AD=AOT70 848 GOODYEAR AEROSPACE CORP AKRON OHIO F/6 9/2
MICROCOMPUTER ARRAY PROCESSOR, (U)
OCT 78 R H RIES: R A HUJAR: F C CARTY F33615-75*C-1179
UNCLASSIFIED 6ER-16565 AFAL=TR=78-157

172

T

£ .

1 REPORT DOCUMENTATION PAGE A A ROCTN
~ T GOVY ACCESSION NOJ 3. RE S CATALOG NUMBE
G

: : s W
| . i et
a @HICROCOMPUTER ARRRY BROCESSOR, " R i sl

, 4 . lu?"o.(
2 (10 ,':n ;E}::i R.A. [Hujar, F.C. /c"ty"y (7 -PF33615 '7%”-"-”1"1‘1‘9}\,,”

Pll'onlﬂ‘ 0.0‘“lll?l“ NAME AND ADDRESS / 3 GRAM ELEMENT, P! JICT Tm
| Goodyear Aerospace Corporation v ARERY o TAIY

1210 Massillon Road Project 7633 157 /
% Akron, Ohio 44315 5 I

i e e e !
AT TS 1

ACYT O

((

"R PR Kvon1e R AR tory (WRP) —REEQRT DAT
Air Force Systems Command 11 .fuﬁmn
1 Wright-Patterson AFB, Ohio 45433 118
' 3 E ferent trom Cuntrolling Office) | 18. SECURITY CLASS. (of this réport) |
UNCLASSIFIED

WWWBW‘

[T6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. {~/(/

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse ealde if necessary and identify by block number)
ESM DATA PROCESSING
\ MULTIPROCESSOR

\ MULTIPLE MICROCOMPUTER SYSTEM

MICROCOMPUTER ARRAY PROCESSOR
PARALLEL ARRAY PROCESSOR
. ABSTRACT (Continue on r otde 1t y and Identily by block mumber)

The objective of this work was to design, fabricate, and bench
test a feasibility model of an EW computer architecture based on
utilizing multiple microprocessors in a multiprocessor system.
The developed model consists of four microprocessors integrated
into a tightly coupled nearly symmetrical structure exhibiting a
master-slave relationship among its processors. Each micro-
processor is composed of a 32-bit CPU and a dedicated 1ocal)

e —————————
s L,

N SR

PD ,:2““.,, 1473 eoimion oF 1 NOV 68 18 OBSOLETE UNCLASSIFIED CDM’j o0

$/N 0102-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE en Date Bntered)

/' { o / Jr/‘. a

| UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Instruction execution times range from 250 to 600

on instruction type. The four CPU effect inter-

nication through an interrupt structure and

ing via ?lobal memory which is shared by all

. The global memory is divided into three independent

ich support a maximum transfer rate of 15 million words a
. - Each bank solves the memory contention problem by

eueing up its request and then servicing processors within the

program memory.
nsec dependent
processor com
message swi

queue on a priority basis.
i The function of the multiprocessor is to sori pulses trains based
| on digital pulse intercepts collected by a wide-open channelized
g receiver. Once the multiprocessor determines the PRI of an-
k emitter, ail emitter parameters are passed to a preprocessor which
is inserted in the data stream between the receiver and the
multiprocessor. The function of the preprocessor is to remove
from the data stream all pulses from emitters identified by the
t multiprocessor. The feasibility model preprocessor can accept a
peak receiver output pulse rate of 340,000 pulses per second.

Al

!
/

i R

— g s =

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

FOREWORD

This final report was prepared by Goodyear Aerospace
Corporation, Akron, Ohio, under USAF contract F33615-75-C-1179,
Project 7633, entitled "Microcomputer Array Processor". The
contract was initiated by the Air Force Avionics Laboratory,
Air Force Wright Aeronautical Laboratories, Wright Patterson
Air Force Base, Ohio. Mr. Joseph Caschera, Electronic Warfare
Division, AFAL/WRP, is the Air Force Project Engineer. This
report covers the period 2 June 1975 to 2 August 1978 and
was submitted by the authors on 23 August 1978.

The Goodyear Aerospace personnel involved in this’
program and in the writing of this report are R. H. Ries
(project engineer), F. G. Carty, M. D. Diehl, R. A. Hujar
and M. J. Kroeger. The contractor's report number is
GER-16565.

Accession For

NTIS GRA&I
DDC TAB
Unamnnounced
Justification

By,
Distribution/
Availability Codes

Avail and/or
Dist special

p

iii

Section

I. INTRUANETIAN. & ¢ & o & v cnaercagpe pislte
B RERRE s o ok ey bl e sl
2. BACKGROUND. -

Tl<.. PREPRUCESSOR . . o0 e sssfisus s o .
1. FUNCTIONAL OVERVIEW
2. DETAILED PREPROCESSOR OPERATION . . .
a Input Processing « ¢« ¢ ¢« &
b Search and Correlation
¢ Output Processing. « « « &
d System Control and Timing.
e Preprocessor Support Algorithms. .
3. FEASIBILITY MODEL PHYSICAL STRUCTURE.
ITL: . THE MULTIPROCESSOR. . . « « « « & & .
1. INTRODUCTION.
2. SUBSYSTEM OPERATION . o e
3. HARDWARE DESCRIPTION.
8 The Processor.
b Global Memory.
€ Port Logie . « « ¢ o v 0 = .
4. PROGRAMMING
IV. THE DISPLAY PROCESSOR . .
1. FUNCTIONAL DESCRIPTION. “
2. HARDWARE DESCRIPTION.
V. CONCLUSIONS AND RECOMMENDATIONS . .« o
APPENDIX
A PREPROCESSOR SUPPORT ALGORITHMS . . .
B PREPROCESSOR AND MULTIPROCESSOR COMMUNICATION

3. FEASIBILITY MODEL PROCESSOR OVERVIEW.

COMMUNICATION STRUCTURE .

Page

1
1
1
2

W 0 0 ov ;

19
20
27
30

36
36
36
43
43
50
51
51

68
68
79

85

90

115

- P T

Bl | LIST OF ILLUSTRATIONS

Figure Page
? ? 1 Passive Detection Systam. . . v % v v % « s .u e v u B
; 2 Preprocessor Bloek Diagram. . . v & v s Gue e ste o1 B
El 3 Input Intercept Mord Format . *. . . . & o is « » » 10
b 4 Emitter File Memory Structure 13
E § Preprocessor Correlator . . . « « s o 52 o s + o+ » 15
E 6 TOA and Frequency Correlation Logic 16
| 7 Ricroprogran Contral. & 5 . 57 " 5 o« s ol s s o+ o 81
| 8 Top Level Preprocessor Search Algorithm Flowchart . 22
| 9 Link Structure for Posting Emitters 28
;' 10 Preprocessor M&T Front Panel. 32
i 11 Preprocessor M&T Functional Block Diagram.. 33
12 Preprocessor/Microcomputer Communication Bus. . . . 35
13 Map Architecture: "'V "D oot Y o e e e s 5 oe e BT
14 Figure 14 - Timing Sequence Flowchart . . . ¢« « . « 39
15 Microprocessor Architecture 44
16 The 2901 CPU-CRID & 7 i ud W Tt e w o we v KD
17 Feasibility Model Interrupt Structure Between
Processors. v « s« & s ~ o O RIT TN . - 88
18 Multiprocessor/Display Processor Interface f
Functional Block Diagram. g v w160 3
19 Format of Diskette File Associated with MAPAID :
Commands LP, LG, /P, and /G & TR | :

20 MAPASM Instruction Format . . ¢ ¢« & « ¢ o o s« & o « 80

Lk

TS T RN T T T T Y R

Table

IT
I11
Iv

VI
VII
VIII
IX

LIST OF TABLES

Pulse Width Bin Values
Preprocessor Processing Times
Preprocessor Logic Utilization
Preprocessor M&T Panel Operations .
MAPAID Command Summary . e
MAPAID Symbol Definitions

Multiprocessor Assembly Language Mnemonics .

MAPASM Error Key . .
Projected Processing Rates .

~

i e e

R

] .
5/ PRECEDING PAGE BLAMK-NOT FILMED
K

SECTION I
INTRODUCTION

2. SCOPE

This final technical report describes the work performed on
the Microcomputer Array Processor development program under
contract F33615-75-C-1179. The purpose of the 36 month program
was to design and fabricate a feasibility model of an electronic
warfare (EW) processor based on utilizing the latest available
large-scale integration (LSI) microcomputer technology in a
multiprocessor system architecture. This report will discuss the
functional operation of the fabricated equipment and its hardware
characteristics.

B, BACKGROUND

The overall goal of this effort is the conceptual develop-
ment of an EW data processing subsystem capable of sorting,
jdentifying and tracking emitter signals in real time, on a
pulse-by-pulse basis, for the very dense radar environments,

This effort seeks the needed increased computer capability through
utilization of emerging LSI technology in the form of multiple
microprocessors. The various microcomputers are organized into a
multiprocessor system architecture which effects throughput
improvement through concurrency of operation of its individual
processors.

Work directed towards this goal was begun under contract
F33615-74-C-1101 entitled ESM HYBRID PROCESSING TECHNIQUES (HPT).
This program investigated both microcomputer chip architectures
and multiprocessor system architectures in order to:

sl s o Sncii -

~final phase (Phase III) integrated the fabricated model with

1) Establish the architectural features which must be
possessed by a microcomputer chip to make it suitable
for EW type data processing,

2) Determine support circuitry required to develop a full
capability microprocessor based on the microcomputer
chip, and

3) Develop a conceptual multiprocessor system architec-
ture which would facilitate the concurrent utilization
of multiple processors on a given EW problem.

A computer simulation of the conceptual design was also developed
and extensively tested to optimize the multiprocessor design and
predict its perfermance in an EW application. Details of this
work are documented in the ESM HYBRID PROCESSING TECHNIQUES final
report (AFAL-TR-75-125) and will not be repeated here. During
the initial efforts on Phase I of the current Contract the
conceptual design was translated into a detailed hardware]
design. The translation step also involved some architectural %
refinement in order to make optimum use of the integrated
circuit technology available at the time of fabrication.

Details on the Phase I activities may be found in Phase I
Microcomputer Array Processor Interim Report dated November 1976.

Under Phase II of the MAP contract a feasibility model
of the hardware design was fabricated and checked out. The

a channelized receiver and developed the necessary software
to process intercepts from the receiver. An overview of the
fabricated system is covered in the next item.

3. FEASIBILITY MODEL PROCESSOR OVERVIEW

A block diagram of the fabricated data processor is shown
in Figure 1. The input to the processing system consists of
digitally encoded radar pulses intercepted by the receiver sub-
system. The functional responsibility of the data processor is
to establish, track and report pulse trains based on the raw
radar intercepts outputted by the receiver. 1In order to achieve
the extremely high processing rates needed to perform these
tasks, the processing is partitioned among the various sub-
systems which opercte concurrently as shown in Figure 1. Here
the processing tasks of tracking, emitter establishment and
display processing are partitioned among the preprocessor, multi-
processor and display processor respectively. A detailed
discussion of each of these subsystems appear in the following
sections. Section II describes the preprocessor, Section III
the multiprocessor and Section IV the display processor. In
addition, Appendix A contains detailed flowcharts and program
listings for the preprocessor and the multiprocessor. Appendix B
describes the communication structure between the preprocessor
and the multiprocessor.

wa3sAS uoL3oa3aq aALssed - T adnbiL4

INISS3J0dd INIWHSIT8VYLS3 ; 9INISS3I0¥d
1nd1ino 43111IKW3 1d30¥3INI

¥IAI1338 WO 3
40SS3304d ¥0SS370¥4d ¥0SS370¥d l@— S1d3J¥ILINI

AV1dSIa =ILINKW 3Yd dvavy
@3ZI1lI9Ia

AV1dSId

SECTION II
THE PREPROCESSOR

1. FUNCTIONAL OVERVIEW

A block diagram of the preprocessor is shown in Figure 2.
The functional responsibility of this hardware is to accept the
digitized radar pulse intercepts outputted by the receiver and
correlate each intercept against an established emitter file for
pulse train tracking and data filtering operations. The objective
is to reduce the data rate into the multiprocessor by filtering,
from the input pulse stream, those intercepts that originate

from emitters which are currently being tracked by the preprocessor.

This data rate reduction is essential to allow handling of a very
high receiver data rate while still maintaining sufficient pro-
cessing time per radar intercept in the multiprocessor to execute
complex PRI establishment algorithms.

The filtering via correlation operation consists of
comparing the parameters of each intercept pulse against the
parameters of the emitter words stored in the preprocessor
memory. Hardware hash addressing techniques are used to select
that subset of the emitter file over which a particular correla-
tion operation could be meaningful. If the intercept matches
the emitter word within predetermined tolerances for each
selected parameter, correlation is said to occur. The parameter
comparisons performed are given in equations 1 through 5.

FetdpaF 2Fp-ac, (1)
PNE+AP2PNIZPNE-AP, (2)
AOAE+AA2A0A12A0AE-AE, (3)
LTOA+PRI+A;2TOA 2LTOA+PRI-A ¢, (4)

or if (TOAIzLTOAE+PRI+AT) then

IzLT0A+2PRI-2A

LTOAE+2PRI+2AT2T0A

T’

RECEIVER

&

! INPUT REGISTER

i TO {4
‘t

t____—- T0

1 »MULTIPROCESSOR
| - Jaiike - GLOBAL
| : MEMORY

COMPARATORS l

TOL.REG.

DATA REGISTERS
- |

EOOTOUVN220 -
‘ﬂ rom—-H=Zoo

EMITTER
FILE
., P MEMORY

<VMOXMZX
VUVMODOO>
M- =MD

>

’

:

[BUS TRANSCEIVER

?

R g, 7 SURED R Rl e

ADDRESS
LATCH

I 4v‘ T0
A 4
> p
MICROPROCESSOR BUS MULTIPROCESSOR

10
MAINTENANCE
AND TEST PANEL

B T r——

Figure 2 - Preprocessor Block Diagram

s

bt

e -

where

F = Radio Frequency,
PKW Pulse Width,
AOA = Angle of Arrival

TOA = Clock time of Arrival of the intercept as
measured at the receiver,
LTOA = Last known time of arrival stored in the emitter

file for a particular emitter, and
A = Tolerance associated with each emitter parameter.
and the subscripts are:
E Refers to parameters of the stored emitter
word, and
I Refers to parameters of the input intercept.
The two different time tests are used so that alternate pulses
of a given emitter can be missed by the receiver without losing
track of the emitter. However, if a number of consecutive pulses
are missing the LTOA value soon becomes to old in time to be of
any value for correlation. When this occurs a limited number of
attempts are made to resync on the pulse train.

When correlation occurs, parameters in the pulse intercept
word are used to update the emitter file word in order to keep
the emitter word parameters current. At this point, no further
processing of the intercept word is required and it is dropped
from the data stream passed on to the multiprocessor.

When correlation does not occur, it is assumed that the
pulse word represents a new (yet unrecognized) emitter. In this
case the preprocessor does not eliminate the intercept from
further system consideration, but sends it on to the intercept
buffer of the multiprocessor subsystem for pulse train analysis.

Gl o i

- e m—

DETAILED PREPROCESSOR OPERATION

a Input Processing

Both the receiver and preprocessor share a common
characteristic in that their respective peak throughput
rates are substantially different from their average
throughput rates. This dynamic variation in instantan-
eous behavior may be linked to different causes in the
radar environment making it unlikely that the two
throughput rates will vary in unison. Thus, a buffer is
inserted between the two devices to decouple their
instantaneous rates and allow each to operate asynchronously.
The preprocessor communicates with this buffer over a
15 foot twisted pair cable containing 36 unidirectional
signals. Limited multiplexing is used to reduce the bus
interface cost. The interface signal consists of the
following:

.Signals from buffer to Preprocessor

1) Data lines - 32 signals
2) Data ready line - 1 signal
.Signals to buffer from Preprocessor
1) Transfer complete
2) Reset
3) Hi/Lo halfword - 1 signal
4) Buffer Inhibjt - 1 signal
Note: all lines are differentially driven and receiyed.

Transfer of a pulse intercept is initiated when the
data ready line to the preprocessor is asserted. This
line is periodically sampled by the preprocessor micro-
program control logic and 153 n.sec. after assertion is
detected, the information on the 32 data lines is clocked
into the preprocessor input register. This operation
effects transfer of the first half of the pulse intercept
from the receiver buffer. One clock pulse
(i.e., 153 n.sec.) later the Hi/Lo signal is changed by
the preprocessor, thereby requesting the second h51f of

e

e

itk e it LT

the intercept. A total of 600 n.sec. is allowed for
signal propagation from the Hi/Lo transition until
clocking of the second half of the intercept into the
remaining portion of the input register. The data
format for these two transfers are shown in Figure 3.

The preprocessor input register holds the pulse
intercept until completion of the emitter file search,
Since this register is not available for use during the
search operation, a transfer complete signal to the buffer
is not initiated until just prior to search completion.
The transfer complete signal notifies the buffer that the
first half of the next intercept may be placed on the
data lines and the data ready raised. The sampling of
this line by the microprogram control logic causes the
entire input process to repeat.

b Search and Correlation

The emitter file search operation is initiated with
completion of the transfer of the first half of the pulse
intercept. (Transfer of the remaining half proceeds
concurrently with the beginning of the search.) The
initial step of the search is to determine an entry point
into the emitter file for correlation. This is done by
developing a file address based on the intercept frequency
and pulse width. A1l emitters which can possibly corre-
late with the intercept are linked to this address or one
which can be derived from it. The lowest 7 bits of the
intercept frequency form the least significant bits of
this address. The most significant bit (MSB) is
derived from a break point in PW value. If the PW is less
than this predefined constant, the MSB of the hash address
is set to zero. If the intercept PW is greater than (or
equal to) this break point the MSB is set to one. Thus,
the file entry address may be thought of as being

jewdo4 p4aoM 3dasudju] 3nduy - ¢ a4nbL4 .

LP
0

abueuuanQ apnit|duy as|nd =

MO JJ43A0 YIPLM ¥S|Nd = “d

SuUOL3e20| 3Lq pasnhun 3j3edLpul Seaue papeys

LeAtauy 40 3| buy =yov

20|93 UdAL3%34 3Yy3 Aq padnseaw Se [eALJJY JO dwl] =y0l
apn3t|duy as|ind = vd

YIPLM 3s|nd = Md
Aouanbauy otpey = 4
apnit|duy as|nd = Vd

e3ep 30[S ON = °N

®1ep YOV ON = “z

bel4 vov @Ldi3ILnW = "W

(4@4sueul puodasS) 1dIIYILNI 4TVH Puodas

Yol 4 Yd
0 €¢ ¥¢ 62 0€

(49)sueal 3suald) LdIDYILNI 4TVH 3sdld

: ;
“ L«z voy d

91 €2 ve 1€

R g T —

e+ e m———

! partitioned into two separate areas, each of which is
? addressed by frequency. The task of creating this
:! address is functionally represented by the transform
f? block of Figure 2. The break point for the feasibility
'! model is programmable and may be any one of the lowest
':I 16 pulse width values. The time increments represented
j by these values for the entire 6-bit pulse width field
is shown in Table I.

Note that it is likely that several emitters would
have F and PW values which could match the intercept
1 value. A1l such emitters after the first are stored in
1 an overflow area of the emitter file as shown in
Figure 4. A link field in each emitter word is used to
point to the location of each succeeding emitter tied
to a given hash address. In this manner a chain of |
candidate emitters is constructed. Emitters are placed '
on the chain by the multiprocessor according to their
PRI values such that the emitters looked for most often
(i.e., have the highest PRF) appear at the heads of their
respective chains.

R I Y

Once the hash address has been developed, the search
begins by accessing the emitter stored at this address and
placing it in the data register as shown in Figure 5. The
address development and memory access times for the feasi-
bility model are approximately 153 and 450 n.sec respectively.
Thus the emitter word arrives at the data register for
5 comparison at approximately the same time as the second
f half of the intercept is clocked into the input register.
Correlation then proceeds via comparisons on the fields

S A T ————— i

=¥ ls

oy T

R T =T s WY S

e e e .

;
|
|

Table I

g

Pulse Width Bin Values

INPUT ENTTTER TNPUT EMITTER
INTERCEPT PULSE WIDTH INTERCEPT PULSE WIDTH
ENCCDED MIN MAX — ENCODED | MIN | MAX
VALUE MSEC USEC VALUE MSEC MSEC
0 0.0 0.1 32 6.1 6.4
1 0.1 0.2 33 6.4 6.8
2 0.2 0.3 34 6.8 7.2
3 0.3 0.4 35 iz 7.6
4 0.4 0.5 36 7.6 8.0
5 0.5 0.6 37 8.0 8.4
6 0.6 0.7 38 8.4 8.8
7 0.7 0.8 39 8.8 9.2
8 0.8 0.9 40 9.2 9.7
9 0.9 1.0 41 9.7 10.2
10 1.0 1.2 42 10.2 10,7
11 1.2 1.4 43 10.7 31.2
12 1.4 1.6 44 11.2 11,7
13 1.6 1.8 45 Vieid 12.2
14 1.8 2.0 46 12.2 128
15 2.0 2.2 47 12.8 13.4
16 2.2 2.4 48 13.4 14.0
17 2.4 2.6 49 14.0 14.6
18 2.6 2.8 50 14.6 15.3
19 2.8 3.0 51 15.3 16.0
20 3.0 3.2 52 16.0 16.7
21 3.2 3.4 53 16.7 17.4
22 3.4 3.6 54 17.4 18.2
23 3.6 3.8 55 18.2 19.0
24 3.8 4.0 56 19.0 19.8
25 4.0 4.3 57 19.8 20.7
26 4.3 4.6 58 20.7 21.6
27 4.6 4.9 59 21.6 22.5
28 4.9 5.2 60 22.5 23.5
29 5.2 5.5 61 23.5 24.5
30 5.5 5.8 62 24.5 25.5
31 5.8 6.1 63 25.5 —_

S

i
E
P
@ MEMORY
g ADDRESS 0 1T 83
5 (000
é‘ M
2 HASH J EMITTER PARAMETERS | LINK
, AREA
A
>0127 ;
0128 ;
| 3
HASH L
AREA <
B
0255 J
0256
|
EMITTER PARAMETERS LINK ‘
OVERFLOW ¢
\J1023
Figure 4 - Emitter File Memory Structure

g

shown in Figure 5 in accordance with equations 1 through
5. The predetermined tolerance values for each parameter
is contained in the parameter tolerance register. This
register represents a design comprise to reduce feasi-
bility model hardware. Ideally, the allowable tolerances
would be different for each parameter of each emitter

and thus, they would be carried in memory as part of the
emitter word.

Three flags are available in the emitter word to
modify the comparisons listed in the previous equations.
The BP and BA flags effect bypassing of the PW and AOQA
correlation respectively. 1If either or both of these
bits are set, correlation is determined based on the
remaining parameters. The purpose of these flags is to
allow emitter tracking to take place without the availa-
bility of the AOA and/or PW measurement. These flags
allow empirical determination of the importance of AOQA
and PW to the tracking and data reduction functions in
future system tests. The RJF flag causes any intercept
which matches the emitter frequency to be rejected from
further consideration. This flag is used to enable the
data processing system to ignore selected frequencies for
given periods of time. The RJF may prove to be useful in
response to certain exotic behavior or for CW emitters.
It would also permit a selective solution to system
throughput saturation. Although there are no current
plans to evaluate RJF utility for the above conditions
the hardware capability is present for future consideration.
The status of these flags are controlled by the multi-
processor software.

Figure 6 depicts the logical flow for the TOA and
frequency correlation. This figure shows the complexity
that is typical of the two basic types of parameteric
comparisons. The TOA and AOA are module 2" comparisons

<

4031 |3440) J40SS3204daUd - g 3J4nbL4

sng viva
AYOW3W 3114 ¥31LTW3
N 4 3 3 e S |
[vorv | 14d | Nas | osy | awnrwa | v | dew Jva | voy [<8 | ma [03w |
; L £ ot L (pals p4 ¥3LSI93M
= /‘/\L\ meo._u ﬁ ; ﬁ ; ﬁ : ﬁ ﬁ e
1041NOD IWIL Y3 Magems
4315193y
3INV¥3T0L
¥3LINVAV
i |} 101 Md
vz YOl 104 VOV
s§ z -
ik ¢°b<4wmunw s 10¥41N0D
HILVW HI LYW ¥13440) ¥OL1Y134¥0D ¥OLY13HN0D
vol ONISSIN Vs Rl Md n] YO b3¥d
: s
N\ cw F—.“
¥344ng
1d3J¥IINT oA
dVHW 9 L 3Lk 1 M H H
L 9) (2 31A8)
[vd | vor |¥31s193¥ ¥3151934| Sovid | vov | md | D34
1ndN] LNdNI Ml » »
Nm*ll sne
ELSERED]

-15-

SRR T e
ST

-

T
mﬂ\ —
i | anva J¥31510 ¢
3114 b YOLYYYANOI
¥3ILLINI ' 8=¥ | 30NLINOVM
(] v
[
HILVW D3¥4 | YOLVHYdWOI #x\
8=¥ | 3anLIN9VMW ¥
3
,< s
0=b3yy4 35 s ny
TTTTT=115 € AVHRY -85 Vs
10000=115 ¢ 21907 adl T
00000=115 € ..o.L
S €] £)
m\‘ —ﬁ '
b7 A
2 £’ ot
]
RIS [13s [o [anve | yassioay
p 3 1NdNT
g ﬂ:zmz.o:.._ ﬁ
¥344n9 ¥3AI13D3Y
354
i ONISSINW
01,
0L NUNLTA ¥OLT-VOL Y3LYIANI-X2 7 ¥300Y 104 S
¥0
70LV+1¥d+Y0LT N0L>1019-14d+V0L]
NI-X2 |e 7 ¥30av 17nd
v01 >0+ 1yd4v01q i e

Zﬂ!
b2

(4
¥300v 1104 Irle—.0.

ve ¥e

Yol
voil

(where n is the field length). That is the maximum and
minimum binary numbers are considered adjacent values in
the number scheme (i.e. end around comparisons). The F
and PW comparisons, on the other hand treat the maximum
and minimum binary values as opposite ends of the measure-
ment spectrum.

If the parameter measurements of the intercept are

within tolerance for the emitter, correlation is said to
occur. The LTOA field of the emitter is upgraded to

the TOA value of the intercept. Since the contributing
emitter is found the intercept is dropped from further
consideration.

If one or more parameter fails correlation, the search
must continue. If the only failing parameter is TOA
and it is greater than LTOA + 2 (PRI) the address
of the emitter is placed on a stack for future reference
before continuing the search. The search continues by
accessing the location pointed to by the link field of the
emitter in the data register to retrieve the next entry
on the chain. The correlation process is then repeated.
A link field of all one's ‘indicates that the end of a
chain has been reached.

When the end of the chain is reached without achieving
correlation, the hash address on either side of the primary
value is searched. If a correlating emitter is found on
one of these chains that emitter's TOA value is updated
and the pulse intercept is dropped from further consider-
ation. If neither chain produces a correlation, a test is
made to determine if the intercept PW value is sufficiently
close to the break point to warrant searching of the
other frequency hash area. Thus, up to a maximum of
three more chains may have to be searched before correla-
tion attempts are abandoned.

e —

If none of the candidate chains produce a correlation
it is 1ikely that the intercept does not originate from
any emitter currently in the file. An exception exists,
however, for emitters on which the preprocessor has lost
PRI track. The location of these emitters were placed on
the stack during searching of the chain. Emitters (if any)
referenced by the stack are then examined in a limited
attempt to resync their LTOA fields. The resync count (RSC)
field associated with each emitter contains the current
number of attempts made to re-establish tracking of the
emitters pulse train. If this field has already reached
a maximum value no processing is performed on the emitter.
Thus, only a limited number of attempts are made for
any given emitter file word. If RCS is less than the
maximum, the RCS field is incremented, the emitter LTOA
value is replaced by the intercept TOA, and the age time
field (AT) is updated to the preprocessor current real
time clock value.

If the TOA assignment was correct for any stack
emitter, it will again fully correlate with the next
puise intercept of the resumed train. Thus, the emitter
word is back in step with its pulse train. When this
happens the SYNC flag is set, the AT field is updated to
current time and the RSC field is zeroed. Emitter words
which do not become resynced to pulse trains are eventually
age tested out of the file memory when their AT field
falls too far behind real time. The purging of the
emitter file is performed by one of the microprocessors
of the multiprocessor subsystem.

The feasibility model stack implementation is a 16
word FIFO buffer. Thus, a maximum of 16 unsynced emitters
may participate in the resyncing operation during a given
intercept search procedure. The number of consecutive
attempts to resync a given emitter is currently set to 4
although the RSC field is comprised of 3-bits which would
allow the consecutive attempts to range from 0 to 8.

1B«

oot il

o

Qutput Processing

Input intercepts which fail the correlation in the
search operation and cannot be used in resync attempts
are passed on to the multiprocessor subsystem for PRI
establishment processing. The 64-bit intercept is
transmitted as two 32-bit words over a single undirectional
data bus. This bus is tied directly into two multi-
processor memory banks through buffered memory ports.
Since the registers in the ports are dedicated, the
preprocessor does not have to wait for a free multi-
processor memory cycle before initiating the transfer.
The preprocessor loads one port with the first half of
the intercept and then the second port with the remain-
ing half. A common memory address is then sent over the
data bus to both ports simultaneously. The transmission
of the address also notifies the port logic of each
memory bank that a memory request is pending.

A 2K word area in two, of the multiprocessor global,
memory banks are reserved for the intercept passed on by
the preprocessor. After 1024 intercepts are transfered,
the preprocessor notifies the multiprocessor via interrupt
that the buffer is half full. At this point the multi-
processor begins processing the first 1024 intercepts
while the preprocessor fills the remainder of the buffer.
When transfer of the second 1024 intercepts has been
completed the two subsystems again swap buffer halves.

An alternative mode uf operation is also available where
buffer swaps are a function of time rather than data rate.
To effect this operation the multiprocessor loads a time
interval count into the preprocessor which down counts

-19-

o

T S — - .

O AT e B AP o e i

this value to zero. At which time the preprocessor

interrupts the multiprocessor and transfers a count of
the number of pulse intercepts transferred during the
interval. Buffer halves are then interchanged and the

timer reset by the multiprocessor. The preprocessor
currently initiates a buffer switch every 20 milliseconds.

In addition to keeping a count of the number of
intercepts passed on to the multiprocessor per interval,
the preprocessor also keeps a running total of the number
of intercepts inputted to the subsystem. Both of these
counts are available to the multiprocessor subsystem.

Thus, the hardware capability exists to monitor input rate,
output rate and extent of data reduction attained by the
preprocessor. These functions are not currently supported
by the multiprocessor software.

d System Control and Timing

The functional operations described in items a through
c above are performed under microprogram control. Thus,
a great deal of flexibility exist to modify the nature of
the above search algorithm. The entire microprogramed
algorithm is contained in eight programmable read only
memories (PROM). Each PROM is organized as 256 words by
4 bits with a 50 n.sec. access time. A microprogram
sequencer is used to drive the PROMS through this algorithm.
The control hardware structure is shown in Figure 7 and
a top level flowchart of the algorithm appears in Figure 8.

A1l decision elements from the data register and
arithmetic sections form addresses into a second group
of PROM's to comprise the branch capability of the control.
The output of these PROM's define a new address (via the

-20~

o
1104 ¥IVLS
[D3 "W
[XVH=ISY e
u e—
S ¥012313S ‘YK XVW=INIT
. e~ 0=ANIT 4= dNks
vy v NANT Lo f1aW3 wovLS 4= HOLVW VOV Ad"4
¥S2 €52 259 1S9 le— 101 NIHLIN V0L
oyg [YOLWOLY
“ d e~ 10-10M18
PN e VH=INIT
€59
¥
o 00000=11$
HONVYE "ONOINR le— T1ND8 '
SS3YAAY HINVYS e— 01NI8 ﬂ.
133135 AVA-N le— 10000=11S '
173135 1531 LNdNI e~ TTT1T=11S
HONVYEE - ONOD , WO¥d e 4315wH
s Ug 3 SYANN
11v0dN YILINVEYde a L ALEIR abias
o S, WO0Y¥d 7
Sfeats 99V WIW 318VN3 €= ; 0437 oy IZIWILINI
1041NOD 82 1dW) ¥34SNVYL @ b ug e : Uy ! &
¥l QV0l e a HONYVYE
NIVLS UINI @ AVA-N - 0=D3¥4
u AYOW3N e = D334 13¥¥0)
WIVLS ¥V3INNeH d WYY904dOYI IN d
, ® - D3¥3 SSVd
¥3IN3IND3S Houd
¥3LST193Y WYHD0Y d0YI TH e ity
10¥.1N0I o A R T
%3019 153
¥
e~ 7044 378VN3
e AQY V1Va
HOY¥d Ly 135 1 3148
TYEAN lq 3140 OVOY

INITIALIZE

PRE -
PROCESSOR
IN RUN?

VES

MULTI-
PROCESSOR iESXi?E
MEMORY REQUEST REQUEST

PENDING
2

NO

DATA
READY SIGNAL

FROM?RCVR NO

YES

LOAD INPUT REG. WITH
1ST HALF OF INTERCEPT

[e

COMPUTE HASH

ADDRESS
LOAD INPUT REG.
WITH 2ND HALF OF ;“
INTERCEPT ACCESS EMITTER FILE

AT HASH ADDRESS

Figure 8 - Top Level Preprocessor Search Algorithm Flowchart
Page 1 of 3

o

NGO —» 2)

«22e

e
S

ANY
ENTRIES 0

NO

TACK ?

:

PASS INTERCEPT TO
MULTIPROCESSOR

POP STACK

&

ACCESS EMITTER

FILE
ES
SC=MA :
?
NO

RESYNC EMITTER ATTEMPT
LTOA«— TOA 2
RSC = RSC+1
SYNCe— 0

AT = CURRENT TIME

NO

YES

Figure 8 - Top Level Preprocessor Search Algorithm Flowchart

-23‘

Page 2 of 3

Al

YES

0A=LTO§+(%)PRI

TOA LTgA+2PRI

SEARCH IN
ADJACENT HASH
CHQIN '

YES

¥

NO

CORRELATION OBTAINS
UPDATE EMITTER
PARAMETERS

YES

IS

“LTOA «TOA

SYNC &1
AT e CURRENT TIME
RSC «—0

NO

.

YES

LINK=111111

NO

!

ACCESS EMITTER FILE
AT LINK ADDRESS

ACCESS EMITTER

PLACE EMITTER ADDRESS
- ON STACK

ADDITIONAL
SEARCHED

CHAINS TO BE

&y
Vi

NO

FORM NEW

| e—{HASH ADDRESS
FILE AT ADDRESS (ADJACENT CHAIN)

Figure 8 - Top Level Preprocessor Search Algorithm Flowchart

-24-

Page 3 of 3

]

:
".
|
:
F.
i
3
P

microprogram sequencer) for re-entering the microprogram
code based on the input conditions (i.e., address to the
branch PROM's). The advantage of this approach lies in

the fact that in a single step 2N conditions can be

tested and a jump made to the appropriate section of
microcode. Thus, many of the decision blocks of Figure 8
are executed in the same machine cycle of the preprocessor.
A1l such groups of blocks are enclosed by dashed lines in
the detailed flowchart in Appendix A. Each step through
the microcode requires 153 nsec.

The time required to process a radar intercept for a
number of typical input conditions for the feasibility
model are shown in Table II. The first four conditions
listed in this table cover cases where the input intercept
successfully correlates with a stored emitter. The last
three conditions represent cases where the intercept
fails correlation and is passed on~tgo the multiprocessor.
The last column of the table shows equivalent preprocessor
throughput rates if all input intercepts bETeng to a
given type. In actual environments, the preprocess work-
load would consist of a mixture of intercept conditions
with approximately 80 percent of the total intercepts
composed of cases 1, 2 and 3. Thus, an average antici-
pated throughput rate would be approximately 200,000
pulses per second.

- It should be noted that a substantial throughput .
improvement can be achieved by changing the fabrication
approach from point-to-point wire wrap of logic panels to
multilayer printed circuit boards. This switch would
facilitate increasing the clock frequency from 6.5 MHz to
40 MHz and substitutfon of 50 nsec (access time) memary
chips for the 450 nsec chips used for emitter fiIa_stbraga
in the model. These changes would improve the throughput
rate of the preprocessor by a factor of 6 or 7.

-26-

Table I1I

Preprocessor Processing Times

! MACHINE | EXECUTION| EQUIVALENT
E | INPUT CONDITION CYCLES TIME THROUGHPUT RATE
E | (usec) (pulses per sec.)

1. INTERCEPT MATCHES 13 1.98 502,800
FIRST EMITTER ON A
CHAIN

2. INTERCEPT MATCHES 19 2.90 344,000
j SECOND EMITTER ON A
CHAIN

3. INTERCEPT MATCHES 25 3.82 261,400
THIRD EMITTER ON A
CHAIN

4., INTERCEPT MATCHES 31 4.74 210,800
FOURTH EMITTER ON
A CHAIN

5. INTERCEPT DOES NOT 27 4.13 242,000
CORRELATE. (NO EMITTERS
ON THE 3 CHAINS
SEARCHED)

1 : ,
J 6. INTERCEPT DOES NOT 29 4.44 225,300

i CORRELATE - THREE

: CHAINS OF LENGTH

1 SEARCHED

7. INTERCEPT DOES NOT 47 7.19 139,000
CORRELATE - THREE
CHAINS OF LENGTH
2 SEARCHED

Noe 2%, o

T

«26=

|

e Preprocessor Suprort Algorithms

In addition to the search algorithm which is
implemented in preprocessor microcode, there are two
other algorithms which are required to support preprocessor
operation. These algorithms are responsible for composing
and maintaining the preprocessor emitter file and are
referred to as Post and age test respectively. Both of
these algorithms execute in one of the microcomputers of
the multiprocessor and operate in a background mode in
reference to the search operation. These algorithms are
discussed briefly below with detailed flowcharts appearing
in Appendix A.

When the multiprocessor subsystem establishes the
presences of a new emitter in the environment, it passes
the emitter parameters to a particular microprocessor
termed the communication processor (CP). The CP initiates
the posting operation by first computing the hash address
for the new emitter and then accesses the preprocessor
emitter file at this address. If the file address is
vacant, the new emitter is added to the file at this
address. If, on the other hand, an emitter already exists
at this address (signifying a chain of at least length
one) a search of the chain is initiated by the CP. The
object of the search is to find the position on the chain
which contains an emitter with a PRI equal to or greater
than the new emitter. The new emitter is inserted into
the chain at this point. The insertion procedure
normally does not involve physically moving emitters in
the file, but only adjustments to several emitter links.
This can best be shown with the aid of Figure 9 which
depicts a chain before and after adding an emitter E(n)
between the third and fourth emitters E(3),E(4) on a given

-27 -

e e it oy

e A A A e % ity

E(1) 258 E(1) 258
HASH
AREA

258 E(2) 271 258 E(2) 271
260 E(3) 1023* 260 E(4) 1023*
OVER-
FLOW
271 E(3) 260 271 E(3) | 295
295 E(n) 260
1 T T T
EMITTER FILE BEFORE EMITTER FILE AFTER
ADDITION OF EMITTER E(n) ADDITION OF EMITTER E(n)

* The value of 1023 indicates the end of a chain.

Figure 9 - Link Structure for Posting Emitters

chain. Here, E(n) is inserted into a vacant location

in the overflow area of memory with a link value pointing
to the location of emitter E(4). Then, the link field

of emitter E(3) is changed to point to the location of the
new emitter. Note-two memory accesses to che preprocessor
file were required to insert the new emitter in its

proper position on the chain and the physical address of
all stored emitters remained unchanged. Since search
takes precedence over the posting, the preprocessor may
have processed numerous radar intercepts during the course
of the post operation.

The CP also contains a bit map of the hash area of
the emitter file. There is a ce¢ne in the map for each hash
address which has an emitter chain. This map is used
during the age test operation to enable the CP to search
only those areas of the preprocessor memory which contain
emitter data. Age testing is done one emitter at a time
and all the emitters on a given chain are tested before
the CP moves to the next hash address. The test consists
of comparing the emitter's age test field {(AT) against
the preprocessor current time clock. If the time difference
is greater than a predetermined constant the emitter is
removed from the chain. If the difference is less than
the constant the search proceeds on to the next emitter.
Removing an emitter consists of changing its predecessor
link to point to its successor and adding the address of
the age tested emitter to a table of empty addresses.

The emitter does not have to be physically removed from
the preprocessor memory.

«29-

|
I‘
|

The AT field for the feasibility model is 8-bits with
a resolution of 16 milliseconds. The age test routine is
entered once every 40 milliseconds based on an interrupt
generated to CP by a timer in the preprocessor. Current CP
so"tware deletes any emitter from the file which has not
correlated with an intercept for greater than 1 second.

3. FEASIBILITY MODEL PHYSICAL STRUCTURE

The feasibility model subsystem consists of 460 low-power 1
Schottky TTL integrated circuits. The majority of these IC's ‘
are SSI and MSI packages with the remainder composed of LSI
chips. The logic is housed on four Augat panels with point-to-
point wire wrap used for the majority of the interconnections.

The breakdown of the logic by function is shown in Table III.
Total power consumption is under 40 watts.

A maintenance and test panel (M&T) is also provided with
the preprocessor as a diagnostic tool and checkout aid. This
panel consist of two 32-bit LED displays, a hexidecimal readout,
keyboard input, and a number of control switches. A drawing
of the M&T panel is shown in Figure 10, and a block diagram of
its connection into the preprocessor logic shown in Figure 11.
This panel allows an operator to single step through the
preprocessor search algorithm and inspect the contents of the
emitter file or the input register. The procedures for reading
or writing a preprocessor register memory are shown in Table IV.

T Sy

Because of the number of communication paths required

between the multiprocessor and preprocessor for normal operation, !
it is also possible to perform substantial preprocessor testing :
from the multiprocessor. The preprocessor hardware which is
accessible to the multiprocessor is shown in Figure 12. :
Functions which could be implemented via this channel include d
integrity testing, diagnostic testing, performance monitoring,]
and receiver simulation. Communication procedures between the
two devices are detailed in Appendix B.

-30-

t Table III

Freprocessor Logic Utilization

AUGAT BOARD
I.C.'s to support: #1 #2 #3 #4 TOTAL
g RCVR BUFFER INTRFC 12 0 15 0 27
i
1 M&T FUNCTIONS 6 10 a1 25 82 i
¥
‘ INTERFACE TO 0 0 19 0 19
b MULTIPROCESSOR GLOBAL
MEMORY
L PREPROCESSOR 124 | 126 82 o | 332
1 FUNCTIONS
b ,,
TOTAL PER BOARD s ket 136 o4 157 25 1 460

i e

i e e

[aued U044 18W 40SS3204dauyg - OT d4nblL4

SRR ¥ 0 | @
O 000 O O 0000
AMOWIN ISN3S d3ls 316vSIa M 300D 3D1A3Q
w SS3V TO¥LNOD 3D1A30 Y s
uu%bz_ HOlv1 [01 2 ve69L e 6M3|[012€ b6 «wm u 618
O O O ss3¥dav SS3YAAY AHOWIN $S340QV ¥3IN3INO3 P
doLS d3Ls NNY ™
H0SS3508d34d < Tod FTIRITS 54 _& :
v voil 5 m
Yv3n € | 4 i | Md Jag] 3y VOV
O 0 ® O12¢€ b69L B 6EOIl 22ACPE SI1LBIE @RRVEZ VRNV LZ RE0EIEC
[0 X @ X @I oXoXeXo B oXeXoXo I oXoXoXe i eXoXoXo I eXoXoIo I oXeXoXe B oXoXoXe I eXeXolo)
3000 |, VoL | vd i D
BR3@E | wamus || 3 I [ma BN vov W
EME Gvou] ;
QEEME
= a
PEOO o
"OSS30Ud3Ud

weaberqg 32019 Leuot3ouny W 40Ss3d0udauad -11 24nbL4

sne-A ¥3IN3ND3S
zwhaw““u“““wt 8 WYY90UdOYI IW

ﬁ . ,
& 4 YILSI93Y | ss3yaay ss3yaay AV1dSIa
[SNivis AYOW3W | ¥3ININD3S ain

ﬂ AGY3IY viva
HILYY ya
HILYT / " 1531 39V 3137dW02 ¥I4SNVHL

$S3¥aAV AYOW3IW| 217 21 Il
m_:_la\ 150d LIGIHNI ¥344ng

ss3yaay 1504 18
HOLVW Q¥OM 3SINd 2193135 3148

$5379Y ¢&——1041N0I © HOLVW sg
AYOW3W AYOW3W L1d3DYIUNT ILIYME " Ln - LIVH ¥0S5S320¥d3¥d

e e
a d3ls
< I¥d ANIT¥Q IS¥ 4§

10¥1N02S . 378VSIa T041N0J SIHILINS
e 391A30
3009 ¥31SI93Y V1iva

Y/M

voll 1v

B e |
JZITVILINI Y31S193¥ viva

Pt 300W
1041N0 d01S | yoss320¥d34d

By dilLs
B 4 Md d8 3¥ VOV V@

NNY
Y3LSI9IY Viva

AV1dSIa
S¥0L¥IIANI Q31
1 ¥31S193Y , vol vd

¥31SI93¥ LNdNI

4 Md SN VN VOV VW

¥31SI93¥ LNdNI

Y31S193¥ QUVO08A3IN \A
(L1910 8) Lnoav3y ¥V3IN
AV1dSI10 TYWID3AIX3IH Q¥vo8sAIN

QyVO8AIN
TYWIJIAIX3IH

A R~ e e

e

*(L apo) 3dtAag
yd3e7] 43j33weded 30 (941 318VSIQ
319 |043U0D Aq paujWwuaalap s} UOE3IIIAS - &

S31g L043uU0) ‘suadjaweded [
320D Swiyledy § yojeq 3daduajzul 9
$S3Jppy 4333ng 3daddaju] 4 SA03RJ}PU] 1BW ‘S4djawedaed ‘J4aw}j bopydjemy S
TYd*ANITYA°ISY WAS-YD3®R] 43A3IsuRL] sng € puRwWWO) M/Y °SSIUPPY |4 49333pwW3 ¢
4°Md“‘d8°40d° YOV VE-Yyd3e] J3AL3dsuRd]l sng 2 I4d ANITIC ISY NAS-Yyd3R] 43AL3ISuRdl sng €
VOL11°1lV-yYyd3e] 43A}3dsued] sng | 4°Md*da 4r¥ VOV YE-Yd3R] J4dALIISURL] sng 2
« Sbeld snje3s ‘uajuno) asind Induy o VOL1°LlV-yo3®e] 43A 3DOSued] sng [.
» 4935}D3y pavoghay 0 jnopeay Aeldsjg Le3ibia 0 ;-4
3000 321A30 COLNI 3JLIYM 3000 3J1A3a ’
d3lS ssaadag d3ls ssauadag
d 03 Ydo3ims M 03 YO iMS
379VSIA 03 YI3imMS : 378VSIA 03 Yd3ims
1044N0D 3D1IA3Q 70¥1N0OY 3DIA3Q
‘0°Y Aepdsyp Le3464p uo pakejpdsyp sjuajuod 433sibay p4Re0QA3Y LA UdIJLJUM 3Q 03 23Rp J4d3u3
uo j3eaadg peay uojpIeaadp 9344
3
suotjeuaddQ Laued LBW 40SS9320udadd |

Al @Lqel

i o A R 3 P <+ P = e

T T N PV D ORI TN S e a Te R .

I T e e 8 Ty * TR P e e e oo aadite an o RN S0 o S i I abame b o o L i b s a4 T TR

} —— " e T weoaTe o Ton i

T T

SNg uoi3edLUNWWO) 433NdWOI04d LW /40SS320udaud - 21 34nbL4

: snNg viva
w ¥31NdWOI0YI I
i %2072 3IWIL V3N
91
$S3¥aQY
3 ss3yaay ¢—— AYOWIW ¥344n8
SY3L3NvAYd P 434408 1d3I¥3LNI 143043LNT dVHW
NOILV13¥Y0) ¢—
HILVY ¥31IWVYVd-ONVWWOI Allaml
SANVING) T¥d INITHG ISy i T
¥IATIISNVY q Y
¥431SI193¥ L1NdNI 4 : QY0My20T |[e—PVyivg
HOLV1 1d3DWILNI 7 X 119 28 iiicihan
S3Ls1o3y lRdwt “ , 4 Md dg 48 VOV va e— V1V in
vz dIATIISNVYL Sng o
SONVNWOD ¢—1 431v1 ¥ILINVAVA-ONVHWOD g, | AMOWIW | y3isiozy
Pu— GNY ¥3IWIL 90QHILVM €2 3114 le—wvyive
IVAYILNI ¥3WIL VOLT LV Y3LLINWI
—F > —>
i ¥IATIISNVYL Sng
5 SSIYAAY AYOWIN , HILV
3714 3311183 €| ss3vaav Avow3w ¢|N|
E SOY14 SNLVLS ANY SEARE
em Y3LNNOD 3SINd LNANT |e—— 31374W0D ¥ISNYYL
1n0ay3y
AV1dSIO TYWIJ3GIX3H 26
e—/—+ Y3ILSIHIY QYVOSAIN
2¢
U

SECTION III

THE MULTIPROCESSOR

1. INTRODUCTION

The multiprocessor subsystem architecture developed during
the MAP program is shown in Figure 13. This architecture possesses
many of the classic multiprocessor design attributes. It includes
a master s$lave relationship among its microprocessors under the
control of a single operating system in a tightly coupled struc-
ture. The main components of this subsystem includes the global
memory, memory request logic (Ports) and the various microprocessor
(referred to as processors for the balance of this discussion),
This section contains a discussion of the functional responsibil-
ity of the multiprocessor subsystem and the role of each
component in executing that responsibility.

2. SUBSYSTEM OPERATION

The various microprocessors of the above architecture
pool their processing capabilities to discharge the responsibil-
ity of the multiprocessor in the following manner.

When an adequate number of uncorrelated radar intercepts
have been passed on to the multiprocessor global memory by the
preprocessor an interrupt is generated to the processor termed
the master. This interrupt indicates that the PRI establishment
processes can begin on the intercept file just passed. The
processes are partitioned into two tasks executed by different
processors. One task (termed task assignment) is to find sets
of starting F, PW, and AOA values on which pulse train
establishment can be based. This task also creates processing
assignments for pulse trains identified during the previous
intercept buffer to remove any train fragments which carry over
into the new buffer. The other task (termed PRI analysis)
searches the intercept buffer to tag all pulses belonging to a
given previously identified pulse train or to find new trains
based on a given set of starting values. This last operation

-36-

MICROPROCESSOR-1

PORT

...---- - e ™ & o e e e ---’
|
PROGRAM :

CcPU

MEMORY 1 T
|
MASTER)

R T P R e - PORT PORT
-------------- -.

PROGRAM : I b

MEMORY cPU |-
_______ SLAVE ______t

PROGRAM
MEMORY HCPU

PORT H PORT

I

?0 PORT

AE e s

P

—

| T T e S A N o S AT N
: I
I| PROGRAM] ¥
i| MEMORY l“—'lcp cPu -
g gty e AN g ey J
[] ® [] L)
® ® ° L4 °
o ¢ EXPANSION { o } . } . > °
° ® ® @
L ° ® ® °
®
PREPROCESSOR T J i s
>+ PORT
DISPLAY o
PROCESSOR L
Y v
GLOBAL
MEMORY
INTERCEPT INTERCEPT COMMUNICATION
FILE-0 FILE-1 BUFFER
BANK-1 BANK-2 BANK-3
2KX32 2KX32 1KX32
vl [:
EXPANSION | ! | ,
_________ Bt e o e
Figure 13 - Map Architecture

-37-

o

Rkl intt et Lo @

consists of attempting to establish a time relationship (i.e., PRI)
among all the buffer entries which have nearly the same F, PW,

and AOA as the starting set. The task assignment algorithm is
executed by the master processor. The remainder of the processors
(excluding the one dedicated to servicing the preprocessor - CP)
perform the PRI analysis task.

A11 control communication between the master and slaves is
effected through the use of Action Code (AC) words in the communi-
cation bank of global memory (see Figure 13). There is one AC
word for each slave, with additional areas of the §lobal memory
reserved for passing parameters. An overview of the master and
slave operations is given below for PRI establishment processes
from power up until completion of buffer processing. A timing
sequence diagram is also presented in Figure 14 to aid in under-
standing the interaction between processors and interpretation of
the AC's. Additional information on the individual algorithms may
be found in Appendix A.

1) The master is started on its power up sequence prior

to enabling the slave processors. During this sequence
it sets the AC for each slave to 0. It ends the
sequence by testing the AC's for a non zero value.

2) The slaves perform their power-up sequence and each
sets it's AC to 40 at the end of the sequence
indicating that it is available for assignment. It
then loops on its AC waiting for an assignment.

3) The master will continue processing upon finding the
non-zero AC of the slaves indicating their availability.
The master then enters a wait loop waiting for an
interrupt indicating that a new buffer of radar
intercepts have been passed to the intercept file.

-38-

L g Al e et

e e e e e e e s L e e S e R

MASTER
PROCESSOR

POWER UP
SEQUENCE

NO

YES

WAIT FOR INTER

2
T

RESPOND TO INTER.
TRANS LAST PULSE
INTERCEPT ADDRESS

IDLE SLAVES

=3

ASSIGN PULSE |
~» TRAINS TO

ACTION
CODE

SLAVE
PROCESSOR(S)

s

INITIALIZE

YES

—

COMPUTE BUF. PAR.

BEGIN ADDR.

IRST TOA
LAST TOA
ND ADDRESS

ACCEPT ASSIGN

SEARCH FOR
GIVEN

FRAGMENT

w3

~
AC=1?
40 ? 9
a4

Figure 14 - Timing Sequence Flowchart (Sheet 1 of 2)

F

i\ Sea Atk

START
—p SEED SEARCH

R

ASSIGN SEED
FROM TASK v
ASSIGNMENT

ACCEPT SEED
LIST TO SLAVE PULSE FORM

NEW PULSE
TRAIN

MORE (FOUND PRI
PULSES TO SEQUENCE)
EXAMINE

WAIT FOR NEXT
NEW BUFFER
INTERRUPT

Figure 14 - Timing Sequence Flowchart (Sheet 2 of 2)

-40-

o g gl

4)

5)

6)

7)

Upon receiving the new buffer interrupt from the pre-
processor, via the CP, the master begins new buffer
processing. The master sets the AC to 3 for each
available slave and stores the addrass of the last
intercept in the new file in a message area for each
slave.]

The slave detects the 3 AC and inftializes its internal
parameters for analyzing the intercept file. The
parameters include establishing the beginning buffer
address, end of buffer address, first pulse and last
pulse TOA's. Upon completion of this operation the
slave sets his AC to 45. The slave then loops on the
AC waiting for the next assignment.

When the master detects the 45 AC it assigns a pulse
train found in the previous intercept buffer (if any)
ta the slave for train fragment removal. This is done
by passing the train parameters to a message area and
setting the slave AC to 9. The process is repeated
until all available slaves receive assignments. 1If

no trains were found in the previous buffer the master
proceeds to step 9.

When a slave detects an AC of 9 it looks for pulses
which belong to a previously identified emitter. This
process consists of looking for intercepts which have
the same F and AOA as the assigned train and also fit
the PRI of the train. If three consecutive pulses are
found which fit the PRI the slave changes its action
code to 21 and tags all pulses which belong to the
train. When this assignment is completed the slave
returns its AC to 40. If 2 or less pulses are found
they are not tagged and the action code is returned to
40 indicating slave availability. Upon completing the
assignment the slave loops on the AC waiting for the
next assignment.

-41-

: ! 8)
{

10)

The master detects the slaves availability (i.e., AC=40)
and assigns the next train to the slave who is available.
That is, steps 6 and 7 are repeated. This sequence is
repeated until the master has no additional trains to
assign. After passing the last assignment the master
proceeds to step 9.

The master begins the search for starting points

(seed pulses) for new train assignments. When a seed

is found it is added to a master task assignment list.

A seed is defined as a pulse which contains a F and

AOA which fall outside of the limits of the values

any slave is currently using (i.e., active assignments).
Thus, when the master examines a seed candidate it also
check to see which slaves are active and what F, AOA
values they are using. When an idle slave is detected
an assignment from the task list is given to the slave
and its AC is set to 4. In handing off this assignment
the master computes limits about F and AOA for searching
purposes. This joint parametric space will not be
available for seed assignment from this point on until
the slave finishes the assignment.

When the slave detects an AC of 4, it initiates

internal parameters for PRI establishment and changes
its AC to 8. The seed parameters are retrieved from

the message area for the given slave and a search is
started in the intercept buffer to find another untagged
pulse with similar F and AOA to form a tentative PRI.

If such an intercept is found, the AC is changed to 10
by the slave. If two additional pulses are found, the
existence of a train is confirmed and the AC is changed
to 20. Parameters are averaged and the slave sets a
report flag in global memory. The slave then finds all
remaining pulses belonging to the train and tags them.

When finished, the AC is again returned to 40 by the
slave indicating that is is available for assignment.
If a slave cannot establish the presence of a train
based on its seed values, the AC is also returned to
40. The slave then loops on the AC waiting for its
next assignment. (Note: The master checks the report
flags and stores each found train for future fragment
analysis and passes the emitter to the preprocessor
and display processor.

11) Steps 9 and 10 are repeated until the master has made
two passes through the intercept buffer or a new

buffer interrupt is received. At this point, the :
processing returns to step 4 and 4 through 11 are
repeated.

The feasibility model of the multiprocessor contains
four processors - one master - two slaves and one communication
processor (which also executes the preprocessor support algorithms).
The nature of this hardware and its interaction with other
subsystem elements is covered below.

3. HARDWARE DESCRIPTION
a The Processor

The architecture of an individual processor of the
multiprocessor subsystem is shown in Figure 15. The CPU
section of this processor is configured around the 2901
bit slice CPU chip shown in Figure 16. This chip contains
a scratch pad composed of 16 addressable registers. There
are two address inputs (termed A and B) to the scratch pad
so that two of its registers may be accessed concurrently. l
These two outputs along with the Q register and external
input (Direct Data in) form the main inputs to the

34N3233 1Yd4y 405s3204doud |y - GT d4nblLd

/N \v
sng viva
>
sng 10¥LNOI
v 1041N09 S1dNYYILINI
L 1dNYYTINT TYNY3IL1X3
i
3009 2 L
iq
NOILIGNO? ¥0123A LdNY¥Y¥ILNI
£ J041NOD NOILIN¥LISNI LX3N
2 | 0s (s
{SdIHD NdJ 119 ¥-8) I
r||||||. 1
3
Rl : ﬁmcupu=zhmz~ (WdW) A¥OWIW| SS3¥aQY «Mwuuwcum
ndd I WY3O04dOYIINW WY¥904dOY¥I IW
d
R ik -\ p—
! | |
: I
“ i !
$S34AAY HINVYg
e L e e B i o o i e B e
]
ONIWIL _
any %2013 _ .

T —

ke i

|

SHIFT NETWORK

Q REGISTER

SHIFT RK
CONTROL SHIFTjETHO
16 ADDRESSABLE
SCRATCH
PAD
A ADDRESS REGISTERS
B ADDRESS .
A B
OUT ouT
DIRECT I "g:
DATA ——
IN 1 ‘
MULTIPLEXER
ARITHMETIC
ALU o LOGIC
FUNCTION | UNIT
ouTPUY
MULTIPLEXER
DATA OUT

Figure 16 - The 2901 CPU Chip

-§B=

Arithmetic Logic Unit (ALU). This ALU provides a variety
of arithmetic and logical op rations on pairs of the

above inputs. Eight such CPU chips are cascaded together
to form a 32-bit CPU. The remaining elements of Figure 15
support the CPU in the following manner.

(1) Pipeline Register - The function of the pipeline
register is to hold the current instruction being executed
by the CPU. The source of this instruction is the

program memory. The pipeline register is inserted be-
tween the program memory and the CPU so that the memory

may be released to fetch the next instruction during
execution of the current instruction by the CPU. This
overlap of instruction fetch and instruction execution
enables the instruction to be executed at the fastest
possible rate. '

(2) Program Memory - The program memory (PM) contains the
microcode for the algorithm to be executed by the processor.
Thus, the size of this memory may vary in accordance with
the size of the tasks assigned to its particular processor.
The master and communication processor have 1024 words of
program memory and each slave has 2048. The memory is
designed such that it can be expanded to a maximum of

4096 words by adding IC's to the memory board. Word width
of this memory is 32 bits with a 33'rd bit used for parity.
The access time of the memory chip is 45 n.sec. The CPU
can both read and write this memory so it may act as
private data storage for the CPU as well as algorithm
storage. Additional tasks for the processor may be held

in global memory, but these tasks must be transferred to
the program memory by the CPU before execution. 4

GRS

(3) Microprogram Sequencer - The function of the micro-
program sequencer is address control of the program memory.
The sequencer causes the program memory to sequence through
its microcode in a proper order to effect execution of the
data processing task. There are four possible sources of
address for the sequencer. These are: 1) the program
counter for execution of the instruction at the adjacent
location to the present instruction, 2) the pipeline regis-
ter for execution of jump commands, 3) a FIFO stack for
return from subroutines, and 4) the interrupt circuitry

for execution of interrupts. Additional details on the
sequencer may be found in the first Interim Report.

(4) Clock and Timing - The clock circuitry is based on a
Johnson counter whose subsequent length is a function of
instruction type being executed. This allows each instruc-
tion type to be executed at the fastest rate possible
determined by the combinational logic delays within the
processor and line length to external devices.

(5) Condition Decode - The function of the decode logic

is to facilitate conditional branching based on the value
of any of the 32 bits of any CPU register or the carry
out, overflow, and accumulator = 0 flags of the ALU.

(6) Interrupt Control - The interrupt control allows the
processor to respond to asychronous external stimulus
without resorting to polling. It is also useful for
implementation of response to certain internal fault con-
ditions such as memory parity errors. There are a total of
8 levels of interrupt available to each CPU. Four of these
levels are assigned to internal fault conditions. These
interrupts are devoted to:

] =

sodamain

! 1) dinstruction bus parity error

(i.e., program memory),
| 2) data bus parity error (i.e.,
: from global memory or external device),
! 3) condition stack over/under flow, and
' 4) dinstruction cycle timeout (energized
i when an I/0 instruction is not responded
i to in 8 usec.
The interrupt structure between processors is shown in
Figure 17.
(7) Bus Structure - There are two busses associated with
b | the microprocessor. One originates at the pipeline register
(termed conirol bus) and the other connects to the CPU
array (termed data bus). These two busses serve to tie the
microprocessor to a common memory and other peripheral
devices. The topology of this interconnection is discussed
in the next item.

A11 of the above processor logic is partitioned onto 3
two multilayer printed circuit boards which measure approxi-
mately 15.5 x 10 inches. One board contains the program
memory and the other contains the CPU and remainder of the
processor logic. The memory board consists of two outside
signal Tayers with internal pcwer and ground planes. The
1K version of this memory contains 40 integrated circuits
and consumes approximately 15 watts. The CPU board is
composed of 10 total layers which include two outside
signal layers plus three internal signal layers on each
side of the board and central power and ground planes.
Adjacent signal layers contain lines which run predomi-
nantly perpendicular to each other to minimize noise
coupling. This board contains 216 ICs and consumes approxis-
mately 20 watts.

T

i,)

-48-

TR ———

o i

S40SS3204d UIIMIAG 34NIONUIS 3dNAU3IUT |3pOW AIL|LqLSeay - /T a4nbiy

‘uotldonuaisul g 4X3 40 Iy 4x3 e

Bur3anoaxa Aq juas siydnuauajuj (2
5 ¢ 40SS3204d
s,Nd) L1® 3® z 3dnadajuy
RLA PaAL3294 s3dNadaiu] (1 AV1dSIa
b4

SILON FAUNLINYLS LANYYILINI vy

zJ]
JAYS JAVIS YILSYR

T Ndd ¢ Ndd v Nd)

dd

S Ndd

R

-49-

"

e~

?
|
i
|

B - ——

b Global Memory

There are three independent banks of global memory in
the feasibility system. Two of the banks are used to house
the intercept file and the third serves as a communication
buffer for processor-to-processor communication. The
effective memory cycle is 200 n.sec. yielding a peak memory
subsystem transfer capability of 15 million words/second.
The intercept banks are organized as 2K words by 32 bits
and the communication bank is 1K x 32. Each bank, also
contains one bit of parity. Any bank may be expanded to
4K words by adding ICs to existing boards. It may be
further expanded to 64K words by adding additional memory
boards. The number of different memory banks in the system
may also be increased from 3 tc a maximum of 16.

Associated with each global memory is a global memory
controller which performs all necessary arbitration resulting
from multiple processors requesting concurrent access to the
same memory bank. A1l concurrent requests are processed
sequentially with the proviso that at any given time no
microprocessor will have more than one request serviced
while a request is pending from another microprocessor.

This is equivalent to stating that, at worst, a microprocessor
may have to wait for a memory request from each of the other
microprocessors to be serviced before its request is
processed. This was done to insure that no microprocessor

may gain complete control of a given memory bank at the
exclusion of the remaining microprocessors.

This method of request servicing is equivalent to
queueing them up and then satisfying the queue where the
length of time over which a given queue builds is a function
of the number of requests in the previous queue. Note
each bank works independently of the other so processors
making requests to different banks in no way interfer with
each other.

-50-

€ Port Lagic

The purpose of the port logic is to provide a communi-
cation path between a device and a global memory bank.
A1l processors of Figure 13 communicate with the global
memory through a port. Each port contains a holding
register and associated control to recognize that a re-
quest is for its memory bank. A1l requests (either read
or write) are held in the port register until serviced
by the global memory. Each port printed circuit board
contains two ports which can be used to connect two
separate devices to a given global memory bank. A total
of eight ports can be supported by any given global
memory bank.

For the feasibility model the master and both slaves
has access to all three memory banks. The preprocessor
has access through ports to only the two intercept file
banks and the display processor to only the communication
bank. There is one unused port in this system with
the capability of adding additional port cards at a
later date.

4, PROGRAMMING

The individual processors of the multiprocessor subsystem
may be programmed at two levels. The most tedious of the two is
the machine level where the algorithms are translated into %he
binary machine code by the programmer. The other level of
programming supported by the system is the assembly language
level which allows the programmer to work with mnemecnics and
labels rather than binary code. A brief description of the
assembly language appears in section IV.

The set of operational instructions supported at the
machine level are described in the following pages along with
representative instruction execution times. This machine level
instruction set encompassed all bit patterns of the 32-bit
instruction word that is supported by the processor hardware.

~§ia

OPCODE O Register/Register Operations

Description:

0Offers control of ALU, 16 GP registers, Q register, and
shift network. Any two of the 16 GP registers may be specified
via fields A&B of the instruction format, Two source operands to
the ALU, the ALU function, and destination of the ALU output are
specified by the SORC, FUNC, DEST fields respectively. Field CN
is the carry input to the ALU. Shifting is enabled by bit 25;
left/right shift is controlled by bit 24. Shift mode is controlled
by shift select (SFT SEL) field.

To accomodate an "add & shift" algorithm for hardware
multiplication, bit 27 of the SORC field may be driven by the
LSB of the Q register. The multiplier, multiplicand, and partial
product reside in the Q, A, & B registers respectively. If bits
28 & 26 are 0 & 1 respectively, the source (SORC) operands will
be A & B (add multiplicand to partial product) or O & B (add
nothing to partial product) dependent upon the LSB of the Q
register (Qo). With each cycle, the Q & B registers are shifted
one bit towards the LSB. If the just completed LSB of the
product is deposited in the MSB of Q each cycle, the Q register
fills with the least significant half of the product. With
multiply mode flip flop set, bit 27 of the SORC is driven by 60
(bit 27 in the instruction register is irrelevant); with the
multiply mode flip flop reset, bit 27 of the SORC is driven
from the instruction register.

«52-

T R R R R I R R S T NPETY Ay ey d T v S

OPCODE 0 REGISTER/REGISTER OPERATIONS

OPERATION DESCRIPTION

Add

Subtract (1's comp)
Subtract (1's comp)
Logical inclusive or
Logical AND

Logical complement AND
Logical exclusive OR
Logical exclusive NOR
ADD + 1

SUBTRACT (2's comp)
SUBTRACT (2's comp)

CN Bit
Irrelevant to
Logical Functions

3. 30 29]28 27 26|25 24 23]22 21 2019 18 17 16]15 14 13 12
0 0 O SORC DEST FUNC B A
Load Load Load
DEST B Q Status |OPERATION DESCRIPTION
25 24 23| Register|Register |Register
g 0 o0 NC NC Note 5) |NOP or Compare
e 0 2 NC) 4 F/CC Load Q
¢ 3::Q F NC F/CC |Load B
& X X F NC A/CC Load B; Load Status with A
1 0 0] F/2 NC F/CC shift B towards LSB
I .3 F/2 Q/2 F/CC Shift B & Q towards LSB
) S (S 2F NC F/CC Sshift B towards MSB
3 Lok Sl | 2F 2Q F/CC |Shift B & Q towards MSB
SFT
SEL Shift |Load|lLoad|Load|Load|TYPE OF SHIFT
24|10 9 [DIRECTION 531 Bo 031 °0
0l 00 0 F, 0 Q Logical Zero
0] 01 Down 1 Pl 1 °1 Logical One
0] 1 0 |(Towards ro Fl Qo 01 Single Precision Rotate
[+ [9 LSB) NeV F, Fo Q, Double Precision Arithmetic
1100 Fio 0 Q39 0 |Logical Zero
1101 Up Fio G . Q39 1 Logical One
1| 1 1 |[(Towards Fio FiylQ45 | Q4y1Single Precision Rotate
1] 1 1| MsB) Fio Q371939 0 |Double Precision Arithmetic
ALU SOURCE CN| FUNC
SORC OPERANDS 11]22 21 20 |Function
28 27 26 R s ol o 0o o RS
LG Q o/l o o 1| s-r-1
[B % | A B 0] 0 1 0 R-s-1
o 2 0 0 Q or e 1 2 RvS
(e A 0 B o]y 00 RAS
ESNARE WA of 1 0 1| Ras
1 0 1 | Unpredictable [} T T T RES
1 1 0 | Unpredictable ofl1 1 1| mres
y D T Unpredictable 1] 0 o o res+1
¥l 0 © X] 8-R
10 1 o R-S
110 1 1 RvS
111 0 0] Ras
Notes: 11 0 1| Rnas
1) NC indicates NO CHANGE. i3 1 @ ROS
2) P indicates DATA OUTPUT OF ALU. 1l1 1 1| mes
3) CC indicates ALU CONDITION CODES - N,V,C,Z.
4) X indicates DON'T CARE
5) NC TO STATUS REGISTER IF BIT 7 EQUAL ZERO (DEST=0);

LOAD STATUS REGISTER WITH F/CC IF BIT 7 SET (DEST=0).

Instruction Timing

Bit 25=0 AND multiply mode FF Reset
Bit 25=1 OR multiply mode FF Set

250ns
325ns

-53-

OPCODE 1 Input/Output Operations

Description:

? Provides for CPU communication with other devices inter-

‘ faced with the CPU bus. The device is specified by the DEVICE

i ADDRESS field; data flow direction is specified by the SORC field.
i CPU operation is controlled by the SORC, DEST, FUNC, B, A, and

CN fields. Any two of the 16 GP registers may be specified via

. fields A & B of the instruction format. Two source operands

E to the ALU, the ALU function, and destination of the ALU output
are specified by the SORC, FUNC, DEST fields respectively.

Field CN is the carry input to the ALU.

If the external device (specified by bits 0-5) does not
acknowledge a CPU I/0 instruction cycle, the CPU will repeat the
request every 250ns until 8us has elapsed, at which point the
CPU issues interrupt 6 and continues to the next instruction in
/ sequence.

Bus parity is checked at the end of an input instruction
cycle. If an error is found, the CPU issues interrupt 5.

-4 OPCODE 1 provides a capability to present the contents
': of a GP register to the CPU bus and increment/decrement the
4 register in the same instruction cycle. Choose SORC=4 and

DEST=3; increment/decrement is controlled via FUNC and CN.
Register A is presented to the CPU bus while A+l is loaded into B.

S e

p 5 v ey

«§la

OPCODE 1 INPUT/OUTPUT OPERATIONS

31 30 29|28 27 26|25 24 2322 21 2019 18 17 16|15 14 13 12|11|10 9 8 7 6|5 4 3 21 0

NOUNNNNY pEVICE
0 0 1] SORC DEST FUNC B A &\\\Q\b\&\\\\ ADDRES

Load Load OURCE TO BUS
Q Status BORC= SORC=| OPERATION DESCRIPTION
Register |Register] 0-4 5-7

NC F/CC
F F/CC
NC F/CC
NC A/CC

Load Status Register Only
Load Q

Load B

Load-B; Load Status with A
NC F/CC NOT RECOMMENDED

CNP F/CC NOT RECOMMENDED...

NC F/CC NOT RECOMMENDED

CNP F/CC NOT RECOMMENDED

et

L

FDIAIA TUNHIIXE

~ O - O O MO

ALU SOURCE
OPERANDS |DATA FLOW
R S DIRECTION

OUTPUT
OUTPUT
OUTPUT
OUTPUT

FUNC
22 21 20 | FUNCTION |OPERATION DESCRIPTION

o
o

R+S Add

S-R-1 |Subtract (1's comp)
R-S-1 Subtract (1l's comp)
Logical inclusive OR
Logical AND

Logical complement AND
Logical Exclusive OR
Logical Exclusive NOR
ADD + 1

SUBTRACT (2's comp)
SUBTRACT (2's comp)

- O - O - O - O
o0 » » WO WO

CN BIT
IRRELEVANT TO
LOGICAL FUNCTIONS

-
~MFErRRERRRRoOOOOGSOGSO|R2
- O O O HMMOHMMOIMOIHEHOHMH O

MM OO0 OOHKMIKMIEMIEMEOOO
- O O K MOOIHMKMI KMOOHMMO

Notes:

NC indicates NO CHANGE. o e
F indicates DATA OUTPUT OF .
CC indicates ALU CONDITION CODES-N,V,C,Z. Instruction Timing

CNP indicates UNPREDICTABLE. OUTPUT (SORC=0-4) 350ns
X indicates DON'T CARE. INPUT (SORC=5-7) 400ns

. ——

oY ke

OPCODE 2 Register/Immediate Operations

Description:

Allows the Q Register or any of the sixteen (16) GP Registers
to be loaded without a data fetch. Sixteen (16) leading zeros are
appended to the IMMEDIATE VALUE in the instruction format to
provide a 32-bit operand to the ALU. The second operand to the
ALU, the ALU function, and destination of the ALU output are
specified by the SORC, FUNC & DEST fields respectively. Any one of
the 16 GP registers may be specified by field B of the instruction
format. If field H (bit 28) is set, the 32-bit immediate operand
is shifted 16 bits end-around before being presented to the ALU.

e

OPCODE 2 REGISTER/IMMEDIATE OPERATIONS

i 31 30 29|28|27 26|25 24 23|22 21 2019 18 17 1615 14 13 12 11 10 98 76 54 3210
E | 0 1 0| H| SORC| DEST FUNC B IMMEDIATE VALUE (I)
| |
F |
| & Toad Toad | Load
| 8 DEST B Q Status {OPERATION DESCRIPTION
_t ! 25 24 23 ister |Register |Register
E: —
| 0 0 0 NC NC F/CC |Load Status Register only
i ¢ ¢ 1 NC F F/CC Load Q
l‘ : 010 F NC F/cC |Load B
| ¥ 3 3 r NC B/CC Load B; Load Status with B
] 1 0 of one NC F/CC |NOT RECOMMENDED
3 @ X CNP CNP F/CC NOT RECOMMENDED
3 3 0 CNP NC F/CC NOT RECOMMENDED
3 & 1 CNP CNP F/CC NOT RECOMMENDED
ALU SOURCE FUNC
SORC OPERANDS 22 21 20 |FUNCTION| OPERATION DESCRIPTION
27 26| R S 3
% of & 3 0 ol r+s |aDD
3 o 1lx 8 0 0 1| Ss-R SUBTRACT (2's comp)
1 ¢l x 0 0 1 0| R-S SUBTRACT (2's comp)
1 1)1 0 0. 251E RvS Logical inclusive CR
10 10 RAS Logical AND
1 0 1| Ras Logical Complement AND
5 1 1 0 R@S Logical Exclusive OR
28 OPERATION DESCRIPTION 1 1 11 Res Logical Exclusive NOR
NO SHIFT ON IMMEDIATE OPERAND
1 | SHIFT IMMEDIATE OPERAND 16 BITS END-AROUND
1
|
|
Notes:
1) NC indicates NO CHANGE. |
{ 2) F indicates DATA OUTPUT OF ALU. |
{ 3) CC indicates ALU CONDITION CODES-N,V,C,Z. |
4) CNP indicates UNPREDICTABLE.
| Instruction Timing |
{ *OPCODE 0 PROVIDES FASTER EXECUTION FOR SORC=0 ALL OPERATIONS 350ns
-57- i

OPCODE 3 Read Program Memory (PM)

Description:

Provides for loading a 32-bit word of data from the
program memory into any of the 16 GP registers. The register
loaded is selected by the B field. If TAG=0, the effective
address is taken from the DIRECT ADDRESS field. If TAG#0, the
effective address is the content (least significant 12 bits)
of the GP register specified by the TAG field. The status
register is loaded with the contents of the GP register specified
by the TAG field (for all values of TAG=0 thru F).

Bus parity is checked at the end of a read instruction
cycle; if an error is found, the CPU issues interrupt 5.

OPCODE 3 READ PROGRAM MEMORY (PM)

31 30 29|28 27 26|25 24 23|22 21 2019 18 17 16|15 14 13 12|11 10 98 7 6 543210

¢ 3 i 1 10t 210 .1 1 B TAG DIRECT ADDRESS

NOTES ON READ FORMAT: SORC=7, FUNC=3 must be chosen to provide the fastest means to
load the GP registers from the bus and is the only means supported by the clock. 1If
TAG ¥ O, DEST=3 must be chosen because this provides the fastest means to get GP
register contents (effective address) out to the CPU bus and is the only means
supported by the clock. If TAG=0, DEST=0-3 may be chosen; shifting is not supported
by the clock. Register Q may be loaded (DEST=1) from the program memory only if
TAG=0 (direct addressing). With DEST=3, the status register is loaded with the
contents of the GP register specified by the TAG field. If DEST¥3, the status
register is loaded with the ALU output (PM datav O). Regardless of DEST, the

four condition code bits of the status register will reflect the ALU output 5
(PM data v 0). 1

INSTRUCTION TIMING

ALL OPERATIONS 525ns

-58-

T P
s e i oo R S A Lo

'm ,-
-

OPCODE 3 Write Program Memory (PM)

Description:

Provides for storing the 32-bit content of any of the
16 GP registers into the program memory. If TAG=0, the
effective address is taken from the DIRECT ADDRESS field. If
TAG#0, the effective address is the content (least significant
12 bits) of the GP register specified by the TAG field. The
source register is specified by the B field to be one of the
16 GP registers. The contents of the 16 GP registers and
status register are not changed.

OPCODE 3 WRITE PROGRAM MEMORY (PM)

31 30 29|28 27 2625 24 2322 21 2019 18 17 16|15 14 13 12|11 10 98 76 54 3210

‘\ N \\\\é
\\\\\i\\\\\\ B TAG DIRECT ADDRESS

0.3 26 ¢ 010 1

NOTES ON WRITE FORMAT: SORC must be chosen any value 0-4 to indicate to the clock
that the instruction cycle is an outbound (write) operation. Source operands to
the ALU are irrelevant because the ALU is being bypassed (DEST=3) and neither B,Q,
nor status registers are being loaded (clock is inhibited to 2901 and status
register). For the same reasons, the FUNC field is irrelevant. The DEST field
must be chosen to be 3 because this provides the fastest means to get GP register
contents out to the CPU bus and is the only means supported by the clock. The

contents of the Q register can not be written to the program memory.

INSTRUCTION TIMING

ALL OPERATIONS 650ns

-59-

L PE———

OPCODE 4 External Function Control (EFC)

Description:

Provides for the control and/or interrogation of sixteen
(16) bistable elements via the external function (EXF) logic. An
external function code (8 bits wide consisting of the XFDA, NS
and SR fields) is issued to the EXF logic during the instruction
cycle. The external function device address (XFDA) field specifies
the element to be controlled and/or interrogated. The new state
(NS) field defines whether to set, clear, nop, or toggle the
specified element.

The interrogation is achieved by returning a sense bit from
the specified element to the program control unit (PCU). If the
sense bit is one, the next instruction in sequence is skipped; if
the sense bit is zero, the next instruction in sequence is
executed. The generation of the sense bit is defined by the sense
request (SR) field. If SR=1, the sense bit reflects the true
state of the element (one if one, zero if zero); if SR=2, the
sense bit reflects the complement state of the element (one if
zero, zero if one). SR=0 or 3 generate the sense bit independent
of the state of the element.

The external function code can both control and interrogate
an element in the same instruction cycle. The sense bit generated
is determined by the state of the element before it has made its
transition to the new state.

-60-

OPCODE 4 EXTERNAL FUNCTION CONTROL (EFC)

31 30 292827 26 25 24 23 22 21 20§19 18 17

Y 40 o RC
XFDA NS

7 6 5 4| SPECIFIED ELEMENT 3 2| NEW STATE
0 0 0 0| INTERLOCK 0 o o/ crear
0001 3 0o 1 |nop
0010 2 1 0} TOGGLE
0011 3 1 1| ser
0100 4

0101 5

0110 6

o111 7 Pl
1000

1001 0 0] 2ERO
vl 0 1|ONE IF ONE
A e 1 0| ONE IF ZERO
11 0 0| REPEAT COUNTER 1 1]ONE

110 1| MULTIPLY MODE FF

1110/cs pTR

111 1|ACTIVE FF

NOTES:

1)
2)

The EFC instruction must reside at an odd address in the program
memory (program counter and sense bit OR'ed to achieve skip).
Two of the elements addressed by the XFDA field are not

bistable elements - the repeat counter & condition stack pointer
(CS PTR). The repeat counter provides for the repetitive
execution of an instruction; the CS PTR is used in conjunction
with a 4x36 RAM file to implement the status (register) stack.
The repeat counter is an B8-bit counter whose value is normally
zero. When an EFC instruction is executed to set this element,
the value in the repeat count (RC) field is loaded into the
counter, causing the PCU to repeat (execution of) the
instruction following the EFC instruction for RC+2 iterations.
The PCU repeat mode exits with the repeat counter back at zero.
The CS PTR is a 2-bit counter which points to the word currently
being accessed in the 4 word status stack. The CS PTR can be
initialized to zero by an EFC clear instruction. The EFC set
instruction will cause the CS PTR to decrement by one (typically,
bumping the CS PTR would be done by OPCODE 5). The state of
these counter elements will return a zero/nonzero value as the
sense bit

-61-

16 15 14 13 12 11 10 9 8|7 6 5 4|3 2|1 0

NS |SR

INSTRUCTION TIMING

SKIP OR NO SKIP 350ns

ymeiay

OPCODE 5 Interrupt Control

i ; Description:

{ Provides control of the Priority Interrupt Controller (PIC)
‘ and status (register) stack. The Interrupt Control Command (ICC)
field defines the PIC operation. Many PIC operations involve the
CPU registers. Loading and reading the mask register and status
register within PIC is achieved by data transfers over the bus
between the PIC and CPU. The source to the bus is specified by
the ICC field. No direct path between PIC and PM is provided.

CPU operation is controlled by the A,B,SORC,DEST, and
FUNC fields. Any two of the 16 GP registers may be specified
via fields A and B. Two source operands to the ALU, the ALU
function, and destination of the ALU output are specified by
the SORC, FUNC, DEST fields respectively.

Bumping the status stack is controlled by the stack status
command (SSC) field. If the SSC field specifies to push or pop !
the status stack and the DEST field specifies to load the status
register (both in the same instruction cycle), the bump will
precede the load. The status stack is 4 words deep; if the bump
causes the stack to overflow or underflow (pop when empty), the
CPU will issue interrupt #4.

ko

OPCODE 5 INTERRUPT CONTROL

31 30 29|28 27 26|25 24 23|22 21 2019 18 17 16|15 14 13 12|11 10 9 8|7 6|5 4 3 2 1 0
2 0) SORC DEST FUNC B A ICC SCC N\ NN
Load Load Load |Output to 505(47
DEST B Q Status |(if enabled OPEPATION DESCRIPTION
25 24 23 |Register |[Register|Register| by ICC)
0o 0 o0 NC NC NC F NOP
o 0 2 NC F F/CC F LOAD Q
01 o0 3 NC F/CC F LOAD B
g 1 2 4 NC A/CC A LOAD B; LOAD STATUS WITH A
1 0 0jar/2 NC F/CC ! 2 SHIFT B TOWARDS LSB
1 0 1jaF/2 s Q/2 F/CC F SHIFT B & Q TOWARDS LSB
1 1 0]es 2r NC F/CC) SHIFT B TOWARDS MSB
1 1 1] s 2F 4Q/2 F/CC P SHIFT B & Q TOWARDS MSB
ALU SOURCE FUNC
- gg‘g‘ O:EN‘S)S 22 21 20 | FUNCTION | OPERATION DESCRIPTION
0o 0 ofla Q 0 0 0 R+S ADD
G e B 9 0 X S-R SUBTRACT (2's comp)
o I ola Q ¢ x..0 R-S SUBTRACT (2's comp)
o 1 1le B 0 1 1 RvS Logical inclusive OR
1 6 ole A) R R RAS Logical AND
1 0 1| *Bus A £ 0.2 RAS Logical complement AND
1 1 o] *BUS @ 1 1 0 Res Logical exclusive OR
1 1 1| *BUS 0O) | lj ReS Logical exclusive NOR
& Logical zero shift only; if SORC=5-7, ég:g:ggpr o,
result is unpredictable. COMMAND TO |OPERATION DESCRIPTION
* Valid only if ICC=6 or 7 11 10 9 8| BUS
O 0 0 0| NONE MASTER CLEAR
0 0 0 1| NONE CLEAR ALL INTERRUPTS
0 010 CPU CLEAR INTERRUPTS FROM BUS
0 01 1| NONE CLEAR INTERRUPTS FROM MASK REGISTER
0 1 0 0| NONE CLEAR INTERRUPT, LAST VECTOR READ
STATUS 0 1 0 1 |NONE READ VECTOR; LOAD STATUS REGISTER TO V+1
352 g’f,gﬁ;,m 0 110| PIC (READ STATUS REGISTER
¢ 212 PIC READ MASK REGISTER
e i 1 0 0 0 | NONE SET MASK REGISTER
i . 1 001 CPU LOAD STATUS REGISTER
gl S 1 610 CPU BIT CLEAR MASK REGISTER
. — b W CPU BIT SET MASK REGISTER
1 1 0 0 |NONE CLEAR MASK REGISTER
1 1 0 1 |NONE DISABLE INTERRUPT REQUESTS
¥ 318 CPU LOAD MASK REGISTER
1 111 |NONE ENABLE INTERRUPT REQUESTS

NOTES:

1) NC indicates NO CHANGE
2) F indicates DATA OUTPUT OF ALU.

3) CC indicates ALU CONDITION CODES-N,V,C,Z.

4) X indicates DON'T CARE

INSTRUCTION TIMING

ALL OPERATIONS

400ns

g o onim 2 O I i,

g
i

OPCODE 6 PC Stack Control

Description:

Transfers program control to the instruction pointed to
by the jump select (JS) field. The JS field defines the effective
address (EA); for all values of JS, the next instruction is fetched
at EA and the PC is loaded with EA+l,

JS=2 causes the current contents of the PC (will contain
address of next instruction in sequence) to be pushed onto the PC
stack; EA is defined to be the DIRECT ADDRESS field of the
instruction.

JS=3 defines the EA to be the PC stack; at the end of the
instruction cycle, the PC stack is popped.

JS=1 defines the EA to be the contents of the Interrupt
Vector Hold Register (IVHR); the PC stack is unchanged.

JS=0 is used to pop the PC stack; the EA is defined to be
the current contents of the PC.

OPCODE 6 PC STACK CONTROL

=

13 12|11 10 98 76 543210

DIRECT ADDRESS

SOURCE OF

JS EFFECTIVE BUMP OPERATION DESCRIPTION
25 24 | ADDRESS PC STACK

00 PC POP POP PC STACK

0 1 IVHR NC JUMP TO INTERRUPT HANDLER
1 O | DIRECT ADDRESS | PUSH JUMP TO SUBROUTINE

) S PC STACK POP RETURN FROM SUBROUTINE
NOTES:

1) NC indicates NO CHANGE
2) X indicates DON'T CARE
3) PC indicates PROGRAM COUNTER

-65-

INSTRUCTION TIMING

ALL OPERATIONS 300ns

D iRk

el

l .

OPCODE 7 Conditional Branch

Description:

Transfers program control conditional upon status register
bits (V,N,Z,C,0-31). Eighty different tests are encoded by the
CC SEL, REF, TS and BIT SEL fields. If the test condition is
satisfied, instruction executicn branches to the instruction
pointed to by the DIRECT ADDRESS field. If the test condition is
unsatisfied, instruction execution continues with the next
instruction in normal sequence.

Either condition code tests or bit tests are enabled by
the test select (TS) bit. Condition code select (CC SEL) chooses
one of eight tests on condition code; branch occurs if test
output is equal reference (REF) bit. Bit select (BIT SEL)
chooses one of thirty-two (0-31) bits in the status register;
branch occurs if selected bit value equals reference bit.

P

OPCODE 7 CONDITIONAL BRANCH

31 30 29 [28]27 26 252423 22{2120 19 18 17 16|15 14 13 12111 1098 76 5 43 210

e e —

AL
3 ry - g 3| mrrse N \%\\\\s\\\\\\§§ DIRECT ADDRESS
\zo 19 18 17 16| SELECTED BIT
[0 0 0 0 o 0
0. .00 0.1 i
1| TEST SELECT ol oo 1 o 2
0] CC SEL/REF g 0ROV T 1 3
1| BIT SEL/REF 0 0 1 0 0 4
L .
L °
L4 °
S IR A | 30
R | (R | 31
T
cC saL. W TOGICAL CONDITION
(BRANCH IF | FOR BRANCH OPERATION DESCRIPTION
27 26 25/24 |EQUAL REF) (BRANCH ON TRUE)
0o 0 ofo 0 1 UNCONDITIONAL BRANCH
0 0 o1 0 0 NOP (NO BRANCH)
0 0 1|0 v v BRANCH ON NO OVERFLOW
(0 W1 6 v v BRANCH ON OVERFLOW
¢ .2 0RO N N BRANCH ON POSITIVE
0 1 01 N N BRANCH ON NEGATIVE
0 Xpo z Zz BRANCH ON NOT EQUAL (ZERO)
6.k k2 b z BRANCH ON EQUAL (ZERO)
1 0 o}o c & BRANCH ON NO CARRY; HIGHER OR SAME .
1 06 of: € c BRANCH ON CARRY; LOWER a
2 0 1bo veN veN BRANCH ON GREATER OR EQUAL (ZERO) "
3.0 FEE veN VeN BRANCH ON LESS THAN (ZERO) .
R LR TVeN)vE (VeN) vz BRANCH UN LESS OR EQUAL (ZERO) *
B nk <0kS TVeN)vZ (VaN)AZ BRANCH ON GREATER THAN (ZERO) *
r 32 XF0 Zve ZvC BRANCH ON LOWER OR SAME N
A 1L e ZAC BRANCH ON HIGHER a
-
1
|
3
A = AND i
; = ::g:gi‘vm! g: Instruction Timing j
* . SIGNED 2's COMPLEMENT ARITHMETIC ASSUMED BRANCH CONDITION NOT MET 200ns !
s - UNSIGNED ARITHMETIC ASSUMED BRANCH CONDITION MET 300ns :
wb7-

| 3
i ,,«‘um.wﬂf_g,_—-—'_M

SECTION IV
THE DISPLAY PROCESSOR

e FUNCTIONAL DESCRIPTION

The Display Processor (DP) performs two separate functions
in the feasibility model. These are referred to as the application
and support roles. During operation as a passive detection system
the application responsibility is to display a list of emitter
beams currently active in the environment. This 1list can be
presented via the system CRT. The source for this list is the
communication processor which reports to the DP both new emitters
found by the slaves and old emitters deleted from the preprocessor
file. For the feasibility model development, the DP consists of
a PDP-11V03 minicomputer supported by a CRI line printer and a
dual floppy disc drive. The hardware interface between the DP and
the multiprocessor is shown in Figure 18.

In a full scale operational system the DP responsibility
would be expanded to include such functions as scan rate determin-
ation, ranging, identifying, threat evaluation and passive/active
system control. Such expansion would most easily be accomodated
by partitioning the tasks among several processors which are
incorporated into the multiprocessor structure. Although no single
task above represents a severe processing load from the standpoint
of input rates or response time it is anticipated that the total
load is sufficient to warrant the use of more than one processor.

The support function of the DP is as a program development
aid and a diagnostic tool. In addition to the line printer and
CRT mentioned above, a dual floppy disc and card reader interface
are used to support this mode of operation.

The program development tool consists of a set of routines
which run on the DP and effect interrogation (and modification) of
the global memory (communication bank), any program memory, and the
various registers within any of the microprocessors. These routines
are collected into a program called MAPAID which is further
explained below.

-68-

Lo b o

L e Tt e e R b Mern R e e a i it e A e e e L R o e e w

ﬁ weaberg 3¥20|g LeuoL3}Oouny 320JUdJIU] A0SS320ud Aejdsitq/40ssad0udi3|ny - g1 @4nbiL4

(£0ATT-d0d)
l..lll dyw I' _I|l ¥0SS320¥d W3ILSAS

P %7019
2¢
<+« ’ ¢t »
viva
¥344ng
zo_»<u_z=::mu ¥31S193Y
i o o HYaW
yaay
1404 91
A ¥ —
405532034
WILSAS
¥31S193Y ; -
SNE ViVQ <ot Tvaw XNW3a 8, sxwm -
XNW X
SN8 GNVWWOI ..Jr 2], M
91 3118Y2
e o /ST
7 yil 91
T SYIATIISNVYL
sng
4315193y ¥344n8 4/1
YOYH
0-nd? My 1) A
- &
| 1-nd) ¢ 103735
g ¥-0d) NndJ
| $-nd) Y
\—\ J
S1dNYYILNI| ¥3LSTIOIY
YSONW 1041N024/1

Sl o Lds ok aaaihios ol o s d o ne gl

R T Ty T T W g e R P e TP g T e - ¥,

The MAPAID provides an online debug capability for the
MAP programmer. The MAPAID resides in PDP11VO03 memory to interpret
operator keyboard commands, allowing the operator to access/control
MAP CPU's and memories.

A summary of commands available to the operator is shown in
Table V. The input enclosed in brackets [] is optional. The A
symbol, X, and 0 represent the keyboard space bar, hex character,
and octal character respectively.

The MAPAID indicates its readiness to accept an operator
command by outputting a double asterisk (**) on the display CRT
prompt. The operator must follow all input commands by a carriage
return; the command is not sent to MAPAID till the carriage return
is depressed. A single character may be deleted by depressing the
delete key and the entire line may be deleted by typing cntrl U.

Several MAPAID commands have a prerequisite (i.e., a CPU
must be halted prior to inspecting the contents of one of its
general purpose registers (GPR). If this prerequisite is not
satisfied, MAPAID will question the operator's command by printing
a "CPU @ RUN" message and abort the command.

To use MAPAID with PDP11vV03 RT-11, the operator console
must be under control of the DEC RT-11 Keyboard Monitor - DOT(.)
prompt. The operator must type .RAMAPAID and MAPAID will load,
assume control, and print the double asterisk (**) prompt. At
any time MAPAID is waiting for operator input (**), the operator
may type cntrl C and control will return to the RT-11 keyboard
monitor. If MAPAID is busy processing a command (i.e., dump to
line printer), typing cntrl C twice will cause control to be
returned to the RT-11 keyboard monitor.

A detailed description of each MAPAID command follows.
A glossary of frequently used terms can be found in Table VI.

W ¥3ILIVYIYHI TV¥LI0 - 0
YILOVYYHI X3IH - X
¥vg 3I¥dS Q¥V0gAIN - ¥ "@ILTYH GNY QILIINNQD 34 ATSNOIA3Yd LSNW NdI (2
ﬂ LNdNI T¥NOILdO - [] *@3L23INNOD 39 ATSNOIAIYd LSNW Ndd (T
02 AYOWIW TT-IST dWNna - 00000-00000va/[:A3a]
61 W9 JINYHI/LI3IASNI ‘dWNa % [[xxxx- xxxxv]a/[:A3qa]
81 JLLINSIA WO¥4 WO aY01 - [Lx3-JwyN114[:A30]991
L1 Wd JINYHO/LIIASNI ‘dWna (2 ([xxx-1xxxv]d/[:A30]
91 J113NSI0 WOY¥4 Wd QY01 (2 {1x3)JwyN114[:A30]Vd1
51 Sd ® “2d “¥YI dWna (2 1/[:A30] :
€1 ¥31SI193¥ D NdI I9INYHI/LI3dSNI (2 0/[:A3a] ~
€1 SY3ILSIDIY d9 NdI IINYHI/LI3IdSNI‘dWna (2 [[xx- xxv]4/[:A3q]
21 L1IVH 01 Ndd ¥04 LIVM (1 [xxx¥] (L1]VM
1 300W NOILINYLSNI 3I19NIS 378Y¥SIC (2 as
01 300W NOILONYLSNI 3TINIS 379VN3 (2 3s
G Ndd IZITVILINI (1 135 3
8 NOILNI3X3 3IANILNOD (2 (a33204])4
L XXX SS3YAAY Wd LY NOILND3XI L¥VLS (2 xxxv[1yv]Ls
9 NOILAJ3X3 LIVH (1 (11]vH
g Nd9 LOINN0J/12373S - [xv] [n]dd
39vd NOILONNd S3LON LYW¥04 ONYWWOD

e

Adewwns puewwo?) QIVdYW

A dlqe}

Y P TR T UTEN T e 2ioe
—

| Table VI
i § MAPAID Symbol Definitions

; i (] OPTIONAL INPUT
3
a KEYBOARD SPACE BAR
X HEX CHARACTER
0 OCTAL CHARACTER
PM PROGRAM MEMORY
GM GLOBAL MEMORY
GPR GENERAL PURPOSE REGISTERS (RO-RF, & RQ of CPU)
IR INSTRUCTION REGISTER
PC PROGRAM COUNTER

PS PROGRAM (COUNTER) STACK

—— P g 28

1) cp[u)lax] SELECT/CONNECT CPU

ARG X specifies CPU to be connected to operator console. After
making connection, MAPAID responds by printing CPU run/halt status
and PM size. If ARG X is omitted, command is assumed to be an
operator inquiry asking which CPU is currently connected.

2) HA[LT] HALT EXECUTION

This command is used to stop execution of the selected CPU. The
MAPAID responds by returning a PM address (NNNN) to the operator's
console. The instruction at this PM address has not been executed
yet and will be the first instruction to be executed if execution
is continued. The instruction at NNNN has already been loaded in
the IR and the PC contains NNNN+1. If the halt address message

at the operator's console is preceded by a question mark, the

CPU was already in the halt state when the input command was
received.

3) ST[ART]aXXX START EXECUTION AT PM ADDRESS XXX

This command specifies to a CPU to begin execution at PM address
XXX. A CPU must have been previously selected and halted.

4) P[ROCEED] CONTINUE EXECUTION

This command specifies to a CPU to continue execution using the
current PC and IR contents. A CPU must have been previously
selected and halted.

5) RE[SET] INITIALIZE CPU

This command will cause initialization of the selected CPU.
Initialization consists of executing instructions at PM addresses
5, 6, & 7 to achieve a master clear to the 2914 interrupt logic
and asserting the hardware master reset line.

w73

5) RE[SET] INITIALIZE CPU (continued)

Upon completion of the reset, the CPU will be halted at PM

address 7. The halt/enable flipflop will be at halt

The interlocks, repeat counter, condition stack pointer, and
multiply mode flipflop will all be cleared to zero. All sight
interrupts will be cleared; the interrupt mask register, interrupt
status register, and interrupt enable flipflop are all cleared
making the CPU ready to respond to any interrupt.

Single instruction mode will be maintained if enabled. An
alternative command format is X followed by carriage return.

6) SE ENABLE SINGLE INSTRUCTION MODE

This command puts the selected CPU into the single instruction
mode of operation. In this mode, each time program execution
is initiated (via start or proceed command), the selected CPU
executes one instruction cycle and MAPAID responds by returning
the halt address to the operator console.

7) SO DISABLE SINGLE INSTRUCTION MODE

This command terminates the single instruction mode of operation.

8) WA[IT][axXX] WAIT FOR CPU TO HALT

This command is intended to facilitate operation of MAPAID under
batch control. The WAIT command does not return control (the
prompt) to the operator console until the selected CPU has halted.
If the ARG XXX is specified and the batch handler (BA) is loaded
(in PDP11V03 memory), the CPU PM halt address and ARG XXX are
compared. If they are equal, batch variable "G" is cleared, set
to -1 otherwise. If ARG XXX is omitted from command string, batch
variable "G" is unchanged.

-74-

ke e o SR Ul s L i

9) [DEv:]/R[Axxl[-xxz]) DUMP , INSPECT/CHANGE CPU GP REGISTERS.

If both arguments, Xx1 and XXZ’ are present, the command signifies
a dump of the CPU GP registers. XX1 specifies the first GPR to
dump; XX, specifies the last GPR to dump. The dump is made to the
operator console by default but the command may be preceded by a
device dataset steering the dump to the line printer.

If only the first argument, XXq5 is present, the command signifies
an inspect/change of one CPU GPR. The argument specifies the
register to be opened (display contents). A carriage return (CR)
closes the register; a line feed (LF) closes the register and opens
the next one; an up arrow (f) closes the register and opens the
previous one. The CR, LF, or UP ARROW, either one, may be

Preceded by a 32-bit hex argument, which would be deposited into
the open register before it's closed.

If no arguments fcllow the /R command, the last register closed is
reopened.

An inspect $§ change on CPU register RQ may be requested by the

/Q command (no argument) or by inputting Hex 10 for the /R argument
xxl'

When the /R (or /Q) command is used to change the contents of a

CPU GPR, the condition codes are loaded accordingly to reflect

the new register contents. Inspection of the CPU GPR contents does

not affect the condition codes.

The CPU must have been previously selected and halted.

10) [DEV:]/1 DUMP IR, PC & PS

This command causes the current contents of the instruction
register (IR), program counter (PC), and top address of the program
stack (PS) teo be printed to the operator's console. The command
may be preceeded by a device dataset steering the dump to the

1ine printer. The CPU must have been previously seiected and halted.

~75w

R e

B

R e P ——

11) LPa[DEV:JFILNAM[.EXT] LOAD PM FROM DISKETTE

This command signifies to load the program memory from the diskette
file specified in the argument. The argument is a standard DEC
device dataset. Default device is DK, default extensijon is MEC.
The CPU must have been previously selected and halted.

Diskette file format shown in Figure 19.

12) [DEV:]/P[AXXXI -xxx?_]] DUMP, INSPECT/CHANGE PM

If both arguments, XXX1 and XXXZ, are present, the command signifies
a dump of program memory (PM). The XXX, specifies the first PM
address to dump; XXX2 specifies the last PM address to dump. The
dump is made to the operator console by default but the command may
be preceeded by a device dataset steering the dump to the line
printer or diskette (file format at Figure 19).

If only the first argument, XXXl, is present, the command signifies
an inspect & change of one PM address. The argument specified

the PM location to be opened (display contents). A carrijage return
(CR) closes the location; a line feed (LF) closes the location

and opens the next one; an up arrow (t) closes the location and
opens the previous one. The CR, LF, or up arrow, either one, may
be preceded by a 32-bit hex argument, which would be deposited

into the open location before it's closed.

If no arguments follow the /P command, the last PM location closed
is reopened.

The CPU must have been previously selected and halted.

13) LGA[DEV:]JFILNAM[.EXT] LOAD GM FROM DISKETTE

This command signifies to load the global memory from the
diskette file specified in the argument. The argument is a
standard DEC device dataset. Default device is DK, default exten-
sion is MEC. Diskette file format shown in Figure 19.

-76-

ST S ———

14) [DEV:]/G[AXXXX, [-XXXX,]] DUMP, INSPECT/CHANGE GM

If both arguments, XXXX1 and XXXXZ. are present, the command
signifies a dump of global memory (GM). XXXX1 specifies the first
GM address to dump; XXXX2 specifies the last GM address to dump.
The dump is made to the operator console by default, but the
command may be preceded by a device dataset steering the dump to
the line printer or diskette (file format at Figure 19).

If only the first argument, XXXX1 is present, the command signifies
an insert & change of one GM address. The argument specifies

the GM location to be opened (display contents). A carriage

return (CR) closes the location; a line feed (LF) closes the
location and opens the next one; an up arrow (t) closes the location
and opens the previous one. The CR, LF, or up arrow, either one,
may be preceded by a 32-bit hex argument, which would be deposited
into the open location before it's closed.

If no arguments follow the /G command, the last GM location
closed is reopened.

15) [DEV:]/DA000001-000002 DUMP LSI-11 MEMORY

This command signifies a dump of LSI-11 memory. Unlike other
MAPAID commands, input arguments and output dumps are in octal
format. The 000001 specifies the first LSI-11 address to dump;
000002 specifies the last LSI-11 address to dump. The dump is made
to the operator console by default, but the command may be preceded
by a device dataset steering the dump to the line printer.

Dump to diskette or inspect and change of LSI-11 memory are
provided by DEC system software. Dump to diskette is provided

by the SAVE command to the keyboard monitor; inspect and change
is provided by the console ODT microcode or ODT software utility.

-77—

"9/pue d/°97°d7 Spuewwo) QIVdYW Y3ILM P33 eLO0SSY S| L4 3333)SLC 40 RWA04 - I

(viva)
%3078

Xqz+1™ qz++ - +1qz+40qz+4952
*S0¥3Z HLIM 0300Vd %2078
LSY1 40 NOIL¥Od GISANA 3HL HLIM
$X3078 Q¥OM 952 OLNI dn N3INO¥E Si
VIV T %2078 3114 40 QHOM LSyl
LV SNI938 V1VQ "S¥0LD3A dvW QY01 O1

AT3AISNIOX3 Q3LVI1G30 SI 0 %2078 3714

L

ﬁ 9z+%9z+952

% (viva)
Xq+¥e yaay %2019

1-"q+*e yaay

ﬁ : SaM 952 (¥1va)
¢*%e yaav 4 2078

I+%e waay
L e waav
=

& 5118 26 —
AYOW3W 139¥VL

AYVYNIS Q3LLVWYO04 VIVQ LIG 9T = g
SITYOWIN L3I9YYL 40 YIGWAN = w
AYOW3W L39¥VL 40
(118 2€) SQYOM 40 ¥IGWNN = q SaM 952
AYOWIW 139¥¥L 40 SS3IYaQy = ¢©

puaba

1
1
0q (dvW avo1)
O 0 %2018

o~Ne

«S118 9T
ERDERRELT Y

The program development function of the DP is also
supported with a simple assembler (termed MAPASM) for the multi-
processor. The purpose of the MAPASM is to expedite the writing
of application software for the multiprocessor. The assembler

is written in FORTRAN with a punch card source input. A listing
of the assembly language mnemonics appear in Table VII. This
language encompasses a subset of the instructions available at the
machine level. The free form instruction format for MAPASM state-
ments is shown in Figure 20. The assembler includes the capability
to define and add instruction to the language as well as simple
syntax test and error message capability. A listing of error
messages appears in Table VIII.

2. HARDWARE DESCRIPTION

The DP consists of a Digital Equipment Corporation
PDP-11V03 computer with 24K of dynamic memory, hardware multiply/
divide, dual floppy disc (RXV11l), line printer (LA180), CRT (V155)
and a card reader interface. The supplied software includes both
assembly language and FORTRAN programming language and the RT-11
operating system. The multiprocessor assembler and diagnostic
aids will run under the single job entry version of RT-11 rather
than the foreground/background mode of operation.

P+ . ——————e

[] BRACKETS INDICATE OPTIONAL

COLUMN NUMBERS ARE

coL 1 coL 9 coL 15 COL 36 SUGGESTIONS ONLY;
| l | FREE FORMAT ALLOWED.
[Leeeeed) [MMmm] [AanaAAL, AnAAAA]] sccccce
/
LABEL IS ALL CHARACTERS
SIX CHARACTERS FOLLOWING A SEMICOLON
MAX FOLLOWED CONSIDERED TO BE
BY COLON; FIRST COMMENTS.
CHARACTER MAY
NOT BE
NUMBER (0-9) MNEMONIC IS
OR ($) DOLLAR FOUR CHARACTERS
SIGN. MAX FOLLOWED
BY SPACE.

(DIRECTIVE IS
FOUR CHARACTERS
MAX FOLLOWED

BY PERIOD)

ARGUMENT FIELD MAY

BE LEFT BLANK, CONTAIN
ONE EXPRESSION, OR TWO
EXPRESSIONS SEPARATED BY
COMMA.

AN ARITHMETIC EXPRESSION (EXP) MAY BE ANY COMBINATION OF THE
FOLLOWING WHOSE FINAL VALUE LIES WITHIN A 16 BIT RANGE
(-32767 TO +32767):

+,-,% ARITHMETIC OPERATORS (* EVALUATED FIRST, THEN LEFT TO RIGHT)
LABELS

DECIMAL NUMBERS (-32767 TO +32767)

$ INDICATING PRESENT ADDRESS

RO THRU R15 INDICATING CPU GP REGISTERS

ON LISTING OUTPUT, ERROR MESSAGES PRECEED TARGET SOURCE LINE.

Figure 20 - MAPASM Instruction Format

- — o — . <o e

Table VII

Multiprocessor Assembly Language Mnemonics

MNEMONIC COMMENT

CLR CLEAR REGISTER

LRR LOAD REGISTER TO REGISTER

CoM COMPLEMENT REGISTER

INC INCREMENT REGISTER

DEC DECREMENT REGISTER

NEG NEGATE REGISTER

ADD ADD REGISTER TO REGISTER

SUB SUBTRACT REGISTER TO REGISTER

AND LOGICAL AND

XOR EXCLUSIVE OR :

ASR ARITHMETIC SHIFT REGISTER RIGHT
ASL ARITHMETIC SHIFT REGISTER LEFT
ROR ROTATE REGISTER RIGHT

ROL ROTATE REGISTER LEFT

MPQ MULTIPLY BY Q REGISTER VALUE

LQR LOAD Q FROM REGISTER

LRQ LOAD REGISTER FROM Q

NOP NO OPERATION

RD READ EXTERNAL DEVICE

WD WRITE EXTERNAL DEVICE

WE,+ WRITE EXTERNAL DEVICE AND INCREMENT REGISTER
WD,- WRITE EXTERNAL DEVICE AND DECREMENT REGISTER
LI LOAD IMMEDIATE

LIH LOAD IMMEDIATE HIGH HALF WORD

Al ADD IMMEDIATE

SI SUBTRACT IMMEDIATE

CI COMPARE IMMEDIATE

LD LOAD REGISTER FROM PROGRAM MEMORY

(PROGRAM MEMORY ADDRESS IN INSTRUCTION)

MNEMONIC

Table VII (cont.)

COMMENT

LDX

LDQ
St
STX
RPT
HALT
EXF
JSR
RTS
BBC
BBS
BR
BVC
BVS
BPL
BMI
BNE
BEQ
BCC
BCS
BGE
BLT
BLE
BGT
BLOS
BHI
BHIS
BLO

LOAD REGISTER FROM PROGRAM MEMORY INDEXED
(PROGRAM MEMORY ADDRESS IN A REGISTER)

LOAD Q FROM PROGRAM MEMORY

STORE REGISTER IN PROGRAM MEMORY
STORE REGISTER IN PROGRAM MEMORY INDEXED
REPEAT NEXT INSTRUCTION N TIMES
SUSPEND EXECUTION

MANIPULATE EXTERNAL FUNCTION FLAG
JUMP TO SUBROUTINE

RETURN FROM SUBROUTINE

BRANCH IF BIT CLEAR

BRANCH IF BIT SET

BRANCH UNCONDITIONALLY

BRANCH IF OVERFLOW IS CLEAR
BRANCH IF OVERFLOW IS SET

BRANCH IF PLUS

BRANCH IF MINUS

BRANCH IF NOT EQUAL (TO ZERO)
BRANCH IF EQUAL (TO ZERO)

BRANCH IF CARRY IS CLEAR

BRANCH IF CARRY IS SET

BRANCH IF GREATER THAN OR EQUAL
BRANCH IF LESS THAN (ZERO)

BRANCH IF LESS THAN OR EQUAL (TO ZERO)
BRANCH IF GREATER THAN (ZERO)
BRANCH IF LOWER OR SAME

BRANCH IF HIGHER

BRANCH IF HIGHER OR SAME

BRANCH IF LOWER

. S —

Table VII (end)

MNEMONIC COMMENT
DIRECTIVE

DC. DEFINE CONSTANT

DS. DEFINE STORAGE

EQU. EQUATE

PAGE MOVE TO TOP OF PAGE

EVEN. LOCATE INST AT AN EVEN ADDRESS

0DD. LOCATE INST AT AN ODD ADDRESS

ORG. DEFINE FIRST PROGRAM MEMORY ADDRESS

END. END OF SOURCE

NAME. XY X PROGRAM NAME

GEN. GENERATE NEW OPCODE (DEFINE NEW INSTRUCTION)

I R = N

e & O © B rFm .7 mo o x»

T e T S

Table VIII

MAPASM Error Key

ARGUMENT MISSING

CONSTANT COULDN'T BE EVALUATED

DOUBLE DEFINED LABEL

SOURCE LINE FORMAT ERROR

FIRST CHARACTER IN LABEL ILLEGAL

LENGTH OF EXPRESSION ELEMENT EXCESSIVE

LENGTH OF LABEL OR MNEMONIC EXCESSIVE

MNEMONIC UNDEFINED

ORG STATEMENT MISSING; PROGRAM CAN NOT BE LOADED
END STATEMENT MISSING; STATEMENT APPENDED
UNDEFINED SYMBOL IN ARGUMENT FIELD

EXPRESSION VALUE EXCEEDS FIELD WIDTH ALLOCATION
UNDEFINED DIRECTIVE

-84-

SECTION V
CONCLUSIONS AND RECOMMENDATIONS

3. CONCLUSIONS

The purpose of this effort was to establish the practicality
of multiprocessor systems for Electronic Warfare application. The
goal was to develop system concepts which would provide substantial
increases in system throughput without sacrificing the flexibility
of a conventional computer system.

Based on bench testing of the feasibility model, it can .
be concluded that it is practical to construct multiprocessor based
systems which can analyze from several hundred thousand to over a
million radar intercepts per second. The lower end of this range
can be directly supported by the feasibility model and requires
execution of approximately 20 million instructions per second
among its various processors to derive and track pulse trains.
The processing system occupies approximately one cubic foot. The
upper end of the performance range requires increasing the number
of microprocessors in the multiprocessor and repackaging the
preprocessor to support a higher clock rate. Typical projected
system input pulse rates and multiprocessor subsystem rates are
shown in Table IX, for various numbers of microprocessors in the
multiprocessor subsystem. These numbers are projections rather
than actual measurements because of the bench test equipment
provided very limited signal generation capability. However, short
bursts of over 200,000 intercepts per second were obtained for
testing. The projections of performance were based on observations
of processors idle time for sparse environments and close agree-
ment between the model performance and simulation prediction
performed under ESM HYBRID PROCESSING TECHNIQUES DEVELOPMENT
(Contract F33615-74-C-1101).

85~

pegad Lo L e Dl B S D i e e i A e S

e 1)

TABLE IX
PROJECTED PROCESSING RATES

e .t et

MULTIPROCESSOR
SUBSYSTEM INPUT SYSTEM INPUT
NUMBER OF PULSE RATE PULSE RATE
MICROPROCESSORS (INTERCEPTS/SECOND) (INTERCEPTS/SECOND)
2 24,000 240,000-480,000
3 42,000 420,000-840,000
1 4 57,000 570,000-1,140,000
5 69,000 690,000-1,380,000]
6 77,000 770,000-1,540,000
7 82,000 820,000-1,640,000
8 86,000 860,000-1,760,000

-86 -

e

{
|
|

This development program has also demonstrated that the
two classical multiprocessor drawbacks do not form a hinderance
for Electronic Warfare applications. These problems are treated
below. :

The first major hurdle to overcome in any multiprocessor
implementation is devising a method of synchronization for
communication among the various independent subsystems. In general,
when arranging for intercommunication between subsystems that do
not share a common time reference, it is impossible to avoid
generation of signals that are not logically defined during sampling
by one or the other subsystems. Discussions at the Workshop on
Synchronizer Failure (Washington University, St. Louis, MO; April
27-28, 1972) has revealed that a number of computer systems of
various manufacturers are subject to significant rates of system
failures resulting from unrealiable interaction between mutually
asychronous subsystems. The popular solution to this problem is
to lower the sampling rate (thereby reducing the number of failures
per unit time) and providing a means for system recovery. Whereas
this approach is adequate for low speed system peripherals, it is
not viable for multiprocessors configured to maximize throughput.
Therefore, an economic means had to be devised to support extremely
high interrogation rates between subsystems without synchronizing
failures. For example, in the feasibility model there are 9
independently clocked subsystems which must interact with each
other. These subsystems include; the 4 microprocessors, the pre-
processor, the 3 global memory controllers and the display processor.
Individual interrogation rates between various subsystem pairs range
from thousands to millions of interrogations per second. At the
system level this translates into 10's of millions of interrogations
per second. Prolonged operation of the feasibility model has
clearly demonstrated that the very high subsystem interaction rates
can be supported in a cost effective manner through proper hardware
design.

I -

P A ———

The second hurdle concerning multiprocessor use involves
maintaining software coordination among the various processors.
Simply stated "The cost of developing a complex operating system
capable of synchronizing a number of processor cperating
simultaneously has been demonstrated over the years to be over-
whelming". (Computer/Processors [for Electronic Warfare] NRL Report
8247, 15 Aug. 1978). Although the MAP effort did not attack the
broad problem of multiprocessor operating systems for general
applications; it did determine that for dedicated use in a master/
slave mode maintaining control and coordination among the various
processors is not an overly difficult task. This fact is best
exemplified by examination of the slave control executed by the
master (see Figure 14) which require less than 1000 instructions.
The slaves on the otherhand have less than 10 percent of their
code devoted to the mechanics of interprocessor control and
coordination. It is true however that communication protocal
must be carefully structured to avoid loss of coordination or
excessive overhead time penalities.

2. RECOMMENDATIONS

It is suggested that this beginning work be carried forward
in the following three areas:

First, it is recommended that bench testing be continued
with the use of denser simulated radar environments. This work
would further validate performance projections. It would also
allow the study of subsystem interaction when subjected to higher
input data rates which more closely reflect real world conditicns.
0f particular interest would be the dynamic behavior of data
buffers passed between subsystems of greatly different processing
speeds.

Second, the facility for the multiprocessor architecture

to handle exotic emitter types should be studied. This area of
investigation looks promising because the multiprocessor is well

"88~

AD=AO70 848 GOODYEAR AEROSPACE CORP AKRON OHIO F/6 9/2
MICROCOMPUTER ARRAY PROCESSOR. (U)
OCT 78 R H RIESs R A HUJAR» F C CARTY F33615-75-C-1179
UNCLASSIFIED 6ER=16565 AFAL=TR=78=157

END
DATE
FILMEC
8—179
Db

suited for concurrent execution of several complex algorithms on a
common data set with minimal shuffling of information. Thus,
several highspeed processors may be searching for different types
of exotic behavior concurrently.

Third, multiprocessor systems hold the possibility of being
the vehicle for implementing processing systems which are fault
tolerant. This results because microprocessors are sufficiently
low priced to allow redundancy of subsystems. This redundancy
also permits parallel execution of code for software fault
checking. Items to be studied include methods of fault deteciion.
modes of system recovery, and methods of automatic system recon-
figuration.

APPENDIX A
PREPROCESSOR SUPPORT ALGORITHMS

P S I ;

The algorithms appearing on the following pages are
executed by the communication microprocessor of MAP to support
f the preprocessor tracking function which is executed by pre-
processor firmware. The tracking and support algorithms execute
concurrently with the support algorithms assuming a background
role to the non-interruptable tracking function. The names of
: the support algorithms and their functions are given below
= followed by their flowcharts.

Preprocessor Initialization (PPINIT) - This routine is
initiated during the power up sequence and prepares the
preprocessor for its tracking operation. Its main
function is to establish initial parameter limits and
select the mode of operation. The end of the initiali-
zation phase contains an idle loop which is exited by

an interrupt request for service. Upon completion of
any service operation the idle routine is re-entered.

71

s 22 e 5

Preprocessor Clear Emitter File Memory (PCLREF) - This
routine searches the emitter file for old emitters which
are no longer being tracked by the preprocessor. This
routine also removes the old emitters from the preprocessor

file.

Preprocessor Watchdog Timer Service (PPWDTS) - This routine
establishes the basic iteration rates for all service

routines.

an

T en——

~90 -

Preprocessor Post-Delete Bit Map (PDBITM) - This routine
keeps track of all emitter file addresses which contain
valid emitter data.

Preprocessor Posting Algorithm (PREPST) - This routine
adds a newly detected emitter to the preprocessor emitter
file.

Following the flowcharts is a symbol definition listing
that defines the abbreviations used on the charts. The listing
is divided into separate parts, in sequence, reflecting the
order of the flowcharts.

-91‘

il o e i o M e

£ TR G AL A e o

f

TN WD PR S o T

[T

PPINIT

DISABLE INTERRUPTS

b

INITIALIZE CPW7
LTOATOL = 15 usec
PWTOL = 2
AQATOL = 2
PWK - 1 usec
DISPLAY SCALE = 0
HALT PP (bit 16=1)
INIT PP (bit 17=0
RUN PP bit 18-0
EN PP bit 19=0)
CLEAR RTC (bit 20=0)
DISABLE RTC (bit 21-0)
LOAD WDT (bit 22=0)
DISABLE IPC (bit 23=0)
MSB ADDRESS (bit 24=0)
COUNTER ENA (bit 25=0)
ADDRESS RESET (bit 26=0)
LOAD BYTE (bit 27=0)
RCYR BUF ENA (bit 28=0)

J

CPW7 —» CPR7

CPW7

HALT PP (bit 16=0)
ADDRESS RESET (bit 26=0)

B

INITIALIZE PP
(BIT 17=1)V,
CPW7 —» CPR7]

CPW7
CLEAR bit20=1)
DISABLE RTC (bit 21=1)
LOAD WDT (bit 22=1)
DIS (bit 23=1)

RUN PP
[(bit 18=1)VCPW7]

y

HALT PP
[(bit 16=1)VCPW7]

|

INITIALIZE CPW5

DISABLE WDT (=8000,)

CORREL ALL FREQ (1!008)
FPART = 7

RCVR BUF MEM RST (bit 26=1)

AT = 0
v

POST = 0
ENABLE LCAD WDT
[(bit 22=0)VCPW7 CPR7]

:

CPW5—» CPR5
Lc |

CLEAR RCVR BUF TEM RST
(bit 26=0

[cPus —» CPR5]

PREPROCESSOR INITIALIZATION (Sheet 1 of 3)

(PPINIT)

ET WDT INTERVAL
%4 msec »CPW5(bits 15-4

)

I

CLEAR DIGITAL DISPLAY
CLEAR INTERCEPT LATCH

B

RUN PP
[(bit 18=1)vCPW7 —» CPR]]

¢5,c4,c3,c2,C1=1,0,22,3,0
€5,C4,€3,C2,C1-—+» R6

;

0 —» AAR 0 —» CMOMH

0—»WC 0 —» CMAAF

256 —p FEW 0 —» CMPBF
0—»PBMAPn(n+0-*7) 0 —»CMIBC
0—»IPCSSR 0 —»RBUFID

0 —PEF 0 —RBUF1(Tb1.30
0 —»RTAT 0 —»RBUF2(Tb1.30
0—»BUFID 0 —pCMAWC
0—»PCIB 0 —»CMATIU(Tb1.32)
0—»ATWC 0 —»PEBPTR
0—»BFLCTR 0 —»PEBUF(Tb1.30)
00— WDTCTR MAXENT —»PSTCTR

D —»PSTCTR MAXCNT —»AGTCTR

0 —»IBRCNT 1000 —»ICTCNT

:‘

CPW7
LOAD WDT

(bit 22-0)

PREPROCESSOR INITIALIZATION (Sheet 2 of 3)

- 93-

(PPINIT)

CPW7—» CPR7

4 START WDT
i (CPW5—»CPR5)

v

MASTER CLEAR
INTERRUPTS

F BGNLP

POSTING INDICATOR

CLEAR LED 3
PSTCTR=MAXCNT

PSTCTR-1—» PSTCTR

2 I T RN

AGE TEST-DELETE

NO INDICATOR

CLEAR LED 1
AGTCTR=MAXCNT

AGTCTR-1—» AGTCTR

- L :

PREPROCESSOR INITIALIZATION (Sheet 3 of 3)

~94.

3 PCLREF

3

o INHIBIT PREPROCESSOR
BIT 19 OF CPW7 & CPR7=0

; [1023=mcTR]
0—BT1

0~—BT2
i 0-BT3

: |

SELECTIVELY SET
WRITE & ENABLE
REQUEST BITS

11 PCL1

INITIATE WRITE
1 MEMORY REQUEST
4 TO PREPROCESSOR

MCTR YES

v

NO

MCTR-1-MCTR

|

SUBROUTINE- '
SEQUENTIALLBZELEAEE THE PCL2
88 BIT BY 1 WO
PREPROCESSOR EMITTER EXIT

i FILE MEMORY.

PREPROCESSOR CLEAR EMITTER FILE

T e S

PATDLT

TURN ON AT LED

Iy

uc = RIGHT SHIFT(1) W
u = (PBMAPN + TWC)

ATD1
CLEAR LOWER HALF BW
MSK = X'00010000'

CLEAR UPPER HALF BW
MSK = X'000000001"'

ATD2
YES

v
ATWC=0
BCNT=0

AAR=16.WC+BCNT

I

SAVE: MSK,BW,BCNT

IS

ATS

PREPROCESSOR AGE TEST DELETE (Sheet 1 of 2)

-96-

e A T BB St o £

s o i

e

R e

ATD4

BCNT=BCNT+1

1N

[LEFT SHIFT(1) MsK

PREPROCESSOR AGE TEST DELETE (Sheet 2 of 2)

WC=WC+1

WC=0

ATDS8 l

TURN OFF AT LED

-97+

e) e y
FSSEBSS USROS SR, e

PATDLT

YES

SET LED 1 |

NO HALT

¥YES

CLEAR 7 LSB'S OF BT2
ADD (7 LSB'S OF AAR) TO BT2

s

BT2 —=CMATW+i
i=ATWC

s

ATWC=ATWC+1

|

SBT3 — CMATW+i
i=ATWC

:

ATWC=ATWC+1

TRANSFER OLD WORD SUB PROGRAM OF
PREPROCESSOR AGE TEST DELETE ROUTINE

-98-

e — e e T
il)

g S —————— . S i

—————————————

PPWDTS

INTERRUPT
DRIVEN

ENABLE INTERRUPTS

|

SAVE REG 0
SET LED 0

!

[iNPUT 2PC&STATUS]

[IPC —IPCSSR|

NO

WDTS1A ¢

BUFFER
FULL

ENABLE LOAD WDT
[WDT BIT 22 OF CPR7=0

¢

HALT WDT
(BITS (15-4) OF CPR5=X'8000']

WDTCTR+1

-=WDTCTR
0—=BFL

BFLCTR+1
«=BFLCTR
j—=>=CFL

WDTS1

ENABLE LOAD WDT
WDT BIT 22 OF CPR7=0]

PREPROCESSOR WATCHDOG TIMER SERVICE (Sheet 1 of 5)

-99-

e

LOAD WDT INTERVAL

& START WDT

’

INCREMENT COUNTERS BY 1:
c5,C4,C3,C2,C1

]

ITOR=50/SEC

0—=BUFID 1—=BUFID
0—=RBUFID 1—= RBUFID
RBUF2 —=— RBIDX RBUF1—= RBIDX

i

0-=PEBIDX

worsuh

[REIDX =1 |

DELAY

(1)=EPW1
I+1)—=EPW2
I1+2)—=—EPW3

J$3 =]

FETCH EMITTER
PARAMETERS
FROM CM

EPW1

PREPROCESSOR WATCHDOG TIMER SERVICE (Sheet 2 of 5)

NO 0?

-100-

YES

e

e 2 Bl e i<

PEBIDX —=P

v

EPW1—= PEBUF+p

EPW2 — PEBUF+p+1

EPW3 = PEBUF+p+2
p+3 —=p

4

p-=PEBIDX

PREPROCESSOR WATCHDOG TIMER SERVICE (Sheet 3 of 5) ;
-101- 3

di e g Wi b, a4
3 ‘i e B
E 1| -
i
t
! §

0 ITER=26/SEC
0—C2

ATWC —= CMANC

. 0——ATWC

. ;
: WDTS16 ;
ISSUE INTRPT
TO MASTER

.

SR BT - ek,

| PREPROCESSOR WATCHDOG TIMER SERVICE (Sheet 4 of §5) §

&
'

=102

ITER=10/SEC
0-=C3

INPUT MESSAGE
FROM MINI

RESTORE REGO

CLEAR INTERRUPT 3

CLEAR STATUS
ENABLE INTERRUPTS |—{CLEAR LEDO |

POP STACK
EXIT

PREPROCESSOR WATCHDOG TIMER SERVICE (Sheet 5 of 5)

-103-

ST IS S e A e s 2

1B

INHIBIT PREPROCESSOR
[BIT 19 OF CPW7&CPR7=0]

v

1—» CMPBF

13

INPUT INTERCEPT
BUFFER ADDRESS (SPC)

!

SPC—» IBRCNT

T

TEST MSB OF
ADDRESS

MSB NO

=0
7

ES

IB1

1—»MSB
(BIT 24 oF cPW7=1]

0—»MSB
(BIT 24 OF CPW7=0)

=

at ol

RESET ADDRESS COUNTER
& SET ENABLE BIT
BIT 26,19 OF CPW7=1]

'

CPW7—» CPR7

RESET ADDRESS & ENABLE PP

INTERCEPT BUFFER ADDRESS SELECTOR

SUBFUNCTION OF

WATCHDOG TIMER ROUTINE (Sheet 1 of 2)

-104-

CLEAR ADDRESS RESET
(BIT 26 OF CPW7&CPR7=0}

*': Y
1
|

3 SPC-1-# SPC

1023—» SPC(BIT 9-0)

ﬂ

SPC —» CMIBC \ 4

v

ISSUE INTERRUPT
TO MASTER - PROCESS
NEW BUFFER

|

CLEAR MSB OF SPC

:

PCIB + SPC-PCIB !

INTERCEPT BUFFER ADDRESS SELECTOR
SUBFUNCTION OF
WATCHDOG TIMER ROUTINE (Sheet 2 of 2)

~105~ i

USRS —

DR

$1,52,53=IPCSSR(BITS 18-16)

1 SENSE SW3 up

0

INH. RCVR ENG. RCVR
J

SENSE SW 1 DN

SENSE SW2 DN

DR2
INPUT KEYBOARD IPC —R, (U
BITS (10-0) 25255 PCIB-'RbéLg
L up
(ADDRESS) -»R i
b
00— Rb
v DR6
BFLCTR —» R, u}
— L
WDTCTR — Ry (

th Yy
DR3

Rb-DHEX DISPLAY

DISPLAY READOUT SUBFUNCTION
OF WATCHDOG TIMER ROUTINE

~106~

R e s L 5

PDBITM

HAR(7_5)—'NI(2_0)

v

1-®RA
B=0

LEFT SHIFT(1)RA

DELETE EMITTER

RA—®RA

j

PBMAPnVRA-DPBMAFn PBMAPnARA-’PBMAPn

1¢]

V=" 0R
A="'AND'

PREPROCESSOR POST-DELETE BIT MAP

~107-

PREPST

TURN ON POST LED

FETCH EPHZ

PN (21-16)"P¥gp

AREA

HAR— MAR|

HAR—=SHAR

aET

EF=e= QT

REF¢ i

BT3-» SBT3
SBT3(_DRLK).DRLINK1

EMPTY CHAIN

DRLINK
=0

FETCH EPW3

REF

&

BT3(PRI)->PRIEF

DRLINK-=HAR
HAR-=MAR

il

EF=BT

v

MIDDLE OF

BT3—=SBT3

(SBT3 (DRLK)—=DRLINK

v b4

HAR-=—PAR
FEW+1-=CTR
FEW—=—MAR

EF-=BT |

BT3—+SBT3
SBT3 (DRLK)~DRLINK

PREPROCESSOR POSTING ALGORITHM (Sheet 1 of 3)

~108~

REF

S R N Y ST T Y

HAR—=PAR |
FEW-~HAR

i REF

BT3--SBT3
SBT3(DRLK)-=DRLINK

1

DRLINK—=FEW

DRLINK YES
=0
?

HAR+1-=FEW

NO

P8
PAR =MAR

INHIBIT—=PREP|

EF= 8T -

[HAR=MAR |

BT =BT
WBT
BT wEF |

HAR-=DRL INK
PAR-=MAR

PREPROCESSOR POSTING ALGORITHM (SMeet 2 of 3)

—109" {

P12
(3FF -=DRLINK
DRLINK-=FEW CTR=FEW PNE1 :
1 EPW3VDRLINK=BT3
PS5 EPW2-=BT2
3FF-=DRLINK) EPW1(CLEAR PA)-=BT1
BT+EF
EPW3VDRLINK—=BT3 ! " , /
EPW2-=BT2 PNE1
EPW1(CLEAR PA) =BTl s
ENABLE PP
BT-=~EF q 41
:’iR :ulﬁ SHAR-=HAR
MAR—DRLINK
[HAR =MAR K 3 P14
TURN OFF POST LED
INHIBIT PREP

BT3-+SBT3
DRLINKVSBT3-=BT3

BT1-=BT1
BT2 =BT2

EXIT

WBT
[BT—EF}—

PREPROCESSOR POSTING ALGORITHM (Sheet 3 of 3)

-110-

PPINIT

AAR
CPRS
CPR7
CPW5
CPW7
DDRO
FEW
INTL
PBMAPN
PCIB
PEF
PPTR
RTAT
IPCSSR
WC
BUFIDQ
BFLCTR
WDTCTR
RBUF1
RBUF2
RBUFID
CMAWC
CMATW
PEBPTR
PEBUF

PDBITM

BC
BCNT
HAR
PBMAPN
PEF

WI

PPWDTS

C1
c2
€3
c4
cs
EPCM1
EPCM2
EPCM3

SYMBOL DEFINITIONS

AGE TEST ADDRESS REGISTER

PREPROCESSOR COMMAND-PARAMETER REG. 5 DEVICE ADDRESS
PREPROCESSOR COMMAND-PARAMETER REG. 7 DEVICE ADDRESS
COMMAND-PARAMETER WORD 5

COMMAND-PARAMETER WORD 7

PREPROCESSOR DIGITAL DISPLAY READOUT DEVICE ADDRESS
FIRST EMPTY WORD

PREPROCESSOR INTERCEPT LATCH DEVICE ADDRESS

POST BIT MAP WORD - RESERVE 8

PULSE COUNT, INTERCEPT BUFFER

POSTING EMITTER FLAG

POSTING POINTER

REAL TIME, AGE TEST

INP. PLS. CNTR., SENSE, STATUS

WORD COUNT - AGE TEST

BUFFER IDENT.

BUFFER FULL COUNTER

WATCHDOG TIMEOUT COUNTER

REPORT BUFFER 1

REPORT BUFFER 2 g
REPORT BUFFER IDENT.

COMMON MEMORY AGE TESTED WORD COUNT

COMMAND MEMORY AGE TESTED WORD

POST EMITTER BUFFER POINTER

POST EMITTER BUFFER

BIT COUNT

COUNTER

HASH ADDRESS REGISTER

POST BIT MAP WORD-RESERVE 8
POSTING EMITTER FLAG

WORD INDEX NUMBER

ITERATION COUNTER

N WN =

EMITTER PARAM. COMM. MEMORY % 3
n n " "

n " n L] 3 -

-111-~

E SYMBOL DEFINITIQNS

P PPWDTS (cont'd)

P CMOMH COMM. MEMORY OUTPUT MESS. HEADER ADDRESS
P CPR5 PREPROCESSOR COMMAND-PARAMETER REG 5 DEVICE ADDRESS

E CPR7 PREPROCESSOR COMMAND-PARAMETER REG 7 DEVICE ADDRESS
E CPW5 COMMAND PARAMETER WORD 5
E | CPW7 COMMAND PARAMETER WORD 7
E1 DDRO PREPROCESSOR DIGITAL DISPLAY READOUT
£ IBAR PREPROCESSOR INTERCEPT BUF. ADRS. DEVICE ADDRESS
IBFUL INTERCEPT BUF. FUL FLAG
IPCSR PREPROCESSOR INP PLS CNTR & STA DEVICE ADDRESS
KBR PREPROCESSOR KEYBOARD REG. DEVICE ADDRESS v
] EPW1 EMITTER PARAMETER WORD 1 a
E P w 2 " n n 2 9
1 E P w 3 " n " 3
! PCIB PULSE COUNT, INTERCEPT BUFFER E
PEF POSTING EMITTER FLAG 4
PPTR POSTING POINTER
RTAT REAL TIME AGE TEST
RTCR PREPROCESSOR REAL TIME CLOCK REG. DEVICE ADDRESS
SPC SAVE PULSE COUNT
MHDG MSSG HDR
ATWC AGE TESTED WORD COUNTER
: 2 PEBPTR POST EMITTER BUFFER POINTER
L/ PEBUF POST EMITTER BUFFER T
. CMAWC COMMON MEMORY AGE TESTED WORD COUNT !
CMPBF COMMON MEMORY PROCESS BUFFER FLAG
CMIBC COMMON MEMORY INTERCEPT BUFFER COUNT
RBUFID REPORT BUFFER IDENT.

RBUF1 REPORT BUFFER 1
RBUF2 REPORT BUFFER 2

PCLREF :
BT1 PREPROCESSOR BUS TRANCIEVER 1 DEVICE ADDRESS
BT2 n " " 2 " "
BT3 " " " 3 " "
EFAR PREPROCESSOR EMITTER FILE ADRS DEVICE ADDRESS
CPR7 PREPROCESSOR COMMAND PARAMETER REG. 7 DEVICE ADDRESS
MCTR MEMORY ADDRESS COUNTER

PREPST
BT PREPROCESSOR BUS TRANSCEIVERS (BT1, BT2, BT3) ,
BT1 BUS TRANSCEIVER 1]
BT2 " n 2
BT3 " " 3]
CPR5 PREPROCESSOR COMMAND-PARAMETER REG. 5 DEVICE ADDRESS :
CPR7 PREPROCESSOR COMMAND-PARAMETER REG. 7 DEVICE ADDRESS ;
CPW5 COMMAND PARAMETER WORD 5
CPW7 . COMMAND PARAMETER WORD 7 {

«312~ i

ateni : . on

SYMBOL DEFINITIONS

PREPST (cont'd)

CTR
DRLINK
EF
EFAR
EPW1
EPW2
EPW3
F

FEW
HAR
MAR
PA
PAR
PRI
PRIEF
PRIEP
PW
PWEP
PWK
SBT3
SHAR

COMMON MEMORY

RBUFID
RBUF1
RBUF2
CMOMH
CMAAF
CMPBF
CMIBC
PEBPTR
PEBUF
CMAWC
CMATW

PATDLT

BW
WC
ATWC
BCNT
AAR
DF
HAR
MAR
SBT3
SRLINK
RTAT
AT

sl

COUNTER, TEMP

DATA REGISTER LINK

EMITTER FILE MEMORY

EMITTER FILE ADDRESS REGISTER

EMITTER PARAMETER NOSD 1
" n] g

PULSE FREQUENCY

FIRST EMPTY WORD

HASH ADDRESS REGISTER

MEMORY ADDRESS REGISTER

PULSE AMPLITUDE

PREVIOUS ADDRESS REGISTER

PULSE REPETITION INTERVAL

PRI - EMITTER FILE

PRI - EMITTER PULSE

PULSE WIDTH

PW - EMITTER PULSE

PULSE WIDTH - BOUNDARY VALUE

SAVE BUS TRANSCEIVER 3

SAVE HASH ADDRESS

REPORT BUFFER IDENT.
REPORT BUFFER 1 2RESERVE 30g
REPORT BUFFER 2 (RESERVE 30
COMMON MEMORY OUTPUT MSSG HDR
€ " 3 AGE TEST ACKNOWLEDGE FLAG
N % PROCESS BUFFER FLAG
. 5 INTERCEPT BUFFER COUNT
POSTED EMITTER BUFFER POINTER
POSTED EMITTER BUFFER (RESERVE 30)
COMMON MEMORY AGE TESTED WORD COUNT
COMMON MEMORY AGE TESTED WORD (RESERVE 32)

BIT WORD

WORD COUNT - AGE TEST
AGE TEST WORD COUNTER
COUNTER

AGE TEST ADDRESS REGISTER
DELETE FLAG

HASH ADDRESS REGISTER
MEMORY ADDRESS REGISTER
SAVE BUS TRANSCEIVER 3
DATA REGISTER LINK

REAL TIME AGE TEST

AGE TEST TIME

-113-

AN

s C s

SYMBOL DEFINITIONS

PATDLT (cont'd)

BT
BT1
BT2
BT3
PAR
EF
FEW
SVDLK
CMAWC
CMATW

PREPROCESSOR BUS TRANSCEIVERS (BT1, BT2, BT3)
PREPROCESSOR BUS TRANSCEIVER 1 DEVICE ADDRESS
n
n " "t § (] u
PREVIOUS ADDRESS REG.
EMITTER FILE MEMORY
FIRST EMPTY WORD REGISTER
SAVE LINK
COMMON MEMORY AGE TESTED WORD COUNT
COMMON MEMORY AGE TESTED WORD

= -~

SR N ——

— e i At

APPENDIX B
PREPROCESSOR AND MULTIPROCESSOR COMMUNICATION STRUCTURE

The operation of the MAP system requires extensive communi-
cation between the preprocessor and the multiprocessor. Figure B-1
shows the preprocessor hardware which is accessible from the
multiprocessor. Communication between the preprocessor and one of
the microcomputers, in the multiprocessar, is governed by the use
of read direct and write direct instructions in the microcomputer.
A 32-bit interface bus permits bidirectional data transfer between
one of the CPU's 16 general purpose (GP) registers and a preprocessor
device specified by its device address. For a write operation,
the CPU selects a GP register as the source and a preprocessor
device as the destination. For a read operation, the CPU selects
a preprocessor device as the source of data for a GP register.
Table I presents a 1ist of preprocessor devices and their respective
device addresses, and references to other tables in this appendix
which give detailed word formats for each device.

~115-

sng uol3ed Lunwuo) 433ndwod0ud jW/40553204dadd - [-g @4nbL4

SNe viva
¥31NdWOI0¥I I
B
+ %3012 INIL V3IY
91
ss3yaay
= $s3yaqv
le—— AYOW3IN ¥344n8
zw“w“wunn«u 5 ¥344N8 1d3J¥3LINI teasRa e
HI1V1 ¥313IWVYUVA-ONVHNOI ——Ff—
SANVRKOI 62
1¥9d ANITNG uwx 1S
¥3LSI93¥ 1ndNI (4> ettt i il QY0My201 hwm“ww“ s.,
HOLV 1d32¥31INI + X 118 28 .
¥431S193Y¥ 1NdNI 2¢€ 4315193y e
4 nd d8 48 VOV V8 le—b V1V0 :
. vz ¥3IAI3IISNVYL Sn@
SERENR HOLVY WILINVAVA-ONVWNO) |g . AYOWIN | ¥315193y
IVAYILNT ‘m!—._.’ll ONY ¥3NWIL 900HILVA €2 ERBF| I<h<°
Gy V011 1V ¥3LLIN3
2¢ ¥IAIIISNVYL Sna [P
SSIY0AY AHOWIN o HILY p
3114 ¥3111NW3 SSINAAY AYOW3INW o
3 SOV14 SNLVLS QNy [¢—— SOV
v? Y3LNNOI 3S70d LNdNY 31374W0) ¥3IISNVYL
1noaviy
A¥1dSI0 TYWIJIAIXIN 2¢
le—7—— ¥31S193¥ Q¥VO08AIN
2¢

e —

"~ " < gy . , A" e
R TCRTRAI o SR WU g Mg AT e T

Table Bw]

I Preprocessor Devices

CPU

b2 oty

DEVICE OPERATION|MNEMONIC (HEXIDEC)| TABLE
Digital Display Readout Write DDRO (x*10") |B-II
Bus Transceijver Latch 1- jtjjs’

[} [}
AT,LTOA “pad BT1 (X*21") B-111
Bus Transceiver Latch 2- Write
AOA, PW, F, flags / BT2 (x*12') |B-IV
read
Bus Transceiver Latch 3- Write
RSC, DRLINK, PR1 / BT3 (X*13') |B-V
read
Emitter File Address Register | Write EFAR (x'14') |B-VI
Command-Parameter & WDT Latch | Write CPRS (X'318") B-VII
Intercept Latch Write INTL (x'16') B-VIII
Command-Parameter Latch Write CPR7 (x'17') B-IX
Keyboard Register (Note 1.) Read KBR {xX*10') B-X
Input Pulse Counter & A
Status Reg. (Note 1.) Read IPCSR {X'10") B-XI
Real Time Clock Register Read RTCR (X'15') B-XII
Intercept Buffer Address Read IBAR (x'14') B-XIII
-117-

" G masas ‘

—r

gs1
dX3H

IX3H

L

¢X3H

€X3H

gSH

1T

el

¥X3H

GX3H

9X3H

LX3H

S1

61

0¢ €2

1N0QV3Yd AV1dSIQ TVLIDIG

11-9° 3

gVl

ve

L2

8¢

T€

(.0T.x)0¥aa

-118-

LBALJAAY jJO Bwi] 3se] - yoLd

awL]l 3s3l aby ~ Jy

(.11.X)1i8

T HILVT ¥3AI3ISNVYL Snd
ITI-9 379YlL

v ot

Aouanbauyq - 4

YIPLM 8SINd - Md

uoL3e|aauo) Md sseddg - dg
3daouaju] asind 3%afay - 40y
LeAL44y jo 3Lbuy - YOV
uoLje|auado) yoy ssedAg - vg

E! % Md dglor YoV Vgl (.21.x)218

i1 21 ST 91 ¢2te e 0€ 1€

=120~

¢ HI1YT ¥3IAIIISNVYL Sng
AI-9 379v1

R R A A R

(v
- - e — g

W T e M e o e
- Lol T N T
Lo " ' g y Uiz ag PesOp, " 5

ki

et

v 52

LeAUd3U] uoi313aday as|nd - Iyd
(49331wd 3X3u 40 'SS3UPPY) YuL] 4a3sibay ejeq - ¥NIT¥Q

433Un0) JuAhsay - 9sSy

ey oufsay - NAS

e — . e

MY o5 i (etix)e1s

szl9zs28z o¢ he

144 M% ANITHG
pTIST 91

€ HOLV1 ¥3IAIIISNVYL Sng
A-9 379VY1

g AP P e e et

-121-

L 3 m e S TR T TR T T T —— - —

*3douanbas ssadoe Auowaw 3ay3z jo
uor3a|dwos uodn o160 3sanbaus 3ay3 Aq pasea|d sL 3Lq puewwo) ‘*3sanbad
93 LJM 40 pead AJowaw I|qeud 03 [= 3Lq puewwod 33§ - 3sanbay a|qeu3

(Yys3eq 43AL3dsued] sng dLtd 4933wl € 3 L) AJoway 33L4M
(aLtd ua933tLn yoje] 4dALdIsSueLl Sng ‘*a L) Adoway peay

1
0 - M/¥

*ssaJdppe Adowaw ayz satjiLoads plaly 31q-0T juedtjtubrs 3ses

-122-

*faowaw 3|1} 4933 }Wd 3Yy3 03 (33 L4M 40 pe3J 43Y3La) ssadoe burisanbaa jo
A3i1Ltqeded 3yl y3atM 49indwosoudiw ay3 sapiLAouad jey3 pJomM [043u0D 3LQq-2T VY

1s3nd3y 3719vN3

3\m.l4

SS3YAAY 3ITId4 ¥3LLIW3

0 6101 1€

431SI934 SS3IYAAY 3114 ¥3LLINW3
IA-9 3749Vl

LN

-

=~

39s3y=1 319S3Y 4RI |)=0 3I9S3Y AJUOWAK 43jjng 43ALID23Y TVWYON LR
‘uo Jojedtpul=tT “440 Jojedjpul=Q *do3edjpul ,1S0d, Ldued gW TYWHON 1SCd
‘U0 Jo3eILpUI=T ‘3440 J403RJipuUI=Q ‘dojediput 1y, (3ued [§W TYWAON 1y
*Aouanbauy 3daduaajur 3as|nd 3ay3 4o (g-8) S34q 4noy ayjz 3sujebe paswdwod
S} pLats Aduanbady 1¥yd4 “spueq ybiy pue mo| oju} Bupuojjjjaed 40y Adusnbauy ay3 sajjidads TYWION 1¥vd4
ON 1Y 1 I 0 0
1 ON 0 0 1 1
aNve MO aNY8 HOIH R | 1 0
nz<mz:w~= aNvyg MO1 1 0 0 ¢
QONYS MOT I O O O
S1d3JY3ILINI 3IL1VT3IYH0I SL1d3JYIUINI SSVd d7d 4Hd 473 4HI
'SUOljeULqWOd 3Lq |04JUOD plleA 3Yy3 SIaedjpu} a|qe3 buimo||0y 3By}

. ‘pueq Mmo| pue ybyy e ojuj buiuoijiyded 404 RLU3FLLI 3y} 314
S33NI43ISU0d pL3LJ LYYdd 3yl Aq patjytdads uajaweded Aduanbauay *(Adowdw [eqo|b dyw) 493ing “4Hd
3d92433u} ay3 03 A|3534}p passed 4O SpUOM 3| L) 4333|Wd 3yl jsujebe uoi3e(3UJ0D JOJ J3YLd TYWYON ‘410

pa3da|as s} 3daduaju} as|nd bupwodul yoea AQqaJaym aojeuaedwod Aouanbauy ® |043uU0D S3q 3SaYL TVWAON “4HD
*4d3UN0d |BAUBIU} BY3 S3a|qesip ‘T = GT 3t9 £
338 $9 = UOLIN|0SAUL 4IJUNCD Y} B4IYM (Hp9X/p02Z) 23S BSOO‘IEI = [BAIBJU} BWY} wWNwWiXey 2
*043Z A|Lewdou GT 34q Y3I}M (p-pT S3}Q) 433unod Aueutq 31q9-1T 1
‘PL3t3 1AM 3yl 3Jo uo3diuadsag
*433ndwod04djw 3y3 03 Juds s} |eubis 3dnaddaju}l ue ‘043z SIYIRAJ JUNOD 43ISEDBIUA Y3 uaym
*(LY4d) @9s) puewwod
1O0M QY01 ® Aq papadaud aq uojjedado a314mMm SLY3 3ey3 sadinbas 433sibaa umopaunod IaM Y3
03U} PL3}3 dYy3 peO| O] “|RAAd3u} (LQM) 4dwi) Bopydjem pauisap ay3 suieIu0d pLaILS 3ILQ-2T 3yl TVWAON 10M
(LN3W31dW0D
SIN3IWWOI 40 TYWYON) [T08KAS
viva
40 Wi
4H)
Eh b YWY
dHd , 15S0d
“_.Z._ 21_
10K | 1uvad

ST ot'/1'81'61 02 €2'v2

HOLVT 1OM % ¥313WVIVd ONVWWOD
I1IA-8 378Vl

e ——— r—

«123-

IVAI¥EY 40 3IWIL 1dW) VOl
H1QIM 3S7nd 1dW3 Md
9v14 IINVYYIA0 3GNLITdWY 3SINd 1dWD dd
9y74 MOT3Y3IA0 HIGIM 3SInd 1dWD 0d
30NLITdWY 3STnd 1dW) vd
9¥14 ViVQ 101S ON 1dWD SN
9y14 ViYQ VOV ON 1dW3 YN
9¥14 YOV 31dILINW 1dWD T
AIN3ND3¥4 OIOVY 1dWI 4
IVAI¥YY 40 319NV 1dWD vov
(1IN3IW3dW0)
ue J<=«mum 708WAS
40 W04

*3A0qQe

UBAL6 3ue sjewuoy paom 3da3d4d3ul jley BYy 40 UOLLuLIap Ayl “(Lyd) 23s)
0=31A9 QY01 ‘puewwod ay3 buynssy ‘Apuodas pue ysje| 3dasuaju} ay3 buipeo|
‘3544) JO aunpadoad ay3 buimol (04 YI Y3 OIUL UOLSS3IINS Ul papeo{ Si p4om
31dad4a3ut jey ydoe3 -yd3e| 3dad433u} Y3 W04 SJIFSued) e3ep OM3 Sadinbau
41 3yl peo| oL “(/¥d) 93S) 0=¥0SS3I0¥d I1YNI puewwod ay3 buinssy °sy
3ey3 ‘uao0ssadouadaud ay3 bupljqiyur saaynbas apow spyj *bupysay j1as 404

Y1 3y3 03 3J4n0S ejep dALJRULII|® ue se ydje| 3daddaju} ay3 323|as Aew
40553304daud ayy °sJ3jSURLY PUOM BIRP 31G-2f OM} NUY] Y] 3yl 340 sijey

OM3 3y3 O3u} papeo| 34e sddjaweded 3dadsuaju} 3as|nd °SNQ 3deJ4ajul

43A 13234 3yl AQ uaAiuap A||ewdou S| (¥1) 4335163 3nduy 4ossadouadaad ayy
‘82®j433uU] JYW Pu® 40SS3d04daud ay3 333 j1aS 02 pasp

nuuuun Vol vd (+9T.,X)I1NI
T o €292 620¢ 1€

hmu«u 3 Md S, [v vov _mz—h.@ﬁ.xvapz.
0 1zlzeelvz 0t 1¢

HILVT Ld3J¥3UNI
ITIA-9 378Vl

Bbiaiian ST R —

~124 -

Jdl 378YSIA —

lam avoi1—
J1¥ 378YS10 — s
LY ¥Y3ITI— $S3YaaY 9SW =
¥05S3904d 319¥NI — ———N3 ¥3LNNOI
NNY — ————13534 $S3yaay
JZITVILINI 31A8 QY01
LIVH N3 ¥344n8 YAIY
31Y2S AY1dSIa
10LY0Y
701Y0L11 [101Md AMd , LT1,X)L¥dD
0 #'s ol/'g IT'2T'eT STOT'ZT'81'61'02T2'22'€2'v2'S2'92'22/82 1€

HOLYT ¥3L3WVYYd ONVYWWOI

XI-8 379Vl

-t

e —

*HOLVT J1¥ 3HL 31vadn OL J1¥ 3HL SMOTTVY_I=LI9 QNVWWO) "31¥adn 0L S3NNILNOD 1Y
314 3HL "J1¥ 3IHL ONIGVIY LIWY¥3d 01 HILVT JO1¥ 3HL SLIGIHNI 0=118 ONVWWOD “ »»378YS10
r
‘p JLON 33S “JIdI GNV J1¥ S3T8YN3 T=118 ONVWWOD "0¥3Z Ol 1y
(3dI) ¥3ILNNOD 3SINd LNdNI ANV (JL¥) 2072 3IWIL 1¥3¥ 3HL SLISIY 0=L19 ONVWWOI = ¥4v3nd
*13S34 NO-¥3IMOd (€ ANV “1NO3WIL ¥3IWIL 900
-HOLYM (2 °NOILIGNOD 11n4 ¥344n€ (T “SNOILIV HNIMOT1104 3IHL 40 INO INIMO1I10A
Q34¥¥37) SI LI9 ANVWWO) 3HL NOILIAAY NI °3L37dWOD d¥3JSNVY¥L 3IHL ONIASSI
SISV3IJ ANV TVYNIIS AQY3IY VIVA 3JHL SIYONII LI “SL1dIDYILNI 3STINd INIWOINI
9N11d3JIV WO¥4 ¥0SS3I0¥d3¥d IHL SLIGIHNI 0=LI8 ANVWWOD "3IN3ND3S HOYV3S
JHL 40 NOIL3ITdW0OI NOdN 3L13T7dWOI Y¥IJSNVIL V SINSSI ANV Ld3IJYILNI 3SINd HIV3
40d WHLIY09TY HIY¥V3IS 3JHL SILNJI3X3 Y0SS3I0¥d3¥d IHL "HIIH S309 TVYNIIS AQv3IY = 40S53J04d
V1VQ 3HL N3IHM SLd3JYILNI 3STNd INIWOINI 40 ONISS3IIO¥d SLIWY3d T=LI8 ANVWWOI 379VN3
“AYOW3IW 3714 ¥3LLINW3
IHL SS3JIV 0L ¥ILNAWOIOYIIW 3IHL A8 Q3INSSI S1SINDIY AYOW3IW S3SS3J0ud
LI 0STV "T=31A8 @V01 (2 ¥0 ‘HOIH SI TYNIIS AGV3Y¥ VLIVA 3IHL ONY T=40SS3J0¥d
379YN3 (T “¥Y3IHLII NIHM WHLIY09TV HIYV3IS IHL 40 NOILNI3IXI S3IINIWWOI
40SS300¥d3¥d 3IHL "31VLIS wNNdw JHL NI 40SS3I0¥d3d¥d 3IHL S3IIVId T=119 ANYWWOI = «Nni
“LTVH NI N3HM Q3W404¥3d
38 ATINO NY) NOILVZITVILINI "dOTddIT4 AQY3Y VYLIVA 3HL ONIAV3ITD (€ ANV
“d074dI74 12313S 3L1AE IHL ONILLISIY (2 “0¥IZ QL ¥ILNAQD SSINAAY ¥IINIAD3S
WYYO04dOYIIW 3IHL ONIJYO4 (T A9 ¥0SS3II0¥d3Idd 3IHL SIZITVILINI T=L18 GNVWWOI 2 «3Z1TVILINI
*Y3LNdWOJ0YIIW 3HL A8 AYOWIW 3714 ¥3LLIWI 3HL OL SS3IIOV SLN3AIYd ¥ WHLINO0ITY
HO¥V3S ¥0SS3J0¥d3¥d 3IHL 40 NOILAI3IXI 3IHL HL08 SLIVH T=LI19 ANVWWOI = #17VH
“AV1dSIQ TYWIJ3AIX3H ERL MR
T3NYd L3W 3HL NO LNIOd TVYWIJ3@ 3HL 40 (NOILISOd) 9NITVIS 3IHL STO¥LNOD “1dW) AY1dSla
INIOdNV3I¥8 HLQIM 3S7nd "1dW) ANd
‘€=1NN0J
JINVYIT0L WNWIXYW “NOILYI3IYY0I) VOV ¥04 SLIWIT IINVYIT0L I19VWWYYO0¥d TVWYON 101vVOV
“€=LNNOJ 3INVYITOL WAWIXVYW “NOILYI3IYYO0D Md 404 SLIWIT 3ONVH3T0L 318VWWYY90Ud TVWYON T01Nd
‘T€=1NN0J
JONVY3TOL WNAWIXYW °“NOILYI3¥¥0) VOL 404 SLIWIT 3INV¥3IT0L 318VWWYYO0¥d TVNYON 704V0L11

(P,3u02) HILYT ¥3ILIWVYVd ANVWWOI

XI-9 378Vl

~126-

"HILYT LOM B “¥Vd-WWOD 3HL OL .3LI¥M. ¥ 30SSI (€
‘431SI93¥ J1¥ 3HL 0L .AV3™. ¥V 3INSSI (2
*(¥SIdI ¥0) ¥3ILSIDIY A¥YOEAIN 3IHL OL .AV3IY. ¥V 3INSSI (1

*SNOILOY ONIMOTTIO04 3HL 40 ANY AS 3LVLS T, TYWYON 3JHL OL LIS ONVWWOD 3IHL SIW0LS3I¥ IYYMIYVH IHL =

“3ON3ND3S ANYWWOD 3HL 40 NOIL3TdWOD NOdN 13S3¥ 3IUYMOYVH ¥ A8 A3¥V¥3T1D
ATLNINDISENS ANV NOILVY3LI 3I1INIS V ¥04 3ILVLS .T. 3HL OL 13S SI LIS ONVYWWO) 3IHL «

‘¥4344n8 S319VYNI ‘1=119 ‘¥4344n8 SLIGIHNI ‘0=L11I4
© "4344N8 ¥3AI1303¥ 3IHL 40 NOILVYIAO STO¥LNOD

378YN3
4344n9 ¥AY

‘Y1 3HL 0L YLVQ 40 ¥3I4SNYIL IHL ONIMOTT04 ¥0SSII0¥dIUd IHL A€ A3IWY3I1D SI

119 ONVWWOI 3HL 37047 QY01 HIVI ¥3L4V 31942 AVO1 ANOI3IS 3IHL 40 NOIL3ITdWO)
NOdN SIINIWWOD WHLIWO09IV HIYV3IS 3IHL 40 NOILNI3XI “T=LI19 ONVWWOD 3LAS QY01

V ONINSSI AQ Q3IN0OT104 HOLYT LdIDYILINI 3IHL OLNI GUOM LdIDYIANI 4TVH V ONILIUM
40 YNILSISNOD HOV3 ©S310AD GVO1 OML S3IVIND3IY ¥I 3IHL 40 S3IATYH ¥3IMOT ANY ¥3ddn
JHL QY07 0L “0=L1I9 ANVWWOI ¥0SS3J0¥d 319YN3 3IHL NIHM Q319YN3 SI 300W 1S3}
=373S NI IN43SN ST 3uNLYI4 SIHL "HOLV] LdIDYILANI 3IHL WOU4 (¥I) ¥3ILSIDIY LNdNI
40S53304d34d 3HL OLNI SY3ILIWVYVA 1dIDYILNI 3SINd 9NIAYO1 SLIWYId GNVWWUI SIHL

3149 QV01

*13S3¥ 3HL ¥V3ITD OL 0=119 ONYWWOD V A8 Q3IM01704 34 1SNW ONY ¥3ILNNOD 3IHL SL3S3y
I=119 ONVWNQ) °NOILINA4 L13S3I¥ ¥ILINNOD SS3YAAY ¥344N8 1dIDYILNI 3IHL STOULNOD

1353y
ss3daav

[=8SW ‘T=118
"¥3LINNOD SS3IYAAY ¥3I44n8 1d3IDYILNI

0=8SW °‘0=L19
3HL STOY1INOI

378VN3
Y3LNNOD

T=8SW ‘T=114
"YILNNOD SSIYAGY ¥3I44NG LdIOYILNI IHL 40 (8SW) LIG INVITHINIIS LSOW

0=9SW ‘0=119
JHL STOYLNOD

SS3YQAY 8SW

0L

33S "HILVY1 J3dI 3HL 3Lvddn

01 2dl1 3HL SMOTTV T=LI9 ONVWWO™ “TYN9IS 3131dW0D ¥3IASNVYL 3IHL A9 G3INI01D SI
any wrkbhblb*lhh¢z~hzou Jdl 3HL INNOD 3S7Nd LINANI LINIYUND 3IHL ONIOVIY LIW¥3d
HILYT (2dI) ¥3ILNNOD 3SINd INANI 3HL 40 3LVAdN IHL SLIGIHNI O=LI18 GNVYWWO)

»»Jdl 378VSIQ

: " 310N 33S °"NOILYY¥3Id0 SIINIWWOI

YINIL JHL “w3LI¥M. 3JHL 40 NOIL3T1JWOD NOJA *{G1314 LI 21) HO1v1 LiaM

% _"YVd-"WWO) 3HL OL w3LIY¥M. V SIUINDIY IVAYILNI 3IWIL IHL 40 ONIGVOT 3IHL
‘ON0JIS "¥3LSIDIY LAM 3IHL ONIAVOT SITEYNI 0=118 GNYWWOI 3HL ‘1S¥14 *Sd3LS
OML SIYIND3IY TYAYILINI 3IWIL QIYISIO IHL HLIM (LOM) ¥3IWIL DOQHILVM IHL ONIQYO?

(PU3) HOLYT HILIWYYVL ANYWWOI

XI-8 378Y1

1am avol

sigi

*(0=0dI 378YSIQ *°3°L) 21q puRWWOd 4e3[d

e Aq papadaud sL ,pead, Nd) @Yz ©324nos ayjz Se YSJ)dI ayz 323|3s

0] ‘uoLjeuaado pead ayjz 404 snqg ejep 3y 03 324Nn0S 3yl SL ygy 2ay3
ALLlewaoN °31q puewwod J4I 374YSIA Y3 A9 PAULWUIIAP SL UOLFII|3S
49351634 8y3z SSauppe 3ILA3p uOWWOD B JUBYM (YS)dI) 433sibau
snje3s-u4ajunod asind 3ndul ayjz pue (ygy) 493sitbau paeogqhay ay3 aduLs

(*g @30N 93S5) ‘J4d3sLbad pueoqhkay ay3z ul ejep ssadde 03 pawweuboud
9q Aew ua3ndwod04dLW Y] “S43328J4RYD [ewLlIdpLx3ay ybLa 40 BuLruags
e yiLm pueoqhkay |dued |gW dYy3} wouj papeo| Sl J433sibad pueoqhay ayl

(.0T.x)¥aN

431SI934 QYV0gAIN
X-9 318vl

V A8 0303034d 39 LI
NOILYY¥3IdO .AVI¥W V ATTVWION

"ONYHW
LVHL S3YIND3Y .OV3I. ¥V ¥O04 ¥SIdI 3IHL 12313S 0L

W0J 0=0dI 318vSIa
‘48X 3HL S3SS3IIY

"4SIdI ANV ¥8X 3HL A9 G3YVHS SI (,0T,X) 3002 SSIYAAV 3IIAIA SIHL «

431S193¥ SNLVLIS B ¥ILNNOD 3SINd LNdNI
IX-8 318vL

0=431INN0J=T 0#¥3LNNOD=0 INO3IWIL 90QHILYM | »0LAM
“(,44€.X=431NN0D SS3IYaAqQY
434408 Ld3JYWILNI “*2@°L) 717104 ¥344ng=T1 1104 10N ¥344n8=0 1IN4 ¥4344n8 Ld3DYILINI| »48NI
319VYN3=T 1IGIHNI=0 0378YN3 ¥0SS3J04d3dd |«¥NIdd
"NNY =1 A31TVYH=0 NNY ¥0SS3J0¥d3dd [«NN¥dd
“dN HOLIMS=T NMOQ HILIMS=0 "HILIMS € 3SN3S T13INVd L%W [«ESNIS
*dN HILIMS=1 NMOQ HILIMS=0 "HILIMS 2 3SN3S 13NVd 1%W jx2SN3S
dN HJILIMS=T NMOQ HJILIMS=0 "HOLIMS T 3SN3S 13NVd L%W |«ISN3S
“JdI 3HL 9NIGV3Y¥ LIWY3d Ol HILV1 2dI 3HL 40 31Yadn 3HL SAN3IASNS ATIYVYOdWIL LVHL UNVWKWOD
0=)dI 3718VYSIQ V A9 @30323¥d 39 NOILVH¥3IdO AY¥3¥ 3HL LVYHL S3YINO3Y JdI L1I19-9T 3HL av3iy ol
"W3ILSAS ¥3AII23Y 3IHL WOUd SL4IDATUNI 3SINd INIWOINI SiINNOD Auanv Y3ILNNOI 3SINd LNdANI 3HL JdI
Sjuawwo) Jwey
NNYddd YN3dd
E€SN3S ﬂlumzu
2SN3S 0Lam
ﬁmzuﬂg wwz
/ \
B 2dI I oty saar
0 sttt /tigstigtioeltzize ge've 1€

AT T

e

-129-

W//

*01¥ 3y3 buipeads 3Lwuaad 03 yosjre| 1y 3y3 40 ajepdn ay3z spuadsns
Al laeaodwal 3ey3 puewwod 9=)1Y 379YSIQ ® Aq papadaud sL uoLjedado peasd 3yl

*09sSn ZIG - uoLIn|osay
*29SN 2 HGGEE - an|eA wnuwixey

*J1d
3Y3 40 uoLjejudsaudad Auaeulq Byl SuirejuU0d yaje| (214) %2012 Bwl} [ead 31q-97 Y

N\

%

J.1d
ST'91 1€

431SI93¥ %2070 3IWIL vy
IIX-9 379vYl

8

(,ST.X)¥21Y

3AL30Y 3sanbay=t paJea|) 3sanbay=g
"pPuewwod 3|qeu3 3sanbay AJowdy 3y3l 40 snje3s ayj sajedLpu] - -bHay-ujz asuas
*J0ssadoudauad ayy Aq

(Asowaw (eqo|b dyw) 4934nq 3dadua3jul ayz o3 passed 3daduajuL asynd
Ise| 3yl JO ssadppe 43jjnq 1dadusjul 3yl buipiaodd pats 3IL1q-TT uy

ﬁl..wmm.zm ISN3S

S$S3y¥aay ¥y3iddng

oTITTIZT 1e

SS3YAAY ¥344nd Ld3IIY3IUNI
ITIX-9 379Vl

L N T R e - T T T —

AANNNNNNNNNNNNNNNNNNW ST

131

>
e
o
°
4
o
©
|

S
2
H
-
o
£
£
I3
m
°
=]
2
&

