified when the necessary descriptive
detail obscured the points for which the example was selected, or when several similar
aspects are representable by a smaller number of exemplars. In these cases, nothing
essential has been eliminated; the actual system merely includes more information of the type
presented. Aspects of the system have been idealized in the case that the idealized design
reflects an improved design or the idealized design can be systematically transformed into
the actual design.

The primary idealization occurs in the assumption that the processors, such as Sail, Scribe,
Bliss-i 1, Macro-I 1 and BlIss, have been modified to directly interrogate the system
construction data base with the ~cqusr. function. In fact , no processor modifications have
been made, and the actual resolution of resources is performed by a preprocessing pass
implemented with the general Edit processor. To incorporate the Edit in these examples
would merely make the construction rules more complex; in those cases in which a processor
would be called upon to resolve a resource , we will eventually have to add the Edit step
explicitly.

6.4.1 The Printer Support Software Top-t..vel System
The printer support system is represented, at the top level, by a single system subsystem

that provides all of the resources used by programs and people outside the environment of
th. printer system itself (see Figure 6—1) . It provides resources for the construction of text—
and graphics-oriented files and for the manipulation and use of character sets , and for
printing documents. -

This section describes the outline of the top level system and shows the constituent
subsystems. Several of them are elaborated in later sections and therefore their subsystem
descriptions are abbreviated here.

Resource Resource Description

Ks.t. . . The resources that contain information about character sets.

Print A program that operates the printer and produces documents.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~ -~ -~~~~~~~~ --~~~~



-~~ :.- ~~~~~ -~~~~~~ --~~~- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ —-.~~-:-, ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

6.4.1 The Printer Support Software Top-Level System Page 111

subsystem PTRSYS
provides Print*, SelectPag.s* , RemotePrint*,

Kj .ttditor *, Ks.tLi,se *, I <see Typ .x
Tof ~~eneroze*, ToffDecode:1 , Cofj C.n.rat. * , Cof/D.cod. *,CcG.nerate*, CcDecode*, CcPrint* , CcSt st.S.t*, CcD.flnitio n*

subsyst.m DRIVER provides Prsnt*, R•motePrüiA*
subsyst.m MASTER provides Prin t . .. realiza tion . . . end MASTER
subsystem SLAVE . . . realization . . . end SLAVE
subsystem PROTOCOL . . . realizatIon . . . end PROTOCOL
subsystem REMOTE provides R.motePrint ... realization . . . end REMOTE
realization . . . end DRIVER

subsystem KSETS provides Ks.ttditor; l<j .eLut*, Ks.t Typ.* .. . end KSETS
subsystem TOFF provides TofjC .rssret. , TefJD.code . . . end TOFF
subsystem CC provides CcG.n,rate , CcDecode, Cc tot.S.t, CcPr~nt, rCcD.fl,sition . . . end CC
subsy stem COFF provides Cofj C.n,ro2., GofjDecode , Gel/Build . . . end GOFF
subsystem SELECT provides SeL.ctPa get . . . end SELECT
subsystem SL provides Sc~nline . . . end SL
realization

version Document select ORIVERaDcc, TOFF”Doc, COFF-’Dec,
KSETSJ(O-Doc, KSETS.KE-Doc, SL-Doc

component Scrib,(til.(cPrint.r Mo,xsuoJ Source>))
end Document

version ExecutabLe select DRIVER—Current end Executable
end PTRSVS

Figure 6-1: Top-Level Subsystem

Sel.ctPages A program that selects pages from a text-oriented file.

RemotePrint A program that permits users on computing systems not directly
attached to the printer to transmit documents across the network
and have them printed.

Toff. . . Facilities for creating and processing text—oriented files.

Goff. . . Facilities for creating and processing graphics—oriented files.

Cc... Facilities for manipulating the control codes that are present in
text-oriented files.

In the subsystem description in Figure 6-1, we have used the abbreviation (introduced In
section 4.4.1.3) that appends provided resources to the required resource list. All of the
resources provided by the top level subsystem are In fac t provided by internal subsystems
and 0passed through . This structure reflects the designer’s impression that those resources
are all part of a printer system° rather than merely the pooled resources of several -
independent systems. This judgement can be substantiated technically by noting the high
degree of cross-connection among the internal subsystems of this system. Users will need to
specif y the version of the internal subsystem when actually using any resource, as proposed



- ____ _

r

Page 112 6.4.1 The Printer Support Software Top-Level System

In section 4.2.2.3. In addition, the top level subsystem prevents dispersal of resources
provided by th. internal subsystems for use within the system but not intended for use by
the public (e.g. KsetXter).

The DRIVER subsystem contains th, programs that actually drive the printer. The MASTER
subsystem includes those portions of the system that execute on th, host computing system
(this subsystem is expanded in detail in sections 6.4.11, 6.4.13, 6.4.14, and 6.4.10). The
SLAVE subsystem includes those portions of the system that execute on the dedicated
minIcomputer. The PROTOCOL subsystem defines the communicatIon protocols between the
mas ter and slave programs; these protocols are built on a basic communication protocol
provided by a library subsystem.

The KSETS, TOFF, CC, 00FF and SELECT subsystems provide resources used both within
this system and by users of this system. These subsystems are described In depth in
sections 6.4.6, 6.4.2, 6.4.3, 6.4.4 and 6.&1~

) respect ive ly.

The SL subs ystem provides the software definition of the printer scanuine interpreter, that
is, the encoding used to represent sequences of whit, and blank dots. It is elaborated In
sect Ion 6.4.5.

What does It mean for the this level of the printer support system to exist”? In practice,
the users identify the printer system with the driver programs and the manual that describes
them; therefore, the versions of the top-level system described above include the manua’ and
the running program. The manual nust be constructed from the source document
cPrinter Manual Source> while the driver program is constructed during the construction of
the ‘current version of th. subsystem that provides the print resource. (Recall from
section 5.3.2 that “building a version of a system means constructing all components of that
version and the components of the specified versions of .ll internal subsystems.) The other
objects that are part of the system are resource definitIons, and each of them is constructed
as needed.

6.4.2 Text-Oriented File Format
Th. format of text-oriented files is exploited by the printer driver, the document

preparation programs, the file display program, and the page select program. Most programs
either generate of process such a file, so there are two complementary views of that format ,
a generation view arid a decoding view.

A text-oriented file is a sequence of units, each of which may be a text string or a control
code string. A goal of this definition is to assure users of the printer system that
text—oriented files are read and written compatibly, i.e. that all information written as text is
processed as text, and that all control information is processed as control information. Each
high level version of the text-oriented file format subsystem, then, provides a compatible set-
of both the generation and decoding resources.

The resource Toff Generate contains generation operations that extend an output stream
with strings of bytes. Rather than associate the particular output destination with these
operations, we assume that an output procedure has been provided to the generation
routines. Since that output procedure Is likely to be common within a program, it is specified
globally, not with each funct~ n reference. Suppose then that ToffOutputAppend(byte) is
defIned. The operatIons for generati ng text-oriented files are the following:

Oo.ratIon Oeeratlon D.scriotion



6.4.2 Text-Oriented File Format Page 113

subsystem TOFF
provides Tofj C.nerat.. Tel/Decode
realization

version Current
version Sail

resource , Tof ~~enerrj te: file(CSaiL Tc Ce~ Mo.cres) ),
To f/Decode: flle(SS’ø4 Toll Ocd Mc~ ros>)

end Sail
version BLi.vs

resources Tofj t en.rage: file(<RL~ss To/ f Can Macros>),
end BLiss

version Macroll
resources To f/Decode: file(<Macroj I Decode Macros>)
end Macroll

end Cur re nt
end TOFF

Figure 6-2: Text-Oriented File Format Subsystem

Toffl.xt(string) Emits the characters in the string as a text unit.
ToffCtls(string) Emits a the string as a control code unit.

The decoding operations are used quite differently, since they are invoked as a result of a
computation (input from the document). There is one operation to extract the next unit of
information from the document (corresponding to the units emitted by the functions above)
and an operation to process the contents of the unit discriminated by Its type. Again, in
order to separate the deco ding from the input source, the extraction operation operates on a
string.

Ooeratio~ Operation Description

loft N.xt(string,<succ ,<fail ) This operation removes the next unit from the string. If it
succeeds, it makes that unit available to the <succ> action. If it is
unable to extrac t a unit from the string provided, it executes the
<fail> action. If the behavior of the processing program is
straightforward, this operation could be inserted into a loop with
the <succ> action performing the processing and the <fail> ~ction
appending more data from the input source. For Sail programs , this
operation is a Sail statement.

ToffPartition(<actionl>,<action2>) This operation performs one of the specified actions
based on the type of the current unit. Each action is a pair, the
first element of which is either Ntext~ or ct ls and the second is the
corresponding program text. The operation is valid only within the
context of ToffNext (presumably as part of the <succ> action) and,
for Sail programs, is a Sail statement.

- — -



-

~~~

-

~~~~~~~~~~~~~

Page 114 6.4.2 Text-Oriented File Format

These resources will be used in a complete construction example In section 6.4.10.
Therefore, the Sail version of the resources, that is, the contents of files called
<Sail Toff Gen Macros> and <Sail Taft Dcd Macros> are reproduced In Appendix IL

This system has a short hierarchical version structure. The version _CurrentN represents a
compatible set of resources, i.e. the generate facility produces file that can be read by the
decode facility. (No alternative to I~CurrentN is provided in the subsystem description above.)
Within the “Current version are versions corresponding to each of the programming
languages. A specific leaf version Is indicated with a path (e.g. Current.Sail) as described in
section 4.2.2.3.

Because ToffGenerate is used by both Sail and Bliss programs, and ToffDecode is used by
both Sail and Macroll programs,each resource appears is two language versions. The two
missing versions (Bliss decode and Macroll generate) have never been implemented and
never will be; we predicted this lack of orthogonality in the implementation of orthogonal
variability in section 3.2.1.

6.4.3 Text File Format Control Codes
As mentioned in section 6.4.2, there are a number of control codes that can be embedded

In a text -oriented file. Some of these control codes set parameters In the driver system to
control the margins, spacing, justification, and page size. Others Invoke special facilities of
the driver such as subscripting, underlining, arid overstriking. Still others embed a
graphics-oriented file or execute a driver command, e.g. transfer a character set from the
host to the slave. A subset of the control codes is given in Figure 6—3 and the subsystem Is
shown In Figure 6-4.

Resource Resource Description

CcD.finition - The original control code definition table.

CcGenerate For each control code -there is an operation that creates th~ string
representing the control code with its parameter. For Sail
programs, these operations are string expressions. For example,
CcEOL is a string containing an end-of-line control code, CcTM(l00)
is a string containing a control code to set the top margin to 100,
and CcUND( important textN) contains a control code to underline a
string.

CcD.code This resource consists of two operations, CcNext and CcPartition,
that are used to decode strings of control codes.

Operation Operation Description

CcNext(.tring,(suce>,(t.rm>,(f all>) This operation removes the first control code
from the string of control codes provided and, if it
succeeds, makes the control code available to the <succ>
action. If the string is empty, the <term> action is
executed, and if the string does not contain a valid control
code, the <fail> action is executed. For Sail programs, this
operation is a statement , and the actions to be performed
are statements. This operation would be an appropriate
action to be associated with a control code string unit in 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _



r
6.4.3 Text File Format Control Codes Page 115

Control Internal Parameter Initial El fact
Value Ixa Value DescrlDllQfl

VS 1 Integers2 7 set vertical spacing
LM 2 Integers2 200 set left margin
TM 3 Integers2 200 set top margin

4 Iritegers2 200 set bottom margin
UN 5 Zntegers2 55 set number of tines per page
LA 6 Integersi 4 load A character set from disk

• LB 7 Integersl 0 load B character set from disk
UA 8 use A characte r set
UB 9 use B character set
JW 10 Integers2 0 set justify width

PAD 11 Integers2 0 set maximum padding
SP 12 Integers l variable-length blank

EOL 13 end of line
EOP 14 end of page
TAB 15 Integers2 tab to raster position
QU 16 String quotes the string

OVR 17 String overstrike the string
SUP 18 String superscript a string
SUB 19 String subscript a string
OCP 20 String decapitate a string
UNO 21 String underline a string

- • 51. 22 Integer*2 2200 set number of scanulnes per page
BAK 23 Integars2 backspace
HO 24 String Null set heading line skeleton
HN 25 lntegers2 1 set heading page number
BR 26 break at end of page
EOF 27 end of file
CMD 28 String embedded driver command
GR 29 String embedded graphics file

Figure 6-3: Control Code Table 



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
• 1I

~

Page 116 6.4.3 Te~d File Format Control Code,

subsystem CC
provides CcC,n.ree., CcO.code, CcSgat.5,t, CcPrini, CcO,f lnltion

realization
concrete object S~ilCcEdit-fil.(<So4t CC EdIts>),

8IA.ssCcEdit”ftio(<BlSs, CC Edits>),
Macroj lCcEdit.fIl.(cMacroIl CC Edits>)

v•rsion Cw rens
concrete object D.frfile(cControj Cod. Definition>)
version SeAL

resources CcCenerat.. Ed~t(Def,SaiLCcEd&t) with ~CcC.n,roie3ojL”
CcD.cod.: Edit(Del,SaiLCcEdLt) with CcDecod.Sajt’
CcPrüst: EdiS(D.f,SailCcEdit) with CcPrS,ie5rj ij
CcSeo.t S.t: Edlt(Def,SaiSLCcEdLt) with “CcStat.S.tSeAL’

end Sea

version BLiss
resources CcC.n.rat.: EdSt(D.f,BlissCcEdIt) with “CcC.n.rat.Bliss

CcO.code: Edit(Def,BlissCcEdit ) with “CcD.codeBlj, ?
CcPrsnt: Edit(D.f,Blj ssCcEdit) with CcPrj ntBlias
CcStat.S.t: Edit(Def,BLi.u CcEJjt) with “CcStae.S.eBLiss

end Bliss

vers ion MacroI l
resources

CcD.cod.: Edit(D.f,Macrojj CcEdit) with CcD.cod.MacreII
CcStat.Set: Edit(DefMacr rj f lCcCdit ) with CcStoiteSetMocrol 1

end Macroil
version 0oc resources CcDefinAtaon.~ 0./ end O.~end Current

version D.volopns.nt
concrete object Oef.flls(<Niw Control Code Definition >)

end Development
end CC

FIgure 6-4: Control Code Subsystem

TofiPartitIon.

CcPartltion(ctl,<actions>) Each of the actions Is a pair associating a control code
with an action. This operation executes th. action
associated with the current control code. This operation
I. valid only within the context of CcN.xt (presumab ly as
the <succ> action) and, for Sail program s , is a statement.
Occurrences of codes delimited by ca” In the actions are
replaced by various values: cp~ is replaced by the value

- of th. corresponding parameter and cg~ is replaced by
an invocation of the correspoyiding operation from
CcGen.rat.. A spec ial control code, ., IndIcates the
default action for all control codes not explicitly



6.4.3 Text File Format Control Codes Page 117

associated with an action. 
-

CcStateSet Control codes in the table with an initial value attribute describe the
system state , and values of those codes are retained until they are
reset. It Is useful In some programs to treat the members of the
state set systematically. This resource provides the
CcStateSet(temp late ,separator ) operation that results in a list of the
templates instantiated for each member of the state set. Occurances
of codes delimited by “cs” in the template are replaced by various
values: cc~ is replaced by the code name, ct~ is replaced by the
type of the parameter , cj~ is replaced by the initial value of the
parameter , cv~ is replaced by the internal value of the control code,
cd3 is replaced by the description, cg<~ is replaced by the left
portion of the corresponding CcGenerate operation for the code and
cg>~ is replaced by the right portion of that operation (bracketing
the parameter value). For Sail programs, the template might be a
declaration or statement with the separator 

~~~, 
or the template

might be an expression with the separator “
,
“
.

CcPrint The control codes have a conventional print format produced by the
operations in this resource. The operation CcPrint() is valid within a
CcNext context (such as the <succ’ action of CcNext). For Sail
programs, this operation is a string expression with a value such as
UB or “BAK 193”.

These resources will also be used in the example in section 6.4.10. File
<Control Code Definitions> is given in Figure 6-3; each code is stored as a line In the f lie and
the columns are separated by tab characters. File <Sail CC Edits> and the intermediate files
that contain the Sail versions of the resources are reproduced in Appendix IlL

The alternative Development” version of the CC subsystem shares the editing commands
with the “Current” version but has its own control code definition file. If the new version
differed not in the actual codes but In the way they were represented in programs, the
control code file would be defined globally and each version would have a set of editing
commands.

Each resource is a set of macros that will expand into the appropriate programming
language text for the operation. Since both editing commands and macros are being
represented here as SnobolA programs, these editing commands are Snoboi4 programs that
produce other Snobol4 programs that produce Sail (or Bliss or Macroll) program segments.

The intermediate step is used because the control code definitions are used to create a
variable number of operations (one for each code in the defining table) that are themselves
parameterized; e.g. the “superscript” operation takes a string parameter.

6.4.4 Graphics-Oriented File Format

Graphics-oriented files are sequences of scanline descriptions, blanks spaces and paper
cuts. Scanline descriptions are basically the same sequences of 8-bit bytes that are
interpreted by the printer hardware as described in section 6.4.5. Programmers usually view
graphics-oriented files as two-dimensional bit matrices. To support this view, there n ed t
be operations to draw vectors and character strings in such planar •rray5.

-

~~~~ I

Page 118 6.4.4 Graphics-Oriented File Format

subsystem COFF
provides Co//Generate, CofjDecode, Go! 18 uALd
requires SLD.finiuon, Kset Type, KsetList, SailProgrun*Edits...
external SL., 1(SET, SAIL
realization

version Sa4 select SL ”r,f, KSETj <TmSoAI, KSETJ(D-SoALAU
concrete obj.ct Sow ce.fiI.(cCoff Cen Source>),

G.n3owc.-Extroct(Srj urce) with I ,
DcdSource-Exer~ct(Sourc,) with 2,
BLdSot&rce-Ezgroct(Sowc.) with 3,
Edits—acquire(SailProgra,nEdits)

r.sources Co//Generate: Edit(CenSource,Edits) with “Headers”
Co//Decode: Edit(DcdSou.rc.,Edits) with “Headers”
CofffluALth Edit(BLd5oarc.,Edits) with “Headers”

deferred Gel/Generate: SaiL(CenSourc.)
Ce//Decode: Sa4L(Dcd3our~.)Co//B uilth SoiL(BldSource)

end sea
end GOFF

Figure 6-5: Graphics-Oriented File Format Subsystem

Resource Resource Deicriotion

GoffDecode Facilities for reading graphics-oriented files and processing the
successive elements.

Oo.ration Oo.ration D.;~notion

GoffNext(buffer,<succ ,dail)) This operation removes the next unit (either a
scanline , paper cut , or blank space) from the buffer . If it
succeeds in extracting a unit, it makes it avai lable to the
<succ> action, otherwise it executes the <fail> action.

GoffPartition(C.ctions)) Each of the actions is a pair that ass oc iates th. keys
SL BL, CUT and EOF with corresponding actions. A likely
actIon for the SL key would be the Scan linelmage
operation from the SLDecode resource In the SL
subsystem.

GoffGenerate These Operations insert units into an output buffer. As in the
text-oriented file format case, we assume that the operation
GoffOutputAppend(byte) Is defined where these operatIons are
used.

Oo.ration ODeration D.scriotlon

GoffScanlln.(bitv.ctar) EmIts a scanline description of the bitvector.

GoffBlankSp.ce(n) Emits n scan iines of blank space.

• 

• • - ~~~~• - • - - -~~~~~ . — ‘ ~~~~•~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



6.4.4 Graphics-Oriented File Format Page 119

GoffCut Emits a paper cut.

GoffEof Emits an end of file indicator.

Goff8uild Ibis resource contains the two-dimensional bit array operations that
are useful for constructing graphics-oriented files when a single
scan lln e at a time Is inappropriate.

OperatIon Oeeratio~ Description

Goff lnit(x ,y) Establishes a buffer x bits by y bits.

Gof fC$ear Sets the buffer to zeros.

GofflCset(ksetid) Loads the indicated character set.

GoffBit(i,j) Sets the (I,j) bit to one.

GoffVector(iI,j1 ,i2j 2) Draws a vector from (11)1) to (I2j2).

GoffChar(ij,string) Draws a character string starting at (I,j).

GoffWri te() Writes the buffer out, collapsing blank space.

The set of operations above is an indication of the types of operations available for
producing graphics-oriented files; in fact there are many more, such as operations to draw
character strings upsidedown and sideways. The Got (Build resources are used by the
program discussed in section 6.4.8 while the Got (Decode and GoffGenerate resources are
used by a program that merges several graphic-oriented files into a composite file. Of
course, the Got f Decode operation is also used in the driver, as discussed in section 6.4.11.
The relationship between GOFF and SL is hierarchical. GOFF uses the resources of SL to
convert from bitvectors to scanline descriptions. GOFF does not attempt to interpret a
scanline definitions, just as 10FF does not interpret control code sequences.

6.4.5 Printer Scanline Interpreter
The printer produces black dots on paper, a scanline at a time, from descriptions provided

to it by the dedicated minicomputer. The scanhlne interpreter is capable of generating these
bit patterns from a direct bit vector representation or from run codes, which are alternating
counts of black and white dots. The finite state machine of Figure 6-6 describes this scanline
interpreter . Two abbreviations are used in that diagram. First, bounded counters are named
and may be tested on the Input side of a transition, and updated on the output side of a
transition (boundary violations are errors). Second, the input character Is named “b”, may be
tested on the input side of a transition , may be used as an integer (for updating counters) or
as a bit sequence in the output side of a transition. The transition label format is
“(test)-~output(actlons)”.

A text representation of the FSM above given in Figure 6-7, could be stored in a text file.

The finite state machine definition is a complete description of the legal sequences of bytes
and the resulting scanhines. The operations that are performed on scanlines, however , may or
nay not be easily derived from this representation. One operation, a program to provIde r

--.-



Page 120 6.4.5 Printer Scaniine Interpreter
(b,’0 )-‘) (CopyCount:.b-I)

(CopyCoimt>~ )-.(COpyCounM)- b(9jtCo~,ntz..g) BItGe~n$~—6)

(b-O)-A

(b-O)-A

B2 W2cit
(b~O)-i~~ (BitCount:-b(b-I >~~ (b.2)4X (bliO)..A 

(b#o)-’?’ (BitCountt-b)

(BItCount:-b)
DONE 1MG WI 01

O4b(BltCount:-$) (b#O (BitCounb-b

Figure 6-6: Scanllne Definition

r

—— — — —--~~~- --~~~~~- --- - -~~~~- 
- • •-• 

~~~~~~~~~ 
-- .-

~~~~~~~~~~
-- -• -— •i -• - -~~~



6.4.5 Printer Scanline Interpreter Page 121

Old New
State Slate OutDut Actions

(initialize) Ci.IAR ).. ).. BitCnt:-1 700
CHAR COPY b,’0 X CopyCnt4-b-i

CTL b-O
COPY COPY CopyCnt>O b CopyCnt:-1; BitCnt:-8

CHAR CopyCnt-O b BitCnt:-8
CTL Wi b-O -

CONEs b—i -
1MG b—2

1MG 1MG TRUE b BitCnt:-8
Wi 82 b—O

Bi b,’0 00 BitCnt :-8
81 Wi b#0 1b BitCnt:-8

W2 b—O
W2 81 bp’O BitCnt:-8

CHAR b-O
82 CHAR b-O

N bp’O BitCnt:-8

Figure 6-7: Scanhine Definition Table

bit vector representation of a scanline, can be produced easily from the description, using
any suitable representation of finite state machines with a special “hook” for processing
output descriptions. However, it is not trivial to produce a program that will produce a
compressed representation of a scanline (in which long streams of zeros or ones are replaced
by run codes) nor to produce a set of verifica tion conditions that will guarantee that the
compressor will produce equivalent scanlines. •

Resource Resource Description

SLG.nerate This resource contains a single operation that converts a bitvector
(in a ‘anguage dependent representation) to a scanline description,
which is a sequence of 8-bit bytes. It optionally exercises the
SLCompress operation on the result.

SLD.code This resource contains an operation that converts a scanline Into a
bltvector.

SLCompre ss For those programs that deal in uninterpreted scanlInes, this
resource contains an operation to optimize the space occupied by - .

the description of a given set of bits.

The Yfpi program in Figure 6-9 is the output of a hypothetical FsmYfplGen processor that
is capable of generating programs from the tabular representation of FSM’s used above.
Since this program is constructed directly from the definition of the FSM~ a modification to the 

-F’SM definition would be automatically propagated to all programs that used the Yf p1 version



--—-~~~.-— - - •~~~~~--—~~
--.-

Page 122 6.4.5 PrInter Scanfln. Interpreter

subsystem SL
provides SL.Cen.rete, SLCons press, SLDecod., SLOe flrauon*
subsystem SI.’

provides SLD.flsüt ~on
realization

concret. object Defufil.(cScanline Defln4uon))
version Fs.n resour ces Oaf end Fain
version Ref resources “Cosnns.nt Sco~liat. Use” compon.nts Del end Ref
version V/pt resources FsniVfplCert(Def) m d  V/pS

end SI.’
realization

version SoU select SL’—Ref
concret. object Del Tag—acqulre(SLDeflst At ion)
resources SLG.nerot.: Concat(Defrag, file(cScanjj sie Can FunctSona>)),

SLConspr.se: Concat(Deftag,file(cScanjat. Cnspr Functions>)),
SLD.eode: ConcQt(De/ Tag,fi la(cScanli4ze Dcd Functions>))

•nd SaAL

•nd SL

Figure 6-8: Scanline Interpreter Subsystem



_ _ _ _ _ _ _ _ _

6.4.5 Printer Scanlin. Interpreter Pig. 123

var BitCount , CopyCount:uiteger ,
stete:(CHAR , CTL, COPY, WI, W2, 81, 87, 1MG DONE)

procedure Decr(ctr:r.l tnteg.r, n i n~egerh
If ctr~re th.n ctr’-ctr--n else ERROR()
end D.cr

procedure ScanlAnelnitO st a..-CtiAR; BitCouat’-1700 end ScenIü’ielnit
procedure Scont.incNeat(b:b~te)i

case stote of
CHAR: If b— O t hen net.’-CTL else Cop~Count I-b-I; stcite’-COPV fi
COPY: If CopyCount-O then output(b); Decr(BLtCount,8)~ stot.i-CHAR

mIs. output(b) Oecr~CopyCoun*,I) D.cr(BltCowtt,8)
CTL II b—O then s:ot. .-WI

.lseif b—I then sgate’-OONE

.lseif b—2 then state -IMC
else ERROR() ii

DONE: £RROR()
1MG: out pue(b) ; Decr(B&tCeuj it ,8)
Wi: If b—0 then stet.t-B2

else for 1-i thru 6 do output(OA~ Decr(Bitcount,b) stet,e-B1 od Il
81: ii b.O then stat.’-W2

else for j ’-l thru b do output(1): O.cr(BitCount,b) ; st~t.’-WI od fi
W2: If b.’O then stat.’-CHAR

els, for j .-1 thru 6 do out put(O~
)
~ Oecr(BLtcourst,b) sto.t 4-B1 od ft

87: if b—O then at ot es-CHAR
else for j*-J thru 6 do ousput(1) Decr(RitCowit,b) ; stat es -WI ad ft

end case
and ScantLneN.xt

Figure 6-9: FinIte State Machine Generated Program

of the scanline definition.

Other programs are unable to use a mechanically produced version of the scanline
definition. For example, the program that performs the SL.Compress operation translates one
scanlin,~ description Into an equivalent but shorter scan lin. descri ption. Handcoding this
procedure is the appropriate use of state of the art techniques. However, in order to record
the use of the information contained in the SLDefinition resource, the program acqu~r.s a
version of the resource that is a comment. By attaching appropriate policies to each of the
pieces of the subsystem, modification of the definition file will send a message to the Ret
version (of which the definition file is a component) that can then send messages to each of
Its users. The handcoded compress routine, upon receiving that message, can prevent further
use of itself until a programmer has re-established the correspondence between the program
and th. definition, and can send messa ges to each of its users Indicating that the program Is
currently incompatible with the current definition.

6.4.6 Character Set Definition and Directo ry

The character sets that are used to produce the text scanlines are used In several ~~~~
within the system as well as by other , related systems. A cha racter set has a fixed heigh’ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— -~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Pig. 124 6.4.6 Character Set Definition and Directory

and baseline; the height is the number of scanlines in each grid while the baseline is the
position in the grid that is used to align character sets. Each of the 128 grIds in the
character set has its own width and increment; the width is the actual number of scan
positions in the grid, while the increment Is the amount by which the scan pointer should be
moved (thereby allowing overlap of character grids and avoiding storage of blank grid
columns).

Resou rce Resource Descriotion

Ks.tlyp. A type definition for the manipulation of a singl. character set

KsetList A list of the available character sets and their characteristics

KsetXf.r A mechanism for transferring the representation of a character set
from one medium to another.

Ks.tEditor A program to create or edit character set definitions.

The original definition of the character set directory is the file that is given the tag Def”
above. Figure 6-1 1 represents the contents of that file; only a small number of character
sets are listed here, since the actual character set directory has over 100 entrIes.

Number Heifht ~~~~~ Width ~~ D.scriDtion

CLAR35 53 35 29 Var No Clarendon Roman
F1X25 4 25 20 16 Yes News Gothic Fixed Width
BOR4O 6 40 30 Var No Bodoni Roman
LPT128 83 28 22 16 Yes Line Printer Simulator
NG825 11 25 20 Var Yes News Gothic Bold
NGB3O 19 30 24 Var No News Gothic Bold
NGB4O 127 40 32 Var No News Gothic Bold
NGI2O 117 20 16 Var No News Gothic Italics
NG125 1 25 20 Var Yes News Gothic Italics
NGR13 22 13 11 Var No News Gothic Roman
NGR2O 15 20 16 Var Yes News Gothic Roman -

NGR25 7 25 20 Var Yes News Gothic Roman
NGR3O 23 30 24 Var Yes News Gothic Roman
NGR36 124 36 29 Var No News Gothic Roman
NGR4O 8 40 32 Var Yes News Gothic Roman
API..25 137 25 20 18 Yes API lype Ball Simulator

Figure 6-11: Character Set Directory

The Sail versions of the character set directory are parallel vectors with corresponding
elements in each row. In another language, a vector of records might be as convenient. The
documentation version of the character set directory contains, in addition to the displayed
data, the control characters that indicate to Scribe that the data is to be aligned In columns.

The KsetType definition is shown above as a set of four pages in a file that are maintained
In paralle l. Figure 6- 12 shows a Ytpl program skeleton that represents the operations

-

~

-

_~


~~~~- - -- -
- -

6.4.6 Character Set Definition and Directory Page 125

subsystem 1(SET provides Ksettdito. *., KsetLut*, Ks.t Type*, Ka.tXfer*

subsystem KE provides KsetEditor
requires KsettditorOriver , KsetEdit orMonit or
subsystem KED provides KsetEdtgorDrw.r

rsq uires Ksee Type, l(s.tXfer, KsetLIst, Sr41Extension,
extern il Kr, KX , 1(0, SAIL
realization

version One select KT-$oil, KX-SrgiL. KDUI S~SLLAI4 SAIL u’Stdcomponent Link(5a4(lile(cKset Editor Driver Source>)))
•nd One

end KED

subsystem KEM provides KsetEdLtorMo~jte,
require s Ksee l yp., Gre phicsMonAtor
external 1(7, GRAPHICS
realizatio n

version On. select KT—Blissll , CRAPHJCS.~BLj ssJJ
component Linki I (Bliss! I(tii.(CKset Editor Monitor Source>)))
end On.

end KEM
realization

version On. select KEM’.On., ICED—One end One
end KE

subsystem 1(7 provid.s Kaet Type
realization

cancr.t. obje ct Typesuf ik(’~Kret Type Definition>)
vers ion Sail resources Extro ce(Typ.,) with 1 end Sail
version BUss!! resource s Extract (Typ.s) with 2 end BUss!!version Bliss resources Extrect (Typ..t) with 3 and BLAt:
vers ion Macroll resour ces Extroct(Types) with 4 end Macroll

end 1(7

subsy stem KX provide s KsetXJer
real ization .. . end KX

subsyst. m 1(0 provtdes KsetLiu
realization

concrete object Def—fils(<1(set Directory To bie>) ,
Edits—f ile(cKset Directory Edits>),
Std—BH~D.f) with “sel.ct:’Std— V.:”'vers ion 3a4L411 reso urces EdSt(D.f,Edits) with ‘3o~i4 Vector ” end SQu ALLversion SoiLStd resources EdAt(Std,Edj tj )  with 3ai4 Vector ” end 5.4 Std

version Doe resourc es Edit (Def,Edits) with “Scrib.TobI.” end Docend 1(0

realization
end KSCTS

Figure 6-10: Character Set Definition Subsystem

contained in each of those pages in a form suitable for each language. 

-~ -~ --~ - -~~ - - - ~~-~~~~~~- ~ - - ---~,~~----,-



Pag. 126 6.4.7 Scribe Document Preparation Program

typo Kset
operation ~~~~~~~~ returns string

Ksetjd returns integer
KsetH.ight returns integer
K:etBase(in, return, integer
KsetWidth(integ,g. c) returns integer
Kset!ncrement4ftteg,r c) r.turns integer
KsetRoiv(integer c,S) returns biWictor

c,i; bitvector 6)
KsetSetWidt/v(i,d.ge,. c,w)
Kset5et1ncr me,t~~p~eg~f c,i)KsetSetH.igI~(s,a.g.r is)

end (set

Figure 6-12: Definition of Type ICtet

6.4.7 Scribe Document Preparation Program
The community served by the scanline printer generates a large number of theses, papers,books, reports, articles and letters. Scribe has become the program of choice for thispurpose; It generates documents for a variety of devices including the scanline pririter.* Itproduces documents for the printer that are not Only properly formatted into chapters,sections, and paragraphs, but have also been justified according to the specifications of the -

actu al Character sets th at will be used. Therefore, it uses the text-oriented file formatresource, the directory of char acter sets, and th. character set typ. definition (as well asresources provided by other subsystems).

subsystem SCRIBE
provide s report s letter, thesis, paper, articlerequire s ToffCei’serot., Ks.t Li at, Kset Typ.•xt.rnal PTRSVS
realizati on

versjo~ Current
select PTRS VS.TOpp,.8Us3, PTRSVSJ<D.BLiSS.Aj4 PTRSV5J(T-B~~~component UNK(BUssaj l.(<Scrth, SoA.&rce>)))end Current

version ManuaL select PTRJ(D-ni,,
component Scrib.aj l.(.cscrj 6, Manuel Source>))
end ManuAL

end SCRIBE

Figure 6-13: Scribe Subsystem

Tbo. th.,j, wss pvoduc.d With Scthe.

I I

-. -- -- - —• ~- • — - - -  - — 
— - -



6.4.8 Spacs Picture Drawing System Page 127

6.4.8 Spacs Picture Drawing System
The Spacs Picture Drawing System provides a general picture drawing facility for thegraphics terminals available in the installations. One of the programs in that system convertsa Spacs picture, which is comprised of characters and vectors, into a graphics-oriented filefor the printer. This program uses the high level graphics-oriented file format resources;they in turn utilize the character set typ. definition, low level graphics-oriented resource andthe printer scanline definition (see section 6.4.4).

subsystem SPACS
provides PictureEditor , PictureCo,wert er
require Pictur.Editor, Pictur.Convert .r
subsystem PE prov ides PictureEditor .. . end PE
subsystem PC

provides PictureCo,w.rter
requires CoffCenerat.
ex ternal PTR
realization

version Current selec t PTR.COFF-50i1
component LINK(SaiL(fils (cP ictur. Convert Source>)))
.nd Current

end PC
realization

vers ion ManuaL
component Scribe(Scrib.(file(cSpocs Manuel Source>))
end Manual

version Current select PE-Ctsrrertt end Current
end SPACS

Figure 6-14: Picture Editor Subsystem

6.4.9 Document Typer
Text-oriented files are not suitable for printing on standard terminals. The DocumentTyper program prints a text-oriented file on a terminal in one of two forms, either eliding ~hecontrol codes or printing the control codes in a readable form. In order to perform itsfunction it must not only decode the file but be able to print reptesentations of the controlInformation.

6.4.10 Select Pages Program
The Select program extracts pages from text—oriented files. It is available as a programand as a function within the driver. It is the only program that both reads and writestext-oriented files. In order to have the extracted pages function as an independenttext-oriented file, the embedded user command must be retained (even though t hey are inpages excluded from the new file) and various state variables must be maintained , such as the

Th. di.~r.ms in this th.. i. we,~ produc .d w ith ths Sp.c. Pictw. Dr.win5 Syst.i ~

— _________ a-



Page 128 6.4.10 Select Pages Program

subsystem TVPER
provides TyperProgram
requires To f/Decode, CcDecode, CcPrint
external TOFF, CC
realization

version current select TOFF-Current$Qu4 CC-Current.Sajl
components Lmnk(SaSL(cDocument Typer Source>))
end current

end TVPER

Figure 6-15: Document Typer Subsystem

current character sets and margins.

subsystem SELECT
provides SelectPa get

• requires To f/Decode, TofJCenerate, CcDecode, CcGenerate, CoSt rateSet,
So4Pro gramEd its, FileUtiLities, StringUtilities

external TOFF, CC, SFU, SSU, SAIL
realization select SAIL—Lib, SSU—lib, SF1.1 —Lib

concrete object Source—fil.(<Select Routine Source>)
version ExecutabLe select TOFF-SaiL, CC-Current$ail

— concrete object Bodies —S ail(Expand (Source,
acquire(TofJCenerote),acquire(TofjDecc~je),
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~SeLectHeaders—EdLt(Source,acquire(5 Prog~~~~~~ s) with “Headers”

version Subroutine
resources SeLectHeaders
deferred Bodies
end Subroutine

version Pro grain
- concrete object SeLectMain—Concaerbegin “,SeiectHeaders,

file(<Setect MaLn Program>), • end”)
components Li~Ic (SaiL (SeLectMain) ,Bodics)

- end Program
end Executable

version Document components Scrib.(<SeLect ManuaL Source>) end Document
end SELECT

Figure 6-16: Select Pages Subsystem

The construction details of this example have been carried out In full. The contents of the
files <Select Routine Source> is reproduced in Appendix IV.1 with the I/O routines deleted. ç -The TOFF and CC Operations are implemented as macros, and are therefore surrounded by
braces. The Sail versions of the macros from 10FF and CC are in Appendices II and III,
respectively. The result of the expansion of the Select source with those macros Is
presented in Appendix IV.2.

_ _ _ _ _

6.4. 1 1 Driver--Master SIde Page 129

6.4.1 1 Driver--Master Side
The printer driver is the central facility of the software support system. Users issue

commands to the host program, which then sends messages to the slave program containing
text- and graphics-oriented files, character sets, and special protocol messages (star t of
transmission, abort, etc.). A variety of operating system facilities are used to control the
Interactions of two or more users who are attempting to print documents at the same time.

The master side of the driver program ii divided into subsystems that provide operating
system facilities, the command language interpreter, and the command language executors. A
spooling version of the driver does not actually interact with the printer but queues
commands for the real driver to execute at a later time. Two of the subsystems will be
further elaborated in later sections.

subsystem MASTER provides Print
requires SailExtensions , Protocol, CommandLanguags
external SAIL PROTOCOL
subsystem OPSVS provides Abort Trap; AdjustPrionity *, Delay*, ALLoc*, Ppn*

ex te rnai PPN, AT
subsystem PRIORITY provides Adj u.stPr ior ity . .. end PRIORITY
subsystem ALLOC provides ALLoc . . . end ALLOC
subsystem DELAY provides DeLay

requires TingLe external TINGLE.. . end DELAY
realization.. . end OPSYS

subsystem CL provides CommandLanguage, Commands, Variables
requires HelpCmdEx , ShipCmdEx, SeLectC indEx, KickCmdEx
realization . . . •nd CL

subsystem HELP provides HelpCmdEx
requires Commands, Variab les external CL
realization . .. end HELP

subsystem SHiP provides ShipCmdEx
realiza t ion. . . end SHIP

subsystem SELECTflR provides SeLectCmdEx
requires SelectPages external SELECT
r.aiization select SELECT—Executable Subroutin.

version Only
resourc e Concat(“b.g~si , acquire(SeL.ctPages),

file(cSelector Program Source>), “ end’)
end Only

end Selector
realization

version Direct selec t CL—Direct , OPSVS”Orily, SAIL—lib
concret . object DirectMain—SaiL(TIle(<Oir,ct Master Source>))
covnpon.nt Lmnk(Dir.ctMain,def.rred(DirectMain))
end Direct

version 5pooi select CL—Spool, SAIL—Lib
concrete objec t SpcolMain~SaiL(file(.cSpool Master Source>))
component Listk(SpoolMoui,def.rred(SpoolMairi))
end Spool

end MASTER

Figure 6-17: Driver--Master Side Subsystem

~ —~~~-—— --- -~~~-~~~~~~~~~~~~~~~ ~~~~~ ~~•.

Page 130 6.4.11 Driver--Master SIde

Several levels of resource indirection occur in this subsystem as provided for in section
4.4.1.3. First, MASTER provides as resource eventually provided again by PTRSYS (see
section 6.4.1). OPSYS provides a set of resources some of which are available In the library
while others are locally implemented.

An exaggerated need for access to subsystems defined at relatively high block levels (see
section 4.2.2.3) is Illustrated by the DELAY subsystem which requires Tingle(Ne1s77]. This
resource is require by DELAY but that need does not follow from the structure of the
enclosing systems OPSYS, MASTER, DRIVER or PTRSYS. Therefore, DELAY must be able to
directly name library subsystems.

A circular interconnection is necessary in this subsystem, as predicted in section 4.1 and
discussed in section 7.1.2.3. The Commandlanguage resource defines the syntax of the
commands and requires command executors from other subsystems. One of those command
executors, the HeipCmdEx resource, requires descriptive text about the commands to display
to th. user. This natural cross-connection causes no problem and is easily managed.

6.4.12 Remote Print Program
Some printer users work on systems connected to the printer system only by way of a

network. This program transfers the documents to be printed to th. host system, runs the
driver program and prints the documents. This program interprets the responses of the
driver program to determine when the document has been printed whereupon it deletes the
transferred copy and returns to the human user.

Maintenance of this program is difficult to automate. The particular knowledge It uses of
the command language Is small and not likely to change. An appropriate use of the policy
mechanism in the construction database (see section 5.3.4) would be to notify the human
maintainer of this program each time the command language changes. The human then
determines whether any reconstruction of this subsystem is necessary.

subsystem REMO TE provides R.motePrint
requires CommandLangwig., NetworkProtocol external CL. NETWORK
realization select CL—Re!, NETWORK—Telnet

version OnLy
- component Lüik(SaiL(tiIe(~Remot. Print Source’)

end Only
end REMOTE

Figure 6-18: Remote Print Subsystem

6.4.13 DrIver Command Language
This subsystem defines the command language for the driver system discussed in section

6.4.11. The ComrnandLanguage resource is program text to recognize commands and invoke
the appropriate command executors. The Commands and Variables resources provide text for
the Help command executor.

There are two programs that cause document printing, one that directly drives the printer
and another that queue requests for delayed printing. The command languages for these two

- - -—
~~~~~~~~ -~~~~--~~~-~~~ -~~~~~~~~~~~~~~--



— ~~~~~~~~~~~ - - -~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~~~~~-~~~~~~~~~~ - -- - ~~~~ - - - - - 

~~~~~1
6.4 .13 Driver Command Language Page 131

subsyste M CL provides ComrnandLrsnguage, Commands, Variables
requires HelpC indEx , ShipCmdEz , SelectCmdEx , KickC indEx
externa l HELP, SHIP, SELECTOR, KICK
realizat ion
concr ete object CnsdDef-filei cConsnsand Definition.v>),

Vo~Def-file(< Varia ble Definitions>)
version Ref

• •resources Comment Drwer Command Language
components CmdD.f, VerDe!
end Ref

version Direct
select SELEC TOR-Only. HELP-Direct , KICK-InLine, SHIP u.InLine
concrete object OirecrCmds-BH(CmdOef) with “seL.ct:Subset —Direct ”,

Direct Vors-BH(l/arDef) with select:Subset —Direct ”
resources Commands: Dir.ctCmds, Variables: Direct Vors,

CommandLanguag.: Concat(“begin ,
Edit(OirectCmds,Edits) with “Commands ”, ”;”,
Edit (Direct Vars ,Edits) with “Variables ”, ;,
acqu ire(ShipCmdEx), f’, acquire(HelpCmdEx), ?‘,
acquire(Sel.ctCmdEx), ”;”, acquireO(ickCmdEx),”;”,

- file(cDirect Driver Source Program>), “ end ”)
end Direct

version 5pooi select HELP-Spool, SHIP-Spool
subsystem Spool l provid.s KsetLLit* ext.rna l KSETS

realization select KSETS.KD—SoALALL end Spool 1

concrete object SpoolCnids—BH(CmdO.f) with “select:Subset—Spoot’,
SpoolVars—BH(VarDef) with “s.Lect:Subset—S pooL”

resources Commands: SpoolCmds, Variables: SpooLVars,
CommandLartgu.age: ConcatCbe gin ,

Edit(SpoolCmds,Edits) with “Commands”, ”;”,
Edit (S pool Vars Edits) with “Variables”- ;“,
acquire(HeLpCmdEx), “;“, acquire (S hi pCmdEx) , “;“,
acquire(KsetList), “;“,
fil.(cSpooL Driver Source Program>), “ end”)

end Spool
end CL

Figure 6- 19: Command Language Subsystem

programs overlap extensively but each has unique features absent from the other; for
example , the direct driver permits the user to intervene in the slave environment while the
spooler allows queue parameters to be specified. Hence, the CL resources occur in two
versions and therefore the Help command executor will exist in two versions (see section
6.4.14). The commands and variables descriptions are extracted from a combined definition.

For reasons without technical validity, the direct driver requires the user to exp licitly
transfer some character sets to the slave before printing documents that use them. The
spooler automatically inserts those commands if they are needed. In order to accomplish this,
it must know which character sets are already present, Information that is contained in the
character set directory resource. As provided in section 4.4.1.4, a new subsystem

_ _ ---~ -

Page 132 6.4.13 DrIver Command Language

introduced for the spooler version; in this case it merely indicates the library subsystem and
version to be used for the newly introduced resource.

The SELECTOR subsystem provides the Select command executor. It Is the same function
as the SelectPages resource described In section 6.4.10, with the following modification: the
select command automaticall y provides a tempor ary file for the selected pages and then
invokes the Print command executor.

The SELECTOR subsystem also illustrates the flow of a deferred object. The
“acquire(SelectPages)” phrase In the construction of the SelectCmdEx resource object causes
the deferred object associated with SelectPages (namely, “Bodies” In the SELECT subsystem)
to be attached to the SelectCmdEx object. It will be attached to the result of the Concat
processor in CL, and again to the DirectMain object when the Sail compiler uses the
CommandLanguage resource. The Link processor takes both the DlrectMain object and
attached deferred objects and creates the MASTER subsystem component. Not. that the
propagation, once started, occured automatically.

6.4.14 Help Command Executor
The Help command displays Information about the command language of the driver. The

operands include names of commands, names of user visible variables, and an assortment of
miscellaneous keywords.

The HELP system demonstrates two features that should be added to the construction
notation. First, named and parameterized rules would prevent the copied construction
Information. Second, there is no way to specify the connection between component objects
and the programs that use them (as required by the “NonResident” vers ion in Figure 6-20).

7 Analysis end Evaluation Page 133

subsystem HELP provides HelpCsndEx
requires Commands, Variables extern al CL
realization

concre te object Keys—Concatr{Acquire(Co,n ’ftafldJ))”, “(Acqu.ir.(VariabL.s)} ” , -

fll e(<Miscellaneous HeLp Keywords ’))
version Resident

concrete obj ict Pgrrt_fils(CResident Help Source>),
Edits—f il.(cHelp Keyword Edits’)

version Direct select CL—Direct
resources Concat(“be gus “,

EdLt(BH(Keys) with “sort:A”, Edits) with “G.nHeLpTabLe”,
“;“, Pgm, “ .ne)

end Direct
version Spool select CL-SPOOL

resources Conco.t(“begin ”,
Edit(BH(Xeys) with “sort:A ’, Edits) with “C.nHeLpTo.bLe .
“;, Pgns, “ end”)

end 5pooi
end Resident

version NonResident
concrete obj.ct Pgm—file(<NorsResi4ent Help Source’)
version Driver select CL—Direct

resources Pgsn
components ResoLve(Keys)
end Direct

• vers ion Driver select CL—Spool
resources Pgm
components ResoLve(Keys)
end Spool

end NonResident
end HELP

Figure 6-20: Help Command Executor Subsystem

- - -~~~~-— —-~~~~ -~~ - — ~~~~- ---- —-- --~~~~~~~—-~~ - . - - -- -

-~~~~~~~- ~~~~~~ - . - .- -~~~~~~~~~~~ -~~~~~~~~~~~~~~ ~~

Page 134
7 AnalysIs and Evsluatlor

S

•

~~~~~~~~~~~

• t

_ __ _ _ _  _ _  ~~~~- - - ~ - - - -~~~-~~ -- -~~~—- --~~~~ - -“--- -~~~~---



7 Analysis and Evaluation Page 135

7. Analysis and Evaluation
• - We developed a system representation scheme in Chapter 4, used it in the design of a

software construc tion database in Chapter 5 and applied it to parts of a real system in
Chapter 6. In this chapter, we evaluate the representation techniques In the light of the
experience of the last two chapters. This discussion will address many of the details of this
particular representation; general conclusions appear in Chapter 8.

In section 7.1, we discuss many details of the notation, defend choices made in Chapter 4
and suggest improvements for future representations. In section 7.2 we summarize the direct
costs of organizing software around a database such as th at discussed in Chapter 5. In
section 7.3, we discuss indirect effects of organizing software systems with a uniform system
description language and central database.

7.1 Basic conce pts
In Chapter 4, several decisions were presented without j ustification. In this section, we

discuss many of those points In the representation of basic concepts such as resources,
versions and construction rules. In some cases we will explore possible alternatives and
either defend the choices we made or indicate a need for a better solution.

7.1.1 Resources

7.1.1.1 Content of Resources and Source. Other researchers have limited the “content” of a
resource to programming language constructs such as types , procedures , clusters or
variables. We argued in section 3.1.1.1 •that extra-linguistic resources were necessary for
non-algorithmic information and for abstracting from linguistic features. We exploited this
generality to represent program skeletons in section 6.4.10, data collections In section 6.4.6
and construction information In section 6.4.3.

Although no attempt was made to classify source and resource objects in Chapter 4, it is
likely that a collection of source object classes will develop. This is because of the
advantages of begin able to apply tools uniformly to a class of objects. The obj ects in
Chapter 6 could be grouped into the classes “macros”, “editing commands”, “soui e with
macr o calls ” , “ tables ” , “Sail programs ”, “Bliss programs ”, “Macr o—il programs ”, “dc-cument
definitions”, “text-oriented documents”, and “graphics-oriented documents”.

Extending the notion of concrete object to include a “class” would allow the constructic’r’
system to exploit the class of an object in automatically generating construc tion sequences.
Conventional software construction systems have a fixed set of classes (e.g. a source class
for each language, a common relocatable class and a linkage-resolved class). The list above
demonstrates that conventional classes are inadequate and we assume that the collections of
classes must be extendable by the user. It may als o be useful to formulate class as a vec tor
of attributes such that “Fortran macros” and “Sail micros ” share the attribute “macros ” while
“Sail macros” and “Sail source” share the attribute “Sail”.

7.1.1.2 Resource Representation. In section 4.2 we restricted the representation of resourcee -

to character strings (of arbitrary length). In most system construction processes , c harai. ,te
strings are in fac t the common currency. Information, however , often exists In structu’ r - ,

• objects, such as directories, parsed programs, or data bases . in section 6.4.6, a character ci
4ist was derIved in part from the directory that contains the character set definition files; ti 

~~---~~~~~~~~~~_~~~~- _—--——- ~~~~ -- -~~~~~~~~~ - - - -~~~~ - -- --~~~-~~~ --~~~~ ~~~- -~~~~~



-~~

Page 136 7.1.1.2 Resource RepresentatIon

table in Figure 6-11 is created by merging the directory information with auxiliary
descriptive text.

Two approaches to this problem are a) to allow non-string resources and b) to provide
object—to—string coercion programs (e.g. a directory listing program produces a character
string representation of a directory). In the former case, resource manIpulation during
system construction is more complex because the system must use a different transport
operation for each class of object that can be used as a resource. The latter alternative
forces the conversion of structured objects to strings before they become resources, and
provides them to the requesting site In that canonical form. If the original structure Is useful
to the requestor , It must be regenerated by parsing the string representatIon.

Because it is simpler to process canonical string representations, we chose that alternative
in Chapter 4. Forcing programs to parse a linear representation to exploit structure that was
present before the linear encoding introduces a built-in inefficiency that is probabl y
unacceptable. To our knowledge, only ad hoc solutions to such problems have been
developed.

7.1.1.3 Explicit Naming of Resources. The subsystem interconnection notation forces the user
to explicitly name all resources. Our experience indicates that this approach is appropriate.
For methodological reasons, it should be possible to tell unambiguously what resources are
provided and required by each subsystem.

In conventional construction processes there are often associations between the names In
one object and those in another, or between the name of an object and names that occur
within It. For example, the external symbol names in a compiled code object correspond to
identifiers in the program text (more or less), or a macro might be stored in a file with the
same name. For another example, resource names in MILs are tied to cluster or function
names. Because our resources are character strings, not programming constructs, no implicit
association is made between the names of resources and the programming constructs that
might be named in the contents of those resources. We believe that the appropriate location
for this mapping is in specifications attached to each version of a subsystem. In such
specifications , for example , would appear the statement that the resource TrigFcns from a
Fortran version of the PLOT subsystem must contain definitions for the Fortran subroutines
and functions SetAxis, Setlitle, PlotCircie, PtotFcn and Draw.

7.1.1.4 Structured Resourc .s. We examine in this section whether resources should be
hierarchical objects, possibly themselves composed of resources, and whether there should
be a capability within the interconnection notation to restrict the use of subresourc.s of a
given resource. -

Hierarchical organization is a tempting way to organize resources into groups that are
required or provided together. This could be used, for example, to define “environments” in
which the definition of the environment is composed from the “provides” list of the
subsystems that establish the environment. Consider a collection of resources that constitute
a mathematical subroutine library. These resources might be provided in an environment
definition in a high level subsystem for use throug hout the syste m. if a resource were added
to the library, it would be convenient for the environments to be extended automatically to
include that new function. A hierarchical resource structure would solve this problem but
would be an unnecessarily general solution. The same flexibility can be achieved by the
simple textual trick of copying one resource list from another.



7.1.1.4 Structured Resources Page 137

Another motivation for hierarchical resource organization is the unification of cases in
which one program requires resources such as “Sine”, “Cosine” and “ArcTangent”, while
another program requires “TrigFcns”. in Chapter 4, we would provide four separate
resources from the same subsystem rather than a tree of resources with “TrigFcns” as the
root and the other three as descendants. The relation among them is apparent only from
examining the construction of the objects that represent the resources and seeing, for
instance, that the object that represents “TrigFcns” was created by concatenating the objects
that represented the other three resources.5 Again, this benefit does not alone justify the
hierarchical mechanism.

if resources are hierarchically structured, either the entry in the provides list must specify
the entire tree of resources or the requiring user must specify a path to the resource (we
reject searching the entire interconnection structure for the match as inordinately expensive).
Suppose we have a resource “MathLib” consisting of “TrigFcns”, “SplirieFcns”, “Besse(Fcns”
and others. if the user can write “Acquire(Sine)” in a program, the library subsystem must
specify that “Sine” is available from ~t directly. As shown by comparison to the current -

notation, the only advantage in doing so is a suggestive textual format.

subs ystem ML provides Sine, Cosine, ArcTojsgen* end ML

subsystem ML provides MathLib { Tri gFcru{Sine,Cosine,Arc Ta.ngent}...) . . . end ML

If, on the other hand, we have ML specify only that it provides “MathLib”, the user of Sine
would have to specify “Acquire(MathLib{TrigFcns(Sinefl)”. Forcing the user to know the
decomposition of resources is unfortunate and in fact negates the value of the scheme in the
second example above. -

An additional difficulty with hierarchical resources results if the user may write 
-

“Acquire(TrigFcns)”. In this case acquire must be able to construct the higher level resource -

- 
from the descendant resources. Because composition of resources is dependent on language -

and program context , some construction rule must be available for acquire to use. In Figure
7-1 we show that considering TrigFcns to be a composed resource would alter only the -
syntax of the first line (as shown) from that imposed by the constraints of Chapter 4.

A related issue is raised by the authors of those interconnection notations that are based
on the abstract data type model of a resource. They use a special notation to indicate that -

only a subset of the operations on the data type are provided or required at some point in a
system. Is there a general “subrasource” concept that is worthy of a special notation? And
if riot, what is to be done with the case considered above?

Imposing restrictions on the use of operations from a resource is a means of implementing -

capability-style protection on objects of the type represented by the resource. Protection is
an aspect of the use of resources rather than their definition. We believe that the
interconnection notation should describe only definition relationships and that all information
about the use of resources, including protection, should be given in the specifications for a
resource and the specifications for the use of the resource. To implement these restrictions,
additional communication between the specifications and the compiler that enforces them is
necessary (see (Tich8O]). We recommend that the SCF support this interaction but not be
party to it. 

-

“TI,. conca$.nution opera*er n.y, of coure., b. compl.x. For A11o1-lik. lsn~uq.. , It ,avo~v.s ins.rtm$ • s.psr s tc
such .. • ,, ,m-coloø. b.tw.en lb. d.fi,,j$io,,s.



- -

~~
- - - - 

Page 138 7.1.2 Subsystems

subsystem TRIG provides TrigPcsu(SSne*, Cosine*, ArcTang.n.t*J
subsystem TRZGX provides Saste, Cosine, AreTongeits

realization
version Std

resourc es Sin.: I ile(’~Sine Function Oeflni io&’ )
Cosin : I ile(CCosin. Function Defutitio&)
ArcTangent: file(cArcTaagesi* Function Defutieio.s) )

end Std
end TRIGX

realization
version Std selec t TRIGX-Std

resources Concat(acquireGS~in.), “ ;“ ,acquire(Cosine), “,“,
acquire(ArcTo.ngent))

end Std
end -TRIG

Figuro 7-1: TRIG--Hierarchical Resource Subsystem

7.1.2 Subsystems

7.1.2.1 Interconnection Mechanisms. The three interconnection mechanisms described in 
-

section 4.2, nesting, explicit reference, and environment definitIon, serve adequately for a
large number of system structures, Implicit matching prevents redundancy and keeps the
descriptions small.

One result of implicit matching is the potential ambiguity that can arise if resource names
are duplicated. White the set of potential providers of resources is explicit, the actual
provider is determined by matching against the resource lists of each of the potential
providers. Clearly, two subsystems could provid, resources with the same name and
therefore the choice of providing subsystems is not unique. Because it is likely that
resources will be named mnemonically, the duplication of resource names should not be a
serious problem. Should it arise, the notation can be trivially modified to resolve the
ambiguities: first , qualify the external entries by the resources tha t they are expected to
provide (perhaps using the copying trick proposed in section 7.1.1.3), second, specify the use
of resources from nested subsystems in the external clause , and third , specify the use of
environmental resources in a separate requires list.

7.1.2.2 Nesting of Subsystems. The distinction between internal subsystems and external
subsystems allows some restriction on the scope of names. The need to group objects and
encapsulat. relationships among them occurs in many contexts and it is no surprise that the
same need occurs here. The scoping mechanisms here are similar to those provided by
abstract data type languages.

7.1.2.3 Circularity. A programmer can construct circular graphs of subsystems with this
notat ion. Circularity is useful in the case of a subsystem that appears at two levels in a
hierarchical system. Suppose , for examp le, that a high level process resource (e.g. the
procedure for creating a process) requires a storage management resource that requires a 

~~~~~- -~ .- —.-~


-~ - .-.~ - - ‘1
7. 1.2.3 Circularity

-

Page 139

low level process resource (e.g. a procedure to halt a process). The apparent circularity in
the subsystem interconnection would be necessary to prevent an artificial division in the
process subsystem.

Real circularity is unlikely to arise, because system designers do not assume that they
solved yesterday the problems they have postponed to today. The ability to represent the
kinds of structures that implementors do in fact use is more important than preventing the
dangerous structures they are unlikely to exploit. In any case, circularity Is easy to detect
(Thom76J.

7.1.2.4 Scop. of Names. The scope of subsystem names was not restricted in the description
of the notation (see section 4.2.2.3). In most cases, Algol-like block structured scopes are
appropriate , but occasionally it is necessary for a subsystem to name a subsystem nested
within a third subsystem. This occurs most often when the using subsystem must
independently specify versions for different resources.

We could either require explicit exportation of nested subsystem names or deduce those
exportations from the structure of the subsystem. We have chosen to do the latter until we
understand better the ramifications of having resources that vary independently even though
they are provided by a single subsystem. Because this is a result of having multiple versions -

of subsystems, the problem does not arise in other interconnection schemes.

7.1.3 R.alization S.ction of Subsystems

7.1.3.1 Separation of Types of Information. The interconnection portion of a subsystem
contains only names of resources, names of other subsystems, and subsystem definitions (see
section 4.2). The realization section of a subsystem, on the other hand, contains all of the
references to tangible objects that “realize” the interconnection structure (see section 4.4).
However, within a version in the realization section, we can, as in the interconnection portion, -

define new subsystems that Introduce new resources and name additional external
subsystems. It might appear that the careful separation of different types of information has
been compromised by this latter ability.

The following argument justifies allowing versic ~s to define subsy..tems. Some versior s of
a subsystem have unusual resource requirements. If one version of a subsystem uss s a
resource that is not used by any other version, then in the absence of the ability to define a
subsystem within that version, we must either create a separate subsystem for the version
(thereby ignoring the similarities among the versions) or propagate the requirement into the -

-

interconnection portion of this subsystem (obscuring the fact that only ore version uses it).
If the concept of version is an appropriate abstraction within subsystems, then new
subsystems must be allowed within versions.

In fact , proper separation of information has been maintained. The information directly -

within the realization section of a given subsystem implements the interconnections of that
subsystem. Any subsystem defined within a version will also be realized within that version.

7.1.3.2 Version Hierarchy. In section 4.4, version names were defined to be vectors of names
that described a path through a version hierarchy. Considering those names to be sets of
attributes rather than vectors would result in an interesting alternative organization for -
versions. In such a scheme, the version name “Current.Fortran.Debug” would be equivalent to

--- - - - -

~

-—-~~ - ---~~~~~~~~ - - — -—~~~~~~~~~~—~~—-

Page 140 7.1.3.2 Version Hierarchy

“Fortran.Debug.Current . In cases where the attributes are independent of each other, this
set character ization is preferable. It avoids unnecessary ordering, encourages “complete”
collections of versions (i.e. all possible combinations of orthogonal options), and lends itself
to efficient specification of construction rules if the attributes are achieved by systematic
modification of a single construction rule.

The path interpretation is better if the interpretation of one attribute depends on the
selection of anothen if the debugging facilities of Fortran and Pascal are dissimilar,
“Fortran.Debug” and “Pascal.Oebug” do not share constructi on information. Paths are also
useful if there is a natural ordering on ntherwise independent attributes. For example,
because hierarchical levels include concrete object definitions, one can define higher levels to
b. those that are likely to contain “source” objects and lower levels to be those that contain
“generated” objects. In section 6.4.3 the “current ” and “development” sets of control codes
are defined in files, whereas the Sail, Bliss and Macro 11 versions of any set of control codes
are generated by programs. Hierarchical organization provides a convenient locale for each
source object that makes it available where it is needed and unavailable elsewhere.

As we learn more about the ways in which versions are used, we will be able to make a
cleare r choice among these mechanisms f or organizing versions. The preceding observations
were significant in the choice of path over set in the proposal of Chapter 4.

7.1.4 Versions

7.1.4.1 Resource Objects vs. Component Objects. The two primary types of objects in a
version are resource objects and component objects, as discussed in section 4.4.1.3, Is it
possible to unify the two classes of objects and simplify the definition of versions?

SCF constructs resource objects on demand but constructs component objects any time a
version is built (either directly by the user or indirectly as a side-effect of having one of its
resources used). We could achieve this construction timing with the policies of section 5.3.4,
so corstruction timing is not a persuasive argument for differentiating resources and
components.

Component objects were introduced because a subsystem may exist without being used by
any other subs ystem. For example , the top level subsystem of any system is used only by
external agents. In section 6.4.11, 6.4.7 and 6.4.10 we defined components of such
subsystems that contained executable programs or printable documents.

In order to eliminate the “component” object category, we wouk! have to provide an
alternative means for the file system to exploit the objects built by SCF. SCF accesses the
file system via the file operator but we have not defined how a user mi~ht, for example, run
a program we have built. If we can describe those accesses with strings (e.g. command
language text), the file system could interface to the subsystems via the resource mechanism.
Suppose that FiioNs,n. is a function that returns the name of the file containing the concrete
object that is its paramete . The subsystem in Figure 7-2 illustrates how this might work.
Some command language tLble would have to be responsible for interpreting command
language actions in terms v f subsystems and versions. For example, the “Scribe” command
could be interpreted to mean “execute the command language text in the RunScribe resource
of the Current ve rsion of subsystem SCRIBE”.

It is not certain that this formulation for access to objects in the database is sufficient.
However , it will be possible to provide some such iriterf ace, and the “component” class of

,~~-- —~~~~~~~~~~~~~ --~~~~~~~~ --—.-~~ - - ~~~.-—.- ~~~- - - --

r -

~~~~~~

- _ _ _ _ _ _ _ _ _ _ _

7.1.4 .1 Resource Obje:ts vs. Component Objects Page 141

subsys tem PROC provides RunPrograns
realization

version Ezecutobl.
resources FiL.Nam.(L~nic(YfpUfile(cPrograns Source>)))
end Ezecuto.b2.

and PROC

Figure 7-2: PROC--Interface to Operating System via Resources

objects will probably become extraneous.

7.1.4.2 Deferred Objects. The processing of resource objects and component objects by SCF
is straig htforward and can be discussed easily. Deferred objects , on the other hand, require
much more complex mechanisms and descriptive prose.

Deferred objects are the result of multistep construction processes, such as the paradigmic
compile/link sequence. If we retain the multistep operation but neglect to enforce the
correspondence between the two steps, we will repeat the errors in corwentiona~construction mechanisms. Replacing the link operation with a Mesa-style bind burdens the
programmer with specif ying the deferred objec t at a later time (knowing, therefore, that it
exists). Avoiding deferred objects by forcing inline i. .. . .“iilation, for example, prevents
implementors from optimizing the sequence of construction steps

At the present, we have no reasonable alternative to retaining the linkage to deferred
objects. The mechanism is sufficiently awkward, however , that there is likely a useful
generalization or a replacement for the compile/link paradigm. In particular , we lose
information by collecting deferred objects into an undifferentiated group. There could be
deferred objects of several types and il may be necessary to retain information concerning
the origin of those objects. Clarifying the nature of deferred objects is a topic for further
research.

7.1.4.3 Version Selection . The only means we have introduced for selecting versions is the
explicit naming of a version for each relevant subsystem, as described in section 4.4.1.2. This
mechanism is adequate (except for environments, see sec tion 7.1.4.5) but often unnecessarily
precise. There are situations in which implicit version selection is appropr ate, either
because ~ne selection is obvious or because any one of several selections is acceptable.

As an example of obvious selection, consider version selection for a resource request t rom
a Fortran program. Certainly we can guess that whenever “Fortran” is a valid selection, it is
the correct one. With slightly less confidence, we can make similar assumptions about version
choices labeled “Debug” or “Current” or “FredsPrivate”. Often “Documentation” and “Backup”
will be propagated as well. The programme r should be given a means for defaulting
selec tions or providing sequences of legitimate alternatives at the requesting site and
perhaps at the providing site. The latter would allow a subsystem implernentor to
automatically default to the most commonly used version.

If several versions of a resources are equivalent as far as the user is concerned, it would
be incorrect to force the user to be overspecific. For example, a program may be able to use
each of an upward compatible sequence of versions and selection from that set should be
made on other criteria, such as convenience (from ScF’s point of view). Selection from a set

~

- --~~~~~~- “ -.~~~~~~~- ~~
-

.
~~~~~~~~~~~

- - -
~~~~~~~~~~~~~~~~~~~~ -



_ _ _ _ _  -~ —-~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 142 7.1.4.3 Version Selection

of this t ype Implies that there is a way to define the acceptable subset , I.e. that there are
specifications associated with the requirer and each of the provided versions (see section
8.3.1). Once those specifications and the matching facility are defined, selection from a set
can be straig htforwardly Implemented.

7.1.4.4 Additional Provided Resources. Versions of subsystems can contain subsystems that
require resources not required by the entire subsystem, as described In section 4.4.1.4. It
would be possible to also allow a version of a subsystem to provide resources not provided
by other versions.

In the current scheme , a version that does not provide one of the specified resources just
omits it f rom the resou rces l ist ; each version can In this way provide a subset of a common
list. However, suppose that a version could provide a resource of some external subsystem
as its own; such a formulation might be appropriate for the definition of the symbol table is a
deferred object associated with a special resource for each debugging version.

• Exclusion of additional provided resources does not result from an Inherent property of
subsystems ; forma lly , the provide and require features are difficult to distinguish. Rather , in
the view of this author , the capability did not seem appropriate, no need for It was firmly
established , and the implementati on strategy was so arbitrary that we have postponed
consideration of the facility until its role becomes better understood or found to be
unnecessary.

7.1 .4.5 Environment Definit ions. The definition of environments of resources (as Introduced in
section 4.2.1) add to the complexity of subsystem Interconnection semantics, This is reflected
in the section of program text that implements the search throug h environments (see section
5.4.1). Does it contribute proportionally to flexibility? Is the concept correctly represented
In the notation?

The basic idea of resource environments Is sound, being derived from common practice
(see section 1.5); almost every project has a common definitions file that is Included In every
compilation in the system. It Is appropriate that both the providing subsystem and version
be specified once for an entire version.

A problem arises in positioning the version selector for an environment. Suppose that two
vers ons of a user system are the executable system and the users’ manual for that system.
The executable system is implemented In Yf p1 using Vt plExtensions as a pervasive resource.

subsystem SYS provides...
requires VfpiExteiu4ona . . . environment YfplExter.aio~uexternal VE
subsystem SVSA . . . realization . . . end SYSA
subs ystem SVSB . . . realization . . . end SYSB
realization select YE—Only

version Exec select SYSA—Exec, SVSB-Ea.c .. . end Ex.c
vers ion ManuaL select S VSA~Ma~uc*L, S VSB-Monual . . . end Manur4

end SYS

In this case , the specification for subsystem YE applies to both th. executable systems and
th. document syste ms. If there are two sets of versions , using different versions of YE
resources , there is no way to s pecify the select ion without abandoning the environment
mechanism. The general problem, of which this is a specific example , is the comp lete
independenc , of versions, discussed In section 7.1.4.6.

_ _ _



7.1.4.6 Complete Version Independence Page 143

7. 1 .4.6 Comp lete Version Independence. If subsystem A has internal subsystems B and C, the
versions of B and C are completely independent of each other and of the versions of A
(except that A will specify version names for B and C). In practice, however, versions of
internal subsystems B and C might be directly related to versions of A; in fact there may
exist a partition of the versions such that version Al uses Bla, Bib, Cia, Cib, etc., while
version A2 uses 82., C2a, etc. Versions of A can exploit their knowledge of versions of B
and C but the versions of B and C cannot exploit their membership In the class. An example
of this problem was discussed in detail in section 4.5.3. It occurs in a different form in
specify ing versions of environments (section 7.1.4.5).

Permitting Internal subsystem versions to Identify with enclosing subsystem versions would
cause a substantial reconfiguration of the relationships among resource providers and
requirers. No similar problem has been addressed in programming language or operating
system research, rendering solution by analogy infeasible. However, such relationships do
arise and therefore should be representable as such in the notation.

7.1.4.7 Appropriate Us. of V.rsions and Resources. It is often difficult to decide whether two
similar resources are alternate versions of the same information or different resources from
the same subsystem. For example, in section 6.4.6 we used the version mechanism to
distinguish between the complete and standard character set lists; we could have used a
different resource for each.

The criteria for making this decision are similar to those for deciding the representation of
portion of a program. If It makes sense to consider the two items as versions, and and the
construction details work out, then the version mechanism can be used. If not, then they
must be isolated as separate resources. The version alternative does not work If a
subsystem needs to use both versions at the same time, or if the version selections for
different resources from the same subsystem are Incompatible.

When It is necessary to divide a resource into two resources for one of the reasons above,
it is often the case that the new resources can be built hierarchically on the old resource.
For example , a system that uses two versions of a resource may actually use the same
information in two forms; the new resources are then “information In one form” and
“information in the other form”, which can be built on top of the resource that descrIbes the
basic information.

7.1.5 Construction

7.1.5.1 The Acquire Mechanism. One difficulty with the acquire mechanism is that It does not
permit a construction process defined in a subsystem to access resources p~ .ivided by that
subsystem. If a subsystem has one version of function that defines callable procedures and
another version that incorporates those procedures in an executable program (for example,
see the Select program in section 6.4.10), it would be convenient to use the former version of
the resources by name. It is not obvious what Impact such a capability would have , but It is
worth exploration. If It is unduly disruptive to the acquire algorithm, the loss Is not great;
the same effect can be achieved by defining another subsystem that provIdes the executable
program and uses the resource definitions.

_____ _______________________  
—~~~~~~ —~

-.~-_-
_ _ _  -- — - -p.- -~~~ - - ---~~~~~~~~~~~~~~~ ---- -



Page 144 7.1.5.2 Non-transparent Resource Transmission

7.1.5.2 Non-transparent Resource Transmission. As defined in section 4.4.1.3, a resource that
is both provided and required by a subsystem is passed transparently through that
subsystem. An alternative would be to permit the subsystem to systematically modify such
resources (an application: addition of measurement information to procedure headers). The
semantic modification to the representation is reflected in a minor change in the acquire
algorithm; it checks the selected version of the present subsystem for resource objects
before looking to the providing subsystem.

The same effect can be accomplished by renaming the resources. This facility trades the
flexibility of being able to change resource definitions flexibly against the stability of the
meaning of a given resource name in the representation.

7.1.5.3 Functi onal Rules. The construction rules of section 4.3 are functional in form. We
could establish an algorithmic construction language that would permit conditional, iterative or
sequential rules. At this time, we have found no need f or more general rules and have
therefore avoided making them any more complex.

7.1.5.4 Shared Rules. All construction processes are specified by rules, as defined in section
4.3. Rules specify processors and a collection of concrete object and string parameters; each
of the concrete object parameters may be another rule. As a result of this definition, it is
difficult to express the relationship between two objects which share, among other things, a
construction rule.

In a previous version of the structuring notation, there was a m~chanism for naming rules
for use by several concrete objects. Such a feature is the natural extension of common
operating system facilities such as command procedures or job control language files. It was
eliminated because it became difficult to define the mechanism with the right degree of
generality. The “too little” form allowed only one parameter , the first concrete object slot in
the rule. However, shared rules could reasonably be parameterized by each of the
parameter slots (both concrete object and string) and even by an intermediate processor
name. The “too much” form allowed arbitrary parameterization of rules; the resulting
Implementation was far too complex for the benefits which accrued.

The conclusion is that construction rules should be given names and permitted parameters.
Finding the appropriate formulation of parameterized construction rules is a topic for further
research.

7.1.5.5 Side-effect Files. As presented in section 4.3, a processor has only one output
object. Yet familiar compilers, for example, generate not only relocatable code but also
listings, cross references , statistics , and symbol tables. Other processors produce other
side—effec t files and some permit the user to produce others. These side-effect files are
used primarily as documentation of the primary output but can sometimes be used by other
processors; for example, a documentation generator could extract from the listings of
programs the storage requirements.

A previous version of this notation allowed for the specification of these auxiliary or
side—effec t files. However, the complexity of the mechanism exceeded the complexity of the
task so the topic has been designated an area for future research. See section 8.3.4 for the
basis for this research. 

~~~~~-~~~~~~~--


- -

7.1.5.6 Processor Versions Page 145

7.1.5.6 Processor Versions. In some environments, the processors themselves exist in several
versions, most often a sequence of releases. Dependencies can exist in both directions; a
program may be written using compiler features not available until a recent release, and a
program may work correctly only on an older compiler version.

We can take a range of approaches to this problem. First, we can consider the processors
to be external to the notation and merely provide a way to denote which processor version
we desire as a suffix to the processor name. At the other extreme, we could embed the
processors in the notation and consider “FortranCompilation” to be a resource provided by a
FORTRAN subsystem of which there are several versions. The “outermost” subsystem
(analogous to the “outermost” block in an Algol program) would contain subsy stem definitions
for the various processing capabilities and a resource environment containing the processor
resources. A processor name in a construction rule translates to an implicit require of the
resource associated with that processor. Any non-standard version selector specified would
then override the environmental selector.

7.1.5.7 System Output Objects. Information used to construct a system is also transmitted to
the objects created by that system. For example, the Scribe system (see section 6.4.7)
requires tex t—oriented file format information and transmits It into the text-oriented files that
it creates. If the TOFF subsystem Is changed (see section 6.4.2), the database manager can
reconstruct Scribe programs but does not have control over the products of Scribe. In order
to keep control of -that proliferation of information, every system built within the structuring
database must also be a processor in the database. If that is possible (it is not if the system

— runs on a different computing system), it can be done on an individual case basis.

7.l.5.$ Construction “Uses ” vs. Al gorithmic “Uses ” . In section 4.5.3, we found a case in which
the notion of “uses” had a different interpretation in an algorithmic context than in a
construction context. It is always unfortunate when a concept must be bifurcated, because

—
additional discriminations must be made whenever the concept is employed. Is this problem a
result of our formulation or a general property of software systems? Does it result from the
generalization of the content of resources?

The particular example of section 4.5.3 is resolved if the version independence problem
(see section 7.1.4.6) can be solved adequately. The problem remains, however, as illustrated
by an example in which two internal subsystems both use a resource which, for linguistic
reasons such as block structure, must be defined only once. In algorithmic terms, each
subsystem “uses” the resource independently; in construction terms, the enclosing subsystem
must arrange for the definition of the resource and is therefore the constructive “user”.

It may be the case that all such examples are the result of archaic language design or poor
target system design. However, problems solved linguistically for one domain often recur in
another; modern languages carefully provide for abstraction from data representation but fail
generally to provide for abstraction from control representation.t Therefore, the nature of
this distinction is a topic for further exploration.

‘AIph.rd ~.n.r.*ors (Sh.w773 .re sn .xc .ption nd h.Ip h~ hh*ht th. prob~ m by eolvin1 • Iimit d contr o l .bstr.ctien
with . nontrM.I mschsniim.

-- ~~- - -~~~ -


~~~~~~ - ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~

Page 146 7.1.5.9 Accessing Deferred Objects

7.1.5.9 Accessing Deferred Objects. The representation currently allows only automatic
propagation and exp licit processing of deferred objects. This results often In the phrase
“L ink(x ,deterred (x))” where “ x ” may have been named merely to make the deferred objects
accessible. Adding a deferred operator to the acquw. operator on the database would permit
processors to access the deferred objects the current object directly. The natural phrase
“ Lin k(Yfp l(source))” then works correctly.

There is at present no mechanism for preventing the propagation of deferred objects
beyond the point that they are used. If the result of a Link operation is Included In so me
other construction, the now redundant deferred objects continue to be available.

If there are two separate integration processors that use different types of deferred
objects, there must be a mechanism for selecting those deferred objects of the relevant type.
Because the notion of general deferred objects is not well understood, this mechanism has
been postponed for a later version.

7.1.5.10 Access to Component Objects. The association between component objects and the
other operating system facilities has not been specified. For example, some component
objects are executable programs and must be nameable from the operating system command
language. This problem arises in an internal contex t if a component object is to be used by
the resource objects (as required by the “NonResident” version of section 6.4.14).

7.2 Costs Associated with System Structuring

The costs of developing and using a software database of the type discussed In Chapter 5
can be estimated from our exploration of the database implementatIon .

7.2.1 Development and Impl.mentation Cost
Portions of the system have been implemented and are operational on a POP-lO computing

system. The design and Implementation of those sections required approximately six
person-months of effort. A database system that included half a dozen processors, policy
enforcing manager , and a flexible database entry editor would require two to three
person—years of sophisticated programmer time over a period of on. to two calendar years.
(This estimate assumes that terminal communications, file system, and interprocess
communication are available In the computing milieu.)

7.2.2 Stora ge Costs

7.2.2.1 Database Entry Storage. The space occupied by database entries is proportional to
the numbe r of subsystems , versions and concrete objects defined. None of the constituents
of these objects become large ; an generous average of eight to ten entries in each list is
cuff Icient. If a “unit” in the database is capable of representing a string or a reference to
another entry, then the description of a given target system will occupy between 50 and 100
units for each subsystem , version and concrete object defined.

The database manager has some hidden storage in the database containing histories,
mailboxes and lists of deferred objects. As mentioned in section 5.2.3.1, histories can become

_ _ _ _ _ _ _ _ _ _ _ _ _ _ ---~ - - . - - - j

7.2.2-1 Database Entry Storage Page 147

quite large and they must be migrated periodically. Mailboxes should remain small (zero to
20 units) and can be kept minimal by project polIcy. Lists of deferred objects should be small
and associated only with a small number of other objects.

7.2.2.2 File Storage. The source files for a system are, of course, no larger than in a
conventional construction environment. The database organization is designed with the
assumption that alt source files are immediately accessible, so dir.ct access storag e not
previously assigned to software source must be allocated.

Because we encourage construction information to be encoded and stored In the file
system, use of the database may increase the number of files of “source ” . This is $ustlf led
only by the additional reliability tha t results from mechani cally reproducing a set of actions
rather than relying on human beings to faithfully duplicate their actions.

An additional load on the file system can result if intermediate construction objects are
retained In the file system. Policies can minimize this Impact if necessary.

7.2.3 Processing Time
One computing overhead cost results from the invocation of processors by the database

manager rather than the human programmer. The extent (and sign) of this cost is dependent
on operating system design. There are mechanisms in some operating systems that permit
programs to invoke other programs more quickly than a user can. In other systems, there is
no easy way to perform the task at all, especially if the cafling program must retain Its state
across the call.

Most of the additional computing cost results from the increased ability to decompose
problems more thoroughly. For example, it is now feasible to maintain a program which is
constructed in five steps; the manager can guarantee that the necessary constructions have
been performed whenever that program is used. Without such a facility, it is likely that the
five step construction would have been abandoned because it was too risky.

The greatest potential for increased computation is in the profligate use of automatic
construction actions in policies. Some overhead is necessary, namely the propagation of
messages to objects. This overhead is, however , much lower than the alternative in which
each construction must examine each low level compc t~ent to determine if a change has
occured. The project management can regulate the amount of automatic computation
performed by careful organization of policies.

7.2.4 Cost Reductions
Some of the database manager facilities reduce costs. Storage space is gained by

encouraging users to share rather than duplicate information and to highly encode
Information. Explicit usage histories provide the information needed to purge obsolete
objects immediately. Policies associated with intermediate objects can cause automatic -

deletion of objects not likely to be used again soon.

Computation costs are reduced because processing steps are never duplicated (unless the
result has been discarded). The subdivision of computation into separate steps permits some
computation to be saved even it other components are being modified.

_ _
- -~~~~~~~~—-~~~~~~~~~~~~~~~~

Page 148 7.3 The Effects of Structuring

73 The Effects of Structuring

7.3.1 Centralization vi. Control
The organization of software development around a central database results in a

centralization of the project and increased control by project management over the process
of construction. How do the proposals we have made minimize the conflict over centralized
resources, permit flexibility on the part of indIviduals, and maintain management control
without sacrificing creativity by project members?

Th. problems caused by centralization are not alleviated in any way by the proposals put
forth here. Dependence on a central fac i lity that proba bly exists on a central computIng
sys tem is an unfortunate result. Whiie we can hypothesize either that the database can be
partitioned with only occasional boundary crossings, or that research in distributed computing
will result in transparently distributed databases, we must realistically admit that there will
be restrictions. Software construction will depend on the availability of the database. In
installations with single processors and uniforml y addressable storage , of course , the
dat abase Is available whenever the comput ing system is availab le.

The problem of availability is par ticularly difficult in the case of systems that are
transferred from one computing system to another. Although we have only improved
distribution techniques by automating the bookkeeping on system components, the distributed
system cannot be maintained in the field with the same flexibility unless the field installation
has a similar database into which the system descriptions can be entered.

The flexibility of programmers is not impeded if the programmer for a given subsystem has
complete control over the subsystem database entry. Only rigidity in the construction
notation will limit the programmers’ ability to use the insta llation facil ities.

• Management control increases because the database manager can be used to control
access to both files and subsystem descriptions, as well as to enforce policies about system
consistency. A’though management control conflicts with programmer flexibility, the database
manager can be used to enforce whatever level of control management deems appropriat e.

7.3.2 S.p.ration of Function

In conventional construction env ironments, language compilers are used to perform
construction and editing tasks in addition to language translation per sa. The source text is
processed by only one program (although it may make several passes in order to accomplish
all of the tasks). In an environment that supports highly decomposed and automated software
construction, some source information is processed by several different processors. Those
processors that operate sequentially on information must either communicate wIth each other
or partially duplicate computation (e.g. lexical analysis). Channeling information from one
processor to another becomes a problem in itself.

Th. transmission problem exists in traditional environments between compilers and linkers.
General ly the communication is accomplished though the tIP, system with a special
comp iler-to-tinker format. If there are several pro cessors , having a separate protocol for

• communication between each pair is an unreasonable solution. Therefore , we suggest a
common processor-to-processor channel language in which one can encode a variety of types
of Information. This language is analogous to the communication protocol on a hardware link..

_ _ _ _

7.3.2 Separation of Function Page 149

The communication protocol provides the ability for processes to send messages across the
link without being concerned about how messages are terminated and what other processes
are using the link. By standardizing the representation of parse d text , the channel language
would facilita te the integration of such programs as cross-reference generators, Indenting
format ters, macro expanders and compilers.

Some of the excess text processing can be avoided in this way, but in general , increa sing
the variety of processors which manipulate information will result in redundant processing of
source. In particular, if processors operate in sequence, each will read th. results of the
previous one. Concurrent organization of the processors Is a possible research topic
(Krut75).

7.3.3 Installation Requirements

The following sections discuss the requirements placed on the operating system
environment by a software database system.

7.3.3.1 Interactiv. Terminal Communications. SCF must be able to control modification and
access to the database. It must therefore be able to determine the identities of users. Also,
because users access the database simultaneously, SCF must have synchronization
mechanisms available that can impede the progress of one user due to the actions of another.
Other than these, no special communications techniques are necessary.

7.3.3.2 File System Facilities. The tile system for software development need not be as
complex as that for a general utility system (Dolo76a). Most construction processes are
sequential so sequential files are generally adequate. However , the contents of these files
should be structured so that several types of information can exist in the same file. An
architecture that precedes each variable length block of data with a count and a type field
permits easy implementation of such techniques as delta-sty le maintenance of sequential -
changes to files, extraction of portions of files, and protection of private portions of file
contents (Re1d77, Roch74).

Some of the concepts developed for concrete objects are more correctly associated with
files. For example, a compiler creates both a relocatable program and listing from a ~c~t’~~eobject. This pair of objects are actually two aspects of a single “result” object. No Ikt’ n~would ever be associated correctly with any other relocatable program. In genera? , ~~ -concept of file must be broadened to include several types of information (Habe77).

7.3.3.3 Processor Design. An integrated software database system requires that processors
such as compilers end editors not attempt to preempt the construction proces.ses. All use of
file and directory system information should be deleted and replaced by uniform invocations
of SCF, such as with the Acquir. function of section 4.4.4. Removal of macro and conditional
compilation features from processors can significantly improve their performance white
properly placing such facilities in a text processing environment.

Use of externally provided resources is facilitated if processor design does not place
unnecessary restrictions on resource format or placement. Order of definition should be
irrelevant, as should tine length, spacing, indentation, and depth of nesting. Flexibility of
usage (expression for statement and vice -versa) and bizarre syntax (null expressions &‘r~dst atements , unnecessary block brackets) need to be tolerated. Many issues that a’ eImportant for analyzing programs written by people (e.g. indentation) are trivial for

Page 150 7.3.3.4 Processor Interface

analyzing programs written by ot her programs.

7.3.3.4 Processor Int~rfacs. The ability to use processors as subroutines considerably eases
the Implementat Ion of SCF. This feature , combined with the ability to have several

• communicating parallel processes accessing the same data base, allows SCF to operate in an
environment in which It is soverei gn. This results In significant advantages In efficiency,
consistency , failure recovery , and flaw-repair.

Not all operating systems permit easy use of processors as subroutines. In OS/360
systems , for example , one mechanism works only if both caller and called program share a
memory region and do not interfere with each other. TOPS-b monitors require that the
called process be established as a pseudo-terminal and controlled by a program simulating a
human user. On the other hand, UNIX systems provide a flexible mechanism for
Interconnecting programs into pipelines~ this mechanism Is well suited to our needs.

_ _ _ _ _ _ _


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- -~~~~~~~~~ .—— -

~~~~~

-

8 Conclusions and Directions Page 151

8. Conclusions and Directions

8.1 Results
The primary goal of this work was to develop a representation for software systems that

-

integrated design and construction information and incorporated • the concept of
multiple-version systems in a reasonable manner. The representation we have developed
improves on the state of the art in several ways.

First, the generalization of construction processes and the content of resources permits
-

our representation to apply to systems with a wide variety of automated construction
techniques. The single step construction process (e.g. compilation) can be replaced by the
more complex construction processes currently typified by the construction of compilers
using parser generators. The semantic rigor associated with programming languages will soon
extend to other construction tools and can be easily exploited within the same framework.

Second, we succeeded in coordinating the use of information among the versions of
systems. The degree of shared information and the points of deviation are directly
associated with structural features of the system description. With a small number of
mechanisms, we were able to describe the relationships between versions that differ along
several dimensions.

The feasibility of integrating design and construction information was demonstrated by the
examples that showed the actual construction of system components. The interaction
between the processors and the software construction database actually results in control of -

-

the construction process by the design description.

Finally, we have contributed to the arguments for organizing software construction around
a unified database. The contributions by others have emphasized the managerial and
bookkeeping advantages derived from such a database; we have added tools that improve the
flexibility, reliability and consistency of the software itself.

8.2 Conclusions
The design/ implementation process can be significantly shortened by encoding construction

processes rather than performing them directly. Therefore, the iteration of design can be
emphasized because the implementation techniques have been recorded and can be reused -
and/or modified. The usefulness of this technique can exceed its cost only if correct
construction order and bookkeeping are automatically controlled.

Rigidity of system design can likewise be reduced. First, the design information is recorded
in a manner that permits programmers who did not design the system to learn its structure
and to manipulate local sections of the design description. Second, the automation of -

construction processes permits a reconfiguration of the system with less effort on the part of
the programmer.

Techniques for constructing families of systems have not developed in the past due to the
- difficulty of maintaining parallel versions of systems. Although many low level tools must also

be engineered to make family construction practical, the framework we have provided can
make those tools useful and therefore make family construc tion practical.

• The integration of more and more Information about a system Into a central, unified
-

database permits the development of more powerful management tools. Control of resources,

~~~ •• -~~~~~~~~~~~~~~~~ -- - - --— - - • ~~ •-~



Page 152 • 8.2 Conclusions

such as storage space and computing time, can be extended and in many cases automaticall y
performed. For example, tradeoffs between storage and recomputation of intermediate
results can be adjusted and enforced automatically without requiring attention by individual
staff members.

It is not known what level of sophistication the technical management and staff of a project
must attain to make use of the techniques described here. It Is likely that •t least the
technical management must be highly sophisticated In the use of software tools; It Is hoped
that corresponding levels of sophistication are necessary for staff usage of the mechanisms. 

-

8.3 Topics for Further Research

8.3.1 Specifications
Individual subsystems and versions of subsystems serve purposes that may be encoded In

specifications. Some of these are input/output specifications that describe the functional
behavior of programs; others dictate form, format , space requirements, side—effects , resource
usage, and other restrictions or assumptions. To integrate specifications into the
representation, we must develop a method for encoding general specifications and matching
requirement specifications with provision specifications. Among the issues to be addressed in
this matching scheme are compatibility, upward compatibility, functional equivalence, minimal
satisfaction , uniformity , and type.

In section 4.5.1, we created a set of objects from the terminal type table of Table 4-29.
Some of the specifications associated with objects in that subsystem are listed here:

— TerminalTypes: an encoding of the set of terminal types from one of two tables
such as that shown in Table 4-29.

— Identifiers 1: provides the resource TerminalTypes as a Yfpl declaration using
the first of the two sets of terminal types. For table entry with three character
code “xxx ” there will be an Identifier “Ttxxx ” that evaluates to an integer with
the corresponding binary vaj ue.

— Indentifiers2: same as Identifiers 1 using the second set of terminal types. j
— Vectors!: provides the resource TerminaiTypes as a Yf p1 declaration.• “TtBitpattern” and “TtNames” will be arrays with index range (1_TtNum) (where

TtNum is a Yf p1 identifier that evaluates to an integer). The i—Ut entry of
TtBitpattern will contain an integer corresponding to the string description in the
i-th entry of TtNames. All table entries will represented in the vectors, but
order is irrelevant.

— Vectors2: Same as Vectors 1 using the second set of terminal types.

— TrmSets: each page of this file contains data such as that in Figure 4-29 as a
series of lines with columns separated by tab characters. The first column
contains exactly three characters, and each entry in the column Is unique. The
second column contains a binary constant of at most (wordsize) bits; these must
also be unique in the column. The third column contains a string unique within
th. column. 



-~~

8.3.1 Specifications Page 153

- Set!: Contains the first set of terminal types in the format described for
TrmSets.

- Set2: Same as Seti using the second set of terminal types.

- TrmEdits: Contains Snobol4 functions called TabToid and TabloVec that will
convert a table of the form described in the previous paragraph to the forms
described above if executed in the context of the Edit program (specifications by
reference).

Specifications are usually in part implicit. Because human beings make assumptions about
software objects, many requirements need not be stated. For purposes of this work,
specif ications must be adequate only to discriminate among versions of systems aid to group

• compatlble” versions. Part of this research should exploit the recent progress in
requirements analysis to determine whether those methods are sufficiently general for
describing the requirements of non-procedural objects.

8.3.2 Program C.n.ration Techniques

One approach to higher level programming is the development of n,~her level programming
languages that construct algorithms from input/output specifications or optimize programs
written in a notation without data structures by selecting appropriate representations. These
projects have often gone under the heading “automatic programming”; they derive their
results primarily by exploiting the semantic structure of programming concepts such as
iteration, sequencing, and assignment. An alternative Is to write programs that translate
other notations into programs by using information about the domain of the problem.
Examples include parser generators, code generator generators(Cattl8], and decision table
translators.

With the current state of the art, both of these techniques require high initial investment of
effort. The automatic programming approach is being explored profitably by Baizer (8a1z76]
and others. A single facility for performing this task is all that is needed because -

programming concepts are independent of domain.

The translation approach to program generation needs further analysis. in order to make
translation of notations into programs a cot:~monplace technique for ~oftware engineers, we
must develop tools for building such translators. Techniques for parsing, table building,
interpreting, high level string handling (e.g. build set of parallel vectors in programming 

I

language X, where X is a parameter containing the relevant sections of the grammar), and
syntax-directed editing should be encoded in a tool building library. The next order of -

magnitude of programmer productivity will come not by providing implementations of common
low level programs (e.g. list packages, stacks, symbol tables), but by encoding the methods by
which information from a problem is encoded in programs.

8.3.3 Representation Details
The following aspects of the representation and the corresponding processing by SCF need -

additional attention.

— The specification, naming and parameterizat ion of construction rules.
Construction rules should be sharable, parameterized in both the concrete object 

- - 



Page 154 8.3.3 Representation !~etaiIs

and string parameter portions, and possibly available as resources. If possible
Integrating construction rules Into the concrete object realm would unify the
representation of construction information and permit the use of system building
tools on the construction rule representations. In particular , processors can be
defined as subsystems in the database that provide resources that contain
(parameterized) construction rules. Such a formulation allows SCF to have a
minimum of built-in information about individual processors and permits the user
to extend the set of processors easily.

- Alternate methods of determining version, such as default selection, automatic
selection, and specification matching. The arguments and suggested directions
were discussed in section 8.3.1.

— Handling of construction side effect files, such as listings, maps, and statistics.
The output of a processor can be considered an object with several fields; in the
case of compilation the fields are “compiled code”, “printable listing”,
“cross—reference information”, “compiler statistics ”, “program statistics ”,
“debugger symbol table”, “user generated files ” and so forth. Rather than make
a special case of processor output, however, we recommend developing a
generalization of the concept of file, as discussed in section 8.3.4 and using that
for representing processor output.

- Handling of construction failures (e.g. compilation errors). One of the strongest
arguments for a more general construction language comes from the need to test
the results of processors. If processors had only success or failure results,
failure would always propagate failure and construction would terminate.
However, systems are often built and tested with unresolved external symbols,
compiler warnings and other intermediate error cond.~ions. Therefore the
construction language must provide the user the ability to ~ ate what conditions
will terminate construction and what conditions may be ignored or result only in
warnings. If possible, this mechanism should be incorporated in the functional

• framework as with a “maximum permitted error level” indication in each
construction rule.

— Primitives for use by policies and query systems. In Chapter 5 we hypothesized
a set of requirements for the primitives of a database command language and
query language, and suggested that the policy language would be a composite of
the two. These hypotheses need validation by the implementation of a full,
production quality command and query language.

83.4 File Structures for Software Construction
The notion of concrete object, as developed here, may serve as the basis for a file

structure that is suitable for software construction. It is especially promising to consider a
file to be a typed object with potentially several fields containing portions of the object. For
example, the output object of a compiler contains separate fields for the listing, relocatable
machine code, cross reference , debugger symbol table and accounting information.

The simple file is analogous to a “scalar ” in a programming language, and it makes sense to
have several scalar file types (e.g. ASCII text , machine code). In addition to the record—style
structure of the above example, an array structure is useful for sequential version files such
as those maintained by the Source Code Control System (Roch74].

-- - - - - -- - -

~

- -

~

- -••—---•- - - • - •-

~ 

•— -- —-- - - - - - ---— --—-- --—- --—---- — • - -- -• •--— — ---•-~ --- - —-- - - ---- - - -——---- - -- - - ~~~~~~~~~~~~~~~~~~~~~~~~



8.3.4 File Structures for Software Construction Page 155 -

The questions to explore in this analogy to data structuring include the following:

1. What structuring methods, in addition to records and arrays, are appropriate for
use with files?

2. Does it make sense to have components of structured files be themselves
structured files? If so, what are the semantics of such constructs? What is the
expense of implementing such a general structuring capability?

3. Does the notion of pointer play a role in file structuring (outside of database
applications)?

4. The field names of records could be made static , forcing a type definition
construct like that of PASCAL, or dynamic with the resultant “run—time”
interpretation. Since we are dealing with files, not simple variables, even a
simple dynamic scheme would be relatively inexpensive.

8.3.5 Databas . Issues

The monolithic nature of the software database in Chapter 5 is a disadvantage for
environments in which ~ie are natural divisions between systems, either technical (distributed
computing systems) or managerial (security, accounting, or arbitrary). We should exp lore the
feasibility of dividing the database and establishing mechanisms for communicating betweer
the SCF processes of the resulting sections.

Most of the problems associated with distributing the software construction database are
general database problems and are not made more or less difficult by the application. There
are some comments that we can make from the special features of this application. 

-

1. The hierarchical structure of objects in the database makes subdivision
convenient along one dimension and difficult along all others. Therefore, we
expect that a section of the database will include one or more independent
subsystems and all of their associated versions and concrete objects.

2. The direct communication between subsystems is already channeled through
acq&ur.. Therefore , the communication between sections of the database for
direct transfer of information will be contained within the implementation of
o.cqu~re.

3. Indirect communication between subsystems includes messages , interrogation of
conditions by policies and synchronizat on of construction processes . The first
two can be implemented in the message and policy primitives; the latter will
require additional programming in the SCF process scheduler.

4. If all processing programs needed by a given section of the database are
available to it, rio additional work is necessary to accomp l ish construct i on
processing. In that case , each subsystem will have its own SCF process which
schedules and invokes processor for local operations. However, If some
processors are available only under control of a subset of the SCF environments,
then additional programming is required to coordinate processing requests.



Page 156 8.3.5 Database Issues

We believe that managerial constraints such as access and modification control can be
enforced with existing protection technology associated with databas e objects. It Is possible ,
however , that the database objects do not directly correspond to the domains of managerial
concern, and that additional mechanism will have to be built Into SCF.

8.3.6 Programm Ing Language and Compiler Design
The full value of a software construction facility is attainable only when the various

software tools and the construction environment are well integrated. Although we have
avoided assuming much about the languages and compilers that are available, we intend that
the system can effectively exploit them. There are several lines to explore in this regard.

How can comp iler Informa tion be expr essed for use by general utilities? One aspect , the
gr ammar for th. language , is easily encoded for use by syntax-oriented editors ,
preprocessors, and so forth. Axioms for various language constructs can also be encoded for
u~e by a verif ier or test case generator. Some necessary compiler Information is more
mundane. For example , we may need to know th e maximum identifier length, line length, or
nesting level permitted by the compiler. We also may wish to know the manner in which one
Init ializes an array, the order in which declarations may appear or the relative efficiency of
procedure calls and storage allocation. At the other end of the spectrum are installation
programming practices and conventions, strategies for good use of the language, and
knowledge of the program library .

In the preceding paragraph , we discussed extracting compiler information for use by other
tools. We might also consider how one would design a compiler assumi ng that it would be
used primarily or only as a subprogram of an SCF. Some of these issues were mentioned In
sect ion 7.3.3.3.

A compiler that is designed for use in a flexible construction environment would make It
easy to construct and process fragments and skeletons of programs. For example , suppose
that the V version of resource X is specified to be a statement in VfpI. The Yf p1 complier
should be able to parse X (even though It Is not a complete program) and assert that It is or
Is not a statement. It should also be able to pars. a user of X by assuming that X is a
statement without seeing it.

In order that programs that generate programs be as simple as possible (there may be
many of them) the language should have as few restrictions as possible on order , length,
redundancy, format , depth , embedding or binding time. An restrictions motivated by the
Inappropriateness or unlikelihood of people writIng such 1.~rograms must be abandoned or
made overridable.

To the degree that implementation flexibilIty can be handled directly within the language, it
is fine to do so. But at the point that the language begins to address extraneous issues such
as text or file manipulation, is should desist and leave it to the SCF. Most Importantly it
should not get in the way of other tools that attempt to provide extra-linguIstic flexibility.
Bad precedents include the internal editors of API.. or LISP, the simplistic syntax of PASCAL
the complex internal states of some Interactive programming tools, and non-text
representation of data that could be represen ted by text.

8.3.7 The Difficulty of Multiple Abstraction
Why do programmers have such difficulty abstracting from programs? The following 

—- -- - - - - • ~~~~—-- -~~~~~~ ~~
- - -~~~~ - —- ~~ 

-—.
~~~

--
~~~~ ~~~~~~~~~~

- - — - —---~~ - - —  ~~ -— —~—~~--••—-—- -— -—
~~~ - —-~~ ~~~~~ -— ~~~~~~~~~~~~~~~~~~~


0.

8.3.7 The Difficulty of Multiple Abstraction Page 157

hypotheses deserve exploration. With a solid understanding of the actual problems
encountered by programmers in multiple level abstraction, we can develop methods that
expand their abilities to do It.

— Since abstraction is a difficult task, there is resis tance to additional abstractions
this manifests itself in the reluctance of programmers to formulate mathematical
models of their programs or to specify verification conditions.

— The abstraction from programs is on a higher level than abstraction from the
domain, so there is the additional problem of maintaining the boundary between
the two abstractions.

- The tools available for performing abstraction from program objects are
inadequate and often very poorly engineered. Even well motivated programmers
become discouraged from doing this second level of abstraction when they find

•
that they will be attempting to sculpt in granite with a pocket knife in one hand
and a jackhammer in the other.

8.3.8 Interactions with Other Technologies
In other approaches to program construction, the construction processes are partially

embedded in the programming language system(Gesc77, Wulf76, Lisk76]. We have
recommended that programming languages stay within the algorithmic domain. Resolution of
this conflict depends on better understanding of the problems being solved by the other
systems, determining whether those same problems can be solved elegantly within our - -

framework, and in finding the real limitations to embedded schemes (as opposed to the
limitations upon the current implementations of such schemes).

I
~~—-~~~~~~~~~ - • --~~~~~~~-~~~~~~~~~~~~ —~~~~~~~

--
~~~~~~~~~~~~~~~

•-• -



Page 158 4 Appendices and References

IV Appendices and References

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- :- -- ____________

~

—-

~~~

—-

~

. --



I Edit Global Facilities Page 159

I. Edit Global Facilities

1.1 Text Utilities

* a
• Useful l dsntiflsr dels S

* S

Me “R~ CDEFCNZJKLNNOPOR3TUVI1XYZ
Ic • •abcd.fghlJkt.nopqrstw~ .,t~z”
lett er. .. we is
nuierals • di g its • S1234567$1
alpttar,uws • letters nMeeraIs
cr RSCII (i5)
i f  • PSCII(12)
cr lf • cr if
tab lit PSCI!(1i)
f t  ~ ~SC~ t ( i&)
vt • PSCU(13)
bs cUP , a. A SC IICII )
c t lu — RSCII(25 )
b. il a. et i g a. PSCII(7)
sic .. RSCII (33)
rubou t RSC!l(177)

* - a
* Case fold ing rout m u  $
a S

OEFINE (”UPPER(.trlng ) )  t (UPPER.end)
UPPER UPPER a. REPI.RCE (string, ic,uc) s (RETURN)
UPPER, end

OErINEt”mow.r cst rmng )”) i (low er.. nd)
lower lower a. REPtRCE~sfp%n~,uc,lc~ s IRETURN)
lower • end

***sss*assss*s$sss*s**sssse**ss*sss$**..s*s*ss$***s*ss***a$seass*
* S

* Sispi. Text Operation. S
* *

OEFINE(”TRINX(etr) ) i(TRIIIX..nd)
TR I1IX TR Z IiX • TRIIt(strl

TRIIIX FENCE SPRN(’ ‘) a s (RETURN)
m nix. end

a Rep lace aim occu ranc.. •f Si u lth S2 in STh

DEFINE (”SU8STITUTE (.tr ,si,s2).,t’) i(SUISTITUIt.end)
SUBSflTUT( .1 t.EN(i) . s *c4~str FENCE BREAKX(e) • t .1 • 



Page 160 11 Text Utilities

SUBSTITUTE a. SUBSTITUTE 1 .2 t1~SUBSTITUTE a. SUBSTITUTE sIr s ffiETURN)
SUBSTITUTE. snd

1.2 Snobol Code Generation Utilities

DEFINE t SnobolR.quir.tx) ) a (SnobolRequirsEnd )
Snob. I Require

SnoboIRequir. a. a
~~~QIJ~~~~ (a OUOTE(x) )U  i(RETURN)

Snobo iRequireEnd

DEFINE (“SnoboiFc n(n.me,parms ,b.dg, locais)Imn .1) (SnobelFcnEnd)
Snobs lFcn

body FENCE cr lf - aSc~
body crlf RPOS(S) a aS~~.
body FENCE tab - name tab aSc2~
I lnel . name cr lf
SnoboiFcn a. tab ‘DEfltfE(’ name (‘ parms ‘P locals • U)~~ tab ‘at ’ name ‘End)’ Crlf

• m e l body crlf name ‘End’ crlf crl f s (RETURN)• S~~belF~ ntrid

DEFINE (SnobulSt.t (stmt ,lab .l ,gots)) a (SnobolStetEnd)
Snob. lStm t

SnobolSt~ t • label tab .t~ t tab gets cr l f a (RETURN)
Snobo%S tmtEnd

DEFINE (SnoboiCon t(line ,goto)) aS(SnobolContEnd)
SnobolCon t

SnobolCont • +“ tab tab line tab goto crlf i CRETURN)
Snobs IContEnd -


~~~~ -~~~~~~~ - -~~~~ -— ~ - -- —— -  ~~~
--

~~~~~~~~~~ ~~~
- --- -

II Text-Oriented File Format Macros Page 16 1

II. Text—Oriented File Format Macros

11.1 File: Sail Toff Gen Macros

*$***S*S***$*S$*a****S***$ISS*eS$t*SSSS*$$SS*S$SSS*$*$S.e*$*eSSSe
* $
* SaIl V.rsi on Of Tot fGener .te Resource S
• S
S*S**$***S$S*S*SSS*SSSSSSSS*S**S*S$******SS*SS$SSS$$SS**SS*

OEFINE (”1oi (T.xt (.tr)”) a (TeffT .xtEnd)
Tot fT.~t

ToffText - “ Begin Siring Sdum;Sdu.a.” its
• “;Uhi I. Lsngth (Sdum)>S Do OutputRpp.nd (Lop (Sdu.)) End a (RETURN)
Tot fT.x tEnd

DEFINE (Tof fCtls (str)9 ,(ToifCtl.End)
T .ffCtl.

Tot fCt ls a Begin Str i ng Sdum ;Sdu. — its ;OutputRpp .nd (l);”
• “Ou tputAppe nd ((L .ngth(Sdum) ~ND ‘177411) UN —7);”
• “OutputRpp.nd(Length(Sdua) RNO ‘177)1”
• “WhI le Lsng th(Sdumh $ Do OutputRppsndtloptSdum)) End • s (RETURN)
Tot fCt l .End

11.2 File: Sail Toff Ocd Macros

S S

• Sell V.rs ion of Tot (Decode Ra.ource
* $

OEF INE (”ToffNeat(str ,success ,Ia lU” a (ToI*liextEnd)
Tot fNex t

ToffN.xt • Begin Define TeffT.xt-F.ls.,ToffCti..Tru.;”
• “String Tot fUn lt ;Booiean Tof4GotI t ,To ft T~p.;”
• “Integer ToffPtr ,TeffC nt ; ”
• “External Integer Procedur . lnd .x(sts lng x ,y);”
a “Tot fDotIt—Fal.e; ”
• “If Leragth (” str “)>$ Then)I sir “11 For 1)—I Then
+ “Beg in If Lenqth(” str “)~ 1 Then Begin Tot lUnita.4..p(’ sir);“
• Tofftnta. (Lop (” sir “) LSH 7) LOR Lop(” sir “);“

• “I f Lsngth (” its)~Tof fCnt Then
• “Begin To f tU nit a.” str “Ii To ToftCnll ;”
• sir “ ‘ “ sir “(Tot fCnt To •)~~“
• “ToffTyp.a.T.ffCtl.; Tof lcot!t..True End End End “

• “El.. If (ToftPtra.Index(’ sir “,S))~ I Then
• “Begin To ffUni ta.” sIr (1 For TotfPtr—1);
• str “ S. ” itI• “ (To t fPtr to •3 ”
• “ToffT ypea.ToffT•xt ;ToftG,tIt.Tr~ae End; ”
• “II TotfG otlt Then “ succes, “ E lse “ tail “ (aid • ,(*ETURN)
Tot INextEnd

• DEFINE I To*fPartition(actl ,eet2)actp.t,.cttext ,actctl,) s (Te t tPcrtlis.nLnd)
TotfPariitien

actpa t — (“tex is ” REM . acti.xt) I (“ellis ” REM . actctis)
acti ac tp a t aF (Error)
act2 actpat sF((rror)
Tof fParti tion • 1t Tof fT yp..T.ftT.sit Then • ec ttext “ Else - .ctctie a (RETURN)

Tot tPar t it ionEnd


~~~~~~~~~~ — -

Page 162 III Control Code Subsystem Source Files 

~~~~~~~~~~ _ _~
j
~ - _ _

~~

III Control Code Subsystem Source Files Page 163

Ill. Control Code Subsystem Source Files

111.1 File: Sell CC Edits

• • S
• CcD eflnu t ion Parsing Pattern s
a S
S***e***e*a$*$S*ae*$*eeeSSSSe$e$*S$$*Se**SS.Sa..sa$*S*....$*S

CcPaitsrn a FENCE BREAK(tab) . CeCod. tab
• BREPK (tab) • CcVa i ue tab
+ (“Integers!” I lnteg.rs2” I “String” I NULL) . CcPara tab
+ BR(Ak (tab) . CcInlt tab
• REM • CcO.scri pt ion

.s******.*S$$$Sa*SS*$S**$.*Se****Ss***S***.*$*.s**ss.*.*.s...s*.*
$ *
• CcCenerateS aii Edit .
S *•s$$aeess$$.s $*aSSSSSS$SeSse*a$$se,$Ses*,s5*se**$ *..... ,.mp.ac

CcTab - TABL ((3)
-

CcTab ’Int.gere1’~ - ‘“1” A’
CcTab~’Integers2’~ “ ‘ “&((“ P • LAND ‘ ‘“ ‘177411) LSH —7)1(P “ LAND ‘ “‘“ ‘377)”’
CcTab~’Strl ng ’. • ‘ I((Length(” P “) LAND ‘

+ ‘177418) LSH —7)1(L.ngth (” A “) LAND ‘ ““ ‘377)1 “ A

DEFINE (“CcG.n .rateSai I Otl ,i2”) a (CcG.neaate$ai lEnd)
CcGenereteSa i I
CcG.nSal it.o.p EdI tinput CePattern aF (RETURN)

ti a
ii — DIFFER (CcPar.) “P
12 .
t2 — DIFFER CCcParm) CcTab CcParus~Ed i tOutpu t • SncbolFcn(’Cc’ CcCods,tI,

+ SnobolStmt (’Cc ’ CcCods ‘ a ~ QUOTE(CcVa lue) “ “ t2)
SnobolCont (,’,(RETURN)’))

• a (CcG.nSa i ILoop)
CcG.n.rateSa l lEnd

a S
$ CcOecode$al% Edit S
$ *
e*S*$.*e*s**$sss*$CS*a$sas*S***sSe*$*s*SSS***s*ss**S**$S*s*

DEFINE (“CcOecod.Sai $ O) a (CcD.codeSal lEnd)
CeOscodeSa il

CcNextSa l IC)
REWIND I input)
CcPart ii loraSa l II) a (RETURN)

CcOeeodeSaliEnd

CcNextTab • TABLE (3)
CcN.xtTab~’Inteqer*1’~ a ‘“ If I.ength(Sdum)’oS Then CcParm(4.optSdum) Else CeErra.Irus’~CcNextTab~’Inteigsr.2’ • ‘ “ If Length(Sdue)~ 1 Then CcP.rmla.(Lop(Sdum) LSH 7) “‘ cr it

• ‘a’ tab tab ‘“LOR Lop (Sdum) Else CcErr.True “‘
CcNsxtTab .c’Siring ’ a ‘“ If LengtPa (Soum)~ 1 Then CcErra.True Else Begin “‘ crlf

• ‘a’ tab tab ‘“CcParml. (Lep (Sdum) LSN 7) LOR Lop(Sdue) ;’ crlf
• ‘a’ tab tab ‘If Lenqth (Sdum~cCcParmI Then CcErra.Tru, Else cr lf
• ‘+‘ ta b tab ‘“Begin CcParmSa.SdumIl TO CcP.rmI);’

—

_ _ _ -

Page 164 IILI File: Sail CC Edits

• ‘Sdum .Sdua(CcParmI.i TO .3 End End “‘

DEFINE (CcNex tSa il Op ,sep ,b”) i (CcNexiSailtn d)
CcN.x ISa I I

b a Snobo lStm t (’CcNe xt a OUOTE(” Beg in Boolean CcErr; Integer CcCode , tcParml ;”))
b • b SnoboiCont(QUOT E(”Str Ing CcP.rmS, Sdusa;CcErr4alse; Sdu.a.”) ‘ cii. ‘

b - b Snobol ContIOUO TE (”lf L.nqih (Sdum)al Then “) ‘ terminate ‘)
b • b SnobolCorit(QUOTEC” Else Begin CcCodea.Lop(Sdum) ;))
b a b SnoboiCent (OUOTE (’Caee CeCode of Begin ‘))
5e p a ~~~~

CcNsxtSa i lLoop Edltl nput CcPaiiern F (CcNextSai Done)
p .
p. a OIFFER (CcPar m) CcNexi Tab cCcPar m~
b • b Snob olSim t (’Cc N,x i • CcNext ‘ ‘“ ‘ sup ‘(‘ CcVa i ue ‘I - ‘ p)
sep a

~~~~~ 
:(CcNex tSaIILoop )

CcNex tSai iOon e b — b Snobo l S imt ( ’CcN ax t a Cc Next • End;”’)
b a b SnobolStiut (’CcNext • CcNext “If NOT CcErr Then • succeed

+ ‘“ E~s. “ feli “ End End “‘,,‘a (RETURN) ’)
Ed l$O utput • SnobolFcn (”CcN .xi ”,”ct l s ,succeed ,iermiraate ,f a i l ,b) a (RETURN)

CcNextSa l lEnd

DCFINE (”CcP a rt i t lon SallO b ,p ”) a (CcPertlt $onSalltnd )
• CcPart lt ionS ali b • Sri ob el St .t ( ’ CcTab le • TPBL.E (38)’)

b a b SnobolStmt (’DPTA (”CcData (value ,parm)”)’)
b • b SnoboIStmt (’CcActIonPatt.rn • BRER~ (” s ”) . CcCode “a ”’

+ ‘ BAL • CcAction C” ,” I RPOS (l))’)
CcPartSa ilLoopl Ed l tlnp ut CcPaiiern sF (CcPariSailA ct)

CeParm 9ntugers” REM “CcParusI”
CcParm “Stri ng ” a CcParmS
b • b SnobolStm t (’CcTablec ’ OUOTE (CcCode) ‘~~ • CcD.ia(’

• CcV .Iu. ‘ , ‘ QUOTE (CcParm) ‘)‘) s (CcPartSalILoopl )
CcPaetS .ilAc t

b • b SnobolStmt (’CcSep a ’)

b • b Sncbo lStaat (’CcP aril t ion a “ Case CcCode of Begin ‘)
b a b SnobolSiet (‘ad ions tcPctionPat ieen •‘,‘Loopi’ ,’aF(Don.)’)
b • b SnobolStmt(’CcCod . • TR IIIX (CcCode)’)
b • b Sraobo lStmt (’CcDe tau l t  • IDENT (CcCode ,”e”) CcAc tio ,t sS (Loopl)’)
b — b Snebo lStm t ( ’CcPa rm • parm (CcTabi.dcCode~)’)

• b • b SnobolStmt ( ’ p a ’)
b • b SnebolStmt ( ’ p • OIFFERCCcParm) ‘ “‘“ ‘C”’ ““ ‘ CcPai u ‘ “‘ ‘ ) ‘  a a )

b • b Snob oi St mt ( ’ Cc Pct i o n “ cg .” a “ ICc ” CeCod. p “I”’)
b • b Snob oi S imt ( ’ CcPc t son “ cp~~ a CcPav e’ , ’ Loo p2’ , ’ a S (LoopZ )’)
b • b SnobolSt m t( ’CcPa rtiiion a CcP.rtltion CeSep “ C”

• ‘-vaiue (CcTab$.ctcCode ,) “3 “ CcAct $o n ’)
b • b SraobolSiast(’CcS.p •
b • b SnobolStmt (’CcTabl .<CcCode~ a ’,,’a (Loo pl)’)
b • b SnobolStmt (’DIFFER (CcO.fault)’ ,’Done ’,’aF(Ex it)’)
b a b SnobolStmt (’CcRrray — CONVERT(CcTable ,”PRRAY”)’ ,,’s F (Ex i t) ’)
b a b SnabolSimt(’ i  • 1’)
b • b SnobolStmt (’CcCode a CcArra~gci ,1~’,’Loop3’,’sF (Ex lt)’)
b — b SnobolStmi (’CcParm • parm (CcTabi.cCcCode~)’)
b — b Sn~boiSi~~t (’ CcAc t ion • CcOefault’)
b • b SneboiSimt(’ p a ’)

b • b SnobolSt .1(’p • DIFFER CCcPar.) ‘ “ ‘“  ‘(“‘ “ ‘ “  ‘ CcPaa m ‘ “ “ ~~~~ “ ‘a)
b • b SnobolSimt(’CcPct Ion “cg~ a “ ICc ” CcCode p “I”’)
b a b Snob.iStust(’CcAct ioai “cp3” • CcPare ’,’LooØ’,’aS(L.opl)’)
b a b SnobolStmt (’CcPar il i Ion • CePart l t ion CcS.p “ C”

• ‘va lu .(CcRrrayci ,2~) 3 • CcPctlon ’)
b • b SmebolStmi(’CcSep • t~~~b • b SnobolStmt(’ l a i • I’,, ’s ( Loop3)’)
b a b $riobol Stmi (’CcPartitlon a CcPa rti tion “ End”’,’Exat ’,’t (RETURN)’)
Edt tOw tput a SnobolFcn (’CcPertltlon’,’sctlens’,b,’CcSep ,p, i’) a CRETURN)

CcPartl t lonSa i l End

ssaassmeeasssess *s.e.ess.ee*e*ese*eeeees*eae*sssse eseeeeeees.s..e

- - S - -  _ _ _ _ _  - - - - - -- • -- - ~_ 4
~~



IIL1 rile: Sail CC Edits Page 165

$ S
• CcSiai .S .tSail Ed l i e
S *
ss.a*.asas.* .*$ssse..sSse.ssa *SsSSsssee *aee.seSsseseeSeessesssass

DEFINE (“CcSI.teSetSal I ~~b,sep” ) sS (CcStateSetSa l lEnd)
CcSta t.S.tSaI I
CcSteteloop Edlil np u t CcPattern sF (CcStateDene)

b • b OIFFEN(Cc lnu t ) SnobsiSiusi ( Cc$ia ieSel - Cc5tateSet ‘ sup
+ ‘CcS iaieSub(iemplat.,’ QUOTE (CcCode) ‘,‘ CcVa lus ‘,‘
• OUOTE (CcParu) ‘,‘ QUOTE (CcInlt) ‘P )
• 7Cs.p - “separator “) s (CcStat.Loop)

• CcStateOone b • b SnobolSimt (,,”a (RETURN)”)
EdltOutpui • Snobo$Fcn (~CcSta teSet ,•t.mpla te ,s.parator~,b)
Ed l tOutp ut • SneboiFcn( ”CcStateSub” ,”te~~ laie ,code,va$u.,pa rm, Inli ,

-
‘ 

• SnobolStmi (’par. “s REM a ’)

• SnobotStmt (’templa te “cc~~ • code ’ , ’CcStateSub l ’ , ’ aS(CcSt ate Sub l ) ’ )
• . ~nebo iSt .t (’template “cv3” a vaiue ’,’CcStateS ubZ’,’aSCCcSt eteSubZ)’ )
+ Snobol Stm tl’teuipl ate “ct~~ • parm’,’CcSta teSub3 ’,’aS(CcSt.t.SubS)’ )
• Snob olStm t (’teu~~iaie “cl3 ” • lnit ’ ,’CcS teteSubl’,’zS(CcStateSubl)’ )
• SnobolStmt (’taw lat e “cg~~ a “ ICc ” code ‘ “ “  ‘(“‘ •~ •~
• ‘CcStateS ubS’,’aS(CcS tateSubS)’ )
+ SnobolSi.t (’t.mplais “cg~~ a ~ “ ‘ ‘“)l’ “ ‘ “ ,

• ‘CcStateSubB’ ,’aSCCc S iateSubS) ’ )
• SraobolStmt (’CcStateSub • t.mp late ’,, ’s (RETURN) ’ )
a. ) a (RETURN)
tcSta ieS.tSaI lEnd —

SSS**$S$.S*aSSa$$S*a*$***S**SaeS*S**SS*e.*Se*SSS$SS*SS**SSS**S*SS
a a
e CcPr ln i Sa ii Edit
$ $
sssssess a.*ss**ss*ss*..*ss$ee*$*$e*ass*easSsS$essSs.SesSes *sa$S~~

DEFINE (”CcPrInISsII ()b ,19 a (CcPrintSallEnd)
CcP rint 5ail CcS.p • “If

b a SnobolStmt (’CcPr irst CcPrint - ‘ QUOTE(’(’))
CcPrIntSaI h oop Edi ilnpu t CcPat tern sFtCcPr)ntSa)iDon.)

CcParm “
*

“ REM
— t — CcSep ‘CcCod .• ’ C~Va Iu, ‘ Then ‘ OUOTE CCcCode)

t • I IOENTCCcPa’m, lnieqsr”) ‘I”.tCys(CcParmt)’
I • I IOENT(CcParm ,”Str lng”) ‘l” a ”iCcParuS ’
b • b SnobolSimt(’CcPrint • CcPriait ‘ CRLF .replace (QUOTE (t)))
CcSep a ‘ E lse If ,(CcPr$ntSalll.oop )

L cPrlniSaIIDonS b • b SnobolStmt (’CcPrlnt a CcPrint
a CRLF .repl.cs (OUOTE (’Ei .e “Invalid Control Code ”)’)) ,,”s (RETURN)’)

EdltOutput • Snob o lFcn (” CcPrIni ” ,,b) * (RETURN)
CcPr intSailEnd

111.2 File: Sail Version of CcGenerate Resource

DEFINE (“CcVS CA ) “I a (CcVSEnd)
CcVS CcVS • “1” “1(1” A ”  LAND ‘177488) 15)4 —7)L(” A • LAND ‘377)”
+ a (RETURN)
CcVSErad

DEFINE(”C c L M(A )” ) a (CcLflE nd )
Cclii CcLM • ‘2 “ICC” P a LAND ‘17748$) 15$ —7)I(” A a LAND ‘377P
• t (RETURN)
CcLlIEnd



Page 166 11L2 File: Sail Version of CcGenerate Resource

OEF!NE(”CcTRCA) ) a (CcTflEnd)
Cclft CcTM • “3” “1(1” P “ LAND ‘17748$) ISH —7)11” A “ LAND ~377 )a

• a (RETURN)
CcTIlEnd

DEFINE (“CcBII(A) “3 a (CcBlIEnd)
CcBII CcBM • 4 “1((” A • LAND ‘17741S) LSII —7)4(” A • LAND 1377)
• * (RETURN)
CcBM (nd

DEFINE(”C cI.IN(R) ) * (CcL INEnd)
CoLIN CcLIN a “5 1((” A - LAND ‘17748$) 15)1 —7)I(” A “ LAND ‘377)”
• a (RETURN)
CcL!NEnd

— DEFINE (”CcLA (A) ) s (CcLAEnd )
CcLR C c L R a I ””1 A
• a (RETURN)
CcLACnd

DEFINE (”CcLB (A)”) a (CcLBEnd )
CeLl CcLB • “7” 1a A
• s (RETURN)
CcLBEnd

DEFINE(”CcUQO”) a ICcUREnd)
CeLIA CeLIA • “B”
• a (RETURN)
CcUflEnd

OEFINE(”CcUBO”) a (CeUlEnd)
CcUS CcUB • “9”
• a (RETURN)
CcUlEnd

DEFINE (“CcJIJCR)”) : (CcJUEnd )
CeJU CcJU • “iS” “I(( P “ LAND ‘17745$) LSH —7)11” A ‘ LAND ‘377)~
• a (RETURN)
CcJUEnd

DEFINE ( CcPRD (A)”) a (CcPPDE~,d)
CePRO CcPAO • “11” “I((  P “ LAND ‘177488) 15)4 —7) 11” A “ LAND ‘371)”
• a (RETURN)
CePPOEnd - -

OEFINE (”CcSP (A)”) a (CeSPEnd )
CcSP CcSP a “12” “1. A
• a (RETURN)
CeSPErad

DEFIN(C” CcEOLC )” ) a (CcEOLEnd)
CcEOL CcEOL • “13
• a (RETURN)
CcEOLEnd

DEFINE (“CcEOPO”) a ICcEOPEnd)
CcEOP CcEOP a “14”

• a (RETURN)
CcEOPErsd

OEFIN((”CcTRI (A)”) a (CcTPBEnd)
CoTAB ColAS a “iS” “ICC” A “ LAND ‘177485) 15)4 —7)I(” N “ LAND ‘377) ”
• * (RETURN)
ColAlind 

~~~~ - -*--~~~~~ -~~~ ---~ ~~~~~ -~~~~ -- -.-~~~~ 
-_____

_ _ _ _ _ _ _ _ _ _ ~~ ~~~ —~~~----- ~~~ -
—I!

111.2 File: Sail Version of CcGenerate Resource Page 167

D(FINE (”CcOU (A)”) * (CcQUEnd)
CeQU CcOU a “IS” “1(CLengih(” A “) LAND ‘171488) ISH —1)1(Length(” A) LAND ‘377)1 N
• * (RETURN)CcOUEnd

OEF INE(” CcOV R (P)”) a (CeOVR Er*d)
CcOVR CcOVR • “17” I((L enqt h(A “) LAND ‘177415) 13K —7)1(Lengt h(” A) LAND ‘377)1 “ P
• a (RETURN)
CeO VREr,d

DEFINE(” C cSUP (A)”) a (CcSUPEnd)
CcSUP CcSUP • “ 18” “Iutenqth (” A) LAND ‘177411) LSII ~7)I(L.ngthC A) LAND ‘377)1 • P
• $ (RETURN)
CcSUPEnd

OEFINE(”CcSUB (R)9 a (CcSUBErsd)
CcSUB CcSUB a “19” “1((L•nqtPs(” A “) LAND ‘177411) 13)1 ~7)ICLenqth C” P) LAND ‘377)1 a P
• a (RETURN)
CcSUBEnd

O(FINE(”CcDCP (P)”) a (CcDCPEnd)
CcDCP CcOCP • “2 $” “ 1((Leng th (” A) LAND ‘17741$) 15K —7)1(Lengih (” P “) LAND ‘377)4 • P

• * (RETURN)CcOCPEnd

OEFINE (”CcUNO(A)”) a (CcUNDErid)
CcUND CcUNO a “21” “1((L.aaqth (” A) LAND ‘ 177455) ISH —7)I(Lengt hl” P “) LAND ‘377)1 “ P
a a (RE TURN)
CcUNOEnd

OEFINE (”CcSL (A)”) :CCeSLEnd)
CcSL CcS. a “22” “ICC” P “ LAND ‘17740$) LSH —7)1(” A “ LAND ‘377)’
• * (RETURN)
CcSLEnd

DEFINE (”CcBPK (A)”) s (CcBAKEnd)
CeBAK CcBAK — “23” 1C(” P “ LAND ‘1774*8) LSH —7)1(” A “ LAND ‘377) ”
• * (RETURN) -

CcBAKEnd

OEFINE(” CcHOCA)~~ a (CcHOEnd)
CcHO CcHO • “24” “I((Length (” P “) LAND ‘177458) UK —7)1(Length(” A “) LAND ‘377)1 “ A
• * (RETURN)
CcHDEnd

DEFINE(” CcHN(AP) : CCcH$End)
CcHN CcHN a ‘25” “ICC ” P • LAND ‘177455) 15)4 —7)IC’ A “ LAND ‘377)’
• s (RE1URN)
CcHNEnd

DEFINE C ”CcBRO”) a CCcBREnd)
CcBR CeRN a “21”
• a (RETURN)
CcBREnd

DEFINE(” CcEOFO”) a (CcEOFErsd)
CcEOF CcEDF • “27” -

-

• a CRETURN)
CeEOFEnd

DEFINE (”CcCIIO CP)”) a (CcCflOErsd)
CcCMD CcCIID • “ 2$” “I((Lenq tPs (” A “3 LAND ‘177455) 15)1 —7)IClength(A) LAND ‘377)1 “ A
• * (RETURN)
CcCflOEnd

- -- ~~~~~ -- -~~ - —~~~~~ - - - ~~~~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~
- -~~~~~~ -- - -—-- -~~~~~ -~~~~~~~~~~~ —-~~~ -~~~~~~~~

-
~~~~~~~ - -- -- ~~~~--—~~~~~~~~~~



Page 168 111 2 File: Sail Version of CcGerierate Resource

D(FINE(”CcGR (A)”) $ (CcGR(nd)
CcGR CeGA • 29” “I((Length (” P ) LAND ‘177411) ISIS —7)1 (Length ( P ‘) LAND ‘377)6 “ P
• a (RETURN)
CcGREnd

111.3 File: Sail Version of CcDecode Resource

OEF IN ((’CcNext (ctls ,succ.ed,iermlnaie ,fa i$)”) t (CcNextEnd )
CcNext CeN.xt a “ Begi n Boole ars CcErr ; Integer CcCode, CcParmI1 ”
• ‘Siring CcParmS , Sdu.;CcErraFa lse ; Sd~.a.” ct li “;

a “If LengtPi (Sdum)•I Then • ter .inate
a “ Else Begin CcCodsa.Lop (Sdus)1 ”
a “Case CeCod. of Beg in “

CcN.xt a CcNsxt “ £1] a it Lenqth (Sdue)>1 Then CcParmla. (Lop(Sdum) 13)4 7)
• “b R  Lop (Sdum) Else CeErra.True

Cc Nex t — CcN~xt “;(21 “ “ It Length(Sduah.1 Then CcParssi.Ci.opCSdum) UK 7)
• “ION Lop (Sdum) El.. CcErr.Trus -

CeNexi a CcNaxt “ ;(3 1 “ It Length (Sdu.)~ 1 Then CcParmla.(Lop (Sdu.) LSH 7)
• LOR Lop (Sduau ) Else CcErrS.True -

CcNext • CcNext “~ (41 “ “ If Length(Sdu.)a.1 Then CcParmIa.(Lop(Sdu.) 1514 7)
• LOR Lop (Sdum) Else CeErraTrue

CcNex t • CeNext •(153 “ “ If Leng*h (Sdu.)~ 1 Then CcParmla.CLap(Sdum) 15)4 7)
• “ LOP Lop (Sdu.) Else CcErra.True

CcNext a CcNext ; (SI “ It Length(Sdumh$ Then CcParml. .Lop (Sdum) Else CcErra.True ”
CeNe act — CcNext “;(7I “ If Length (Sdu .) $ Then CcParmIa.Lop(Sduis) Else CcErra.True”
CcNext a CcNext “$ 183
CcN.xt a CcN.xt “;(93
CeN.xt • CcNext “;1113 “ “ If Length (Sdum)~ I Then CcParmZa.CLop(Sdum) LSH 7)

• “LOR Lop(Sdu.) Else CcErra.True
CeNex t • CeNext “;t113 • It Lenqth(Sdu.)~ 1 Then Cc Parml a.CLop (Sdu.) LSH 7) -

• LOR Lop (Sdum) Else CcErra.True
CcN ext • CeNext •;(123 “ “ If Length(Sdum) 1 Then CcParaiia.Lop (Sdum) Else CcErra.True”
CcN .xt — CcNexi “;1133
CcNexi • CcNext ~ 1143
CcNext • CcNext “(1153 “ - If L.ngth(Sdum)~ i Then CcParsla. (lop(Sdum) ISH 7)

• 10R Lop (Sdu.) E lse CcErra.True -
CeNexi a CcN.xt “;t1S3 “ - If Length (Sdue)~ 1 Then CcErra.True Else Bag in

• “CcParmla.CLop (Sdua) LSH 7) ION Lop (Sdum) ;
• It Lengt hCSdum ) CcParus l Then CcErra.True Else
a “Beg in CcParmS.SdumCl TO CcPar.I];Sdu..SductCcParmi.1 TO .3 End End

CcN ext • CcNext “ $ 1173 “ “ If Lenqth (Sdue )~ 1 Then CcErra.Traa. Else Begin -

a CcP .rusl—(Lep (Sduus ) LSH 7) ION Lop (Sdum);
a. If Length (Sduo)<CcPareI Then CcErr—True Else -

• “Begin CcParmS .SdumCl TO CcParmIl ;Sduas ,a.Sdum(CcParsIai TO .3 End End
CcN.xt a CcNext “$1183 “ If Length (Sdue)S1 Then CcErra.True Else Begin

• “CeP.rmI—CLop (Sdum ) ISIS 7) LOR Lop (Sdum) ;
• If Lengih(Sdum )~ CcP.rmI Then CcErra.True Else
a “Beg in CcParssS—SdumCl TO CcParmII ;Sdum.Sduaua(CcParmI ,1 TO .3 End End

CcNsxt a CcNex t “;(18I • if L.ngth (Sdum)S1 Then CcErr a.True Else Bugha
• “CcParmI .(Lop (Sduu) LSH 7) LOR LopCSduus);
a I i Lengih (Sdum) cCeParmI Then CcErr.True Else
• Begi n CcParm$.Sdum(1 TO CcPareiI ;Sdum.SdumCCcParmZ•1 TO .1 End End

CcNext a CcNex t •;(2$3 - It 1enqth(Sdum)~ 1 Than CcErra.True Else Begin
• “CcParmI— (Iop(Sdua ) 15K 7) LOP Lop (Sdue) ;
a. I f L.ngth(Sdum)<CcPar.I Then CcErr.True Els. “
• “Begin CcParmSa.Sdu*C1 TO CcParmI3~ Sdu..SdumCCcParsI.1 TO .1 End End

CcNsxi a CcNext “~ (213 “ If Lengih (Sdum)~ 1 Then CcErra.Tru. Else Begin
• “CcParmi’(Lop (Sdum) 15$ 7) LOR Lop(Sdum);
• It Lenq th (Sdum)cCcParel Then CcErr’.True Else
• “Begin CcParm5a.Sdu.11 TO CcParmII 1Sdum .SdumlCcParml ,1 TO •l End (rid

CcNe x t • CcNex t “~~t223 “ “ If Length(Sdu.) 1 Then CcParmla.fl..p (Sdum) ISIS 7) “ 

~~ ~~~~~ - - — - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - — -~~~~~~~~~ -~~~ -- -- ~~-rn~~~~~~-- ---- - - - - - - -  - - -  -~~~~~~~



_

111.3 File: Sail Version of CcDecode Resource Page 169

• “LOP Lop(Sdum) Else CcErr .True
CcNexi • CcNeat “;123) - “ I f  Length (Sdu m)~~1 Then CcParmI ..CLop (Sdum ) LSH 7) “

“ION Lop(Sdum) Else CcErr .True -

CcNext — CcNex t ;12 41 “ “ If Length (Sdu .)Si Then CcErraTru. Else Beg in
• “ CcPar mlb (Lop(Sdu .) 1514 7) LOR Lop (Sdu m) ;
• If L.ngth(Sdum) CcParsl Then CcErr.~True Else
a “Begin CcParsS ..SdumCI TO CcParsII;Sdusu .SduuutCePar .IaI TO .1 End End

CcNext • CcNext “; (253 “ “ It Length (Sdum) 1 Then CcParml. .(Lop (Sdu m) LSH 7) -

a “b R  Lop (Sdum) Else CcErr..True
CcNext - CcNext “ ; 1263 -

CcNex t • CcNext “;(273 -

CcNext • CcNext “((283 - “ It Length (Sdua)S1 Then CcErr..True Else Begin
• “ CcPer I—(Lo p(Sdu .) 1514 7) ION Lop(Sdum);
• If Lenqtb (Sdua) aCcPar.I Then Cct rr..True Else “

a. “Beg in CcParmS .Sdumtl TO CcParmll;Sdum—SdumCCcPereI.I TO .3 End End
CcNext • CcNext “;1293 “ - If L.ngth (Sdum)~ 1 Then CcErr..True Else Begin “

• “Cc ParusIa. (Lo p (Sdu m) ISIS 7) LOP Lo p(Sdu m) ;
a If Iengt h(Sdu m) cCcParmI Then CcEr ra.True Else
• “Beg in CcPar.S..Sdu mCl TO CcPareI3;Sdum ..Sdu aul CcParel.1 TO .1 End End

CcNe xt a CeNexi - End; ”
CcNex t a CcNext “I f NOT CcErr Then “ succeed “ Else • fail “ End End • a (RETURN)

CcNex tEnd

DEFINE ( CcPariitlon (act lons) CcSep,p, l”) a (CcPariitlor ,End)
CcPart i tion CcTabie a TPBLE (30)

ORTP(” C~Oat a(v al ue ,parm)” )
Ceflc tionPat tern a BREAK (” a ”) . CcCodu “a ” BAL • CcPctlon C”,” I RPOS ($))
CcTab lec ”VS ”~. — CcOata (1,”CcParml”)
CcTab ie~”hfl”> — CcOata (2 ,”CcP .rml”)
CcTab le~”Th”~ a CcOata(3 ,”CcPa rml”)
CcTab le< ”Bfl”~ a CcData (4, “CcP arml” )
CcTab le ”LIN ”> a CcData (5,”CcParmI”)
CcTabIe~”LP”~ • CcOata (6,”CcPar.I”)
CcTabie~”1B”~ • CcOata (7,”CcParml” )
CcTablec ”UP > a CcData (8,” )
CcTabiec ”UB”~ a CcOata(9 ,””)
CcTabie ”JW ”, • CcOat a(1l , CcParuuI” )
CcTab lec ”PPO”~ - CcOata (11 ,”CcParml”)
CcT.b le~”SP~~ • CcOata (12 , “CcParml ’)
CcTable< ”EOL ”~ • CcOata (13 ,””)
CcTable~”EOP”~ • CeDa ta (14 ,”” )
CcTabIe ~”TPB”~ - CeOata (IS ,”CcParml ”)
CcTabiec QU”> — CcDat a(16 ,”CcPa rmS”)
Cclable .c ”OVR > a CcData (17, “CcParmS”)
CcT.b le< ’SUP”> • CcOata( 18 ,”CcP armS”)
CcTab ie< SUB”~’ a CcOata( 19 , CcPar.S”)
CcTabie~~OCP”). • CcO.ata (20, CcParm$”)
CcTab lec ”UN0”> — CcOata (21 , CcParmS”)
CcTabl.c ”SL”~ • CcOate (22,”CcParasl” )
CcTabls< ”BAK”~ a CcOata(23 , “CcPerml”)
Cc labl ec ”NO ”> • CcData(24 ,”CcP armS”)
CcTa b l e ”HN ”~ a CcOata (2S ,”CcParmI”)
Cclablec ”BR’,. • CcData (26,””3
CcTab le< ”EOF ” • CcOat~,(27,””)
CcTab Ie ”Cl1O ”> • CcOat. (28, “CeParmS”)
CcTab le c ”hR” ~ a CcOataC 2S ,”CcParmS”)
CcSep
CcPart)t Ion a “ Case CcCode of Begin 0

Loopi actions CcPctlon Pat tern • aFCDorie)
CcCode • TRIMX (CcCode)
CcDe f au it • IDENT (CcCode ,”e”) CcPction aS(Loopl)
CcPar. • par .(CcTabIe~CcCode> )

p a DIFFER (CcParm) ‘C”’ CcParm ‘“P
CcPc t lon “ cg~ ” • “ ICc ” CcCode p “ I ”

-- ~~~~~ - - -—-~~~~~~~~~~~~~~~~~~~~~~~~~



-~~~~~-—~~~~~~~
- -

~~
--
~~~~

- — .
~~~~~~~~~~~~~ 

-

~~~~~~~~~

Page 170 - 111.3 File: Sail Version of CcDecode Resource

Loop2 Cc Ac t ion “cpa ” • CcParm aS (Loop2)
CcPartit ion • CcPar titlori CcSep “ C” veIue (CcTabl.cCcCode ~) “3 “ Ccflctl on
CcSep • “;“
CcT.b ie<CcCode > • : (Loo pl)

Done OIFFER (CcDefault) iF(Ext t)
Cc Arra y • CONVERT (CcTab l. , ”P RRRY”) s F(Ex i t)
I a 1

Loop3 CeCode - CcPrraycl , 1~ :F (Ex i t)
CcPa rm • parmCCcTab i e<CcCode~)
CcAc i ion • Cc Oef au l t
p a
p • DIFFER(Cc Parm) ‘ C ” ’ CcParu , ‘“3’
CcA ct len “cg~ ” a “ iCc ” CcCode p “I”

Ioop l CcA ct ion “ cpa ” • CcParm sS (Ioopl)
CcPart i t Ion — CcPar tI tlon CcSep “ C” value CCcRrraycl ,2~) “3

- Ccflctlon
CcSep a “ I

a

I • l a l a (Ioop3)
Exit CcPa rtl tlon a CcPa rti t Ion “ End” a (RETtJRN)
Cc Partit ionEnd

j

111.4 File: Sail Version of CcStateSet Resource

OEFINE (CcSt a te Se t(t empl ate ,separ ator) ”) z CCcSta taS etEnd)
CeStateSet CeSteteSe t • Cc Sta te5et Cc5tat eSub(te mp iat e ,”VS ”,1,”Integers2” ,”7”) —

CcStateS.t — Ce StataSet separator CcStateSub (temp la le, “Lll ”,2,”Integ.rs2”, “288”)
CcStateSet • CcStateSet separator CcSt aa. SubC temp late ,”TI1”,3,”Intsger e2 ”,”288”)
CcS tate Set • CcStateSet separator CcSt a te 5ub(te mpl ate ,”BI1 ”,4,”Integer .2” ,”280”)
CcStateS et • CcStaieS .t separator CcStat eSub (temp late ,”LIN ” ,5,”Int eg.rs2”,”SS”)
CcStateSe i — CcSta t eSet separator Cc 5t at eSub (t em p l ate , ”L P” ,5 , ” Integ ersl” , ” 4 ”)
CeStat u Set • CcStateSet separator CeSla teSub(temp iete ,”L8” ,7,”Intsgersl” ,”l”)
CeStateSet • CeStateSe t separator CeStateSub (teaaplste ,”JIi’,tB ,”lntsgersZ” ,”B”)
CcStat .Set • CcStaieSet separator CcStateSub(te mpl ate ,”PAD ”,11,”Integere2 ” ,”$”)
Ce S t a t e S e t a CcStataSet separator CcSta t.Sub(template ,”SL” ,22,”!ntegers2” ,”2281”)
CcStateS .t • CcStat.Set separator CcStateSub(te mpla te ,”HD ”,24 ,”S tr ing ”,”Nu II”)
CcStateS .t • CcStaisSet separator CcSta teSub (tempi ate ,”HN ,25,”In tegers2” , 1”)

a (RETURN)
CcStateS .tEnd

DEF INE(”CcS tateSub (temp late ,cods,va lue ,parm , m u) ”) a (CcStat.SubEnd)
CcStateSub pare “a” NEIl a
CeStateSub i temp late “cc~ ” — code aS (CcStat e Subl)
CcStateSub2 tem plate “cv~” — value sS (CcStateSub2)
CcStat.Sub3 temp late “ct~ ” • pare aS (CcS ta ieSub3)
CcSta teSub4 temp late “ci ,” — m i t aS (CcStateSub4)
CcStateSub5 temp late “cg<.” — “ ICc ” code ‘C”’ aS (CcSta teSub5)
CcStateSub6 temp late “cg~~” • ‘ “ 31 ’ ,S(CcSt ateSub6)

CcStateSub • template a (RETURN)
CcStateSubEnd

111.5 File: Sail Version of CcPrint Resource

DE~ INEC”Cc Pr irstO”) a (CePrintEnd)
CcPrint CcPrmnt CcPrlnt • “ C ”

CcP rmn t a CcPrlnt “If CcCodeal Then ‘“‘ “V S ‘“‘ “6” ‘“‘ “ a ” ‘“‘ “ICvs (CcPar*usI)”
CcPr in t • CcPrint “ Else If CcCode.2 Then ‘“‘ “LII” ‘“‘ “8 ” ‘“‘ ““ ‘“‘ “ICvs (CcParml) ”
CcPrint • CcPr int “ Else If CcCodea3 Then - ‘ ‘ “Ill ” ‘“‘ “I” ‘“ ‘ a ” ‘“‘ “&Cvs (CcParml)”
CcPrant a CePri ra t “ Else If CcCodea4 Then “ ‘“‘ ‘SN” ‘“‘ “I” ~~~~ “•“ ‘“‘ “ICvs (CcPar ssi)”
CePrini a CcPrln t “ Else If CcCodeaS Then “ ‘“‘ “u N ” ‘“‘ “6” ‘“‘ “a ” ~~“‘ “ICvs (CcParisI)”

111.5 File: Sail Version of CcPrint Resource Page 171

CcPr int — CcPr int “ Else If CcCodeaS Then ‘“‘ “LA” ‘“‘ “I” ‘“‘ “ a ”
~~
“‘ “ICv.(CcParmI) ”

CcPrlnt a CcPr i n t “ Else If CcCode .7 Then - ‘“‘ “LI” ‘“‘ “ I” ‘“‘ “ a” ‘“ “ICvs CCcParmI)” “

CcPr ini — CePrInt “ Else If CcCodea$ Then “ ‘“‘ “UP” ‘“‘ ““

CcPr m nt — CcPri nt “ Else If CcCodea9 Then - ‘“‘ “US ” ‘“‘ ““

CcPrint — CcPrint “ Else It CcCodea ll Then ‘“‘ “JU” ‘“‘ “ 4” ‘“‘ “ a ” ‘ “ ‘ “ICvs (CcP arml)”
CcPrin% a CcPr i n t “ Else If CcCod eall Then “ ‘“‘ “PAD’ ‘“‘ “6” ‘ ‘ a” ” a~ ICv.(CcParml)
Cc Pr in t a Cc Pr lnt “ Else If CcCodeal2 Then “ ‘“‘ “SP” ‘“‘ “6” ‘“‘ “ a ” ~ “ ‘ “&Cvs (CcParmI)”
CcPrln t — CePri nt “ Else If CcCodealS Then “ ‘“‘ “(01” ‘“‘
CcPr int a CePrint “ Else If CcCode.14 Then “ ‘“‘ “tOP” ‘“‘
CePr in t • CcPr ira t - Else If CcCode .1S Then “ ‘ ‘ “TAB” ‘“‘ “ I” ‘“‘ “ a ” ~ “ ‘ “ SCvs (CcPar m l)”

• CcPr lnt a CcPr Int “ E lse If CoCodealS Then - ‘“‘ “QU ” ‘“‘ “I” ‘“‘ “a ” “‘ “ICcPareS”
CePr int a CcPr int “ Else If CcCodea ll Then “ ‘“‘ “OVR ” ‘“‘ “I” ‘“ “a”

~~~~~ “I CcParm$ ”
CcP rmni • CePrint “ Else If CcCodeal8 Then “ ‘“‘ “SUP” ‘“‘ “6” ‘“‘ “ .“ ‘ “ ‘  “ ICeParmS ’
CcPr lnt • CcPrint “ Else If CeCodeall Then “ ‘“‘ “sue ” ‘“ L” ‘“‘ “a ” “~~ “LCcParmS ”
CcPr in t a CcPrlnt “ Else If CcCodea2I Then “ ‘“‘ “DCP” ‘“‘ “I” ‘“‘ “ a ” ‘~~‘ “ICcParmS”
CePr ini a C~Prini “ Else If CcCodea2l Then ‘“‘ “UNO” ‘“‘ “I” ‘“‘ “ a ” ‘ “ ~ “ICcParmS ”
CcPr in* — CePrin t “ Else If Cctodea22 Then “ ‘“‘ “51” ‘“‘ “I ‘“‘ “ a ” ~~~~~ “ICvs (CcParml)”
CcPr ln t a CcPrini “ Else If CcCodea23 Then “ ‘“‘ IRK” ‘“‘ “I” ‘“‘ “a ” ‘ ‘  “6Cvs (CcParml)”
CcPrmn t • CcPrlnt “ Else If CcCode .24 Then “ ‘“‘ “ND” ‘“‘ ~~~ ‘“‘ “ a ” “~ “ICcPare3”
CcPrl nt a CcPri nt “ Else If CcCodea25 Then “ ‘“‘ “HN” ‘“‘ “I” ‘“‘ “ a ” ~ “ICvs(CcPa rmI)”
Cc Print a Cc Pri nt “ Else If CcCodea26 Then - ‘“‘ “BR” ‘“‘ ““

CcPrmnt • CcPrint “ Else If CcCode.27 Then “ ‘“‘ “(OF” “CcPrl nt a CcPr int “ E lse If CcCode”28 Then “ ‘“‘ “Cu D” ‘“‘ ~$~ ‘“‘ “a” ‘“~ “ ICcPar i,3 ”
CcPr ln t a CcPr m nt - Else If CeCode.29 Then - ‘“‘ “CR” ‘“‘ “6” ‘“‘ “ a ” ~ “ “ICcParmS”
CcPr lnt — CcPrint “Else “ ‘“‘ “Invalid Control Code ” ‘“‘ ‘)‘ a (RETURN)

CcPr IntEnd

_
l

_ _ _ _  

~~~-
-

~~~~~~~~~~~~ -- --—-- ~~~---- - _- - _ - 



• •~~~~~~~~-~~~~~-—- - - ---— -- ~~~~~~~~~~~~~~~~~~~~ —- - - - --~~~~~ ---~~~~~~~~~~~~~~~~ - -- •

Page 172 IV Select Program Files 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _  _ _ _ _ _ _  _ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

IV Select Program Files Page 173

IV. Select Program Files

IV.1 File: Select Program Source

Beg in “TOFF SELECT PROGRRfl

I . -

• I a Select Pages Program a;
I e
I e The source of the Select pages program w i t h  the
I * I/O and user interface routines deleted. C;
i a Phrases bracketed with brace. are macros expressed C;
I e as Snobo l4 fu nct ion calls that return string values. Si
I .  5;
I .seeeseeea.aseeee$*$**ee*e*e*.s***e***ee*$*ee.*eS*ees***ee**e**Se$

Define Rcqu irea ” Comment” ; Commen t AcquI re not Implemented In Sa Il s
Acquire ‘SaliExtens i ons ”; Comment Sail Language Extens i ons;
Acqu ire “ F I l e U t l I l i l e s ”; Comment Defines OpenlClose/Re.d/Wr l te etc. ;
Ac quire “Str ing Ut lll ties ”; Comment Defines Index , etc.;

I s..s*ee..sss*$*s.SS.*Ss.eS**a*.*..**e.$..a**.*se..ae*.**.s*S.****;
I .  a;
i a The program text  for the fo l lowing functions has a;
I e been deleted. The functions PagesToKeep and a;
. Pag.sToSicfp return integers . if thIs program a *;

a I e run in teract Iv e ly , these functions would prompt the a;
I a terminal user , parse the response , and cheek for a;
I * validity. A null response returns a large Integer. a;
I a a;

• The Input .., and Output ... functions do the necessary a;
I e operating system ca l ls  to process Input and output 5;
I * f l i e s ,
I .  Si
I aS..,se.e...ss.ee*a*ssesees..s.seSeses**se**.esaeseeaSeaeeesee***;

Comment Define Operations to Communicate wi th  Ter.inai User;

Define PagesloSxipa ”n”;
De fine PagesToKeepa ”n’;

Comment Define Opera tions to Read and Wr i te Files ;

Define Inp u i lni t i a lls e— ”” ;
Define lnpu tGetflorea ’Nuii” ;

• Def ine InpuiTeeeunaiea ”” ;
Defln. Ou tp ut lni t la li ze .””;
Procedure OutpuiPppen d (integer byte );;
Define Out putTe rminate u ” ” ;

I •....*sa..e..e..S*.e.e.e.s..sas*es .e*e*e*$Sl..*aae*ee*S*aeea**a*e; —

I S e;
I s Globa l Variables for the Select Prog rem a;
I S a;
I e 5utt.ri a string that contains the pOrtion of e;
I * the iex t—o rIeni ted tile currently being a;

e processed , a;
I • 5;

L. ~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  

j

-

Page 174 - IV.1 File: Select Program Source -~ -

I * Error a An abort flag em
I * Fin lehed a End of text— oriented file flag a;
I s a;
I * Sav el Ceds a a String of commands encountered on a;
I *- skipped pages that must be emitted before 5;
I * any kept pages are processed. a;
I * Savel.. . a a set of variables that record the values a;
I * of state set control codes while skipping a;
I * pages. 5;
I * HoldI...t $ set of var i ab l es that preserve the va lues a;
I • of state set control codes while skipp Ing 5;
I * pages. If the Save l va l ue of a control code a;
I * -

differs from the Ho IdI version, the new va lue a;
I * must be emitted before kept pages are processed. a;
I S a;
I sssssss**ss*ssssss*s*as*se*asaaaasss*sassssss*sssss.ss**s.ss.saon;

String Buffer;
5ooie an Error,FInlshed ;

String Sav*lCmds; - -

lCcStaieSet (”ct. Sav.Icc~ ”,”;’)l ;
ICcStateSe t (”ct~ HoldIcc~”,” ;-”)I ;

I ************************************S***********a***s**a*********i
I S *3-
I * Skip N pages , recordin g relevant commands and changes a;
I * in the stat . set contro l codes. a;
1 * a;
I **************S***************S******** ************ * ********** ;

Boolean Procedure SKl PClnteger N);
Beg in “SKIP”
Boo lean Ear iytoi ; Integer Pages;
Pagsa. 8; Ear l yEof..False;

While (PagescN AND NOT Early Cof) Do
lT ottNe x t (

“But far ”,
-

ITo f f Part It Ion
“t exta l I gnore text ; ”,
“ct l sz lCcNex tC

“T o tfU n it” ,
“ lCcPart ltl on (

as, ,
lCcS tateSet (”cc,:Save l cc~..cp.”,”,”)l ,
EOFaEarly Eof ..Tru. ,
CflDa Save ICmds..$av. I Cmds6 lCcCllD (“ cpa)) ,
LOP. Pages..Pages.1”) I” ,

“ I no action on t.r*inate;”,
“Error*Ear lytof in ished.Trus”) I”) I”,

“Buff.r.Buf fer 8lnputGatfl ore ”)l;
Retur n (Ear l ytof)
End “SKIP”;

I **s*asssss*aaas*a*es*a**aaasass*a*e***s*a*ass**eae**sssa**a**ee*a;
i s a;
I a Ke.p N pages , transm itting all contro l codes. a;
I S
I ******s*S********s******e*aSSv**SSe*****a***e********************;

Boolean Procedure ~EEP (nteger N);
Begin “KEEP”

~~~~--•~~~--~~~~-
- - --•- - - ‘  -~~~ - - -  -



P1.1 File: Select Program Source Page 175

Boolean Ear I yEof ; Integer Pages;
Ear iyt. taFa isei Pages .•;
While (PagescN AND NOT Ear IyEot) Do

ITot fNe xtC
“But fe, ”,
“ (Tot (Par t It ion(

“texta iToftText (”ToffUn it ”)i” ,
“ctIsiB .qin String Ci Is;

iCcNext (
“Tot ftlnit ”,

- “ ICcPartitlon (
“ lCcStateSet (” cc3slegin Save I cc3..cp3;Ctls.Ctlslcga End”,”,”)l”,
“ as Ci Is Ctlslcga,
EOFaEariyEsfa .True )I” ,

“ 1T .tfCtls (”CtIs ”)l ”,
“Error.Ear lyEof..F inishedmTrue ”) I
End”))”,

• “ Buf fe r.$uf ter 6lnput Ge t tIore ” ) l ;
Neturn (Early Eof)
End “KEEP”;

I as*ssasSseassesaSassssssesesasssaaaessasa*e.e*asssaaseses.asaaSae;
I S  SI
I a Alternate between SkIpp ing and Keepin g pages from a;
I a the input tile. Each t ime pages are kept , emit a;
I a the dr i ver commands ihat were encountered In the a;
I a sk i pped page. and set any state set contro l codes
I * that changed during the sk i pped pages. a;
I s  5;
I sssssasaaaaas.ssaaasssSasaaasaasseas*sseseeassseassa.sassass*ssss;

-Interna l Boo l ean Procedure Select (String Out (il e ,Inti ls) ;
Begin “sELECT ”
Boolean Once;
Finis hed.OnceaError. False ;
But fer.Inpu tGetflor ;
While NOT F InIs hed Do

Beg in “SKIP/KEEP LOOP”
Integer n;

• n..PagesToSlcl p ;
It n—C

Then Beg in Fi nishedsOnce ; Once..True End
Else Begin “SKIP SECTION OF LOOP ”

lCcS iateSet (”Save I cc3.HoIdlcc~”,”;”)i;
Flnlshed .SKIP (n)
End “SKIP SECTION OF LOOP” ;

It Fin ished Then Done ;

n.PaqesToK.ep;
It naB

Then Begin Fmnished .Once; Oncs..True End
Else Beg in “KEEP SECTION OF LOOP”

String Ct I.;
lCcStat.SetC”If NOT SaveIcc~mNoldIcca Then CtIsaCtls1cg~~Savelcc3cg~a”,”;”)I ;
ITot f Ct Is (“Save lCmds6C t Is”));
FInIshed.KEE P (n)
End “KEEP SECTION OF LOOP”

End “SKIP/KEEP LOOP” 1

ITo f tCt Is C” ICcEOF I “ )I~Neturn (NOT Error)
End “SELECT”

End TOFF SELECT PROCRAII ” 

- ~~~~~~~~~~~



-

Page 176 - P1.2 File: Select Program Sail Text

IV.2 File: Select Program Sail Text

Begin ‘TOFF SELECT PROCRIUI”
I a*asssSssasassasSa.eeaSeaae.sa*ssea.sS.aSase.sseaassa..ssaes.sSse;
I ~ a;
I * Selact Pages Program e;
I a  a;
I a The source of the Select pages program with the a;
I S I/O and user interfac , rout net deleted . a;
I a Phrases bracketed with braces are macros expressed a;
I a as Snebo i4 function calls thai return strin g values. a;
1 *  a;
I ssa*S*asss.sss as.SSSSSSS.asssssaaas esassaS asSaassas asaaaasaas.ass ;
Def Inc Pcqu iraa ”Comment” ;
Comment AcquIre not Implemented in Sail ;
Pc quire “Sal Extensions ”;
Comment Sai l  Langu age Extensions;
Acquire “ F It aUti li t l es ”;
Comment Defines Open/C losa/Read/ Ur i te •tc .i
Acquire “S tr l ng U t l l i t I e s ” ;
Comment Defines Index , et c .;
I ea.*..aesa.easaaseaae*e.sa..eeaaeassseaaesass*saa*.ea.as.see*ee*.;
I. 5;
I a The program lsxt for the fo l lowIng functions has a;
I a baan deleted. Tb. functions Pag.sToKeep and a; —

I a PagesTo$icip return Integers. If this program is a;
I a run, interactIvely, these functions would promp t the
i * termina l user , parse the response , and check for 5;
1 a validit y . A null response returns a large Integer . a;
I s
I a The Input.. . and Output... functions do the n.cessarij a;
I a operating syste. calls to process i nput and output 8;
1 S flies. e;
I a 8;
1 S**aeasaseaae.ssssaasasassasaaassaas.asa*aassaaaaaaaaaasasseaaaas;
Comment Oct i ns Operat lons to Communicate with Termina l User ;
Define PagesToSki pa ”n ”;
Oct inc PagesToKeepa ”n’;
Comment De fi ne Op erations to Read and Write Files ;
Define Inp ut lnl tlallzs a ””; -

Define InputG .tPIoru .”N u lI ” ;
Oct Inc InputTe rml na tea ”” ;
Oaf in. Out p u t l r t i t la i  Is.. ’” ;
Procedure Outpu tAppend(intsg.r byte);

Define OutputT .rminataa ”” ;
I *eS*S*a*s*aa*aaassa*SsasSSaSaS*saeSSasae*Se*aeaa**Sa*aa*aSsSaa**e;- 1
I a Global Variable. f or the Select Program
I. a;
I * Butter ; a string that contains the portion of a;
I a the text—or crated file currentl y be i ng a;

a processed. 5;
I a a;
I a Error ; An abort f lag a;
I a Fln ishad a End .f text—oriented 4 i l ~ flag a;
I. 5;
I a Saveltmdsa a String of commands encountered on a;
I a - skipped pages tha t must be emitted befor e a;
I * any kept pages are processed. a;
I a Savet.. • a a set •f variables that record the values a;
I a of state set control codes whi le skippi ng a; 

-~~ - - --

- —- - - -~~~~ - --- ~~~~~~-- - - - ~~~~ - - -



IV.2 File: Select Program Sail Text Pag. 177

I a pages. a;
I a IfoidI...a a set of variables that preserve the values a;
I e of state set contro l codes while skipping a;
I * pages. If th. Sav, I va lue of a control code a;
I a differs from the Hoid l version, the new val ue e;
I a must be emit ted befor e kept pages are processed. a;
I s  Cf
I s.a*a..SsSaousSsasses*aaesaaaesaaaaaaaaassssaa.ese.aeonasssaaaaas;
String Butter ;
Boolean Error,Finished ;
String SavelCmds;
Integer Sav.(VS;
Integ.r Sav. ILII; —

In teger SaveITPI;
Integer Save IBli~
Integer S.ve!LIN~
Integer Save ILA ;
Integer Save 118;
Integer Ssv.IJW;
Integer Sav.IPRD;
Integer SaveISL ;
String SaveIHO ;
Integer Sav.!HN ;
Integer HoIdIVS ;
Integer Hoid lIM ;
Integer HoldiTh; —

- 

-
- Integer HoldiBli ; -

Integer Hoid ILIN ;
Integer HoIdILA;
Integer Ho IdIL B ;
Integar Hold!JU ;
Integer HoIdIPRO;
Integer HOI dISL I
String HoidtHOi
In teqe~ Ho1d IHN ;

— I asass.sSaSea..S*aaS*aaea*se*.caaSaaaaaaaaassaaea*aa*S*aa*a******a;
I s  a; . -~~

a Skip 1* pages , recording relevan t commands and changes a;
I a in the s ta te  set control codes. a;
I s  a;
I *essssaaaaaasaa*aaaseaa*ess*aaaaaaeaaa*sSaasSsaa*a*aaaaaaa.aS**S*;
Boolean Procedure SKI P (integer N);

Beg in “SKIP” Boolean EarigEof;
Integer Pages;
Paqes..$;
Ear l ytof.Fai..;
While  CPages~N AND NOT Eari yEof) ~~

Begin Define ToffTex taFa ise ,ToffCt l saT r us;
String To ifUnit;
Boolean T o f f Go t l t ,To t fT ype;
Integer Tot fPtr ,To t f Cnt;
Externa l Integer Procedure Iradex (strinq x,g);
ToffGotit .Faise ;
If Lsn gtb (ButferhI

Then If Bu ffer ti For 11.0
Then

Begin If Length(Bu ffer) 1
Then

Begin Tof f Un i t — Lo p ( Bu tt er ) ;
TottCn t..(Lop (Buffer) 151* 7) LOR Lop(Buf tar);
If Lenq th (Buffer)~ TeftCn t

Then
Begin ToffUnit.Buffartl To TottCntl;
Sufter.4uftartToffCn t Ts .3;
ToftType. .TeffCtls;



— 
-• _

~

Page 178 P1.2 File: Select Program Sail Text

- 

- 

ToftGotlt.True
End

End
End

Elsa It (TetfPtr..Ind.x (Buffer ,$)) 0
Then

Beg in To f fUnlt .BuffarCI For T.tfPtr—1 );
Buffer.BuftertTo f lPtr to .3;
Tot tType .Tof (Text;
ToffGotlt ..true -

End;
If To f f Got lt
Then If ToffType .ToftTexi

Then I i gnore text;
Else

Begin Beo iean CcErr;
Integer CcCode , CcParml ;
St ring CcParmS, Sdum;
CcErr.False;
Sdum ..Tof (Unit ;
If Lsngth (Sdum)aB
Then I no action on terminate;
Else

Begin CcCedeatop (Sdum) ;
Case CcCode of

Beg in (11 If L .ngth(Sdum)~ 1
Then CcParmI— (Lop(Sdum) LSH 7) 1CR Lop(Sdum)
Els e CcErr.True

£23 If Length (Sdu.)>1
Then CcParml. CLop (Sdum ) LSH 7) LOR Lop(Sdu m)
El.. CcErr.Tru.

(33 If Lengt l.(Sdum )~ 1
Then CcPavmI..(Lop (Sdus) LSH 7) LOR Lop CSdu m)
Else CcErr..True

(43 If Length (Sdum)>1
Then CcParusI. (Lop(Sdum) LSH 7) LOR Lop (Sdum)
Else CcErr..True

£51 If Length (Sdum)~ I
Then CcParaI..(Lop(Sdum) LSH 7) LOR Lop(Sdum)
Else CcErr..True

• (63 If Lengtb (Sdum) .B
Then CcParmI .Lop (Sdum)
E lse CcErr..True;

(73 If Length (Sdum)>8
Then CcParm l.Lop CSdu m)
Else CcErr..True;

183
(93 ;
(183 If Length (Sdum)>1
Then CcParml. (Lop (Sdum) LSN 7) LOR Lop(Sdu*)
Else CcErr.Trus ;

£111 If Lenqth (Sdum )>1
Then CcParml. (Lop (Sdum) UN 7) LOR Lop (Sdum)
Else CcErr.True

(123 If Lengt h(Sdu m)~ 0
Than CcParml..Lop (Sdum) • 

-

Else CcErr”True ;
£133
(141
£153 If LengthtSdum )>1
Then CcParmlø (LopCSdum) LSN 7) 1CR Lop (Sduml
Else CcErr..Tru.

(163 It Lenagth (Sdum)S1
Then CcErr .True
Els e

_ _ _  _ _ _



_____________________________________________________________________ r-.—.w.•-~~ 
-

rJT~~ 
- -

IV.2 File: Select Program Sail Text - Page 179

Begin CcParml..(Lop(Sdum) LSH 7) 10k Lop(Sdum);
If L.ng th (Sdue) cCcParml
Then CcErr..True
Else

Begin CcParmS.Sdum(1 TO CeParmil ;
Sdum$dum (CcParmj,1 TO ..J
End

End ; - ;
(173 It Length (Sdu.)~ 1Then CcErr..True
Else - 

- -

Begin CcParmI..CLop(Sdu.) 151* 7) IDA Lop (Sdu&;
If Length (Sdum)CcPar.I
Then CcErr..True
Else

Beg in CcParmS.SdumU TO CcPaimIl ;
SdumiSdum(CcPa. mI,L TO .1
End

End ;
£183 If Lengt h (Sdum)~ 1 I -Then CcErr..True
Else

Begin CcParml..CLop (Sdum) 151* 7) 1CR Lop(Sdum);
It Length CSdum)<CcParmI
Then CcErr..True 

- - -
Else

Begin CcParmS.Sdum (1 TO CcParmIl ;
Sdum ..SdumCC~cPar.I.1 TO .3
End

En d ;
(191 If Langth (Sdum)~ 1
Then CcErrmTrue
Else

Begin CcParml..(Lop (Sdum ) LSH 7) LOR Lop(Sdum) ;
If Length (Sdum) cCcParml
Then CcErr..True
Else

Beg in CcParmS..Sdumtl TO CcParmIl ;
Sdum.Sdum(CcParml.1 TO .3
End

En d ;  -

£293 If LengthCsdum)s1

L 

Then CcErr.Tru.
Elsa

Begin CcParml . (Lop(Sdum) LSH 7) 10k Lop (Sdum) ;
If Length (Sdum).cCcParml

• Then CcErr..True
El..

Beg in CcParmS..SdumLt TO CcPara13 ;
Sdum.SdumtCcParml.1 TO .1
End

End ;
• (211 It Length(Sdu.)~1• Then CcErr.True

Else
• Begin CcParml. .CLop (Sdum) LSH 7) 1CR Lop (Sdum);

If Length (Sdum ) cCcParus l
•• 

- Then, CoErr’.True
— Else

Begin CcParm$..Sdum(1 TO CcParm Ii ;
Sdum$dum (CcParmI.1 TO .3
End

End ;
(223 If L.ngth(Sdum)~~1Then CcParml. (Lop (Sdum) LSH 7) LOR Lop (Sdum)

_ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _



—_ --— -- _
~

-—- - - - __-—-~~

Page 180 P1.2 File: Select Program Sail Text

Else CcErr..Tru.
(233 If Leragth (Sdum)~ 1 -

Then CcParml.(Lop(Sdum) LSH 7) 10K top (Sdum )
Else CcErr.True

(241 It Length (Sdum )~ 1
Then Cctrr.True
Else

Beg in CcParml..(Lop (Sdum) LSH 7) LOR lop (Sdum)i
If Length(Sdu.)~CcParmI

Then CcErr.True
• Else

Begin CcParmS..SdumU TO CcPareI3;
Sdum—Sdum(CcParml ,j TO a)
End

En d ;
(253 If Lengt h(Sdu C)~ 1
Than CcP.rmI.CLop(Sdum) ISH 7) 1CR Lop CSdum)
Else CcErr. True
(253
£273
(281 II Length (Sdu.)~ 1
Then CcErr’.True
(Is.

Beg in CcParml. .(LopCSdum ) LSH 7) 1CR Lop (Sdum) ;
If Length CSdum) .cCcParmI

Then CcErr.True
Else

Begin CcParmS.Sdu.(1 TO CcParmI3 ;
Sdum. Sduua(CcPar.I.j TO .3
End -

End ;
(293 If Leng th(Sdum)S1
Then CcErr .-Tr ue - 

-

Els e
Begin CcParml— (Lop(Sdum) LSH 7) 10* Lop CSdum) ;
if Lenqtb (Sduo <CcP sr mI
Then CcErr..True
E lse

Begin tcParm5.SdumEl TO CcParmI3 ;
Sdum.SdumtCcParml.1 TO .3
End

End
End ;

If NOT CcErr
Then Case CcCode of

Begin (13 Save lVS..CcParm l;
(23 Sav.IUI.CcParml ;
£33 Save I TIl.CcParml;
(41 Save IBll. CcParml ;
£5] SaveILIN.CcParmI;
(SI Save ILA.CcParmI1
(73 Save ILB—Cc ParaI;
£101 Save IJU.CcParmI; •

(113 Save PAO.CcPar.I;
t221 Savei SLs CcParmI;
(243 Save IHO—CcParmS ;
(253 Save IHN—CcParel ;
1273 EarIyEoI.True;
(283 SavelCmds ..Save lCmds &2U 1 (Length(CcPar.S) LAND ‘17740$) 151* —7)1

CLengt h(CcParm3 ) LAND ‘377)1 CcParmS;
(143 Pages..Pages.1;
£173
(263 ; -

£213
(181 i

--

~~~~~~~~~~

--

~

_ - - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- --
~~~~~~~~~~ _ _


IV.2 File: Select Program Sail Text Page 181

1161
12*3
1231
(291
(153
(133 i
£123
(13 ;
191 ;
1193
End

Else Error.tarIyEe f4 inished..True
End

End
Else Butfer .ButferllnputGe tliore

End ;
K. iurn (Ear l yEot)
End “SKIP”;

I assaaaaaaaaaaeaaae.saaesaaaas.a*aaa.$aaasasa.a.saesas..ee.ssa *sse ;
I s a;
I a Keep N pages , transmitti ng a l l contro l codes. 5;
I s a;
I .**a*sas*s*a*a*aaaeseseaa$aaaa*aaaaeassa$easas *ssaaasaaeasssssaea ;
Boolean Procedur e KEEP(integer N);

Begin ‘KEEP” Boolean E rIy EoI;
Integer Pages;
Ear IyEot$a Ise ;
Pages-i;
While (PagescN AND NOT EarlyEof) Do

Begin Define ToffTexta Fal se ,Toftttls.True ;
String To t f Un it ;
toolean Tef fGo tl t ,TotfType;
Integer Tof fPtr ,ToffCn t;
Ex terna l Integer Procedure Indexfstring x,y);
Tot f~otIt. aise ;
If Leng tPa (Butfer)~$
Then If Bufferti For 13.0
Then

Beg in It Length (Bufferh1
Then

Beg in Tot fUnit ..Lop (Buffer);-
Toff Cnt ..(Lop (Buffer) ISH 7) 10K Lop (Buff e r) ;
If Length(Buff er)~ TotfCnt
Then

Beg in ToffUn it .Butfer ll To Tot fCntl ;
Buifer .Buffer (Tofftnt To .3;
Tot f Typa*Tof f Ci Is;
Tot tGo ilt. Tru a
End

End
End

Else If (To f fPtr . Indax (Butfer ,S))>I
Than

• Beg in ToffUnit .Butfertl For Tot fPtr—11 ;
Buffer .Bu ffer (To f fPtr to .3;

— Tot flype.Tottlext;
TotfGotlt.Trge
End;

If TotfGot lt
Than I f TotfType.TotfText

Then
Begin String Sdum;
Sdue.To ttUnit;
W hi le Lenqt h(Sdumh $ Do Outp utAppe nd(Lop(Sdu m))
End

~

-~~~~~~~
- -

~~~~~~~~
- - - - --



-
~~~

--
~~-

- - -•—•‘- -_~~--~-‘- -—~~- — ~~—--—~- -•--- --

~ 1!

Page 182 P1.2 File: Select Program Sail Text

E lse
Begi n String Ct Is;

Begin Boole an CcErr;
Integer CcCode , CcParml i
String CcParm3, Sdum ;
CcErr4alse;
Sdu m..Toff Un i t;
If Length (Sdum)u8
Then

Begin String Sdum;
Sdum .. C t Is;
Outputflppend (0);
Ou tputflppend ((Length (Sdum) AND ‘17740$) LSH -7);
Outpu tkppend (Length (Sdum) AND ‘177);
While Length (5du m)~ 9 Do Output fl ppe nd(Lop (Sdu m))
End

El..
Begin CcCode .Lop (Sdum);
Case CcCode of

Begin £13 If Length (Sdum) l
Then CcParm l.(Lop (Sdu .) ISH 7) ICR Lop(Sdu m)
Else CcErr.True

£23 If Length (Sdum)>1
Then CcPar.I.(lop (Sdum) LSH 7) 1CR lop(Sdu.)
Else CcErr.-True

£33 It Leng th (Sdum)~ 1
Then CcParml..(Lop (Sdum) LSH 7) 1CR Lop (Sdum)
Else CcErr ..Trus

£43 If Length (Sdum)>1
Then CcParml..(Lop (Sdum) LSH 7) LOR Lop(Sdum)
Else CcErr..True

£51 If Leng th (Sdum)>1
Then CcParmI..(Lo p (Sdum) 151* 7) LOR Lop (Sdum)
Else CcErr..True

(6] II Length (Sdum)>$
Then CcParml ..Lop (Sdu~)• Els e CcErr..True;

(71 It Length (Sdum)>$
Then CcParmI..Lop (Sdum)
Elsa CcErrbTrue ;

181
191
(181 If Length (Sdum)>1
Then CcParml..(Lep (Sdum) 151* 7) LOR Lop (Sdum)
Else CcErr..True
(111 If Length (Sdum)>1

Then CcParuIi (Lop (Sdum) 151* 7) 10K Lop(Sdum)
Else CcErr..True

(123 It Length (Sdum)>*
Then CcParus l..Lop (Sdum)
E lse CcErr..True;

1133
(143
£15] If LengthtSdum)>1

Then CcParm l..(Lop (Sdum) LSH 7) 10K Lop(Sdu m)
E lse CcErr.True

£161 If Length (Sdum)~ 1Then CcEr r.True
E i sa

Begin CcParmI .(Lop (Sdum) LSH 7) LOR Lop(Sdu.);
I f Length (Sdu.)<CcParml
Then CcErr.True
E isa

Begin CcParmS’.Sdum(l TO CcParmI3~Sdu,sSdum(CcParmI.1 TO .1

II

ii
— -•- -—— - -~~ - -- .- - -— - — —~~~~~

•, a~~
_
~ ~~~ -~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~

- -

IV.2 File: Select Program Sail Text Page 183

End
End

1173 If L.ngth(Sdum)fl
Then CcErr”True
Else

Begin CcParmI. (Lop(Sdum) ISh 7) 10K Lop(Sdu.);
If Length(Sdu.) CcParmI
Then CcErr’True
Else

Begin CcParmS ..SdumCl TO CcParm Il ;
Sdu..-Sdu.(CcPar.I.1 TO .2
End

End ;
£183 If length (Sdum)fl
Then CcEr~—Tri~.
E lse

• Begin CcParmI. (lop (Sdum) LSN 7) 1CR Lop (Sdam);
If Length (Sdum)cCcParmI
Then CcErr’.True
Else

Begin CcParmS Sduw(1 TO CcParmIJ g
Sdu..SdumtCcParml.1 TO .3
End

End
1193 It L.nqth(Sdus3~ 1
Then CcErr—True
Else

Begin CcPareI..(lop(Sdum) LSH 7) 10k Lop(Sdus);
If Length (Sdus .) <CcParml
Then CcErr.Tru.
Else

Bag in CcParmS.Sdum (1 TO CcParmI3 ;
Sdum.SdumlCcParml.1 TO .3
End

End
1203 If Length (Sdu m)~ 1
Then CcErr..True
Else

Beg in CcParmI. (Lop (Sdum) 151* 7) 1CR Lop(Sdu&;
If Length iSdum) cCcParm l

• Then CcErr..True
Else

Begin CcParm$.Sdu.(1 TO CcParmIl ;
Sdu..SdumtCcParml.1 TO .3
End

End ;
1213 If Langth (Sdum)fl
Th.n CcErr.True
E lse

Beg in CcPar.I. (Lop (Sdum) LSH 7) LOR Lop (Sdum);
If Length (Sdum) cCcPareI
Then CcErr.True
E lse

Begin CcPar mS.Sdu m(1 TO CcParsI3 ;
Sdum.-SdumICcParmI.1 TO a)

• • End
End

£223 It Length(Sdum)>1
Then tcParml. (Lop(Sdum) LSH 7) LOR Lop(Sdu~)• Els e CcErr.True

1233 If Lengt h(Sdum)
~~1Then CcParmI (Lop (Sdu~) ISH 73 1CR Lop (Sdum)

E lse CcErr.True
(243 If Leng th (Sdum)fl

Then CcErr.Trus

•

~

-- ~~-- • ~~~~~~~~~~~~—- -

AO7O 955 CARNEGIE—MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ——ETC FIG 9/2
PRESENTATION OF SYSTEMS. (U)

L I COOPRIDER

I 8-79I I Oct I

I I
I I

• Li

II~II ‘I I full ‘
I ~ I

\I : , \

NAR~NA(l~UIftAU ‘M ~ I A M ~~~ I~ (~’ ~

—

Page 184 IV.2 File: Select Program Sail Text

El is
Begin CcParuuI.~(Lop (Sdua) LSH 7) LOR Lop(Sdu.) p
If L.rigth (Sdum)cCcParml
Then CcErr..Tru.
E Is.
Begin CcPare$i.Sduetl TO CcParnlJ ;
Sdum..Sdu.(CcParmI,1 TO .3
End

End ;
(253 If L.ngth(Sdua)~1

Then CcParml..(Lop(Sdua) LSH 7) LOR Lop (Sdu.)
El.. CcErr.Trus ;

(263 ;
(273
(283 II L.ngth(Sdum)~ 1Then CcErr .Tru.
Else
Begin CcParaI..(Lop (Sdu.) LSH 7) LOB Ls~(Sdu);
If L.ngth(Sdum)cCcP.rsI
Thin Cctrr..True
Else

• Begin CcP.ru$..Sdu.(1 TO CcPar.11;
Sdun. Sdu.ICcP.rsl,1 TO .3
End

End ;
(293 If L.ngth(Sdue)S1

Then CcErr..Tru.
Else

Begin CcPar.I.(Lop(Sdu.) LSH 7) LOB Lop(Sd~a);
If L.ngth (Sdua) CcP.rmI

Then CcErr .Tru.
E lse

Begin CcParau$..Sdustl TO CcPw.Z3 ;
Sduiu,$due(CcParsl.1 TO .3
End

End
• End;

If NOT CcErr
Then Case CcCod. of
BegIn (1)

Beg In Save IVS.CcParmI ;
Ctlsm.Ctlsarl ((CcPae .I LAND ‘17740$) LSH —7)1(CcP.raI LAND ‘377)
End;

(23
Beg in SavelLM..CcParuI;
C *1 s.C *1 s&21 ((CcP.ret LAND ‘17740$) Liii —7)1 (CcParsl LAND ‘377)
End;

(33
B.gln Sav.!Tfl.CcParal;
C; ls.Ct ls131((CcP ari l LAND ‘117411) Liii —7)1(CcP are l LAND ‘377)
End;

(41
Begin Save t Bfl ..CcParmI;
C; is.C t 1s441((CcP,.I LAND ‘ 17741$) Liii —7)&(CcPar.I LAND ‘377)
End;

(51
Begin Sav.ILIN..CcPa. .I;
C; I s.C *1.151 ((CcParel LAND ‘17740$) Liii —7) 1 (CeParal LAND ‘377)
End ;

£61
Begin Save ILA..CcParal;
Ct ls..Ct lsS$lCcParnI
End;. (71
Begin S.v.ILB.CcPar.I;

—- - -~~- _-w_ . -
~~~~~~~~~~ .w

•_
~~~~~

__ -
~~~~~

- - - -- -—

IV.2 FU.: S.l.ct Program Sail Text Peg. 185

C%ie.CtIsl7l CcP.r.I
End1

III)
Begin $.ve lJU.CcP.rel;
C% Ies .CtIs IlSIi (CeParel LAND ‘ 177400 ) Liii .7)IICsParmI LAND ‘377)
Endg

111)
Begin $.we iP$O.C.Pa.s11
Ctie. CtislllliI CePe ,eI LAND ‘17740$) Liii —7)$(CsParuI LAND ‘377)
End;• IU)
Seghi $.veliL..C.Par.I;
CIle.CtleU2IIlt.P.ruI LAND ‘1770 1) Liii —7)1(C.Parel LAND ‘377)
End1

~l4l
S.gIN $.veIND..~ePar.$;
C;l..C*I. 341((t.ngth*CsPare$) LAND ‘177401) Liii —7)1

(Lsnglh(C.Par.$) LAND ‘377)1 CeP..r.$
tndp

8)
BegIn S.ve hNN.CcP.r *;
Ctis..CIIsIZUI(teParet LAND ‘17740$) Liii —7)IIC.Pa. s1 LAND ‘ 377)
End;

117) i
(2*1 ,
1211 s
11$; I
(IS) i
127)
1203 i
1231
1211 i
1211 i
11$)
113)
(121
Ill I
(11 I
(11) i
114)
End

£ I.e Irrer.Ea. i~E.I..F inIshed.Trge
End

End• End
CI.. Swffer.Suffe.llnpu%Betfle.e

C M ;
*s ;u,n(C.r I~(eI)
End ‘KECP ;

I eee.eee..eeee.e.seeeee..eeeeeeeeeeeseeeeeeessee.ese.eeee.eee....e;
I S 0$
I e Al ternate betwee n Skipping and Beep ing pages tree
* • the In ut f i l e .  Each ti e. pages a’. t~~t , •~~ll
I e the dr iver commands that weu s .neeianta’ed in the e;
* e skipped page. and set ang state set cen t rel sides ep
* • that changed during the skipped pages.

S Ii
1 esss.e*.eses*eesseesseeeee.ese.sseesseseee.e..eeeseee..eee.e.e..e
Internal So.i.an Procedure Selec t lift ing ~ a lfil. ,I~Iiie ) ;

Begin SELECT Bee lean On.u;
~ ini.b .d..Once.Irrei 4alse~Buf f.r..lnputCetflere;
While NOT ~ inisb.d Do

Begin 3K1P/K ECP LDOP Integer n;
n.Page.Te$k lp~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -J



Pag. 186 IV.2 File: Select Program Sail Text

If nil
Then
Begin FIni.h.d..Onc.;
Once.Tru.
End

(*se
Beg in SKIP SECTION OF LOOP”Save IVS.$eldIVS;
SaveILrI.H.ldILN;
Save ITh.NeIdITIt ;
Save IBAsHe
Save IL !N.Ho Id IL IN;
Save ILR.Ho *dILR ;
Save ILB.HoldiLB;
Save * J1l.He IdIJU;
Save IPAO.H.IdIPPO;
Save ISL.No IdISL ;
Save IHD.41e iduiiO;
Sav.IHN.$old*HN;
F ini sh.d..SKIP(n)
End “SK IP SECTION OF LOCP ;

If Finished
Then Done;

n. PaqesTekeep;
If ni l
Then

Begin Finished .Oncep
Once.True
End

Else
Begin “KEEP SECTION OF LOOP” String Ct is;
If NOT Sav .IVS .HoidIVS

Then Ct is..CtIsjIL((Sav,*V5 LAND ‘17740$) LSH —7)*(Save I VS LAND ‘377);
If NOT Sav .ILPI .HoiduLfl
Then Ctis.C11s121((SavelLfl LAND ‘177400) Liii —7)1(SavsiLII LAND ‘377);

If NOT Save I Th .$te % dtTh
Then CtIs .C;IsI3lUSayeITfl LAND ‘17740$) *3)1 —7)1(SaveITh LAND ‘377);

If NOT SavelSfl .HoidISfl
• Then Ctis.Ctls441 ((Savul$II LAND ‘17740$) LAN —7)1(SaveIBfl LAND ‘377);

If NOT SaveiLIN .iieidILIN
Then Ctis..CtlslSl((SaveILIN LAND ‘17740$) 15)1 —7)1(SaveILIN LAND ‘377);

If PlOT Save*LA.NoidILA
Then Ct is.Ct isIUSaveILA;

If NOT S.veILB.HoidILB
Thin CtIs..CtIu17l~ave t~J;

If NOT SaveiJU.NoidlJ~’
Then CIis ~~;is11I1~~~avsIJU LAND ‘177400) 15)1 —7)1(Sav,IJl1 LAND ‘377);If NOT Savs IPNO .Ho1dIPRD
Thin C tis. .CIIsLIII (CSav IPAO LAND ‘17740$) LSH —7)1(SaveiPAI) LAND ‘377);

I f NOT Save ISL.NeidISl.
Then Ctio..Ctisl22lUSav .I51. LAND ‘177400) 1514 —7)1(Save ISL LAND ‘377);

If NOT $ave u NO.NeIdhHO
Then Ctls.Ctis*241(lLenqth(SaveINO) LAND ‘177400) LAN —7)4

(Length(S.vehHD) LAND ‘377)1 Saveu iiO;
I f NOT iavehHNi’NeIdIHN
Thcn Ctie..CtIsl2Sl((S*vehHN LAND ‘177410) Liii —7)1(SaveuHN LAND ‘377) ;
Begin String Sdum;

• Sdue SavetCmdsLCtis;
Outputflpj.nd(I);
OutputAppend((Length (Sdue) AND ‘177400) 15)1 —7);
OutputPppend(L.ngth(Sdu.) AND ‘177);
Wh il e Length (Sdum)al 0. OutputApp.nd(L.p($du.))
End

Finished..KCEP (n)
End KEEP SECTION OF LOOP”

End “SKIP/KEEP LOOP” ;

_ _ _ _  _ _ _ _ _ _ _  -~~~~~



______ ~~~~~~~ --—~—- ~~- • -•- - -•--- - ~- ---•—- —- — —•---•____ -

IV.2 File: Select Program Sail Text Page 187

Begin StrIng Sdu.;
Sdum 27;
Di.. tputAppend (I) ;
Ou tpu tAppend ((Length (Sdus) AND • 177411) 1314 —7) ;OutputAppend (Lengtpi lid,a) AND ‘177);
While Length(Sdue)~$ Do OvtputAppsnd(L.p(5~~~))End ;

Re turn (NOT Error)
End ‘SELECT”;

End “TOFF SELECT PROGRAII ”

I

A

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~ -~~~~~•—~~~• -~~- -~~~- - -•-~~~~— • -•~~~ --- ~_i• • ~i•’


Pag. 188
Refere nces

_ _ _ _ _ _ _ _ _ _ _ 4

References Pag. 189

R.f.r.nc.s

(Alm.77) Guy Almes and George Robertson. An Extensible File System fo r Hydr a.
Technical Report, Computer Science Department, Carnegie-Mellon
University, 1977.

(Amblll] A.L Ambler .t .1. GYPSY: A Language for Specification and Impl.m ntation
of Verifiable Programs. Proceed ings of the ACM Conference on L anguage• Design fo~ A.liabl. Software, SIGPLAN Notices 12,3:1-10, March 1977.

(Ba1z76) Robert Balz.r, David Wile and Neil Goldman. On the Transformat ional
Implementation Approach to Programming. Pro ceedings of the 2nd
International Conference on Software Enguieering, 1976.

(Bela7l] L Belady and M Lehman. Progr~mmMg System Dynanucs. T•chnlcal
Report RC 3546, IBM Thomas .L Watson Research Center, 1971.

(Than76) Mit Bianchi and iL Wood. A Lker’s Viewpoint on the Programmer’s
Workbench. Proce edings of the 2nd International Conference on Softwar e
Engineering, 1976.

(Bo.h73) Barry Boehm. The High Cost of Software. Proc eedings of the Sympos iunt
on the High Cost of Software, 1973.

(Boeh7S] Barry Boehm. Some Experi.nce with Automated Aids to the Design of
Large Scale Reliable Software. Proceedings of the International
Conference on Reliable Softwar e, SIGPLAN Notices 10,6:105-113, June
1975.

(8ra175) H. Bratman and T. Court. The Software Factory. Computer 8(5), May
1975.

(Brav74] Ha r ry Braverman. Labor and Monopoly CapitoL The Degradation of Work
in the Twentieth Century. Monthly Review Press, 1974.

(Broo7S) Frederick P. Brooks. The Myt hical Man-Mont h. Essays on Software
Engineering. Addison-Wesley, 1975.

(Brow7O) RB. Brown. The Clear/Caster System. Software Engineering Technique.,
Nate Conference on Software Engineering, 1970.

(CarplS] Loren C. Carpenter and Leonard L Tripp. Software Design Validation Tool.
Proceedings of the Int,rnation,4 Conference on Reliable Software ,
SICPLAN Notices 10,6, 1975.

(Catt7B) R.GSG. Cat tell. FormaLi.tatton and Automatic Deriwatlsn of Code Generators.
Technical Report, Computer Science Department, Carnegie-Mellon
University, 1978.

(0ah172) Ole-Johan Dahl, Edsger W. Dijkstra and CAR. Hoare. Structured
Programming. Academic Press , 1972.

(Ds.1o73] S.P. DeJong. The System Building System.. Technical Report PC 4486,
Thomas J. Watson Research Center, 1973.

- - - - -~~~~~ -~~~

- -

Page 190 References

(DeR.76) Frank DeRem.r and H. Kron. Programming_in_the_Large versus
Programming-in-the-Small. IEEE Transactions on Software Engineering

• 2(2), June 1976.

(Dig173] Digital Equipment Corporation. Baecli-Ij ~ D~g-.jJ 4ssemblar (Macro-Il) ,
Digital Equipment Corporation, 1973.

(Di8i72] Digital Equipment Corporation. DecSysten *JQ Users Handbook. Digital
• Equipment Corporation, 1972.

(D1jk72] Edsger W. Dijkstra. Notes on Structured Programming, In Ole-Johan DaM,
Edsger W. Dijkstra and &C.A.R. Hoar., Structured Programming Academic
Press, 1972.

(Dijk68] Edsger W. Dljkstra . The Structure of the “THE”-Multiprogramming System.
Communications of the ACM 1 1(5):341 -346, May 1968.

(Do077) Department of Defense. Requirements for High Order Computer
Programming Languages. SIGPLAN Notices 12(1 2)39-54, December 1977.

(Dolo76a] T.A. Dolotta and .LR. Mashey. An Introduction to the Programmer’sWorkbench. Proceedings of the 2nd International Conference on Software
Engineering, 1976.

(DoIo76b] T.A. Dolotta and .LS. Licwinko. The Leap Load and Test Driver.
Proceedings of the 2nd International Conference on Software Engineering,1976.

(Dund75) Allan Dundes and Cart P. Pagter. Project Swing. Urban Folklore from thePaperwork Empire, American Folklore Society Memoir Series 62(168):975,1975.

(Errna77] Lee Errnan and Victor Lesser. System Engineering Techniques for Artificial
Inteltigertce Programs. Technical Report, Computer Science Department,
Carnegie-Mellon University, 1977.

(FIon75a) Lawrence Flon. On Research in Structured Programming. SIGPLAN Notices10(10), October 1975.

[Flon75b] Lawrence Flon. Program Design Wit h Abstract Data Types. Technical
Report, Computer Science Department, Carnegie-Mellon University, 1975.

(F1on77] Lawrence Flon. On th. Design and Verification of Operating System..
Technical Report, Computer Science Department, Carnegie-Mellon
UniversIty, 1977.

[G.sc77] Charles Geschke et *1. Early Experience Wilt, Mesa. Communication, ofthe ACM 20(8):540-552, August 1977.
(Gris72) Ralph E. Griswold. The Macro Implemantation of Snobol4, A Case Study ofMachine-Independent Software Development. W.H. Freeman, 1972.
(Hab.76) A. Nico Habermann, Lawrence Flon, and Lee W. Cooprider. Modularization

and Hierarchy in a Family of Operating Systems. Comnsurucationa of the
ACM 19(5):266-272, May 1976.

~
- •

References Page 191

(I-Iaba77) A. Nico Habermann. On System Design and Maintenance Control (private
communication).

(18M72] IBM Corporation. System~ 36O Operating System System C.narratLori,
GC28-6554-1 1. IBM Corporation, 1972.

(IrvIll] CA Irvine and John W. Brackøtt. Automated Software Engineering
Through Structured Data Management. IEEE Transactions on Software
Engineering 3(1), January 1977.

(J ns74] Kathleen Jensen and Mklaus Wlrth. Pascal User Manual and Report.
Spr inger-Ver lag, 1974.

(Kern74) B.W. Kernighan and P..L Plauger. The Elements of Programming Style.
McGraw-Hill, 1974.

(Kern763 B.W. Kernighan and PJ. Plauge~. Software Tools. Addison-Wesley, 1976.

(Knudl6] 0.3. Knudsen, A. Rarof sky and LR. Satz. A Modification Request Control
System. Proceedings of the 2nd InternationaL Conference on Software
Engineering, 1976.

(Krut7S) Rudy Krutar. F lezors. Technical Report, Computer Science Department,
Carnegie-Mellon University, 1975.

(Lamp77] Butler W. Launpson, J.J. Horning, Ralph L London, .LG. Mitchell and
G.J. Popek. Report on the Programming Language Euclid. SICPLAN Notice.
12(2), February 1977.

(L.ev177) Roy Levin, David Jefferson and Joseph PA. Newcomer. C.mmp Linker
Reference ManuaL Technical Report, Computer Science Department,
Carnegie-Mellon University, 1977.

(Lisk76) Barbara H. Liskov. An Introduction to CLU, In S.A. Schuman, editor, New
Directions in Algorithmic Languages - 1975 IRIA, 1976.

(Lisk72) Barbara H. Liskov. The Design of the VENUS Operating System.
Communications of the ACM 15(3):144-149, March 1972.

(Liskl4a] Barbara H. Liskov. Implications of the Implementation of Libraries and
Directories. Technical Report CLU Design Note 15, Project MAC,
Massachusetts Institute of Technology, 1974.

(LIsk74bj Barbara H. Liskov. Descript ion Units, Libraries and Directories, CL(J Design
Note 14. Technical Report, Project MAC, Massachusetts Institute of
Technology, 1974.

tK4ao48) Mao 2eDong. Selected Readings from the Works of Mao ZeDong. China
Foreign Languages Press, Beijing, 1948.

(Mash76a3 .LR. Mashey. Using a Command Language as a High-Level Programming
Language. Proceed ings of the 2nd International Conferenc. on Softwar e
Engineering, 1976.

(Mashl6b) J.R. Mashey and D.W. Smith. Documentation Tools and Techniques.
Proceedings of the 2nd International Conference on Software Engineering,

1-A

Page 192 References

1976.

(Ne1s77) Loose Bruce Nelson. Tingle: or What to do Until the Computer Comes
(private communication).

(Neuml4) Peter C. Neumann ci at . On the Design of a Provably Secure Operating
System. Proceedings of the IRIA Workshop on Protection in Operating
Systems, Po.ris:161-175, August 1974.

(Newc74] Joseph It Newcomer. BH: A General Information OrganAration Program.
Technical Report, Computer Science Department, Carnegie-Mellon
UnIversity, 1974.

(New.77] Allen Newell. (private communication) .

(N.w.72] Allen Newell and Herbert Simon. Human Problem Solving. Prentice-Hall,
1972.

(Orga) Eliot I. Organick. The Multics System: An EarsrnAnotion of its Sttucture. MIT
Press ,.

(Parnl6a] David L Parnas. On the Design and Development of Program Families.
IEEE Transactions on Software Engineering 2(1):1-8, March 1976.

(Parn72a) David L. Parnas. On the Criteria to be Used in Decomposing Systems into
Modules. Communications of the ACM 15(12):1053-1058, December 1972.

(Parn72b) David L Parnas. Some Conclusions From an Experiment In Software
Engineering Techn iques. Proceedings F.LL Joint Computer Conference , Vol
41:325-329, 1972.

(Parn74] David 1. Parnas. On a “Ruzzword : Hierarchical Structure. Proceedings of
the IFIPS Congress 74, 1974.

(Parn77J David 1. Parnas. Building Reliable Software Systems in Blowhard.
Software Engineering Notes 2(3), April 1977.

(Parnl2c] David L Parnas and D.P. Siewiorek. Us. of the Concept of Transparency in
the Design of Hierarchically Structured Systems.. Technical Report,
Computer Science Department , Carnegie-Me llon University, 1972.

(ParnlSb) David 1. Parnas. Some Hypot heses about the Uses Hierarchy for
Operating Systems.. Technical Report, Technische Hochschule Darmstadt,
Fachbe reich Inform ati k, 1976.

(Parn72dj David L Parnas. A Technique for Software Module Specification With
Examples. Communications of the ACM 15(5):330-336, May 1972.

(R.1d77] Brian K. Reid. A File System for Program Development, Documentation and
Maintenance (private communication).

(Reiri7l] Andrew Reiner and Joseph Pt Newcomer. Hydra User ’s ManuaL Technical
Report , Computer Science Department, Carnegie-Mellon University, 1977.

(R.1s76) John F. R&ssr. Sas~. Technical Report AIM-289, Stanford Artificial

_ _ ~- - - - - - - -

—

References Page 193

Intelli genc e Laboratory, 1976.

(R1ch743 D.It Richie and K. Thompson. The UNIX Time-Sharing System.
Cornmu,uc#zi~ons. of the ACM 1 7(7):365ff, July 1974.

[Roch74) Marc J. Rochkind. The Source Code Control System. IEEE Transactions on
S.ftwsre Engineering 1(4):364-370, December 1974.

(Ro.s77] Doug 1. Ross. Structured Analysis for Requirements Definition. IEEE
Trsau.ctsons on Software Engineering 3(1):16-33, January 1977.

(Sex. 76J AR . S.xen.. A Verified Specification of a Hierarchical Operating System.
Technical Report, Stanford University, 1976.

(Schwl9) Bob Schwank.. Representation Management in Programming Languog.s
end Operating Systems (Ph.D. Thesis in preparation). Technical Report,
Computer Science Department, Carnegie-Mellon University, 1979.

(Shaw77) Mary Shaw, Wdliam A. Wult and Ralph L London. Abstraction and
Verification in Aiphard: Defining and Specifying Iteration and Generators.
Communications of the ACM 20(8):553-560, August 1977.

(Tayl 11) Frederick W. Taylor. Principles of Scientific Management. New York., 1911.

(T.ic77] 0. Teic hro.w and E.A. Hershey, III. PSL/PSA: A Computer Aided Technique
for Structured Documentation and Analysis of Processing Systems. IEEE

- Transactions. on Software Engineering 3(1):41-48, January 1977.

(Thom76] Joseph Thomas. Module Interconnection in Programming Systems
Supporting Abstraction. Technical Report CS-16, Brown UniversIty, 1976.

(Tich8O] Walter Tichy. Towards Support for the Construction and Maintenance of
Modular Programmed Systems (in progress) . Technical Report, Computer
Science Department, Carnegie-Mellon University, 1980.

(Tichll] Walter Tichy. Intercol: A Module Interconnection Language (private
communication).

(Weinl 1] Gerald Ii. Weinberg. The Psychology of Computer Programming. Van
Nostrand Reinhold, 1971.

(We1z76) Joseph Weizenbaum. Computer Power and Human Reason. W.H. Freeman ,
1976.

(Wh1t77) John R. White and Richard K. Anderson. Supporting the Structured
Development of Complex PL/I Software Systems. Software - Practice and
Experience 7:279-293, 1977.

(W1rt77] Niktaus Wlrth. Modula: A Language for Modular Programming. Software -

Practice and Experience 7(j).3..35, 1977.

(Wlrtll] ~ klaus Wirth. The Design of a Pascal Compiler. Software - Practice and
Experience 1:309-333, 1971.

___ J

.-
~~

-- — - - --—,-— -----.- — - - -.— -,.-.
~
,

— — _ __
—;_

~
_ _ ..--_-__,.__ ----___- -_ _-____ _ - -,—,---,-. ~~—-,--- -~~ -~

.--- — -

~~~~~

--

~~

Page 194 References

(WuIf 76] William A. Wutf , Ral ph L. London and Mary Shaw. An Introduction to the
Construction and Verification of Aiphard Programs. IEEE Transactions on
Software Engineering 2(4) 253-265, December 1976.

(Wuif 70] William A. WuIf et al. BLis.s Reference ManuaL Digital Equipment
CorporatIon, 1970.

(WuIf 72] William A. WuIf et al. Bliss-li Programmer ’s Manual. Digital Equipment
Corporation, 1972.

(Ze1k78] Marvin V. Zelkowitz. Perspectives on Software Engineering. Computing
Surveys 10(2), June 1978.

•
1

~

--—---

~ 

~ -~~~~~~~ -~~~~~~~~ - -


