
-^CLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Sntered)

I REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

AFAL-TR-78-166

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. r\JLE (and Sublitle)

MATE SUPPORT SOFTWARE ANALYSIS

5. TYPE OF REPORT a PERIOD COVERED

Feb-Aug 78
Final Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfsJ

W, Lynn Trainor

8. CONTRACT OR GRANT NUMBERfsJ

F33615-77-D-1042

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Systran Corporation
4124 Linden Ave.
Dayton, OH 45432

10. PROGRAM ELEMENT, PROJECT, TASK
AREA a WORK UNIT NUMBERS

Project 2003

11. CONTROLLING OFFICE NAME AND ADDRESS

USAF AFSC-AFAL/AAA
System Avionics Division
Wright-Patterson AFB, OH 45433

12. REPORT DATE

August 1978
13. NUMBER OF PAGES

84
U. MONITORING AGENCY NAME a ADDRESSf// di//eren(from Control/in^ Olfice)

N.A.

IS. SECURITY CLASS, (of this report)

UNCLASSIFIED
15a. DECLASSIFI CATION/DOWN GRADING

SCHEDULE
N.A.

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited

['7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

N.A.

18. SUPPLEMENTARY NOTES

N.A.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

MATE DAIS OPERATING SYSTEM
SOFTWARE EXECUTIVE CONFIGURATION CONTROL
ATE INTERPRETER
UUT ASSEMBLER
HOL COMPILER

20. ABSTRACT fConfinue on reverse side If necessary and identify by block number)

This report describes a research study, the objective of which was to
analyze and document those elements of support software used on the Digital
Avionics Information System (DAIS) Program which could satisfy the support
software requirements of the Modular Automatic Test Equipment (MATE) Project.
Since many of the objectives of the MATE Program are closely aligned with
those of DAIS, it was felt that some of the software items and standards
developed for DAIS could be applicable to the MATE Program. (Continued)

DD ,^N
RM73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCT.ASSTFTFTI
SECURITY CLASSIFICATION OF THIS PAGE ("When Data Entered)

TTNrT.ASRTFTKD
SECURITY CLASSIFICATION OF THIS PAGEfWion Data EnlerBd)

BLOCK 20 (Continued)

The first sections of this report present an overview of the three areas
of ATE software: ATE software of current-day systems, additional ATE soft-
ware requirements beyond those satisfied with current-day ATE software, and
MATE-unique software requirements. Using these as a basis for comparison
the DAIS software was analyzed for applicability to the MATE system. The
results of this analysis are presented in the final sections.

SECURITY CLASSIFICATION OF THIS PAGEfHTian Da(« Entered)

AFAL-TR-78-165

D

<MATE SUPPORT SOFTWARE ANALYSIS

SYSIRAN CORPORATION
DAYTON OHIO

AUGUST 1978

TECHNICAL REPORT AFAL-TR-78-166
FINAL REPORT FOR PERIOD FEBRUARY-AUGUST 1978

D D C

JUL 9 1979

A

Approved for public release; distribution unlimited

AIR FORCE AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the government may have
formulated, furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report has been reviewed by the Information Office (01) and is
releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

.

J. 'GREGORY JOLDA, Capt, USAF
Project Engineet

lOxj^f iJ.U'-rr'^r'iUA^s>"

DIANE E. SUMMERS, Acting Chief
Avionic Systems Engineering Branch
System Avionics Division

FOR THE COMMANDER

RAYMOND E. SIFERD, Colonel, USAF
Chief, System Avionics Division
Air Force Avionics Laboratory

"If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFAL/AAA-2, W-PAFB, OH 45433 to help us maintain a current mailing
list."

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

AIR FORCE/56780/1 June 1979 — 60

FOREWORD

This Technical Report covers work conducted by SYSTRAN

Corporation under Contract F33615-77-D-1042. This contract was

managed by the Air Force Avionics Laboratory, AFAL/AAA, Wright-

Patterson AFB, Ohio, and additional contract technical direction

was obtained from the Aeronautical Systems Division, MATE Project

Office, ASD/AEGS, Wright-Patterson AFB, Ohio. The two Air Force

technical monitors were Capt. William V. Green (AFAL/AAA) and

Capt. Charles F. Gembrowskl, ASD/AEGS.

This report was researched and written primarily by

Mr. W. Lynn Tralnor, but other SYSTRAN staff members contributed

technical expertise and assistance In various speciality areas.

A special note of appreciation Is extended to Mr. Gaylen

Pederson, Ogden ALC/MACT, Hill AFB, Utah, and his staff members.

Mr. Pederson's office was helpful In the early phases of this

project by contributing discussions relating to current Automatic

Test Equipment (ATE) system utilization and problem areas.

TABLE OF CONTENTS
~ Page

List of Figures •..
List of Tables[..[[[]]' -^

I. INTRODUCTION -,
1. PROJECT OBJECTIVES
2. MATE PROGRAM OVERVIEW , [
3- DAIS PROGRAM OVERVIEW . . . 2
4. REPORT ORGANIZATION 4

II. ATE SOFTWARE TODAY j
1. SECTION OVERVIEW . . . 7
2. THE ATE SYSTEM , 9

a. ATE Test Station .' n
b. UUT Test Packages 13
c. UUT Test Package Development Process •••14

3. ATE CONTROL SOFTWARE xg
a. Test Control Executive 20
b. HOL Interpreter 21
c User Interface 23

4. ATE SUPPORT SOFTWARE 23
a. Operating System Executive 24
b. Operating System Services 24
c. Assembler 28
d. Compilers 28
e. Configuration Management Aids 29
f. ATPG Tools 30
g. ITA Unit Test Software \ 37
h. ATE Station Self Test Software 37

5. UUT TEST SOFTWARE 35

III. ADDITIONAL ATE SOFTWARE REQUIREMENTS l\\

IV. ADDITIONAL MATE SOFTWARE REQUIREMENTS 47
1. SECTION OVERVIEW 47
2. OVERVIEW OF MATE ARCHITECTURE \ 47

a. MATE Hardware System 47
b. MATE Software 49

3- UNIQUE MATE SOFTWARE 50

V. DAIS SOFTWARE 52
1. OVERVIEW OF REQUIREMENTS & SOFTWARE 52

a. DAIS Information Management System 52
b. DAIS Support Facility 55
c. Software Overview 55

2. MISSION SOFTWARE 56
a. Executive Software 56
b. OFP Applications Software 60
c. OTP Applications Software 6l

3. NON-REAL-TIME SUPPORT SOFTWARE 63
a. JOVIAL-73 Compiler 63
b. Cross-Assembler 64
c. Linker-Loader 64
d. PALEFAC 65
e. SDVS 65

4. REAL-TIME SUPPORT SOFTWARE 66
a. Test Control Software 66
b. Environment Simulations 68
c. Sensor Simulations 68

VI. IDENTIFICATION OF DAIS SOFTWARE ITEMS APPLICABLE TO MATE 69
1. SECTION OVERVIEW 69
2. MISSION SOFTWARE EXECUTIVE 69

a. Test Control Executive 71
b. Operating System Executive 73

3. CROSS-ASSEMBLER 73
4. JOVIAL-73 COMPILER 74
5. SDVS MANAGEMENT TOOLS 75
6. PALEFAC 78

VII. SUMMARY & RECOMMENDATIONS 79

APPENDIX A, GLOSSARY OF SELECTED TERMS 80

REFERENCES 83

11

LIST OF FIGURES

Figure Number Title Page

II-l ATE Software Partitioning 8

II-2 ATE Requirements Allocation Process. 10

II-3 ATE Test Station and Package
Concept 12

11-4 UUT Test Package Development
Process 15

11-5 Generation of UUT Test Software. . . 31

II-6 Digital ATPG Process 33

II-7 Example of UUT Test Software using
ATLAS }\Q

IV-1 Postulated MATE Hardware Arch-
itecture 48

V-l DAIS Integrated Test Bed 53

V-2 DAIS Software 57

V-3 SDVS Functional Capabilities 67

VI-1 DAIS Software Applicability 71

111

LIST OF TABLES

Table Number Title Page

II-l Operating System Executive Func-
tions 25

11-2 ATPG/ATE Time Savings 36

IV

SECTION I

INTRODUCTION

1. PROJECT OBJECTIVES

This study effort was sponsored jointly by the System Avi-

onics Division of the Air Force Avionics Laboratory and the Modu-

lar Automatic Test Equipment (MATE) Project Office of the Aeronau-

tical Systems Division. The objective was to analyze and document

those elements of support software used on the Digital Avionics

Information System (DAIS) Program which could satisfy the support

software requirements for MATE. Since many of the objectives of

the MATE Program are closely aligned with those of DAIS, it was

felt that some of software items and standards developed for

DAIS could be applicable to the MATE Program.

2. MATE PROGRAM OVERVIEW

The MATE Program is sponsored and managed by the Aeronautical

Systems Division (ASD/AEGS) at Wright-Patterson Air Force Base,

Ohio. MATE is targeted to reduce the life cycle cost of Air

Force weapon systems by technically addressing Increased common-

ality of test equipments across aircraft subsystems and by ad-

dressing cost effective engineering and management tools. In

this regard, five objectives have been established:

• Reduce the life cycle costs of weapon system
support and automatic test equipment (ATE),

• Reduce the proliferation of ATE,

• Improve the operational utility and test
efficiency.

• Improve ATE management,

And Improve ATE procurement practices.

The overall MATE objectives are to be achieved through a

series of Incremental projects, each addressing one or more of

the objectives above. Initial efforts are to focus on the der-

ivation and documentation of MATE "system" concepts, and this

Initial phase will be followed by a prototype development of a

MATE system. In parallel to these "system level" efforts, the

MATE Program Office Is conducting research and study efforts In

such areas as: programming aids for simulation and automatic

test program generation, ATE test software verification and

validation techniques, and documents and handbooks for enhanc-

ing the specification and management of MATE elements.

3. DAIS PROGRAM OVERVIEW

The purpose of the Digital Avionics Information System (DAIS)

project is to demonstrate a coherent solution to the problem of

proliferation and nonstandardlzation of aircraft avionics, to

develop and test the DAIS concept in a "hot bench" configuration

(known as the Integrated Test Bed - ITB), and to permit the Air

Force to assume the initiative in specifying avionics con-

figurations for future Air Force weapon systems acqulsltloi s.

This project is managed by the Air Force Avionics Laboratory.

Historically, Avionics mission Information requirements have

been established along semi-autonomous subsystem areas, such as

navigation, weapon delivery, stores management, flight controls,

communications, etc. Within each of these functional areas the

trend has been toward digital systems, each with Its own unique

processing, transfer and display of Information. There has been

an Integration of requirements between functional areas only as

necessary for Interaction purposes. The DAIS concept proposes

that the processing, multiplex, and display functions be common

and service all the previously described areas or subfunctlons

on an Integrated basis. When coupled with other existing pro-

grams and facilities, the DAIS hot bench will contain the flex-

ibility to evaluate a spectrum of multiplex, processing and dis-

play approaches such that decisions can be made regarding Inter-

face standards, processing architectures, display concepts, etc.

As technology becomes available and the hot bench Is programmed

to solve desired aircraft avlonlc problems, the built-in flex-

ibility will accept adaptation. In this manner, an evolutionary

growth will continually update the hot bench configuration

whenever the capability or need exists.

The DAIS design approach reflects a total system concept

which is functionally oriented rather than hardware oriented.

For example, a "navigation subsystem" in DAIS does not refer to

a set of black boxes, but it refers to a set of identifiable

functions which are performed at various places throughout the

DAIS system. Note that the system is not dedicated exclusively

to doing the navigation function alone; It Is also used to per-

form the functions of many other "subsystems". For this system

approach to avionics, DAIS will certify Ideas and classes of

equipment that can satisfy weapon system needs.

Specific objectives of the DAIS program Include:

Develop an AFSC In-house capability to define,
demonstrate, test, and evaluate evolutionary
changes and requirements In digital avionics.

• Define and design a hot bench configuration
for a limited hardware demonstration with
growth potential to accommodate a large class
of weapon systems.

• Identify and recommend standards, criteria, and
specifications which must be instituted to re-
duce the proliferation and complexity of avionics
systems.

Provide the means for quantitatively evaluating
cost (both acquisition and life cycle) aspects
and for exploiting potential increases in re-
liability, maintainability, and versatility of
future weapon systems.

• Influence the design and development of sensors
via input-output format specifications which
will allow the new sensors to be compatible with
the DAIS concept and ensure optimal information
transfer and management.

Identifying the many diverse programs, offices,
etc., involved in digital avionics with the re-
sulting integration of their requirements and
actions into one coherent program.

4. REPORT ORGANIZATION

The remaining portions of this report are organized into

six major sections. The order of these sections roughly cor-

responds to the sequence of tasks performed on this contract.

Section II discusses the status of current-day ATE systems and

software and also serves to establish the definitions and

terminology for the remaining report sections. Since there

is such a wide variation in vendors' approaches to ATE system

and ATE terminology lacks any significant degree of standard-

ization, this section was needed in order to establish an ATE

"baseline" for the latter sections. This section thus briefly

defines all the items of ATE software used for current-day

systems.

Section III is an ad hoc section which addresses one area

of ATE software in addition to those items in Section 11.

Specifically, the need for UUT Test Software simulation and

debugging aids is addressed.

Section IV presents an overview of a "postulated" MATE

System hardware architecture which was used as a basis of the

subsequent software comparison and analysis tasks, as reported

in the latter sections of this report. Also discussed are

additional MATE software requirements which were derived from

the unique system design aspects of MATE.

Section V presents a short overview of the relevant DAIS

hardware and software items. The DAIS airborne avionics and

support facility are discussed to the level of detail that

those DAIS software items of potential use in MATE can be under-

stood. No attempt was made to include detailed descriptions

of all DAIS software items since this detailed Information is

readily available from the DAIS Project Office's library of

specifications.

Using the data obtained and documented In Sections II

through V, an analysis was made of the items of DAIS software

that are potentially applicable to the MATE system. However,

due to the preliminary nature of the MATE system design, no

firm MATE "system architecture" was available for use in this

analysis. Instead, only the postulated architecture as dis-

cussed in Section IV was available. Section VI does, how-

ever, discuss several recommendations where DAIS software items

would potentially fulfill MATE software requirements. Again,

these recommendations are very sensitive to a "yet-to-be-

defined" MATE system architecture, and may be negated if

this MATE architecture differs significantly from that discussed

in Section IV.

Finally, Section VII contains a summary of the report,

recommendations and analyses.

SECTION II

ATE SOFTWARE TODAY

1. SECTION OVERVIEW

In this section an overview Is given of each major element

of software needed for current day ATE systems. These data

represent a compilation of Information from many sources, and

as such do not represent any one particular vendor's approach

to ATE design. By briefly discussing at the beginning of the

report each of these software Items and then establishing a

"baseline" of definitions and terminology, the reader can better

understand the latter sections of this report. These latter sec-

tions will rely upon this terminology baseline In the comparison

analysis with the DAIS software Items.

In addition to the variations In terminology used In In-

dustry, there are also notable variations In the basic ATE "sys-

tem concepts" used by some of these vendors. This leads to

differences In the procedures for using ATE and In the software

Items needed to support the ATE equipment.

In the paragraphs to follow, a "standard" set of ATE terms

and procedures will be defined for use In this report. Figure

II-l shows a hlerarchlal view of this terminology. The first

major category of ATE software Is Control Software. This

encompasses three functional areas: real-time equipment Inter-

face control, on-line control of test software execution, and

co

REAL-TIME EQUIPMENT

INTERFACE

 V
^ \

• ON-LINE TEST PROGRAM

EXECUTION

• TEST OPERATOR

INTERFACE

UUT TEST

SOFTWARE

• INSTRUMENT CONTROL

• DATA ACQUISITION

• TEST SEQUENCING

ATE SUPPORT
SOFTWARE

• OPERATING SYSTEM

FUNCTIONS

• LANGUAGE TRANSLATION

• ATPG

• EQUIPMENT SELF-TEST

ATE SOFTWARE PARTITIONING
Figure Number II-l

control of the test operator Interface. The second major

category Is the UUT Test Software which concerns the actual

"test applications". This software specifies the detailed

test sequencing and flow. The major functions performed are:

control of the ATE hardware Instruments, acquisition of test

data, and sequencing of tests. The third category Is the

ATE Support Software which contains primarily off-line or non-

real-time support Items. The four major functions Included are:

operating system services, language translation facilities,

ATPG tools, and self-test of the ATE station equipments.

2. THE ATE SYSTEM

The ATE design usually begins early In the life cycle of

a weapon system. Based on the testing and operational require-

ments of the particular aircraft system to be supported by the

ATE, and based on the spectrum of stimuli and measurement par-

ameters that are required of all of the various Units Under-

Test (UUTs) that are to be tested, the total set of ATE require-

ments are defined as shown In Fig. II-2. This process usually

takes place soon after aircraft production Is authorized. These

studies and analyses are usually then taken a step further to.

In turn, define the particular ATE "Systems" that will be needed.

These ATE Systems are usually designed or selected to optimize

support of generic "families" of UUTs; for example, a digital

printed circuit board (PCB) ATE System, an analog PCB ATE System,

etc.

ATE REQUIREMENTS ALLOCATION PROCESS

Figure Number 11-2

Most currently available ATE Systems can be represented by

two distinct conceptual "parts": first, a generalized ATE Test

Station for use In the testing of many (however, similar) UUTs;

and second, the individual UUT Test Packages for each UUT supported

by that station. This relationship pictorially is shown in Pig.

11-3 and is discussed in more detail below.

a- ATE Test Station: The Test Station of today is usually

composed of a general purpose minicomputer consisting of a cen-

tral processor, processor memory, disk and/or tape memory,

and terminals for operator interaction. The other major hard-

ware items consist of the various electronic instruments used

to generate stimuli for test inputs and to perform measurements

of test outputs. Again, the stimuli and measurement devices

are normally of a general purpose nature and can be "programmed"

or "commanded" to perform in a multitude of modes or signal

environments.

Two groups of general purpose software items are also as-

sociated with the Test Station. The first, termed ATE Control

Software, is executive and on-line software which schedules and

controls UUT testing by using the various hardware and software

resources available within the Test Station, and usually provides

the user with a high-level interface to the various computer re-

sources. The second group of software, termed ATE Support Soft-

ware, is composed of a general purpose operating system and a

collection of various other support programs, such as compilers.

11

rv)

ATE STATION "A"

GENERAL PURPOSE
COMPUTER

TEST INSTRUMENTS

• CPU

• DISKS

• TERMINALS

• ETC.

• STIMULI

• SWITCH

• MEASUREMENT

—^^^fr^

_ji»mMiim:aiiniiiiQ)l

UUT#1

<ns, !

^iiBf»igaBiMimfi}l

UUT#2

_^iTimiiiliMa«IInJi^

UUT#N

TEST

B6QOIBe^NTS

OOCUMENT «1

rest

0ocoweNT M

• ••

 Y
GENERAL PURPOSE ATE STATION

J k.

UUT TEST mCKAGES

ATE TEST STATION AND PACKAGE CONCEPT

Figure Number II-3

assemblers, linkers, text editors, etc. These Items can be

thought of as "tools" used for the development and testing of

all software Items for the ATE,

The final element of the Test Station is the documentation

needed for both the operational and maintenance activities. In-

cluded is documentation on the various units of hardware and

software which comprise the Test Station and the operational

procedures and manuals needed for "general" operation of the

Test Station. Also included are procedures and methods for

maintaining and modifying the Test Station, when required.

Note that all of the "generalized" hardware and software

items and documents are associated with the Test Station, and

that none of the "UUT particular" items are associated with it.

Since a Test Station is usually designed to support a generic

set of UUTs, the Test Station designers must take care not to

make a point design of any parts of the Test Station.

b. UUT Test Packages: A UUT Test Package consists of all of the

"UUT unique" items needed to adapt the ATE Test Station for

testing of a particular UUT. A set of such UUT Test Packages is

thus developed, one for each UUT to be tested. Typically, such

a package consists of five items:

• An Interface Test Adaptor (ITA) hardware
unit which connects the particular UUT
connector/pins to the generalized Test
Station interfaces.

• UUT Test Software (which executes under
the control of the ATE Control Software)
which contains the UUT Test sequences,
diagnostics, etc.

13

• Test operator procedures or manuals for
conducting the UUT tests.

• Hardware documentation (e.g., specifications,
drawings. Interface descriptions, etc.) on
the ITA for the UUT.

• Software documentation (e.g. specifications,
flowcharts, etc.) on the Test Software for
the UUT.

As shown In Fig. 11-3, each Test Package Is developed for

a particular UUT by utilizing the Test Requirements Document (TRD)

as a specification medium. The TRD specifies all of the stimuli

and measurements needed to successfully test the UUT, and It also

specifies the fault diagnostic and location procedures to be fol-

lowed. Any number of generic UUTs can be tested on a single sta-

tion, ranging from one to several hundred.

c. UUT Test Package Development Process: It Is Important to

note some of the detailed steps and processes Involved In devel-

oping a UUT Test Package, for this Is typically one of the most

costly areas of ATE systems. For example, a Test Package can

cost from $100K to $300K for PCBs and from $200K to $3,000K for

Line Replacable Unlts.^'^

A generalized diagram of the Test Package development process

Is shown In Fig. II-4. This begins (shown at the upper left

corner of this figure) with the UUT Itself; In this case a PCB Is

shown. The "as built" documentation for the UUT (which consists

of drawings, wire lists, specifications, etc.) Is used to develop

the TRD. This function Is usually accomplished by the UUT vendor's

14

,«.**'
•TEST

,lN^«f kCE

, OES.GN P*n«ETE«S

s pEnfOR«*NCE

, FORM/FiT/FUNCnON

»TEST BEQ

#,NT6HF»CE REQ

sssg
►T UUT #N

UUT TEST PACKAGE DEVELOPMENT PROCESS

Figure No. II-4

15

engineering staff, typically by the UUT design engineer who Is

thoroughly familiar with the UUT theory of operation, limita-

tions, etc. The TRD contains a detailed listing of test con-

ditions, sequences of stimuli which should be applied to UUT

Inputs, and specifies the output parameters to be measured.

Particular attention Is given to the procedures for use In Iso-

lating faults to particular UUT components. The TRD sequences

usually take the form of test flow diagrams which detail the

exact sequencing of tests and each decision point required.

The TRD can be conceptually viewed as the "top most" re-

quirements document for UUT testing, for it is, in turn, used

as a basis from which the test and design requirements are al-

located to all subsequent UUT test and design documentation. In

particular, the next step is to allocate the TRD requirements

to either the UUT Test Software (via a type B-5 Design Require-

ments Specification) or the ITA hardware (via a type B-l,

Design Requirements Specification). This function is usually

conducted by the ATE vendor using both test hardware and soft-

ware design specialists. Since there may be several methods

of implementing a single TRD test sequence using various com-

binations of software or ITA hardware, it is important that both

hardware and software specialists participate in this process.

16

Also the designers at this step must take care to consider the

capabilities and limitations of the particular Test Station to

be used since the Test Station design is typically "frozen"

at this point In time.

As a result of this step, the software design will usually

be documented and basellned in terms of a Design Requirements

Specification. This document will repeat much of the TRD data,

particularly the test sequence diagrams since these diagrams

will largely be Implemented "as is" in the UUT Test Software.

However, other data will be Included in this specification, such

as software performance requirements, software/hardware inter-

face definitions, software validation requirements, etc.

The second document, an analog of the above software spec-

ification, is the ITA Hardware Design Requirements Specification.

Likewise most of these hardware requirements are allocated from

the TRD, with added data regarding specific performance parameters,

form/fit/function data, ITA validation, etc. This ITA spec-

ification will form the baseline for the subsequent detailed

design of the ITA hardware^ and since this specification was

developed in concert with the software specification, it will

Insure Interface and operational compatibility.

Although not shown in Fig. II-4, it should be noted that if

the ITA itself becomes a complex unit, there may be a need to

also develop ITA Unit Test Software. Many times when the Test

17

Station has a limited capability or It Is not well suited for

testing a particular type of UUT, the 1TA will be designed to

Incorporate active components, UUT stimuli, and measurement

circuits of Its own. In these cases of complex ITAs, software

Is needed to perform unit testing on the ITA hardware. This

software would operate on the Test Station and could follow the

same generic development procedures used for the UUT Test Soft-

ware .

The next few steps In development of the ITA hardware and

UUT Test Software focus on the detailed design. Implementations,

and checkout of each Item. These Items are verified as separate

units, primarily using three mechanisms:

• The Items (UUT Test Software and ITA hardware)
are unit tested against the requirements In
the respective B-level specifications.

• The Items are audited for compliance with the
B-level specifications.

• Interfaces between the UUT Test Software, the
ITA, and the Test Station are tested to verify
compatibility.

The output of these design, development, and verification pro-

cesses will generally be test documentation (plans, procedures

and reports), C-level Product Specifications and drawing packages

for the ITA, and the software and hardware Items themselves. To-

gether these Items and documents form a baseline which will sub-

sequently be used for UUT Test Package validation and certifi-

cation.

18

The final step Is to perform overall validation and certi-

fication of the UUT Test Package as a whole. This is typically

performed by a combination of personnel representing both the

developer and the end user. At this point, the individual items

of hardware and software must be unit tested and the interfaces

verified for compatibility. Thus, the tasks remaining focus on

three areas:

• Validating that the total UUT Test Package
operates properly with the ATE Station and does,
indeed, perform the testing as documented in
the TRD. Normally a sample of UUTs (with var-
ious faults manually inserted) will be used
during this process in order to assess the
ability of the Test Package to detect and iso-
late UUT faults. This particular validation
procedure is expensive and may indeed be cost
prohibitive, but it may be the only method
available to validate compliance with the
requirement for percent of fault detection
(e.g., 95%).

• Audits are also performed of the total UUT
Test Package to verify Integrity and accuracy
of all data.

• Certification is performed by the user's rep-
resentatives agreeing that the completed Test
Package satisfactorily performs in the intended
operational environment. This is usually a
combination of testing and audit functions
similar to those used in the validation pro-
cess.

3. ATE CONTROL SOFTWARE

The ATE Control Software is composed of all the real-time

software (except the UUT test software itself) which is re-

quired for operating the Test Station. Generally this software

can be functionally treated as three groups: the Test Control

19

Executive, any language Interpreters which may be required, and

real-time Interfaces with the test technician. Each of these

groups of software Is further discussed below.

a. Test Control Executive: The Test Control Executive software

controls all Test Station functions or resources needed to load

and execute UUT Test Software. If the UUT Test Software Is

written In a Higher Order Language (HOL) such as ATLAS or BASIC

and an Interpreter Is to be used for translation of this code,

then this HOL "on-line" Interpreter will be closely tied to the

Test Control Executive. In most Instances the functions perform-

ed by this Executive are the same on those of any minicomputer

real-time operating system; however, several unique models are

required. These unique Items are briefly discussed below.

• Resource/Path Selection: The Test Control
Executive should provide the capabilities
for both automatic and manual selection of
both equipment resources and data paths for-
connecting these resources. For example,
some ATLAS based test systems allow for the
programmer to "manually" specify (In the con-
nection fields of the ATLAS statements) the
specific Instruments, paths, and buses to be
used for a test. Otherwise, the Test Control
Executive should automatically select the
Instruments and paths required to fulfill
the UUT Test Software commands.

ATE Station Protection: In most Test Station
configurations there Is an ever present danger
of damaging the Test Station's resources by
software commands mlsconnectlng some of the
hardware resources. For example, a manually
specified connection might connect power supply
outputs to low power Input devices. In order
to obviate this situation the ATE Station

20

Protection function would provide a catalog-
ing of both "legal" and "Illegal" connections
and. In turn, disallow all Illegal connections.
This function Is particularly useful In pro-
tecting equipment from damage during UUT Test
Software debugging phases.

• Test Instrument Controllers: In order to
properly Interface with and control each In-
dividual Instrument associated with the Test
Station, a set of Test Hardware Controllers Is
needed. These Controllers should be modular
with one Controller for each Item of test hard-
ware used In the station. Generally these Con-
trollers will support three types of station
hardware measurement devices, stimulus devices,
and power supplies.

b- HQL Interpreter: An Interpreter Is a program which does a

HOL translation at the time of execution. The Important differ-

ence between an Interpreter and a Compiler Is that with an In-

terpreter no object code Is written In the translation process.

An Interpreter reexamlnes the source program every time It Is

executed. In fact, every statement Is reexamlned and reinter-

preted every time It Is executed during a program. Hence, In a

large loop, a statement could be Interpreted hundreds or thousands

of times.

There are various ways Interpreters Implement their function.

For example, some convert part of the program to an Intermediate

language before execution, while others do all the Interpretation

during execution. Also some Interpreters, known as Direct In-

terpreters, simply execute the statement without any translation

to machine language.

21

One of the advantages of Interpreters over Compilers Is that

they may perform better when exceedingly complex or non-sequential

programs are Input. Also program changes can be made during ex-

ecution without losing the current values of the program variables.

The obvious drawback to Interpreters Is their slow execution time.

The two HOLs most commonly used for ATE applications are BASIC

and ATLAS. These two languages are each summarized below, but

both can (and have) been used with either an Interpreter or Com-

piler language translator for the ATE Test Station.

• ATLAS: The Abbreviated Test Language for Avi-
onic Systems (ATLAS) was first defined by ARINC
in Specification 416-1 in June 1969. ATLAS is
a "problem-oriented" language specifically de-
signed for ATE usage. It was orglnally designed
and developed by a committee of experienced
ATE users(9)) and as such, has subsequently been
adopted by numerous ATE users and vendors. Since
it is problem-oriented, the ATLAS language forms
resemble a test specification language rather than
a traditional computer programming language.
This allows for ease of development of the UUT
Test Software. The prime weakness of ATLAS is
that it allows users to develop "adapted" ATLAS
languages, which, if one takes all of the lib-
erties allowed, can result in a new language
bearing little resemblance to another "ATLAS
language". Hence the buyer of an ATLAS language
package must look closely at the particular ATLAS
capability offered by a vendor. The potential
disasterous effects on language standardization
and software portability are obvious.

• BASIC: The Beginner's All Purpose Symbolic In-
struction Code (BASIC) language was developed by
Dartmouth College in 1965- It was designed to
be a very simple language to learn. In fact, the
designers intended it to be a stepping-stone for
students to, in turn, learn more powerful languages
such as ALGOL or FORTRAN. Since BASIC is a

22

"procedure-oriented" language. It Is significantly
different from an ATE problem-oriented language
such as ATLAS. Thus for use with ATE systems,
the BASIC language is usually extended to provide
the needed ATE-oriented syntax,

c- User Interface: The test technician must be presented with a

simple, user-oriented interface to the Test Station. For current

day ATE systems, this interface is typically composed of a CRT

terminal for control of the test sequences. In addition, hard copy

print devices are usually required to document (or log) some

aspects of the test activities.

The critical design requirement of this User Interface Soft-

ware is that it be designed so as to provide a simplified, "test

oriented" interface, and not merely an interface which reflects the

minicomputer operating system commands. The ATE user is a test

technician and not a computer programmer, thus he should be com-

municated with in a manner that does not require large amounts of

additional computer training.

4. ATE SUPPORT SOFTWARE

The ATE Support Software is composed of numerous software

"tools" and utility programs to aid the programmer in developing

and executing UUT tests. Many of these Support Software items

are available as "standard" packages which are sold as a part of

virtually any of today's minicomputer systems. Examples are

the Operating System, Assembler, Text Editor, etc. The other

remaining items of ATE Support Software are "ATE unique" or

23

"Station unique" items and are developed particularly for ATE Test

Station use. Examples are an ATLAS Compiler, 1TA Unit Test Soft-

ware, and ATPG Programs.

An overview of each of the major Items of ATE Support Software

Is given In the following paragraphs.

a. Operating System Executive: The Operating System Executive Is

a non-real-time executive which Is generally furnished as a stan-

dard commercial software package with the ATE Test Station mini-

computer. Although the particular capabilities of this Executive

will vary from one computer vendor to another, the general functions

will remain the same. In these general terms, the Executive can

be viewed as a resource manager for allocating the four primary

computer resources: memory, processors, devices, and information.

The functions of the Executive are to assign and control the

efficient utilization of these resources, whether in a batch,

multi-user, or multi-processor environment.

Table II-l summarizes the functions of a typical Operating

System Executive.

b. Operating System Services: The Operating System Services

software can be viewed as a set of adjunct software utilities

which are extensions of the basic Operating System Executive.

These utilities are generally available as standard items with

today's commercial minicomputers used in ATE Test Stations.

The major utilities required are briefly discussed below.

24

no

RESOURCE TYPE EXAMPLE RESOURCES EXAMPLE FUNCTIONS

MEMORY CORE, REGISTERS MEMORY MANAGEMENT. PAGING

PROCESSORS CPUs, I/O PORTS SCHEDULING. CONTROLLING

DEVICES TAPES, DISKS. PRINTERS SPOOLING

INFORMATION USER OR SYSTEM DATA FILE STRUCTURING

OPERATING SYSTEM EXECUTIVE FUNCTIONS

TABLE 1-1

Text Editor: A text editor Is a program which
allows an on-line user to alter his program or
other stored data without having to retype
the entire program. There are two basic methods
of implementing this task. The more elementary
method is a line-number based editing system for
which each program "card image" is given a line
number. The program can then be edited by in-
serting lines between existing lines, or over-
writing existing lines. The second (and more
sophisticated) method of text editing uses no
line numbers but instead uses a position pointer
which can be moved anywhere in the program or
data text. Since this is a character-oriented
rather than line oriented editor, the user gen-
erally has more flexibility and power available
in the editing commands.

Debugging Aids: A debugging aid is either a
Operating System option or a statement In the
program written especially to check the program
operation. Non-Operating System aids are ex-
tremely varied depending on the program and
application and cannot be covered in an overall
summary. There are, however, several typical
types of Operating System debugging aids. These
usually consist of Dumps, Traces, Subscript
Checks and Displays.

A Dump is simply a record of Information
(at any given time) of the status of the pro-
gram. Since it is usually written in machine
language, the Dump has limited usefulness.

The Trace, which comes in three basic forms
is a record of the program execution. One type
of Trace is a program flow trace, which prints
the statement labels as they are passed during
execution* The second type is the Variable Trace
Every time a variable changes value the name
and new values are printed. In some systems the
Variable Trace will have switches available so
that only certain variables will be traced. The
third type of Trace is the Subroutine Call Trace.
When a subroutine is called, the program will out-
put the name of that routine. When control is
subsequently returned to the previous program
section, a return statement is printed.

A Subscript Check makes sure that whenever
a subscripted variable is used the subscript

26

is valid. If the subscript is not valid, an
error message is printed.

A Display (also called a snapshot) is very
similar to a Variable Trace. The major difference
is that the variable and value are output at
user defined points rather than every time these
change value.

Linker-Loader: The Linker-Loader is a program
that takes the relocatable object language from
the Compiler or Assembler and aligns it into
absolute machine language. The alignment occurs
in two separate steps, the first of which is ex-
ecuted by the Linker. The Linker searches through
the relocatable program for external (global) re-
ferences. It then accesses the file, finds the
references, and links these to the original
program in relocatable machine language. The
Loader is the next section of program to operate.
It takes the linked program and assigns absolute
address locations to all the relocatable addresses.

Bootstrap Loader: A Bootstrap Loader is a
computer initialization program used to start
the computer after it has been completely shut
down. The user will set certain switches to load
the first few steps of the bootstrap program.
From here, the Bootstrap Loader will take these
instructions and finish loading itself. This
process is also called initial program load (IPL)
or cold start. The IPL loads in an executive
loading program which then loads the compilers,
assembler, text editors and other needed programs.

File Management: The Pile Management software
is usually composed of a general purpose file
utility package for both the general user and the
system programmer/manager. These software aids
normally handle all files with the Operating
System's standard data formats. In general,
these programs transfer data files from any
device in the system to any other device in the
system. Also, usually provided is the capability
to delete or rename any existing file. Some
Operating Systems include special file management
operations, such as directory listings, device
initialization and formatting, and account creation.

27

c. Assembler: The Assembler Is used to translate "assembly"

language (which is usually little more than a one-for-one

mnemonic representation of the computer instruction set) into

the binary codes or instructions which can be executed by the

computer. Since higher order languages are much preferred over

assembly languages for coding of applications software, there is

usually limited usage of an Assembler for user applications. How-

ever, in many of the operating system functions assembly language

is prevalent since the higher order languages generally cannot

provide enough fidelity in controlling the detail of bit-level

computer resources. The Assembler then provides for the trans-

lation of assembly language mnemonics into machine code, and

is then used in both the development and maintenance of any

assembly language programs. For example, the Operating System

for the ATE Test Station may be written in assembly language, and

for this situation, the Assembler would be used for translation of

the Operating System source code.

d. Compilers: The HOL Compiler is a language translator as is

the Assembler; both normally producing relocatable object code

for a particular computer. However, the Compiler is much more

sophisticated than the Assembler due to the increased complexity

of the input language. The Compiler accepts a higher order

language (such as ATLAS or BASIC) as input.

Although the purpose of a Compiler is the same as that of an

28

Interpreter, these are two distinctly different software items.

The Interpreter is executed as an extension of the real-time

ATE Control Software and "interprets" the UUT Test Software as

it sequences through each HOL source code statement. Thus

Interpreters do not produce a relocatable object code as Compilers

do, and as such, are less efficient in run time execution speed.

By contrast, the Compiler executes in an off-line (or in non-

real-time) mode and completely translates the source program

(e.g., ATLAS) into a machine program form suitable for linking

and loading. While Interpreters are useful translators for some

ATE Systems, the Compiler offers much more power and sophisti-

cation to the user and is generally a preferred implementation

for ATE applications.

e. Configuration Management Aids: Since a single ATE Test

Station will typically support the testing of many UUTs, there

will likewise be many packages of UUT Test Software used on

the Test Station. Even for a single UUT model type, there

may be many different versions of the UUT Test Software re-

quired if the UUTs have various engineering changes incorporated.

This multitude of software packages can lead to a significant

configuration management and status accounting problem.

The Test Station provides an excellent mechanism for per-

forming the necessary configuration management of the ATE soft-

ware. Software Configuration Management Aids can be provided

on the Test Station minicomputer which will provide the follow-

29

ing types of functions:

Limiting the number of users which have change
control access to the baselined software.

Providing a library of "sanctified" software
modules.

Providing configuration status accounting in-
formation.

Providing configuration Identification of the
various hardware items (UUT and Test Station)
and software items.

Providing software file comparison routines which
allow for automated comparisons of versions
of the same software modules.

f. ATPG Tools: An Automatic Test Program Generation (ATPG)

Tool is a software program which accepts as input a circuit

description of a UUT and generates as output the required UUT

Test Software. Figure II-5 shows the relationship of this

"automatic" process to the manual programming process. For those

areas where ATPG can be effectively used, the advantages are

obvious. ATPG can save both time and manpower required to de-

velop UUT Test Software, and in certain cases, can generate superior

test software compared to the manual methods.

The use of ATPG tools and techniques has most effectively

been applied to digital card units, mainly because digital

functions can more readily and precisely be simulated on a dig-

ital computer. This use has significantly Increased in recent

years, due primarily to two reasons:

• With the increased capabilities available in

30

H

ATE
SOFTWARE

DESIGNER

ATE
SOFTWARE

PROGRAMMER

GENERATION OF UUT TEST SOFTWARE

Figure Number 11-5

today's minicomputers for ATE Stations, these
minicomputers are being used to host some
ATPG software packages. This makes the ATPG
process much more responsive to the user's
need. With the ATPG software Resident on the
ATE minicomputer rather than a distant (and
often slow turn-around) large-scale computer
complex, the test designer can usually op-
erate more effectively. In fact, the writing
and debugging of UUT Test Software Is today
becoming a large factor In total support costs^1)'
and thus Is a promising area for potential
savings. Minicomputer ATPG packages are ex-
pected to make a significant contribution to
this savings through automation of UUT Test
Software generation.

The use of digital ATPG methods by numerous
and varied organizations has resulted In a
rapid development of this technology. Num-
erous software packages have been developed,
and both the developers and users are striving
to continually enhance these ATPG Tools. As
a result, ATPG Tools offer: (a) dramatic
reduction In UUT checkout and repair time
(25:1 In some Instances^1-'), (b) greatly Improved
UUT fault detection rates (100^ versus 50%
for one test case of 100 IC boards^ ', (c)
higher product confidence levels, and (d) the
option to use lower skilled personnel for
testing.

To best Illustrate how a digital ATPG Tool Is used, an ex-

ample Is outlined below using the Hewlett-Packard TESTAID III

System. Also, the overall process of using the digital ATPG

Tool Is plctorally shown In Pig. II-6. The first step In ATPG

Is for the test engineer to develop a "topologlcal" description

of the UUT. For TESTAID-III, this description can be either

"device oriented" (which specifies all Input and output signals

for each device), or "signal oriented" (which specifies all

32

TEST
ENGINEER

3 HEWLETT PACKARD TESTAID III
< •LIBRARY 5210.521 1
5 "MAIN SAMPLE BD 151
6 'INPUTS
7 CIA.B.CI;
8 ^OUTPUTS
9 CID.EI:

10 "GATES
1 1 U1(7404) C-B.1 U1-2.2;
12 U2(74091 C-A,1 U1-2(2,4I C-C.5 U2-3.3 U2-6
13 CICONNI C-A,A C-BB C-C,C U2-3.D U2-6,E;
14 "SIGNALS
15 C-A C.A U2,1;
16 C-B C.B U1.1;
17 C-C C.C U2.5;
18 U1-2 U2(2.4I U1,2;
19 U2-3 CD U2.3;
20 U2-6 C,E U2.6i
2 1 "END

TOPOLOGY
CROSS-CHECK

REPORT

MANAGEMENT
INFORMATION

DIGITAL UUT TOPOLOGY

DIGITAL UUT

1
AUTOMATIC TEST EQUIPMENT

DIGITAL ATPG PROCESS
Figure Number 11-6

devices or gates that are connected by each signal line). If

both the device and signal descriptions are used as Inputs,

then TESTAID-III will cross-check these for discrepancies to

help ensure correct coding.

Once this topology coding Is completed. It Is Input to the

ATPG software for subsequent processing. Within TESTAID-III

there are numerous functions performed. The major ones are high-

lighted below:

• UUT Input test patterns are generated If auto-
matic generation is requested. However, a pro-
vision is made for the test engineer to input
manually generated test patterns if desired.

• UUT "good" output patterns are generated for all
input patterns.

• UUT fault signature patterns are generated to
identify "failed" devices based on the detection
of other than "good" UUT outputs.

• UUT signal mode states are generated for use in
diagnostic procedures.

• Summary Information is generated to report such
items as the test coverage (typically as a
percentage) and listings of undetected faults.

• And finally, the source code (e.g., ATLAS or
BASIC) is generated. This source code can sub-
sequently be used (via a Compiler or Interpreter)
to execute the test patterns derived. Detailed
"run-time" procedures are given to the test
operator during UUT testing, thus allowing for
the use of lower skilled personnel than with less
automated methods.

The payoffs associated with the use of ATPG can be grouped

into three main categories. These are briefly discussed below:

34

• The use of ATPG In combination with ATE can result
in a significant savings in the time required to
test, diagnose, and repair a UUT. Some example
datad) are shown in Table 11-2 for cards produced
and maintained by Hewlett-Packard, These data
indicate that a 10:1 reduction in test and diag-
nostic times can easily be achieved.

• The skill level required of test conductors can
be significantly reduced. Trained and experienced
technicians are required for manual or semi-
automatic methods, whereas fully automatic methods
can be conducted with a minimally trained operator.

• The thoroughness of the automated methods has
led to a greatly Improved fault detection rate.
Again, some Hewlett-Packard data covering some
100 IC boards demonstrated fault detection rate
improvements from 50^ using old methods to 100^
using ATPG/ATE methods.

It should be noted that these payoffs are a combination effect

of using both ATPG and ATE. Ideally, a good ATE programmer could

generate the same test procedures (and UUT Test Software) man-

ually without the benefit of ATPG. These tests could, in turn,

be run on the ATE and the above benefits would again be attained

without ATPG usage. However, in the practical world this could

seldom be attained. The complexity of the UUTs, the massive

amounts of source code UUT Test Software required, and the dif-

iculty in locating and retaining these highly skilled program-

mers, all are practical limitations to the usefullness of ATE

without ATPG.

However, digital ATPG tools are not without their limitations.

Most digital ATPG systems are based upon path-sensitizing tech-

niques which trace (sensitize) paths through a simulated digital

35

TABLE 1-2

ATPG/ATE TIME SAVINGS

TEST & DIAGNOSE TIME
BOARD DESCRIPTION

Manual Or Using ATPG /ATE
Semiauto Methods Methods

BOARD #1 (COUNTER) 90 MINUTES* 8 MINUTES *

• 35 ICs

• 48 PINS

• 500 (APPROX.) GATE EQ.

BOARD #2 (CONTROL) 45 MINUTES 3 MINUTES

• 95 ICs

• 120 PINS

• 1200 (APPROX.) GATE EQ.

BOARD #3 (ROM CONTROL) 160 MINUTES 6 MINUTES

• 88 ICs

• 102 PINS

• 864 GATE EQ.

* includes repair time

36

1

(Pi)
network , from given input vectors to the resultant output vec-

tors. In general these ATPG systems suffer from several restric-

tions and may require manual "work-arounds" in order to con-

struct comprehensive tests. Examples of where path-sensitizing

ATPG systems cannot be effectively used are: (1) cards that con-

tain curcuits of large memory elements (counters, shift registers,

or RAMs), (2) cards with large scale integration (LSI) circuits

such as microprocessors, and (3) circuits which use asynchronisms

in their operations.

g- ITA Unit Test Software: The Interface Test Adaptors (ITAs)

for complex UUTs may themselves become complex electronic units

which deserve some level of stand-alone testing ("unit test")

prior to operation of the UUT. Also, ITAs can become complex as

a result of the ATE Station not having all of the requisite

capabilities (i.e., stimuli and measurement devices) which are

required to satisfy the TRD requirements specified for a particular

UUT.

For these more complex ITAs, ITA Unit Test Software is dev-

eloped which, when executed, will insure that the ITA is working

properly prior to testing the UUT.

h- ATE Station Self Test Software: Since the ATE Test Station

itself is a collection of equipments, all of which are subject

to malfunctions and maintenance needs, there is a requirement

to perform routine testing to ensure proper operation of the

Test Station hardware items. This testing is usually divided

37

Into three functional areas, each being Implemented to a large

extent In software. These three software packages are briefly

discussed below.

• Station Confidence Test: The Confidence Tests
are designed to exercise all major functions
of the ATE Test Station to verify that each
Station Item Is powered. Initialized properly,
and communicating properly with the Station
control elements. Also, the gross functional
characteristics of the stimulus and measure-
ment devices would be checked. Since this soft-
ware may be required to run on a dally basis
or at the beginning of a test, it cannot
consume an extensive amount of time. Thus,
exhaustive testing of the Test Station is pro-
hibited. For example^10), the Confidence Test
Software for the F-16 Avionics Intermediate
Shop Station is designed to execute in less
than 15 minutes and to provide at least 85%
assurance of the Station operabillty. Also,
this F-16 software executes without the need
for external Test Station connections.

• Station Maintenance Test: When a malfunction
is detected in the Test Station operations,
the Maintenance Test Software is used to further
characterize the failure and subsequently iso-
late the failure to a particular hardware unit.
In contrast to the Confidence Test Software
which performs gross functional tests, the
Maintenance Software performs exhaustive test-
ing of each hardware item. Also, external con-
nections or manual test procedures are usually
used to complement the software controlled
testing. This testing includes coverage not
only of the test Instruments in the Test Sta-
tion, but also the Test Station computer and
its peripherals. Isolation of faults should
be provided to either the LRU or SRU level
depending on the particular operational en-
vironment .

• Station Alignment: This software is designed
to automatically update the data base of align-
ment parameters for all test instruments used

In the Test Station. Using the internal cal-
ibration reference standards (voltage, frequency,
and resistance), this software measures and
records the gains and offsets of the Test Sta-
tion Instruments and signal paths. For example.
If a power supply develops an output of 15.5
volts when commanded to supply 15.0 volts, this
Inaccuracy might significantly affect UUT test-
ing. Thus, the Alignment Software would deter-
mine the proper Input command offset needed
(e.g., Ik.3 volts commanded) In order to receive
the desired output level of 15.O volts. This
offset (-0.5 volts) would be stored In the Test
Station calibration data base and used to off-
set all subsequent Input commands to that par-
ticular power supply.

5. UUT TEST SOFTWARE

The UUT Test Software operates on the Test Station under

control the ATE Control Software. It contains the control

logic which specifies the detailed sequencing of the UUT testing,

and thus, the UTT Test Software packages are unique to each sepa-

rate UUT.

The major functions implemented by the UTT Test Software

are summarized below.

• Definition of input signal parameters and power
requirements.

• Specification of test sequencing, Including "go"
and "no go" conditions, fault Isolation algorithms,
etc.

• Notification and display of test status and results
to the test operator.

As discussed in the previous sections, the trend in ATE

systems is toward the use of HOLs as programming media for UUT

Test Software implementation. An example section of a UUT Test

Software package is shown in Pig. II-7 below using the ATLAS

language.

39

000000 BEGIN, ATLAS PROGRAM 'VOLTAGE TOTED OSCILLATOR TEST' $
C $
C PREAMBLE-DEFINES SIGNAL SOURCES AND POWER SUPPLIES $
C $

01 DEFINE, 'DC-POWER', SOURCE, DC SIGNAL,
VOLTAGE 12 V ERRLMT +- .IV,
CURRENT MAX 100 MA,

CNX HI Jl-5 LO Jl-6$
02 DEFINE, 'TUNING-VOLTAGE', SOURCE, DC SIGNAL,

VOLTAGE () RANGE 1 V TO 10 V ERRLMT +- 50 MV,
CNX HI Jl-8 LO Jl-6$

C $
C MAIN SECTION OF PROGRAM-SETS VOLTAGE, MEASURES FREQUENCY $
C $
010000 PRINT, MESSAGE, CONNECT UUT,PRESS RUN BUTTONS

01 WAIT FOR, MANUAL INTERVENTIONS
02 APPLY, 'DC-POWER'$
03 APPLY, 'TOTING-VOLTAGE', 5 V$
0k VERIFY, (FREQ), AC SIGNAL

FREQ RANGE k MHZ TO 6 MHZ,
VOLTAGE RANGE 2 V TO 5 V,
LL k.9Q MHZ UL 5-02 MHZ,

CNX HI J2-1 LO J2-2$
05 REMOVE, 'DC-POWER'$
06 REMOVE, 'TUNING-VOLTAGE', 5 V$
07 GO TO STEP 30000 IF NOGO$
08 PRINT, MESSAGE, VIO FREQUENCY IN SPEC$
09 GO TO STEP U0000$

030000 PRINT, MESSAGE, VIO FREQUENCY OUT OF SPEC$
0J+0000 FINISH$
999999 TERMINATE, ATLAS PROGRAMS

Example of UUT Test Software Using ATLAS

Figure II-7

40

SECTION III

ADDITIONAL ATE SOFTWARE REQUIREMENTS

1. SECTION OVERVIEW

The verification and validation (V&V) of UUT Test Software

is today a costly and time consuming process. However, this

problem is not unique to ATE software. In general, the testing

of any type of software item is the most tiring, expensive, and

unpredictable phase of the overall software development process.

To aid in these testing efforts, there have been many types of

software test tools developed. The idea being, computers should

be used not only to execute software, but computers should also

aid the programmers in the checkout and test activities.

The V&V tools available today can be effectively parti-

tioned into two general categories. The first category is that

of hardware simulators. Hardware simulators are used to emulate

the Interface signals and functional operations of specific

"boxes" of hardware. For example, in the integration of an

avionics system it is common practice to simulate such items of

hardware as the radar, inertial measurement unit, air data com-

puter, etc. This level of simulation is generally expensive,

but is many times required due to the non-availability of the

hardware Items.

To the contrary, simulation of UUTs for V&V of the UUT Test

Software is not a common practice. Due to the high cost of

developing a high-fidelity simulator for a UUT, such a slmu-

41

lator Is usually not undertaken. Also, for many developments

the actual UUT hardware Items are readily available for use

during the UUT Test Software V&V phase.

The second category of V&V tools is "test aids". These

test aids constitute a less well defined category then the hard-

ware simulators above, and are in many respects a nonhomogenous

set of items. However, they do form a good category for dis-

cussional purposes. Examples of test aids are: dynamic simu-

lators, data base analyzers, automated test generators, auto-

mated flowcharters, instruction tracers, test drivers, timing

analyzers, etc. Use has been made of test aids in virtually all

application areas of software, including ATE systems. One of

the areas in which extensive use of test aids has been made is

in the V&V of real-time avionic software. However, the use of

this test aid "technology" has somewhat lagged in the ATE com-

munity, even though it is still a cost-effective undertaking.

Of the two categories above, hardware simulators and test

aids, the latter appears to offer the most leverage in the V&V

of UUT Test Software. The state-of-the-art does not appear to

support hardware simulators as cost-effective test tools in the

V&V of today's UUT Test Software. In contrast, many of the V&V

test aids do directly support this activity as a relatively

low-cost alternative.

In the section below the concept of an ATLAS Statement Level

Simulator test aid is discussed as it would apply to V&V for UUT

42

Test Software. Some aspects of this concept have been Imple-

mented In today's ATE systems, however, not In such a coordinated

or "Integrated" fashion. By providing the UUT test programmer

with a comprehensive Statement Level Simulation capability (in

addition to the other support software items discussed in

Section II), the UUT Test Software V&V process can be not only

completed more quickly, but this can lead to more accurate and

reliable software.

2. ATLAS STATEMENT LEVEL SIMULATOR

The Statement Level Simulator (SLS) for ATLAS discussed

below is patterned closely after the JOVIAL-73 language SLS

developed for the DAIS Program^12). This ATLAS SLS would pro-

vide the ATE programmer with a collection of ATE V&V tools which

would make use of many of the capabilities (e.g., symbolic re-

ferences) already provided by the ATLAS compiler. Basically,

it would provide for the "symbolic" execution of ATLAS programs

in a simulated environment which could be easily created by the

UUT test programmer. Instead of undertaking an exhaustive simu-

lation of the UUT, the programmer would be supplied with a high-

level mechanism (through a scenario generator) which could map

UUT inputs into UUT outputs. By circumventing the functions of

the UUT itself, the high cost of building an accurate UUT simu-

lation is eliminated. The programmer would supply a list of the

UUT responses (either prior to the SLS execution or interactively)

The ATLAS SLS would provide a run-time environment in which

the ATLAS UUT Test Software could execute. The test programmer

43

could force the UUT Test Software to execute certain paths

(e.g., GO or NO GO conditions), start and stop the UUT Test

Software based on the occurance of specified "events", and

symbolically (e.g., ATLAS names) reference data items or lo-

cations. The main functional elements required of the ATLAS

SLS are discussed below.

a. Test Scenario Generation: In order to provide the test

programmer with a mechanism for specifying the test conditions

and data recording requirements, a high-level test scenario

language would be provided. This language would allow the

test programmer to define "events" in the execution of the

UUT Test Software, and in turn, the actions to occur based on

these events. Examples are:

• Based on the event of executing a named
ATLAS source statement, program execution
is to hault and await the programmers
manual input.

• Based on the event of a new output being
applied to a specified pin number, the
output and other selected state variables
are to be recorded for post-run analysis.

• Based on the event of an input voltage
exceeding a predefined safe range, the
ATLAS statement label and the output
value are to be recorded for post-run
analysis.

In addition, the scenario language would allow the programmer

to define the types of data to be recorded during SLS execution.

For example, selected data items could be traced, instruction

flow could be traced, operator actions could be recorded, and

44

UUT input/output data could be recorded. These data would, in

turn, be available for post-run analyses.

An additional feature of the scenario language would be

the ability to specify an input/output data list for the UUT

in question. In some respects this can be thought of as a

simulation of the UUT, but the intent is for a much simpler

mechanism than a traditional hardware simulator,

b- Statement Level Executor: The statement level executor

would provide for controlled execution of the UUT Test Software

per the test scenario provided. As ATLAS statements are exe-

cuted by the statement level executor, interactions would be

made with SLS event and data tables (which communicate with the

run-time execution monitor).

c- Run-Time Execution Monitor: This monitor function would

provide for "watching" the execution of the UUT Test Software,

and the taking of snapshots of the software's status at the

occurance of defined events. This event-oriented sampling tech-

nique would gather UUT Test Software performance data by inter-

rupting the normal processing to record the status at the pro-

grammer selected events. In essence, control is passed to a

data logging program when the monitor detects the occurance of

such a predefined event. Upon completion of the data logging,

the execution of the UUT Test Software is restarted.

At the programmer's option, the occurance of an event could

also halt the UUT Test Software execution, pending an input or

45

action from the programmer's terminal. Inputs could be to

force a particular branch of software execution (e.g., GO or

NO GO for test completion), or possibly to specify the bit

pattern of a UUT output connector. In any circumstance, data

logging would still be performed for later post-processing

activities.

d. Post-Run Analysis: After completion of execution of the

UUT Test Software, the post-run analysis function would pro-

vide the programmer with many options (reports) for analyzing

the UUT Test Software's execution. Example reports would In-

clude: program flow trace at the ATLAS statement level, data

trace and usage analysis at the ATLAS symbolic level, variable

range analysis as compared to predefined range bounds, logs of

operator actions, timing of ATLAS code segment, and ATLAS In-

struction frequencies of execution.

46

SECTION IV

ADDITIONAL MATE SOFTWARE REQUIREMENTS

1. SECTION OVERVIEW

In addition to the general Items and requirements of ATE

software discussed previously In Sections II and III, other soft-

ware requirements are derived from the unique design aspects of

MATE. These "MATE-unlque" requirements are discussed In para-

graph 3 below. Also, paragraph 2 Is first Included to briefly

highlight the MATE system architecture used as a basis for this

study.

2. OVERVIEW OF MATE ARCHITECTURE

At the date that this report was written, the MATE system

architecture was not well defined. Only broad MATE objectives

had been established, and system requirements were not yet fully

specified. Moreover, a MATE hardware architecture was not fully

defined, and thus the software analyses in this report were based

on a postulated MATE architecture rather than an actual one.

However3 It is reasonable to believe that the final MATE arch-

itecture will be relatively close to the one described below,

a. MATE Hardware System: Figure IV-1 is a generalized block

diagram of the postulated MATE hardware architecture. This

architecture is centered on the use of a standard

(e.g., IEEE-488) multiplex data bus, standard hardware modules

47

NOTE:

* DENOTES MATE INTERFACE STANDARD

POSTULATED MATE HARDWARE ARCHITECTURE
Figure Number IV-1

which can be procured from multiple vendors, and standardized

hardware Interfaces as shown In this figure. The bus Interface

adaptors (BIAs) are standard terminals for the data bus and may

be provided In various levels of complexity. For example, some

units (such as the computers) may require more sophisticated

Interfaces than others. Also, some BIAs may be required to Inter-

face the data bus to multiple hardware devices In cases of lower

data rate communications.

The ATE Station Computer Is shown as a single unit In this

figure; however It could possibly be configured with multiple

computers. Several options are available In this area (e.g.,

single computer, federated computer, multiprocessors, etc.)

depending on the processing throughout required for the MATE

station. In fact It Is likely that the final MATE architecture

will. Indeed, be able to accommodate from one to several mini-

computers depending on a particular station's requirements.

Although the operator Interface shown In Figure IV-1 Is

a CRT terminal, this could also be any one of several standard

minicomputer terminal devices. For most MATE configurations

a minimum of a CRT and a printer device would be needed.

b. MATE Software: The MATE software requirements will parallel

very closely those of any of today's state-of-the-art ATE systems.

That Is, virtually all of the Items discussed In Section II will

be needed. More detail concerning these software Items Is con-

tained In Section VI. In addition to these Items, however, the

49

MATE architecture shown In Figure IV-1 places additional require-

ments on the software needed. Some aspects of these additional

requirements are covered In the paragraphs below.

3. UNIQUE MATE SOFTWARE

The only major new software requirement of MATE that has not

been previously discussed In Section II or III concerns the MATE

data bus architecture. Since this data bus Is central to the MATE

hardware structure and Is the backbone of communications between all

major hardware elements. It must be a carefully considered and

allocated resource. In fact, much of the Inherent flexibility of

the MATE architecture shown In Figure IV-1 Is directly derived

from the data bus and Its standard Interface connections. This

hardware system flexibility will allow for ease of system re-

configuration by Interchanging hardware boxes, deleting or adding

new hardware boxes, and adding redundant or Improved hardware

where required.

Although the hardware flexibility can be easily achieved with

the use of appropriate Interface standards, the total MATE systems

flexibility will also depend directly on the software flexibility.

In other words, the MATE executive software must be designed to be

easily adapted to accomodate the above types of hardware changes.

This, in turn. Implies that the executive software be highly

modular in the input/output areas, and that a generalized (e.g.,

data table driven) executive approach be used. In conjunction with

such an executive, there may be a need to develop some support

software tools to assist the users in tailoring such a generalized

50

executive. These considerations are more thoroughly discussed In

Section VI.

51

SECTION V

DAIS SOFTWARE

1. OVERVIEW OF REQUIREMENTS AND SOFTWARE

The DAIS "hot bench" or Integrated Test Bed (ITB) Is:

(1) an information management system consisting of a set of

federated airborne computers interfaced to each other, to avi-

onic sensors, and to cockpit controls and displays by a MIL-

STD-I553A multiplex data bus; and (2) a support facility to

perform the information management system monitor and control

functions. Figure V-l is a simplified block diagram of the

DAIS Integrated Test Bed^12^ Control of information management

system functions is performed by the DAIS Mission Software

which is partitioned among the DAIS airborne computers.

The following paragraphs highlight the functions of the

various Integrated Test Bed components,

a. DAIS Information Management System: The DAIS hardware

"core elements" shown in Figure V-l are based on a federated

computer architecture. Each DAIS computer is connected to a

Bus Control Interface Unit (BCIU) which initiates data trans-

mission over a redundant multiplex bus system between the pro-

cessors and remote multiplex terminals (RTs), the latter being

the interface between the data bus and the simulated avionic

equipment. Each BCIU is actually an intelligent input/output (I/O)

52

v,,n

SUPPORT FACILITY

DAIS INTEGRATED TEST BED
FIGURE Y-1

channel which executes I/O commands stored In the DAIS computer's

memory. Centralized single point data bus protocol Is perform-

ed by a processor resident software executive and a selected

master BCIU.

The remote terminals provide an Interface between the bus

and aircraft equipments. Conceptually, It functions In a man-

ner similar to a BCIU by transferring data to or from the equip-

ment to which It Interfaces. The R"0 contains interface modules

which can be interchanged to provide the correct electrical in-

terfaces for different equipment. It can also be programmed to

define the mapping of data between the bus and the aircraft

equipments.

The DAIS flight software (Mission Software) is distributed

among the set of computers in the system. It consists of Ap-

plication Software, which performs the processing required for

a specific aircraft/mission application, and the Executive Soft-

ware, which performs system control and provides services to the

Application Software.

The Executive Software is further divided into the Master

Executive and the Local Executive. The Master Executive, which is

responsible for system control, resides in one computer designated

as the master computer. A copy of the Local Executive is located

in each computer and provides real-time services, including data

read and write, task control, etc., to the Application Software.

The Mission Software is implemented in the JOVIAL J73/I

54

higher order language utilizing structured programming tech-

niques and a modular architecture approach.

b- DAIS Support Facility: The Support Facility provides the

necessary interfaces to set-up, provide real-time control and

monitoring, and collect data for post analysis for all DAIS

testing activities.

A DEC System-10 (DEC-10) computer is used to execute real-

time aircraft and environment models, compile the DAIS Executive

and Applications Software, generate simulated mission scenarios,

perform post run analyses, and maintain all the above files and

simulation data under a configuration management system.

The Performance Monitoring and Control (PMC) computer in

Figure V-l is a PDP 11/40 interfaced with the DEC-10 via a

Direct Memory Access (DMA) window. This computer is used to

load the Mission Software from DEC-10 storage onto the DAIS

computers. Operation of each airborne computer is controlled

by the PMC which monitors the computer's memory buses and performs

such functions as monitoring specified memory addresses, tracing

branch instructions, breakpointing based on events, etc. The

PMC computer interacts with the user to set up monitoring para-

meters and can also use predefined scenarios stored on the DEC-10

to set up the PMC. Real-time display of system performance is

available on a local CRT.

C Software Overview: The Software for DAIS is grouped into

55

three functional areas as shown In Fig. V-2 The Mission Soft-

ware performs the traditional airborne functions of the Opera-

tional Flight Program (OFF) and the Operational Test Program

(OTP). This software resides In the DAIS "hot bench" (air-

borne) computers. The second category, the Non-Real-Tlme Sup-

port Software (NRTSS), resides on the DEC-10 support facility

computer and consists of off-line support software tools used

to assist In the design, development, and testing of the Mission

Software. The third category Is the Real-Tlme Support Software

(RTSS). This software resides In both the DEC-10 and PDP-11

support facility computers and provides for real-time simulation

and test control of the DAIS hot bench.

Each of these three major groups of DAIS software are dis-

cussed In more detail In the following paragraphs.

2. MISSION SOFTWARE

As noted earlier, the Mission Software Is composed of two

functional groups (13); the OFF and OTP. Since the DAIS executive

software requirements for both the OFF and OTP can be fulfilled

with a single executive architecture, only one Mission Software

Executive exists. This Executive Is then married with either

the OFP Applications Software or the OTP Applications Software

to form a fully functioning OFP or OTP.

a. Executive Software: The purpose of the DAIS Executive (14) Is

to Isolate the physical aspects of the DAIS federated system

56

Ul
—3

 5_

DAIS SOFTWARE
Figure Number V-2

from the Application Software. The Executive allows the Appli-

cation Software to reference time. Remote Terminals and Infor-

mation In other processors on a logical level. It masks the

federated nature of the DAIS computer system so that Application

Software can be written as If It were to execute In a single,

virtual machine. Finally, the DAIS Executive controls and op-

timizes the use of system-wide resources, such as the Data Bus

and Mass Memory, and provides mechanisms for error recovery.

The DAIS Executive Software consists of two parts: a

Local Executive and a Master Executive. Every computer In the

DAIS federated system contains a Local Executive, but only one

Master Executive exists and is in operation at any given time.

The Local Executive controls operations peculiar to a computer,

including control of the Application Software within the computer

and local participation in the I/O processes. The Master Ex-

ecutive controls system-wide operations, including control of the

Data Bus, of Mass Memory, and system-wide initialization and error

recovery.

DAIS is a real-time system in which the activities of the

Applications Software are coordinated with the passage of real

time in the outer world. The minimum granularity of time to

which coordination occurs is known as the Minor Cycle. It is

possible to specify or determine the time of an action within

one Minor Cycle, but not to a fraction of a Minor Cycle. Thus,

58

the I/O Interactions, interprocessor Interactions, and task

Interactions may occur, may be known, and may be controlled

within the framework of the Minor Cycle time granularity.

This timing is a requirement for I/O control, interprocessor

coordination and synchronization, and the Local Executive

process handling.

Because of the multi-processing nature of the DAIS system,

a designated active Master Executive within one computer controls

the federated computer configuration. It responds to data bus

transmission errors, and controls communication between data bus

terminal units. The Local Executive provides the Interface

between the application functions and the Master Executive (Bus

Controller) functions. In addition, there is an Interface be-

tween the Master Executive and the application functions with

respect to system configuration. Initialization, and recovery.

The Applications Software controls the execution of software

functions by invoking the Executive to schedule and/or activate

processes, events, and I/O.

A summary of the Master and Local Executive functions are

given below.

MASTER EXECUTIVE

• Bus control - allocates time segments on
data bus for synchronous communication
and for asynchronous messages.

• Systems error management - monitors and
analyzes errors relative to the operation
of the processors and data bus communica-
tions, and provides control for error
recovery.

59

• Configuration management - initializes
multiple computer system at startup and
after severe system errors.

• Mass Memory management - provide for the
retrieval of information from mass memory.

Monitor Management - provides for monitoring
of the master processor by the monitor pro-
cessor.

LOCAL EXECUTIVE

• Task state control - uses a task table to
activate and deactivate periodic or non-
periodic tasks when appropriate conditions
have been met. These conditions are based
on a logical setting of real time events.

• Event control - uses a table of real time
events to communicate conditions signalled
between processes whether in the same or
different processors.

• Data control - guarantees Interlocks be-
tween shared data, provides mechanism for
transmission and reception, of data over
the multiplex data bus.

• CPU fresh start, restart - used to initial-
ize CPU, to recover from transient failures,
and to perform self-test.

b. OFP Applications Software: The OFF Applications Software ex-

ecutes in the DAIS airborne computer under control of the Executive

It provides for direct implementation of many of the functions of

the DAIS flight mission, such as navigation, weapon delivery,

equipment Interfacing, steering, stores management, and mission

sequencing. Two of the major functional parts of this software

are briefly summarized in the paragraphs below.

60

First, the OPP Applications Software provides several se-

(17)
lectable navigation modesv '\ These can be manually selected

by the pilot, or automatically sequenced based on the best avail-

able backup modes when the primary equipments fall. The major

modes provided are: inertial, air data/heading and attitude

reference system (HARS), air data/magnetic compass, and area

navigation using TACAN

Second, the OPP Applications Software provides several

manually selectable weapon delivery modes. These are: contin-

uously computed impact point (CCIP), angle rate bombing system

(ARBs), navigation bombing, radar bombing, manual bombing, and

air-to-air gunnery.

c OTP Applications Software: The OTP Applications Software

has not yet been designed or implemented for DAIS, but it is

envisioned to operate in a fashion similar to OTPs for other

aircraft systems. It will execute in the DAIS airborne computers

under control of the Executive, much the same as the OPP Applica-

tions Software. The primary function of the OTP is the detection

and isolation of avlonic system failures, and it is to be controlled

by a test technician via the cockpit controls and displays

The baseline design requirements for the OTP includes^1 ^

the following:

• To be organized into pre-flight, inflight, and
post-flight (maintenance) testing.

• To provide a maintenance test capability with
the ability to isolate failures to the LRU
level.

61

To collect subsystem status information from
subsystem self-tests (e.g., built-in test
equipment) and display this information to
the test technician.

62

3. NON-REAL-TIME SUPPORT SOFTWARE

The NRTSS items for DAIS consist of a collection of off-

line support aids used for the design, development, and inte-

gration of the DAIS Mission Software. NRTSS consists of lan-

guage translators, simulators, management aids, and other such

tools. These items are briefly discussed in the following par-

agraphs.

a- JOVIAL-73 Compiler: The JOVIAL-73 language was developed

in the early 1970s, and became an Air Force wide standard in

1976 with the publication of DoD Instruction 5000.31 and MIL-

STD-1589. The prime motivation for the development of JOVIAL-73

was the Air Force's desire to have a common, powerful, and

easily understandable HOL suitable for a wide-range of Air

Force applications^). it was designed as a procedure-oriented

language, to be relatively computer independent, and with the

power of expression in logical operations and symbol manipulation,

as well as numerical computation.

The language was designed by a committee of both industry

and Air Force representatives, and was primarily targeted to the

replacement of the previous JOVIAL-3 language standard (AFM

100-24). The specific application areas targeted by JOVIAL-73

were

• Avionics Systems
• Executive Writing
•Scientific Programming
•Tactical Systems
•Compiler Writing

63

• Data Management Systems
•Command and Control
Real-Time Control

For the DAIS Project the JOVIAL-73 standard was adopted

and successfully used in many software applications. The major

applications were:

• The Mission Software Executive and Applications.

• The SDVS system, exclusive of existing software
modules that were included.

• The JOVIAL-73 compiler itself.

• The PALEPAC support software.

The compiler developed for DAIS was the first "production

quality" JOVIAL-73 compiler, and it was hosted on the DEC-10 com-

puter. It was designed to produce object code for two computers:

the DEC-10 and the DAIS airborne computer (AN/AYK-15). This com-

piler produces highly efficient code, is modular in construction,

and can be retargeted or rehosted for other applications.

b. Cross-Assembler: For use with the DAIS AN/AYK-15 (hot bench)

computer, a Cross-Assembler was developed on the DEC-10 support

computer. This Cross-Assembler accepts assembly language state-

ments and produces relocatable object code for the AN/AYK-15

computer. The Cross-Assembler is written in a standard FORTRAN-IV

language, and it is designed to be easily retargetable to other

target computers.

c. Linker-Loader: A Linker-Loader is also provided on the DEC-10

for the AN/AYK-15 computer. This program accepts relocatable

object files (from either the JOVIAL-73 Compiler or the Cross-

Assembler) and produces load tapes for the AN/AYK-15 airborne

64

computers. This program is also written In the PORTRAN-IV

language.

d. PALEFAC: Due to the federated computer approach and multi-

plex bus structure used In the DAIS architecture, the DAIS

Mission Software Executive contains much of the Inherent design

flexibility of the DAIS avionics configuration. As such, the

Executive was designed so that this system flexibility could be

easily exploited. This Executive Is a powerful, general purpose

"tool" for use by the applications programmers and can be readily

tailored by changing 'the data table structures which are designed

Into the executive algorithms. These tables control all data

bus traffic, the scheduling and execution of tasks within

all airborne computers, and the sequencing of events

when anomalous conditions occur.

Due to the large number and critical nature of the inter-

relationships of these executive data tables, the PALEFAC soft-

ware was developed to automatically generate these tables. In

essence, the programmer is relieved of this laborious and error-

prone data generation task.

e. SDVS: The Software Design & Verlficdtion System (SDVS)

is an integrated set of software tools specifically designed to

aid in the development, coding, and testing of the DAIS Mission

Software. The SDVS software was developed on the DEC-10 computer

and is largely programmed in JOVIAL-73. Through SDVS, an applica-

tions programmer has available a powerful support software system,

65

which provides the following major capabilities:

• The programmers and software project managers
are provided with automated tools to control
and monitor the application software develop-
ment, and configuration management aids to
control software versions and changes.

• The programmer Is provided with an extensive
simulation capability, Including airborne
computer simulators, a simulation control
language (SCL), a simulation data processing
language (DPL), a simulation of the airborne
MIL-STD-1553 data bus and associated multiplex
terminals, and simulations of aircraft sen-
sors connected to the DAIS data bus. The
airborne computers are simulated at both a
functional level (SLS) and a register level
(ICS).

Figure V-3 shows the relationship of these SDVS capabilities.

Although SDVS was designed specifically to support the DAIS ITB

hardware and software, it was designed such that other system

architectures and designs could also be supported. The nature of

this adaptability is further addressed in Section VI.

4. REAL-TIME SUPPORT SOFTWARE

The RTSS items consist of those real-time support software

tools needed to assist in the Integration and operation of the

DAIS ITB. These items are centered around two functional require-

ments: test control and real-time simulation (environment simulation

and sensor simulation). These are briefly discussed below,

a. Test Control Software: This software executes on the DAIS

Support Facility computers (DEC-10 and PDP-lls) and provides the

test set-up and control required for operation of the DAIS ITB.

This software provides the following major functional capabilities:

66

SDVS FUNCTIONAL CAPABILITIES
Figure Number V-3

Test operator Interfaces

Test run Initialization and Initiation

Test monitor and control

Data recording and analysis

b. Environment Simulations: In order to provide a simulated

flight environment In which the DAIS hot bench can "fly", the

aircraft flight environment must be simulated. The Environment

Simulations provide this by modeling (In real-time) the aircraft

flight dynamics, the earth and atmospheric effects, and selected

battle engagement conditions (e.g., targets, threats, etc.).

c Sensor Simulations: For the ITB constructed in APAL, many of

the aircraft sensors are not actually Included as hardware items.

Instead, these sensors are simulated by real-time models to pro-

vide complete functional replacements as well as bit-level interface

compatibility. Currently, the major sensor simulations provided

are: inertial navigation unit, laser ranger, instrument landing

system, radar altimeter, and TACAN.

68

SECTION VI

IDENTIFICATION OF DAIS SOFTWARE ITEMS APPLICABLE TO MATE

1, SECTION OVERVIEW

From the analysis done of the MATE software requirements,

there are several areas (see Fig. VI-1) in which the DAIS soft-

ware items can indeed satisfy these MATE requirements. These

are identified and discussed further in this section. However,

it should be noted that some of these recommendations are very

sensitive to the final system architecture chosen for MATE.

For example, if the final MATE system architecture does not use

a data bus structure, then some of the DAIS software items would

not be applicable. Also should MATE not choose to adopt the

JOVIAL-73 language standard, then other DAIS software items

might not be applicable.

2. MISSION SOFTWARE EXECUTIVE

There are two areas in which the DAIS Mission Software

Executive would fulfill MATE requirements. These are for the

Test Control Executive and the Operating System Executive fun-

ctions. As discussed in Section V, the DAIS Executive structure

is very flexible and general purpose in nature and was designed

to fulfill the requirements of a real-time operating system.

It has features included that allow for both synchronous

task execution as well as data bus communications. It also

supports a multi-computer processing architecture that can be

69

Figure Number VI-1

MATE
SOFTWARE REQUIRED

TEST CONTROL

CONTROL
SOFTWARE

EXECUTIVE

HOL INTERPRETEI

USER INTERFACE

OPERATING SYSTEM

SUPPORT
SOFTWARE

EXECUTIVE

OPERATING SYSTEM
SERVICES

ASSEMBLER

HOL COMPILER
(TEST LANGUAGE)

HOL COMPILER

(OTHER LANGUAGE)

CONFIGURATION
MANAGEMENT ToSlS

ATPG TOOLS

TA UNIT TEST

ATE STATION
SELF TEST

MATE EXECUTIVE
SUPPORT

UUT TEST SOFTWARE

1

DAIS
SOFTWARE APPLICABLE

MISSION SOFTWARE • —— «
EXECUTIVE

^MISSION SOFTWARE
EXECUTIVE *

CROSS-ASSEMBLER
-• ——•

JOVIAL-73

COMPILER

SDVS MANAGEMENT
TOOLS

PALEFAC

DAIS SOFTWARE APPLICABILITY
70

from one to several minicomputers depending on the processing

system throughput required.

a. Test Control Executive: Due to the real-time nature of

this ATE software, the DAIS Mission Software Executive is par-

ticularly well suited for this application. The major areas

of commonality are summarized below:

• The MATE Test Executive must accomodate a
distributed data bus architecture which will
interface to a multitude of various test equip-
ments. Thus, the Test Executive must be highly
modular to allow for easily adding new I/O inter-
face modules. Also, the Test Executive must
support a variety of I/O timing requirements,
some of which will be synchronous (i.e., cyclic)
and some of which will be asynchronous (i.e.,
interrupt driven). The DAIS Executive was
designed to support a distributed data bus
communications architecture using MIL-STD-1553.
The I/O interfaces to the Executive are highly
modular, and new software I/O modules can be
easily added for interfacing new units to
the data bus. The DAIS Executive also provides
for various methods of both synchronous and
asynchronous communications with devices con-
nected to the data bus.

• This MATE Test Executive should support both
real-time (foreground tasks) and non-real-time
(background) tasks for optimal use of the hard-
ware resources. For example, the test operator
must be able to communicate with the ATE sta-
tion to control and monitor testing (typically
a background task) while the UUT Test Software
is executing (a foreground or real-time task).
The DAIS Executive provides the needed mechanisms
for satisfying these requirements by allowing
for multiple levels of task execution prior-
ities. Real-time tasks can be given the high-
est priorities, thus guaranteeing their execu-
tion. Non-real-time tasks can be allocated to
the lower priority levels and thus executed
only after other tasks have been completed.

71

In order to meet the ATE needs of numerous
weapon system applications, the MATE System
must "expand" or "contract" by adding or delet-
ing hardware components. This also requires
that various levels of computing capacity be
available In MATE, probably through the use
of either a computer "family" approach or
through the use of multiple copies of a single
type of minicomputer. The MATE Test Executive
must then be capable of supporting such a
multiple computer configuration. The current
DAIS Executive was designed to support a con-
figuration of multiple, federated computers
communicating over a data bus. Thus for avi-
onics applications requiring only minimal
amounts of computation, the DAIS Executive and
Applications software Is used with a single
airborne computer. For applications requiring
Increased computing capacity, the DAIS Execu-
tive can be reconfigured to control a federated
set of multiple computers, each sharing the
total computation load.

Since MATE will probably utilize hardware
from multiple computer vendors, the MATE
software should be relatively Independent of
the computer hardware In which It operates.
This requirement for "portability" can best
be attained through two design mechanisms:
(1) the use of a HOL for programming, and
(2) use of software design techniques that do
not "lock In" the software to one particular
vendor's hardware. The DAIS Executive has
been successful In meeting both of these de-
sign goals, and thus It could be tailored to ex-
ecute In a variety of vendors' computers.
This Executive Is coded In the JOVIAL-73 HOL
and could be hosted on any computer for which
a JOVIAL-73 compiler exists. However, this
approach does require the development of a
JOVIAL-73 compiler for each new vendor's computer

The MATE System will undoubtably be designed
to Include hardware redundancy In the more
critical areas. Such an approach serves to
Increase the total ATE System availability.
The MATE Executive must. In turn. Include
redundancy management techniques and graceful

72

degradation concepts to make optimal utilization
of the redundant hardware Items. In Its current
design, the DAIS Executive accomodates the fol-
lowing redundant hardware Items; data buses,
I/O devices, and computers. Various failure
modes can be completely recovered from and
others can be managed In gracefully degrading
modes.

b- Operating System Executive: The MATE Operating System Exec-

utive should support all of the normal batch and time share services

of a modern day minicomputer operating system. Although the DAIS

Executive does not currently provide these broad capabilities. It

could be expanded to fully support this area. The fundamental struc-

ture of the current DAIS Executive provides a good basic framework

to which the required additional features could be added.

The use of the DAIS Executive Is particularly attractive for

the MATE Operating System If It Is also used for the Test Control

Executive. This would allow for a single and common executive

to be used for both executive areas and would reduce software

maintenance costs over the use of two separate executives.

3- CROSS-ASSEMBLER

Most minicomputers considered for use In MATE would probably

be supplied with a standard assembly language and Assembler soft-

ware package. However, In some Instances (e.g., where the vendor's

Assembler Is severely limited In capability or difficult to use)

there may be a need to develop an alternate Assembler for use In

MATE. For these Instances the DAIS Cross-Assembler deserves

close consideration as a candidate. It Is a modular, table-

driven assembler which was specifically designed to be easily

73

retargeted or rehosted for other computers. It Is coded In the

FORTRAN-IV language, and It can be tailored to produce object

code for the computer on which It executes or for another com-

puter (I.e., as a cross-assembler),

4. JOVIAL-73 COMPILER

For supporting the coding and development of all of the MATE

Software (except the UUT Test Software), a HOL will be needed.

A prime candidate for this HOL Is JOVIAL-73 which has been adopted

as an Air Force-wide standard. The JOVIAL-73 language could

support virtually all of the MATE software Including the executive

programs.

The DAIS Program was one of the first major applications of

JOVIAL-73 by the Air Force, and It has proven to be a highly suc-

cessful application. Some of the more notable experiences of

this application In DAIS were:

• JOVIAL-73 was used as a "standard" language with-
in the DAIS Program and was applied to both sup-
port software items and real-time flight soft-
ware Items.

• JOVIAL-73 proved to be an efficient language
that could cost effectively compete with assembly
language Implementations.

• JOVIAL-73 was successfully used to code exec-
utive software programs. For examplej vir-
tually all of the DAIS Mission Software Exec-
utive was coded In the JOVIAL-73 language.

If the JOVIAL-73 language Is also adopted as a MATE language,

the DAIS JOVIAL-73 compiler could be tailored for use on MATE.

The DAIS Compiler was constructed such that It could be easily

74

rehosted and retargeted, and this retargeting has been successfully

demonstrated for several other projects. The compiler, itself, is

coded in the JOV1AL-73 language and can be bootstrapped to other host

computers. Also, the code generator sections of the compiler have

been well isolated from the other sections, thus simplifying the

compiler retargeting tasks.

5- SDVS MANAGEMENT TOOLS

As described in Section V, the SDVS Software provides the DAIS

Mission Software developers with two major functional capabilities.

The first capability provides non-real-time simulation tools for

the purpose of testing the Mission Software. This set of tools

is tied very closely to the DAIS Mission Software environment,

to the DAIS hardware architecture, to the use of a large scale

computer system, and to the JOVIAL-73 HOL. Thus for a MATE Sys-

tem the simulation capabilities of SDVS would be of marginal, if

any, help.

The second major SDVS capability is centered on management

support tools. In contrast, these tools are not closely tied to

the DAIS architecture or to the DAIS Mission Software environment.

These tools are general management aids which can be used to sup-

port the configuration management of software modules (e.g., MATE

UUT Test Software modules).

Currently SDVS supports configuration management by providing

control of all files associated with the development, test, and

75

verification of DAIS Mission Software. An extensive cataloging

and security system is provided for a number of different types

of software maintained by SDVS including: DAIS Mission Software,

SDVS test case files (defining simulation scenarios and data col-

lection requirements), environment and aircraft models, and post

simulation data reduction and analysis programs. Each file type

is cataloged by SDVS on a version/revision basis. When a Mission

Software file is created, it is cataloged as version I, revision 0

and stored in a "baseline file". As the user edits the file he

creates a number of revisions which are cataloged in a "difference

file". At any point in time, he can combine all the revisions as-

sociated with a particular version and make a new version. Once

a user creates a source file, he can compile or assemble that file

to generate executable code. This function automatically results

in a link being established between the new object code and the

original source file. For Mission Software, the JOVIAL-73 Com-

piler generates code for both the DAIS processor and the DEC-10

computer, and SDVS catalogs and links both object types to the same

source file. The definition of the file catalog information and

linking structure is known as the data base schema, which provides

catalog links necessary for configuration control of the various

SDVS files. The automated linking system, in conjunction with

the file catalogs, provides configuration control of all versions,

revisions, and translated object code for all software files

maintained in SDVS.

76

In addition to maintaining the file cataloging system, SDVS

also provides file protection features that prevent unauthorized

access to files. A special SUPERVISOR mode is provided in which

the file security requirements can be defined only by a special

SDVS data base supervisor. In the SUPERVISOR mode, the data base

supervisor performs a function to define the files that can be

created by the user and therefore cataloged by the Configuration

Management function. An SDVS user will be prohibited from creat-

ing a file for which specifications have not been provided. For

each file, the supervisor also enters a list of SDVS users who

will be authorized to have read only, or read and write privi-

leges. The supervisor can change a user's access and add or delete

user authorization for a file at any time. This capability enables

a data base administrator to distinguish "controlled" software

from "developmental" software and control the transition from the

latter to the former. Access to controlled software can be limi-

ted such that programmers desiring to make a "trivial" change

(that they are "positive will word") will be unable to, until

and unless they have proper authority. In summary, the SDVS

configuration management function provides a supervisory control

and file security for all software files in SDVS.

These SDVS configuration management tools could be applied

to MATE to satisfy some of the ATE Software requirements. How-

ever, the exact applicability can only be determined after the

77

ATE System architecture is chosen and after software management

procedures are selected for use on MATE. Some of the major

items to be considered at that time are: (1) the portions of SDVS

required by MATE would have to be restructured to execute in a

minicomputer environment, (2) the current DEC-10 version of SDVS

depends heavily on a DEC-10 resident data base management system

and this would not be available on another computer, (3) SDVS

is coded in the JOVIAL-73 language, and the MATE minicomputer would

be required to have a JOVIAL-73 compiler, and (4) SDVS would have

to be modified to use other compilers (e.g., ATLAS).

6. PALEFAC

As discussed previously, the DAIS Mission Software Executive

is a modular, table-driven executive that supports a MIL-STD-1553

data bus. It is designed to be easily reconfigured to adapt to

changes in hardware units connected to this data bus. For this,

executive PALEFAC functions as an integral part of the DAIS

Executive in a non-real-time mode. It acts as a "table builder"

which generates both bus I/O lists and task execution tables.

PALEFAC will be applicable (and required) for MATE if the

DAIS Mission Software Executive is used. It is currently coded

in the JOVIAL-73 language and executes on the DEC-10 computer, but

it could be easily rehosted to another computer which supports a

JOVIAL-73 compiler.

78

SECTION VII

SUMMARY AND RECOMMENDATIONS

This report presents an overview of the three areas of

ATE software; ATE software of current-day systems, additional

ATE software requirements beyond those satisfied with current-

day ATE software, and MATE-unlque software requirements. Using

these as a basis for comparison, the DAIS software was analyzed

for applicability to the MATE system. The results of this analysis

was presented in Section VI.

As noted earlier in this report, the recommendations con-

tained in Section VI are very sensitive to the final MATE system

architecture, which was not defined at the time of the writing

of this report. Thus, a "postulated" MATE architecture (Section

IV) was developed and used throughout the analysis effort.

Should the final MATE system design differ significantly from

that discussed in Section IV, then the validity of the recom-

mendations could be severely affected.

In summary, the DAIS and MATE projects do have much in

common at the level of the programs' objectives. If MATE

does, indeed, evolve into a system architecture similar to that

of DAIS, then there will be many areas of potential commonality

in both hardware and software.

79

APPENDIX A

GLOSSARY OF SELECTED TERMS

This appendix contains a glossary of selected terms and

acronyms used In this report. These Items are Included to

provide the reader with a single reference point for the most

frequently used and most Important Items. Many of these Items

are defined as they appear In MIL-STD-1309B, ^ however a few

definitions have been expanded for clarity and/or qualifica-

tion.

80

Assembly Language: A computer programming language In which
computer operations and memory locations are represented by
mnemonic symbols.

ATE (Automatic Test Equipment): Equipment that Is designed
to conduct analysis of functional or static parameters to
evaluate the degree of performance degredatlon and may be de-
signed to perform fault Isolation of unit malfunctions. The
decision making, control, or evaluation functions are conducted
with minimum reliance on human Intervention.

ATE Control Software: Software used during the execution of a
test program which controls the nontestlng operations of the
ATE. This software Is used to execute the test procedures but
does not contain any of the stimuli or measurement parameters
used In testing the Unit Under Test (UUT).

ATE Support Software: Computer programs which aid In preparing,
analyzing, and maintaining ATE software. Examples are; ATE
compilers, assemblers, debugging aids, and text editors,

ATPG (Automatic Test Program Generation): The process of
using software to automatically generate UUT Test Software
from formal descriptions of the UUT circuitry.

Compiler: A computer program used as an automatic means of
translating High Order Language (HOL) statements Into computer
hardware Instructions.

DAIS (Digital Avionics Information System): A project sponsored
by the Air Force Avionics Laboratory and targeted to demonstrate
a coherent solution to the problem of proliferation and non-
standarlzatlon of aircraft avionics.

HOL (Higher Order Language): A computer programming language
which provides the programmer with a more natural (either
problem oriented or English like) medium of expression than Is
available In computer assembly languages.

Interface Test Adaptor (ITA): A device or series of devices
designed to provide a compatible connection between the Unit
Under Test and the ATE Test Station.

LRU (Line Replacable Unit): A unit which Is designated by the
plan for maintenance to be removed upon failure from a larger
entity (equipment or system) In the latter's operational en-
vironment .

MATE (Modular Automatic Test Equipment): A project sponsored
by the Air Force Aeronautical Systems Division and targeted
to increase commonality of test equipments across aircraft sys-
tem.

PCB (Printed Circuit Board): A board for mounting electronic
componenets on which most connections are made by printed
circuitry.

TRD (Test Requirements Document): The document that specifies
the test sequences and test conditions required to test and
fault isolate a Unit Under Test (UUT).

UUT Test Package: A UUT Test Pakcage is a collection of unique
items for each UUT and consists of three major items; the UUT
Test Software, and ITA, and the associated documentation.

UUT Test Software: Software which specifies the sequence of
operations for the testing of a particular UUT.

UUT (Unit Under Test): Any system, set, subsystem, assembly,
subassembly, and so forth, undergoing testing.

82

REFERENCES

1. D. Kline, Software Automation - The Next Step In Weapons
Support, Hewlett-Packard technical paper, 1976.

2. J. F.^Stay, HIPP and Interactive Program Design, IBM
Systems Journal.

3. P. Llguorl, Automatic Test Equipment Systems, Programming,
and Management, 1973 partial manuscript of unpublished
book.

4. A. Greenspan, What Is Third Generation ATE?, Notes from
course entitled "Commercial Automatic Testing Systems",
1977.

5- Definitions of Terms for Test, Measurement and Diagnostic
Equipment, MIL-STD-1309B, 30 May 1975-

6. R. M. Earnest and R. Blowers, Configuration Management of
ATE Test Software, NAECON Proceedings, May 1978.

7. D. Day, The Automatic Test Equipment Test Package Develop-
ment Process, NAECON Proceedings, May 1978.

8. Simulator-Based Interactive Software Aids to Test Genera-
tion, General Radio, System Test Division Application
Note 3.

9• Automatic Test Equipment: Hardware, Software, and Manage-
ment, IEEE Press, 1974.

10. F-l6 Multinational Computer Resources Integrated Support
Plan (CRISP), F-16-1001, Vol II, Rev. 0, April 1978.

11. J. J. Donovan, Systems Programming, McGraw-Hill, 1972.

12. M. Hollowlch & M. McCllmens, Software Design & Verifica-
tion System, AFAL-TR-76-200, May 1977-

13- Technical Description of the Digital Avionics Information
System (DAIS), DAIS Document No. PA100101, Feb. 1978.

14. Computer Program Development Specification for Operational
Flight Program Applications Software, DAIS Mission A,
DAIS Document No. SA201303 Part I, July 1976.

REFERENCES (cont'd)

15. L. Tralnor and M. Grove, Higher Order Language Standardi-
zation for Avionics, NAECON Proceedings, May 1977.

16. M. hollowlch and P. Borasz, The Software Design & Veri-
fication System: An Integrated Set of Software develop-
ment and Management Tools, NAECON Proceedings, May 1976.

17• System Segment Specification for the Digital Avionics
Information System, DAIS Document No. SA100102, July 1977

18. System Segment Specification for the DAIS Air-to-Ground
Missions, DAIS Document No. SA100101, Oct. 1975-

84
ftU.S.Government Printing Office: 1979 — 657-002/631

K llllilillllllllllli
58553

