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FOREWORD

Over the years, scientists have developed many techniques for extracting
and evaluating information from experimental data. One of the reasons
for holding the design conferences is to develop, in Army scientists,
an appreciation for and the necessary skills to handle these techniques.
A special feature associated with the meeting this year was organized
to help develop some of these skills. This was a basic tutorial seminar

entitled, "Introduction to the Fundamentals of Experimental Design"
given on 2-3 October 1978 by Dr. George E. P. Box, the Ronald Alymer
Fisher Professor of Statistics at the University of Wisconsin and
the Mathematics Research Center. This course was designed for engineers

and other scientists with little or no formal training in statistics,
and who are involved in generating physical measurements from experiments.
It presented basic notions and statistical techniques which allows one to
minimize data variance or variability, and hence ultimately enhances the
opportunities for recovering data information in later analyses. The forty
or so Army scientists attending this course were prepared to comprehend
the papers given at the Twenty-fourth Conference on the Design of Experiments

in Army Research, Development and Testing.

Members of the Program Committee for this conference were pleased to obtain
the services of the following invited speakers to talk on topics of current
interest to Army personnel.

Speaker and Institute Title of Address
Professor Norman Draper RIDGE REGRESSION
University of Wisconsin-Madison

Professor Ralph Bradley STATISTICAL ANALYSIS OF WEATHER
Florida State University MODIFICATION EXPERIMENTS

Professor Grace Wahba DESIGN PROBLEMS IN RECOVERING
University of Wisconsin-Madison FUNCTIONS OF TWO OR SEVERAL

VARIABLES



Professor Brian L. Joiner STATISTICAL CONSULTING
University of Wisconsin-Madison

Professor Richard E. Barlow with RECENT ADVANCES IN GRAPHICAL
Bernard Davis TECHNIQUES FOR ANALYZING FAILURE

University of California-Berkeley DATA

In addition to the Invited addresses, there were nineteen contributed papers.
Many of these Informative talks covered areas associated with the theme of
the conference, namely "Statistical Design and Analysis of Experiments."
Titles of the technical sessions were: "Time Series and Stochastic
Modeling"; "Analysis of Variance Models"; "Statistical Theory"; "Statistical
Inference"; "Special Applications"; and "Material Reliability".

An important feature of these annual conferences is the awarding of the
Samuel S. Wilks Memorial Medal. The 1978 award went to the distinguished
scientist Dr. William H. Kruskal, Professor of Statistics at the University
of Chicago. His contributions to the field of statistics have been truely
outstanding.

The Army Mathcmatics Steering Committee (A4SC), an intra-Army committee,
sponsors the design conferences on behalf of the Chief of Research,

Development and Acquisition. Members of this committee appreciated the
fact that the Mathematics Research Center (NRC) was willing to serve as
host for the Twenty-Fourth Conference on the Design of Experiments. They
would like to thank Professor Bernard Harris for serving as Chairman on
Local Arrangements. He was ably assisted in this capacity by Mrs. Gladys
G. Moran. Those in attendance appreciated the assistance these and other
members of NRC gave them with the many problems that arose during the
course of this meeting.

The ANSC has requested that these Proceedings be published end distributed
Army-wide In order that the information contained therein will assist
scientists with some of their statistical problems. Finally, committee
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members would like to thank the Program Committee for all the work it
did in putting together another successful scientific conference.

Program Commtttee

Gerald Andersen Bernard Harris
Carl Bates Clifford Maloney
Larry Crow Douglas Tang
Francis Dressel Malcolm Taylor
Walter Foster Michael White

Frank Grubbs (Program Committee Chairman)
Robert Launer (Conference Secretary)Herbert Solomon (Chat man of the Conference)
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AGENDA

THE TWENTY-FOURTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN

ARMY RESEARCH, DEVELOPMENT AND TESTING

4-6 October 1978

Host: The Mathematics Research Center

Held at: The Wisconsin Center, Lake and
London Streets, Madison, Wisconsin

***** Wednesday, 4 October *****

0815-0915 REGISTRATION -- First floor, The Wisconain Center

0915-1030 GENERAL SESSION I -- Auditorium

CALLING OF THE CONFERENCE TO ORDER

Dr. Bernard Harris, Chairman of Local Arrangments,

Mathematics Research Center

WELCOMING REMARKS:N

Dr. Ben Noble, Director, Mathematics Research Center

CHAIRMAN OF SESSION I

Dr. Frank E. Grubbs, Program Committee Chairman, Aberdeen
Proving Ground, Maryland

RIDGE REGRESSION
Professor Norman Draper, Department of Statistics, *1
University of Wisconsiti-Madison

1030-1100 BREAK

1100-1200 GENERAL SESSION I (continued)

SOME APPROACH9S TO STATISTICAL ANALYSIS OF WEATHER
MODIFICATION EXPERIMENTS

"Professors Ralph Bradley, Sushtl S. Srivastava and
Adolph Lanzdorf, The Florida State University,
Tallahassee, Florida
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1200-1330 LUNCH

1330-1500 CLINICAL SESSION A -- Room 210

CHAIRMAN

Dr. Douglas B. Tang, Walter Reed Army institute of
Research, Washington, DC

PANELISTS

Professor Ralph Bradley, The Florida State University,
Tallahassee, Florida

Dr. Mark Brown, Memorial Sloan-Kettering Cancer Center,
New York, New York

Professor Norman Draper, University of Wisconsin,
Madison, Wisconsin

CANDIDATE SEQUENTIAL DESIGNS FOR OPTIMUM SEEKING

Mr. Carl B. Bates, US Army Concepts Analysis Agency,
Bethesda, Maryland

ENVIRONMENTAL AND WATER QUALITY OPERATIONAL STUDIES

Drs. A. Dale Magoun and Michael P. Farrell, US Army
Waterways Experiment Station, Vicksburg, Mississippi

1500-1530 BREAK

1530-1700 TECHNICAL SESSION I -- Room 210 -- TIME SERIES AND STOCHASTIC
MODELING

CHAIRMAN

Dr. Edward Wegman, Office of Naval Research, Washington, DC

RED NOISE IN THE POWER SPECTRUM OF ATMOSPHERIC TEMPERASURE
DATA

Dr. 0. M. Essenwanger, US Army Missile Research and
Development Command, Redstone Arsenal, Alabama

SMALL SAMPLE BEHAVIOR OF SOME PROCEDURES USED IN TIME
SERIES MODEL BUILDING AND FORECASTING

Drs. Paul Newbold, Mathematics Research Center, University
of Wisconsin-,Madison, and C. F. Ansley, University of
Chicago

'C



STATISTICAL PROBLEMS ASSOCIATED WITH TUE HORIZONTAL CHANNEL I
OF THE RAPID GRAVITY SURVEY SYSTEM (RGSS)

Dr. H. Baussus von Luetzow, US Army Engineer Topographic
Laboratories, Ft. Belvoir, Virginia

1530-1700 TECHNICAL SESSION II -- Room 313 -- ANALYSIS OF VARIANCE MODELS

CHAIRMAN

Me. Jill House, Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland

ANALYSIS OF VARIANCE ON THE TRADE-OFF FUNCTION RELATING
ACCURACY TO SPEED OF REACTION

Drs. Walter D. Foster, John H. Wolcott and Terrence L. Kay,
Armed Forces Institute of Pathology, Washington, DC

THE ANALYSIS OF PARTIALLY FACTORIAL EXPERIMENTS

Dr. John Robert Burge, Walter Reed Army Institute of Research,
Washington, DC

STATISTICAL ANALYSIS OF EXPERIMENTS IN SORPTIVITY

Dr. Edward W. Rose, US Army Natick Research and Development '
Command, Natick, Massachusetts

1830 SOCIAL HOUR AND BANQUET

***** Thursday, 5 October *****

0900-1030 CLINICAL SESSION B -- Room 210

CHAIRMAN

Dr. 0. M. Essenwanger, US Army Missile Research and
Development Command, Redstone Arsenal, Alabama

PANELISTS

Dr. Bernard Harris, Mathematics Research Center

Professor Brian L. Joiner, University of Wisronsin-Madison

Profosaor Grace Wshha, University of Wisconsin-Madisou
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ANALYSIS OF CENSORED REPAIRABLE SYSTEMS FAILURE DATA

Mr. Harold E. Ascher, Naval Research Laboratory,
Washington, DC

FRICTION OF RUBBER ON SNOW AND ICE

Mr. L. David Minsk, US Army Cold Regions Research and
Engineering Laboratory. Hanover, New Hampshire

0900-1030 TECHNICAL SESSION III -- Room 313 -- STATISTICAL THEORY

CHAIRMAN

Mr. Eugene Coppola, Watervliet Arsenal, Watervliet,
New York

ON COMBINING PSUEDO-RANDOM NUMBER GENERATORS

Dr. Mark Brown, Memorial Sloan-Kettering Cancer Center,
New York, New York and Dr. Herbert Solomon, Stanford
University, Stanford, California

SIMPLIFIED POINT AND INTERVAL ESTIMATION FOR REMOVAL TRAPPING

Dr. Andrew P. Some, Mathematics Research Center, University
of Wisconsin-Madison

REGRESSION OF MARKOV DATA

Dr. Edmund H. Inselmann, US Army Combined Arms Combat
Developments Activity, Ft. Leavenworth, Kansas

1030-1100 BREAK

1100-1200 GENERAL SESSION I1 -- Autlitoriumz

CHAIRMAN OF SESSION II

Dr. Bernard Harris, Mathematics Research Center,
University of Wisconsin-Madison

DESIGN PROBLEMS IN RECOVERING FUNCTIONS OF TWO OR
SEVERAL VARIABLES

Professor Grace Wahba, Department of Statistics, University
of Wisconsin-Madison

1200-1330 LUNCH
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1330-1500 CLINICAL SESSION C -- Room 210

CHAIRMAN

Mr. Carl B. Bates, US Army Concepts Analysis Agency,
Bethesda, Maryland

PANELISTS

Dr. Frank E. Grubbs, Aberdeen Proving Ground, Maryland

Dr. Paul Newbold, Mathematics Research Center, University
of Wisconsin-Madison

Dr. Andrew P. Some, Mathematics Research Center, University
of Wisconsin-Madison

PROBLEMS OF GENERATING PREDICTION EQUATIONS BY MULTIVARIATE

ANALYSIS OF DATA DERIVED FROM COMPLEX SIMULATIONS
Mr. Tom Kitchell, US Army Concepts Analysis Agency,
Bethesda, Maryland

1330-1500 TECHNICAL SESSION IV -- Room 313 -- STATISTICAL INFERENCE

CHAIRMAN

Mr. Lang Withers, US Army Operational Test and Evaluation
Agency, Falls Church, Virginia

METHODOLOGY FOR ACCEPTANCE CRITERIA FOR TARGET DISPERSION
CHARACTERISTICS OF THE ARMOR PIERCING DISCARDING SABOT
(AIDS) ROUNDS

Mr. Frank Craig Hopkins, US Army Materiel Systems Analysis
Agency, Aberdeen Proving Ground, Maryland

AN APPROACH TO THE SEQUENTIAL ESTIMATION OF QUANTAL
RESPONSE CURVES

Professor R. Srinivasan, Temple Univerbity, Philadelphia,
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Mr. William Broemm, US Army Materiel Systems Analysis
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1500-1530 BREAK
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1530-1630 GENERAL SESSION II (continued)

STATISTICAL CONSULTING

Professor Brian L. Joiner, Department of Statistics,
University of Wisconsin-Madison

***** Friday, 6 October ***

0900-1030 TECHNICAL SESSION V -- Room 210 -- SPECIAL APPLICATIONS

CHAIRMAN

Dr. Edward Rose, US Army Natick Research and Development
Command, Natick, Massachusetts

LASER BEAM WAR GAMES- DESIGN AND ANALYSIS CONSIDERATIONS

Mr. William S. Mallios, 1DM Corporation, Ft. Ord,

California

STAR SIGNATURE MODELS

Dr. John W. Bond, US Army MERADCOM, Ft. Belvoir, Virginia
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CHAIRMAN
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DETERMINATION OF STRUCTURAL RELIABILITY USING A FLAW
SIMULATION SCHEME
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PREDICTED MECHANICAL BEHAVIOR OF MATERIALS WHEN SUBJECTED
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1030-1100 BREAK

1100-1130 GENERAL SESSION III -- Auditorium

CHAIRMAN OF GENERAL SESSION III

Dr. Frank Grubbs, Aberdeen Proving Ground, Maryland

OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBABILITY
AND STATISTICS

Dr. Douglas B. Tang, Department of Biostatistics and
Applied Mathematics, Division of Biometrics and Medical
Information Processing, Walter Reed Army Institute of
Research, Washington, DC

1130-1230 RECENT ADVANCES IN GRAPHICAL TECHNIQUES FOR ANALYZING
FAILURE DATA

Professor Richard E. Barlow and Bernard Davis, Operations
Research Center, University of California-Berkeley,
Berkeley, California (Address to be presented by Bernard
Davis)

1230- ADJOURN
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STATISTICAL ANALYSES OF A WEATHER
MODIFICATION EXPERIMENT*

Ralph A. Bradley

Department of Statistics
Florida State University

Tallahassee, Florida

I. INTRODUCTION AND SUMMARY

This article is a summary of a manuscript [4) prepared for

inclusion in a special issue on weather modification of the ref-

erenced journal. The subject area is one of national importance

as emphasized in the recent reports (12,13] of the Weather Modi-

fication Advisory Board.

Phase I of the Santa Barbara Convective Seeding Test Program

was conducted by North American Weather Consultants (NAWC) in the

Santa Barbara area of California from 1967 through 1971. Details

of this research were reported in [5,9], with the first report us-

ing augmented raingage data. Initial data analysis was reported

by NAWC and additional exploratory analyses are summarized here,

in [2,4], and in technical reports [1,3,10], the second giving

additional detail. We are indebted to NAWC for their courtesy

*A summary of research supported by the U.S. Office of Naval

Research under Contract No. N00014-76-C-0394. Reproduction in

whole or in part is permitted for any purpose of the United States

Government.
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in providing data tapes to us. The Phase I experimentation was

followed by Phase II research with some experimental design

changes. Only Phase I data are considered here.

The exploratory statistical analyses reported are parametric

and intended to lead to insights that may be checked with Phase II

data. There are problems of validity of parametric assumptions

and issues of experimental design, multiplicity of analyses, and

possible need for randomization analyses raised in [12].

We review the Phase I Santa Barbara experiment and data

available. An experimental unit is a single "seedable" convec-

tive band occurring in a winter storm that may have one or more

such convective bends. The choice of experimental unit has the

advantage of increasing the number of available experimental units

in a season and the possible disadvantages of serial correlation
and persistence of seeding effects from unit to unit. Raingage

data are available for both a Target and a Control Area; concomi-
tant cloud physics data were recorded and, after summarization by

Gleeson [10], used in trial covarlance analyses.

The problem of data summarization is addressed first. It is

found that use of response-surface methods is not advantageous.

Use of concomitant variables for the reduction of experimental

errors in analyses reduces also the apparent effect of cloud seed-

ing. When storm effects are included as components of a paramet-

ric model, they are found to be totally or partially confounded

with seeding and again the apparent effect of seeding is reduced.

Some brief comments are included on some multivariate analyses.

The effect of our analyses is to leave some doubt as to the efficacy

of cloud seeding in the Phase I Santa Barbara experiment.

II. The Phase I Santa Barbara Experiment

The geographical setting of the Phase I Santa Barbara Experi-

ment is shown in Figure 1. Control and Target or Test Areas were

designated; rainfall was measured through series of raingages, some

of which are shown in the figure. While the objective of the ex-

periment was not precisely defined, it can best be described as an

2
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FIG. 1. Santa Barbara Pyrotechnic Seeding %nd Control Test Areas.
Source: Figure 2, Elliott, St. Amand, and Thompson [7]. Rain-
gage sites are designated by solid or open circles, telemetered
gages underlined. The seeding and radar site is indicated by a
solid triangle and Santa Barbara Airport by a solid square.
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investigation of whether cloud seeding can enhance precipitation

within a rather large target area.

The experimental unit was a suitable convective band in a

winter storm that might contain one or more such bands in a se-

quence. The seeding decision was randomized effectively and care

was taken that the decision was not known to the meteorological

analyst determining raingage band passage times and precipita-

tions. Criteria for determination of seedable convective bands

were specified but some operational difficulties were encountered.

Band precipitation data were obtained from all raingages in

control and target areas operational for a band. Air-mass char-

acteri~tics of each band were determined from radiosonde observa-

tions at Santa Barbara Airport, occasionally replaced by Vanden-

berg Air Force Base observations. Gleeson [10] defined and sum-

marized data for each band on the following variables: Xl -

Mixing Ratio, X2 - 700mb Wind Speed, X3 - 700mb Wind Direction,

X4 - Mean Wind Speed, X5 - Direction Avg. Vector Wind, X6 - SOOmb I
Temperature, X 7 - Stability Class, X 8 - Showalter Index, X 9 -

Stability Wind Speed, X1O - Direction Stability Wind, XII - Insta-

bility Transport, X1 2 ". Band Passage Time (Seeding Site). The

data array for the Phase I experimentation may be viewed as a

data matrix with N rows or bands, the first N1 rows for unseeded

bands and the second N2 rows for seeded bands, N - 107, N1 - 51,

N2 = S6, and with columns containing precipitation responses at

individual raingages, possible grouped by locations, and values

of the concomitant variables, X1 to X1 2. The data are not with-

* out problems. Raingage precipitation responses are correlated,

data are missing for many raingages, rows may not be independent

observation vectors, and there may be a persistence effect of

seeding.

The main NAWC approach to data analysis was on a raingage

station-by-station basis. Single and double ratio indices of

precipitation were calculated and contour plots based on these

!4



ratios over control and target areas were given in various reports.

Let Yij denote precipitation at station i for band a, • * 1,...,

N. Let ya i) M 1 or 0 as station i was or was not operable for

band a and let 8 (i) w 1 or 0 as band a was or was not seeded.

Then y •(i) n N(i.) and J8a(i)yCi) - NsCi), respectively the

number of observations and the number of seeded bands recorded at

station i. The number of unseeded bands at station i is Nns( i) -

N(i)-Ns(i). Then
M E8 MY (i)y• / Ci)

and

mTns Ci) u •[I-6 2 Ci) ]va~i)Yia/Nns~i)

are precipitation averages at station i for seeded and unseeded

bands. Six control-area detection stations were used, stations

circled in Figure 1. If k indexes these control stations, de-

fine,
C " sCk)/'

and

tns j tns(k)/6.

The double ratio of NAWC at station i is

DRCi) - [TfsMCBIi~sltnsCi)/Cns]

and the single ratio is

SR(i) -*s M /Tns M .

Much the same contour plots were obtained from both ratios. Use

of the double ratio represents a use of control area precipitation

as a covariate.

The Wilcoxon-Mann-Whitney, two-sample, rank test was used A

also by NAWC to assess the significances of double and single

ratios for each raingage station. The method of application is

S• ...... •=-
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not clear in reports but Is understood as follows. For the single

ratio, Yt, was used; the precipitation themselves were grouped

into two samples, seeded and unseeded, and the rank~test applied.

For the double ratio, yi,/C was calculated for each band a at

station i, C being the average of the six control area detec-

tion stations for band a, and these indices were grouped into two

samples as before.

NAWC was aware that these significance tests were open to

possible criticisms, particularly dependencies from station to

station. A limited Monte Carlo study was conducted and reported

by Elliott and Brown [6]. They state: "At the 0.05 significance

level for all bands, 29 stations in the original test sample were

found to show a positive difference between seeded and not-seeded
cases (bands); and three Monte Carlo runs (out of 50) were found
to have as high or higher counts of stations with a positive dif-

ference at this significance level."

III. DATA SUMMARIZATION

A more direct approach to analysis of the experiment is

through summary measures of precipitation for each experimental

unit over designated response areas.

Bradley, Srivastava and Lanzdorf [1,2] defined response areas

as in Table I that may be located in Figure 1. The numbers of

raingage stations and the data used for Target Areas (i)-(iv) are

those of the Bureau of Reclamation study [5] and those for Target

Area (v) are those of the Naval Weapons Center study [9] with

minor modifications noted in [3,41.

6 ..
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TABLE I

Definitions of Response Areas

Response Ranges in Degrees Number of
Area Latitude Longitude Stations

(M) 34.0-35.25 118.0-120.02 107
(ii) 34.4-35.0 119.31-120.02 26
(1it) 34.0-35.0 118.0-119.51 72
(iv) Areas (ii) + (111) 98
(v) All Stations in the Naval 61

Weapons Center Reports East
of Seeding Site, lung. 120.02

Control* 34.4-35.25 120.02-120.60 34

*The Control Area for the Naval Weapons Center study con-
sists of all 39 stations West of the seeding site.

Use of a simple average over stations is the most direct

method of data summarization for a convective band. Overall pre-

cipitation means are reported in Table I1. Note that the Control
Area mean is higher for seeded bands suggesting that seeding may

have had some effect in the Control Area or misfortane in the ran-

domized choice of bands to be seeded.

TABLE II

Precipitation Means in Inches

Response Areas (i) (ii) (iii) (iv) (v) Control

Seeded Bands 0.257 0.329 0.249 0.271 r 267 0.234Unseeded Bands 0.178 0.229 0.172 0.187 0.190 0.203

With a view to improved data summarization, Brr ley, Srivas-

tava and Lanzdorf [1,2] fitted response surfaces se! rately for

the Control Area and Target Area (i) with the coord4 ,ates of lati-

tude and longitude of raingage stations as independ t variables

and raingage precipitation as the dependent variabl - General
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two-dimensional cubic response models were necessary to represent

responses adequately. Separate response surfaces were found for

each convective band. Precipitation volumes and their variances

were calculated over the designated target areas and Control Area.

Figure 2 is typical of results obtained; the region where the sur-

faces is negative is off-shore.

The rcsponse surface approach was successful as a method of

data summarization in that some 70% of the inherent variation in

responses among raingages within a band and response area was ex-

plained by the independent variables. It was not successful in

improvement of data summarization in comparison with use of the

means of raingages within response areas for a convective band'

in that correlations between precipitation volumes calculated from

the response surfaces and precipitation means ranged from 0.97 to

0.99 for Target Areas (i)-(iv) and the correlation was 0.89 for the

Control Area. Thus, the use of volumes cannot be expected to

yield new insights.

Scott [10] used a multivariate approach to data summarization.

He found, with some difficulty and innovation, principal components

among raingage responses in both Target Area (i) and the Control

Area. The first three principal components were interpretable

approximately as a mean response, a coastal versus inland con-

trast, and an East-West contrast. Percentages of variation ex-

plained by these components were respectively 71.3, 6.7 and 5.9

in Target Area (i) and 76.1, 6.7 and 4.7 in the Control Area. The

correlations of the first component with the band mean were 0.997

for Target Area (i) and 0.985 for the Control Area. Scott is en-

gaged in the use of these results in examination of the effects

of seeding; it seems unlikely that much additional information will
be forthcoming.

In the following section, we show some parametric analyses for

Target Area (i). Although Bradley, Srivastava and Lanzdorf [3]
followed through with analyses on precipitation volumes as well

as means, we report only on the use of means. All Target Areas

4~
"•'•o•,• . , . .•• • e ,• • ..... • .L....• .•... . .•-""• •'- " .......... ... ....... . .. ............. • .... • - • ..... .... .... . .. . . . ... ..
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FIG. 2. Graph of Cubic Response Surface: Band 96 (Seeded), Tar-
get Ar'ea (i). Source: Figure 2, Bradley, Srivastava, and Lanz-
dorf [1]. Vertical axis is 2.3 times precipitation in inches.
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of Table I gave similar results.

IV. SOME PARAMETRIC ANALYSES

Weather modification experiments are conducted necessarily in

a natural environment involving much variability. The use of co-

variates in analyses, ats summarized by Gleeson [10], for the reduc-

tion of experimental error appeared to be the best means to im-

proved experimental design.

Initial covariance analyses were reported in [3]. (Some la-

ter analyses are summarized below). Regression models used were

of the form.
p

U + iV + 8Z +
imi

where U is a precipitation response variable for a target area,

V is the i-th covariate, Z - I or 0 as the convective band was

or was not seeded, the V's and 6 are regression parameters, and

e is a random error. The data matrix has rows, CU Vi*,..

Vp , Z ), a o lp,...,N. The regression parameters were estimated
paa

by weighted least squares through minimization of

N 2
W (U L-0 o - !i - 8Z)

In [3], use of the listed set of covariates and their interactions

with seeding, along with XC, a measure of Control Area precipita-

tion, was explored. In analysis of variance tables in [3] and

below, sources of variation, when included in models, were ordered:

covariates, covariate by seeding interactions after adjustment

for covariates, and seeding after adjustment for covariates and

interactions.

10
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The use of covariates was effective in reducing experimental

error but less so was the use of covariate by seeding interactions.

Preliminary analyses and redundancy considerations suggested re-

duction from 12 covariates to 7: X2 , X3, X6 , X7 , X8 , X,, and

X12 , along with XC, Control Area mean precipitation. There is

concern about use of X because Elliott and Thompson [8] suggest

the possibility of an up-wind effect of seeding weit of the seed-

ing site attributable not to westward seeding contamination b-it

to a seeding-caused blocking of the air-mass flow leading to up-

wind convection development. This may have affected X1 2 , band

passage time at the seeding site, also. Two choices of weighting

were used, wa- 1 (unweighted) and wa- n /s• when U was target

area mean precipitation, where n was the number of observations

contributing to the precipitation mean for band a and s was the

variance among those observations. Weighted analyses with wa

n /s2 were less satisfactory than unweighted analyses. This dif-

ficulty arose because standard deviations are proportional to means

and very high weights were associated with convective bands with

low precipitations. The two best covariates were X and X1 2 .

The use of covariates reduced the apparent effect of seeding. In

these analyses and those below, N - 106 when covwriates are used

because covariate data were missing for Band 73.

Analyses were redone in [4] with responses transformed log-

arithmically to stabilize variances. The transformed variate z

has the form, log (l+ay), where Y is a target area precipitation

observation. For Target Area (i), U is now the target area. mean

of z, and wa = na. The regression analyses are similar to those

described above. Models with and without X and X were

used because it has been suggested that they may have been affec-

ted by seeding. Six models were used as follows:

11..



Model Identification of V1 ,...,V
P

(I) No covariates.
(2) XC' X21 X3, X6, X7 X81 X11, X12 .~

(3) Model (2) less X1 .(5) Model (2) less XC1 2 .

(5) Model (2) less XCI X12

(6) Model (2) plus X2 Z, X3 Z, X6 Z,

XTz, X8 Z, xZ' z, X1 2 Z.

Mean squares, values of F, and values of R2, the coefficient of

determination, for these models are shown in Table III.
We comment on the analyses of Table 111. The transformation

was shown to be effective in stabilizing variances except for

small values of U, values for convective bands that may not have

been acceptable "seedable" bands. Examination of residuals about

regression models for the transformed data suggests that transfor-

mation improved symmetry and approximate normality of their dis-

tributions. Slightly larger values of R were obtained from the

transformed data than in [3]. Results for model (5) show that R

is reduced considerably when X and X are omitted as covari-

ares. Results for model (6) show that interaction terms contribute
little.

There is little indication for models (2)-(6) in Table III

of any effect of seeding. For Model (1), the one-sided signifi-

cance level is 0.06, consistent with the randomization analysis

reported in Section II. The covariates may be affected by seeding.

We have commented on this in regard to X and X1 2 . Gleeson [10]

saw small but consistent differences in covariates for seeded and

unseeded bands. The other covariates were based on radiosonde

data taken at Santa Barbara Airport, well into the target area.
at

12
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TABLE III

Analyses of Variance, Transformed Data,
Target Area (i), Models (l)-(6)

Model (1) (2) (3)

Source of
Variation d.M. M.S. F d.f. M.S. F d.f. M.S. F

Seeding 1 110.3 2.77 1 0.6 .05 1 0.0 .00

Interactions - - -

Covariates - - - 8 382.5 30.79 7 374.4 22.24

Error 104 39.8 - 96 12.4 - 97 16.8 -

R - - 0.03 - - 0.72 - - 0.62

Model (4) (5) (6)

Source of
Variation d.f. M.S. F d.f. M.S. F d.f. M.S. F

Seeding 1 11.6 .78 1 44.7 1.46 1 1.6 .13

Interactions - - - - - 7 17.0 1.41

Covariates 7 398.6 26.64 6 200.4 6.53 8 382.5 31.73

Error 97 1S.0 - 98 30.7 - 89 12.1 -

R2 - 0.66 - - 0.29 - - 0.75

Some other sources of variation have not been considered yet.

Convective bands occur within -inter storms with one or more bands.

Therefore there is a total or partial confounding of storm ef-

fects with seeding. If covariates are omitted and the effect of

seeding is considered after adjustments for storms, we have the

analysis of Table IV. It is seen that R2 , 0.54, comzparable to

values of R2 in Table III; more degrees of freedom are expended.

13
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TABLE IV

Analysis of Variance, Target Area (i), Transformed
Data, Storm Effects in Model

Source of d.f. M.S. F
Variation

Seeding 1 24.0 0.82

Storms 37 61.1 2.08

Error 67 29.4 -

R - - 0.54

But the apparent effect of seeding has disappeared again, In

future similar experimentation, use of storms for blocking

should be considered, perhaps as suggested in [12], with random-

ization within storms rather than over all convective bands as

done in the Phase I Santa Barbara experiment for which the analy-
ses reported in Section I1 and in Table III for model (1) seem

appropriate.

In further exploratory analyses, we considered as additional

sources of variation position of the band within a storm and a

possible first-order carry-over effect of seeding from a seeded

band to the following band if in the same storm. No real effects

for position or carry-over were found.

The analyses of this section are open to technical concerns,

but parametric methods provide the best means of exploratory anal-

ysis if not for the exact determination of significance levels.

The possible pr:,sistence effect of seeding raises questions about

the independence of experimental units that may be subject also to

serial correlat'on. Normality assumptions are not valid for indi-

vidual raingage observations but may be appropriate for target area

14
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means. Some variance heterogeneity is present after transforma-
tion of the data. Choice of weights, w, a n a for analyses

with transformed data is only strictly appropriate if raingage

observations are independent. Covariates in regression models

are subject to experimental errors.

V. REMARKS

Some remarks and recommendations can be made after analysis

of the Phase r Santa Barbara experiment. We are in near agree-

ment with the conclusion of Elliott and Brown [6]: "Even when

those bands not as receptive to seeding were included in the

sample, the seeded to not-seeded precipitation increases were

greater than 50%." The means of Table II show increases near

to 50% and the analysis of Table III for Model (1) suggests sig-

nificance near to the 0.05 level.

Improved experimental design is needed but not easy to

achieve. Use of convective bands as experimental units increases

the number of available units per season but raises other prob-

lems. Some improvements are needed:

(i) Tmproved detection and determination of "seedable"

bands.

(ii) More uniform dispersement of raingages over regions

of interest.

(iii) Improved determination and measurement .f precipita-

tions attributed to particular convective bands.

(iv) Better determination and measurement of covariates

free from possible seeding effects.

(v) Allowance for blocking by storms for ft-ther control

of variation. Concerns may remain in regard to dep ndencies
among experimental units, data transformation, var ice hetero-

geneity and persistence effects of seeding, some oi ihich may be

met through use of randomization analyses. Futher .;teorological

and statistical research is needed.
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CANDIDATE SEQUENTIAL DESIGNS FOR
OPTIMUM SEEKING

Carl B. Bates
US Army Concepts Analysis Agency

Bethesda, Maryland

ABSTRACT. Phase I of the Target Acquisition Systems Force Mix
Evaluation Analysis (TASFMA) Study is the development of a methodology
for evaluating the combat effectiveness of mixes of systems within a
functional area. The methodology requires a division combat simulation
model whose outcome is sensitive to changes in the quality and quantity
of sensor systems deployed. DIVOPS, a division-level combined arms en-gagement model, is the primary candidate for the combat simulationmodel. The model will simulate multiple quantities of up to 15 differ-

ent sensor types. Because the DIVOPS Model can represent 15 sensor sys-
tems, the developed methodology must be capable of accommodating 15 sys-
tem types. Additionally, it is desired that three quantities be exa-
mined for each of the 15 Ignsor types. Although DIVOPS is a relatively
fast running model, all 3 runs are impossible. Consequently, a mythod
is needed for constructing a manageably sized subset of the total 3=
input combinations. This paper presents candidate sequential designs
for the study and search of the optimum sensor mix. Two two-level de-
signs are presented, a resolution III design which requires 16 runs andaresolution V design which requires 256 runs. Then two three-level de-

signs are presented, a "Minimum Number of Points" design requiring 136
runs and a 3"P fractional factorial design requiring 243 runs. Advant-
ages and disadvantages of the designs are discussed.

1. INTRODUCTION. The Target Acquisition Systems Force Mix Evalua-
tion Analysis (TASFMA) Study consists of two phases. Phase I is the de-
velopment of a methodology for evaluating the combat effectiveness of
mixes of systems within a functional area. Phase II is the demonstra-
tion of the usefulness of the methodology. The following sequential de-
signs are proposed for incorporation into the developed methodology.

The methodology requires a division combat simulation whose combat
outcome is sensitive to changes in the quality and quantity of sensor
systems deployed. DIVOPS is the primary candidate for the combat simu-
lation. DIVOPS is a two-sided, deterministic, division-level ground
combat model. The model will simulate multiple quantities of up to 15
different sensor types. The model documentation is in Reference 1.

2. PROBLEM DESCRIPTION AND BACKGROUND. Because the DIVOPS Model
can represent 15 sensor ty es, the developed methodology must also be
capable of accommodating 15 system types. Additionally, because sensor
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influence may be nonlinear, it is essential that more than just two
quantities (say, a low and a high number) of sensors be examined for
each of the different types. It is desired that three quantities be
exanined for each of the 15 sensgg types. Although DIVOPS is a rela-
tively fgst running model, all 311 input combinations cannot be run
since 34 1 14,000,000. Moreover, neither could th model be exercised
for all 21 input Combinations, if desired, since 2 • 32,7 68 . Conse-
quently, a method is Tgeded for constructing a manageable size subset of
the totality of the 3L input combinations, hereafter referred to as de-
sign points. The purpose of this paper is to present proposed sequen-
tial designs for the above described optimization problem.

3. METHODOLOGY RATIONALE. The methodology presupposes little or
no a priori information about the functional relationship between model
inpTtFia]ibles and model output variables. The model input variables
and output variables are considered to be continuous variables. For the
purpose of this paper, it is assumed that the three quantities, here-
after termed levels, of sensors or systems are known for each system
under investigation. That is, the proposed procedure is not for deter-
mining what the levels should be. Rather, it is for identifying the
combinations of existing levels which should be employed in the search
"for the optTmum systems mix.

Although interest is in three levels of each of the input vari-

ables, because of the magnitude of 39 it is felt that the examination
process plust be sequential in naturp, That is, the search should start
with a 2K design and proceed to a 3K design where k' . k. This ap-
proach employs some of the screening concepts of experimental designs
and response surface fitting.

4. TWO-LEVEL DESIGNS

a. General. Let xvi .1,2,...,k be the model input variables,
where k - 15. Denote thm extreme two of the three levels of each of the
variables by "0" and "1," respectively. If k were three, the eight de-
sign points would be as shown in Table 1 and are geometrically illus-
trated in Figure 1.

If the full factorial experiment were performed and a dependent
variable y were measured or observed at each of the eight independent
variable cormbinations, the full model shown as Equation El] could be
fitted.

y b + b x + boX b X + b xx 2000 1001 0102 0013 1101

+ b xx + b 1 x x + b 1 x x x3 lblo01 1 b3Oil 2 3 ill 1X2 3

20
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I Table 1. 23 Design Matrix

X1 x2  3

0 0 0
1 0 0

o 1 0o 0 1
1 1 0
1 0 1o 1 1

.11

Figure 1.Full 23 Factorial
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The general full 2k design permits the fitting of the following 2k'1
terms plus the intercept, bO.

k single-variable terms

k(k-1)/2 two-variable terms

k(k-1)(k-2)/2x3 three-variable terms

Because a full 215 experiment is impossible for the TASFOA optim-
ization problem, two alternative (/2 fractional designs, 2 P, are
presented. The first design permits fitting the 15 single-variable
terms only. The second design permits fitting the 15 si ngle-variable
terms and the (15x14)/2 - 105 two-variable terms.

b. Resolution Ill Desiýgn. Resolution III designs are available
which require k+1 runs to study k variables, where k+1 is a multiple of
four. In Reference 2, Box and Hunter give the following definition of
resolution III designs:

"No main effect is confounded with any other main effect, but
main effects are confounded with two-factor interactions and
two-factor interactions with one another."

The design) 4 s first illustraýed for a seven-Xa iable experiment.
Consider a (1/2) of a complete 2' factorial, a 21- design. Construc-
tion oj the design matrix starts with the design matrix in Table 1, a
full 2 . Four additional columns are generated from the three original
columns. Treat a "0" as a "-1" and a ' 1" as a "+1" and product the
three pairs of columns and the one triple. That is, generate columns 4,
5, 6, and 7 as follows:

column 4 - column I times column 2
column 5 a column 1 times column 3
column 6 - column 2 times column 3
column 7 - column 1 times column 2 times column 3

22
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The resulting design matrix is shown in Table 2 and permits fitting
the seven-dimensional plane given in Equation [2].

Table 2. 27-4 Design Matrix

X1  X2 X3 X4 X5 X6  x7

0 0 0 1
0 0 0 0 1 1 10 1 0 0 1 0 1
0 0 1 1 0 0 1
1 1 0 1 0 0 01 0 1 0 1 0 0
0 1 1 0 0 1 0

y U b0 + bjxl + b2 x2 + b3x3

+ b40 4 + b5x5 + b6 x6 + b7x7  [2)

Applying the technique described in the previous paragraph to the
15 variables of the TASFMA Study gives, the design matrix 4n Table 3.
The first four columns constitute the design for a full ?. factorial.
Columns 5 through 10 are pairwise products of the first four columns.
Columns 11 through 14 are the four triple products, and column 15 is the
product of all four columns The products are Indicated under the col-
umn heading in the table. Exercising the computer simulation model for
each of the 16 input variable combinations indentified in Table 3 would
permit fitting a 15-dimensional plane for each output varlablo under
study. For each output variable, this would give a function in terms of
each of the 15 input variables, Equation [3].

y = b0 + bixi + b2x2 + ... + b14x14 + b15x 15  [3)

The regression coefficients b b, .. , b15 are the slopes of the
plane in the respective dimensions' Ie slopes can be analyzed to as-
sess the effect each of the 15 input variables has upon the particular
output variable and also to refine the space which will be further
examined with a three-level design.
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The assessment will give the direction of the maximum response as well
as an ordering of the relative contribution of each of the 15 sensor
types. If some of the 15 contribute very little as compared to the
others, then the low contributors can be fixed at either their upper or
constraining levels for the follow-on three-level examination.

The above 'cheap" experiment is not without risk. Naturally, a
sacrifice has to be made for a design with such a small number (16) of
design points. If two input variables, xi and x , significantly inter-
act and neither xi nor xA individually significahtly contribute, the
variables would n6t be r cognized as being sufficiently important for
Inclusion in the follow-on three-level Investigation. If this risk is
considered too great and a design is required which will permit the
testing of all of the two-variable interactions, then the price of many
more computer simulation model runs must be made. In any case, the
resolution III design should be conducted first because it requires so
few runs.

c.Rslution V Design. Resolution V designs are defined by Box
and Hunter in Reference 2 as:

"No main effect or two-factor interaction is confounded with
any other main effect or two-factor interaction, but two-
factor Interactions are confounded with three-factor Interac-tions."

Box and Hunter discuss resolution V designs and their construction
in Reference 3. This is the type of 2 kp fractional factorial designs
conventionally introduced in experimental design texts, such as Refer..
ences 4, 5, 6, 7, 8, and 9. The construction of resolution V 2K-P de-
signs is not the purpose of this paper and will not be discussed here.
Their construction can be found in the above references.

A 15-variable experiment has k a 15 main effects and k(k-1)/2 a 105
two-yariable interaction effects. The smallest resolution V design for
a 21  experiment has 256 design points. Using the 15 letters A, B, ,,.,
P (excluding I) to represent the 15 input variables x1 ,x 2 ,,,,,x 1 5 and

the Identifying contrast shown in Table 4, gives the 2 5 -7design given

in Table 5. From the 256-run simulation model experiment we can fit the
model in Equation [4].

y • b0 + b 1xj + b2x2 + ... + b15x15 + bl, 2xlx2 +

+ b14 , 15x1 4x1 5  [4)
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Equation [4] has the 15 single-variable terms that are in equation

[3] plus 105 two-variable terms. That is, 120 degrees of freedom of the
total 255 degrees of freedom are used for fitting. The remaining 135
can be used for significance testing. Testing significance of the re-
gression coefficients can be accomplished as Illustrated in the ANOVA
table, Table 6. The testing will identify those coefficents which are
not significantly different from zero. The corresponding variables can
then be fixed in the manner discussed in paragraph b above, and the in-
vestigation can proceed to the three-level follow-on investigation.

Table 6. ANOVA for 45"7 DesAgn

Source DF SS MS F-ratio

I1 SS(bI ) MS(bI) MS(b)/MS(LOF)

b2  1 SS(b 2 ) MS(b 2 ) MS(b 2 )/MS(LOF)

b1 SS(b 1 5 ) MSb( 15 ) MS(bI 5 )/MS(LOF)

b1,2 1 SS(bl, 2 ) MS(bl, 2 ) MS(bl, 2 )/MS(LOF)

b 1 SS(b 14 15 ) MS(b 14 15 ) MS(bl4, 15 )/MS(LOF)

Lack of Fit 135 SS(LOF) MS(LOF)

Total 255 SS(Total)
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The obvious disadvantage of the above design is the large number of
simulation model runs required. This cannot be avoided when so many
(120) coefficients are to be estimated and tested. Care must also be
taken when assessing interaction significance. Since the interaction of
each variable with each of the other 14 variables is being tested, an
alpha-percent of the interactions would be expected to be statistically
significant due to random chance.

5. THREE-LEVEL DESIGNS

a. General. As with the two-level designs, two candidate three-
level designs are proposed. One design may be applied to all 15 input
variables if necessary; the other design presupposes that the previous
screening process reduces the number of input variables so that k' < 10.

First, the notation is changed from that used in the previous sec-
tlon. Now, denote the three levels--low, middle, and high--by "0", "1",
a~d "2", respectively. If k' were three, the 27 design points of a full
3 experiment would be as given in Table 7. The full design is illus-
trated geometrically in Figure 2.

If the full design were executed, the following model of Equation
[5] could be fitted. Equation E[] has 27 terms.

y boo0 + b1ooxj + boIoX2 + boojx 3

+ b20oox + b0204x * bo0 2 x3

+ bj 1oxjx 2 + bjO1x1x3 + bo1 1x2x3

+ b12 xx + see + b22 xxx 5

The general full 3k'design permits fitting 3k' terms, including tbq
intercept. In practice, however, even for moderate k', all possible 3•
terms are seldom fitted. Usually they are not even desired. Two candi-
date tWee-level designs are proposed which require considerably less
than 3K design points. The first is the "Minlipum Number of Points" de-
sign. The second design is the conventional 3 k- fractional factorial
design.
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Table 7. 33 Design Matrix

x1  X2 x3

0 0 0 "°-'

1 0 0
2 0 0
0 1 0

1 1 0
2 1 0
0 2 01 2 0

2 2 0
0 0 1
1 0 1
2 0 1
0 1 1
1 1 1
2 1 1
0 2 1
1 2 1
2 2 1
0 0 2
1 0 2
2 0 2
0 1 2
1 1 2
2 1 2
0 2 2
1 2 2
2 2 2
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b. "Minimum Number of Points" Design.* The "Minimum Number of
Points (MNOP)" design contains the same number of design points as there
are terms in the fitted function, including the intercept. The design
permits fitting all first and second order terms.

First, the design is illustrated for k' - 3. The design matrix for
k' - 3 is shown in Table 8. The ten design points are illustrated In
Figure 3 and will permit fitting Equation [6].

Table 8. Minimum Number of Points Design

Matrix for k' - 3

Xl x2  x3

0 0 0

1 0 0o o ali
o 0 1
2 0 0
0 2 0
0 0 2
1 1 0
1 0 1
0 1 1

y " boo0 + blooxl + bolOx 2 + boox 3

S 20ox + bo2o0x + bo02xi

4 b + blO1x1X3 + boj 1 x2 x3  [6]

To show the pattern more clearly before presenting the MNOP design
for k' 15, the design is also illustrated for five variables. Table 9
contains the design for k' a 5. Note that k' rows have a single "1", k'
rows have a single "2", and k'(k'-l)/2 rowt have two "V's". Although
the model that can be fitted is obvious, it is given in Equation [7] for
completeness. Subscript notation is changed from that previously used
to conserve space.

*The design was brought to the attention of the author by Or. GeorgeBox•-in a personal communication during May 1978.
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Table 9. MNOP Design Matrix for k' - 5

X1  X2  X3  X4  XS

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 1 0
O 1 0 0 0

0  0 1 1 00 0 1. 0 1
0 0 0 1 1

4. I Iiy -,b0 + bjx1 + b~x + b~x + b~x + b~x

+ blx+b2x+b3x

+ b44x4 b55xj + b12x1x2

+ b13x1x3 + b14 xlx 4 + b15 x1x 5

+ b2 3x2x 3 + b24 x2x4 + b2 5x2x5

+ b3 4x3x4 + b3 5x3 x5

+ b4 5x4x5  [7)
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Construction of the MNOP design for 15 variables should be obvious
from the above illustrations. The design has 15 rows with a single "1",
15 rows with a single "2", and 105 rows with two "l's", and one row of
all 'O's" giving a total of 136 design points. The design matrix is
shown in Table 10. The columns denote the 15 variables xj through xi
If a computer model simulation experiment were conducted using the MR~
design, the model given in equation t8] could be fitted for each depen-
dent variable under Investigation. Each fitted function could then be
studied to determine the optimum systems mix for each measure of effec-

V tiveness.

ay *b0 + bjxI + b2x2 + .. + b15 1
+ b114f + b224~ + +. +I,~ j

+ 12x1x2 +bl 3xlx3 + .. + bl4,1 6xl 4xl5  [83

If, however, the MNOP design is considered inadequate and the prior
two-.level examination has resulted in-a screening of the original 15 in-
put variables down to not more than 10 variables, a fractional factorial
design can be applied.

c. 3k'-p Fractional Factorial. If k' I 1U, a fractional factorial
experiment canq Nesigned which has 243 design points. Theoretical
background on 3 ' fractional factorial designs can be found in Refer-
ences 4, 5, 6, 7, 8, and 9.

This illustrated for k' - 10. The design is a 1/35 x 310,
iea 38gfractional factorial. As in paragraph 4c above, the ten

letters A, B, ... , K (excluding I) are used to represent the ten k' in-
qut variables xl, x2, ;~n xg. Using the Identifying contrast shown in

~able 11 yields te mesig given in Table 12.
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Table 10. "Minimum Number of Points" Design Matrix
for 15 Variables

"I ooooooooooooo 45 0U00a1100O00ooDo 91 33. Moo 00Goo 3" 1
2 100000000oooo 47at 0101000oo00o00 9 ooooouooooaaoo
3 010000000000000 48 O100100000OWOO 93 0 00 0010 10 00 0000
4 OI000000000oo00 49 01000100000oooo 94 a00o00102oooDoao
S000oo0000o00oo00 5. 0100001o0000=00 96 000oo.0000100000
6 000o010000000000 51 01001000Di)o00o 6 00 Doo 10a010•oa00
7 000000300000000 53 01000o0010oo 9 0 oW0010.00ooo00100
S000o00000000oo00 s5 0100G0oo0100ooD 96 oooooIooooooIo

9n 00000000100000oo 01000000001000 L 0o00002.oooa00oo0I10 0O0OoOO Gooooo s aO00000ooooo .00100 101 000000100000000ii oo~onooo0ooooooo us oiooooooooooiao ioi ooooamxeooooooo
12 00002000010000 57 010000000000010 102 o ooooooo.OOOOOO
13 000000000000100 s9 o0o0ooooooooo00 103 oooooo00oo0o0oo

15 000000090000010 so 0olO0O00000ooo0 10 000000100001000

17 20000000000000 62 0010O010000000oo 10? oooo0o0ooooooo0
19 0z2ooooooooWoooo 63 oo0OO 1oooooooo 2.0 0W0oo0Bo00oooooO
19 00o0oo0O 0oooo D 64 001000001000000 109 000100011000000
20 00o200000000000 S6 0010000001oo0000 110 ooooooIoIooooo
21 010020000000000 66 o01000000010000 121 0000000100100002:. oaooooooooo~oo0 67 001000000001000 112 oooo~oolo01ooooo

23 000oo0200000000 68 001000000000100 113 0W00o0010000100
24 000000020000000 69 00100000000001o 114 oooo0oo1o0ooooo 0o
25 000000002000000 70 00100000000,0001 115 0000000100000001
26 000000000200000 71 000110000000000 116 000000001100000
27 000000000020000 72 000101000000000 117 000000001010000
28 00000000002000 73 000100100000000 118 000000001001000
29 000000000000200 74 000100010000000 119 00000000.000100
30 000000000000020 76 000100n101000000 120 0000000010000010
31 000000000000002 76 000100000100000 121 000000001000001
32 1.10(000000000900 77 000100000010000 122 000000000110000
33 101000000000000 78 000100000001000 123 000000000101000
34 100100000000000 79 000100000000aL00 124 000000000100100
35 100010000000000 80 000100000000010 12$ 0000000001000 10
36 100001000000000 81 000100000000001 126 000000000100001
37 100000100000000 62 000011000000000 127 000000000011000
38 10r1000010000000 83 000010100000000 128 000000000010100
39 10000000o000000 84 010010010000000 129 000000000010010
40 100000000100000 85 000010001000000 130 000000000010001
141 100000000010000 66 000010000100000 131 000000000001100
42 100000000001000 87 000010000010000 132 000000000001010
43 100000000000100 88 000010000001000 133 000000000001001
4 14 100000100000010 89 0000113000000000 134 000000000000110
45 100000000000001 90 0000100000000W0 135 000000000000101

135 010000000000011
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Table 12. 310-5 Fractional Factorial Design Matrix
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The design permits fitting and testing 20 single-variable terms and
180 interaction terms. The 20 single-variable ternj ar2 the 10 Pinear
terms xl,, x2, ... , Xn and the 10 quadratic terms x, x2, ... , x .
Each of te 45 interaction effects have ourxterms, 106
xx 4  ,givin a total of 180 two-variable terms. This
1 a es 426degre5 s o Xreedom or Lack of Fit which can be used for test-
Ing. The fitted function of each measure of effectiveness can then be
studied to determine the optimum systems mix in the same manner ex-
plained in the previous section.

6. SUMMARY. Four candidate experimental designs have been pro-
posed for the Target Acquisition Systems Force Mix Evaluation Analysis
methodology development. The designs, two two-level designs and two
three-level designs, are recommended for sequential application. The
resolution III and resolution V two-level desi@as contain 16 and 266 de-
sign points, respectively. The MNOP and the 3 fractional factorial
three-level designs contain 136 and 243 design points, respectively.
Therefore, four candidate combinations of 2m and 3 sequential designs
are available. The total number of computer model simulation runs range
from 16 + 136 m 152 to 256 + 243 - 499. The sequential designs and the
required numbers of model runs are shown in Table 13. The number of
model runs is shown in parentheses.

Table 13. Candidate Sequential 2m and 3n Designs

Two level Three level

Resolution III Minimum Number ofOesign • ,, , , Points Design

Desi n Factorial Design
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Environmental and Water Quality Operational

Studies: Experimental Design Problems

Associated with the Fisheries of the

Missiusippi River

Michael P. Farrell,
A. Dale Hagoun,

Environmental Laboratory
Waterways Experiment Station

Vicksburg, Mississippi

Introduction

The Waterways Experiment Station is conducting a six-year, nationwide

program of applied research to investigate selected high priority environ-

mental quality problems associated with the Civil Works activities of the

Corps of Engineers (CE). The study is being conducted for the Office,

Chief of Engineers, and is entitled the Environmental and Water Quality

Operational Studies (EWQOS).

The principle goal of EWMOS is to provide new or improved methodologies

and technology for tht planning, design, construction, and operation of CE

projects to meet environmental quality objectives in a manner compatible

with project purposes. A key element of EWQOS is the use of extensive

field studies to evaluate and document the utility of new or Improved

methodologies and technology developed within the program.
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During the early planning p~hase of EWQOS, visits by WES personnel
were made to each CONJS Corps Division office to identify and assess the
magnitude of environmental quality problems. The nature and extent of
environmental quality problems being experienced by Corps field offices
was used as a basis for planning research to address these problems.
One major problem area identified as being of high priority was the
environmental impacts of project activities on waterways. Specifically,
it was determined that EWQOS research should develop field office guid-
ance to address environmental and water quality aspects of dikes and
revetments. Such structures are comon in waterways in many parts of
the United States, but most commonly occur along the Wassissippi River
and its tributaries.

Based on this problem identification phase, a project was established
within EWQOS to conduct a comprehensive field study of dikes and revet-
mantsassociated with CE waterway navigation projects. This field study
is being undertaken within a 50 mile reach of the Lower Mississippi River
between Lake Providence, Louisiana, and Greenville, Mississippi. 1his
site was selected after an intensive survey of CE waterways navigation
projects and after discussions with knowledgeable CE field personnel.
Site selection was based on the existence of an extensive hydraulic and
hydrologic data bases, the presence of a representative variety of dike
and revotment structure design, and optimum diversity of characteristic
floodplain and riverine aquatic macrohabitats, and plans by the Vicks-
burg District to conduct potamology studies in the reach during thE time
frame of ZWQOS, and to synthesize in a report the existing hydraulic and
sediment data.

Goals and Objectives

The goal of the long-term waterway field study of dikes and revet-
ments is to assess the relative ecological importance of channel align-
ment and bank stabilization structures in the riverine ecosystem, and
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to provide data to formulate environmental quality guidelines for use by
CE districts in designing and planning new structures and modifying exist-
ing ones.

The specific objectives are based on a macrohabitat approach in which
revetted banks and dike fields are considered as aquatic habitats within
the river system.

(1) Quantitatively define riverine microhabitats of the study reach
including relative site, current velocity, sediment type, materials compos-
ing the dikes and revetments and associated riparian vegetation at various
river stages and times of year.

(2) Quantitatively describe the phymicochemical characteristics of
the water and sediments in riverine macrohabitats at various river stages
and times of year and how these variables relate to the distribution and
abundance of aquatic organisms.

(3) Quantitatively describe the composition of the particulate
organic matter, including phytoplankton, zooplankton, and detritus, in
riverine macrohabitate at various river stages and times of year.

(4) Quantitatively describe the species diversity, abundance distri-
bution and production of benthic macroinvertebrates in riverine macrn-
habitats, including the use of these habitats as spawning, nursery, and
feeding areas.

"(5) Quantitatively describe the species diversity, abundance
distribution and production of fishes in riverine macrohabitats, includ-
ing the use of these habitats as spawning, nursery and feeding areas.

General Background

Dikes have been placed in rivers by the CE for many years for the
purpose of aligning and contracting river channels. The lower Mississippi,
middle Mississippi, Missouri, and Arkansas are examples of rivers that
have extensive amounts of dike structures. In navigation projects, the
principle use of dikes is ir adjusting channel width, depth, and align-
ment and to close secondary channels and chutes. Dike structures are
probably the most effective means of channel alignment and contraction
in use today.

Dikes are structures constructed of permeable wooden piles or, more
typically in present times, of relatively impermable stone riprap. Dikes
may be singular or placed one after another along a bank forming a dike
field. Generally dikes are of the transverse type which extend from the!

j, bank perpendicularly into the river channel past the point of highest cuir-
rent velocities. An extension or L-head may be placed at the off-shore
end of a dike parallel to the main axis'of the dike to retard scouring
and turbulence. Vane dikes which are placed in the channel parallel to
the bank line are also used.
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Water is shunted by a dike toward the opposite river bank and, if
this bank is stable, the resulting narrower chaanel is deepened by scour-
ing in order that the river's discharge may be carried. Dikes are
typically placed on the convex side or point bar in a bendway or in
straight reaches to achieve some degree of channel sinuosity and result-
ing contraction. Concurrent with channel contraction, suspended sediments
are deposited downstream of individual dikes due to the reduction of cur-
rent velocities caused by the structure. In dike fields sediment accretion
may be appreciable, and these accumulated sediments, which may in some
instances form fast land or a bar, further serve to confine the flow of
water. Slackwater pools may be found downstream of transverse dikes at low
river stages in cases where sediment accretion has not completely filled in
these areas. Since, ecologically, slackwater areas are thought to be im-
portant in a river system, knotches have been put in transverse dikes to
prevent sediment buildup on the downstream side of dikes.

In the lower Mississippi River there are presently 393 dikes totaling
approximately 575,000 linear feet (Table 1). The number of dikes dimin-
ishes downstream in lower Mississippi Fiver, with no dikes being present in
the river within the confines of the New Orleans District. However, many
new structures are planned within the next two decades in the lower river.

Despite the large number of dikes present in many of the major river
systems of the United States, the ecological effects of these structures
are poorly known. Dike fields and individual dikes are distinct habitats
within river systems where these structures are numerous. Date on this
environmental quality characteristics of these structures and methods for
designing and modifying dikes to enhance tneir value as aquatic habitat is
needed by CE districts and divisions in designing and operating waterway
navigation projects.

Revetments are installed along river banks to prevent bank caving and
erosion. These structures are of many types, but generally consist of
erosion-resistance materials which are placed upon a pregraded bank from
the top of the bank line to the toe of the channel. In navigation and
flood control projects revetments are often located on the concave bank in
bendways and crossings in association with dike fields on the opposite bank
to contract the river channel and to retard meandering. They are also
placed in areas where erosion threatens levees.

Benk revetments are of many different types including stone riprap
and articulated concrete mattresses (ACM). ACM with stone riprap placed
on the upper portions of the bank as paving is the most common type of
revetment presently being installed in the lower Mississippi River. In
the past, asphalt and willow mats were used instead of riprap for bank
paving. Approximattly 3.9 million linear feet of bank revetment works
Lhve been constructed in the lower Mississippi River. In the Missouri
River, revetments constructed oi 3tone riprap are used extensively.

When river banks are revetted, much of their natural character is
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Table 1

Dike and Revetment Structures in the Lower Mississippi River

.'p

Linear Ft. of Revet. 1,758,515 1,202,610 930,721 3,891,846 in ft

Linear Ft. of Dikes 583,498 292,229 0 875,727 In ft

No*/Types pile (wood) 31 8
pile & stonefill 68 24
stone 137 90
stone trail 6 5
stone vane a 15
car body 1

Total No. Dikes 250 143 0

1 __

Source of information. (eorge Kerr, MRC, 327. (As of 30 September 1977).

.. I

47

t. " :.'-



altered. However, the environmental quality of the habitat formed by the
revetment structures is unknown. Older revetment structures which have
become extensively vegetated with willow and cottonwood trees and a variety
of sedges, grasses, and shrubs 'may have different value as aquatic habitat
than new revetments. Thus age is a variable of importance in evaluating
environmental effects of revetments. The type of material composing the
revetment may also be an Important variable in determining the biological
productivity and habitat value of revetment structures. For example,
stone riprap is probably a more productive substrate for fish food organisms
than asphalt. Another factor is the sinuosity of the bank line upon which
revetment is placed. A sinuous bank would tend to have relatively lower
velocities caused by eddies and upstream flow than would a straight bank
line, and would, therefore, be expected to constitute more productive fish
habitat.

The large magnitude of revetted banks in many river systems make inves-
tigation of the environmental effects of these structures of value to CE
districts and divisions for use in impact assessments, and the planning,
design, and construction of new structures. At present there exists very
little environmental data on revetment structures regarding their produc-
tivity as comparad to "natural" banks.

The distribution and abundance of organisms in a large river system

are fundamentally determined by river geomorphology, flow, and sediment
load for it is these factors which interact to produce distinct environ-
ments or macrohabitats for riverine biota. Undoubtedly, water quality,
temperature sediment type and other factors are important determinants of
the distribution and abundance of aquatic species in a given river but
these are secondary to the more basic geomorphology and hydraulic features
of the stream. Land use practices, terrestrial vegetation patterns, and
edaphic characteristics in the drainage basin, also contribute importantly
to the environmental conditions of the river, but these factors mainly
impose conditions upon the macrohabitats formed by the rivers' shape,
flow, and sediment load. For example, a broad, shallow braided river has
different proportions and types of macrohabitats than a stream with a deep,
narrow well-dIefined channel, irrespective of water quality.

The channel alignment and bank stabilization structures placed in
rivers by the Corps for achieving flood control and navigation objectives
can modify to different degrees geomorphology, stage and discharge rela-
tionships, and sediment movements within the stream. These changes in
the river's characteristics, plus the presence of the structures them-
selves as a substrate for organisms, result in shifts in the types, sizes
and variety of aquatic macrohabitats. Such alterations in riverine habitats
effected by the installation of structures may or may not produce positive
impacts on the ecology of the system. For example, certain "natural" macro-
habitats may be reduced in size and quality by training and stabilization
structures, while habitats created by the installed structures, such as

J! dike fields or revetted banks, may become commonplace. The primary goal of
this research is to determine the ecological importance or value of the
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macrohabitats formed in the river by dike fields and revetted banks as
compared to "natural" habitats, and to formulate environmental quality
guidelines for use in designing and planning new itroctures and modify-
in& existing ones.

The general approach to the dike and revetment study in the lower
Mississippi River will be from a macrohabitat point of view, wherein the
length of river to be investigated will be subdivided into its macro-
habitats which will be characterized as to both biotic and abiotic vari-
ables. Dike fields and revetted banks will be treated as macrohabitats,
although man-made, together with other distinct biological habitats such
as the main channel, natural steep banks, towheads, chutes, river borders,
point bar cutoffs, and old river channels. The ecological importance of
each macrohabitat will be evaluated according to its basic water quality,
production of benthic organisms used as fish food, abundance of fishes,
use as spawning, nursery and feeding areas for fishes, and production of
suspended particulate organic matter. The function and relative value as
aquatic habitats of dike fields and revetted banks within the river eco-
system will be defined based on this information. The habitat evaluation
will be related to various key river stages and times of year.

The dike and revetmant study will be initiated by preparing a quanti-
tative map of aquatic macrohabitata in the 50 mile reach of lower Miss-
issippi River selected for study. These data will form the basis of the
field investigations. The map will be prepared using existing hydraulic
and topographic survey data and aerial photographs belonging to the
Vicksburg District as a basis. Habitats will be initially delineated at
a low water stage, defined as 0 ft Low Water Reference Plane, using as
criteria primarily depth and information from aerial photographs as to
the location of sandbars and other features. This map will be refined as
to the definition of habitats with data on currents, sediments, and biota
collected during the pilot survey. The map will be redefined for bank
full and over-bank river stages.

The first efforts in the field will be a series of pilot surveys
designed to provide additional data for the habitat map, for developing
and testing sampling equipment and techniques, selecting representative
habitats for intensive study, and developing an experimental design for
the habitat surveys and detailed ecological studies. The pilot survey
will be conducted from April through September, 1978.

Following completion of the pilot survey and formulation of experi-
mental designa, at least two representatives of each habitat type will
be selected for comparative study. Dike fields and revetments will be in-
eluded in the category of habitats. Selected habitats will be surveyed
intensively four times each year, beginning in the fall of 1978. Data on
biota, water and sediment chemistry and physical variables will be collected
in a manner amenable to detailed statistical comparisons. The four yearly
samples will be related to distinctive river stages and seasons.
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Detailed ecological studies will be carried out in a few selectedhabitats to investigate oPecific phenomena of interest. In Seneral, themestudies will require Collection of samples at short time Intervals duringParticular years, seasons, or river events such am flooding, and will bedirected towards answertnS specific questions. Examples of these types14 ~~of studies icueparticulate organic matter composition And distrIbu-
tion studies, determination of fish spawning periods and ocations, fishmovements studies, studies of stream macroinvertebrate drift secondaryproduction estimates for organisms growing upon the stone riprap andother materials of which dike and revetment structures are constructed,and fish food habit studies.
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RED NOISE IN THE POWER SPECTRUM OF ATMOSPHERIC TEMWERATURE DATA

Oskar X. Essenvanger
Research Directorate
1achikology Laboratory

US Army Hisuile R&D Coimand
Redstone Arsenal, AL 35809

ABSTRACT. It is well known that persistence generates red noise in
pover spectra of meteorological time series. In facto significance of
spectral peaks Is checked against the background of white or red noise,
although other criteria have been suggested in the literature"

Several types of red noise exist. In atmospheric stience the most
common type Is the exponential model which Is identical with the first
order Markov chain. This type is easy to recognize and can be readily
calculated from the correlogram.

Today power spectra are mostly produced with the elgor'ithm of the
Fast Fourier Transform (FlA) rather than based on the autocorrelogram.
Consequently, calculation of the exponential red noise Is difficult unless
the first lag correlation is included in the computer processing.

Two questions have been pursued in this paper. What is the effect
on the exponential red noise pattern if any periodicity, significant or
not, is removed from the power spectrum? CaA true periodicities with
low wave numbers be distinguished from red noise?

The influence co "quasiperiodicity" on red noise, the power spectrum
and Fourier components is analyzed for atmospheric temperature data.
Finally, the utilization of discrete spectral filters will ba discussed
and a sepavation of the time series into cycles, quasicycles and red noise
is delineated.

1. INTRODUCTION. The question of the reality of meteorological
cycles has been raised at various times in the past (e.g., Bartels, 1943;
Brier at al., 1964; Craddock, 19652 Shapiro, 1975; etc.) and has not been
completely settled. The physical mechanism behind the annual and daily
cycle in meteorological time series leaves no doubt about their reality,
but most other periodicities are accepted by some authors and rejected by
others. Although significance criteria have been developed in statistical
analysis, the subjectivity in the adoption of a significance threshold
leaves some ambiguity.
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In additior, many criteria are based on the postulation that the
data are independent and/or Gaussian distributed which Is not applicable
to many atmospheric elements, It is well known that moat atmospheric
time series show varying degrees of persistence. This persistence is
usually taken into account by testing time series data, sog., power spectra,
against "red noise" which is generated by persistence. An added difficulty
is the appearance of the "quasiperiodicity" where apparent cycles pravail
during a Limited time only.

It is well known that red noise is related to the first lag cor-
relation coefficient but the modification of this uoefficient by the
presence of a cycle is neglected in most references. It will be shown
that the construction of red noise is not independent of the presence of
cycles, and it is not trivial to select a red noise test background.

Time series data of atmospheric temperature serve as an example for
a mixture of cycles and red noise pattern. An attempt is made to separate
these two components. It proved that the power spectrum has the advantages
of disclosinS significant cycles in concentrated form and of responding
better to quasiperiodicity than the Fourier analysis. The Fourier analysis
is the most appropriate tool to provide quickly amplitude and phase angle
for spectral filters. The periodogram analysis reveals quasiperiodicity
beat and permits us to pinpoint the exact cycle length.

I•. THEEXPONITIAL RED NOISE MODEL. Different types of red noise
patterns have been discussed by the author (1977), and only the equations
for the exponential model will be presented here.

The most common red noise in meteorology follows a plain exponential
sequence:

Pt w exp(-bt) 
(1)

with
t > 0, b > 0.

This exponential series is also obtained from a first order Markov
chain:

Pk " P (2)

It is trivial that t - k9 b -- In p, and 0 < p < 1.0. In the first order
Markov chain p - pl. The constant b in the exponential noise can be cal-

culated from:

b * -Inp1  (3a)
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We must also keep in mind that by eqn. (1) the p follows the exponential
dietribution (see Isoenwanger, 1976, p. 113). C~nsequently:

p /bl (3b)

Because in practical applications the summation is truncated after m terms,
b 0 bl, and some discrepancase between eqn. (3a) and (3b) may arise,

A suitable equation for the power spectrum has been deduced by

Gilman et al. (1963). They caste

L - - p2)/(l - P2 - 2p coo k r/mU/m (4)

In our case p Pl.

Other models and their differences have been analysed by the author
(1977). It becomes evident that p is a crucial parameter in red noise
analysis. Equs. (1) and (4) are rllated bye

m
P E cos(tkwr/m) (5)

II. RED NOIS1 MIXTUR. WITH CYCLES. The general meteorological time
series may comprise a mixture of red noise and periodicities. This fact
was previously exemplified with the aid of three-hourly temperature date
at Huntsville, Alabama for a time period from 6 November 1958 through
14 March 1959 with N - 1024 (see lssenwanger, 1977). In this article
the author has illustrated that an appropriate combination for the structure
of the autocorrelation function is:

n
Pi " W 1PR + E 1jPji (6)

i j=-2 " "

where:

E W, Wi (6a)
1

and p donotes the red noise, Oil the correlation of the respective cycle

Lj. (se consideration is for data without a trend). This simple linear
(wesghted)combinatlon of correlation coefficients works better than Fisher's x
function which In suggested for the combination of correlations by various
authors. A numerical example which confirmed eqn. (6) was given by the
author (1977).
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Let us assume that w " 0.5 and w - 0.5. The first lag cor-
relation coefficient for rid noise couli be ;R1 - 0.6 and P21 1 " 0.4

from a cycle. Then the first lag correlation of the data series is
P1 - 0.5 (0.6 + 0.4) - 0.5 which in less than p In this case the

correct size of the first lag correlation for rei noise is not identical
with the first lag correlation of the data series.

IV. POWER SPECTRUI QUASIPERIODICITY AND FOURIER ANALYSIS. Three
different statistical tools are available for the analysis of meteoro-
logical time series data: power spectrum, Fourier series and periodo-
gram. These three individual techniques serve different purposes.
Consequently, we must expect that different charatturiatices are enhanced
by the analysis of the same data sample with different methods although
the meteorological characteristics do not vary.

A met of 8-hourly data (one year from 1 September 1959) was sub-
jected to a Fourier analysis. Today this task is rapidly performed by

1965). The FIT, conveniently performed for a basic period of 1024w2,
shows a first significant cycle of 341.3 days, the annual period.

The 2 4 h cycle is not a period of an integer divisor, and is spread
over the wave numbers 339-345. A more sophisticated computer program
was utilized for the FPT, which does not require that the basic pariod
can be expressed as power of 2. This Fourier analysis was established
with a basic period of 365 days. In this analysip the day is an integer
wave number, and a sharp peak appears alone at 24n$ i.e., wave number 365,
without spilling over to the adjacent classes.

This fact confirms results by Rikiishi (1976), and illustrates
some fundamental characteristics of power spectrum, FFT and Fourier
analysis. If an existing cycle is not precisely the length governed
by an integer wave number the cycle is "smeared" over the neighboring
frequencies. One solution is the use of a "filter band" (or band filter)
whose width is determined by the spreading. If one particular cycle
exists, the precise length can be found by a periodogram analysis (see
Essenwanger, 1976, p. 234).

The utilization of a filter band for the representation of a cycle
has some added benefits. A peak in the power spectrum may Indicate quasi-
periodicity. This expression may comprise two phenomena. First, the
cycle length may fluctuate, e.g., in our case between 5 to 6 days (or even
4 to 7 days). Second, the cycle may be repetitive over a few periods,
and then suddenly either disappear or become longer or shorter. The power
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spectrum or Fourier analysis reflecf t the closest mathematical ftting,
resembling an average cycle (see Eosenwanger, 1951). Quasiperiodicity
is weakening the amplitude over the total data length, and the sigaif1-
cance of quasiperiodicity is difficult to prove by statistical teast
because of the resemblance to random cycles. Indeed, some authors con-
older quasiperiodicity by and large as & totally random product. It
must be interjected, however, that in atmospheric science a physical
background for quasipariodicity can sometimes be found. E.g., a cycle
of 5-6 days can be generated by the development of sets of cyclones,
so-called families of cyclones. The length of this development flue-
tuates but the fact of its existence cannot be denied.

The explanation of a 5-6 day cycle as related with the development
of cyclone families is alaso supported by an examination of the M1T for
the winter 1976/77 with predominantely merldional circulation. In this
"cold winter" at Huntsville, Alabama the 5-6 day "quasiperiodlaity" was
absent, and was replaced by an 8-9 day quasicycle.

V. XWPTZ OF SEPAPATING RED NOISE FROM CYCLES, After the utilization
of filter bands has boen explained we return to the analysis of two data
setes the time series of 6-hourly temperature observations from 15 July
1959 to 10 July 1960 and 15 July 1961 to 10 July 1962, The truncation
of 5 days from the year simplified the computational efforts for the
application of the FFT and its relationship with the power spectrum. Later
one full year of data was utilized but the results from the full year dif-
ferad only by 0.1w from the truncated series.

The elimination of cycles (qua:icycles) was performed in three steps
(see Figures la and b). First, the spectrum of the original data series
was obtained. Then the annual and daiily cycles were removed. The remain-
lag data were subjected to the FFT again. A series of "quasicycles" or
"quaisparlodiclties" were Identified and subtracted. Afterwards, the
spectrum of the remaining data series displayed only insaignificant de-
viation from the recalculated red noise series thus leaving the "noise"
or random fluctuations with persistence. The cycles and quasicycles with
their percentage share are exhibited in Table 1.

At first glance we may find It peculiar that the annual cycle is
listed as a filter band from the wave numbers 1-7. One would think that
the truncation of 5 days from the year should not make a sign.fcant
difference. In reality a peak appeared at 360 days with a side lobe at
90 days length. It was convenient to eliminate the total series of waves

* from 1-6 or 1-7. The appearance of this filter band may be caused by the
asymmetric behavior of the annual cycle.
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Table 1. Separation of Temperature Time Series Data
into Cycles (Quasicycles) and Red Noise

1961 1959

Wave Number % Wave Number %

1 - 7 Annual 67.0 1 - 6 Annual 71.3

12 - 15 24 - 30 days 1.5 13 - 23 16 - 28 days 4.9

20 - 28 13 - 18 days 3.9 28 - 33 11- 13 days 1.7

33- 41 9- 11 days 3.3 43 - 52 7 - 8 days 1.5

51- 53 7 days 0.8 61- 70 5- 6 days 0.8

73 86 4- 5 days 2.1 -

359 - 361 daily 10.2 359 - 361 daily 8.6

720 semi-daily 0.5 710 semi-daily 0.4

Red Noise 10.7 Red Noise 10.8

A distinct peak at wave number 360 appeared which signifies the daily
cycle. The adjacent classes 359 and 361 displayed an amplirtude more than
10 times as large as the adjacent waves (350 to 358 or 362 ý. '69). In
order to eliminate a remaining peak at the daily cycle in the power spectrum
of the red noise series the band from 359 to 361 was removed.

It is evident from Table 1 that the "quasicycles" fluctuate from year
to year which should be expected. These quasiperiodicities vary in ampli-
tude, phase angle and duration. As pointed out some authors consider them
equivalent to random fluctuations. The red noise series and displayed
power spectrum after removal of cycles (middle of Figures la and b)
illustrate that additional cycles (i,.e., quasicycles) should be subtracted
to achieve a better agreement (see right hand side of Figures la and b).

Thus, the time series of the two sets of *ata samples can be expressed
by 3 cycles (annual, daily and semi-daily) with about 78 to 80% of the vari-
ance, 4 or 5 (for 1959 and 1961, respectively) quasicycles with an added 9
to 11%, and a remaining red noise component of about 11%. The proper red
noise influence is then:

pRi - [Pt- ! 2 wjpJ]/] l (7)

where p1 " 0.86 for the 1959/60 data set, n - 7, and - 0.59. The respec-1
tive nurbers for the data set 1961/62 can be found from Figure lb and Table 1.
It is evident that the true red noise first lag correlation is different from
pit
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FIG=R] 1. SIX-HOURLY TEMPERATURE DATA
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We can safely deduce that the red noise pattern cannot be obtained
in a trivial way in the presence of cycles. Furthermore, the first lag
coefficient p in the autocorrelation is not automatically the one which
provides the iroper red noise entry. How does this result affect signi-
ficance testing of the power spectrum against the statistical background
of red noise? The answer is not simple and depends on the goal.

If we only intend to find whether the power spectrum is produced by
red noise, the pattern based on the first lag coeffient may suffices If
our goal is the separation of the data series into cycles and red noise,
a formalistic application of the first lag correlation is not realistic
unless we find no cycles.

A similar composite pattern to the autocorrelation can be developed
for the power spectrum. We deduce:

LJ wjLR + Ewk11k (L j

where Fk(L ) stands for the spectrum of the filters.

The reconstruction of the red noise component in the data series
is not trivial because the phase angles for the Fourior terms must be
known. One way to obtain these is by eliminating the filter bands from
the data series, and subjecting the remainder to a FIT. This method is
not difficult to develop once It is known which cycles (quasicycles)
must be removed. Furthermore, random fluctuations will produco randomness
of the phase angles for the red noise waves. We can check whether the re-
maining phase angles display randomness because it requires a rectaugular
distribution of the angles. The result is disclosed in Figures 2a and b.
The deviation from the average number of occurrenca, 28.1 or 28.2, was
tested for statistical significance by applying the Kolmogorov-Smirnov
test for the cumulative distribution. None of the deviations proved to be
high enough to reject the hypothesis that the displayed histogram has a
rectangular distribution as statistical background. We find confirmation
that the remaining data series behaves like red noise in amplitude, and
now in phase angles.

VI. CONCLUSION. The background of red noise in meteorological time series
has been examined for temperature data at Huntsville, Alabama. Of special
interest was the question whether significant cycles influence the determin-
ation of the red noise pattern from autocorrelogram or spectral analysis.
As illustrated, the presence of long time periodicities tends to increase
the first lag correlation. In fact, any existing cycle may modIfy it.
Therefore, the judgment of red noise from the first lag correlation alone
may be insufficient in many cases.
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FIGU 2. FREQUENCY DISTRIBUTION OF PHASE ANGLE
(RED NOISE)
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This result is important in the evaluation of an existing time
series, but it may be of little consequence for the testing of cycles

against red noise background. However, the drawing of conclusions from
one test curve alone way not always be advisable. A sequence of testing
such an the 3 steps illustrated in Figures la and b may be more appro-

4 priate.

A separation of the data series into red noise and cycles wad
delineated (Figures la and b). This method resembles Craddock's (1965)
suggestion of filtering insofar as certain significant cycles art
filtered out. Two significant deviations from Craddock's scheme must
be emphasized. First, the filtered cycles are subtracted from the total
data series after the cycles have been determined from the power spectrum.
SeconJ, the remaining data series is a red noise spectrum. These dif-
ferences are produced by the dissimilarities in the auslysis goals be-
tween Craddock's method and the technique of this study.

The red noise contribution to the variance of the two sets of data
Jr of 3 hourly observation for about one year is approximately 11%, i.e.,

this percentage can be associated with random noise with persistence
while the remaining flucuationG are produced by cycles or quasicycles.
About 80% represent the diurnal, semi-diurnal and annual cycle which canSbe considered as a simple and predictive part. Quastcycles impose some

restrictions to the predictability because they vary from year to year,
and tile red noise fluctuations are predictive only with respect to their
statistical properties. The determination of the contribution of red
noise in meteorological time series may thus be important information.
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SMALL SAMPLE BEHAVIOR OF SOME PROCEDURES USED
IN TIME SERIES MODEL BUILDING AND FORECASTING

Paul Newbold
Mathematics Research Center, University of Wisconsin

Craig F. Ansley
Graduate School of Business, University of Chicago

ABSTRACT. This paper summarizes the results of a very large simulation
study of some procedures commonly used in time series model building and fore-
casting. Theoretical results available in this area are generally asymptotic
and exact finite sample results are readily obtainable only for a few over-
simplified cases.

Often (particularly in business and economic applications) analysis of
relatively short time series, in the neighborhood of 50-100 observations, is
required. We examine, by simulation, the behavior of various procedures for
such sample sizes.

Specifically, we examine the properties of three estimators of the coeffi-
cients of autoregressive-moving average models, two procedures for testing the
adequacy of representation of such models and the usual estimates of error
variances when these models are projected ahead for forecasting.

I. INTRODUCTION. Suppose that the available data consists of n obser-
vations XIX2,...,Xn on a stationary time series. (In practice it is often
necessary to difference the original data to induce stationarity). Such data
can generally be well represented by a low order autoregressive-moving average,
ARMA(p,q), model

(1 - - ... - * BP)X - (U - 6 B - ... - Bq)a
p t 1 q t()

where B is a back-shift operator on the index of the time series defined so
that BJXt a Xt.j, and at is white noise, i.e., E(at) - 0, E(al) _ a2 for
all t and E(ata.) - 0 for all t # s. Stationarity of the model (1) to
guaranteed by requiring that the roots of the polynomial equation in B,
(1 - *1 * -pBP) - 0, all have modulus greater than unity. It is also
convenient to impose the invertibility condition, that the roots of
(1 - e1B - ... - 8qBq) - 0 all have modulus greater than unity. This ensures
uniqueness of representation of the model. A constant term can be added to (1)
to account for non-zero series mean.

For seasonal time series of period s (so that s - 4 for quarterly and
12 for monthly data) the model (1) can be elaborated to give the multiplicative
seasonal model

S- Bp)(i B-...- B )x
pp s t

(2)

- (1 - 61B - ... - B) (1 - 1,B 5 - ... - 6 Bs)a
1 q lps qas
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Stationarity and invertibility conditions for this model are obvious extensions
of those for (1).

Following the principles set out in (1), the fitting of models of the form
(1) or (2) to data involves an iterative cycle of identification, estimation
and diagnostic checking. At the identification stage , based on statistics cal-
culated from the data, a particular model is selected, that is specific values
for p,ps,q and qg in (2) are chosen. The parameters of this model are then
estimated by asymptotically efficient statistical methods. Finally checks are
made on the adequacy of representation of the chosen model to the given data.
Any inadequacies revealed at this stage may suggest an alternative specification,
and the cycle is iterated until a satisfactory model is found. The model even-
tually obtained may then be projected forward to obtain forecasts of future
values of the time series.

Details of the model building and forecasting methodologies are given in *1
the books (1), (2) and (3) and more briefly in the paper (4). In the remainder
of this section we describe only those procedures whose properties are investi-
gated in the present study.

Consider, first, the problem of estimating the vector • of unknown para-
meters in (1) or (2), under the additional assumption that at is normally
distributed. The likelihood function can then be written

2(,I 2 -2(, a f(•)exp.(-S(,x )/20 1 (3)

where 4 - (XlX 2,...,Xn) and f(§) involves the parameters but not the data.
Analytic expressions for f(@) and S(S,Xn) are given in (5), and an alterna-
tive form which can lead to great computational savings is given in (6). Maxi-
mum likelihood (M.L.) estimates of 0 are then obtained as those values which
maximize

-n/2 (4)

Now, clearly, as sample size increases (4) is dominated by its final term. If
f(§) is treated as roughly constant, then, this suggests use of the exact least
squares (E.L.S.) estimator which involves minimizing S(§,Xn). This has compu-
tational advantages over M.L., particularly if one adopts the approximation
involving "back-forecasting" proposed in (1). The name "exact least squares"

T derives from the fact that S(§,Xn) can be written as a mum of squares.

An estimator of greater computational simplicity is obtained by writing,
for example, (1) as

at - lxt - ... - + at +... + a (5)1 t- _+ + q t-q

"If a (J - 1,,...,q) are set to their expected values, zero,
- p) can then be calculated recursively from (5) as functions

o: he 0i and 0j, and these parameters estimated by minimizing the sum of

squares a This is the conditional least squares (C.L.S.) estimator.
t-p+l '
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All three estimators are calculated by numerical function minimization and
for very large sample sizes they are virtually identical. Hlowever, in small
samples there are important differences and these are investigated in the next
section of this paper.

Now let ý denote the coefficient estimates and at the residuals from the
fitted model. Since, if the model is correctly specified, the at should be
white noise, it is natural in assessing model adequacy to examine the residual
autocorrelations.

n n

Zk r =-• atatkt• a (k 1,2...) (6)St-k+l 1u

These quantities are studied in (7) and (8), where it is shown that, if the model
is correctly specified, they are asymptotically normally distributed with zero
means and variances which we write as Vk(Q). Unfortunately, Vk(O) is unknown,
but can be estimated by Vk(j), so that the distribution of

t• rk(V,()/ (k= 1,2p6..) (7)
k 7k

should be close to a standard normal. Clearly, if this distributional approxima-
tion is valid, then large absolute values of the statistics (7) will indicate
probable model inadequacy.

Also in (7) a "portmanteau test" of model inadequacy involving the first m
residual autocorrelations is proposed. It J, shown that, if the model is cor-
rectly specified the statistic

m 2
Q n k11i k(8Ic-l

is asymptotically distributed as chi-squared with (m - k) degrees of freedom,
where k io the number of estimated coefficients, provided m is sufficiently
large (values of m > 20 are commonly used).

In fact the available evidence (see (9) and (10)) suggents that in finite
samples a closer approximation to the asymptotic distributions is likely to be
obtained by replacing r in (7) and (8) by

n - [(n + 2)/(n - kI]1 '/2ý (k - 1,2,...) (9)

k rk

giving the statistics tk and Q*. In section 3 of this paper we examine the
empirical distributions ot these statistics.

Suppose now that the coefficients of (1) or (2) are known. Setting
t - n + h, these equations may be written in the form

X+hm (an+h+lpla+hl+.... + ahl+a+l) 4 ahn + *h+lan,.l + ... ) (10)
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where the aj are known functions of the *i and 8j. It is then well known
that, given Xn ,Xn , ... I the minimum mean squared error predictor of Xn+h
linear in Xn.j(J - 0,!,2,...) is the second bracketed expression on the R.H.S.
of (10). The other brucketed term is then the forecast error, so that the opti-
mum predictor has error variance

h-i
V(h) a Ul( + (1

Now, in practice there are two reasons why (11) constitutes an understate-
ment of the best attainable forecast error variance. First, even if the model
parameters were known, given only a finite realization of the time series the
an.j (j - 0,1,2,...) required to compute the optimal predictor would be unknown
and would have to be estimated from data. Second, the model parameters them-
selves have to be estimated, and sampling variability in the parameter estimates
naturally leads to an increase in forecast error variance (see, for example, (11)).
Thus the best attainable V(h) in fact depends on the method of parameter esti-
mation employ6d, and comparisons will be made amongst estimators in this way in
the following section. More details on these points are given in (12).

In practice forecast error variance is estimated by substituting estimatesof a. and of the model coefficients to calculate estimates of the Vj kn (11).

This implies the possibility of further bias in the resulting estimator V(h)
and the quality of this as an estimator of forecast error variance is examined
in section 4 of the paper.

The results presented in the remainder of this paper sunmarize an e:ntensive
simulation study covering a wide range of non-seasonal and seasonal time series
models. While we will discuss our findings In general, specific results will be
quoted for just two models. These are the ARMA(l,l) model

Xt - -Xt.1 M at - eat.1 (12)

and the first order multiplicative moving average quarterly seasonal model
x- (-U 1B)( - e 4B 4 )at (13)

More detailed results are contained in (12), (13) and (14).

11. COMPARISON OF ESTIMATORS. In evaluating the performances of the M.L.,
H.L.S. and C.L.S. estimators we generated data from a range of models of the
form (l) and (2), taking the at to be standard normal deviates. The estimates
were compared in terms of bias, mean squared error and the quality of the fore-
casts resulting from their use. In general our finding was that, if a single
estimator is to be r*commended for all-purpose use, M.L. is preferable, am there
are cirocustances where each of the others han undesirable features. It is not
the case that X.L. is invariably best by any of our criteria, but it is rarely
out-performed to any great extent.

To illustrate, Tables 1 and 2 contain results for the ARMA(l,l) model (12)
with 50 observations. Clearly for this sample sime the C.L.S. estimator can be
very badly biased with unacceptably large mean squared errors for large values
of 81I or when a and 0 are close to one another in value. an the other
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hand, the E.L.S. estimator compares rather well with M.L. in terms of bias and
mean squared error. However, use of this estimator rather than M.L. would lead
to slightly inferior performance in terms of forecast error variance, except in
the extreme case lei - i.

Tables 3 and 4 contain similar results for the quarterly seasonal model (13).
The performance of the C.L.S. estimator for this model is rather poor for moder-
ate and large values of 1041, where it is badly biased towards zero. on the
other hand E.L.B. is badly biased away from zero for small and moderately large
values of 1841. These characteristice are reflected in poor forecast perfor-
mances of these two estimators. Indeed, by this criterion, M.L. seems clearly
preferable except in extreme cases where one or other of the parameters is on
the boundary of the invertibility region. Here E.L.S. shows up rather well.
However, its doing so is in fact a reflection of a very undesirable character-
istic of this estimator. Even when the true values are inside the boundaries of
the parameter region, E.L.S. estimators are quite likely to fall on these bound-
arias. This point is illustrated for our two models in Tables 5 and 6.

Clearly, as would be expected, the problem is more severe for a sample of
50 observations than for one of 100 observations. Nevertheless it is by no
means negligible for the larger sample size. The importance of the problem lies
in the fact that, if the E.L.S. estimator were used, the analyst could frequently
be led to erroneous conclusions about the appropriate degree of differencing for
the data.

The results presented in this section are a small subset of these contained
in (13). From this larger study it emerged that the greatest differences betweenthe estimators arise in models with moving average terms. In that case there can

be problems in small samples with the tse of either of the least squares estima-
tors. If the true parameter values are not quite far from the boundary of the
invertibility region, C.L.S. estimates can be badly biased to the center of that
region, with large mean squared errors and an associated poor forecasting per-
formance. On the other hand, when the true parameter values are some distance
from the boundary, the E.L.S. estimates can be biased towardt the boundary with
rather large mean squared errors, resulting on occasions in poor forecasts.
Moreover, this estimator has a disturbing tendency to produce estimates on the
boundary of the invertibility region, even when the true parameter valusc are
well inside.

III. STATISTICS BASED ON RESIDUAL AUTOCORRELATIONS. We assume now that a
time series model has been fitted to data, the coefficients having been estimated
by maximum likelihood. In checking model adequacy it is natural to look at the
residual autocorrelations for the first one or two lags and at low multiples of
the seasonal period. The statistics tt, based on (7) and (9) could then be
used to suggest possible model inadequacies. However, it is first necessary to
inquire whether, for correctly specified models, the distribution of these
statistics is sufficiently close to standard normal. In (14) it is shown that,
for first order autoregressive and moving average models, even for samples of
only 50 observations, the distributional agreement in the tail areas is quite
close. However, for two parameter models the situation is rather less clear, as
can be seen from Table 7.

For the ARMA(l,l) model the empirical significance levels agree very well
with the asymptotic levels for k > 1, even for sample site 50. However, for
this sample size, a test based on the first residual autocorrelation would
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reject the hypothesis of correct specification too frequently when the true para-

meter values are fairly small. The situation improves markedly, however, as the
sarple size increases to 100. The orly case which gives difficulty here in the
model

X -0.5X a - 0.4a (14)
whchaginwoldb t-l t t-l

which again would be rejected far too often by a test based on the first resid-
ual autocorrelation, In fact this is not alarming as, for such a small sample
misn, it would rarely be fitted since in practice it would be virtually india-
tinguishable from the simplex hypothesis that Xt I at, i.e. that the date is
white noise.

This is typical of the results found in (14) for non-seasonal models. The
test statistics behave very much like the corresponding asymptotic distributions
except in cases of near-overparameterisation (which would be unlikely to be iden-tified in practice). In these circumstances the toot statistic based on the
first residual autocorrelation tends to give too many large values.

For seasonal time series models it is natural to check not only the low order
residual autocorrelations, but also those at small multiples of the seasonalperiod. For the quarterly moving average model (13) some results are shown in
Table G. Of course, it is almost invariably the case that the agreement between
mmpirical and asymptotic distributions improves as sample size increases. Never-
theless, the improvement from sample size 50 to 100 here is remarkable. For the
larger sample size the empirimal dignificance levels are generally quite close
to the asymptotic levels, suggesting that for this sample size interpretation of
the statistics is straightforward. On the other hand, for the smaller sample
smie the empirical significance levels are frequently too high, particularly at
those laga assncisted with the seasonal frequency. These results are typical of
these reported in (14).

We now consider the portmanteau statistic Q*, based on (8) and (9).
Although this statistic is almost invariably calculated in practical time series
studies, published evidence of its empirical distribution is sparse, the prime
axception being in (10), where just the simple first order autoregressivo model
is examined. Tables 9 and 10 show empirical significance levels for the models
(12) and (13). The evidence in these tables certainly reflects variability
between models and also variability between parameter values within the same
model. However, it is quite clear (and this is confirmed by further evidence in
(14)) that the empirical significance levels are gnnerally "too high". This
observation accords with a prediction made from theoretical considerations in
(9). Generally speaking, the discrepancies between the empirical and asymptotic
distributions are likely to be largest for small sample sizes, for seasonal
models, and in the extreme tail areas of the distributions. However, it is clear
from the tables that even for samples of 100 observations, for such relatively
simple two parameter models, use of the Q* statistic can lead to rejection of
a correctly specified model far more often than reference to the asymptotic sig-
nificance levels would indicate.

An additional consideration when using any test statistic, of course, con-
cerns its power. Some evidence on the frequency with which the portmanteau test
eetacto model misupecifications of varying degrees of severity is contained in
(15), where it was found that, unless the sample size is large, the test can
have disturbingly low power.
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IV. ESTIMATION OF FORECAST ERROR VARIANCE. When a fitted time series model
is projected forward to obtain forecasts, it is usual to estimate the error vari-
ance by substituting estimates of the unknown parameters in (11). The *j in
that expression are estimated in an obvious way from the coefficient estimates

ai and lJ. If, as will be assumed in this section, the model is estigated by
maximum li elihood, it follows from (3) that the innovation variance c. in
estimated by

&2 s* )/n (15)
a ý

where P is the vector of maximum likelihood coefficient edtimates. With these

substitutions, we denote the estimate of V(h) of (11) a.; V(h).

In fact, as we have already noted, the minimum attainable forecast error
variance, V,(h), will be oeater than V(h). This is so, since the expression
(11) takes no account of sampling variability in the parameter estimates or of
the fact that only the finite past of a time series is available for the compu-
tation of forecasts. It is likely then that V(h) will be a biased estimator
of V*(h). Zn this section we examine the extent of that bias. It should be
emphasized that our results are specific to the case where parameter estimation
in by maximum likelihood. In particular circumstances, rather different conclu-
sions can hold for alternative estimators, as illustrated in (12).

Tables 11 and 12 contain values of (E(V(h)) - V,,(h))/V*(h) estimated by
simulation for the models (12) and (13). The general picture emerging from these
tables is of a moderate downward bias in 0(h). For one stop ahead prediction in
the ARMA(l,l) model this is in the neighborhood of 5-10% of the true variance for
sample size 50, and 3-6% for samples of 100 observations. For the seasonal model 4
the corresponding figures are slightly higher. Perhaps the outstanding feature
of the tables concerns prediction 10 steps ahead for ARMA(I,l) models with the
higher autoregressive parameter value. Here the bias can be around 20% of the
true variance for 50 observations and around 12% for twice that sample size.

Although, with this latter exception, the tables suggest some uniformity in
the proportionate bias, the causes of that bias differ substantially between
models and parameter values. We suggested previously four potential causes of
bias in the usual estimator of forecast error variance. It is of interest, now,
to examine these factors in a little more detail.

Suppose, for now, that the parameter values are given. It is still the case
that, if the model contains moving average terms and only the finite past is
available to compute forecasts, the minimum attainable forecast error variance
will be somewhat higher than (11). This factor is only of practical significance
when the moving average coefficients are on or very close to the boundary of the
invertibility region. Even then, for the kind of sample sizes considered here,
it is relatively unimportant for simple non-seasonal models. For example, for
the ARMA(1,) models of Table 11 for sample size 50 it accounts for an addition
of at most 2% (when 0 - -1) to one step ahead prediction error variance, and

* i less for prediction further ahead. On the other hand, for seasonal moving aver-
age models, in small samples this factor can be more substantial. For example,
for the multiplicative first order moving average quarterly model, in the
extreme case 01 1 1, 04 0 1, the minimum attainable one-step forecast error
variance in 13.4% higher than (11) for sample size 50 and 6.9% higher for sample
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size 100. However, the effect quickly dies out as the parameters move away from
the boundary. For example, for el - 0.85, B4 - 0.85 the inflation factor for
one step ahead prediction is only 0.5% for sample size 50.

The necessity to estimate the model parametern inflates forecast error vari-
ance by a proportlon in the neighborhood of K/n, where K is the number of
estimated coefficients. There in, of course, some variability here. A particu-
lar case is in forecasting several steps ahead When the optimal predictor is
dominated by a relatively low autoregressive term. In ttis case the influence
of estimation error can be very slight. For example, for the ARMA(1,l) model
for . - 0.5, 6 - -0.4, h - 10, estimation error in the parameters adds only
0.1% to (11). This factor is discussed in more detail for non-seasonal models
in (11) and (16).

For maximum likelihood estimation, the estimate (15) of residual variance
tends to be slightly biased downwards. An exception is the case where moving
average coefficients are on or very close to the boundary of the invertibility
region, when the bias is upwards. In this latter cats some of the effects of
the inflation caused by only having the finite past to calculate forecasts are
cancelled out, and this explains why the estimates of error variance when moving
average terms are on the boundary of the invertibility region do not have a more
severe downward bias. For exammle, for the multiplicative first order moving
average quarterly model with 0.a I and n - 50, for e1 a 0.85, e4 - 0.85,
E(j). 0.92, while for e1 - 1, e4 " 1, E(a2) . 1.05.

h- 1 2
Finally, the term in (11) is generally well estimated by substitu-

tion of the parameter estimates, except for moderately large h in models con-
taining autoregressive factors close to the stationarity boundary. This is the
reason for the serious under-estimation of forecast error variance in the
ARMA(l,l) model for * - 0.95, h - 10 noted in Table 11.

These factors are all discussed in more detail for a wider range of models
in (12).
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Table 1: Estimated coefficient biases for ARMA(l,1) process
(n - 50; 1,000 replications]

Bias .. Bias .

-0.95 -1.00 0.172 0.096 0.505 0.112 0.042 0.468

-0.95 -0.85 0.090 0.067 0.298 0.074 0.050 0.286

-0.95 -0.40 0.039 0.017 0.046 0.026 0.006* 0.029

-0.95 0.40 0.028 0.012 0.033 0.015 0.033 0.017

-0.95 0.85 0.027 0.009 0.024 0.025 0.053 -0.012

-0.95 1.00 0.026 0.007 0.023 -0.028 -0.008 -0.098

-0.50 -1.00 0.064 0.054 0.184 0.041 0.011 0.180

-0.50 -0.85 0.061 0.053 0.191 0.001' -0.017 0.143

-0.50 -0.40 0.119 0.064 0.191 0.114 0.047 0.178

-0.50 0.40 0.038 0.031 0.016 0.032 0.040 0.018

-0.50 0.M5 0.007* 0.004* -0.001' 0.025 0.056 -0.016

-0.50 1.00 0.005* -0.008 -0.026 -0.032 -0.008 -0.105

0.50 -1.00 -0.013 0.006* 0.010 0.027 0.007 0.105

0.50 -0.85 -0.020 -0.010 0.007* -0.021 -0.057 0.018

0.50 -0.40 -0.033 -0.020 -0.016 -0.036 -0.034 -0.013

0.50 0.40 -0.120 -0.064 -0.181. -0.114 -0.056 -0.164

0.50 0.85 -0.072 -0.046 -0.183 -0.009* 0.025 -0.128

0.50 1.00 -0.064 -0.055 -0.182 -0.040 -0.011 -0.181

0.95 -1.00 -0.028 -0.004 -0.024 0.030 0.008 0.105

0.95 -0.8b -0.026 -0.010 -0.025 -0.020 -0.056 0.019

0.95 -0.4C0 -0.030 -0.007 -0.035 -0.01C -0.028 -0.018

0.95 0.40 -0.046 -0.017 -0.047 -0.03, -0.012' -0.015'

0.95 0.85 -0.096 -0.050 -0.281 -0.07' -0.028 -0.264

0.95 1.00 -0.168 -0.103 -0.526 -0.11iý -0.051 -0.500

*Bias is not statistically significant at 5% level.
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Table 2t Estimated coefficient mean squared errors and forecast error variances
for ARMA(1,1) process [n - 501 1,000 replications]

M.S.E. j (x 103) M.S.E. j (x 103) VMl)

e M.L. S.L.S. C.L.S. X. L. E.L.S. C.,L.S. M.L. E.L.S. C.L.S.

-0.95 -1.00 90.5 28.1 502 63.8 23.2 510 1.054 1.050 1.065

-0.95 -0.85 52.0 50.7 298 70.8 86.2 320 1.036 1.058 1.057

-0.95 -0.40 9.41 7.09 13.2 33.4 34.3 36.8 1.037 1.053 1.048

-0.95 0.40 4.78 4.85 5.54 22.7 30.2 23.6 1.043 1.051 1.049

-0.95 0.85 4.40 3.86 4.36 9.04 12.5 10.1 1.039 1.063 1.047

-0.95 1.00 3.91 3.20 5.19 3.11 1.12 17.8 1.055 1.050 1.101

-0.50 -1.00 29.0 20.9 91.7 9.60 2.09 104 1.059 1.053 1.114

-0.50 -0.85 57.6 59.2 122 38.6 40.1 121 1.041 1.059 1.053

-0.50 -0.40 234 214 283 287 255 323 1.044 1.047 1.045

-0.50 0.40 34.1 35.4 29.5 40.8 43.0 40.3 1.049 1.049 1.050

-0.50 0.85 17.1 17.1 18.1 11.1 12.9 12.6 1.047 1.061 1.054

-0.50 1.00 14.4 14.7 18.4 4.18 0.95 20.0 1.066 1.047 1.100

0.50 -1.00 13.8 13.8 20.1 3.46 0.82 20.8 1.055 1.046 1.095

0.50 -0.85 19.5 17.6 17.8 10.5 13.7 12.5 1.045 1.068 1.058

0.50 -0.40 31.9 31.3 30.0 40.8 45.0 42.9 1.046 1.053 1.051

0.50 0.40 241 199 282 294 253 329 1.043 1.044 1.046

0.50 0.85 60.9 54.8 118 40.4 38.2 104 1.046 1.062 1.059

0.50 1.00 30.1 24.8 90.3 9.36 4.76 96.9 1.059 1.054 1.104

0.95 -1.00 3.71 3.08 4.08 3.72 1.10 20.3 1.056 1.049 1.101

0.95 -0.85 3.64 4.06 4.76 10.1 12.6 11.6 1.039 1.065 1.046

0.95 -0.40 5.16 4.12 6.02 23.8 23.4 23.9 1.039 1.051 1.044

0.95 0.40 14.0 9.91 13.2 38.4 38.9 38.6 1.042 1.060 1.054

0.95 0.85 67.4 39.9 258 87.6 71.7 276 1.041 1.070 1.051

0.95 1.00 93.9 42.4 520 68.6 36.6 547 1.048 1.050 1.060
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Table 3: Estimated coefficient biases for multiplicative first order

moving average quarterly models (n - 50; 600 replications]

Bias 01 Bias 64

1 64 NM.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S.

-1.00 -1.00 0.030 0.011 0.085 0.083 0* 0.257

i.00 -0.85 0.035 0.010 0.089 -0.020 -0.133 0.128

-1.00 -0.40 0.031 0.009 0.091 0.005* -0.056 0.010*

-1.00 0.40 0.039 0.006 0.171 0.046 0.149 -0.006

-1.00 0.85 0.048 0.004 0.256 0.033 0.142 -0.164

-1.00 1.00 0.042 0.001 0.264 -0.064 0* -0.287

-0.85 -1.00 -0.012 -0.038 0.004* 0.082 0* 0.245

-0.85 -0.85 -0.018 -0.045 0.013 -0.014 -0.132 0.122

-0.85 -0.40 -0.022 -0.049 0.005* -0.007* -0.075 0.007*

-0.85 0.40 -0.018 -0.054 0.062 0.030 0.105 0.000*

-0.85 0.85 -0.025 -0.094 0.141 0.010' 0.141 -0.156

-0.85 1.00 -0.029 -0.103 0.147 -0.074 0* -0.278

-0.40 -1.00 -0.006* -0.010' -0.010" 0.076 0* 0.241

-0.40 -0.85 -0.003* -0.013 0.002* -0.022 -0.130 0.117

-0.40 -0.40 -0.017 -0.015 -0.014 -0.008" -0.079 -0.007*

-0.40 0.40 0.003* -0.025 -0.001* 0.017 0.084 -0.009*

-0.40 0.85 -0.019 -0.044 0.005* 0.007* 0.137 -0.119

-0.40 1.00 -0.007* -0.032 0.007* -0.080 0 -0.249

*Bias is not statistically significant at 5% level.
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Table 41 Estimated coefficient mean squared errors and forecast error variances
for multiplicative first order quarterly moving average models
En - 501 600 replications]

M.S.E. 01 (x 103) t.S.E. 84 (x 103) V(l)

el _4  M.L. E.L.S. C.L.S. M.L. E.LS. C.L.S. M.L. E.L.S. C.L.S.

-1.00 -1.00 2.83 1.46 13.2 17.4 0 80.1 1.149 1.113 1.471

-1.00 -0.85 4.30 1.13 13.7 14.9 22.4 31.1 1.077 1.055 1.250

-1.00 -0.40 3.79 1.09 15.3 23.0 49.8 23.8 1.072 1.089 1.189

•.1.00 0.40 6.42 1.09 44.4 29.6 80.1 26.9 1.066 1.133 1.272

-1.00 0.85 6.67 0.92 84.5 14.1 22.5 41.1 1.092 1.070 1.425

-1.00 1.00 6.26 0.24 90.7 13.5 0 95.7 i182 1.134 1.503

-0.85 -1.00 7.79 12.9 9.59 17.2 0 74.1 1.126 1.124 1.410
-0.85 -0.85 8.06 12.0 9.90 16.3 23.2 28.8 1.051 1.065 1.192

-0.85 -0.40 9.39 12.9 9.38 26.9 53.6 24,5 1.051 1.108 1.140

-0.85 0.40 11.3 13.5 16.1 32.1 63.1 23.9 1.052 1.113 1.076

-0.85 0.85 11.8 18.2 39.3 18.2 22.6 38.5 1.057 1.068 1.178

-0.85 1.00 9.19 19.1 42.9 15.3 0 89.9 1.130 1.124 1.383

-0.40 -1.00 15.8 20.0 22.6 17.0 0 70.0 1.127 1.102 1.205

-0.40 -0.85 18.9 24.8 21.3 17.8 22.5 25.2 1.047 1.056 1.087

-0.40 -0.40 25.9 24.3 24.0 27.9 52.0 23.6 1,057 1.088 1.065

-0.40 0.40 21.7 25.5 21.1 26.6 56.3 23.9 1.045 1.106 1.048
:]4

-0.40 0.85 22.7 36.2 26.7 19.7 22.7 26.7 1.052 1.074 1.092

-0.40 1.00 19.5 33.4 25.3 17.8 0 73.9 1.128 1.121 1.218
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Table 5: Percentage times an E.L.S. parameter estimate is oý- the boundary
of the stationarity or invertibility region for ARMA(l,l) process
(1,000 replications, n-501 600 replications, n-1003

Se n-so n-100 e n=50 n-100

0.50 --0.85 46.7 8.7 0.95 -0.85 47.4 17.3

0.50 -0.40 1.4 0 0.95 -0.40 10.8 0.3

0.50 0.40 15.2 5.5 0.95 0.40 19.8 0.8

o.so 0.85 53.0 26.8 0.95 0.85 54.0 19.8

Table 6s Percentage times an E.L.S. parameter estimate is on the boundary
of the inver'cibility region for multiplicative first order moving
average quaxt:e:.ly models [600 replications]

e1  64 n-SO n.100 01 04 8so N_ n_100

0.40 0.40 9.3 0.2 0.85 0.40 57.3 22.2

0.40 0.85 92.3 73.7 0.85 0.85 98.0 78.3
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Table 7: Empirical significance levels of the statistic tk for ARMA(1,l)

models (1,000 replications, n - 501 600 replications, n - 100]

n -50 n- 100

e K 0.05 level 0.10 level 0.05 level 0.10 level

0.50 -0.85 1 0.111 0.186 0.072 0.128

2 0.063 0.109 0.040 0.095

3 0.052 0.112 0.055 0.103

0.50 -0.40 1 0.184 0.257 0.068 0.130

2 0.050 0.105 0.055 0.100

3 0.045 0.099 0.057 0.112

0.50 0.40 1 0.147 0.195 0.197 0.248

2 0.055 0.107 0.095 0.143

3 0.051 0.103 0.047 0.097

0.50 0.85 1 0.072 0.141 0.058 0.108

2 0.052 0.112 0.058 0.098

3 0.049 0.092 0.042 0.100

0.95 -0.85 1 0.066 0.133 0.053 0.100

2 0.059 0.099 0.043 0all2

3 0.065 0.110 0.058 0.110

0.95 -0.40 1 0.101 0.157 0.063 0.120

2 0.065 0.116 0.077 0.130

3 0.052 0.114 0.053 0.083

0.95 0.40 1 0.113 0.175 0.078 0.122

2 0.060 0.102 0.045 0.093

3 0.041 0.086 0.062 0.120

0.95 0.85 1 0.068 0.130 0.055 0.130

2 0.058 0.133 0.062 0.110

3 0.057 0.109 0.055 0.090
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Table 8 Mpirical significance levels of the statistic tk for multiplioative
first order moving average quarterly models [600 replications)

n -So n -100

81 04 X 0.05 level 0.10 level 0.05 level 0.10 level

0.40 0.40 1 0.060 0.100 0.053 0.102

2 0.040 0.080 0.038 0.097

4 0.067 0.125 0.047 0.102

8 0.057 0.105 0.045 0.093

0.40 0.85 1 0.105 0.152 0.063 0.133

2 0.050 0.087 0.055 0.107

4 0.085 0.150 0.050 0.107

8 0.085 0.120 0.073 0.135

0.85 0.40 1 0.052 0.100 0.050 0.093

2 0.048 0.102 0.047 0.108

4 0.107 0.163 0.058 0.122

8 0.072 0.135 0.052 0.095

0.85 0.85 1 0.048 0.108 0.052 0.125

2 0.042 0.093 0.050 0.093

4 0.093 0.162 0.045 0.087

a 0.097 0.165 0.057 0.128
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Table 9t Wpirioal significance levels of the statistic Q* for ARKA(1,1) models

[m * 201 1,000 replications, n o 501 600 replications, n w 100]

n - 50 n - 100

j 8 ,0.05 level 0.10 level 0.20 level 0.05 level 0.10 level 0.20 level

0.50 -0.85 0.104 0.169 0.267 0.053 0.112 0.212

0.50 -0.40 0.069 0.106 0.198 0.068 0.110 0.208

0.50 0.40 0.080 0.132 0.224 0.072 0.123 0.200

0.50 0.85 0.100 0.132 0.243 0.068 0.112 0.212

0.95 -0.85 0.102 0.153 0.267 0.065 0.132 0.228

0.95 -0.40 0.092 0.146 0.256 0.072 0.128 0.208

0.95 0.40 0.078 0.123 0.218 0.077 0.138 0.248

0.95 0.85 0.106 0.179 0.272 0.105 0.167 0.275

Table 10: Ehpirical significance levels of the statistic Q* for multiplicative
first order moving average quarterly models [m - 241 600 replication.]

n.-S50 n - 100

81 84 0.05 level 0.10 level 0.20 level 0.05 level 0.10 level 0.20 level

0.40 0.40 0.065 0.123 0.210 0.050 0.100 0.212

0.40 0.85 0.135 0.223 0.330 0.088 0.157 0.245

0.85 0.40 0.105 0.143 0.253 0.077 0.133 0.213

0.85 0.85 0.168 0.235 0.338 0.095 0.160 0.255
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Table Ila Estimates of (E(V(h)) - V,(h))/V,(h) for ARMA(1,l) models
11,000 replications, n-S0g 600 replications, n - 100]

n-50 n-100

a 0 h-i h-2 h-10 h=. h-2 h-l0

0.50 -1.00 -0.058 -0.060 -0.009 -0.036 -0.038 -0.010

0.50 -0.85 -0.097 -0.077 -0.013 -0.060 -0.049 -0.027

0.50 -0.40 -0.097 -0.067 -0.004 -0.038 -0.029 0.005

0.50 0.40 -0.079 -0.036 -0.005 -0.040 -0.024 -0.012

0.50 0.85 -0.077 0.007 0.022 -0.053 -0.011 -0.003

0.50 1.00 -0.068 0.009 0.005 -0.033 0.002 -0.002

0.95 -1.00 -0.062 -0.083 -0.194 -0.033 -0.045 -0.119

0.95 -0.85 -0.080 -0.076 -0.178 -0.047 -0.048 -0.136

0.95 -0.40 -0.071 -0.069 -0.180 -0.037 -0.040 -0.118

0.95 0.40 -0.098 -0.100 -0.204 -0.039 -0.046 -0.126

0.95 0.85 -0.081 -0.064 -0.067 -0.036 -0.027 -0.019

0.95 1.00 -0,069 -0.034 0.002 -0.033 -0.019 0.003

Table 121 Estimates of (E(V(h)) - V,(h))/V,(h) for multiplicative
first order moving average quarterly models [600 replications]

n-SO n-100

el 64 h-I h-2 h-4 h-I h-2 h-4

0.40 0.40 -0.087 -0.028 -0.026 -0.046 -0.023 -0.023

0.40 0.85 -0.121 -0.078 -0.084 -0.073 -0.050 -0.048

0.40 1.00 -0.096 -0.052 -0.056 -0.052 -0.031 -0.034

0.85 0.40 -0.101 -0.064 -0.060 -0.058 -0.036 -0.032

0.85 0.85 -0.138 -0.096 -0.092 -0.068 -0.042 -0.043

0.85 1.00 -0.106 -0.066 -0.057 -0.052 -0.018 -0.018

1.00 0.40 -0.072 -0.061 -0.062 -0.041 -0.036 -0.036

1.00 0.85 -0.106 -0.087 -0.090 -0.066 -0.061 -0.062

1.00 1.00 -0.105 -0.071 -0.071 -0.040 -0.028 -0.032
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STATISTICAL PROBLEMS ASSOCIATED WITH THE HORIZONTAL CHANNEL
OF THE RAPID GEODETIC SURVEY SYSTEM (RGSS)

K. lausmus von Luetzow
U.S. Axmy Engineer Topographic Laboratories

Fort Baelvoir, Virginia

ABSTRACT

The paper discusses the estimation of deflections of the vertical along with
horizontal gyro biases from a set of given and measured data as a statistical
adjustment problem. In conjunction herewith, it presents a quasi-optimal esti-
mation method and necessary covariance functions. It further outlines the
estimation of griddad deflections from ROSS data and improved stochastic
position error control.

1. MNRoDUCTION

The involvement of the U.S. Army Engineer Topographic Laboratories (ETL) in the

field of inertial surveying and, subsequently, in inertial geodesy, can be

characterized by three phases. Phase I comprised the development of a Position J

and Azimuth Determining System (PADS) primarily in support of U.S. Arn '

artillery and was completed in 19,72. Phase 11 was concerned with the instal-

lation of a higher-accuracy vertical accelerometer for improved vertical

positioning and the inclusion of software and a data storage unit for the

determination of gravity anomalies and deflections of the vertical components

4 and n under consideration of initial and terminal gravity vector components.

The modified PADS operates as an optimal local-level system in the Inertial

Positioning System UIPS) mode and as a quasi-local-level system in the Rapid

Geodetic Survey System (RGSS) mode. The RGSS mode without Kalman platform tilt

corrections has advantages concerning gyro bias estimations and thus for the

determination of C and n • Phase 11 was essentially completed after ZTL tests

at White Bands Missile Range in 1976. These tests established an ROSS capability

of determining gravity anomalies and deflection components with average rms

errors of 2 mgal and 2 arosec, respectively for 50 km ruks in comparison with

unreduced rem values of 35 mgal and 5 arosec. Phase III concentrates essentially

'A........... ....... .... . ... ..1



on additional YRGSS testing in the vicinity of Washington, D.C., the development

of improved methods for the determination of F and n and their implementation,

improved stochastic error control for positioning, and desirable hardware

improvements, notably the installation of two AlOO accelerometers in the

horizontal channel. With sufficient funding, it could be completed in 1981

and should permit t, n-determinations with a mean standard error between 0.5

and 1.0 arceec without repetitions, and improved positioning. Promising

RGSS applications are:

*Rapid Ag, n-determinations along solitary courses of about 60 km length.

"*Establishment of regional Ag, •, n-grid information networks suitable for

use in a gravity-programmed inertial positioning system and for analytical

continuation in space in the case of flat or moderate terrain.

*Improved point positioning approaching classical surveying accuracy.

"*Flood plain profiling and mapping under consideration of the underlying

geoidal structure.

"*Geophysical prospecting.

Section 2 of this paper describes quasi-optimal and suboptimal methods for the

determination of & and n by means of ROSS and auxiliary data. Section 3 gives

a short overview as to required auto-correlation functions. Section 4 outlines

the construction of regular &, n-grid networks from solitary course data.

Finally, section 5 addresses essentially improved stochastic position error

control which would be particularly valuable in the context of local surveying

within a radius of about 20 km from the starting point.
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2. Optimal and Suboptimal Post-Mission F•, n-Estimation.

The error differential equations of interest, applicable to horizontal motion,

are for the RGSS

•- xu - -x! (1)
dt R

~ ~ l~(2)
at R

S x " N +ggn +a (3)
dt E gZ N aQ

•d OZ t nZ+ l +a 4

-+ pN 86020) Y^ + a,. +(5)

For simplicity, the symbol 6 in front of the dependent variables has been

omitted. The applicable coordinate system in evident from Figure 1.

y (No7th)

J. •- -x (East)

Figure 1

Applicable Coordinate System
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Symbols used in the foregoing local level equations ares

Seast angular position error

ynorth angular position error

*" east vwlocity error

north velocity error

u azimuth axis angular drift rate error1

p north axis angular drift rate errorl

y east axis angular drift rate error 1

g normal gravity

* geographic latitude

I mean earth radius

azimuth platform attitude error

*N platform tilt error about north axis

*• platform tilt error about east axis
-i y product of g and deflection comonoent 2

sy

gV -.- product of g and deflection couponent2

snort acceleration of survey vehicle

dVz east acceleration of survey vehicle

aN correlated east accelerometer error

as correlated north accelerometer error

SI •. •+(w .)0 - w3" (0-p I m f+ (Y +-Y) where the bar symbolindicates constant bias and the terms in parentheses are correlated random
errons aa2 T is the earth's anomalous gravity potential. The derivatives - and -

are taken along the level horizon in the easten and northern direction,
respectively.
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n•- cosý north earth rate

P - V./R north angular ratea
NE

W n + PN Qcos5 + VE/R north spatial rate

wE "PE= VN/Reast spatial rate

WZ7 Z + Pz "sino + V /R - tný vertical spatial rate

In inertial land navigation, terms involving wE in equations (5) and (6)

are neglected in Litton's Kalman error controller. The initial conditions

at time t, a.0 are 0)- 0#00 )- 0o0). top (. *(.) X(- Y,- 0
0 ~z N 0 E 0 ' ' y

The system (5)-(7) can be approximately solved in closed form for constant gyroblat

•, 0, y. The solution is, with w a fn and w. - a
N N z2

-z() = 7cosO . f- 1 (1 - oosnt) + FinO cos~t - n-l sinnt)

+G'sin 2 t . t + 4og2f . g-lsinnt) (6)

N (t) = 'sino • n"I (coo(t - 1) + F(CO920 . t+uin2 o . g'Isinflt)

+ Esint cose(t - Q-1 sinflt) (9)

T (t) V- f 1 9inait + Toint Q-1 (1 - cosot)

+ icost0- (cosot - 1) (10)

The substitution of 0-(t), 0 (t), and I (t), respectively in equations (3)

Z NE

and (4) permits the direct assessment of gyro bias effects on y and x.

In order to provide for quasi-continuous time integration for intervals X

between stops, successive representative C's and n's for constant time

3 In the error equations, normal and meridional radii with respect to the
reference ellipsoid may be replaced by R for IvI < 100 km h-.
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intervals At are designated by a subscript v. Subsequently, numerical inte-

gration with respect to tin-s yields the following solution

structure for the first interval between stops, identified by X I 1:

EA + EB n + C + D + E-+ Ea (a- --)+ Eb (0 -W)+c (Y-•)
ivy V IV 1 1 1 ivy lv IVV V V

+ AlaN + BaD V x + (t0ono0'cn (11)

EG 9+ +H n+ Jl + +KK + L- + ZdlV(aV-3)+ Ee (l -V)+f (y-7)GIvyv iv 1 1 LIy iv v lv v

IVNV IV V y1  I

+ l EaV + Ei(0' n0, to, no) (12)

The terms involving ae' y Y. and stochastic accelerometer-induced errors

are only used for the computation of error covariance matrices which are

necessary for the establishment of a priori weights in a least-squares

solution. The terms 0 and 'l represent known linear functions. The small

Sterms SNZ and S. in equations (3) and (4), respectively are omitted prior to

the determination of constant gyro biases and may be considered in an

iterative scheme.

The variables t and nv except n0, , n re as given initial and terminal
V v 0 e 0 e

values are estimated by means of statistical collocation by suitably spaced

i and ni the number of which should be chosen to achieve sufficient degrees

of freedom in a post-mission adjustment. Accordingly, under consideration

of representative & Ex(t), y(t)], n. n Ex(t), y(t)],
V V
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TI E

(14)
A A A A

under consideration of 0 "O'e " e A

For short distances no advantage is gained from estimating • and n.
A

in equations (13) and (14) by additional terme containing •i and ti,

respectively.

Substitution of and estimates (13) and (14) in X equations of

the form (11) and (12) yields the final observational equations,

?X EM t~i + ENini + C + D + E

A A A * A A*

a aX ° + bXY° + c + d X - 0

()A A

F E = Xi i + EQXini + HXT + JX" + KX7 (16)

A A * A A A

+ ee + ne + g& + hXne) - 0

A weighted least-squares solution yields quasi-optimal deflections of the

vertical together with gyro biases and also makes it possible to provide

error estimates thereof. Approximate constant survey vehicle velocities

between stops and standard vehicle acceleration and deceleration would

simplify the analyses and contribute to greater accuri,-y.

The geometrical considerations relating to equations 11) - (14) are

evident from Figure 2
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iI

S5  C C2 ii

v O3 
; 4O I"l i• 1

C• 2 14on5t.

Figur'e 2

Traverse with Stops S), and Point Erltnates •:L ri and Seg/ment SO•Si

For the computation of t and n vi i is necessary to record t s x, y, to

tabulate these data together with stop and point estimation coordinates

x),, yA, x, y' to com~pute distarces and correlation matrices (r J] and (Pi3

and finally to determine mvi and nv-regression coefficients wnder restriction

to five appropriate •i or ni-estimators. In a strict solution, corresponding

mvi's and n i'e differ from each other. In practice, it may be possible to

use isotropic correlation functions for bot~h • and ri because of short

distances involved (see section 3). Due to the small correlation between

Sand • for short distances no advantage is gained by estimating v .and •0 S
in equations Ci) and (14) by additional terms containing ni and SeS

* respectively.
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The present quasi-optimal method is illustrated by the following: The

observable acceleration error at the first vehicle stop is

1 021 - g (ti - to) + 'Vi (17)

under consideration of the initial deflection coponent to. The tilt error

is then estimated by means of the observable velocity errors and

according to the linear regression equation

1O E i + 501 (18)

The accelerometer is then biased according to

YB, YI " OEI (19)

The deflection difference of interest is then estimated an

iD DN'^ M1 D1
- to (20)9 9

With respect to the second stop interval it is

Y2 - g (O•l - OE1) + 9SOE2 - 9 (t2 t o) + a.2 (1

where SOE2 is estimated in the form

E2 - 012 + 2ý2 (22)

Subsequently,

i2  " 2 g4 2

The second deflection change estimate is then

YB2  DN2
t2 " to 0 - - = (23)

The accuracy of deflection determination is thus dependent on the accelerometer

error, gyro bias error, and the cumulative tilt estimation error.
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With A' as initial estimates, it is

1 0 2 1 n e
Following estimation of E and nj, the closing errors ..~ and n-n r

el em e e-ear

available for the approximate determination of average gyro biases T, I, •.

However, at least one additional intermediate & or r is required for a unique

bias calculation. Finally, bias corrections to the initial deflection components

l) can be applied as

- ( " )Bias (25)
h+A EX

In contrast to the above procedure, the prior quasi-optimal method
A A

for the determination of and n -data contains sufficient degrees of freedom

for the simultaneous estimation of gyro biases. It is, however, of significance

that X and of the general optimization method and iLX and YLA of the present

RGSS mechanization are different because of implemented Kaiman "corrections"

a sXand$E ONX It is, e.g.,

LX+ gil Ei(titi-l) (26)

with X>2. While the identified accelerometer "corrections" permit an

improvement in stochastic position determination, they are not beneficial with

respect to optimal t, n-determinations.

The present suboptimization method is due to Huddle r.977 I while the quasi-

optimization concept was originally formulated by Baussus von Luetzow [1977].

3. Necessary Covariance Functions

Useful and consistent covariance functions, including cross-covariances, per-

taining to Ag, & and n are those developed by Jordan [19721. The covariance

functions area
2 2rr r2 -r/D

0,gr) g *gg - g (1 + 15 1 (7
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®• (r, e) • -1 r COS2 e(D D (213)

( ) 2 22 + r2 e -r/D (29)
nonn 'In D D2

Suitable constant parameters are

ag-•ag- 35 mgal, ac- a• -5 arcsec, D-37 km.

Cross-covariance functions, although available and includable in the general

optimization method outlined in section 1, are not shown here. For short

distances, cross-correlations tend to be small, and they become hardly sig-

nificant for longer distances. The assumption of (approximate) homogeneity

applies to ll covariance functions. The geometry relating to an arbitrary

2 point-correlation is evident from Figure 3.

A4

P2

Figure 3

2 Point-Correlation Geometry

Basic, direction-independent correlation functions 4gg, (r, e) and

* , (r, e) are shown in Figure 4.
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+---Ag-Correlation Function 99

*--- n -Correlation Fwiction (r) for e-O

0---4 -Correlation Function (r) or 960

covariance functions pertaining to correlated gyro drift errors and correlated
t

accelerometer errors are approximated by A * I "" . Parameters to be used are

oG - 0.0020/hr and TG - 2 hr in connection with Litton's G200 gyroscopes, and

10 pgal and T - 40 min in the case of Litton's A200 accelerometers.A
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4. Estimation of Gridded 9, n-Data from Discrete RGSS-Determined n, T-

Information

For a mathematically satisfactory solution of the estimation problem in

question, error covariances (t) a (t ) - should be computed from

time-dependent linear aggregates of correlated gyro and accelerometer errors,

in general, it is sufficient to estimate n, f-data from about 20 corresponding

t, n-values, obtained by means of the RGSS. Otherwise, the computational

load as to matrix inhversion becomes too great. Under utilization of Figure 5,
A-estimation at P33 may be formulated as

"K. t33u w

ii• i 1L1+e1)+................................... +a (C +

+Ci222 a . . ............. .26(26 26

42 4 42+a3 ((3 3 +O3 3 )÷.............................. +i 3 6 (• 3 6 +i 3 6 )

a2(C(2+e42)+ ................................... +a (• +e(26 26 26

+a54(C5+54)+ ............. +a5 5+e56

54 54 54 5 65

+a 73( 73+e 73)+ ....................... +a 6(C 76+e76

(30)
with regression coefficients a1 1 , etc. The first line of the resulting

covariance matrix is then

6al (var+e 1 1 )+ ........................... +a 1 5 (C 1' 1 5 +i 5 )

+a22 2211 .................................. +a 26C26

+a3 3 +............................. +a a
33 33 11 36 36 11 (con't)
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+.42.4..... ..................... 2 1a4 -'

+a54 54 t1 1 ............... +a 56 &56 ti1

"".. .73k.73411. ......................... +a76(76Cl, (31)

2/

C3  45 3

Fi2ure 5

S~RGBS Solitary CourseII Cm with Disorete • , •-Data Crollinlg

a R.gular Grid with Istilat~ed •ik' •I"At
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Of significance is that "noise" covariances may be neglected as to data

from different runs. The computation of respective covariancos by means

of equations (23) and (24) and the inversion of the covariance matrix

presents no computational difficulties. Simplifications as to the in-

clusion of variable noise covariances may be potentially possible.

it should be noted that the midpoint Ag-estimation from 6g-data measured

at two points separated by a distance of 3 km has a mean error of 0.32 mgal

which corresponds to 0.05 arosec. Although this theoretical estimate appears

to be optimistic, the indications are that gravity anomalies and deflection

components can be well-interpolated in non-mountainous terrain for grid

intervals Ax - Ay 4 5 km.

5. Irwroved Stochastic Position Error Control

The determination of gyro biases along with that of deflections of the vertical

under availability of initial and terminal deflection components &0# no' &' li'

makes it aloo possible to conpute position corrections SN(tX), 6yB (tX). Term-

inal position closure errors 6x,, dy, may thereafter be attributed to accelero-

meter scale factors, and these closure errors are then linearly allocated as

additional position corrections. A linear allocation appears, moreover, to

be beneficial if gyro biases corrections are not explicitly available.

Tho geometrical framework for terrestrial inertial navigation is the applicable

reference ellipsoid. If the initial deflection components 0, 10 are known,

leveling of the platform at the rtart of the survey miilion results in the

terms g(n-n0 ) and -g(Q-%0) instead of gn and -g& in eq,"ations (3) and (4).

For the computation of var x(tA), var x(tA), coy (;,x)(tX), etc., C and n
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are considered as ranidom var3.ables and t0 and no as unknown biases with

var C and var n, respectively. As an illustration, the varianco contribution

due to -g( -t 0 ) in the conputation of var (t) is then in simplified form

v i (tx) - g2 IA gdt) 2 + g2var (t•_t..l) 2  (32)
tX-1.

Actually, • and are correlated random variables, and the correct computation

would read

(2 isl __var t .y (tA) X var yt (t) X 2g 2 (t 'tA-l) 1 to dt (33)

tX-I

(2)The implications of eq. (33) and of corresponding correct var y and

Sov( ,y)-terms are the followingi

*For short distances, i.e., for local surveys within a radius of 30 km

from the initial departure point, the incremental position variances

and the total position variance are significantly reduced.
*For short distances, Kalman filter-computed regression coefficients

for position determination are not optimally computed.

*It is beneficial for vertical positioning to facilitate initial

Ag-Ag0 elimination by appropriate calibration under consideration of

a measured go"

The above conclusions are consistent with encouraging good RGSS positioning

results.

Identified correction terms involve the consideration of cov (tC0) and

coy (n, )-conputations and thus require to record the coordinates X(t),

Y(t) in addition to x(o), Y(O). The existing computer capacity would

96



have to be moderately increased. Improved stochastic position error control

would be particularly effective in conjunction with the use of improved

accelerometers, gyroscopes and velocity quantizers and then approximately

achieve classical survey accuracies.

6. Conclusions

Quasi-optimal determination of deflections of the vertical under simultaneous

consideration of all measured velocity component errors at vehicle stops is

feasible and computer-programmable. It has inherent advantages over the

present estimation technique and can be generalized to a fully optimal method
by the inclusion of the whole set of observed accelerometer errors at stops.

Solutions involving covariances between t, n, Ag are neither promising nor *1
economic. The construction of gridded ý, n-data from RGSS-determirted estimations

under consideration of non-stationary errors is possible and does not necessarily

require longitudinal and traverse surveys. Actual position errors are smaller

than Kalman-estimated position errors, particularly for distances below 30 km.

The computation of improved regression coefficients for position determination

is possible and can be facilitated without expensive complexity. Further

theoretical research and testing and the implementation of RGSS hardware

improvements are expected to achieve highly promising results in position and

gravity component determination for various military and non-military applications.
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ANALYSIS OF VARIANCE ON THE TRADE-OFF FUNCTION
RELATING ACCURACY TO SPEED OF REACTION

Walter D. Foster, AFIP
John H. Wolcott, AFIP, Lt. Col., USAF, BSC
Terrence L. Kay, AFIP

Washington, D.C. 20306

ABSTRACT. The customary variable in the analysis of variance is
a single, continuous variable, presumed to possess the usual assumptions.
In contrast, the variable of analysis here is a function,

Ln[P/(l-P)], A + BT, where

P is the proportion of correct responses, T is the response time, and
A and B are parameters to be estimated from the data. This response (or
trade-off) function was derived from observations on P vs. T as human
subjects were asked to operate a simple right or left-hand response to
a light signal at different levels of an altitude chamber and mood as
determined by a psychological scale.

The analysis of variance of the trade-off function took the
following form:

Source df 4
Mean 2
Subjects 24(-l)
Altitudes 2(a-l)
moods 2(m-1)
Ax 2(a-l) (m-l)
Exp Error 2(s-l) (am-l)
Pooled Devs ams(n-2)

TOTAL awns

to ascertain if altitude or mood affected the trade-off function.

I. INTRODUCTION. Factors affecting aircraft pilots have been
extensively chronicled in the literature on aircraft safety. To a dismaying
degree, these factors are difficult both to define and to measure. A highly
bally-hooed factor currently enjoying a most lucrative existence is biorhythm
whose effect on pilots involved in aircraft accidents has been scientifically
demonstrated to be wholly fallacious (Wolcott2977 a,b). Our report is concerned
with two factors, altitude and mood, their definition and measurement, and
their possible effect on reaction time. Emphasis is placed on a novel statisti-
cal analysis, the analysis of variance of a function (Foster 1962).

The opinions or assertions contained herein are
the private views of the authors and are not to
be construed as official or as reflecting the
views of the Department of the Army, Department
of the Air Force, or the Department of Defence.
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The laboratory experiment consisted of measuring the reaction
time of a human subject responding to two lights. If the right light
would flash, the subject should depress the right-hand button within a
specified length of time for a correct response, and similarly for the
left. An incorrect response would consist of depressing the wrong
button or exceeding the time limit. Time limits were 275, 240, 215,
180 milli seconds. The time limits were balanced and randomized in
their order of presentation to preclude an order effect. At each time
limit, the subject was challenged with 100 flashes. Simulated heights
in the altitude chamber went from 0 to 12,000 feet in 2,000 foot intervals.
While measured on a continuous psychological scale mood was condensed for
analysis here to the three levels of high, middle and low. The seven
altitudes were condensed to low, middle, and high for this analysis, thus
creating a three-by-three factorial design for treatments. There were
eight volunteers, each having at least one trial in each of the three
by three factorial to provide a completely balanced design.

The variable of analysis is defined to be the function relating
the proportion of correczt responses to reaction time. Because accuracy
gonerally decrease@ as response time is decreased--a trade-off between
accuracy and timw, the function relating these two is customarily called
the trade-off function.

I1. DERIVATION OF THE TRAJ.E-OFF FUNCTION. A variety of models
have been used in similar experimentation by other researchers. A good
review of these is given by Wood (1976) and Lappin (1977). None of these
was found to be outstandingly successful. The procedure followed here
wae to elicit a model from consideration of the basic data. It seemed
to us after trying many approaches that a plot of successive differences
in the percent correct when divided by change in time and by percent
correct answers and then plotted against performance--this plot was linear
for most trials and when not, it tended to be concave to the right, as
shown in the following diagram:

P P

p P
When this dependent variable was plotted versus log performance,

the plots were occasionally linear but usually concave to the left as
shown below.

AP/AT PA
P P

Log P Log P

100

"q fi.



The physical meaning of theme plots was interpreted to be as
follows: Improvement rate related to performance fell off at a constant
rate as performance increased.. Thus,

W AT - A - 1i
P

The derivation of the trade-off function was accomplished
by approximatimn the differences by differantials, separating variables
to $ive d _ - dt, and integrating by partial fractions to give the

P

following models

P I D? I. kexp(-ATY ',

which is recognizable as a 3-parameter logistic function. Plots on
logistic paperi.e, a 2-parameter logistic by plarsng A/B A 1, were
generally linear. Some typical examples of these plots are given in
Figure 1. Therefore, the model Ln[p/(--lP)3 a a + bT was adopted.

III. FWCTION ANALTZS O V C (FAy). Whatis tFAVT?
Perhaps it is best exemplified in an analogy to the typical analysis
variance. Note that the not mm of squares for an effact can be computed
by subtracting a correction terms j(treatment1(tretmen totals) 2/t--(Grand tota1) 2/rt J

to center the data at the mean, In the corresponding FAV an linear re-
gression, the moments are taken about the origin so that not one degree of
freedom but two are allocated. However, the average regression through all
the points is used as the correction term when distinguishing between two
or more linear regressions representing groups or tieatnents, as illustrated
below:

A AYV.

MEAN REGRESSION 2
0 Avs B 2
S- DEVIATIONS 2(n-2)

The complete analysis of variance of the trade-off function is
shown in Table 1 In which the degrees of freedom are allocated as indicated
above; tests of the effects of altitude, mood, and the AXK interaction are
seen to be not statistically different. However, the graphs of theme
effects (In Figure 2) show a distinct ordering of the effects as expected
if the effects are real.
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Low altitude is taken as the reference or ground level compared to
which the curves for the higher altitude. are displaced downward re-
flecting a depressed performance. Similarly with respect to a good
mood (as reference) poorer moods are associated with curves with down-
ward displacement. That both mood and altitude should have the ordering
as discussed above under the null hypothesis has a significance probability
of 1/36 as shown at the bottom of Table 1.

IV. COMPARISON OF FAV TO AN ALTERNATE ANALYSIS ON EFFICIENCY.
Efficiency was defined as the proportion correct divided by the average
reaction time. This definition is able to be compared to the trade-off
function by considering the following plot in which proportion of correct
answers is plotted against time.

Assuming a linear model to be appropriate with intercept at the origin,
efficiency can be seen to be the slope of this plot. Recall that the
logistic model plotted the logarithm [percent correct/percent wrong3
versus time but the line was not forced through the origin,

For efficiency, the alternate analysis consisted of a multiple
regression in which efficiency as the dependent variable was related
linearly to altitude and mood both in the original scales. In that
analysis, both altitude and mood were found to be statistically signifi-
cant, primarily because of a larger number of trials and about double
the number of subjects. Howeverp tke multiple correlation coefficient
was found to be less than .45 and R4 usually less than .20. Thus, less
than 20X of the variation in efficiency was accountable by mood or
altitude. Because of the presumed advantage of the trade-off function
and its putative sophistry, it was something of a surprise to have it
perform not as well as the simple efficiency approach. To pursue the
question further, the intercept of the trade-off function was plotted
against slope for each of the 72 individual regressions in the FAV
analysis. Because these 72 points were incredibly linear, it was concluded
that a very large experimental (not statistical) correlation existed
between intercept and slope. It is clear from this very high correlation
that virtually all of the information in the FAV analysis was contained
either in the intercept or the slope parameter, but certainly not both.
Thus no advantage was derived from a two-paramter model for these data.
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TABLE 1. FAV ON TRADE-OFF FUNCTION

Source df SS MS F

MEAN 2 1700.8420

SUBJECTS 14 492.2826 35.1630

ALTITUDES 4 8.1274 2.0318 1.17

MOODS 4 8.1038 2.0259 1.16

A x M 8 6.6508 .8313

EXP ERROR 112 195.2660 1.7434

DEVIATIONS 432 398.6270 .9227

576 28021.8996

ALTERNATIVE APPROACH TO SIGNIFICANCE PROBABILITY

1. MOOD: Number of ways of ordering results *6

Number of ways if effect exists *1

P(Observed result) - 1/6

2. ALTIcTUDE: Same as above.

3. JOINT PROBABILITY: 1/6 x 1/6 1/36
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THE ANALYSIS OF PARTIALLY FACTORIAL EXPERIMENTS

J. Robert Burge
Walter Reed Army Institute of Research

I. INTRODUCTION.

It frequently happens in factorial experiments that one or more of
the factors is of such a nature that certain treatment combinations are
identical. To illustrate this point, a problem commonly encountered by
blood banks involved in platelet transfusion therapy has been selected
(Table 1). The two variables of interest affect the integrity and
function of platelets. One of the factors involve@ two different
methods of storing blood. The other consists of three different times
of storage (including fresh blood or NO storage), so there will be no
differences between storage methods at the ZERO level of time.

TABLE 1
Relationship Between Storage Time and
Storage Method on Platelet Integrity

Concentrates Stored At

Stored For Room Temperature Frozen

)! 0 hours Yll yl 2

24 hours Y

48 hours Y.1 Y2

This experiment falls into a class of experiments in which the
treatment combinations have an appearance of consisting of a full
set of factorial combinations when in fact this is not so. Under such
circumstances, when testing different types of storage, the storage
method is irrelevant when a zero amount of storage time is administered.
Consequently, there will be additional degrees of freedom for error
arising from comparisons between identical combinations and correspondingly
fewer treatment degrees of freedom. The partition of the treatment
degrees of freedom into their separate components will also be different.

Computing the Analysis of Variance Table for Experiments Involving
Qualitative Factors and Zero Amounts of Quantitative Factors:

A short summary of this type of analysis is given by Addelman (1974).

Let factor A (holding time) represent the quantitative factor and
factor B (storage method) denote the qualitative factor. If we assume
that the first level of factor A is the zero amount, the appropriate

AOV table is given below (Table 2) where factor A has a levels and A

factor B has b levels: 4
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TABLE 2
AOV for an axb Partially Factorial Experiment

(one observation per cell)

Source of
*Variation df SS

Factor A a-1 a
(Time) Z E ~ 2 Yo2

~ ~b" ab

Factor B b-i b a yJ2 a b Y 2
(Method) U (EYj) E E

jol 1-2 - 12 -ol
a-i(a-i) b

AX B (&-2) (b-1) a b i2 a2 b a2E E Y Z Yi. E (E Yj
1.2 jul i=2 - - 1-2ij

a b2

(a-1) b

Controls b-a b 2 2
(Exp. Error) r E 1.j olb

Total ab-l a b22

Note that the SS due to factor B in computed only for the nontero
amount@ of factor A. Similarly, the SS due to interaction of the
two factors in utilizing only the nonzero amounts of the quantitative
factor A.
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It may be helpful to illustrate the Addelman algorithm with an

example (artificial data):

EXAMPLE ONE

TABLE 3

Storage Method

- S2 Row Totals

T 49.5 61 110.5
Holding 3 2
Time T2 4  18 41 59. E E Y - 222.

i-1 j-l ij
T4 8  29 23.5 52.5

Column Totals 47* 64.5* 111.5*

Source df SS

592 22
TA 2 (110.52 + + 52.5 )/2 - (222) 2, 1,009.75

2 2
9 1 (47 + 64.5 )/2 - (111.5)2 76.5625

TA XS 1 T 4 2  2 2 pT X B 1 18 + 41 + 29 + 23.52 592 + 52.522

"- 472 + 64.52 + 115.52 - 203.0625
2 4

Error 1 612 + 49.52 (110.5)2 - 66.125

Total 5 49.52 + 612 + 182 + 412 + 292 + 23.52- (222)2 1,355.1
6

* (An asterisk was utilized to indicate that the totals Involve only the
nonzaro amounts of the quantitative factor - holding time.)
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II. REGRESSION APPROACH (An Alternative Method).

The standard analysis of variance model for the two-way
classification considered in Section 1 is:

"E[YAj] " + a + O + 6

Where + 02 + 3 0 621+ 622"0

81+02 -0 631+ 532 " 0

621 + 31-0

622 + 632 -0

Thus if V, a,, C1 2' 1 and 821 are known or estimated, all other

parameters or their estimates can be found from the restrictions.
We can write the regression model:

Ely iJ1 p ~+ MIXI+ 2 X2 + OX 3 + 621X4 or[)

Where:

YI11 1 1 0 0 0

YI2 1 1 a 0 0 and8-

1Y X 1 . 1 1 1 C%

Y 21 0 1 -1 -1

1 3 -1 -l 1 -1 621

321 -. -l - 1
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One should note the following:

(i) For all observations belonging to the zero level
X2 =X 3  X4 0

(ii) The elements of the 6 column are obtained as a product
of the corresponding elements o01the Q2 and columns.

(iii) Because of the orthogonality in X, we can obtain separate

orthogonal sums of squares which are additive for the estimates of
vp a,, and a 2 , 01, and 82 1. These will be the usual sums of squares
for the mean, rows, columns, and interaction.

(iv) Two column vectors, a and 8, are orthogonal if and only if
their inner product is zero (i.e., a - 0).

Using the R( ) - notation for reductions in sum of squares when
fitting linear models:

A more complete summary of R( ) notation is given in Searle(1971).

The R( ) notation is defined by denoting as R(b) the reduction
in sum of squares due to fitting the familiar linear model

Let b° be any solution to the normal equations

X'Xb0 - X'y (2)

say b0  - (X'X) X'Y (3)

w1ere (X'X)" is a generalized inverse of X'X, meaning that it
is a matrix satisfying X'X(X'X) X'X - X'X, then

R(b) - b° X'Y. (4)

It can also be expressed &3

R(b) - Y'X(X'X)" X'Y (5)

We take (4) and (5) as our formal definition of R(b).

Now suppose b is partitioned into two vectors bI and b2
so that the model is (full model)

"Erj] - 3xk, + X2 12 (6)
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The reduction in sum of squares for fitting this is denoted by:
X X , b (7)

SR(b1 ' b 2 ) " Y'(X 1 X2 ) X1 1 [
2 1 2X2 '

This being the direct analogue of:
• ~R(b) - YVX (X'X)" V'Y

In connection with (6) consider the *ubmodel (reduced model):

E[j) b 8

For the fitting of this model:

R(b ) -Y'x X Y (9)

Differences between reductions in sums of squares are .also accommodated
by the notation:

R(b 2 jb1 ) = R(b1 , b2 ) - R(b 1 ) (10)

This indicates the reduction in sums of squares due to fitting the
full model over and above that due to fitting the reduced model.

The R( ) - notation is quite general and can be used for regression
models, for familiar linear models involving main effects and interactions,
and for combinations of the two.

In order to demonstrate this notation, it has been applied to the data
given in Table 3 and summarized in Table 4.

TABLE 4
AOV for a 3x2 Partially Factorial Experiment

(One Observation/Cell)

Source of
Variation df SS R( ) - Notation

S1 8,214.00 R(p)

Factor A 2 1,009.75 R (alp c2l P, 0I1 621) = R(al, a2)
(Time)

Factor B 1 76.56 R (01 PP, a6 01)-
(Method) 1. 1  2, 21(

A X B 1 203.06 R (6211 ps, al a 2, 81) "R(6 2 1

Full Model 5 9,503.375 R (1j, al, a2, 0i, 621)

Error 1 66.125 Y'Y - R (p, a, 2' 0111 621)

Total 6 9,569.5 Y'Y
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III. PARTIAL FACTORIAL EXPERIMENTS WITH MORE THAN ONE ObSURVATION
PER CELL.

A. BALANCED CASE

Whenever the mparimental plan involves one observation In each
subclass, Addelmann' article applies. The folloving.example illustrates
how to treat a 3x2 partial factorial experiment when cell frequencies
exceed one. Specifically, the zero treatment has been replicated
4 times. All of the other subclass frequencies equal 3.

EXAMPLE TWO
(Cell Frequencies Greater Than One)

Storage Storage Method Row
Tim 91  S2  Totals

TO: 0 hours 63 49.5 220.5 -
61 47

T 24 hours 23 40
13 41
18 42
54 Y. 123 w Y 177 Y 72."

T 48 hours 40 22
18 23.5

29 25
87 - Y21. 70.5 Y22. 157.5 - "3..

Column
Totals 141 -* . 193.5 - Y,2.

334.5 -7.

555 -Y

Analysis of Variance Computations:

Factor A 2 2 2 2
8S(T) - 220.5 + 177 + 157.5 - (555) - 2,259.375

4 6 6 16

sct or 1412 + 193.52 - 4.5)2 - 229.6875

6 12
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Interaction 2 232+ 20252 2 2
SS(TxS) 54 +.87 + 123 + 70.5 177 + 157.52 - 1412 + 193.5

3 6 6

2
+ (334.5) " 609.1875

12

ki 62 +62 2 42. 2 (20)22
Error 63 + 61 + 495 + 47 (L20 +...+ 222 + 23.5 + 25

2
- 5) 2 492.68753K 2

Kean , (55) " 19,251.5625

Total - 632 +.., + 252 , 22,842.50

TABLE 5
AOV for an 3x2 Partially Factorial Experiment

(Cell Frequencies Exceed One)

Source of

Variation df SB R( ) - Notation

1 19,251.562 R(U)

Factor A 2 2,259.375 R(al' '2 J• 1 0 621) " R(ua1, 0214 R(al, @2)
(Time)

Factor B 1 229.6875 R(OIa. @.u a2. 6) "R(

(Method) a.

AxE 1 609.1875 R(62 111Ua 1, 2 01) - R(821)

"Full Model 5 22,349-812 R(, ,, *la 2 ol 621)

Error 11 492.6875 Y'Y - R(U, a 1, @2, 0l 621)

Total 16 22,842,50 Y'y
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B. UNBALANCED CASE

The analysis of variance (AOV) table has been used to summarize
the results from the analyses performed up to this pol.nt. The results
from an analysis of balanced data are frequently summarized in this way
because researchers automatically associate each sum of squares (SS)
line item in the table with testing a particular hypothesis in the
linear model.

In the axb partially factorial experiment with one observation per
call, the regression approach offers a computationally convenient
alternative for generating the various entries in the AOV table. This
situation is analogous to balanced data (equal subclass frequencies),
so there is no confusion as to what is being tested in each line item of
the table. However, when the cell frequencies exceed one, as they did in
example two, a complication ensues (viz., R(ac, 02) 0 R(al, 0! • 1) as the
result of an emerging non-zero off-diagonal eiement in.the X' matrix).
The situation becomes more complicated when further unbalance arises
through missing observations. With unbalanced data hypotheses tested
under such headings as roaw, column, and interaction effects cannot be
uniquely presented by paralleling (merely extending) the methods of analysis
for balanced data.

In order to illustrate these points consider the following example:

EXAMPLE THREE

Missing Observations

Storage Storage Method
Time Sl S2

To 0 hours 61
49.5

T 24 hours 23 41
13 (41)t

4 2 48 hours (40)t 22
18 25

t The two numbers in parentheses will be treated as missing observations.
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We can write the regression model ErJ] =-

As
61 1-1 0 0 0
49.5 ; X - . 1 0 0 0 and•- H I
13 1 0 1 1 1 02 1

41 1 0 1 -1 -1

41 1 0 1-j 1 -1

18 1 -1 -l 1 -1

22 1 -1 -1 -1 1
25 1 -1 -1 -1 1

In the situation with unbalance created through missing observations,
the two raw of the X matrix corresponding to the misding observations
(lines drawn across thek) will be deleted.

The upper triangular XIX matrix based on all 10 observations is:

1 a 2 1 2

X'X(lO)- 10 2 0 0 0
6 4 0 0

8 0 0
8 0

8

While in the case of 2 missing observations we have:

X'X(8) - 8 -1 0 0 2
5 3 1 -1

6 2 0
6 0

6

In general, for a 3x2 partially factorial experiment with the following
cell frequencies:

Stored Storage Method
For S1 S2 Row Totala

TO fo fo'

1f1 1 2  1i

T2  ff f

Column

Totals f f
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XIX will bave the following structure:

a2  81 •21

fo f.2 f I" f.2 fl. f2. f 1I + f

f0 +f 2  f2 f 22  f12  f12 22

fff fl- 211 12 ~ 1 f2.

_f_____ f ~ .

f

where N - f 0 + f + f
0 1. 2.

and f * f + f
1. 2.

The effect of unequal subclass frequencies produces sum of squares
that are not orthogonal. Thus, the influence of missing observations
can be readily observed by examination of the off-diagonal terms in the

above generalized X'X matrix for a reparameterized 3x2 partially
factorial experiment.

Table 6 allows one to examine the various reductions in sums of
squares that are easily generated as a result of the R( )-notation.
The problem now becomes one of relating the associated sums of squares
to the testing of "appropriate" hypotheses about the parameters in the
model. Obviously, care must be taken so as not to incorrectly describe
what is being tested. To better understand how this can be achieved,
has prompted a number of articles in the recent statistical literature.
However, it is recommended that you turn first to Speed, Hocking, and
Hackney (1978).
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STATISTIC•L ANALYSIS OF EXPERIMENTS IN SORPTIVITY

Richard N. Macnair

Edward W. Ross, Jr.

U. S. Army Natick Research and Development Command
Natick, Massachusetts 01760

Y

Abstract. This paper describes several experiments about the apparatus and

procedure used in testing materials from which chemical-protective clothing

is made. The purpose of the work is ultimately to reduce the variability and

cost of such testing by clearer understanding of the processes involved. The

design and analysis of three experiments are outlined, and some tentative

conclusions are stated.

1. introduction. This paper has to do with the military problem of defending

a soldier against attack by chemical agents (usually poison vapor). This de-

fense takes the form of special, protective clothing which absorbs large

quantities of the agent. For this purpose large rolls of material from which

the clothing is made are purchased and samples from these rolls are tested for

their sorptivity, I.&. their absorbing power. This testing is slow, expensive

and somewhat unreliable. The present paper is a study of the test-methodology

(apparatus and procedure) with the objective of improving the process, in the

sense of obtaining greater reliability or lower cost.

Specifically, a certain standard test procedure and apparatus has been

used in the past. Recently, a simpler apparatus of the same general type has

been tried and found to give acceptable results in a shorter time than the

standard method. However, the results were irregular enough to raise questions
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about the entire process, sa it was thought desirable to conduct the more

systematic tests described here.

I1. Background. The two apparatuses, sketched schematically in Figure 1,

are generally similar. Instead of a toxic agent CCL 4 is used as a repre-

sentative vapor in these tests. A calibrated mixture of this vapor and an

inert gas flows through the sample at a standard rate, and a test for de- J

tection of CCL4 is done on the downstream side of the sample. The result

of each test is the length of time (in minutes) before detectable CCL4 ap-

pears, i.e. before "breakthrough". The sorptivity or amount absorbed at

breakthrough is then calculated.

The two vapor-penetration apparatuses, which we describe as standard

(std) and simplified (sim), respectivelyp differ in the following respects:

(a) Nitrogen (N2 ) is used an the inert gas in the sJd and air in the

aim.

(b) On the upstream side of the sample the gas $.s heated to 32 0 C In

std but maintained at ambient (usually 200C) in the slu, The tests are

both conducted in a room with coarse temperature control but no humidity

regulation.

(c) The methods of detecting CCL 4 on the downstream side of the sample

are notably different, but both involve a human observer. In std the gas

is pyrolised and bubbled through a tube containing a starch-potassium iodide

solution, which turns blue when products of CCL 4 are present, In sim the

gas flows over a copper disc in the flame of a propane torch, and the flame

turns green in the presence of CCL 4 .

(d) The human operators observe the color changes in the two apparatuses.

For std, the observer records the time at which the liquid in the bubbler tube
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first shows blue. For aim, he recurds the time at which the flame-color is

perceptibly "more green" than a comparison flame located near the test flame

but not in the flow-stream. An additional complication is the following:

it is thought (based on previous experience) that the std tends to give false-

positive readings. The operators are, therefore, instructed to replace the

bubbler tube, when the first blue color is observed, with a fresh bubbler

tube. The time is recorded only if the fresh bubbler tube shows blue within

two minutes. Otherwise, the fresh bubbler tube is left in place until it

shows blue. This process is repeated to many times as necessary until a blue

color is obtained within two minutes. No analogous routine is applied to the

Sim,

III# ObjectiVesi We would like to answer the following questions about these

test methodsai

(1) Do the apparatuses give the same results?

(2) Is there an effect due to the initial concentration of the agent CCL 4 ?

(3) Do the operators have an effect on the results?

(4) What other factors are important?

Concerning (1) and (2), if the apparatuses and concentrations have an

effect, then we want to know whether some combination of rim and con-

centrations gives results that can be reliably used in place of the std at

its traditional concentration. Concerning (4), some other factors that may

have effects are material properties, ambient conditions and the treatment

of the material samples prior to testing.
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IV. Variables. The variables In the tests are as follows:

A, apparatus, takes on values (1) srm, and (2) std.

C, concentrations takes on values (1), low or 5 mg/l, and

(2), high or 15 mg/i.

D, day of test 1 to 4.

0, sample group, (1) and (2).

0, operator, (1) and (2).

R, repetition number, I to 12,

W, week of test, 1 to 2 or 3.

V. Design of Tests. Three different tests in all were run.

Test 1: In this test each operator remained with the same apparatus

throughout the experiment. To minimize the effects of material variability,

samples were re-used over and over again. In order to restore samples as

nearly as possible to their original condition, they were heated overnight

in an oven at 501C prior to each day's tests (including the first day's).

We surmised that this cycle of heating and testing might affect sorptivityp

so the test plan involved periodic repetition of tests in order to find and

eliminate any trend,

Twenty-four samples were taken as close together as possible from a

large roll of material and divided into two groups of twelve samples each.

The groups ara labelled 1 and 2 and chosen in the irregular, but not random,

sample-pattern shown in the sketch.

1 2 1 2 1 2

2 1 2 1 2 1

2 1 2 1 2 1

1 2 1 2 1 2
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The test plan for each week is am follows:

D ~ A
1 calibration, no tests

heat overnight (16 hr.)

2

{2 22

heat overnight

222

12 1 2

host overnight

1' 2 1

5

This test was run for two weeks, then, after a lapse of about a monLh,

for a third week.

Test 2: This wasn nea,,:ly a repetition of Test 1. The only differencesi

were:

(I) A different set of 24 mamplem wasn used from the large roll.

(ii) The twist lasted only two weeks.

Test 3: This dif'ared substantially from the two preceding tests. Samples

were not re-used, and t'ae effect of operator warn specifically Investigated. The

* samples, 96 in all, were obtained from two sheets Of the same large roll used
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in Tests 1 and 2. Each sheet was divided into 6 rectangular sets, and 8

samples were taken from each set. From each of these 12 sets, one sample

at a time was randomly chosen, and these 12 samples formed a group. In

this way 8 groups of 12 samples each were obtained and tested according

to a plan that was identical with that of Test 1 except that the variable

O replaced the variable C.

Test 3 differed from Tests 1 and 2 in one other important respect.

Since the samples were not re-used, there was no need to heat them overnight.

Consequently, they were simply kept at 652 relative-humidity for several

days prior to test. This is a much higher humidity (about 600.) than that

of the samples heated in the oven prior to test, which was about 10) .

VI. Results and Discussion. The statistical analyses of the data were

done using principally the routines of the Statistical Package for the Social

Sciences (SPSS), edition 2. The main results are shown in Figures 2 and 3

as graphs of sorptivity, y, versus various variables.

Figure 2 shows graphs of the daily averages of the results for

Experiments 1 and 2. The main reason for studying these is to see whether

there is any overall trend in the tests where samples were re-used. No

significant quadratic effects were found. Weak but significant (95% level),

and nearly equal, downward linear trends were found in the data from Test 2

and the first two weeks of Test 1, labelled (11) in Figure 2. When the

third week's data was appended to Test 1, the trend disappeared.

Since about a month elapsed between the second and third weeks

of Test 1, it is not clear how to inteo,.et the trend. The most plausible

iA
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explanation is that re-heating has an effect, but that effect was washed out

by the simple passage of time between weeks 2 and 3. In any case the trends

are rather weak, and no further effort was made to correct for them.

Figure 3 shows the effect of apparatus, A, and concentration, C, on

the sorptivity in the form of estimated means and 95Z confidence limits for

the three different tests.

Figure 3(i) shows that the three tests gave inherently different

results. Tests 1 and 2 differed only slightly, but Test 3 gave lower and more

variable results. Possibly these differences are due to both material vari-

ability and the different pre-conditioning of the samples in Test 3.

Figure 3(11) and 3(ili) show the main effects of A and C on sorp-

tivity. Clearly, the std A produces higher readings than the sim'A, the size Al

of the difference being much greater in Test 3 than in the others. The ef-

fect of C is less clear. Tests 1 and 2 show no difference, but Test 3 sug-

gests that higher C gives lower sorptivity.

Figure 3(iv) exhibits the interaction between the effects of A and

C. These are somewhat confusing. Firstp we notice that in Test 1 there was

no effect of A at low C, i.e. the overall effect of A was due entirely to the

effect at high C. Related to this is the fact that in Tests 1 and 2, the

result of increasing C is to increase the sorptiývity =easured by std A and

decrease that by aim A. This effect Ls not observed in Test 3, and is not

always significant in Tests 1 and 2,

An ANOVA of Test 3 showed that there was no main effect of operator.

127

S J JI _-____ J i



r

However, operator 1 gave consistently higher readings on the std A and operator

2 on the sim A.

Most of the statistical teats (F-tests, t-tests) are based on assumed

normality of the data. Some rough estimates of departure from normality

(skewness and kurtosis) were made for the three sets of data, The data of

'I. Test 1 were not perceptibly non-normal; Tests 2 and 3 were less satisfactory

but not outrageously non-normal.

It was thought that there might be some effect of the time of the day

on the results, but a plot of the overall means for each repetition number

showed no effect that could not be attributed to randomness. A

VII. Conclusions.

The results of these tests are somewhat fragmentary and suggest that our

understanding of the process is incomplete. One thing which emerges is that

the effect of sample pre-conditioning is very important. Generally, the

std A gives higher results than the aim A, the size of the difference being

much affected by C and by the preconditioning. The std A gives somewhat more

stable values than the aim A.

Tests in which one tries to observe the first non-zero value of a con-

tinuous variable are notoriously unreliable. Some of the present difficulties

might be avoided by using comparisons with standard color cards, or some

spectral analysis. Obviously much remains to be done in this area.
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ON CO.GINO P=U-RANDOM4 NUER • .RAORM

Mark Brovn(l) and Herbert oomon(2)

A techbnque used 1n pseudo-random number generation is to combine two

or more different generators with the goal of producing a new generator

with Improved randomness properties. We study such a class of generators

and show that in a strong sense the combined generator does offer

improvement. Our a~pproach applies results from ma~jorisation theory.

M 10 subjeot olassification. PrImary 6•CO; Bseconday 68MA5.

KeV words and phrsues. Pseda o-random number generators# Monte Carlo

simu.lation, muajorization, uniform distribution, Markov chains.
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On Combining Paeudo-Random Number oenerators

Mark Brown and Herberb Solomon

1. Introduction.

Mawy methods have been r%-.qosed, toeted and employed for generating

pseudo-random numbers ([2),(•],[•,],(5],[8],[9],[l] 1,], 16J,[iB],

(19]). The goal is to produce strings of numbers which behave like inde-

pendent uniform (0,1] random variables. The generators yield integers in

the met (Ool,...,m-lj which are then transformed to [01] by division

by m. Suppose that XIX... and 'Y2',* are strings of numbers

generated by two separate generators. Various suggestions have been made

for combining the two strings to produce a new string ZI1Z,... Which

hopefully improves upon X and Y. One method, discussed in Knuth [81p

p. 26-27, ii to met Zi - X +Y,(mod m). Another, due to Maclaren and

Marsnagus [111, which Knuth reports to be excellent ([81) p. 31), uses the

Y string to randomly permute the X string.

For the additive generator Zi Xi+Y (mod m) we obtain the following

result (Corollary 2). For any k and corresponding choice of indices

SI < 12 < c,. < ik consider the vectors XA - (Xil#... Xi,)#

YA ý (¥11 " Yik) and ZA - (Zil#...,Zik), Let PA. qA and aA

donote the respective distributions of XA' YA and ZA; PAp qA and aA

are probability distributions on x where K.. (Opl,...,m-1]. Define

rk to be the uniform distribution over ? rk in a vector of mk components

k Ikeach equal to m . Let 11-11 be an arbitrary symmetric norm on e (1ixil. 11-I1 XI
where ]Ax Is any permutation of x). Then IlaA-rklt :_ min(lIpA-rkll IIqA.rkll).
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For the generator suggested by Maclaren and Marsaglis a similar but

weaker result I obtained. Using Y to shuffle (XIi...jXm) results in

improvement for the joint distribution of X ,...,Xm but not necessarily

for the marginal distributions of subsets.

V potential value of our approach is that it can provide additional

Justification for some generators currently in use, and perhaps suggest

new generators which would then be ana3yzed by traditional methods.

In our analysis we treat the strings X and Y as independent random

vectors. In practice X and Y are deterministic strings of numbers.

This creates a problem in the strict application of our results to pseudo-

random number generation.

F# definition ([61 p. 45) an n-vector a is said to be majorized by

an n-vector b if upon reordering to achieve a, > a2 > & .2 > %n and

bl >_ bp _ bn it follows that Li . bi for k.u ,...,n-l

and n aiE• .i, Af unntion fl, Rn R, is defined to be Schur

oonvemx Q131] p. 3.189) if whenever a is ma&jorized by b, '(a) < *(b).

Schur convex functions include symmetric convex functions which in turn

include symmetr'ic gauge functions and symmetric norms ([1]. p. 229). By

a symmetric norm on Rn we mean a function RIl -i R, satisfying:

llxI>Zo for all x.n with equalityifandonlyif x -O,

lax 1I - 0l lIxll for all atR, x e P, lIx+ylI 5 lIxIl + IIlyI for all x,yt

and Ilxii - IlA1I1 for all x • and for all permutations lkx of x. We

note that if r is the uniform distribution over [lj2,...,n) (r(i)

i =. ,...,n) and l1-l is a symmetric norm on R, hen g(x) - lix-ril

is a symmetric convex function and is thus Schur convex. Some references

for majorization are (1), [6], (11], and [17].
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Lemma 1 below contains four equivalent statements relating to

majorization. The equivalence between (i) and (ii) is due to Hardy,

Littlewood and Polya (Q6] p. 49); the fact that (ii) implies (Iii)

is found in (13 p. 183 and (iii) m> (ii) in (1) p. 1811 the fact

that (I) - (iv) is the definition of Sohur convexity and (iv) -6 (i)

because *(xlp..)%) - p x wh, ere x(i) is the ith largest

component of x1 is symmetric and convex# and therefore Sohur convex.

Lemma ,. The following statements are equivalenti

(I) a is majorized by b

(Ui) a -Fb Where P is doubly stochastic

(Iii) a is a mixture of permutations of b# i.e.1 , a • pi(ni)

•ee (A''"tPn) is a probability vector and each 1ib is a permu-

tation of b.

(iv) *(a) Sj(b) for al1 Scur convex functions •,.

7heorem 1. Suprose that X is a discrete random variable taking values

in the set m *'.xn ) with probability distribution p .

Where p1 " P(xi)o and Y Is a random variable, independent of X, taking

values in the not Por each y e ýJA let Ty be a 1-1 transformation

of 9. onto itself. Define Z - TyX and let s be the distribution of Z.

Then s is majorized by p.

Proof. Since Ty is 1-1 and. onto the distribution of T X is a permuta-

tion of p. Thus a is mixture of permutations of p. By lemma 1 s

is majorized by p.
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3. Applications to pseudo-random number generation.

Suppose that X - (Xl,...,XN) and Y are independent random vectors,

with each 7, assuming values in -'t - (0O1...,m-l). Consider a subset

of k Indioes An Cl<i <i <O.. <ik <5N. Define pA tobethe

distribution of XA - .. 0A is a probability distribution on

ILk For each V in the support of Y let T be a 1-1 transformation

ky
of Ojk onto APL and let sA denote the distribution of TyX.

Define rk to be the uniform distribution over PL (rk(x) - mk for

each x, )L )-

Corollay Is Let IA and PA be a. defined above. Then 'A 'I

majorized by pA. Thus *(aA) *(PA) for all chur co'ex functions

Sand in particular II5A-rkII -rj 1pA~ 1  br any symmetric norm, 11-111p

ofl• . The majorization of sA b' •A follows from lemma 2 with n m

and * , * The other statements are consequences of majorization

(see lemma 1 and our remarks on Sohur convex functions).

Remark 1. Consider Z. - XiqYi (mod m) i - 112p...,N, where X, and

Y both assume values in 7ýt ((Olp...,m-l]. In this caue X and Y

* play symmetric roles. It follows from corollary I that if qA denotes

the distribution of YA c,.YI ) then 'A i maiorized by qA.

Thus *(I(A) < min(*(pA)p*(qA)) for all Schur convex funotions. Also

note that this conclusion applies to M subset A of the index set.

Thus for all K < N, all k dimensional marginal distributions of Z

are u least U %wiform, in the sense we describedp as are the corresponding

distrLbutions of X and Y.
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Remrk 2. If is of the form (TyX,.o.)Ty XN) ere each
T, X I is a mixture of 1-1 onto transformations and X and Y are

independent) then the conclusion of corollary 1 will hold for all A.

In addition if we have an m X m matrix " with rows labeled O,...,m-l

and columns 0•.... m-1, with each row and column containing each of the

numbers 0,... ,m-1 exacty once (an m x m Latin square) then defining

- (X,Yi) lead to ,A < n() for all A. The

additive generator, Z " X+Y, (mod m), is of this form.

Remaxk . We briefly consider a generator proposed by Maola•in and

Marsoaglia [11), and discussed in Knuth [8), p. l•0-•,. Knuth remarks

that the method produces sequences with excellent randomness propeortieo

and is quite efficient in terms of computer time usage. Under this method

the first k elements of X are used to form a table. Wi observe Y1

Vhich tells us which element of the table to choose as Zo . We replace

this element by X+i The process in then repeatedly applied to
k+3.

generate the string. Suppose that a string of n numbers Zpost .Zn)

is generated by this method. We artificially enlarge this set to size

n+k by setting Zn+i equal to the entry which sit@ in the i-th place

in the table after the string of n numbers has been generated. The

new string (ZI, 0..,Zn+k) is thus a ra•rdom permutation of (X1 ,*...,Xn+k),

induced by Y. Since a permutation of coordinates is a 1-1 onto trans.

formation, -+k . n+kP theorem I applies. Thus sa the distribution

of (Zl1 ... %Zn+k) is at least am uniform in our sense as is that of

(X, •. ,Xn+o)

In general, improving the uniformity of a Joint distribution does not

necessarily improve the uniformity of nmarginals. For example let
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P(o,o) P(1,0) .. and P(o,1) p(1l-) - .. , r(Y-) Pr(Y-1).5,

To(ij) (ij), J T(ij) (j,i), (Z1,z 2 ) T y(x.,X 2 )" Then s(oo,) .1,

um(l• i ) . * and 2(1,0) - 2(O,3) - .25. Then a is majorized by p

and the Joint distribution of (Z1,,27) is more uniform on (Oal)x(Ol
than that Of (X11X2). Nevertheless i, perfectly uniforaly distributed

while is nob.

1Remark ,. In theorem I we show that *(aA) (PA for all Schur convex
*. The Schur convex functions of greatest interest to us are distanoes

from rk under symmetric norms. There are other relevant Schur functions

which arise from information theory oonsiderations. ýf a is a probability

distribution over 7nLk then g(a,r,,) a(a)log(mk&(1)), the Mllbank-

Leibler information number for discriminating between a and rk when a
is true, it Schur convexj g(&,rk) k 0 with equality it and only it a rk,

and in interesting ways can be interpreted as a measure of discrepancy

between a and rk (Kullback (10]). Similarly g(rka) k wMklog(m'k/a(a)),
a VO*uL,the Kuliback-Leibler information number for discriminating between & and rk

when rk is true# is Schur convex, as is g(apr,) + g(rkla), the divergence

between a and rk. Substituting theme Schur convex functions into the

inequality *(sA) < *(PA)l derived in corollary I, strengthens the assertion

that a is as least as uniform as p.

S.. Combining several generators.

Suppose we have a sequence of independent random vectors IX.

We combine K1,A and X. to form a vector Z e,A, then combine ZeA and

, etc. Assume that at each stage the transformation is

of the form Zp ~T n (En A) a mixture of 1-1 trans format ions of MLk
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onto I •t. Represent the transition from stage n-i to stage n by

the matrix Pn, where ) =Pr(Z ~ EA n •c P C Ik.

Define oA to be the distribution of Zn,. Then an-l,An .nA

and a is majorized by a by theorem 1; thus by lemma I
npA n-IOA P

is doubly stochautic. The process Zn, A,n-1,2,... ) is thus a non time

homogeneous doubly stochautic Markov chain on the state space 7Mý . Also

assume that min Pn, - A > 0 for all n. Define M maxa,• CE
and mn - min an(C). We will show that Mn-mn < (1-m A)n which implies

nthat maxlan(a)-m~'I goes to zero at a geometric rate. The method

employed below is well known in the theory of Markov chains. Now:

(• m > ,- ('MA'1)4n + A('n.I

(2) ,(M.)nn Mn-i n

Thusby (l md (2) k- n < N -

Thus by (1) and (2)0 Mn-Mn <(ln.l-m n-)(l-akA) amd thus by iteration

Mn-mn A)", which prove the result.

Under the weaker condition 7 , 6 . we get 0m (M.'mn) "0 but
n ft COthe convergence need not be geometric. The condition F. A is not

necessary for convergence of Mn-on to zero (and thus of s ton n,A rk).
For example if r - k for aW i then nOA - rk for all n > i.
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SIMPLIFIED POINT AND INTERVAL ESTIMATION

FOR REMOVAL TRAPPING

Andrew P. SomaT

Abstract

A regression technique, based on the limiting normal

distribution of the multinomial, is given for point and

interval estimation of the parameters in the removal

trapping method of determining animal and insect popula-

tions. Pooling is described for using the method even

when the individual catches are small and a simulation

approach to the calculation of bias is described, Two

examples of estimating spider populations are given.
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1. Introduction

A thorough discussion of the removal trapping method of

estimating animal and insect populations, together with limits-

tions, is given in [73, pp. 182-6. It is pointed out in 03 that

this method is particularly suited for insect populations.

Briefly, there are assumed to be m organisms in some fixed area,

k trapping or sweeping periods, k > 2, and each organism is

assumed to have a constant probability p of being captured in any

of the k periods, independent of the other organisms (the organ-

isms are not released when captured). If the trapping probability

is p, 0 < p < 1, ther, as pointed out by Moran [63, p. 308, the

joint density of the ni, 1 ý i ý k, the nurer of organisms

trapped in each of the periods, is

PcýWi si~m' sý5jPI(lp )82.
a I

SPt l lki5k]- k p (p(l-p) 2..

1 i- )sik.(m-1 n)

1 2
B1

(p (-p)' 1 ) ( 1 -. )k) 1 *

k .k k 1

The above is seen to be a multinouial distribution, with k2]

categories, and parameters m and Pt p(emp) i1o of i p bl, and

P * (l-P)k * 1 - • " 1 - j p(l-p) 1 . It i4 de4ired toi~ 1
e stimate m and p and give asymptotically exact confidence intervals.

b ayesian approach has been considered by Carl. and Strub [2).r

Here an attempt will be made to remedy some of the problems in E6J
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in which a method based on maximum likelihood is proposed, which

is elaborated upon by Zippin [8]. In addition to replacing m! by

Stirling's approximation, the effect of which is not clear, both

Moran 163 and Zippin [83 state that the usual regularity condi-

tions for the Joint asymptotic normality of the maximum likelihood

estimators are not satisfied in this case (in addition to other

assumptions, it is assumed that the parameters being estimated, m
and pp remain constantp which Is not true here, since the !i

asymptotic behavior is for fixed p as m - i), and then they pro- I
ceed in the hope that somehow a Justification may be produced
without giving it. Further, even if these difficulties are

neglected, the estimating equations are either implicit, requiring

iteration, or after some approximations, require charts. Here a

theoretically Justifiable intuitive method is discussed, based on

the limiting distribution of the multinomial, which gives the

estimates explicitly as functions of nl,...,nk,

The author was introduced to this problem by Joan Jass of

the Milwaukee Public Museum, who, as a part of her Master's thesis

wanted to estimate spider populations, She found the existing

literature somewhat complicated and confusing and wondered whether

there was a simpler and more intuitive approach available. The

subsequent sections are an attempt to do this.

2. The Modified Moment Estimates
ror Two Trapping Periodn

Sometimes the n, are so small as to cast doubt on the validity

: of the asymptotic method to be described. Alternatively, it may

be desired to produ e quick and simple estimates and to determine
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whether biases exist (this will be discussed later). With this

objective in mind, we will assume that there are 2t trapping

periods and divide them into two groups consisting of the first t

and second t. Then the assumption. of the removal method are met

with 2 periods# n1 * caught in first t periods, n2 * N caught

in second to and

t- -1-P (2.1)

where p0 is the original trapping probability. Hence estimates

and confidence intervals for p can be immediately converted to

those for p0 and this will be done after obtaining estimates for

and p.

Note that En 1  mp and En 2 *mp(l-p), hence a ratio estimate q

of q - 1-p is

q n 2/A1 ((2.2)

and a moment estimate A of M is

n +n

a 1 2 (2.3)
l-q

It is readily seen that i1 n1 and n are replaced by their

1 2

expected values in q and M, q and m are obtained ( 1(n1 *n 2 ) -I2
mp+mp(l-p) - m(1-q 2 )), hence the name "modified moment estimates".

Let j be the natural estimator of p,^ q 1- here and throughout.

The limiting distribution of p and q will be now obtained.

The reader who is not mathematically inclined can Jump to the

results, but it must be pointed out that the derivations are

straightforward and can be checked by anyone with a modest back-

ground in statistics.
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Consider the problem of asymptotically exact confidence inter-

vals - a reasonable assumption is that p and k stay corstant and

m * •. Note that in [2J, p. 626, it is required that also k.*.

For later use, instead of two trapping periods, k will be

considered and then specialized to two. The asymptotic dietribu-

tions of " and M will be obtained by using two results - the Joint

asymptotic normality of ( (nl..,nk and a result given in

Anderson (l, pp. 76-7. It is well known that as

stays constant and m a* for a multinomial distribution,

F _____ ,~ik 1
* ,l~~k *N(O'pR), (2.4) 1

Hm p q q (mplqi )

w
means convergence in distribution), where 6 is a k-tuple of

o.s, p 0 (o.o,.,.,o), R a (pd, pij - 1 and for I .

Oij •-(plpj/(qiqj))i (see, e.g. Johnson and Xotz [41, p. 284)-

r1eoall that here p1 " p(l-p)' 1l l.i.k (also for notational con-

venience always p1 * pp q, * 1- p, m q)p and hence it suffices to

keep p constant. The result cited in Anderson is: Let f(i) be a

function of x - (xl,...,xk) with continuous first and second

derivatives existing in a neighborhood of • * •, • * (bl,...,bk)
-wa fixed vector, and suppose /V (U(n)-b) w N(6,T). Then

/n_ Ef(UU(n))-f(b)] -0 N(10,0-TOb) ,(2,•)

where Oskb In all that follows, b [

(/and U((n) (nk/m(pkq),...,nk/m(pn qk)l). Let us now
k kn k/n) (n/kPllk

assume that k- 2 and tako C(M) to be

2/P212 .(2.6)
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Note that for k-2, f(ý) * the estimator of q. Using (2.5),

ni

q)- N(O,q (lg) N(O,a2 )
n P p

since

1• i • .q( , '.!l

f. )- q[(lpq)/(pq)'*

and ts R 0' o.1 Therefore also (2.7

or, equivalently, P-p is asymptotioally N(O,a /m). Using the same

technique on A, let

g(i)" x (,l q't1 .( plql + Xi. qp

g(x) x p q ) * 2 (P2 q ) (2.9)

with f(x) given by (2.6). It can be seen that for k-2,

E( U( n) * /m and C( 1.., Thai)

bl-q 2

(ag ) (plq) ,2(qlt/p2 )q2

2 b l-q

and

*I; R 0g •2 2m [ 1 +
b b 'I ft

and so by (2.2),

r' I ) N(0,02)
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or equivalently m-m is asymptotically N(0,mom Sine p and

A a2 an to an 2 epciey
m 4M in probability, and converge to 2 and ,2S rn p mresetvey

2 n 2b r2aon

in probability C0 and a2 are obtained from a2 and a2 by replacing
p cm p

p by p and q by q), and so the limiting distribution of both
(p.-)/ a ) and m 2 a )0 is the standardized normal, Hencep )(pm a d ( -•/ m ',

asymptotically exact (marginal) l-a confidence intervals for p

and m are

Co/is (2.9)at/2 p
and

A (A

where 2 is the upper 1 0 0 ath percentile of the standardized normal.

Simulation results indicate that for A the asymptotic dis-

tribution is attained faster than for MA. An alternative approach

to obtaining accurate 9ý% confidence intervals for m (coverage

probability close to but bigger than .95 even when m in small) is

to use an actual itandard deviation obtained by simulation. In

this approach ^ and iA are regarded as the true values and a large

number (say 1000) of samples is drawn and the sample standard

deviation and bias calculated. This Is, in fact, recommended in

any case, since the comparison of the two standard deviations (the

limiting and the simulation) will indicate whether it is safe to

A

use the asymptotic theory. In addition, Pn can be corrected for

bias. This point will also be discussed in subsequent sections.

In order to convert the estimate and confidence interval for
)t An he1 =•/t

to p note that p a 1 -( 1 - a n q . Also, ih

the confidence interval for p is (a,b), then the corresponding

interval for p in (s-(l-a)1/t 1-(l-b)1/t).
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The laook of fit diucuasion will be given after the general

estimates are obtained, since it will be seen that the P and mi

here are a special case when k-2.

3.Regression Estimates for Arbitraryr k

While the method discussed In 2. is useful when the catches

in the individual period@ are small, it is often desirable to use

the original data if, eCg. all mii p, t where p, a pi an.pan

m are suitable estimates of p and M. An estima~te of pp the

regression estimate, can be obtained as follows, It in suggested

in [$1 that a simple graphical checkc of the validity of assmunptions

is to plot n i against i on semi-log paper and check whether the

plot approximates a straight line. It Is pointed out in [61 that

the log Eni 1 log Vi W log mp(l-P) il lie on the straight line i

log P~i *I log(l-p) -log(l-p) +log p+log in, (31

* but this method is then dismissed by saying that the usual assump-

tions of regression theory are not satisfied, Here a diffse'ent

approach Is taken - namely, the point estimator of p suggested by

regression theory is used but then, in place of the usual regres-

@ ion theory, the limiting distribution is obtained from (2.1),

The regression equation suggested by (3.1) is

log n iM1 4a i8 i 1c1  ,

where B*log(l-p) (to any base), a a constant, and ethe error

term which will be of no Interest here. The least squares estim-

kk1k k 12
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k2
Since I2 (k)(k÷II(2k÷Z)/6,

0 F(Iog n• ( . )I(k( k _- )/12)

Then the oorresponding estimator q, =1-- of q 1-p in

k1 7

where oa (i-(k. l)/2)/(k(k 2. -1)/12). Note that reploaement of n-

by Eni in (3.2) give# q. In order to show that (3'.2) Is ooriuis-

tent for p and to obtain its asymptotic variance, it is Just as

easy to consider general estimates of 1-p of the form (3,2) with

the oa arbitrary and to determine the conditions on o needed for

consistency. Let

t I

Then, using (2.,) and p1  p(l-p)*',

vi (1 n~/) c o ~ ~ -p 1-I

aand i10± 1 (34)

and in this came

k c 01' ( 1~2 )
/ A ( H n1  - (,-p)) w N( O

where a 2is determined in the usual way from (3,j) using (2,5).

It Is noted that fur o i -(i -(k+l)/ 2)/(X(k 2 _ )/12) (3.4) is satis-

fled, since clearly a -0 and, letting c - k(k 2 -1)/12, I :
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k k

So, for any ohoio of oa latlifyinig a O2 ±,)/

I a i/0 )(L( •i.2 and since

we have that

Therefore, after some short algebra,

Up I P (.)i

A satisfaotory setimetor of A is obtained by the same argument as

for the moment eatimator, namely,
U%

m - ni/(•- ) (3.7•).,

where q Is given by (3.2), with the oa arbitrary and satisfying

(3.4). It is smen that replaoement of random variables by their

expectations in (3.6) gives m, An before, let
k k p 0, )•)

(). x• i •'/(-r - ( (x i /p .i (3.8)
1

Then, by (2.5),

2M Ai(M 1) N(O,o2),

where a. OTý , % , ... and
PX1 kb

(piqi)l 4 kc qj/p, t1"p )k
(•x•)• l~qk "(3.9) •]
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tUsing (3.9), after some simple algebra,f.

"2 k k k i7
am + -_ [1 k p1 J*(.o

The regreision estimates q and M are obtained from (3.2) and

(3,7) by choosing uj * (i-(k+l)/2)/(k(k0l)/12), and their var-

lances from (3.6) and (3.10). It then follows, exactly as in 2.,
AA

that asymptotioally exact I-i confidence intervals for P and • are

P ±=! (a lM") (,

and

a/2 (3.

where a 2 and a are obtained from a2 and c2 by replacing p by P"Op m p m
It Is interesting to note that if k-2# the estimates given

here coincide with those in 2.

It should also be pointed out that there is an alternate way

of estimating m from (3.1), namely by equating the estimate of the

constant term with what it estimates. Without going into the

details, the resulting estimator ^ is

( )l/

oM A4 (%1) is

and the asymptotic variance am of A•
mm

o2 . 1 ! F + -_k.-l,)p/2•, .

wh'ere ci correspond to the regression estimator of q. The

estimator given by (3.13) has an interesting form - it is the

ratio of the geometric mean of the ni to the geometrio mean of
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the pi. If random variables are replaced by their expectations

in (3.13), m results. The asymptotic variance (3.14) is very

close to (3.10) with the regression o,. Simulation studies indi-

cats, however, that (3.13) has a substantially bigger bias and

sample variance than (3.7), which is the preferred estimator.

4. Lack of Fit

Having estimated the parameters, using the regression method

as in 3. (recall 2. is a special case), it is natural to ask how

good the fit is. The customary statistic used to test the ado-k ^A )2 AA )Awee^- ~-)'
quacy of the model is Z u (ni-mpi) /(mp wherP

It is not at all clear, in this or, of course, the maximum likeli-

2hood case, that Z has an asymptotic (p and k fixed, m * -) X

distribution with k-2 degrees of freedom (d.f.), since the usual

regularity conditions (see 133, pp. 500-1, ý06) are not satisfied.

The empirical approach given here consists of using (2.5) to obtain

the expected value of the limiting distribution of Z and then to

2
fit a X distribution (as is done with good results in fitting

the distribution of sums of :K 2 random variables) by estimating

the d.f. from the parameter estimates, The observed value of Z

is then compared to the upper 1 0Oath percentile of the fitted X2

(using interpolation of the d.f., since in general the fitted d.f.

will not be integral). Specifically, consider

f (' xi (.iqi) i'(

where f(i) and g(x) are given by (3.3) and (3.8), respectively.

Note that fi(b) 0 0 and thus from (2.5),
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/- f (n /(m( Plq)),.. ,nkl pq)½)

* AA^il W 2S((n -mpq )/m) w N(O,al) , (4.1)

2 af * aTo Ir(
K where a bi i Tb' ib i. '' ax

T Using (3.5) and (3.9) and the chain rule, ( -) is
Jb

J b j b J b

til

if i 9 J, and (piqi)• is added to (4.2) if i - J. From this, oi

can be computed. By (2.5), since (i^/m)l -* 1 and p-i p in

probability, it follows from (2.5) and (4.1) that

--̂ ^^i-1 ^ 2'! ~(n -mpq )/mpi - N(O,u pi

and therefore the asympaot-of p o • adenmpq 2 fp isk 2 1
V a ^i /pi.^ Replacing the parameters pi and qi by their estim-

,' ates Pi^ qi in p gives the estimated d.f. of the distribution of

Z, and using these d.f. a cut-off point for the adequacy of fit

test can be obtained from tables. Even though explicit expressions

do not appear practical, the and 1u are easily evaluated by

means of a short ocmputer program,

5. Numerical Examples

We illustrate the preceding theory by two data sets or

thomisid (crab) spiders furnished by Joan Jass. The first set has

k-•5 and (nl,n 2 1 nV,n4 ,n,) = (37,29,17,15,12) and the second k-6 and

(nl,n 2 ,n 3 ,n 4 ,np n 6 )= (46,29,36,22,26,23). The results, using

the regression estimators, are in Table 1. I.,. 1
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Table 1

lit Data Set 2 nd Data Set

A

p .253 .1 '

s.d. .056 .040

m 143 350

s.d. 17.4 88.2

Test of Fit

Z .71 4.06

d.f. 3.14 4.04

It might be guessed that because of the small value of in

the 2 nd set there would be a serious bias in the estimate. A

simulation was done, for both data sets, using 4000 samples and
Ak

the estimates in Table I as the true values, conditional on l-q

being equal to or bigger than .001 - while this value is arbitrary,

the bias was not sensitive to it. As expected, the bias in P was

negligible for both sets. The bias in A was 5.7 for the first

set and 60 for the second. Thus while it is satisfactory to

subtract 5.7 from m in the first set to obtain 137 as an estimate

and use this in the confidence interval procedures, it is clearly

desirable to pool the intervals in the 2 nd set. After this was

done, using k=2, the cotimate of m was 308, with s.d. 66.5, quite

close to what would have been obtained by subtractinp the bins

from the original estimate. The actual sampling variance of mi was

V 340.1 as compared to the theoretical limit of 88.2. For the

reduced set the two values were 212.5 and 66.4, indicating that
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the confidence intervals based on the limiting distribution should

be viewed with caution. For the first set the sampling variance

was 24.6 and the limiting value 17.23.

Simulation studies support the view that if the bias is not

large (equivalently If p is not close to 0), replacement of the

limiting variance by the sampling variance yields realistic (in

fact, slightly conservative) 9ý% confidence intervals, even when

m is as small as 100.

The listings of the two short computer programs used for the

above analysis, the estimation and simulation, are available on

request from the author.

6. Summary and Concluding Remarks

For ease of use, we list the estimation and confidence

interval formulas in 2. and 3. If k-2, then

A A

q " n 2 /n , p 1- , n +n2)/(1-

and
*2 2 " 2 A 2 m (+.a: ep " I /m a ' m m a • 4A+ -

SP p m m p
-
1 1 l-q " p .

S and asymptotic 100(1-a)% confidence intervals for p and m are

' ± z a and m s 2

ci/2 p a~/2 am'

where 2%/2 is the lOOa/2 uppor percentile of the standard normal.

If k>3

k i A k
q l ni , - , . ni/(*-k

where 1 (n•(k"l)/12), andr
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k ~-~'k r2k 2-1
i:q m

,p., M ^k 2k m_/ _.

p 1 -qk Ll-q pi

and asymptotic lO0(1-4)% confidence intervals for p and m are

S± x/2 Sp an :: /2 sm,

with z/ as before. To calculate the lack of fit statistic and0ct/

its d.f., it is simplest to use the short computer program referred

to above.

In summary, the purpose of this paper has been to give a

statistically Justifiable and conceptually and computationally simple

method, the regression, as an alternative to the maximum likelihood

approach which suffers from three deficiencies: the standard

regularity conditions for the joint asymptotic normality of the

maximum likelihood estimators are not satisfied, the estimating

equations are either implicit or require the use of charts, and

it is complicated appearing to non-speolalssts.

The methods discussed here should also be useful in other

cases where the data is multinomial and the standard maximum

likelihood regularity conditions are not satisfied.
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REGRESSION FOR MARKOV BERNOULLI RANDOM VARIABLES

Edmond H. Inselmann
US Armr Combined Arms Combat Development Activity

Fort Leowenvorth., Kanmsa

1. INTRODUCTION. The problem studied was that of regression on Bernoulli
random variables in the case where some of the random variables were

•i dependent. The Interest In this case arose from a problem of trying to
fit probability of hit curves to data generated by repeated missile,
simulations performed at US Army Materiel Systems Analysis Activity using
tracking data from the Antitank Missile Test (ATMT). Hit/miss data were
generatid one second a&part. Because overlapping tracking data were used,
successive shots were dependent. This caused problems that seemed In-
surmountable until the author became aware of KIlotz's papers (1) (2).
In these papers the parameters of a sequence of Bernoulli dependendt
random variables satisfy the earkov chain property. In the case of
successive shots, the assumption of Markov chain seemed reasonable and
was used to solve the problem. Klotz's technique was extended to the
regression probl as.
2. PRELIMINARIES. In the generated data the following occurred: for

several different ranges, a number of gunners (the number was not the same
for all ranges) fired a sequence of shots (not all the same sequence
length). The shots were fired a second apart. Let X(I,3eR) be the results
of the Ith shot of the .th gunner at range R. A hit caused X to be 1 and
a miss caused it to be 0. The notation that is now introduced is that of
Klotz but modified to the needs of the problem under consideration. The
first probability of hit it:

P(R) nPr I X1JR) b0 + b 1R + b2 R' Eq I

which, as shown in the above equation, is taken to be a second degree
polynomial in R. Next, the probability of a hit given that the previous
shot was a hits is:

PI"(R) a X ( a Pr 1X. 4  I - - a + a R2  Eq I

which is also taken as a second degree polynomial in R and which is the
lower right hand tern in the transition matrix. Clearly, equations 1 and
2 hold only when the sequences are stationary, which was a reasonable
assumption for the problem considered. The remaining three terms of the
transition matrix are:

I I I I

P01(R) Il - k (R) *Pr jXIJR DI i-X11 JR I Eq 3
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10 PRR Pr

PO(R 1 - PIO(R) *PrXif xj 1  Eq 5

3. LIKELIHOOD. Having the above machinery, the joint probability of the
data is:

N~

2! ~Pr x1J' ~ A pf)1R[ P(R)j 'SR

niR P R)U .i1 JR P (f)JR (I Xi1 1 JR)

P0 (I - iXft) Xi-1 JR P0  (R) XiJR)(1  X-1 R

Eq 6

where:
NRt number of gunners firing at range ft

njft number of shots by the Jth gunner at the ftth range.
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Substituting rJR 5J and tRas described in equations 8 through 10,,
equation 6 becomes:

Pr IX1JRISI w , r.JR JR

I-2P(R) + X(R)P(R)1 3  1 SRe!,f jt

P(R IJ) - P(R] ~(lf JR + tjR)l

Eq 7

Where:

njR

rjR x iI A UREq 8

:: JR XIJRJ~ 163q

t XJ+ n JR Eq 10
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II
Then the likelihood function is:

OiN(R)

I" J*� L•2•(SJR - rJR) i (] In (R))

+ J 1j(n " + 2S R tjf) in 1 2P(R) + x(R)P(R))

+ (SJR- rJR) inP(R)

Eq 11
" (nJR "2 - SIR + tfr) In I P(R))1

Now. substituting X(R) and P,,(R) in the likelihood function one has:

N(R) 2 k~

L [ , E, ,] , 2 ,,k

+ [2c(SJR -rJR) - J]in (1 ku Yk
k=O

+ IniR- I- 2SJR + riR + tiR]

2 2 2
In (1-2 z bRq÷ +z bqRq z akRk)

quC q quo q kuOk

+ (S JR-rR)n (q! bqn

"+ )in: bRq)

Eq 12

2
"f(n"JR 2  SR *tR) In (1I - bqRq)1

quO
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To find the maximum likelihood estimates of the regression coefficients,

partial derivatives of the likelihood function with respect to the a's and
b's are required. These partials are:

N r R2 "

( R) ['(SAR riR) tARl

uaLM R jai akk k~ z ak uO knO ,

Iq 13
2

bqO, q(fJIn2SJ tR) ' Z~ bqR~

2 22
1- 2 Z b +Z b R4 z a kR

quo q quo q k-O k

and

(Rn) (n .- . 2SR + rjR + tJ)(-2R" + R" 2

n ' R Jul 2 2 2
q bO q q bO q k.O

Eq 14

,$jR rJR)r' + (n.,, 2.- SjR + t1R) Rn

2 2
b qR 1- Z q

quO q qmO q

These expressions are set to zero and solved for the a's and b's. It is clear
that the solutions must be obtained by iterative mthods. A program was written
to do this using the Newton Raphson method (3).
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S 4. CONCLUSION. Recall that the problm discussed in the Introduction was
the problm of fitting probability of hit curves to data generated by re-
peated missile simulations. The curves were assumed to be quadratic
functions of R expressed as follows:

P(R) b0 + bIR + bR2  Eq 1

P11(R) so0 + a+ R + a2R2  Eq 2

Hence, utilization of the maximum likelihood technique, given by equations
11 through 14 above, and subsequent solution by the Newton Raphson method
provides the values of the coefficients, a's and b's, necessary to achieving
a maximum likelihood "best fit" of equations I and 2 to their respective
data points.
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We briefly review the use of smoothing splines and the method of

generalized cross validation (GCV) for smoothing discrete nois'y data from an

unknown but smooth curve. Then we describe the use of "plaque mince" or

Laplacian smoothing splines with GCV for smoothing discrete noisy data from an

unknown but smooth surface. A numerical algorithm for this (non-triviall) computational

problem is described, and an example from a Monte Carlo study Is presented to

show how the method works on simulated data. The results are extremely

promising. Some design problems are briefly mentioned. Some conjectures are

made concerning optimality properties of Laplacian smoothing splines and

Laplacian histosplines.
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How to Smooth Curves and Surfaces With Splines and Cross-Validation

1. Introduction

In the conference talk we considered four problems. The first two had

to do with estimating curves when they are observed discreetly and with

error. The model is

Y f(tt) + a1  I -

where f(t), t £ [0,l] is an unknown curve, only known to be "smooth",

0 < t1 _ . tn < 1, and aI are Independent zero mean random variables

with a common unknown variance a The (yI) are observed. The first problem

is: How should f be estimated nonparametrically from y m (Y11...,yn'? The

second (or design) problem is: How should the points (tt) be chosen so that

the estimate of f Is as good as possible? The third and fourth problems have

to do with estimating surfaces. The model is

zt " u(xtsyt) + e1  , I 1 92,...,n

where u(xy), (x,y)c some region in the plane, is only known to be "smooth".

(xtYt),I t 1,2,...,n are n points in this region, the el are zero mean

independent random variables with common unknown variance a2, and

z (Zl,...,Zn)is observed. The third problem Is: How should u be

estimated nonparametrically from z. The fourth (or design) problem is: How

should the points (x1,yi), I m 1.2,....n be chosen so that the estimate of u

is as good as possible. We will not discuss the design problems here. The

design work mentioned in the talk has appeared In Athavale and Wahba (1978)
and Wahba (1971, 1974, 1976, 1978c). That work (and the work of others,

mentioned there) represents only some first steps in design problems for
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nonparametric curve and surface fitting. There are many open problems.

Very good and relatively complete results for the fir;t (curve estimation)

problem are available (Craven and Wahba (1979), (CW) and Golub, Heath and

Wahba (1977) (GHW), and transportable code is available from at least three

sources Fleisher, (1979), Merz (1978a), and Paihua (1978). We will briefly

summarize those results, because they will aid in understanding our discussion

of the third problem, that is, surface smoothing. The remainder of this paper

will then be devoted to the problom of smoothing of surface data non-

parametrically. ,ome tce heoretical results are available, and we have

turned them into a coiputer program which delivers very pleasing pictures.

The development of the program is the work of Mr. James Wendelberger, and it

and ,other results will appear in his Ph.D. thesis.

2. Curve Smoothing

For curve smoothing, we recommend that f be estimated by the solution

of the minimization problem: Find f . Hm - (f: f,f,,..,f~m-l) abs.

cont., f(m) c L2 [O,1]) to minimize

M_(f(tl)-yi) 2 + A ((f(m)(u)) 2du . (1)

The first term represents infidelity of f to the data, and the second term

represents "roughness" of the solution. The parameter X represents the

tradeoff between the two. m-2 represents "psychological" smoothness (we

think!) and is frequently used, and gives good results. We briefly discuss

the determination of m from the data later. The solution fn,m,A is known to

be a polynomial spline of degree 2m-1. The parameter X is chosen from the

data by the method of generalized cross-validation (GCV). GCV Is derived

from CV ("ordinary" cross validation). CV goes as follows: Let f(k)
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be the solution of the minimization problem of (1) with the kth data point

omitted. The value A will be a good choice if f(k) (t )
ntg c•• A comes close, on

the average, to Yk' We measure this by the "ordinary" cross validation

function VO() *V(A),

vo(A) (tk)_y 
2

For fixed m the parameter A is chosen by minimizing VMT(A). For technical

reasons involving convergence proofs, we replace VO(A) by the generalized

cross validation function

V( ) tal 1 (f(k)

V kal n•,mtk)'Yk) Wk(A)

where the (wk(A)) are certain weights to reflect unequally spaced data, end

effects, etc. Details are given in CW and GHW. It turns out that V(X) Is

much easier to compute than VO(A), and V(A) has the representation

n i Trace(I-A(X)))z

where A(x) is the nxn matrix which is uniquely determined by

fn,m,X(tl)( ) uA(X)v.
1 (t,~

Pleasing results havi been obtained using smoothing splines with GCV in both

Mocnte Carlo studies ýnd various applications, Benedetti (1977), CW, GHW, Merz (1978a,

1978b), Stutzle (1977), Utreras (1978a), Welch (1979g. These results are not

su-prising in the light of the following theoretical result (CW, GHW). Let

)• n m,(tj)-f(tj)). (• Is the "true mean square error"

avewaged over the data points. Before data are observed both R(A) and V(X)
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can be considered functions of the unknown f and random functions of the

(c{c. Let X* be the minimizer of ER(X) and A be the minimizer of EV(X).

We have under rather general circumstances (see CW, GHW)

tim L--- 1 .(2)
n-w

Thus (very loosely), the mean square error with the estimated X tends to the

minimum mean square error achieveable with any X. Let X be the minimizer of

V(x). Numerical results based on Monte Carlo studies with m-2 reported in CW,

with n-50 and equally spaced data points, show the achieved inefficiency

R(A)/min R(X) in the range 1.01 to 1.42.

Some numerical experiments to assess the effectiveness of choosing m

by GCV have been done. (Lucas, 1978). One obtains Vm(x) for each m and

minimizes Vm( ) over m. The results indicate that this procedure does a

good job of picking out the m and A which minimize R(A) - Rm(x), and that

there are classes of f's for which it is worthwhile to do this, that is,

min Rm(A) is usefully less than min R2 (X) for some m42. Efficient
X

transportable code is not presently available, however. Depending on f,

reduction in inefficiency of several percent can be obtained.

3. Surface Smoothing

We now turn to the third problem, that of recovering smooth surfaces.

We recommtend that u be estimated by the solution un,m,x of the minimization

problem: Find u c H (an appropriate space, to be described) to minimize
1n m

Jl)z) 2 + A )2 dxdy (3)J xlI y m-i

and that A (and possibly m) be estimated by GCV. We now describe how to do

this. For mathematical convenience the limits on the double integral in
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I (3) are taken to be -, and . H is taken as H tm(R 2 ) ( {u: u D P,
. mu

£ L2 (R2 ), J - 0,1,...,m . (p'is the dual of the Schwartz space V of

infinitely differentiable functions with compact support, this need not concern

us here, see Meinguet (1978, 1979), Schwartz (1966).)

Theorem: Let t* (x1,yt), t- (x,y) and It-t 1 • ((x-x*)2+(y-y!)

Let m > 2 and n > M - (n2l). The solution u nm, to the problem: Find

u c H to minimize

n 1 0 (

is given by
whee U'm'(t -- j'l Emlt~tJ) + M d,(t t5) i

it) M xy E-1,2,...dvv(t)

where

where a, $ run over all the M combinations of non-negative integers with

+ nm-i, provided the nxM matrix T with ivth entry # (ti) Is of rank M.

The coefficients c a (cI,...,cn)' and d - (dI,...,,dM)' are determined by

(K+pI) c + Td - z (6)

T'c - 0 (7)

where K is the nxn matrix with Jkth entry Em(tjltk), and p - nX.

This theorem Is essentially due to Duchon (1976a, 1976b). rietnguet (1978))

has also proved very similar results in a reproducing kernel Hilbert space

setting. For completeness, in the Appendix we outline a proof which roughly

follows Meinguet's arqument. By putting the minimization problems of (1) and

(4) in a reproducing kernel Hilbert space setting, fn,mix and Unmx can be
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shown to be Bayes estimates with a certain (partially improper) prior on f

or u, see Wahba (1978a).

F I 4. An Algorithm for Computation of the Smoothing Surface

We now want to compute u n~,~efficiently, and choose A (and possibly m)

by GCV. Our algorithm below has benefited from the algorithmic work of

LPalhua (1978). However it is different and seems especially well adapted to

determining the generalized cross validation function V()X) for this case.

We next derive the equations behind our computational approach.

Let R be any nx(n-t1) dimensional matrix of rank n-Mi satisfying RIT 0(-xM

Subscripts indicate the dimensions of the subscripted matrix. Since T'c *0,

we have

for y a unique n-M dimensional vector. Left multiplying (6) by R' and substituting

(8) into (6) gives

R'(K+PI)Ry -R'z (9)

Y - (RI (K+PJ)R) IR~z (10)

c - R(RIKR+pR'R)'R z .(11)

The vector d is then given by d - (TIT) T'(z-Kc), obtained by leftI

multiplying (6) by TV. To estimate A (equivalently p) by GCV, we want to

choose A to minimize

V(A j (I-A(X))zl 12
(.- Trace(I-A(A)))Z

where A(X) is the nxn matrix determined by
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,, Ung, ox(tl

•A(x.)z

u (tn)
To talk ,bout good properties of GCV here, we suppose the {t I will be ina

bounded region of the plane R2 (even though the minimization is over functions

in R2). The basic property (2) of GCV can then be shown to hold as 1he t

become dense In this region - the proof (CWGHW) Is independent of the nature

of the region.

To obtain a convenient representation for A(X). we see from (5) that

I, ) * z- Kc Td.(
Un~mx(tn) *

From (6), we have

z-Td - (K+pI)c

so that the right hand side of (11) equals pc. Thus,

(I-A(X))z - pc pR(R'KR+pR'R)'IR'z (12)

We need to compute c, II(I-A(X))zlI 2, and Tr(I-A(X)). Any Rnx(n-M) will

have a singular value decomposition DI
R m Unx(n.lM)D(n.-M)x(n..,M)Vn..M)x(n.M) (13)

where U'U w V'V - In.M and D is diagonal. Then

R(R'KR+PR'R)"1R' - UDV'(VDUIKUDVO+PVODV')- 1 VDUI

- U(U'KU+pI)'Ius (14)

Define

e(n-M)x(n-M) U'KU
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and define r and a by

B - rdr

where r and 6 are the orthogonal and diagonal matrices in the eigenvalue

decomposition of B. Then the right hand side of (14) becomes

U(rar '+p )' 1 u (15)

* Ur(l4+o)'lru' (16)

Uri lOp (17)
0 nM+Pj

where b1 ,...,bn.N are the diagonal entries In 8 (i.e. the etgenvalues of B).

Given Ur', {bt1 we compute

C Uri ")rUlz

IllI-A(X))zl 12 -21(6+PI)'lru'zl 12

and

Tr(IA())2 1 P )2

We now discuss the determination of U. It can be seen that U

is any matrix whose n-M columns are orthonormal and perpendicular to the M

columns of T, U •n T 0(n_M)xH. We obtained U as follows. Let

I - T(T'T) 1 T' V A U' . (18)a

where U is orthogonal and A is diagonal. Since I-T(T'T;'IT'is a projection

matrix of rank n-M, A is a matrix with M zeroes and n-M ones on the diagonal.

We used EISPACK (Smith et.al. (1976)) to perform the eigenvalue decomposition

UA U' and the n-4 columns of U are taken as the columns of U corresponding

to the n-N ones in a. Each such vector is perpendicula to the columns of T,
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as can be seen by right multiplying (18) by T. The EISPACK computation of the

entries of A was good to seven figures. Given U, B is computed and r and 8 are

also computed using the etgenvalue decomposition routines in EISPACK.

5. Numerical Results

We present the results of a single Monte Carlo experiment, with m-2.,

Figure 1 gives a picture of the true function u that was the subject of the

first experiment,

1 F X-2'2+'2 ((x+2)2+y2)
U(X,Y) e2(1.3)' + e 2(l.3)'

A regular 7x7 square array of 49 points ti, I 1,2,...,49 was selected, with

the middle point being 0,0) and the point spacing being 1.0. Data Yt

were generated as

Yt " u(tt) 4 Et 0 ti (xtyt) , I - 1,2,...,49

where the c, were pseudorandom N(O,o 2 ) random variables with a * .01. a Is

about 1/8 of the maximum height of u. Figure 2 presents a picture of the

data points, which have been joined by straight lines. Figures 3 and 4 give

Un,2,x for two values of X, in Figure 3, A is too large, and in Figure 4, X is
too small. Figure 5 gives UniP where • is the minimizer of V('). Fiqure 6

gives a plot of R(A) and V(A) against log X. It is seen that, in the

neighborhood of the minimizer of R(A), V(A) roughly follows R(X). Theoretically,

we have min EV(A) _ min ER(X) +2, for large n, see CW, and this relationship

is roughly approximated here. The achieved inefficiency, defined by

R(6)/min R(A), where ^ is the minimizer of V(A), was 1.54. Note that

min R(A) - .25 o2. If we were fitting a surface which is known to be a linear

combination of given functions by regression we would expect the mean square error
a2

to be proportional to -i-. Here numerical and theoretical results in the one
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I

dimensional case for reasonably regular arrangements of data points indicate

that min R(A) -u const.(a 2 /nP where p is some power slightly less than one. p

depends on the rate of decay of elgenvalues of an appropriate reproducing

kernel. See Wahba and Wold (1975), CW, and Wahba (1975b, 1977). If

u H H2m(R2), p 2 2m/(2m+l). (In preparation).

Mr. Wendelberger's program is running for n - 120 and quite reasonable

results have been obtained for this case, with randomly chosen points (t)}.

One cannot increase n with impunity, however. In the n = 49 case reported

here the condition number of B, namely max bi/min bt was around 20U, and In the

Irregularly spaced n - 120 case this condition number was of the order of

4xlO5. (Irregularly spaced points will increase the condition number.)

For large n and a condition number somewhere around (we guess) 106 or 107,

the computation errors will begin to take over. Thus, in theory, a plot of

log(min R(A)) vs. n should be approximately linear with slope -p, however, as

roundoff error gets large, this plot will flatten out. Laurent and colleagues

(1978) have developed a procedure for patching together surfaces of this type

so that groups of points may be handled separately.

The cost of running a program designed just to produce Figure 5 from

data, we estimate to be about $4.00 at weekend rates at our computing center.

To produce Figure 5 from a second set of data at the same points {tt1 , one

would retain U, r and (b ), which depend on the {t I but not z, and then the

cost would be very small.

6. Miscellaneous Remarks

We hope to implement the m a 3 and m - 4 cases. P can then be selected

from the data by comparing V(i) for each of the m - 2, 3 and 4 cases. For

m 2, the roughness penalty
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2 / 2u )2
J•O:/) dxdy

is the bending energy of a thin plate. For this reason, Duchon christened the

solutions "plaque mince" splines. We have reason to believe that the m - 3 case

will be appropriate for the smoothing of certain meteorological data. In some

cases the nature of the physical phenomena being smoothed may provide insight

into a choice of m.

We note that the solutions U satisfy

Am Un 1 .Otl m t't '"t,..,n ,
AM)2 u 02u

where A is the Laplacian operator Au - u- + u The smoothing splines
BX By

fNI satisfy f(2m) (t) • 0, t + t 1,...,tn. For this reason, Prof. Iso

Schoenberg has suggested to us that the functions unm, be called "Laplacian

Smoothing Splines".

We have recently obtained what might be called the Laplacian histosplities,

by analogy with Boneva, Kendall, and Stefanov (1971). These are functions

which minimize the roughness penalty IJ iT (') (''M-Ju) 2 dxdy subject to
J 0 A ax ay

volume matching conditions of the form

u dxdy - p1 , i =

where the A1 ore n bounded areas in Rn whose union is A. These functions satisfy

Amu - constant on each A.

(Dyn, Wong, and Wahba (1979)), and, in preparation).

Various optimality properties of smoothing splines and histosplines in one

dimension are known. For example, it can be shown from CW and Wahba (1975b) that

E (fn,m,i(t).f(t))2 dt . O(n(2m)(2m+l)), f H(,)

- O(n-(4m)/(4m+l)), f c H2¶O,)
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and f satisfies some Kundary conditions. It is part of the folklore that

these rates cannot be improved upon. Density estimates determined
by the minimizer of (f()(t))2dt subject to the area-matching conditions

ti+l

J f(t)dt - fraction of observations in [tt,tt+1 3
tii

are known to achieve the best possible convergence rates over f c Hm provided

the tt are chosen properly. See Wahba (1975c, 1976). Stone (1978) has given

some results on best possible pointwise convergence rates in d dimensions.

We conjecture that all the nice convergence properties of polynomial splines

can be extended to the Laplacian smoothing splines and Laplacian histosplines.
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APPENDIX

Outline of Proof of Theorem

Let rl r29..,rM be a subset of M points selected from t 1,...,9tn

with the property that the MxM matrix T with Jv entry *v(rj) Is of full

rank. The space H (u: u V9 mu L O ,l...m-l) can be, -xly. 29 J•0,..

decomposed Into the direct sum of two spaces:

where 7 i is the M dimensional space of polynomials of total degree m-i

or less and XI (u: u c H, u(r.) .0, V 1,2,...,M). It can then be shown

that

<uj'v~;f a M~ a Ua dxdy
- m 8 m

J- 0 ax-ay- axlaym-

defines an inner product on 7. If an inner product is defined on wm-I by
M

T <u,V>w.1 7 u(rv)v(rV), then nm-1 and Y are orthogonal subspaces. _ (and
I Vml

m-11 and hence H) are reproducing kernel spaces.

If the reproducing kernel K(s,t) for Y can be found, then the solution

unmx to the minimization problem of (4) will have a representation
n .M

Un,m,A(t) 1 1 c1 K(t,tj) + Il d *V(t) . (A.l)

(See, e.g. Kimeldorf and Wahba (1971)). unmx, will, of course, be

independent of the choice of rl,...,rM. The reproducing kernel K has been

found by Melnguet (1978, 1979) and is given by
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M
K(st) .Em(sgt) - 1 Pu(s) Em(t,ru)

M

- l pv(t) Em(sorv)

NM
+ • p (s) p•(t) Em(rorv) I (A.2)

i'v, 1

whereP spanIm and are chosen so that pu(rv) s, - vs, h OR,.

Substituting (A.2) into (A.l), it is seen that a representation of the form

(5) for Unmx holds.

To show that K Is the reproducing kernel for i, It is necessary to show

that

I) K(s*.) € , each s

ii) <ýK(s,,) K(t,.-)>r K(s,t) ,(A.3)

where
- m

(U J1I ~)dd (A.4) tl

Define

Hs(t) EM(s,t) - pli (s) Em(r ,t)

Then
M

K(s,t) - Hs(t) - )1 p,(t) Hs(rV) . (A.5)

The hard part is to show that Hs c H. (Note that Em 4 H.) Meinguet shows

that Hs c H, for each s, and we omit the proof. It then follows that
M

K(s,.) c H, and, since E p (-) Hs(rv) is the polynomial interpolating to

H at rl,....,rM, K(s,r) a O, v - 0,1,...,M, and so K(s,.) € .

To establish (A.3), first note that

m K(s.m HsH (A.6)

axym-j ax18
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Consider the Green's formula
()mau dxdy JAmuv dxdy (A.7)

0 axlaym-3 axynm-j

a • 2 )2

where A * + . This formula holds provided, e.g. v c HrL2 and u c V.
ax By

If u V P, then the potential formula

ff(Amu)(t) Em(S,t)dt- u(s)

holds (see Schwartz (1966)) and in particular

MAm • H u(s) -Hps(s) u(r•) , (A.8)
V

Meinguet argues that, in fact (A.7) and (A.8) hold for u * Ht. v • Hs, giving

.. . H a" t . s"I ('1 )m J! (i) a'"Bx•m' Nt ay'•

m
Ht(s) . l p (s) H(r) ( K(st)

which, combined with (A.6), gives (A.3).

Equation (7) can be obtained as follows: Considering K(t,t•) as a function

of t,

K(titj) w Em(t,tj) - v!I P(tj) Em(t'r•) +

(A.9)
a polynomial of degree m-l or less.

Now, If * Is any element of Wm-l we have

M

Vl p VM #(rv) a O. 
(A.1O)

Letting ul(j),a2 (i),...,QnM() be the coefficients of Em(.,tl), Em(.,t 2 ),

.Em (.,tn), in (A.9), it can be verified from (A.1O) that
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n
k(J)(tk) 0 0, Jkil

which results directly in the conditions (7) on the coefficient vector c in

(5), namely, Tc w 0. Equation (6) is obtained as follows: One substitutes

(A.M) into (4), and then uses (A.3) to evaluate the expression (4) to be

minimized. By repeatedly using T'c - 0, one obtains that c and d are chosen

subject to T'c 0 0, to minimize

2
IIz-Kc-TdiI + n x c' K c

Differentiating this expression with respect to c and setting the result equal

to zero, and using T'c - 0, gives (6).
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METHODOLOGY FOR ACCEPTANCE CRITERIA FOR TARGET
DISPERSION CHARACTERISTICS OF THE ARMOR PIERCING

DISCARDING SABOT (APDS) ROUNDS

Frank C. Hopkins

U. S. Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, Maryland

ACRONYMS AND SYMBOLS

APDS Armor Piercing Discarding Sabot
Sn1Millimeter

OC Operating Characteristics
PE Probable Error

CPEc Characteristic Circular Probable Error
CPE Estimate of Characteristic Circular Probable Error

CP~
CPE Level of Circular Probable Error which represents

g ood lot quality
CPEI Inherent Circular Probable Error

CPEL Circular Probable Error which characterizes a lot

CPEo Observed Circular Probable Error

K A Constant
Ratio of CPEo to CPEc

n Sample Size
N Number of occasions

PE Estimate of Probable Error
a2 Population Variance

2 2 2 etc. Population Variance of a set of x, y and radial
a. o's OR, observations, etc.

2 2Estimate of a2

2 y2 OR etce Estimates of 2x 2y aR2 etc.
8on. a:. Ro, y, o.

S2 Calculated variance of a sample

S , S , SRO etc. Calculated variance of a set of x, y and radial
observations, etc.
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METHODOLOGY FOR ACCEPTANCE CRITERIA FOR
TARGET DISPERSION CHARACTERISTICS OF THE

ARMOR PIERCING DISCARDING SABOT (APDS) ROUNDS

1. INTRODUCTION

1.1 General

The estimation of target dispersion characteristics of Armor
Piercing Discarding Sabot (APOS) ammunition in acceptance testing Is
accompanied by a number of difficulties. Test costs are high; therefore
sample sizes are limited. Since dispersion patterns are subjected to
relatively large variations, small sample sizes produce undesirable
levels of inaccuracy in estimating dispersion characteristics. Control
of test conditions throughout the test is limited to control of only a
few factors such as tube aim point, cant, stability of the firing plat-
form and tube condition, at the start of the test. Even with maximum
possible control of such factors, they still exert a degree of error in
round-to-round target impact points. In addition, there are several
uncontrollable factors, such as wind and weather conditions, tube wear
from round to round, droop, Jump and other unknowns, which make it
impossible to obtain uniform conditions throughout the test. These
problems have accompanied every acceptance test conducted on APDS
ammunition and have been exacerbated by two factors:

o The lack of established test procedures designed to
minimize the effects of uncontrollable test conditionvariations and

o The lack of established acceptance criteria and
estimation procedures designed to minimize consumer
and producer risks.

The result has been that a large number of lots of APDS
ammunition with very poor target dispersion characteristics have been
accepted for use.

1.2 Purpose

This report develops methodology which can be used to derive
acceptance plans for target dispersion characteristics of APDS rounds.
In developing the methodology, the effect of test condition variations
upon target dispersion patterns and the lack of established acceptance
criteria and estimation procedures are addressed. Examples of inade uate
firing procedures in accuracy tests of APDS rounds are presented, and
corrective measures are proposed. Examples of acceptance criteria and
estimation procedures which minimize consumer's and producer's risks are
developed.. Several acceptance plans, derived from the proposed method-
ology are presented.
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2. TEST PROCEDURES

2.1 Background

The objective of an accuracy acceptance test of APDS rounds is
to assess the dispersion pattern which characterizes a lot of ammunition
and accept or reject the lot. The acceptance test requires firing a
group of rounds at a vertical target some distance from the gun. The
coordinates of the impact points of each round in the group are obtained,
and estimates of the dispersion about the center of impact are determined.

When firing a group of rounds to assess dispersion character-
istics, it is desirable to have identical test conditions for each round.
In this manner, the differences in impact points of each round are the
result only of inherent differences between the rounds. Inherent
differences between rounds in a lot of APDS ammunition are due to chance
variation within a stable pattern caused by manufacturing procedures and
physical characteristics of the round and propelling charge. These
inherent differences lead to different flight characteristics, and cause
rounds to impact at different points on the target. If identical test
conditions are obtained, the dispersion characteristics of the group of
rounds fired reflect the degree of round-to-round uniformity in the
manufacturing process and provide an estimate of quality control.

Unfortunately, test conditions from round to round are not
identical. Gun elevation and deflection vary regardless of efforts to
maintain a constant aim point. Weather conditions and other factors
which effect accuracy also vary from round to round. Consequently,
the dispersion pattern of a group of rounds on a target is not
representative of the inherent round-to-round differences. The
dispersion pattern consequently represents the combination of the
Inherent differences in rounds and the variability in test conditions
from round to round.

2.2 Firing Procedures

The method of firing employed in an acceptance test of a lot of
APDS ammunition must be conducted in a way that minimizes the effect of
round-to-round variability in test conditions. In past acceptance
tests, gun elevation and deflection settings have been controlled
to a great extent, and severe weather conditions have been avoided.
However, the method of firing in acceptance tests has not been one which
minimized round-to-round variability in test conditions. The length
of time required to fire a group of rounds has been as great as four
hours. Test conditions such as tube droop, cant, ambient environmental
conditions and other unknowns vary more over a long time interval than
they do In a short one. Hence, as shown by an analysis of past acceptance
tests of 105mm, APOS ammunition, a group of rounds fired over a long
time period will tend to exhibit higher probable errors than would be
observed over a short time period.
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Figure I shows the accuracy results of an acceptance test of

105mm, APDS rounds conducted at Jefferson Proving Ground. Horizontal
and vertical probable errors are presented as a function of time between
rounds. The wind ranged from 2-10 knots and varied in direction from
140' to 1800 during the course of the test. The probable errors for the
entire 25 round group were calculated at 0.47 mils in the horizontal
direction and at 0.29 mils in the vertical direction. Probable errors
as a function of time between rounds were obtained by analyzing all
combinations of two round groups in the test. The probable errors for
each two round group were calculated and correlated with time between
rounds fired. Although the trend in Figure 1 is linear, other shapes
may be expected from the testing of other lots.

Figure 1 clearly illustrates that during an accuracy test the
dispersion of Impacts is greatly affected by the test conditions, which,
in turn, vary with time.

The firing procedures employed in acceptance tests have not
been designed to minimize the time over which a group of rounds is to be
fired. In the past, as many as three different lots were often tested
simultaneously, with rounds from each lot fired alternately, with
reference rounds. The effect quadrupled the amount of time required
to fire each test group of each lot. Consequently, the effect on
dispersion due to variations in round-to-round test conditions, has
been greater than that which could have been obtained if the time for
firing each group were reduced.

In conducting an acceptance test, the individual groups of
rounds from a test lot should be fired sequentially with no alternate
firing of reference rounds or rounds from other test lots between
rounds within a group. The time for firing each group of rounds
can thus be minimized to the greatest extent poss ible. If reference
rounds are to be fired, each group of reference rounds should be fired
either before or after each group of test rounds. For example, If two
ten round samples from a single lot are to be tested with fifteen
reference rounds, the order of firing could be:

Five Reference Rounds

Ten Sample Rounds

Five Reference Rounds

Ten Sample Rounds

Five Reference Rounds

Estimates of probable errors for each group of rounds would
then be calculated and pooled accordingly.
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3. CALCULATION PROCEDURES

When a group of rounds is fired over a short time interval, the
effect of nonuniform test conditions from round to round will still
persist. Movement of the mean center of impact from round to round may
occur, and, if so, the effect of this trend on calculated probable errors
my be eliminated by the method of successive differences (Reference 1).
For example, suppose the following impact coordinates, measured in inches,
are obtained for a group of ten rounds fired at a vertical target 1000
meters from the gun:

Round Horizontal Vertical
Number Coordinate (x) Coordinate (Y)

1 65 110

2 70 120

3 60 115
4 76 1O00

5 70 100
6 85 95
7 80 90

8 95 95

9 90 85
10 100 75

Calculating probable errors in the usual manner for the entire
ten-round group (References 2 and 3) yields,

Horizontal probable error - 0.23 mils

Vertical probable error - 0.24 mils

Circular probable error - 0.41 mils.

Calculating probable errors using the method of successive
differences yields,

Horizontal probable error - 0.13 mils

Vertical probable error - 0.11 mils
Circular probable error a 0.21 mils.

The method of successive differences results in approximately
a 50 percent reduction In probahle error estimates in this particular
example. The probable errors calculated by the standard method Include
the effects of test condition variability over the entire ten-round
group, while the probable errors calculated by the method of successive
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differences include only the test condition variability between successive
rounds. Whenever the variation in test conditions is nonrandom, the
result is a nonrandom dispersion pattern of shots about the center of
impact. A trend of this type indicates that test condition variability
over the entire group is greater than the variability between successive
rounds. When this type of trend occursp the use of the method of success-

y4e differences provides dispersion estimates which include only the effects
of round-to-round test condition variability. In this manner, the effect
of variability over the entire group is eliminated.

In determining the dispersion characteristics of a lot from a
group of rounds, it is therefore desirable to limit the effect of test
condition variability on the estimates of dispersion to that variability
which occurs only between rounds.

It can be shown that the method of successive differences
provides an unbiased estimate of the square of the probable error (PE).

From statistical theory, an unbiased estimate of the variance (a2) in
the x direction of a two-round sample is obtained by

-2, (x1 . x2)2, where

x1 and x2 are the coordinates of impact on the x axis. If three rounds

are fired and have coordinates of impact x1 , x2 and x3 on the x axis,

2 1 2 2 1
S1ix ~ x -x2)2 a S2x i (Xc2 -x3)2

provide two unbiased estimates of the variance, a 2. The sample variance
calculated by the method of successive differences is 2 1/2 S +

2 2 S1/2 S2 x, and it is an unbiased estimate of ax Since

E(S2) - E(1/2 S 2 + 1/2 S 2)

- E(1/2 S12) + E(1/2 S22)

-•z E 2l) + 2/ ls•
1/2 4 /2 E(S2x)

4:12 /2 + a2/

2
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Similarly, for a sample of size n
S2 1/2 (xi - xt+1)2, t 1. 2.

2 n-1 2x the sample variance calculated by the method of

T S1.,

successive differences, provides an unbiased estimate of a, because

n-1 2
2(S2) " 1 Six)

* . E(S x)

n-

nil

11 * ~ 2
ax

Since (PEx)2 Ka2.

where PEv w probable error in the x direction and K is the appropriate
constant,

2) E(KS2) Ia K0 . pEE

2-K 2 2).0
where PE2  KS~ and E(S) a a.

x x
Hence, the method of successive differences gives an unbiased estimate
of the square of the probable error between rounds in the x direction.

A similar proof shows that the method of successive differences
also provides an unbiased estimate of the probable error squared between
rounds in the direction and also in the radial direction (circularprobable error).

Consequently, the use of the method of successive differences
provides unbiased estimates of the probable error squared and eliminates
the effect of nonrandom test condition variation upon the dispersion
results of an entire group of rounds.

Whenever the variation in test conditions is nonrandom and,
thus, results in a dispersion pattern which is not random about the
center of Impact, the method of successive differences should be employed.
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4. ACCEPTANCE CRITERIA

4.1 Applicable Parameters

In the development of acceptance criteria for dispersion character-
istics of APDS rounds, parameters appropriate to an accept/reject decision
must be selected. Horizontal and vertical probable errors could be the
basis for a decision with independent criteria for each. This has the
disadvantage, however, of not utilizing all available information. For
example, the observed horizontal and vertical probable errors in a test
could be 0.10 mils and 0.35 mils, respectively. The pooled average of
these is 0.26 mils. If the reject criterion is to reject lots when either
horizontal or vertical probable error is greater than 0.30 mils, this lot
would be rejected. The problem with this type of accept/reject criteria
is that it Ignores good dispersion characteristics in ond direction when
dispersion in the other direction is poor.

Results of acceptance tests and life cycle evaluations of 105mm,
M392, APOS rounds have shown that target dispersion patterns are approx-
imately circular. In Reference 4. for example, horizontal and vertical
probable errors were 0.19 mils and 0.21 mils, respectively for 803
rounds fired from a mid-life tube. Hence, the use of circular probable
error, which effectively combines all dispersion information In both the
horizontal and vertical directions, is appropriate. Use of this parameter
simplifies the accept/reject criteria. Another advantage of using the
circular probable error in estimating target dispersion rather than the
present technique of computing independent horizontal and vertical
probable errors, is that the sample size requirement is reduced
significantly for the specified risk.

4.2 Distribution Of Circular Probable Errors

A lot has an inherent circular probable error, CPEI, which

describes its expected performance when random samples from the lot are
fired under identical test conditions. If CPE0 is the circular probable

error observed for a random sample fired under identical test conditions,
then

E(CPEo) a CPEI

Since circular probable error is a multiple of the radial
standard deviation it follows that,

CPE2  S2
0* R

CPE~
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where SR is the observed radial standard deviation, and OR is the
expected radial standard deviation for a random sample fired under
identical conditions.

2(n-1)CPE2
The distribution of will therefore be Chi-square,

CPE
with 2(n-l) degrees of freedom for a random sample of size n fired under
identical test conditions.

Identical conditions from round to round are not attainable
cp2

during testing, however. Therefore, will not have a Chi-square
CPEI

distribution during tests. In fact, CPEI cannot be adequately estimated
from test results, since the effects of round-to-round variability In
test conditions will always be Included in circular probable error
estimates.

To develop acceptance criteria for APDS rounds, it is necessary
to know the form of the distribution of CPEO. It is also necessary to
estimate a circular probable error, characterizing a lot, which can be
determined from test data.

During acceptance testing, the effect of variation In test
conditions from round to round on circular probable error estimates will
vary from one occasion to another. On some days, test condition
variability has little effect on dispersion patterns, while on other days,
the effect of variable test conditions is comparatively large. Obviously,
measurements which characterize a lot or its expected dispersion should
not be based on days when test condition variability is unusually small
or large. The measurement which adequately characterizes the performance
of a lot should be based on the outcome expected on a randomly selectedday, given that the day satisfies the meteorological requirement for
conducting an acceptance test.

To define characteristic circular probable error, I.e., the
probable error which is expected from a lot on a random day, we assume
that a lot of infinite size is available. Let N random samples be
selected from the lot and let each sample be tested on a random dajP.
Let CPEC denote the characteristic circular probable error of the ot.
Then,

CPEc Lim[,..CPE2)J 1/2
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defines the characteristic circular probable error of the lot. In the
above equation, (CPE2)t Is the square of the circular probable error

observed on the It occasion. -Since +,-f (POi equals the

expected value of the observed circular probable error cn a randomly
so ected day, it is clear that CPEc adequately defines the performance
of the lot.

On some days, E(CPEO) 0 CPEc, since variability in test conditions
such as wind and weather, tube wear from round to round, droop, jump,
etc., may be unusually large or small. Suppose conditions on a given
day are such that ECPo a CPEc for the random samples fired on that
day. Call this an average day.

Now looking only at tests conducted on average days (days for
which E(CPE. . CFEC), there is a characteristic radial standard

deviation, aC, which describes the dispersion characteristics of the lot.
Since circular probable error is a multiple of radial standard deviation,
then,

pSCPE 2  s2

'A!CPEc

where CPE 0 is the circular probable error observed for a random sample

tested on an average day, and S2 is the estimate of the variance. The

distribution of CPE2  0 ' will therefore be Chi-square with 2(n-1)
CPEc

degrees of freedom for a random sample of size n tested on an average
day.

Acceptance tests, however, are not usually conducted an average
days, and

CPE2

has In actuality greater variability than that predicted by the
Chi-square distribution. To assess how this ratio varies during acceptance
tests, the dispersion results of 176 groups of 105mm, APDS, M392 reference
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rounds were analyzed. Eight of these groups had target misses and
were excluded from further analysis. The remaining groups were tested
on 168 different days over a twelve year period. Each group consisted
of a ten round sample from one of two reference lots, and was fired at
a target 2000 meters from the gun. There was no significant difference
in the distribution of circular probable errors of each reference lot
and results from the two lots were therefore combined. The estimate
of the characteristic circular probable error of the reference lots,
CPEc, was obtained from the fallowing equation.

where (CPE2) 1 was the square of the circular probable error observed
on the Ith occasion, CPEo

In order to facilitate the analysis, -r---was defined to be X.
CPE.

Assuming that CPEC for the 168 reference groups was equal to the
characteristic circular probable error of the reference lot, then

CPE

For each of the 168 groups,, % was determined and the observed cumulative
distribution of the, AIs was plotted. Figure 2 presents the observed

cumulative distribution of Xi and compares it to the cumulative
distribution which would result if A2 were distributed as a Chi-square
with IS degrees of freedom.

From Figure 2, it Is evident that If 2(n-l)X 2 were distributed

as a Chi-square distribution with 18 degrees of freedom, 80 percent of
the observations would be between 0.78 and 1.20. The observed cumulative
distribution of the Ns, however, shows that 80 percent of the
observations were between 0.46 and 1.44, a considerably wider spread than
thite predicted by the Chi-square.

The Gamma distribution of the form Gamma (X)• XI X6(a-1).p B
was fitted to the observed. N Is. With a a 7.4658 and 0 0 0.1261, the
Gamma distribution fits the data very well. The Chi-square, Cramer-Von
Hisas end Kolmogorov-Smirnov goodness of fit tests gave no reason to
reject the Gamma distribution. A summary of the observed Xi's and of

the fitted Gamma distribution are presented in Figure 3. Each data
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point, denoted by a triangle, represents the number of observations
within an interval of length 0.10. Points from the Gamma distribution
were multiplied by 16.8 so that the data and fitted curve could be shown
on the same scale. In Ftgure 4, the cumulative Gamma distribution is
compared with the observed cumulative distribution of the I 's. The

data ointso denoted by triangles, represent the observed cumulative
proba ility that X X,

4.3 Criteria For Acceptance Plans

Assuming that A follows the Gamma distribution with a a 7.4558
and o w 0.1261 for random samples of size 10, acceptance plans can be
derived with various levels of consumer's risks (probability of accepting
a lot with poor quality) and producer's risks (probability of rejecting
a lot with good quality). The limitation of using this Gamma distribution
is that it can only be used to calculate consumer s and producer's risks
for acceptance plans with sample sizes which are multiples of ten.
Derivations of distributions applicable to sample sizes other than multi-
ples of ten are beyond the scope of this report. To develop an acceptance
plan, it is necessary to specify the levels of characteristic circular
probable errors associated with both good and poor quallIty. The sampling
procedures and associated decision criteria must then be designated.
Once this is done, the Gamma distribution can be used to derive the
operating characteristics (OC), i.e., the probability of accepting a lot
with a specified quality, associated with the plan. Comparisons of the
OC of various plans can also be made, and the best plan can thereby be
determined.

4.4 pevelopment of Acceptance Plans

To develop the acceptance plans, CPEg is defined as the level

of circular probable error which represents good quality of a lot. Poor
lot quality can be characterized by any multiple of CPEg, as long as the

multiple is greater than one. In order to develop examples of acceptance
plans It is assumed in this report that poor quality is characterized by
values of circular probable error greater than 2 CPEg. One possible

acceptance plan is to test a ten round random sample from a lot and to
calculate the observed circular probable error, CPEO, and then, decide

to accept or reject the lot. One set of decision criteria includes
accepting the lot, if CPE0 < 1.2 CPE or rejecting the lot, if

CPE0 ! 1.2 CPEg. This plan will be designated as Acceptance Plan A.

Given a circular probable error, CPEL. which characterizes the lot,
CPE 0CME- is distributed as the Gamma distribution discussed in section 4.2,

I
provided CPEL is not very different from the pooled circular probable
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error of the 168 reference rowid groups. Further discussion of this
point is presented later In this section. For now, it is assumed that
CPE 0
w-Is distributed as the Gamma distribution of section 4.2.

L

To derive the consumer's and producer's risks associated with
thGs plan, first assume that CPEL a CP G. Then, based on the cumulative
Gamma distribution of Figure 4,

P(A/CPEL . CPES) = P(CPE0 < 1.2 CPEL) - 0.80.
2Based on the cumulative distribution of %, when xi is distributed as

Chi-square with 18 degrees of freedom (Figure 2), the probability of
accepting the lot, P(A), is 0.90. Assuming that CPEL w 2CPEG, then based
on the Gamma distribution, P(A/CPEL - 2CPEG) * (PCPE 0 < 0.6 CPEL) * 0.16.

Using the Chi-square of Figure 4, P(A/CPEL u 2CFEG) - 0.00. The consumer's

and producer's risks for this plan are summarized in Table 1.

Table 1. Consumer's and Producer's Risk for Acceptance Plan A

Distribution Used Consumer's Risk Producer's Risk

Gamma 0.16 0.20

Chi-square 0.00 0.10

As noted in Table 1, the Gamma derived consumer's risk for
Acceptance Plan A Is 0.16 compared with the consumer's risk of 0.00
predicted by the Ch i-square distribution. Thus, use of the Chitsquare
distribution for obtaining the consumer's risk for this plan would
mislead one into thinking that Plan A is very good with respect to the
consumer's risk, while the Gamma distribution shows that it is not.

Figure 5 presents the OC curves for Plan A based on the Gamma
and Chi-square distributions. Note that the OC curve derived from the
Chi-square distribution crosses the Gamma derived OC curve at the point
where CPEL a 1.12 CPEg. When CPEL < 1.12 CPEg, the Chi-square derived OC

curve overestimates the probability of acceptance the lot, misleading
the manufacturer into believing that this risk is smaller than it actually
Is. When CPEL > 1.12 CPEa, the Chi-square derived OC curve underestimates
the probability of accepting the lot. Therefore, for lots with poor
circular probable error characteristics (CPEL > 2CPEg), the Chi-square
derived OC curve misleads the consumer into believing that his risk Is
smaller than it actually is.
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In Table 2 several acceptance plans are presented. It should
be noted that these plans represent only a finite subset of an Infinite
set of acceptance plan strategies.

Table 2. Acceptance Plan Alternatives B Through H Based On Multiples Of
Ten Round Samples

Acceptance Plan
Designation Description of Acceptance Plan

Test a single ten round random sample from
a lot. Accept the lot if CPEo < 1.4 CPEg.

Otherwise reject the lot.

C Test a single ten round random sample from
a lot. Accept the lot if CPE0 < 1.6 CPEg.
Otherwise reject the lot.

D Test a single ten round random sample from
a lot. Accept the lot if CPEo < 1.8 CPEg.
Otherwise reject the lot.

E Test two ten round random samples from a
lot. If the pooled CPE0 < 1.4 CPEg, accept

the lot. Otherwise reject the lot.

Test a ten round random sample from a lot.
Accept the lot if CPEo < 1.4 CPEg. ReJect

the lot if CPEo > 1.8 CPE . Otherwise, test
a second ten round random sample. Then,
accept the lot If the pooled CPEo < 1.4

CPEg. If the pooled.CFEo ! 1.4 CPEg, reject.,

the lot.
G Test a ten round random sample from a lot.

Accept the lot If CPEo < 1.2 CPEg. Reject
the lot If CPEo > 1.54 CPE . Otherwise, test

a second ten round random sample. Then, accept
the lot if the pooled CPEo 9 1.2 CPEg. If the
pooled CPEo ! 1.2 CPE, reject the lot.

H Test a tan round random sample from a lot.
Accept the lot If CPEo < 1.6 CPEg. Reject

the lot if CPEo > 2.0 CPE . Otherwise, test a

second ten round random sample. Then, accept
the lot if the pooled CPE < 1.6 CPEg. if

the pooled CPEo t 1.6 CPEg, reject the lot.
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Figures 6 through 12 present the OC curves for acceptance
plans B through H described in Table 2. In each figure, the consumer's
risk is determined from the probability of accepting the lot when
CPEL U 2CPE . When CPEL - CPEY, the producer's risk is given by 1-P(A),
where P(A) Is the probability of accepting the lot. The OC curves for
all of the plans show that the Chi-square derived consumer's and producer's
risks are lower than those derived from the Gamma distribution.

Table 3 summarizes the consumer's and producer's risk for
acceptance plans A through H. The consumer's risks are presented as
ranges. The lower bound in each case is obtained from the Chi-square
derived OC curve, while the upper bound is obtained from the Gamma
derived OC curve. The producer's risks are presented as point estimates
and are obtained from the Ganma derived OC curves.

Table 3. Consumer's and Producer's Risks for Acceptance Plans A
Through H

Acceptance Plan Consumer's Producer's
Designation Risk Risk

A 0.00 - 0.16 0.20
B 0.04 - 0.25 0.10
C 0.14 - 0.40 0.13
D 0.32 - 0.50 0.07
E 0.00 - 0.09 0.07
F 0.03 - 0.28 0.04
G 0.00 - 0.16 0.11
H 0.17 - 0.55 0.02

CPE0
It was previously assumed that •-would be distributed as

the Gamma distribution with a - 7.4558 and 0 - 0.1261. If CPEL equals

the characteristic circular probable error of the reference lot used to
obtain the fitted Gamma distribution, the assumption is reasonable. The
Gamma distribution was obtained from the actual distribution of observed
circular probable errors over a twelve year period. It is reasonable to
assume that this is representative of the distribution which will occur
in the future. However, as CPEL deviates from the characteristic circular
probable error of the reference lots, the distribution of CPE0 deviates

from the Gamma distribution. The derived Gamnma distribution represents
the deviation in observed circular probable errors due to both Inherent
"round-to-round differences and occasion-to-occasion test condition
differences. As Inherent round-to-round differences increase, which is
the case for poor quality control during manufacturing, they tend to have *1
an Increasingly dominating effect on the distribution of CPEo relative A

212



to the effect of cccasion-to-occasion test condition variation. As the
inherent differences increase without bound, the relative effect of
occasion-to-occasion variation in test conditions upon CPEo tends towards

CPE2

zero, and the distribution of -i. approaches the Chi-square. On the
CPEL

other hand, as Inherent round-to-round differences decrease, the scatter
of observed probable errors is Increasingly dominated by the effect of

CPEo
test condition variation, and 0 will tend to have greater variation

L
than that predicted by the Gamma distribution. Consequently, as CPEL

increases towards poor lot quality, the true probability of accepting
the lot lies somewhere between the probabilities obtained from the
Chi-square and Gamma derived OC curves as shown in Figures 5 through 12.
As CPEL improves beyond good lot quality, the probability of accopting

the lot decreases below that predicted by the Gamma derived OC curve.
For these reasons, the consumer's risks in Table 3 are presented as
ranges, with the Chi-square and Gamma derived risks being the lower and
upper bounds, respectively. The producer's risk, since it is based upon
lots of good quality, is presented as a point estimate based upon theGamma derived OC curve. If CPE is approximately equal to the

characteristic cgrcular probable error of the reference rounds, the
Gann derived risk is a reasonably good estimate of the producer's risk.
However, if CPEg is better than the characteristic circular probable

error of the reference rounds, the Ganna derived producer's risk is a
lower bound. This could happen if future APDS rounds are markedly more
accurate than the reference rounds.

Reviewing the acceptance plans in Table 3, it Is evident
that Plan E provides the best combination of consumer's and producer's
risks. However, twenty rounds are always needed for this Ilan. Plan G
is the next best plan and Is less costly than Plan E. If ots are
produced with CPEL equal to CPEg, the average sample size for this plan

is 11.5. This is due to the fact that retests would occur only 15
percent of the time.
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Z. CONCLUSIONS AND RECOMMENDATIONS

In past acceptance tests, firing procedures have not been designed

to minimize the effect of occasion-to-occasion variability in test
conditions upon target dispersion characteristics. Future tests should
be designed to minimize the time required to fire a group of rounds (see I
Section 2.2 for a detailed discussion).

Even when the time to fire a group of rounds is minimized, nonrandom
dispersion patterns about the center of Impact can occur. In this case
the method of successive differences eliminates the effect of nonrandom
trends on probable error estimates. This method of calculating probable
errors should be employed whenever nonrandom trends In shot patterns
occur (see Section 3 for a detailed discussion).

Decision criteria for acceptance plans, which are based on the use
of circular probable error estimates, provide the optimum utilization
of test data. Circular probable error estimates should therefore be
used as the basis for decision criteria in future acceptance plans (see
Section 4.1 for a detailed discussion),

CPE2

The distribution of c-p-Ehas not followed the Chi-square distribution
C7L

in the past. The ratio of observed circular probable error to the
characteristic circular probable error of the two reference lots
followed a Gamma distribution with u * 7.4558 and 0 m 0.1261. This
distribution was used to obtain the consumer's and producer's risks for
several acceptance plans. These risks were then compared with the^CPE2
corresponding consumer's and producer's risks obtained when14

CPEL
follows the Chi-s quare distribution. It was shown that the actual
consumer's risk of accepting poor lots is greater than the Chi-square
derived risk and less than the Ganmma derived risk. It was also shown
that the Ganna derived producer's risk will provide a lower bound if
the dispersion characteristics of future APDS rounds are superior to
those of the reference rounds used In obtaining the Gamma distribution.
From Table 3, It was evident that acceptance plan E provided the best
combination of consumer's and producer's risks (see Section 4 for a
detailed discussion).
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The acceptance plans presented in this report represent only a small
portion of the plans which could be developed for APDS type of ammunition.
Undoubtedly It will be necessary to develop different acceptance plans
for now types of APOS rounds undergoing development. These plans should
be developed with recognition that the OC curves underestimate both the

consumer's and producer's risks, assuming that CPE0 follows the Chi-square
C.L

distribution. The gamma distribution should be used for developing OC
curves for the various plans. The consumer's and roducer's risks
associated with each plan can be compared and the Cest plan can then be
selected (see Section 4.3 for a detailed discussion).61
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APPENDIX

Horizontal vertical and ci r;ul ar probable errors observed for two

reference lots of lO5m. APDS, 14392 rounds on 168 occasions. A sample

size of ten was used on each occasion.
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Probable Error In Mils

Occasion Horizontal Vertical Circular

1 0.47 0.20 0.62
2 0.14 0.29 0.39
3 0.26 0.24 0.42
4 0.28 0.23 0.44
6 0.28 0.18 0.41
6 0.12 0.13 0.22
7 0.19 0.15 0.30
8 0.16 0.13 0.25
9 0.35 0.25 0.53

10 0.21 0.15 0.32
11 0.10 0.18 0.25
12 0.21 0.13 0.30
13 0.13 0.06 0.18
14 0.26 0.12 0.35
15 0.20 0.16 0.31
16 0.14 0.24 0.34
17 0.20 0.15 0.31
18 0.30 0.17 0.42
19 0.23 0.16 0.34
20 0.09 0.16 0.22
21 0.25 0.15 0.36
22 0.19 0.10 0.26
23 0.30 0.14 0.40
24 0.05 0.12 0.16
25 0.14 0.11 0.22
26 0.14 0.23 0.33
27 0.22 0.28 0.44
28 0.10 0.12 0.19
29 0.08 0.16 0.22
30 0.14 0.17 0.27
31 0.16 0.13 0.25
32 0.23 0.33 0.49
33 0.11 0.08 0.17
34 0.16 0.21 0.32
35 0.32 0.18 0.45
36 0.13 0.14 0.23
37 0.10 0.18 0.25
38 0.18 0.16 0.29
39 0.26 0.29 0.48
40 0.24 0.15 0.35
41 0.37 0.15 0.49
42 0.47 0.20 0.62
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Probable Error In Mils
¾ Occasion Horizontal Vertical Circular

43 0.24 0.33 0.50
44 0.26 0.33 0.51
45 0.22 0.18 0.35
46 0.14 0.29 0.39
47 0.39 0.17 0.52
48 0.26 0.16 0.37
49 0.18 0.20 0.33
50 0.10 0.23 0.31
51 0.20 0.20 0.35
52 0.18 0.22 0.35
53 0.18 0.15 0.29
54 0.12 0.08 0.18
55 0.30 0.14 0.40
56 0.22 0.20 0.36
57 0.25 0.25 0.43
58 0.12 0.13 0.22
59 0.17 0.18 0.30
60 0.20 0.14 0.30
61 0.15 0.15 0.26
62 0.33 0.30 0.55
63 0.37 0.30 0.58
64 0.29 0.29 0.50
65 0.38 0.23 0.54
66 0.20 0.18 0.33
67 0.20 0.14 0.30
68 0.25 0.15 0.3669 0.31 0.13 0.41
70 0.16 0.12 0.24
71 0.18 0.33 0.46
72 0.21 0.15 0.32
73 0.22 0.19 0.36
74 0.33 0.27 0.52
75 0.14 0.07 0.19
76 0.15 0.09 0.21
77 0.10 0.27 0.35
78 0.11 0.09 3.17
79 0.10 0.13 0.20
80 0.06 0.09 0.13
81 0.26 0.17 0.38
82 0.16 0.13 0.25
83 0.12 0.11 0.20
84 0.14 0.21 0.31
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Probable Error In Mils
Occasion Horizontal Vertical Circular

85 0.32 0.14 0.43
86 0.20 0.14 0.30
87 0.19 0.18 0.32
88 0.11 0.08 0.17
89 0.15 0.11 0.23
90 0.30 0.14 0.40
91 0.13 0.18 0.27
92 0.12 0.18 0.26
93 0.22 0.19 0.36
94 0.11 0.12 0.2095 0.21 0.16 0.32
96 0.09 0.11 0.17
97 0.,15 0.22 0.33
98 0.24 0.13 0.33
99 0.30 0.17 0.42

100 0.12 0.11 0.20
101 0.11 0.11 0.19
102 0.26 0.09 0.34
103 0.26 0.15 0.36
104 0.18 0.15 0.29
105 0.26 0.17 0.38
106 0.10 0.19 0.26
107 0.22 0.16 0.33
108 0.20 0.07 0.26
109 0.22 0.32 0.48
110 0.17 0.15 0.28
111 0.20 0.16 0.31
112 0.25 0.19 0.38
113 0.30 0.21 0.45
114 0.14 0.10 0.21
115 0.18 0.09 0.25
116 0.09 0.16 0.22
117 0.15 0.18 0.29
118 0.21 0.20 0.35
119 0.20 0.53 0.69
120 0.16 0.16 0.28
121 0.21 0.18 0.34
122 0.19 0.13 0.28
123 0.11 0.06 0.15
124 0.10 0.13 0.20
125 0.12 0.18 0.26
126 0.18 0.16 0.29
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Probable Error In Mils
Occasion Horizontal Vertical Circular

127 0.22 0.15 0.33
128 0.13 0.11 0.21
129 0.34 0.17 0.47
130 0.22 0.27 0.43
131 0.29 0.31 0.52
132 0.40 0.17 0.53
133 0.50 0.34 0.74
134 0.43 0.32 0.66
135 0.54 0.44 0.85
136 0.10 0.17 0.24
137 0.33 0.31 0.55
138 0.30 0.27 0.49
139 0.27 0.27 0.47
140 0.38 0.14 0.50
141 0.43 0.42 0.74
142 0.40 0.31 0.62
143 0.17 0.43 0.57
144 0.18 0.14 0.28
145 0.33 0.26 0.51
146 0.25 0.14 0.35
147 0.20 0.28 0.42
148 0.07 0.18 0.24
149 0.18 0.11 0.26
150 0.19 0.13 0.28
151 0.16 0.23 0.34
162 0.29 0.24 0.46
153 0.19 0.24 0.37
154 0.35 0.32 0.58
155 0.18 0.14 0.28
156 0.15 0.22 0.33
157 0.24 0.08 0.31
158 0.25 0.22 0.41
159 0.25 0.15 0.36
160 0.31 0.23 0.47
161 0.21 0.14 0.31
162 0.26 0.23 0.42
163 0.23 0.37 0.53
164 0.29 0.21 0.44
165 0.16 0.23 0.34
166 0.35 0.44 0.69
167 0.28 0.18 0.41168 0.17 0.25 0.37

Averags 0.22 0.19 0.38
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SERUENTIA:L ESTIMATION OF QUANTAL RESPONSE CURVES

R. Srinivasan R. M. Wharton
Temple University Trenton State College
Philadelphia, Pa. Trenton, New Jersey

ABSTRACT

An approach to the sequential estimation of the fiftieth

percentage point of a quantal response curve is discussed. A

comparison of this method with some standard methods, using

Monte Carlo simulation are presented and its ease of application

and high efficiency demonstrated. The potential advantages of

this scheme in the estimation of the slope of a response curve

are also examined.

1. INTRODUCTION Experimental investigations often deal with

quantal response variables oonditioned on a continuous variable.

For example, in testing the tolerance to a poison in a species

of animal, we test animals at various drug levels. Here the

response variable Y for a given animal will be survival (Y-0)

or death (Y-1) and the conditioning variable X will be dosage

of poison. Thus we are interested in the curve P(Y(x)-I).

In this paper our primary concern is with the sequential

estimation of the fiftieth percentage point of the response curve

denoted L 5  and the slope of the curve at x-L Section 2

discusses some sequential and non-sequential approaches to this
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problem. Section 3 introduces a new sequential approach related

to the Mood-Dixon Up-Down method (1948). It's goal is to allow

more efficient estimation or L. 5 and the slope of the curve

for a fixed small sample size n . The relative efficiency of

this method compared to the Up-Down method and Wetherill's sug-

Sested "best" small sample technique for estimation of L 5  are

examined using Monte Carlo methods and the results summaried in

Table 2.

Although our primary interest is in L we briefly discuss
Al th

estimation of the p percentage point, L for arbitrary p in

Section 4.

This paper represents only preliminary results. More ex-

tensive investigation of the relative merits of the methods sug-

gested here are required and underway.

2. STANDARD DESIGNS For most applications the response curve

is sigmoidal and two forms are commonly used to represent

P( Y(x)-l } , the probit form

P{ Y(x) a 1 } - 8(x'=) exp (-Att2 )/ /27dt

and the logit form

P( Y(x) a 1 1 - (l+ exp (-O(x-a)))"1

Since, in practice (Finney, 1952, p. 47), there is little to choose

between the two forms, we will limit our discussion to the logit

form because of its computational advantages.
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Basically our problem is to take a sample (xlJly), (x2 $y2 )

,... (XnY) and eBtimate L a and the slope of the response

curve at x - L 5  which is 0 in the logit form. There are

two important aspects to this problem. First, how do we select

the x Is and second, what estimators to use for a and 8 .

We are primarily interested in the first aspect.

The standard non-sequential experimental design for this

case involves selecting k values of xi hopefully about a

and obtaining ni observations at this xi . The maximum

liklihood estimators of a and 0 are easy to calculate for

such a sample.

Sequential designs for this problem, which allow the choice

of xi+1 after observing the result for the previous i obser-

vations, allow one to obtain a specified accuracy in estimation

with a smaller sample size than that required with a non-sequent-

ial design. Thus sequential designs are useful when testing is

expensive or when candidates for entry into the testing procedure

aie scarce.

In order to explore some of the difficulties encountered

in sequential designs for the estimation of parameters of a

response curve, we will briefly discuss some well known sequential

designs.

Robbins and Monro (1951) introduced a mpthod of stochastic

estimation suitable for the general regression situation, and

Chung (1954) considered the choice of parameters in the process
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to obtain certain asymptotically optimum properties. HoJges

and Lehmann (1955) extended Chtuig's work to cover the quantal

response problem. If an. estimate is required for L. O the

level of x at whi) i(Y(x) 1 1) - p ', then a series of obser-

vations ¥•(xr) is taken at levels Xr such that

x+ 1 =x, - ar(yr(x )-p)

where the ar's are positive constants and after n observations,

is taken as the estimate of L* This method works best

for p = .5

Although this method has certain asymptotically optimal

propertieso, it also has some practical drawbacks when applied

with small to moderate sample sizes. First,it is usually difficult

to apply the conditioning variable at arbitrary levels as required

by this method. Secondly, if the starting value for the process

is far from Lp , a substantial bias may be introduced in the

estimate.

Another approach to the design problem, which alleviates the

first of the drawbacks described above, was introduced by Dixon

* and Mood (1948). The method involves a grid of equally spaced

values of the conditioning variable. A value x0  is picked as

close to L. 5  as possible and the response observed, if the response

t is positive at x the next x value is taken one step lower

and if the response I.s negative at x the next x value is taken

' one step higher on tne grid. The same process is utilized tor

each subsequent xi . This design causes the sampled xi'a to

23 232



i cluster about L ,, thus yielding a more accurate estimate of

S L.5 whetheir the estimate is obtained by maximum liklihood,

minimum chi-square or the Brownlee, Hodge approach (1953).

With the proper choice of starting value near L and

step size near 1/0 , this scheme yields a highly efficient

, estimate of L 5 . However, if the step size is too large

"the efficiency decreases'rapidly and if the starting value is

chosen too far from L.5  significant bias is introduced with

small to moderate sample sizes. Thus with small sample sizes

the mean square error of the estimate will increase with the size

of the step and the difference between the starting value and

L.5 Another interesting observation noted by Wetherill (1963)

is that for the joint maximum liklihood estimators of a a L

and B for the logistic curve, the efficiency of a increases

with increased step size while as noted above the efficiency of
A

a decreaues. The schemes presented in Section 3 represent an

attempt to reduce these difficulties.

3. A MODIFIED UP-DOWN PROCEDURE There have been numerous modi-

fications of the up-down method discussed in the literature, the

purpose of which being to reduce the problems involved in estimat-

ing L 5 . A number of these modifications are considered by

Wetherill (1963).

The modification we present here is motivated by a hope

that it will yield improved estimates of the slope B as well
L
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as L . The rational for this scheme is that we use large

steps in the beginning when searching for L 5  and smaller

steps as we narrow in on L 5 . The variable step size makes

the estimate of L less sensitive to large errors in starting

value and hopefully will increase the accuracy of our estimate

for .

A generalized Up-Down method can be described as follows:

1. Pick a minimum allowable step size 6

2. Pick m such that the maximum allowable step

size will be m ,6

3. Pick a starting value x 0

4. If the response at any value xi of the

conditioning variable is positive, take the

next x value ki 6 units lower. If the

response is negative take the next x

value I' 6 steps higher, where 1 < ki 4 m

and 1 ,M

This generalized Up-Down method might be considered an Up-Down

method with memory since ki and li at any step are functions

of the entire past history of the trial.

In order to investigate the effect of variable step size on

the estimation of L5 two easily applied examples of the above

scheme were considered:

METHOD I

In Method I, step size starts at one and increases by one as
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long as the outcomes remain the same (i.e. all positive or

negative) up to a maximurm step size of 3. Once a sign change

occurs, step size reverts back to one and the process continues

for a predetermined number of steps. In the generalized scheme

this would correspond to defining m=3, ko=1o 1
andand Mjn [k + 1,31 i f Y i ryi -lal

in..n = ,3Jifiul,2,...,n
1 if yeul and irl0

mninEli+ 1,3] if Y~lyi CY-o =
r. :1{ I if Y i:0 and Yi:i,2,.,. 2n

METfHOD I1

In Method 1I, step size starts at 8 and remains at three as

long as the outoomes are the same. The step size ic reduced by

one for each change in outcome (down to a minimum of one) and

increased by one whenever the outcome is the same as the previous

one (up to a maximum of 3) and the process continues for a pre-

determined number of steps. In the generalized scheme this would

corre'spond to defining m=3, k .1 N 3 and

mintkitlol, *if -ia'YilN
,,n =l,] "i:1,2,..• ..-
max[kI-lI] if Y1 . and Yl. i=0

minrli+1,3] if 'i

" maxcli-ll] if Yi=O and Y i-u121
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To compare these two modifications with the standard Up-

Down method a Monte Carlo simulation was done assuming the popu-

lation sampled was logistic with a=O and =1 . Starting

values of xo=0,3 and sample sizes n=34 and 9 were con-

sidered with a 1000 replications generated for each combination

of xo and n . For ease of computation in this initial investi-

gationý the following estimator of L due to Brownlee and

Hodges (1953) was used.

n
A A
L
.5 Jr

n

It should be noted that this estimator although easily calculated

is asymptotically equivalent to the maximum liklihood estimator

of L.5  The basis for comparison between the modified and

unmodified approaches was bias and mean square error. The results

of this computer simulation are presented in Table 1.

The following observations should be made regarding Table 1:

1. Thl modified methods I and II reduce the bias for

starting value xo0 3 , for all three step sizes

considered and do not substantially increase it

for xo0 O.

2. The MSE is far more stable with respect to starting

value for the modified methods as opposed to the

unmodified method. (Recall, this was one of the

major difficulties with the unmodified Up-Down

method.)
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3. The modified methods with step size .5 are

comparable to the unmodified method with step

sizes 1.0 and 1.5 and to Wetherill's recommended

technique (1963, p.34). The MSE's for this

approach are given in the (c*) column of Table

1 for a comparable set of parameters.

Thus the modified schemes allow estimation of L.5 , with

small final step size, which is fairly stable with regard to

starting value, even for relatively small sample sizes and com-

parable to Wetherill's "best" approach with regard to mean square

error#

4, ESTIMATIO.._N O.F GENERAL L, An extension of the generalized
Up-Down method which might prove useful for estimation of general

L can be described as follows: Steps 1,2 and 3 are the same

an for the case pa.5 discussed in Section 3.

4. Pick an initial number n0  of observations

to be taken at x 0

5. After each trial estimate the proportion p' of

positive responses at the level used for the

current trial and consecutive with it, that is,

back to the last change of level. If p' > p

and p' is estimated on no trials or more

decrease the level by ki' 6 steps. If p, < p

ii
increase the level 1~ 6 steps, where 0 < k i m
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and 0 < li< m. Both 1i and ki are usually

set equal to zero if p' = p.

This scheme is a generalization of the inverse sampling

rule described by Wetherill which was the most efficient approach

he considered for the general L problem.
p

Empirical studies on this scheme and some possible alter-

natives will have to be done in order to justify its usefulness.

5, CONCL__U3IO_. The two special ceases of the generalized Up-

Down method presented here are easily applied sampling schemes,

which go a long way in reducing one of the main difficulties in

the Up-Down mrt-hod, that is the effect of starting value on

efficiency and are themselves comparable in ifficiency to Wether-

i13's "best" stheme for estimating L, 5

A careful investigation of othrb ozpecial cases of the gener-

alized scheme, ..he efficiency of such schemes in estimating the

slope and the usefulness of thi generalized screme for general

L are currently underway.
p
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A MONTE CARLO SIMULATION OF A
PROBABILITY RATIO SEQUENTIAL TEST (PRST)

PLAN FROM MILITARY STANDARD 781C

William J. Broemm,
Reliability, Availability and Maintainability Division

U. S. Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, Maryland 21005

I. INTRODUCTION

The topic of my presentation is a Monte Carlo Simulation of
sequental test plans. The sequential test plans I am referring to are
the Probability Ratio Sequential Test Plans, the PRST Plans. located in
Military Standard 781C (Figure 1). In the literature, the PRST plans
come under the category of the Reliability Design qualification and
Production Acceptance Tests (Exponential Distribution). Simply stated.
these tests deal with items that have exponential times betxeen failures.

The computer program discussed in this presentation Is offered as an
aid to test planners and those who are concerned with the application of
the PRST plans. The utilization of the methodology proposed should
permit the test planner, equipped with a reasonable amount of practical
experience with the PRST plans, to make certain probabilistic statements
regarding termination points in the plans, namely (1) the likelihood of
roaching the last failure and (2) the likelihood of reaching the maximum
test time.-

Historically, the PRST plans have no provision for estimating the
true MTBF of an Item of equipment, and therefore, the total test time
expected to be consumed during testing may vary significantly (Figure 2).
Consequently, program costs and schedules have to be planned to compensate
for this range of uncertainty. However, with the help of the methodology
delineated herein, one may be able to choose an appropriate test plan
from MIL-STD 781C, select a lower test MTBF (e 1). select a realistic

range of true MTBF's for consideration, implement the simulation, and
finally obtain measures of the two likelihood estimates aforementioned -
all of this in order to reduce the range of uncertainty and therefore
minimize program cost overruns.
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II. STATEMENT OF THE PROBLEM

A typical PRST plan from MIL-STD 781C, regardless of the total
number of failures and the total test time in the plan, will basically
assume an appearance as depicted in the following (Figure 3). Inherent
In the design of the PRST arrow, if you will, are such things as
decision risks, a discrimination ratio, and accept-reject criteria.
Given that all of these things are in harmony, of concern is not the
general shape or length of the PRST arrow but the two termination
vectors located In the' arrowhead. For simplicity, we may designate the
last failure as FL and the maximum total teast time as TM. The problem, A

then, becomes the following: When testing an item of equipment with the
PRST plans, how often is the last failure reached (Figure 4)? In other
words, what is the likelihood of reaching FL (Figure 5)? In a similar
manner, when testing an item of equipment with the PRST plans, how often
is the maximum test time reached (Figure 6)? That is, what is the likeli-
hood of reaching TM (Figure 7)? These kinds of inquires can be taken a
step further and translated into probabilistic statements (Figure 8).
Symbolically, we may ask: What is P(FL) and what is P(TM)?
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A GENERAUIZED PRST PLAN

* ~~REJEICT ~ TU

ACEPTI

0 0T
0 ~TOTAL TEST TIME T

FIGURE 3. A Generalized PRST Plan
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LAST FAILURE CONSIDERATION

FL m mm

REJECT

i FIGURE 4. Last Failure Consideration
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III. A DESCRIPTION OF THE ALGORITHM

The purpose of the simulation, then, Is to ascertain how often FL
and TM are reached. The vehicle for doing this resides In the algorithm -
a set of instructions that simulates the testing of an item of equipment
using a typical PRST plan (Figure 9). The code, that is, set of
instructions, makes use of two program counters. One counter corresponds
to the last failure, FL, and the other counter corresponds to the maximum
test time, TM. During each Iteration of the simulation, an item

of equipment can be either rejected, accepted or put to further
test (as exemplified by the continue test strip). If the item is rejected
or accepted prior to reaching truncation, then no counters are incremented,
and a new iteration is begun. If the item falls within the continue
strip without a rejection or an acceptance, then another failure time is
called for, 'nd the above process is repeated.

In order to test against the maximum test time value, a particular
failure time is compared with the TM value (Figure 10). If that
particular failure time is greater than or equal to the TM value, then
the TM counter is incremented by one and a new Iteration is begun. If
that particular failure time is less than the TM value, then another

failure time is called for and queried in the same manner.

Similarly, In order to test against the last failure, a particular
failure number Is compared with the maximum failure number, FL, to
determine equality. If equality exists, then the FL counter Is
incremented by one and a new iteration is begun. If equality does not
exist; that is, if the particular failure number is less than the FL
value, then another failure is called for and queried in the same manner.

Now, If we allow each iteration to be an independent event, and if
we conduct a large number of these trials, then the FL-and TM counters
can be shown to be likelihood estimates for reaching the last failure
and the maximum total test time, respectively. Furthermore, these
likelihood estimates can be viewed in probabilistic terms, as stated
previously.
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A GENERALIZED PRnS PLAN

REJECT

CNTINUEI
TESTI

Z~ACCEPTI

0 ~TOTAL TEST TIME T

FIGURE 9. A Generalized PRST Plan
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IV. A PARTICULAR EXAMPLE FROM MIL-STD 781C

Upon selection of an appropriate PRST plan; that is, one that
incorporates the desired decision risks, discrimination ratio, and
accept-reject, criteria, upon selection df a lower test MTBF value (01),

and upon specification of a range of true MTBF's for consideration, one I

is in a position to run the simulation in order to obtain likelihood
'N estimates for reaching the last failure and the maximum total test time

(Figure '11).

In order to demonstrate some of the results found, consider Test
Plan III from MIL-STD 781C (Figure 12). Test Plan III is based on
sixteen (16) failures, decision risks of 10 percent and a discrimina-
tion ratio of 2.0:1. If the lower test MTBF Is chosen to be 100 hours,
then the upper test MTBF will be 200 hours. If we select a range of
true MTBF's between 60 and 300 hours, then this plot (Figure 13)
demonstrates the likelihood of reaching the last failure. Consider an
item of equipment with a true MTBF of 60 hours. More than likely that
item of equipment will be rejected prior to reaching truncation.
Consider an item of equipment with a true MTBF of 300 hours. More than
likely that item of equipment will be accepted prior to reaching truncation.
Clearly, it is when an item of equipment has a true MTBF between the
lower test MTBF value, a1, and the upper test MTBF value, e0o that the

item will most often be tested to truncation.

Similarly, this plot (Figure 14) demonstrates the likelihood of
reaching the maximum total test time. The same set of arguments hold
for this plot.
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V. SUMMARY

In summary, the intent of my presentation has been to promulgate a
methodology for determining the likelihood of reaching the truncation
rotnts an the famaly of PbST plans (Figure 15). With the knowledge of
how often an tm my be tested to trunoation; that is, (1) the last
failure in the plan and (2) the maximum total test time in the plan, a
test planner may be in a better position to formulate and execute a
well-conceived test plan package so that test costs and schedules can
be reduced and so that program cost overruns can be kept to a minimum.
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STATISTICAL CONSULTING

OR

THERE ARE NO STANDARD PROBLEMS, ONLY STANDARD SOLUTIONS

Brian L. Joiner
Statistical Laboratory

University of Wisconsin-Madison
1210 W. Dayton Street

Madison, Wisconsin 53706

Abstract

Statistical consulting involves solving non-standard problems on a

time scale such that optimal solutions are not feasible even if one could

specify the problem concisely enough. One must seek to understand

each problem properly and resist the temptation to slap it into the

fold of an already existing solution. Here we give a small collection

of examples where "standard" solutions, blindly applied would likely

have proved worse than useless.

THE ITERATIVE NATURE OF ANALYSIS

Exhibit 1 is a schematic of the key steps in the iterative process

of data analysis. and model b i lding. The importance of the core

triangle of MODEL IDENTIFICAIION, MODEL FITTING and DIAGNOSTIC CHECKING

has been forcefully indicated by George Box and colleagues, especially

in Box and Jenkins (1970). Additional key components illustrated in

Exhibit 1 that all too often get overlooked in statistical practice are

the need to pay careful attention to the data -- and its quality -- and

to the underlying theory or structure of the problem.
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Implicit in Exhibit 1 is the all important distinction between

"assuming"and "pretending". The American Heritage Dictionary includes

the following definitions.

- Assume: "To take for granted," and

- Pretend: "To play like, to make believe".

There is a subtle, but very Important distinction between these two words.

When doing statistical analysis our life is complicated by the fact

that we must continually shift back and forth between these two concepts,

and in the past have tended to rely on only one word -- assume -- to

describe both.

When we tentatively define a plausible model INCLUDING THE NATURE

OF THE DISTURBANCES, we put on our mathematicians hat and ask "What

is an optimal, or at least defensible, way of fitting this model to data

having the indicated error structure." To seek such answers, we must

ASSUME that we know the nature of the model and the error structure

perfectly. The mathematics takes us literally and treats the model

as if it could "take for granted" everything we have said.

Having thus developed a fitting procedure, we proceed to apply it

to the data at hand, but in so doing we switch from acting as mathematicians,

and turn to being scientists. As scientists we can only PRETEND that

the data can be completely described in the fashion ASSUMED in the

mathematics. Of course, nature cares not at all about our play acting.

Our pretending does not change the underlying model, nor the error

structure. It wFll be what ever nature has chosen, and invariably

nature has chosen a more complex structure than that described by the

mathematics we have been able to accommodate.
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We then move around the bend in Exhibit 1 to the analysis loop

and begin DIAGNOSTIC CHECKING. There our role is to ask if there are

serious DETECTABLE differences between nature and what we PRETENDED was

true. Even while doing DIAGNOSTIC CHECKING we nwed to switch back and

forth asking questions like$ IF the disturbances ware uncorrelated,

what are the chances of observing a first order autocorrelation this

high or higher.

Perhaps c useful way to sum this up is to say that it seems to

be helpful to use two different words for the two different roles.

Let us ASSUME when we're doing mathematics and let us PRETEND when

we're fitting models to data. Using these two different words may

help us keep from taking too seriously what we ordinarily ASSUME, but

in fact can only PRETEND.

Vitamin B2 in turnip greens

Another important feature of the Exhibit 1 is the need for

continued data checking. The following two examples provide useful

insight.

Both Anderson and Bancroft (1959, page 192) and Draper and Smith

(1966, page 229 and 339) report analyses of some data on the effect

of three variables on the amount of vitamin B2 in turnip greens. The

model given by D&S contains three terms X2 . X3 and X2
2 and gives an

(unadjusted) R2 of 90% which is somewhat higher than the 75% given by

A&B's model. Even relatively careful analyses of th-t residuals from

the D&S model, such as the residual plots In Exhibit 2, reveals no

serious problems with the fitted model.

However, if one plots the original DATA in the ORDER they were

presented in the textbook a very striking pattern ciý be seen. See
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Exhibit 2F. The data drop off nearly linearly. In fact, a simple

straight line fitted to the plot in Exhibit 2F gives an R2 of 90%!

What is the explanation? The answer is not clear and attempts to get

more details about the original experiment have not been successful.

My conclusion is that there was some other factor not recorded that was

the primary responsible party. It may have been that the values are

reported In the order measured and that reagents or the greens themselves
decayed over time. There is not other ready explanation. The Y values

are not merely listed in decreasing order since a number of Inversions

are apparent in Exhibit 2F. The argument that X2 is the most important

factor loses credibility on at least two accounts. A quadratic is

needed to fit the three levels of X2 , and the Y values in Exhibit 2F

seem to continually drop off unaffected by changes in X2 . Careful

data checking has opened serious questions about the quality of those

data.

Oxygen in steel

Another example of important but not easily detectable time order

decay of measurements is provided in Joiner and Campbell (1976).

(Oxygen is there inadvertently misspecified as Nitrogen.) Two key plots

are reproduced here as Exhibits 3A and 3B. Note again the serious

data problems uncovered by careful checking. In this case a careful

timely search for causes was made, but no explanation was found.

At least the fact that the problem existed had been brought to light by

the data checking.

This leads us to list the following caveats.
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"Yet to calculate Is not in itself to analyze."
Edgar Allen Poe, The Murders in the Rue Morgue.

"There's less there than meets the eye."
Joseph M. Cameron.

There are no standard problems, only standard
solutions.

Checking residuals is not always enough, the data
must also be checked.

Using least squares tells the mathematics to
make the residuals orthogonal to all included terms,
and to try to make them have a Gaussian distribution.

Beware of LURKING VARIABLES

- Operators change
- Analysts take breaks
- Reagents decay
- Voltages vary
- Connections are made

and broken
- Etc., etc., etc.

TIME ORDER is often a proxy for LURKING VARIABLES

RANDOMIZATION of tima order often helps, but

- will still need to check data, residuals,
for time order effects, and

- simple randomization may be too expensive
in time consumed, materials used or
complexity of organization, so

- compromises may be desirable

Even very similar plots often show quite
different things.

There is no substitute for making a wide variety
of plots.

One of the chief benefits of computers is the ability
to make many plots, easily.

"The standard practice in which the mode of analysis
determines the assumptions about the data must be,
avoided." David A. Kenny, Psychological Bulletin, 1975.

"We cannot expect certainty from data, only fallible

information. David A. Kenny, Psychological Bulletin, 1975.
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Using high powered statistical methods is seldom
the most important contribution a good practicing
statistician makes toward the solution of a problem.

A Non-standard design problem

How do you find out how much a wildlife preserve is worth? Exhibit 4

gives much of the background for a study designed to help find out.

Randomly selected hunters who were successful in obtaining a goose

hunting permit were to be offered varying amounts of cash for their

permit. The responses from these actual offers were to be compared

with these from another group to which hypothetical questions were

posed of the form "If we were to offer you $100 for your permit, would

you take it?"

The design problem posed to us was how to distribute the actual

cash offers over the range from $1 to $200. We had a dose-response curve

to design for -- with the dose being $. A novel feature was that higher

doses were much more expensive than lower doses. Existing data from

hypothetical questions suggested a standard logistic model. If P is

fraction accepting offer, then

log(l-fP) - a + slog($)

seemed to be a reasonable model. However there was reason to believe

that higher percentages would accept actual cash offers, than would

eccept hypothetical offers . However, the magnitude of the difference

was uknown.
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The problem was as usual non-standard. There were multiple

objectives:

- Estimate area over curve (expected value of the resource to a Hunter),

- Compare this area with that obtained by two cheaper and

more standard methods (hypothetical offers and travel costs),

- Compare the whole curves for the three methods,

- Compare some particular points on the curves.

There were multiple constraints:

- A maximum of $16,000 in offers would be made,

- We would lose part of our fee for services if the actual

payments to hunters totalled over $12,000.

- There was a fixed cost of about $5 per offer.

- A design was needed quickly - hunted season was about to open.

What we did

First we made several false starts, each time helping to clarify the

problem. Other steps included:

- Identified "worse plausible case" (many people accept our $),

- Identified "expected case",

- Under these and other scenarios we computed a wide variety

of things of interest for a variety of designs.

- We selected two candidate designs to discuss with researchers,

- The desire to keep from going broke became one primary

consideration.

The somewhat surprising answer was that the average selling price

turned out to be $160, for the permit alone. Even if every hunter got

hit limit of one goose, the cost per pound would be over 10 times that

in local stores. 268
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Another design problem

In another situation we sought to develop procedures for creating

small fractions of 2 a3 b4csd6e designs "on the fly". One such example

was to create a fraction of a 22325161 design In about 60 runs. A

careful search of the literature gave little useful information so we

developed some ad hoc procedures. To see how well they worked we tried

them on a 2333 design with 72 runs in which we wanted to estimate all

interactions up through linear by quadratic. Here a Connor-Young (1961)

design was available as a benchmark.

The most important practical conclusion we reached was that simple

random sampling without replacement of the rows from the full design,

gave designs with about 80% efficiency. Since this was a simple

procedure and since no other procedure did markedly better without a

lot of work, it was decided that simple random sampling was good enough.

Literature

Since we frequently need to locate articles on some new topics,

we make extensive use of the Current Index to Statistics.* Volume 3

covering 1977, for example, gives convenient access to over 5000

journal articles, books and conference proceedings.

* Available from American Statistical Sssociation, 806 15th St., N.W.,

Washington, D.C. 20005.
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Teaching

Most students learn only how to solve text book problems--and

worse yet--learn to think that all problems should be text book problems.

Appendix A reproduces a syllabus from a course designed to counteract

this shortcoming of our educational system.

Concluding remarks

Those of us who practice data analysis and design have an

obligation to keep reminding those who teach and do statistical research

that most problems do not fit into any standard mold. I hope that these

brief descriptions help some, but I know that more detail on many more

problems is necessary if the message is to be brought home, where it matters.
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I' Exhibit 2 (continued)
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Exhibit 3A

Measurements of oxygen content of steel rods, in order data taken.

DAY

Exhibit 30

Meqsmroiiiefts of oxygen content of steel rods plotted
versus time order wthin the day.

4

0 I 2 3 4 6 6 7 a

ORDER WITHIN DAY
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APPENDIX A

Syllabus for

STATISTICAL CONSULTING
Fall 1978

Instructor: Brian Joiner

GOALS OF COURSE

Students will increase their knowledge of how one:"

A. analyzes data;
8. gathers date;
C. consults;
D. uses the methodology literature;
E. writes good reports.

GENERAL APPROACH

- We will tackle problems together, developing needed methodology as
we go.

- We will work on:

- old data sets;
live consulting data sets,

- old data gathering situations;
- live consulting data gathering situations.

BENEFITS OF APPROACH

- It could be a very exciting learning mode;

- It is well suited to my goals for the course.

CONCERNS OF MINE

- It will be a lot of continuous work for me;
- It will lead into areas that I know little about (could be embarassing);
- Students may resent me not "teaching" them anything.

FALL BACK POSITION

- Like recent semesters
- Hand out data sets for student analysesi
- Talk about relevant methodology in class.

"Implications:

- The j fi echniques covered will not be considered as important
as the general probim solving approach.

- ie must assume students can cope with the literature under some
guidance from me.

- It will be almost like "the real world with tttempts to maximize
learning opportunities while worklig unaer ipy lOose supervision.
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MORE DETAILS

A. How to Analyze Data

- start from questions and data--not from statistical method;
- check data carefully and continually;
. formulate goals and questions precisely;. formulate tentative models

- mechanistic
- empirical

- specify analytical approaches;
- use graphical techniques liberally

- on data
- on residuals

- organize hand work;
- use computers effectively, and intermix with hand work;
- bear in mind that summarizing and estimation should almost always

be much more important than testing;
- finding the real uncertainty is often very difficult

- multiplicity of procedures tried
. complexity of structure of variation

- communicating results is an Integral part of the analysis

Useful references (see below for details):

M&T; T; D&W; D; BH2; M-HB; FPP

B. How to gather data

- formulate goals precisely;
- quantify goals;
- specify variables precisely
- specify classes of candidate models
- describe blocking, realm of generalizability;
- consider alternative means of exposing true uncertainty;
- specify how you will seek to estimate

- precision
- bias

- describe plan for data gathering, in detail;
- describe randomization procedure in detail;
- describe data logging procedures in detail;
- if data will be computerized, describe process;
- specify ways that data will be checked;
- specify how data will tentatively be explored, summarized and

otherwise analyzed;
- communicating alternative, tentative data gathering plans Is an

integral step.

Useful references:

BH2 ; S&C; Slonimr; Williams; Kish; S2; C&S; Unobtrusive; FP? C&C; C.
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C. How to consult

- how to interact productively;
- searching out the real probiem;
. not limiting oneself to statistics

helpful, resourceful attitude;
sharing the work;
proper level of sophistication of analyses/designs;
communicating your understanding of problem;

. communicating your intended analysis/design strategy;
- communicating results of your analyses or plans for design;
. importance of good written communication;

References:

Schuchany; Joiner cryogenicsy(
4 D. How to use methodology literature

- importance of not having to reinvent the wheel (especially
square ones);

- how to find references of interest;

References:

Preface to CIS; CIS; NBS Index

E. Writing good reports

Good writing is a skill that can and must be learned. Practice and
organization are key ingredients,

Some elements of a good report are often:

- executive summary
- description of problem; motivation; goals;
- description of data (and listing if appropriate);
- data checking procedures and results;
- non-technical overview of analysis strategy;
. results of analyses;
- recommendations for improvements in future data gathering;
- appendix: technical discussion of analyses
- appendix: data listing (if too long for body of report)

NOTE: In this class only 8 xll inch paper can be used, Computer printout
must be cut or xeroxid to this size; or If smaller, may be taped
firmly to regular paper like part of the text of your report.
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Some indicators of goal achievement

A. How to analyze data

Reports of data analysis
- data sets I hand out
- data from consultations

B. How to gather data

Reports of data gathering plans and results
- situations eanded oUt
- consultations

C. How to consult

- diary-like reports of consultations (see Joiner Cryogenics)
- brief, one-half page personal reactions to consulting articles

D. How to use methodology literature

-brief annotated bibliography of key articles on some subject (e.g.
errors In X's)

-brief review of 2 recent (appeared in last six months)
methodology articles
actual use of literature as evidenced in reports in A,B,C above.

E. How to write reports

- reports prepared for ABC and D above

Some work steps in learnina to use computer effectively

On both UNIVAC 1110 and DEC 11/70 (WITS):

- enter data into a file and save;
- list file, edit some data and save corrected version;
- delete old file;
- on UNIVAC print TOC of:

- Joiner*Data
- MACC*MINITAB

- copy an element of JOINER*DATA or MACC*MINITAB and modify
- delete one row
- change several values
- save modified version

- make Minitab runs using at least the following commands:
- all types of plots; INDIC; EXECUTE; store K; LOG; NOBRIEF;

ONEWAY; REGR; analyze residuals
save a Minitb rogrim,n •henegecute It
create an S BAN us ng ini
use Minitab to enter data from STJBANK & PRINM & PLOT
use STATJOB to do regression and regression on logs
use STATJOB to do BANKPRINT

- transfer data set from WITS+1110
- " g" "i 1110WITS
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References:
! ~M-HB 8

M-RM
EDIT manual
STATJOB manuals
WITS manuals

To provide evidence of work you do in learning to use the computer:

- keep a diary, and write a report chronologizing your experience
including listings of work steps, computer programs and output.

Some bench marks

By the end of the indicated week each student should have handed
in documentation of the following:

Week Progress

Proficiency on one computer (UNIVAC or DEC).
First data analysis or design report,

- Brief annotated bibliography on some subject.
- Second data analysis or design report.

3 - Proficiency on second computer.
- Brief summaries of two recent methodology articles.

- Brief report on two papers on consulting
- Should be able to use S&C and M&T (separate documentation

4 not required)
- Ideally should be involved as a consultant on some

project (will depend on availability of projects).
- Third data analysis or design report

- At least four more reports on data analysis projects,
5-15 design projects or consulting projects of increasing'complexity. 

:
ty..

A FEW IMPORTANT CONCEPTS IN ANALYSIS, AND KEY REFERENCES

Data checking: Critically important but no really good references.
See Daniel and D&W and Pollack & Joiner

Transformations(re-expression): M&T Ch. 4-6; ETA Ch. 3-6; Draper &
Hunter (Tech. 1969); S&C; Box & Tiao.
Plotting data: M-HB; MIT; ETA.

Plotting and other analysis of residuals: D&S; M&T; Anscomb & Tukey,
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Using computers: M-HB; M-RM; STATJOB manuals; BMDP manual; SPSS
manual; SAS manual; Rummage manual; other special purpose programs.

2Analysis of variance: Winer; BH ; M&T; Kirk; Hicks; Scheffe; Searle;
MINITAB; Rummage; STATJOB; BMDP and other computer packages.

Outliers and seriously heavy tailed data; M&T; Denby & Mallows; Duter's
computer program.

Missing Values: (See me and I'll get bibliography from Jock E.)

Categorical data: (...from Camil).

Non-independently distributed observations:

- Time series: B&J; BH2

- Components of variance situations: Anderson & McLean (3 places);
Fuller & Battese;
Other problems: Joiner & Campbell

Ethics: see 1977 CIS

Mechanistic model building: BH2
Empirical model building: D&W. BH
Findin the real uncertainty: M&T; BH2

Variation in non-linearly transformed functtons; BH~t Ku paper in Ku volume

GRADING

Each report (or other write-up) will be graded on three criteria

- quality of work,
- amount of work,
- quality of exposition.

Each criteria will be assessed on a three point scale

+ a well above average for course,
-= as expected (average),

- - below expectation.

At the end of the semester you must return all of your work to me
so I can review it and assign a grade for the course. You may pick up
your materials after I have turned in the grades.

In assigning a final grade I consider all of the evidence you have
submitted during the semester as to your potential as a practicing
statistician. Grading is roughly as follows:

A . A very fine hiring opportunity for most anyone.

AB w Definitely above average. Would be well suited for some
jobs but might have weaknesses in some others.
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B * Average overall performance. Might be average in every respect
or very good in srne respects with critical weaknesses in
others.

BC - Below average. Usually serious weaknesses in an important
area, frequently due to low productivity, tardiness, poor
exposition or repeated serious undetected "goofs" in analyses
or designs.

C- Even further below average.

below C ??

A few comments. I tend to reward hard creative work more than I
punish the lack of. If you work hard and think a lot, you will probably
get two benefits:

1. You will learn a lot, and
2. You will get a good grade.

If you don't work hard, you will surely suffer in the first
and perhaps in the second. In short, you can gamble. In this course
(and probably in others) the odds are probably about 50-50 of a decent
grade with little effort. But if you choose to gamble, remember the
possible loss in (2), and the sure loss in j.
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LASER BEAM WAR GAMES: DESIGN, ANALYSIS, AND
MODELING CONSIDERATIONS

W.S. Mallios, R.D. Batesole, and D.R. Leal
The BDM Corporation

ABSTRACT. Concepts in classical design, analysis, and modeling require
reexamination under force on force experimentation with real time casualty
assessment. The degree of allowable free play between opposing sides must be
prespecified in the design and conduct of encounters. Severely limiting free
play can degrade whatever realism is achieved through such games, while maxi-
mizing free play leads to imbalances in the evaluation of treatirent effects.
Regarding analysis, adjustments are required for imbalances. However, adjust-
ments through standard covariance analysis can be misleading since treatments
affect many of the covariables. Regarding development of simulation models,
a broad class of cause and effect relations can be estimated and evaluated in
terms of the experimental data. Methods of structural regression are used in
developing a data based simulation model for mounted combat.

1. Force on Force Experimentation.

"Hoping to add a touch of battlefield realism to its
peacetime training exercises, the Army is developinga complex laser beam system that permits two forces toshoot at...each other without hurting anyone... When
the system goes into operation...It will for the first
time advanco scorekeeping in war games significantly
beyond the level of children shouting, 'Bang, bang,
you're dead'." Los Angeles Times, 8/23/76.

In force on force experimentation, the trend is towards real time casualty
assessment (RTCA). Opposing forces utilize weapons equipped with low intensity
laser guns, laser-sensitive devices (sensors), and automatic telemetric links
to and from a computer. When a combatant detects a target and engages it, he
fires his weapon activating the laser gun. If he is on target, that target's
sensors are activated. The physical parameters of the engagement (weapon type,
target type, target exposure, range, etc.) are automatically transmitted to the
computer which records the data, assesses the results, and, if a casualty is
indicated, transmits that information to the target for attrition.

The objective of one such experiment was to evaluate the effectiveness of
foxhole fortifications in dismounted combat. The scenario called for a threat
force to attack and penetrate defense positions under a variety of conditions.
Preliminary analyses indicated that threat tactics -- a free play variable --
had a major effect on threat penetration. The desigiitor "free play" for tac-
tics means that a threat team leader was free to chorie tactics he thought best
In the particular trial. Composed of 24 men -- 3 squads of B men each -- threat
teams commonly employed two tactics with variations en each: (i) two maneuver
squads and one fire squad, and (ii) one maneuver squ,,J and two fire squads. The
latter led to considerably greater threat succass, a result which illustrates
that serendipitous effects are a by-product of free play, force on force experi-
ments.
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Currently on the drawing board Is an experiment planned to evaluate the
effectiveness of a force guarding a nuclear facility to deter an attacking
terrorist force. The scenario calls for a surprise attack by terrorists with
the intent of securing and removing mock nuclear materials stored on site. The
perimeter is brightly illuminated, open terrain. The terrorist force obscures
its detection by attempted entry disguised as delivery vendors, innocuous tray-
elers, or other deception. Engagement commences upon detection, identification,
or overt act. A free play fire fight ensues until the terrorists are defeated
or the terrorist mission is accomplished. Factors to be varied in this scenar-
10 include guard-terrorist forces sizes, weapons mixes, defense configuration
(elevated guard tower, submerged pill box, or no special structure), ard pene-
tration distances from the outer perimeter to the storage area.

2. The Experiment Under Study. Data used in model building are drawn
from TEMAWSw, an experiment on the effectiveness of scatterable mines on an
attacking armor force. The tactical scenario was an attack by a Soviet tank
company through a scatterable**, antitank minefield against a defending U.S.
mechanized infantry team. Simulating the Soviet force were 15 MBO tanks rein-
forced by three APC TOWs. One M60 tank, two TOWs, and two Dragons simulated
the U.S. force. A trial consisted on one complete attack through the minefield. I
The trial ended when the last attacking tank had penetrated the minefield or
when all threat tanks had been killed. Figure 2.1 depicts a typical trial
where the Cs denote the center of mass, in successive 30 second increments, of
threat tanks advancing towards the defense. Minefield dimensions are 300 meters
by 1000 meters. Threat configurations during minefield entry are illustrated
for two trials in Figure 2.2. F1gure ý.3 depicts an end of trial result where
M denotes a mine or mobility kill, F denotes a direct fire kill on a threat
tank, and I denotes a Dragon kill by threat artillery.

3. Statistical Design Considerations. In designing force on force ex-
periments, there are constraints imposed by priorities, the budget, time, and
the state of the art of the experimental technique. The constraints usually
limit the number of treatments which can be evaluated in the c~periment. Ac-
cordingly, there are two schools of thought regarding the cor uct of the ex-
periment once treatments are selected:

(3.1) limit free play by controlling more of the uncontrolled variables;i.e.,
neutralize the effects of certain uncontrolled variables as opposed
to expanding the number of treatments.;

(3.2) allow free play to a maximum possible extent.

Those advocating (3.1) are usually motivated by imbalances arising from free
play -- imbalances which complicate evaluation of treatment effects. Imbalan-
ces are illustrated by a partial listing of the TEMAWS design matrix In Table
3.1.

* TEMAWS is an acronym for tactical effectiveness of scatterable mines in the
antiarmor weapons system.
** In tactical situations, mines may be scattered by artillery or helicopter
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Minefield density refers to the number of mines scattered uniformly over an
area of 1000 meters by 300 meters. Visibility refers to the visibility of
the mines to the oncoming threat force. Baseline trials are those for which
there was no minefield. Numbers contained within the cells summarize events
up to the time the first threat tank enters the minefield. In comparing, for
example, low and high visibility at the .005 density, it is seen that for all
five trials of low visibility, at least one TOW was killed before the first
tank entered the minefield. Thus, for all trials of this treatment, the de-
fense was one weapon short during the main part of the battle where synergis-
tic effects of the minefield and defense fire on threat attrition were to be
examined. Conversely, for all six trials of high visibility, both TOWs were
available on first threat entry Into minefield.

Without adjustment for imbalances, differences between the effects of
these two treatments on end of trial dependent variables -- such as total
threat casualties or casualty exchange ratios -- could be due to the differ-
ence in mine visibility, to the shortage on one TOW, to a combination of the
two, or to other imbalances. With such complications brought on by imbalan-
ces, it is tempting to severely limit free play; e.g., conduct trials under the
condition of no kills on either side prior to threat entry into the minefield.
The difficulty with this recourse is that it runs counter to the purpose of
RTCA -- attempted parity with realism. Sacrificing realism to attain greater
balance is generally unacceptable since this recourse elevates the method of
analysis to a higher level than the experimental objectives.

Aside from greater realism, an additional feature of (3.2) is the emer-
gence of serendipitous effects. Notice, for example, the difference in threat
configurations in Figure 2,2. One configuration shows a single cluster* of
tanks and the other, three rather loose clusters. Entry and passage through
the minefield in a single, tight cluster tends to reduce minefield kills but
increases direct fire kills; i.e., a single, tight cluster draws more defense
fire. Conversely, a highly scattered threat configuration, as cuantified by
a number of loose clusters, tends to increase minefield kills but reduce direct
fire kills. Thus, there is a trade-off between minefield kills and direct fire
kills on the threat which is dependent on threat clustering. This result was
not anticipated in planning the experiment and would not have been uncovered
had the configuration of threat tanks been prescribed and nearly constant be-
tween trials. In fact, it has become increasingly evident that, not only can
serendipitous effects be expected to occur, but their effects on trial outcomes
can be greater than that of treatments.

4. Analysis Considerations. When effects of treatments on end of trial
dependent variables are analyzed without adjustment for free play variables, a
common result is that treatments are insignificant. This result can be mislead-
ing since, under (3.2), effects of free play variables can dominate effects of
treatments on trial outcomes; e.g., the loss of a defense weapon prior to threat
minefield entry can have a greater effect on trial outcome than the visibility
of mines. Moreover, adjustments for free play variables in terms of standard

* Threat force configuration, excluding reinforcements, is quantified in terms
of clusters and non clusters within each of the areas prior to the minefield,
within the minefield, and beyond the minefield. Clusters are updated every 30seconds and are determined by the single link method (1). Within each area, a
tank is part of a cluster if it is within 100 meters of a cohort. Also within
each area, a tank is a non cluster if it is greater than 100 meters from the
closest cohort. 293



covariance analysis are misleading when treatments affect the free play co-
variables and treatment effects on the covariables are neglected*; see (4),
(5).

An example of treatments affecting a covariable, say, the number of TOWs
remaining on first threat entry into the minefield, is as follows. Suppose the
TOW firing rate prior to threat entry into the minefield is negatively correla-
ted with minefield density. Since the TOW firing signature is pronounced, its
increased fire draws ingcreased threat fire which decreases the TOW's chance of
survival. Thus, minefield density has an indirect effect on the number of TOWs
prior to threat minefield entry -- indirect in the sense that the effect of
minefield density of TOW survival is through the TOW firing rate and the sub-
sequent threat firing rate:

TOW Firing Threat Firing Number of TOWs
Minefield - Rate Prior to + Rate Prior to .. Remaining on

Density Threat Mine- ""* Threat Mine- Threat Mine-
field Entry field Entry field Entry

where x-±.y reads "x has a positive, direct effect on y". When the flow of
events are characterized by this path diagram, a separate equation must be con-
sidered for each variable (other than minefield density) in evaluating treat-
ment effects on dependent variables of interest.

The recourse to situations where treatments have possible effects on co-
variables is the analysis of direct, indirect, and overall treatment effects as
quantified through a structural regression system; see Appendix A. In such an
analysis, each trial may be partitioned according to time intervals, whether
fixed, random, or a combination thereof, and relevant variables are measured
from each of successive intervals. To partition according to random time in-
tervals is to partition according to events. For example, a scheme for event
partitioning is the division of trials into before and after first threat en-
try into the minefield. A model for this scheme is as follows:

hbhh* Yh* (b) "ý bhj xj + 6bh
h*j

(4.1)

hahh* Yh* (a) Xhah* Yh* (b) + Xahj x + aah

where yh,(b) and yh*(a) denote the h*-th endogenous variables during the be-

fore and after periods, respectively, h, h* - l,..., p; •fhh* dYh(f)/dyh* (f),

the direct effect of yh,(f) on yh (f), f " a, b; afhh " 1; %ah* dyh (a)/dyh* (b),

* Even when treatments do not affect covariable, high correlations between co-

variables can lead to poor treatment estimates; see (2), (3).
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the direct effect of yh*(b) on yh(a); the xj include treatment effects which

are assumed constant within trials; Afhj * dYh(f)/dxjt the direct effect off xj

of ); 6 8fh is the model error. In evaluating treatment effects, note that

x may have direct effects on both yh(a) and Yh(b) and, hence, an indirect

effect on yh(a) through yh(b). The overall xe ffect on Yh(a) is the sum of

the direct and all Indirect effects of xj on Yh(a); see (5).

While simple, model (4.1) has the disadvantage that variables may be over
aggregated which leads to a loss in information. For example, suppose a key
factor in trial outcomes is the number of threat losses in the first minute
after threat minefield entry. Aggregating this variable over the entire after
period may obscure its importance. As such, the partitioning of TEMAWS trials
employs both fixed and random time Intervals. The random intervals (or event
segments) are:

(I) the time segment to to, the time the first threat tank enters the
minefield

(ii) to to to + 150 seconds (4.2)

(III) the time segment beyond to + 150 seconds.

The time line within each event segment is incremented into successive 30 sec-
ond intervals from which relevant variables are measured:

[to -30, to), [to, to +30),..., [to +120, to +150), [to +150, to +180),...

First Event Segment Second Even Segment Third Event Segment

A model for this partitioning is as follows:

P rhh* q rh.

Sehh*i Yh* (t-i) I I ehij J(t-) + (t) (4.3)
h*"l 1i0 Jl1 1*-0

whtre yh(t) is the h-th endogenous variable in the t-th ttm-n interval and

yh(t-i) is its i-th lag; Gehh*i dyh (t)/dyh* (t-i), the -rect effect of
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yh*(t-i) on Yh(t) in event segment e; e * 1, 2, 3 as defined in (4.2);

SehhO = l;eh (t) is the model error. Contrary to model (4.1), exogenous

variables (other than lags of endogenous variables) are written as xM(t) to

allow for variation in x within trials*; e " dyh (t) / dxj (t-i*), the

direct effect of x (t-i*) on Yh (t), where x (t-i*) is the value of xj in

time interval t-i*.

Treatment effects which are constant within trials tend to have decreasing

direct effects on Yh (t) with increasing .time; i.e., as trial time increases,
treatment effects on Yh (t) are generally indirect and through Yh Ct-i) and

Yh* Ct-i). Put simply, as the encounter progresses, performance variables tend

to reflect the Initial effects of treatments. Another reason for the decreas-
ing effect, at least regarding minefield density, is that mines expended through
encounters are not replaced. With a large threat force, the density would tend
to decrease with increasing threat penetration. Effects of the decreasing den-
sity are reflected through, not only lagged variables for mine encounters, but
through a variable measuring cumulative mine encounters,

The event segments in (4.2) are chosen such that coefficients in model
(4.3) remain stable within segments for key uncontrolled variables**. The ob-
jective is to attain stability of coefficients with as few event negments as
possible; i.e., since coefficients are unstable between event segments, a
structural system is estimated for each segment. The 30 second intervals with-
in event segments were chosen to prevent an over-aggregation of variables and
to avoid causal feed backs whenever possible; i.e., the 30 second intervals
are sufficiently small so that the structural system is largely recursive; see
Appendix A.

5. Data Based Simulation Models. With the constant monitoring and RTCA
of weapon systems throughout the encounter, laser beam war games have a major
impact on modeling: (i) a broader class of cause and effect relations*** can
be examined relative to non-RTCA experiments and (ii) cause and effects rela-
tions can be estimated in terms of the experimental data. The negative side
of data based models is that there exist artificialities in field experiments.

* An example of xj varying within trials is artillery fire which varies ac-
cording to a prespecified rate for a portion of the encounter.

** It is not feasible to establish stability of coefficients for all endogenous
variables due to their large number.

*** The term "A causes B" can be defined in terms of "A affects B", which im-
plies that a change in the level of B is associated with a change in the level
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These, however, can be largely mitigated through subjective adjustments of
estimated relations. Thus, at the very least, sensitivity analyses can be
performed on the mitigation of artificialities.

The alternative to data based models are non-data based models which were
i• the only recourse prior to RTCA. These Include deterministic models such as

the original Lanchester model (6) and stochastic models which utilize data in-
puts (7), (8). Generally, these models do not or cannot address a number of
relevant cause and effect relations. Take, for example, the number of mine
encounters in the t-th time interval, say, ME (t). A non-data based model may
predict ME (t) conditional on minefield density and, perhaps, on mine visibil-
ity. Under (4.3), the data based model predicts ME (t), not only in terms of
density and visibility, but on the clustering of tanks in the minefield in t-l,
on the dispersion of these clusters, on the rate of movement of tanks into and
out of the minefield in t-l, on the firing rate of tanks In the minefield in
t-l and on cohort kills among threat tanks in the minefield in t-l. Moreover,
ME it) is affected by ME (t-l), ME (t-2),...; i.e., the data based model does
not assume that the present is independent of the past as do many of the non-data based models; events which occur at one time interval can have a major Aeffect on events occurring at subsequent time intervals.

Cause and effect relations comprising the data based model are estimated
in terms of (4.3). There are advantages to this type of model. Firstly, struc- I
tural regression is a well established, rigorous method of data based modeling
as evidenced by its use in econometric modeling; see (9), (10). Secondly, when
the linearity assumption is invalid (or when coefficients are not stable from
one event segment to the next), a separate system can be fitted per event seg-
ment; i.e., rather than having to convert to a non-linear system, the time line
is partitioned according to event segments such that response surfaces are ade-
quately fitted by hyperplanes within segments*. Thirdly, (4.3) is a vehicle
for evaluating treatment effects under the scenario of the experiment from which
the data are drawn. This is an important feature in the presence of Imbalances.
Fourthly, (4.3) provides a solid foundation for excursions to other scenarios
in evaluating treatments not considered in the experiment; e.g., weapon trade-
off analyses can be performed, as in Section 8; or "dirty battlefield" scenarios
can be simulated with varying degrees of obscuration and suppression. Finally,

(***cont'd) of A. There are two types of association. Either A is a mechanism
through which B changes or A reflects (or is correlated with) some unknown, un-
measured, unused, or unavailable variable U which is a mechanism through which
B changes. Note that only in the first type uf association does A necessarily
preceed B in the sequence of events. Note also that knowledge of the type of
association may be more likelihood than certainty.

* The transition from one event segment to the next or from one system of equa-
tions to the next is smooth due to the use of lag variables; i.e., lagged effects
from the previous event segment are used in the equations for the current event
segment.
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this type of data based model provides a means of quantifying effects of player
psychological profiles on encounter outcomes*.

6. A Path Diagram for TEMAWS. To avoid underidentification in (4.3),
additional information is required on a number of parameters per equation.
Usually, this information is derived from a subjective assessment that certain
direct effects do not exist. In TEMAWS, this assessment is partially summa-
rized by the path diagram in Figure 6.1 wherein all arrows denote direct effects.
Threat configuration is t-l affects threat fire, mine encounters, and defense
fire in t. In listing the following variables which comprise threat configura-
tion, P, W, and B denote, respectively, all threat positions prior to, within,
and beyond the minefield:

(6.1) the number of clusters** and non-clusters in each of P, W, and B
at the end of each time interval

(6.2) minimum ranges*** between each defense weapon and both clusters
and non clusters within each of P, W, and B

(6.3) the dispersion*** of those clusters in (6.2)

(6.4) the change in the number of clusters and ncn-clusters from t-2 to
t-l and from t-3 to t-2.

In model (4.3), these configuration variables are not only predictors in t-1,
bui. are individually predicted in t.

Within t, firings affect pairin s, pairings affect attritlon, and attri-

tion affects threat cnnfituratlon. ?n turn, configuration in t affects firings
and mine encounters fi t+?.

* In linear, reduced models, player or team effects are often quantified in
terms of dummy variables whose coefficients are random effects. If, prior to
the experiment, each participant responds to an appropriate psycholog- ..l in-
ventory, the responses can be converted to scores In terms of principal compo-
nent or factor analysis; the scores become covariables which replace the dummy
variables; see (1). In applying model (4.3) to TEMAWS data, player effects are
reflected by performance data; i.e., dummy variables for player or team effects
were not introduced and no psychological inventory was utilized in TEMAWS. Mod-
eling in future RTCA experiments could be enhanced by utilizing an inventory, by
quantifying players in terms of "psychological covariables", and by using tnese
covariables as exogenous variables which are constant within trials. Proper ro-
tation of personnel allows for these covariables to vary between trials.

** The threat reinforcements are not included in the threat tank clusters.

*** The reciprocals of the ranges and dispersion are used in the model; i.e.,
when a cluster or non-cluster is not present in P, or W, or B, the correspond-
ing range and dispersion are set equal to zero.

298

'I t



rm .

V1 4-1

h.4j

Eu -W *5
Li t 5

'c-r. S. - E

3*4

.4-. 4-

4-- 0)

9JL 44-

TK T

4-b-

17. 1- :pp.

L .. ..... ..



Within t, mine encounters affect mine kills*. Each defense weapon is modeled
individually regarding firings, pairings, and attrition**. Threat reinforce-
ments and artillery are modeled individually regarding firings, pairings and
attrition. For each t, threat tank firings*** are aggregated and modeled as
an entity within each of P, W, and B, as are threat tank pairings and attri-
tion.

The path diagram does not depict lagged effects. Lags of each variable

extend back to at most five time intervals. Generally, the lags of Yeh* (t)

do not have a direct effect on Yeh (t), hý h*. Exceptions to this are lags

of mine kills affecting mobility kills and lags of pairings affecting firings
for certain defense weapons.

The length of the interval t is sufficiently small such that causal feed-
backs**** within t are largely avoided. Exception to this are feedbacks be-
tween firings of certain defense weapons which reflect position effects,
Through adjustment of these coefficients, these feedbacks could also be used
to simulate communications between defense weapons.

7.1 The Method of Simulation. Following estimation of parameters in (4.3),
encounter outcomes are generated by converting predicted values in t to observed
values in t which become predictors for other variables In t and lagged varia-
bles for predictions in t+l. For example, the predicted number of firings for a
given defense weapon in t is taken as the expected value of a conditional Poisson
distribution. Sampling therefrom provides an observed value which becomes (1)
the first lag in predicting expected firings in t+l and (ii) a predictor for ex-
pected pairings by this weapon in t. Observed pairings in t, obtained analogous
to observed firings, become (i) the first lag in predicting expected pairings
t+l and (ii) a predictor for variables comprising threat attrition in t; these
variables include individual threat reinforcements and threat tanks aggregated
within each of P, W, and B.

Variables not following conditional Poisson distributions, such as ranges
and cluster dispersions, are assumed to follow conditional normal distributions.
For example, the predicted minimum range between a given defense weapon and all
threat clusters within the minefield becomes the expected value of the condition-
al normal; the variance is taken as the estimated variance of the model errors
(4.3). Sampling from this distribution provides the observed value for this par-
ticular range in t. This value, as an observed, threat configuration variable

* For mine kills in t, mobility kills are modeled separately from mine kills.

• * Attrition on the weapon system is modeled separately from personnel kills.

•*** Primary and secondary firings and pairings by the threat tanks are mod-
eled separately.

S*** A casual feedback between two variables A and B within t, denoted by A*-+B,
means that A affects B and B affects A sequentially over time within t.

300

.,:.r4.~~tg,; L,.¶)..lI ~ ~ I~I Aid. l J•! LI



------ ,

in t, is a predictor for both mine encounters and firings in t+l.

This recursive procedure is followed in generating all predicted, ob-

served, and lagged values for each Yeh (t) in (4.3)*. Only initial conditions**,

in terms of the earliest lags in the first event segmont, must be prespecified.

Simulations are conducted under the following ground rules. Regarding end

of trial criteria, the defense wins if the number o defense weapons remaining
Is greater than or equal to the number of live threat tanks plus the number of
mobility killed tanks. The threat wins if the number of threat tanks penetrat-
ing the minefield is greater than three times the number of defense weapons re-
maining excluding the Dragons. The threat also wins if all defense weapons
are killed. The trial is termed no decision if 38 minutes have elapsed and
neither side has won.

The following constraints are imposed on defense firings. After two fir-ings from the same position, one Dragon moves to a new position; the other

Dragon moves after one firing. Movement time Is three minutes. One TOW will
assume a new position after two firings, the other after three firings. Move-
met time its two minutes. If the tank fires as many as three rounds in one
minute, its firing is deterred in the following thirty seconds***.

The firing constraint imposed on the defense tank reflects obscuration of
its visibility due to its own firing. The present simulations do not account
for obscuration occurring when a weapon has been paired. Nor do they account for
suppressive reactions of personnel of a paired weapon. Moreover, the ground rules
allow mobility killed tanks to continue firing. This creates a dual between

* For causal feedbacks, where yah ( (t), initial, observed values

of Yoh (t) and yh* (t) are obtained through the reduced system. These ob-

served values become then, predictors in the structural system where Yah (t).-*

Yah* (t) and Yah* (t)"--*Yeh (t).

** These conditions Include make-up and numbers of opposing forces, initial
threat formations, and initial ranges.

*** Opinions regarding constraints on defense firings are varied and will be
subject to future sensitivity analyses. Due to the pronounced firing signature
of both Dragons and TOWs, there is general agreement that each will relocate
"frequently". The consensus is that Dragon personnel will change positions
usually after one or, at most, two firings and that relocation will take ap rox-
imately three minutes. TOWs are said to relocate after two or, at most, three
firings and that the relocation time is roughly two minutes.
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mobility killed tanks and defensive weapons, particularly for a large threat
force in a high density minefield. The dual can lead to unrealistic results
if, In fact, tank crews are likely to bail out of mobility killed vehicles.
It should be recognized, however, that constraints can be imposed to deal with
these situations based on the foundation provided by model (4.3).

Table 7.1 presents selected results from a simulated trial with double
the average number of threat tanks employed in TEMAWS. The threat is declared
a winner after seven minutes since threat tanks penetrated the minefleld with
a greater than 3 to 1 ratio; i.e., seven tanksipmnetrated against a remaining
defense (excluding Dragons),of one tank and one TOW. Note that had the threat
been declared a winner by penetrating the minefield with a ratio of at least
3 to 1, the trial would nave terminated at the end of the thirteenth time In-terval.

8. Simulation Results. TEMAWS was intended to establish whether effects
of the minefield and defense fire un the threat are additive or interactive.
A means of resolution is through the relation between minefield density and
the number of direct fire kills on non-disabled threat tanks. If there is a
relation between the two, Effects are Interactive. No relation indicates ad-
ditivity of effects.

In adjusting for imbalances, model (4,3) was exercised under the TEMAWS
scenario with 100 simulated trials for densities of low visibility minefields.
A plot of the average number of direct fire kills on non-disabled tanks versus
minefield density is presented in Figure 8.1 for force sizes of 13, 26, 31,
and 39 tanks, For 13 tanks, the average number* used in TEMAWS,,the slope is
negative. Positive slopes result for other force sizes.

These slopes can be explained through the following path diagram:

a - DefenseDelay + Fire

Direct Fire KillsMinefield oOensty jon
Density Non-Disabled Tanks

Minefield * Target '
Encounters Availability

A positive effect of density on direct fire kills follows logically from the
upper path: the greater the density, the more the evasive action by the threat
and the greater the delay time; greater delays lead to more defense fire and,
hence, to make more direct fire kills. Positive slopes In Figure 8.1 indicate
that the upper path dominates; the lower path dominates with a negative slope. These

* Although 15 tanks were targeted for use, 13 were available, on the average.
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results Indicate that, given the force size in TEMAWS, target availability
prevented the occurrence of a positive slope*. This illustrates the utility
of a data based model such as (4.3), Excursions can be made to encounters
with larger threat forces so as to remedy the problem of target availability.
The slopes for these larger threat forces are positive indicating a synergistic
effect between density and direct fire kills.

Simulation results in Table 8.1 summarize encounters of threat forces**
matched against each of three defense forces: the TEMAWS force (2 TOWs, 2
Dragons, 1 tank), the TEMAWS force excluding Dragons, and the TEMAWS force
Including a second tank. It is seen, for example, that a threat force of 13
tanks wins in 33% of the encounters against (2 TOWs, 2 Dra ons, 1 tank, den-sity a .0005) and against (2 TOWs, 0 Dragons, 1 tank, density • .001). Since
150 mines were util zed for a density of .0005, there Is a trade-off between
the extra 150 mines required to achieve a .001 density and 2 Dragons. Other
trade-offs are presented In Table 8.2***.

* At the time of the TEMAWS experiment, a larger number of tanks could not
be instrumented for RTCA.

** Each threat force size includes the same reinforcements as in TEMAWS,

*** A word of caution is in order. Ground rules affect results of simulations.
Results from a given set of ground rules should be held in abeyance until
changes in ground rules are evaluated through sensitivity analyses.
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Appendix A. A number of assumptions are usually associated with model

(4.3). Regarding aeh(t), it is assumed that E (deh(t)) * 0 and that
[eht eh,(t)lOo t6eh t

E [S~ht v6 *( 0 for t 0~ t'
(A.l)

C ehh, for t C t

Evaluation of residual crossproducts, based on ordinary least squares (OLS)

estimation on a per equation basis in model (4.3), support (A.1). For tests

of significance, normality of distribution is imposed on aeh(t).

The lagged variables in (4.3) serve the purpose of quantifying the de-
pendence of the present on the past. In doing so, the lags also reinforce
assumption (A.M). Regarding assunmptions on the lags, let

ehh,
• ehh*i P- • ehh,(P)P

1-0

and let the pxp matrix ee (Behh,(p)).

It is assumed that all roots of the equation ee * 0 are smaller than 1 in

absolute value for each event segment e; see (12). Estimated values of the

Qehh*i support this assumption.

The structural system in (4.3) is rewritten as

e "ez + Ae. (A.2)

where the p x 1 vectors.- (yh(t)); the q* x 1 vector z contains all exo-

genous variables including yh*(t-i) and xj(t-0), 0, * i2!0;

q* q + ,rhh + Irh

38 h,j hj
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the p x 1 vector~e a (aeh (t)); the p x p matrix e " (a ehh*)' where a

is the direct effect of Yh* it) on Yh it) in event segment e; aehh 1;

the p x q* matrix re contains direct effects of exogenous variables on endo-

genous variables. The structural system uniquely determines the reduced
system and is given by

y e- rez+as-0e e • +ez !e

where 0e •e re and ce " e" - " From (A.l),

e : (0, e6) where E(e ( e e) (eehh*)'

Thus, : 0 e~ where Eela--

OLS estimation in the reduced system leads to consistent estimates of

Oe and eS' Application of OLS estimation in the structural system yieldf

inconsistent estimates unless the system is diagonally recursive*. In prac-
tice however, assumptions underlying such as system are difficult to justify;
see (13). As such, alternative structural estimation techniques, such as twc
stage least squares estimation** (9), (10), are applied in obtaining consistent
estimates, assuming identification. The drawback of these estimation tech.-
niques is that the resulting estimates can be inefficient, especially when
values of R2 in the reduced system are low. For this reason, OLS estimation
is applied in model (4.3) under the Justification that mean square errors will
be smaller relative to other estimation techniques.

The structural system is termed diagonally recursive if ae is triangular

and 4e8is diagonal.

** In experimental situations where the structural system in not well estab-
lished, full information estimation techniques are risky; i.e., a bias in one
equation is carried over to other equations. As such, only limited information
techniques, such as two stage least squares estimation, were considered.
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DETERMINATION OF STRUCTURAL RELIABILITY USING A
FLAW SIMULATION SCHEME

Donald M. Neal and Donald S. Mason
Army Materials and Mechanics Research Center

Watertown, Massachusetts 02172

ABSTRACT

Reliability Calculations are made for both an anti-tank projectile
and a fragmentation shell using fracture mechanics concepts in conjunction
with the Monte Carlo method. Reliability estimates are evaluated and
compared for both Weibull and Warner stress strength diagram definitions.

A probability density function representation of allowable stress
(strength) is obtained from a fracture mechanics K_0 relationships where
specific random form of the parameters is assigned, A normal density
function is obtained for the structural element stresses by using results
from a two-dimensional finite element solution.

In both Weibull and Warner diagram methods strength density distribu-
tions and parameters are the results of laboratory tensile tests. In the
Weibull model the scale and shaped parameters ware obtained from the Max-
imum Likelihood method. The Warner diagram method required a normal and
best fit density function for stress and strength respectively.

Both the "weakest link" and series-parallel system are evaluated for
desirability in estimating structural reliability. The "weakest link"approach which introduc:s reliability independence between elements will thereby

describe a much more conservative reliability estimate then the series-
parallel system which requires at least two adjacent elements to fail in
order to have structural failure.
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INTRODUCTION

This paper describes structural reliability from an idealized linear
elastic fracture mechanics (F.M.) model. It is assumed that flaws exist
in structural elements and are remote from any other flaws. These hypo-
thetical flaws are described by random variations in siie and orientation.
Although these assumptions somewhat idealize the actual flaw distributions,
they do provide a reasonable good qualitative analysis of failure probabil-
ity as compared to the conventional deterministic approach which considersonly one type of a singularly oriented crack (transverse to maximum applied
stress) of a determined critical size.

Present fracture mechanlcs procedures as applied to structural relia-
bility depend on determination of critical crack sizes by using proper K
relattiships in conjunction with known stress distributions in the strui-
ture * Once the critical crack sizes and locations are established a
NDT (Non-Destructive Test) procedure is applied to the structure in order
to establish if this crack exists. If a critical crack is located, the
structure is rejected. It should be noted that an excessively large re-
jection rate can occur by applying this methof 2 ince the probability ofcracks oriented in this manner is very small f• •. One of the primaryobjection to the conventional (P.M.) procedure is the inability of •T

methods to detect cracks less then a certain size (e.g. .10 inch)
If the critical size computed to be less then this size then the F.M.
procedure will not be able to determine potential failure in the structures.

The uncertainties existing in the use of the analytic tools (such as
Finite Element analysis) (F.E.) in obtaining the structural stress distri-
bution can introduce considerable error in obtaining the critical flaw size.
For example; the accuracy of the F.E. solution depends on the severity of stress
gradients, mesh size, types of elements used and the effects of averagingstresses within the element.

The flaw simulation scheme (FSS) introduced in this paper attempts to
provide alternatives to conventional methods described above, the authors
do not consider this scheme as the ultimate answer in the application of
F.M. to structural reliability but rather an alternative. When more know-
ledge is available regarding flaw types and their orientation in structures,
this method can provide an excellent tool for establishing structural relia-
bility.

In using the Monte Carlo method,[4] the flaw simulation scheme provides
for variations in crack orientation and size in addition to computed stress
values in the structure. Crack orientations are assumed to vary from 00 to
900 in a uniform random manner. The crack size variation is defined in ex--
ponential functional form where sizes vary from a large percent of very
small cracks to a relatively small number of larger detectable cracks[ 5], The
stress values obtained for cracked structural element is assumed to be a
normal distribution where Coefficient of Variation (CV) is varied in order
to determine the effect of errors in the F.E. analysis.
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The types of cracks and their locations are the through center crack,
near cut-out edge, corner crack and surface crack (center), The struc-
tural configuration determines the types of cracks and their locations.

Types of Structures Considered

The model problems chosen to illustrate the technique proposed in this
Spaper is the determination of structure reliability for an Anti-Tank Pro-
* jectile control section. (fig. 1) and a fragmentation shell (fig. 2), Both

structures are made from relatively high strength brittle steel. The con-
trol section is subjected relatively large compressive loads at the aft
section and tension stresses in the vicinity of the cut-out region where
the fins are attached. The shell is internally loaded with a uniform
pressure of 14KSI. This load represents a proof test used in evaluating
shell quality. Reliability determination of the control section provided
the opportunity to evaluate the series-parallel system approach because of
the complex stress state introduced by the relatively large tension and
compressive stresses in the structure. The weakest link approach is more
readily adapted ,to the fragmentation shell loading state.

Statistic Evaluation of Variable Strength

The lack of ductility characteristic of brittle materials has two
undesirable consequences for the engineer. Firstly any misfit or missel-
ignment produces local high stresses which cannot be relieved by plastic
flow, unlike in ductile material. Brittle component designs differ from
those for similar ductile components in that extra attention must be paid
to detail, especially in highly stressed areas. The second consequence
is more fundamental; all materials contain flaws such as microscopic
cavities and dislocations and, in loaded brittle materials, these result
in local stress concentration within the material. The strength of a
component is governed by the chnnce that a severe strass concentration (c)
will be subjected to a stress (o) such that the local stress cc exceeds
the material strength. The occurrence of this is a matter of chance and
explains the marked variability generally observed in brittle material
strengths. It also explains why brittle material failures may start away
from the maximum continuum stress; if no severe flaws coincide with the
maximum stress, failure may occur at a severe flaw subject to a lower
stress at a position where cc is a maximum.

To overcome the strengLh variability by drastically reducing the
applied loading is not an attractive engineering proposition. What is
needed is an estimate of the likelihood of failure of the component under
a specified load. This requires a detailed knowledge of the stresses in
the structure, and the flaw distribution in the material. Well established
techniques are available for the stress analysis, some of which are mentioned
later.
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The variation in material scrength due to the f^.awo in a particular
material can be illustrated by fracture tests on a sample of specimens.
A histogram of the fracture stresses of both brittle and ductile material
subjected to uniform tension is shown in Fig. 3.1; the frequency of failure
(F ) is the fraction of the sample failing within, the stress range a to
a 6o. In the limit, as the number of specimeris (N) becomes large, the
stress interval (di) in fig. 3.1 can be reduced to give a continuous dis-
tribution curve. Note the relatively large variation in strength of the
brittle material as compared to the corresponding ductiles material of
similar test specimens. Structures with large variations in material
strength, as shown for the brittle material, require a probabilistic
approach in the design procedures.

A complementaryi norm of fig. 3.1 is obtained if the data in
presented in terms of the cumulative failure probability (P ). This
quantity is the fraction of the sample failing at or below &he stress 0;
in the limit it is the integral of the frequency distribution with respect
to stresso ie,,

Pf(a) -f Pda(1

In practice the cumulative failure probability is usually found from the
data using the "mean ranking" approach. The N failure stresses of the
sample are arranged i%ascending order: the cumulative failure probability
associated with the i failure stress in the list is,

i

The probability distribution of the data can be plotted from this - see
fig. 3.2.

Convesntional Fracture Mechanic Avoroach to Structural Reliability

Fracture Mechanice in the design process requires the consideration
of three factors: a stress analysis (F.E.), a measure of fracture toughness
(K ) and the capability of inspecting for cracks. The stress analysis can
reigire elaborate analysis using advanced F.E. or simpler closed form solu-
tions depending on loading conditions and structural geometry. Since plane
strain fracture toughness is a structure sensitive material characteristic
similar to tensile and impact properties, it is dependent upon material
condition, strait, rate and temperature. In describing the fracture tough-
nses of a material, determinations are necessary under a sufficiently wide
variety of conditions to allow realiatic assessment of the minimum value
likely to be encountered in design conditions. Some of the crack detection
techniques include ultrasonics, dye penetrentm, magnetic particles and visual
inspection.
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Analytically, the critical flaw size is defined by an expression of
the type shown below:

a c f [(Q K~ (3)

where:

a a critical flaw depth.C

-* a parameter which takes into account the shape of the flaw.

KIC a plane strain fracture toughness of the material.

a - the tensile component of stress acting normal to the plane
of the flaw.

The depth a and orientation of flaws which, on the basis of the
fracture toughnesi and stress factors, can result in catastrophic crack
propagation, It should be noted that a as defined above assumes flaw is
normal to acting stress (see figure 4). This assumption rejects the pos-
sibility that flaw could be oriented in other directions, thereby neglect-
in$ obvious possibilities in favor of an unlikely one. This could resultin incorrectly determining critical flaws size a * Present flaw detection
methods in many instances are not capable of 11;icting critical flaws of a
relatively small size, In factr comuents by ''• indicate flaws less then
61 inch of the time cannot be found in a structure. Of course the other
difficulty involves not finding a detectable flaw size in a structure
although it does exist.

Flaw Simulation Method

An alternative to the previously described conventional Fracture
Mechanics approach is made by introducing variation in crack orientation
and length by means of the Monte Carlo method. Initially four types of
cracks are to be considered in an element (see fig. 5). The type and
location of cracks depends on the structural configuration,

In the simulation scheme the allowable stress a from K relation-
ships is written as: Z

ac= f(KICV L, 0) (4)

where:

L - crack length.

0 - angle of inclination of crack.
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It is assumed that o represents the material strengths and depends on
the parameters K E, 6. The variations in K is represented by a
normal probabiliU density function (P.D.F) (flg. 6a). The angle 0 is
represented by uniform random numbers in range of 0 to 90" (fig. 6b).
The distribution of sizes Z in of an exponential P.D.F. form shown in
fig. 6c. The a distribution is obtained from generating a set of
uniform random &umbers and solving for x in the relation,

f " R, (5)

where R uniform random number and f corresponds to the desired type of
frequency distribution. The disthibution requires test results for
material used in the structure.'n order to obtain the necessary mean and stan-
dard deviation values. In figure 6c the maximum crack length t. is repre-
sented by the smallest detectable crack consistent with the cap~bility of
present available NDT methods. The assumed exponential form has been sub-
stantiated by [5,6] in laboratory tests.

A PDF can be obtained for the allowable stress ' by randomly selecting
from K 1 6 and Z distributions discreet sets of numbers and substituting
them io equation 4. Note, there should be an equal amount of say N random
numbers for each parameter in order to have N numbers representing thedistribution.

The KIC relationships for a are written asi

(a) Throuih crack

V - K c(2/ff) 1 /2 (L sino)"1/2

where KIC K I + K i, (6)

1/2 2
K.1  a(tf/2) sin 2 and

K11 - a(tw/2) 1 /2sin~cose.

(b) Corner crack

cc 2/KIC(1.28) (L/I)l/2 (7)
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(c) Surface crack

1=/2
c IC

where Q - E(K) 2  .212(a/ay) , (8)
ys

K2  1 - 4(a/0)2

0 < a < .10 inches

and
0 4 Z 4 .05 inches.

In order to use acryllationship for the inclined edge crack a solu-
tion was obtained from , where a Modified Mapping Collocation scheme
was used. The results are tabulated in Table 1. The appropriate inter-
polation procedure was applied in order to use Monte Carlo method as
outlined in equation 4.

Structural Stress Analysis

In order to obtain the stress distributions in the Anti-Tank projectile
(ATP) and fragmentation shell a finite element (F.E.) method was applied.
As described previously the loading consists of a set-back type compressive
load acting at a base of ATP and a internal pressure proof test load applied tothe shell. Rectangitlar elements were used in the analysis for both struc-
tures where shell and ATP contains 693 and 601 elements respectively. The F.E.
sollirLon determines thu average maximum and minimum principal stresses in
each element. The maximum stress is used in the reliability determinations.
These stresses should not be confused with critical stresses obtained fromthe K C relationships previously described. Having availability of elementstresses and corresponding a or strength values the reliability of the
elements can bv determined. c

I. Element Reliability Calculation Methods

Element Reliability as related to the stress-strength (Warner) diagram[8 1

method (sed-Appendix A) assumes that the probability of survival (Reliabil-
ity) is the probability that material strength will be greater then the
stress in a given structural element over a range of stress values. The
uncertainties in the! F.E. solution are represented by a normal distribution
f2' where calculated mean stress and assumed C.V. are the functional para-
meters, The distribution f is obtained from known strength data (e.g.laboratory tests). This distribution does not necessarily have to be an
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Inclined Edge Cracks (60%)

e %i

6 H n KIt/7 Ho "KI!//' (

0 0.000 0.000
10 .160 .170
20 .296 .280
30 .461 .335
40 .680 .372
45 .705 .365
50 .781 .354
60 .920 .305
70 1.028 .224
80 1.098 .118
90 1.124 .000

-CC K IclH nr'• .

Table I
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normal function. It can be any P.D.F that accurately represents the
empirical ranked data. In Appendix A, the probability of say s occurring

is f 2ds while the probability of strength greater then Si is repro-
nernted by the integral, with f, integrand and litnits of S1 and -. Multi-
plication of these elements provides the necessary independence between
the two conditions. Finally, integration over entire range of stress
values defines probability of survival P5 of each element,

Element reliability ntumbers were obtained from a approach similar
to the one previously described except that discreet values obtained from
the Monte Carlo simulation were used to represent both a and element
stress density functions. This is a reasonable approaJ.! c nce distribution
of strength values do not necessarily conform to any known density function.
The tails of the two density functions are also more accurately represented
then by some crude approximating function. This method is outlined in
Appendix B where the probability of element survival is defined as follows;
a w 1, when strength is greater then stress values otherwise it is zero.
Tis process is completed when all combinations are considered. The re-
lationship PsK therefore defines the Kth element reliability number.

Since the Weibull function is well adopted to brittle material sub-
jected to uniform tension state it was included for comparison purposes
in the probability of survival calculations of the fragmentation shell.
The Weibull P.D.F. is common used in ceramics and other brittle materials
evaluatiun. It uses the "weakest link" concept which is consistent with
failure phenomenon of brittle materials which are subjected to tensile
stresses primarily. A plot of strength vs cumulative density function
(C.D.F.) for HF1 steel used in the fragmentation shell construction is
shown in fig. 7. Note the excellent correlation between emperical data
and the Weibull function[ 9].

The Weibull probability of survival Psi for individual stressed

components is written as,

P exp[-KVi /V* ( /maxi/o)m] (9)

where K - 1 for simple tensile stress, V - volume of element, V* - volume
of test specimen, amaxi * maximum principal stress in the element, a and
m are functional parameters obtained from test data using the maximum
likelihood method.

It is obvious from equation 9 that Pe is functionally volume dependent.
That is, larger volume smaller P numbers,
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Structural Reliability

In order to obtain P of the entire structure the weakest link
concept is applied, that to it assumed that each event or probability
of survival of element is independent of any other one in the structure.
Therefore the total P* is written as

N
Ps n Ps3KO (10)

K-i

wihera N * number of elements in the structure and Pu is the Probability
of Survival of the individual element. The corresponding probability of
failure is defined as Pf 0 1 - P'.

A series-parallel approach is introduced in order to examine the

case where more then one element is required to failure in order to have
total structural failure. This method is described by examining a four
element structure where two elements must fail (see Appendix C). The Pm
values are determined for the elements by one of the methods previously
described. The resultant P for the four elements is determined from
application of the series alproach. It should be noted that this method
is somewhat less conservative then the conventional weakest link method.
It is possibly more realistic, especially so for the complex states that
exists in the ATP structure.

Numerical Results and Discussion

Numerical reliability (R) results are tabulated in Table II for the
fragmentation shell subjected to an internal pressure of 14KSI (Proof test
load) as a function of minumum detectable crack size. The Warner Diagram
method as outlined in the text is represented by a normal stress-strength
P.D.F. determined from F.E. solution and laboratory strength tests results
respectively. The Monte Carlo Fracture Mechanics (F.S.S.) results are
obtained from applying the schema presented in the text where both stress
and strength P.D,F. are the results of using the simulation scheme described
in Appendix B. The Weibull R values were obtained from application of
equation 9. It should be noted that both Warner and Weibull methods do not
show variation due to changes in cracks sizes, which is expected.

Results from the Monte Carlo method indicate the importance of finding
a crack of at least .025 inches or less in order to establish at least 92%
probability of survival. The Warner Diagram and Weit.,ill methods show much
less conservative estimate of 1 and 22 failures in l1(10 respectively. Since
Warner and Weibull methods do not consider (F.M.), tH' R independency due to
crack size is expected. Although it is assumed that .-racks do exist in each
element and the weakest link argument is used, a goo, qualitative measure of
assessing the importance of finding cracks of a relarLvely small size is
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Probability of Survival Shell (Proof Test Load)

Minimum D-etectable-,CrackM ize eintb) Warner Diagram Monte Carlo (F.M.) WelbullCGrack Size (in.)

0.100 0.999 0.059 0.778

0.050 0.999 0.451 0.778

0.025 0.999 0.920 0.778

C.V. (Element Stress) 107

KIc- 30KSl in) 12, C.V. ,1276

Yield Strength- 140KSI

Table II
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available. Coefficient of Variation (C.V.) of 10% represents the variation
in element stress values obtained from the finite element solution.

In table III Probability of survival estimates are for variation in
crock size and element stress C.V. numbers. It should be noted that with

R, crack sizes of .020 in. the effects of F,E. solution errors (eag. C.V. values)
are loes than for large. cracks of .100 in~h. Mean and C.V. values tor K
were obtained from laboratory test data. 1he material yield strength of
KSI provider! an upper bound for caiL'.rlted a (allowable stress) obtained from
the Monte Carlo Fracture Mechanlit. Method (F,$.S,).

Table IV provides a partita listing of reliability for the ATP system
where crack sizes are .100 and .050 inches with variations in C.V. of 5%
to 20%. The effects of F.E. errors are noted as in Tables I1I, small
variation better reliability, large variation poorer reliability. The
reliability numbers in parenthesis are results from application of the
series-parallel method described in the text.

The series-parallel method which requires failure of all adjacent
elements in order to have structural failure provides much less conservative
estimate of reliability. It is possible that an upper and lower bound on
reliability of this structure for the specified crack sizes could be a
series-parallel system and the woakest link approach respectively. With
tension and compressive stresses existing in this structure it does not
seem advisable to consider structural failure in terms of any given
element failure. It also unreasonable to assume that all adjacent elements
must fail to have structural failure particularly if a bending stress exists
in the structure.

Although the Monte Carlo (F.M.) is hypothetical method for estimating
structural reliability, it does provide a desirable alternative to the
present Fracture Mechanics approach which assumes cracks oriented transverse
to maximum principal stress resulting in an unnecessarily high rejection
rates. The ability of examining at least qualitatively the reliability of
structures as related the ability of detecting flaws or cracks of various
magnitudes can provide a guide for future NDT development procedures. If
more information was known regarding structural flaw distributions the
Monte Carlo method could provide an excellent reliability tool certainly

superior to the present lab test procedures applied to brittle materials.
In laboratory testing surface flaws are often removed from material thereby
preventing an accurate representation of the materials strength as it is
related to the structural component. 1

In application of the Monte Carlo method. Determination of proper
number of simulation in Monte Carlo was obtained from examing the con-
vergence rate for the calculated reliability numbers. Instead relying on
some elaborate formulation for establishing proper number of simulations,
a chart similar to the one shown in fig. 8 was used. All functional
parameters were increased equally in number in order to examine over all
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effects of the simulation. In order to examine the acceptability of this
method, a comparison was made for R using the Warner diagram approach where
normal-normal P.D.F.'s were calculated from a prescribed mean and S.D. for
stress-strength values. Results show excellent agreement with Monte Carlo
simulation method using the convergence rate approach.
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Appendix B

Critical Stress * Strength

Design Stress (Element)
fi

s S

PSK "/M2 a-ai where al • { terw

M s Number Simulations

PsK Probability of Survival of Element K
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Appendix C

EEI Series - Parallel Concept (Tension-Compression)

Assume simply four element stricture

Ps, PS? PS3 PS

PSI PS23

e P.,S12 =PS 1 + PS2  P-c PS2

Survival Probability tor Struciurc-

Ps PS12 ' P5S23 '* 3

For large structures all elements considurc-i witli
their correspondingj adjacent elements.

336



PREDICTED MECHANICAL BEHAVIOR OF MATERIALS WHEN
SUBJECTED TO WEAPON SETBACK FORCES

Richard S. Simak
Munitions Development Branch

Munitions Division
Chemical Systems Laboratory

US Army Armament Research and Development Command
Aberdeen Proving Ground, Maryland 21010

ABSTRACT. Methods were investigated for estimating the mechanical behavior of various
nmaterials when subjected to weapon setback forces. A mathematical model was developed for
predicting the dynamic behavior of the materials from which predictions concerning certain
material-geometry combinations were made. Tests were carried out with aluminum and steel
specimens and the resultant data were compared with results predicted by the mathematical model.
The mathematical model selected was a viscoelastic modfck involving viscous, elastic, and, in one
instance, plastic parameters.

I. INTRODYL ION. The design of chemical munitions involves several factors, among
them is the structural behavior of the munition components when subjected to various loads. Oneimportant factor is the forces imposed by the launch environment which, for artillery rounds, is

referred to as setback. At present, the developmental emphasis is on system testing which yields
information on a specific configuration; and, if the configuration is changed, the system must be
retested. In a few cases, bench testing supplements system testing and although the information
obtained from the bench tests is more general than from system tests, it is limited to the
geometry-material configurations tested. These two methods have resulted in increased project
costs and, at times, in schedule slippages.

What is required is an alternate and somewhat more general method for analyzing the effects
of the launch environment on munition components. Therefore, an investigation was undertaken to
develop such a method and, thereby, reduce the amount of munition flight testing and/or dynamic
testing required with its associated costs.

II. BACKGROUN. Although the plastic deformation of solids at high strain rates was
commented on as early as 1904 by Hopkinson,1 it was not until 1941 when Von Karman 2 and
Taylor each independently established the theory of plastic propagation in metals that this
phenomcnon was seriously studied. Since the publication of this theory, a body of research data has
grown. In general, these data can be summarized into fcur general statements which are: (I) The
displacement mechanisms for metals subjected to impact loads are similar to those for statically
applied loads but they have different distributions;3 (2) there exists a time delay between the
application of impact loads and subsequent plastic yielding;1 (3) materials' strength increases when
subjected to impact loads, but by varying relative amounts for various materials, and the strain rate
affects both the strength and ultimate elongation of a material; 4. 5 and (4) previous investigations
showed that flow or viscous parameters are important.

111. MODELING EFFORT. Based on the information obtained during the
above-mentioned literature search, a mathematical model has been developed to predict the
time-dependent behavior of material. This model assumes that materials behave in an elastic manner
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below the proportional limit (arbitrarily set at 2% elongation) and in a viscoelastic manner above
the proportional limit. In addition, the viscoelastic element must have a time delay or, in this case, a
viscous resistance feature which is known as a Volgt element. The mechanical analog of the model is
given in figure 1.

a a Ee

I de
u n '- +9 Ee'dt

Figure 1. Mechanical Analog of Elastic.Viscoelastic Model

The response equation for this model is the sum of the two equations given to the right of
figure 1. The time-dependent strain for this system is found by solving this equation for the model
when excited by the forces due to the launch environment. Once the strain relationship is known,
the other dynamic values can be determined. The dynamic values can, in turn, be substituted into
the equations describing the specific geometry of Interest which will yield predicted values. This
methodology requires two types of data: first, an estimate of the forces Imposed by the weapon
system which can be obtained from acceleration/pressure histories of the weapons system and
second the elastic and viscous constants of the material, which may be obtained from a statically
obtained true stress-strain diagram by assuming that the material behaves elastically below the
proportional limit and in a viscous manner above it. The graphical representation of this behavior is
shown in figure 2.

* IV. EXPERIMENTAL. To compare the model predictions with experimental data, a
series of dynamic bench tests was performed involving two geometries (the thin flat plate as shown
in figure 3 and the solid pin as shown in figure 4) and four materials (AISI 1018 and 1020 low
carbon steel, type 316 austenitic stainless steel, and 6061-T6 aluminum alloy). The stress-strain
diagrams for all four materials were generated to provide elastic and viscous material constants, as
shown in figure S.
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Figure 2. Idealized True Stren-Stralra Diagram

Figure 3. Flat-Plate Configuration
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The bench-test machine used in this work was a drop table shock machine which produces a
controlled and reproducible acceleration at a constant pulse rate. 'Ihe acceleration history for the

bench-test machine used is a half sine wave pulse [a(t) - ap sin()t]. The response equation for

this system is:

f? ý + EC =mapsin / (~t

where the material response characteristics are on the left and the excitation forces are on the right
side of the equal sign. The time dependent strain for this system Is:

.(t) . [sin(!)t -~cos(f'r)t+ 7r .()t]

which was obtained by solving the response equation. The dynamic modulus, that Is, the stress
divided by the strain, for this system is:

2 2

In this work, the burst strenglth of a fiat plate or the shear strength of a solid pin was to be
measured; consequently, the system was evaluated at the peak stress (t " -•). This occurs when the

trigometric function In the ,numerator is equal to one. In addition, for these tests the pulse

duration (T) was in the nillisecond range which further simplifies the modulus to

The stress on a flat plate can then be found by solving the equation of motion for that
geometry

32w 0 Co2 K2 fl 2 34.w
8t2  ax4

subject to the equation of continuity vo- (t)e which is:

a covoP( 4' / )

341

........... ........... ............



where the stress wave propagation velocity, co, equals ; radius of gyration, K, equals

half wave length, A, equals voT; and (1 'equals I + which accounts for radial and

circumferential displacement. The stress on a solid pin can also be found by solving the equation of
motion for that geometry, which is analogous to that for a flat plate.

V. RESULTS. The results of the dynamic bench-test effort are given in the table. This
work involved five material-geometry combinations and because of the "go, no-go" nature of the
test setup only upper and lower strength values are reported. Along with the test values are
estimates of the precision of the shock machine, the elastic-viscoolastic model predictions, and, for
comparative purposes, strength predictions based on statically obtained material properties using
standard formnulab.

VI. DISCUSSION. In comparing the elastic-viscoelastic model predictions with the
bench-test values for low carbon steel and aluminum alloy, it Is seen that the two-element model
does adequately predict the behavior of these two metals. In comparing the two methods of
predicting strength values, it Is seen that the prodictions based on the elutic-viscoelastic model are
far superior to those made using standard strength values and formulas.

For the austenitic stainless steel type 316, the elastic-viscoelautic model predicted values
considerably higher than the upper bench-test value for the solid-pin geometry (9,232 lb versus
2,552 1b). The most obvious explanation for this discrepancy is that the model as proposed does not
adequately account for the behavior of 316 whereas it does so for low carbon steel and the
aluminum alloy.

Both the low carbon steel and 6061-T6 aluminum alloy are basically pure metals doped with
small percentages of other elements to achieve certain desirable mechanical properties. In the case
of the aluminum alloy, the presence of these impurities in the crystal lattice tends to produce
barriers to metal flow which can be modeled as a viscous drag element. In the case of low carbon
steel, the presence of these impurities plus a susceptibility to strain hardening6 likewise tend to
produce barriers to metal flow which can be modeled as a viscous drag element.

On the other hand, austenitic stainless steel type 316 Is a mixture of iron, chromium, and
nickel where the chromium and nickel atoms substituto for Iron in the crystal lattice. Because of the
high nickel content (10%-14%), this steel does not appreciably strain harden and Is sometimes
referred to as free spinning steel.7 This relative lack of strain hardening has been, in part, explained
by an "easy slide" mechanism where the density of dislocations rises linearly with plastic strain.5 In
fact, the presence of impurities would be the only serious barrier to metal flow and is overshadowed
by the plasticity of the metal.

Since the austenitic stainless steel does not follow the elastic-viscoclastic model previously
stated, a new and more general model which accounts for the behavior of this material must be
postulated. Based on the above discussion, a three-element model shown in figure 6 is proposed.
This model Involves an elastic element to account for the behavior below the proportional limit,
followed by a Volgt element to account for the impurities, followed by a friction element to
account for the "easy glide" phenomenon. The response equation for this system is the sum of the
three Individual equations given in figure 6. The solution for the three-element model is analogous to
that for the previously discussed elastic-viscoelastic model.
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Sa - eE

I? *-+ Ee
dt

a " 6e

Figure 6. Mechanical Analog or Elutic.Viscoelastlc.Plutic Model

In analyzing the true stress-strain diagram, three regions must be considered - elastic
(0%-.2% strain), viscoelastic (2%-3.9% strain) or transitional, and plastic (3.9%- 59% strain) - instead
of two regions as in the previous model. This, in effect, reduces the value of the viscous constant,
thereby reducing the predicted shear strength from 9,232 to 2,833 lb. In comparing the three
methods of predicting strength values for stainless steel, type 316, It is seen that the prediction
based on the three-element model is superior to those made using both the standard formulas and
the two-element model.

VII. SUMMARY. The mechanical behavior of materials subjected to impact loads can be
predicted by using relatively simple mathematical models to describe their behavior, two of which
have been discussed. The selection of model depends on the general form of the true stress-strain
diagram of the 6:andidate material. The model parameters can also be obtained from a true
stress-strain diagram.
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GLOSSARY

a Stress

6 True strain Rn (I + co)

o0 Engineering strain

E Modulus of elasticity

17Viscous parameters

8 Plastic modulus

p Density

A Shear area
1 Moment of inertia

V Poluson's ratio
0 Dynamic tensile modulus

Dynamic shear modulus = 2(l + P)
w Displacement

t Time

A Half wave length = veT

v Impact velocity

ap Peak acceleration

T Half sine wave period

x Radial component of flat plate

cc Initial stress wave propagation velocity -

(p)
K Radius of gyration I

m Man

nI Factor equal to (1 +.2-)
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SUCCESSFUL APPLICATION OF STEWARTSON'S LIQUID INSTABILITY/STABILITY
CRITERIA TO THE DESIGN OF ARTILLERY PROJECTILES

John M. Ferriter
Munitions Development Branch

Munitions Division
Chemical Systems Laboratory

US Army Armament Research and Development Command
Aberdeen Proving Ground, Maryland 21010

ABSTRACT. The use of Stewartson's instability theory, in the design of liquid-filled
projectiles, Is a valuable tool for the munitions designer. A summary of Stewartion's theory,
expanded to include viscous and liquid spin-tip effects, is presented. Design procedures for applying
the theory with an example are shown. Three examples, where the theory has been successfully
applied, are also given.

I. INTRODUCTION. Early efforts in the design of liquid-filled projectiles gave engineers
problems primarily because there was not a clear understanding of the liquid instability mechanism.
When early projectile designs became unstable during flight, it was postulated that the failure of
liquid to attain full spin (i.e., rigid body rotation) prior to shot exit was the chief cause for
projectile instability. Longitudinal baffles were designed which effectively compartmentized the
projectile cavity. The baffles spun the liquid up as the projectile casing spun up In the tube;
however, this was not sufficient to onsure that the projectile would be dynamically stable. Two
problems encountered were: (1) Even though the liquid was completely spun up prior to shot exit,
the baffles in the projectile could have been positioned so that asymmetries existed between the
center axis of the projectile and the center of the baffles and because of this asymmetry, which could
cause the projectile to be unstable, the designer could not predict whether or not two similar
projectiles would be ballistically stable; (2) difficulties were also encountered in fabricating the
transverse baffles due to projectile internal tolerances.

In an effort to observe the effect of liquids on the stability of projectiles, experiments were
conducted in which lightweight projectiles were fired at low velocities. Low launch velocities
enabled visual observations of projectile flight behavior. The problem encountered with this
technique was that, unless flight behavior was dramatic, it could not determine if the wind and/or
liquid caused the observed behavior.

The only theory explaining the effect of liquid in a spinning body was Greenhill's work
related to spherical cavities. The theory showed that, if a spinning spherical top contalning liquid
was diaturbed, the liquid was disturbed to a lesser degree. The liquid disturbance created natural
oscillations which were characterized by discrete elgenfrequencies. The important aspect of the
theory was that, if the natural frequency of the liquid coincided with a naturai frequency of the
top, the top could exhibit unstable motions. The coincidence of the two frequencies created a
hydrodynamic couple, known as resonance. It turns out that, for a spinning spherical liquid-filled
cavity, only one characteristic frequency causes resonance.

Stewartson's theoryI analyzed the liquid effect on a spinning top. The interior geometry of
the spinning top was a right circular cylinder. Stewartson found a double infinite number of modes
of oscillation which would affect top stability unlike the sphere with only one mode. The modes are
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characterized as radial (n) or 4xial (0) halfwaves, Resonance between the nutational frequency of the
projectile and a natural frequency of the liquid causes dynamic instability. However, an important
outcome of Stewartson's theory was that the designer could control resonance by varying the fill
ratio and cavity fineness ratio (internal length/diameter ratio). Stewartson's theory has been a
primary design tool in the design and development of liquid-filled munitions. The purpose of this
paper is to show how the theory has been utilized for the design of liquid-filled projectiles. No
mathematical derivation of Stewartson's theory will be provided as it is available in literature.

1I. DYNAMICS OF LIQUID-FILLED PROJECTILES. The paper will not discuss in detail
the dynamics of liquid-filled projectiles but will just mention a few key principles. The spinning
liquid exerts pressure forces on the inner wall of the projectile and also is excited to a lesser degree
when the projectile Is subjected to an external disturbance. These two points show that there exists
a complex interaction between the spinning projectile and internal liquid. The Navier-Stokes
equations describe the perturbed fluid motion within the spinning projectile. The following
boundary conditions are used with the Nsvier-Stokes equation: (1) Pressure is a constant on a free
surface, (2) tangential components of the flow velocity and the velocity of the wall are equal, and
(3) the normal components of the flow velocity and surface velocity are equal. A complete
mathematical derivation can be found in literature.

Ill. STEWARTSON'S THEOBY. When Stewartson's theory was applied to the design of
liquid-filled projectiles, the results were twofold: (1) The theory provided the knowledge of the
instability mechanism-resonance between the liquid elgenfrequency and projectile nutational
frequency and (2) the theory provided designers a quantitative means for designing liquid-filled
projectiles. The theory does not definitely predict the design will be stable but it does definitely
state Ifsa design Is unstable.

Stewartson developed his theory using the following assumptions: 2

I. The internal cavity is a rigiii circular cylinder - this limits the shape where the theory
is applicable. However, in the case of binary projectiles, currently in development, right circular
cylinders are used to contain the liquid.

2. The overturning moment is the only significant aerodynamic force, By neglecting the
other aerodynamic moments, we can concentrate on the one force which will affect projectile
stability with a liquid-filed payload.

3. The projectile flies with constant velocity and spin, In actuality, projectile spin
decreases throughout flight where projectile velocity will decrease until apogee and then increase
until impact, This assumption is chosen mainly for convenience (steady state).

4. The liquid is in rigid body rotation at shot exit with its spin identical to that of the
projectile. This neglects liquid spin-up which does vary depending on liquid and launch conditions.
However, it is a good assumption for first approximations.

.5 The centrifugal force of the liquid is so much larger than the gravitational or drag
forces - the other forces can be neglected in the analysis.

6. The mass of liquid is small compared to the mass of the total projectile (this was taken
for convenience). However, in actuality, it is a good assumption since most binary liquid payloads
are approximately 10% of total projectile weight.
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7. The liquid is incompressible and inviscid. Incompressibility is a good assumption for
the liquids used; however, viscosity plays an important role in liquid spin-up.

8. External shell disturbances are restricted to small yaw amplitudes and the liquid
experiences only small perturbations due to this external disturbance - the projectile can
experience large yaw amplitudes. However, the assumption is acceptable to initial design procedures
for liquid-filled projectiles.

Stewartson's theory provides the designer with two important facts:

1. The projectile yaw will grow without limit under certain conditions. Figure 1 depicts
normal projectile yaw, whereas figure 2 shows yaw growth without limit.

2. The liquid conforms to cavity motions through excitation of small amplitude
oscillations superimposed on the rigid body rotation.

Stewartson's instability criterion for minimizing resonance is:•

.1< <1
,/i-

where rn anutational frequency of projectile

*0 natural frequency of liquid

S = Stewartson's parameter

. ,[2Rc2aS

where p w density of liquid

2R w pole value, Stewartson table

a a cavity radius

c a cavity length

Ix m axial moment of inertia

a ( I - I /Ss)½

Sg w gyroscopic stability
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IV. VISCOUS EFFECTS.4 Stewartson assumed the liquid to be inviscid. However, the
viscosity of the liquid changes Stewartson's overall theoty in the following ways: (1) The viscosity
of the liquid will shirt any liquid eigenfrequency slightly, and (2) the instability band for resonance
is broadened. The inviscid eigenfrequency is

rn~ ++D ]2 [ 4 1LJ

When viscous effects are included, the eigenfrequency becomes

flT + (Tno) DI]

2 4 OL]

where
______ c 8zz] + 8?'o 2b2 8,

•'v* TO +c/a(2J +1) a(2j+) c 8b2/a2 ..

The difference of the viscous and inviscid liquid eigenfrequency, /r', is composed of a real and an
imaginary part ([rov -"To a 0 " * - I1]. The real part is added to the liquid eigenfrequency to shift
it slightly where the imaginary part broadens the resonance band, Stewartson's instability criterion
is modified to

- + < TO+e-Ti< 1+

when viscosity is taken into account.

V. SPIN-UP. One of Stewartson's assumptions was that the liquid is at rigid body rotation
at shot exit. This assumption has been experimentally shown (using on-board telemetry in
projectiles) to ba hivalid. The liquid spin-up - defined as the process where the liquid acquires
angular momentum - varies depending on liquid viscosity and projectile launch conditions. As the
liquid spins up, the projectile casing spins down until liquid rigid body rotation is attained. The
liquid close to the wall will spin up due to the frictional force between the liquid and the projectile
casing. A second spin-up phenomenon exists which is defined as Eckman layers. An Eckman layer Is
formed when the canister ends act as centrifugal fans sucking the liquid from the nonrotating center
core and throwing the liquid outward. The question is how to include liquid spin-up in the analysis
of a liquid-filled projectile. Wedemeyer has shown that eigenfrequencies in a partially spinning fluid
are the same as an equivalent cylinder having the same angular momentum. Knowing this, the
designer can determine the stability of the projectile as liquid acquires angular momentum. The
designer can evaluate spin-up at various stages; i.e., 10% spin-up, 20% spin-up.

The curves in figures 3 and 4 depict liquid spin-up.
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VI. APPLICATION OF STEWARTSON'S THEORY. The designer must apply
Stewartson's theory modified for viscous effects to the steady state condition (no liquid spin-up)
and then examine projectile stability during liquid spin-up. The following design steps may be used
as a guide.

1. First a liquid fill must be chosen. The internal cavity dimensions will be designed
dependent on the liquid chemistry and the fact that the liquid-filled projectile should weigh the
same as conventional munitions of the same external shape,

2. The physical characteristics of the proposed design (moments of inertia, weight) are
then used to calculate gyroscopic stability. Gyroscopic stability predicts projectile stability at shot

•3. The viscosity of the liquid should be checked to see If It Is sufficient to produce viscous

I{' ~effects,. i

4. Determine Stewartson's instability criteria.

5. If the projectile is stable in steady state, the stability during liquid spin-up should then
Pil be examined.

The following example will illustrate the first four steps. The fifth step is lengthy due to the
number of Iterations needed to determine stability during liquid spin-up.

155-mm Projectile

Step I: Determine the initial physical characteristics.

1 19.525 slug-ft 2

ly 198.224 slug-ft 2

m a 3.20 slug

n - 20 cal/turn

pa w 0.002378 slug/ft3

d a 0.51 ft

a -0.17 ft

c/a - 4.65

CM0 - 5.96

Mf - 0.236 slug *1

The above constants am projectile physical characteristics calculated from step 1 or initial
launch conditions; i.e., air density, bore rifling, and static moment coefficient.
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IV
Step 2: Next, calculate the rigid body gyroscopic stability.

p2
Sgr -

Ix 2*p 0.0309
Iy n

4M4p&S'd\4M 4 - k • 2C,• . -0.00049

Sgr " .95

The nutational frequency of the projectile is then calculated.

Tn 0+x (I )
ly

u I - /Slr)'• ,9

rn a 0.167

The liquid gyroscopic stability is checked.

\1X0 + ix0 )'

IXo a 0.696 slug-ft 2

IV0 w I .- Ix0 = 18.829 slug-ft2

SIL m 1-81
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Stop 3: Determine viscous effects.

v *launch velocity -1027 ft/sec

21r
Ia v w632.6 radians/sac

a S.2 cm

P I ., X 102 steke

Re- 1.55SX 106

au0.0003

8 *0.0007

a&8 are sufficiently smafl that effects due to viscosity may be neglected.

Step 4: Calculate Stewartion Instability at steady state.

Cavity is 90% full or b2/&2 0.002

eta w 4.65

Construct the following table:

j 4.6S/2J + I 0o(n, J) 2R

0 4.65--

1 .55 0.35(1, 1) 1.39

2 0.93 0.45(2, 2) 0.343

3 0.664 0.24(2,3) 0.119

Stewartuora's table (b2/&2 *0.02) is entered knowing columns I and 2 above, where radial
modes n a1, 2, 3 are checked to find ,o (column 3) and 2R1 (column 4).

Stewartuon's parameter is calculated

S .0.38 X I 0- 2 (2R) 2

for n a2, j w3

S - 5.38 x I0 O A r- 7.33 x 10-3

-1 <2-Lr < I
VTr

-1 <9.96< 1
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The instability criteria show the projectile should be stable at steady state,

VII. PROJECTILES DESIGNED USING STEWARTSON'S THEORY. Designers must keep
in mind that the chemical-filled round is normally required to be ballistically similar to a
conventional round in the same family. This allows the use of conventional rounds as spotter rounds
and also allows the use of the same firing tables with minor corrections. Projectiles are ballistically
similar when the following are nominally the same: (I) external shape, (2) drag, (3) weight, and
(4) internal ballistic characteristics. However, differences in physical characteristics may exist,
provided that the effect of these differences on the means of the burst point distribution are
predictable and can each be compensated for by the application of constant corrections for each
charge.

A. M687 Projectile. The first binary round to apply Stewartson's theory was the M687

projectile. The advanced developmert round (see figure 5) was designed using a computer model ofStewartson's theory. Initial dispersion differences for impact points were attributed to
miscalculation of range or the use of a faulty propellant or both. At the same time, failure of the

burst disks to shear (which allows mixing of the liquids) and also changing the internal cavity
from two to one right circular cylinder masked an instability problem, Increased instrumentation
(on-board telemetry packages and high-speed tracking cameras) showed that the M687 round had
stability problems. The M687 projectile used the same aerodynamic shape as the M483 improved
conventional munition, a stable design, Therefore, the instability was attributed to the liquid
payload, Analyses of the computer model revealed that liquid spin-up was neglected. The model
predicted steady state behavior. The model was revised to incorporate the liquid spin-up
phenomenon. The incorporation of the liquid spin-up resulted in the shortening of the internal
cavity by 3.8 cm. Subsequent field trials showed the design to be stable under the severest launch
conditions. Figure 6 shows the final design.

B. XM736 8-Inch Projectile. The XM736 8-nch projectile is currently in the development
cycle. It has the same aeroballistic configuration as the M509 improved conventional munition. The
computer model of Stewartson's theory, including viscous corrections and liquid spin-up, was used
to arrive at the present design (figure 7), The use of Stewartson's theory minimized the possibility
of a liquid stability problem. The XM736 projectile has a very stable aerodynamic shape; that fact,
plus the adaptation of Stewartson's theory, produces a stable design even under the severest launch
conditions.

C. 155-mm IVA Projectile, The 155-mm IVA projectile Is currently in exploratory
development. Stewartson's theory has been adapted for a number of liquid fills. All the designs have
been successfully flight tested, A typical configuration is shown in figure 8.

Even though Stewartson's theory can only predict unstable rounds, the use of the theory has
minimized costly testing by eliminating poor designs on the drawing board prior to fabrication.
Tremendous success has been achieved in the design of liquid-filled projectiles by adapting
Stewartson's theory. Currently, at Chemical Systems Laboratory, an independent laboratory
"in-house research project is in progress to expand Stewartson's theory for an internal step design.
Stewartson's theory assumes a constant inside diameter. Current projectile designs may require a
step design - two different Inside diameters. The current approach for design of such projectiles is
to assume a mean diameter. So far this has been successful. However, it is anticipated that a
quantitative method will result from this research study.
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Figure 5. Advanced Development Round Design

Uj

Figure 6. M687 Projectile Final Design
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VIII. CONCLUSION. Stewartson's instability/stability theory modified to include viscous
effects and liquid spin-up provides the designer with a useful tool In liquid-filled projectile design.

* The use of Stewartson's theory In the design of binary chemical rounds has been very successful.
The theory has reduced costly testing by computer modeling prior to fabrication and subsequent
flight tests.
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TOTAL TZIM ON TEST PLOTS

Richard E. Barlow and Bernard Davis

University of California, Berkeley

Berkeley, California

1. lIqTRODUCTIOI

In this paper we present a particular graphical technique which is

very useful In analyziug failure and survival data. The central concept

In reliability theory I* that of the failure rate. This Is a feature of

the life distribution. In fact, if the life distribution Is continuousa

which Is very often the came, the failure rate uniquely determine@ the

life distribution. Failure rate and aging are two very closely related

concepts. For instance, if the unit which in being tested or is in

service does not age with time, that is, its residual age Is independent

of its present age, we right may its life distribution has constant

failure rate. This iS the well-known characteristic property of the

exponential distribution i.e.

F(x) 1 - axp {-x/O} e > o

x1O

Then,

Prob (X x + yl X 1 xI -Prob [X 1, X] +•

- exp l-(x + y)/e)/exp {-x/})

- xp {-Y/e8 ,,

- Prob (X > y)

This research was supported by the Air Force Office of Scientific Research
(AFSC), USAF, under Grant AFOSR-77-3179 with the University of California.
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It can be shown quite easily that the only continuous life distribu-

tion with the non-aging property

Prob (X > x + y X > x] " P[X > yj

is the exponential (3].

This is an ideal life distribution where the units of every age have

the same residual life distribution as new units.

We have used the term "failure rate" earlier and we shall give a

precise definition of the term below.

The conditional probability that a unit of age t will fail in the

next interval of length x is

F(x/t) - F(t + x) - P(t)

where N(t) - 1 - F(t) is the survival function.

The failure rate r(t) at time t is defined to be

r(t) - lim 1 F(x + t) - F(t)

f f (t)

1(t)

where f(t) is the density function of F . Note that f(t) will exist

if F in an absolutely continuous distribution. Most of the life distribu-

tions of interest are absolutely continuous, so, unless we specify otherwise,

we shall assume that the density function exists for all the distributions

under consideration.

If we integrate the failure rate function between 0 and x

we get
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x x
fr(t) dt " U dt

f f~

-- Log P(x)

i.e.

P(x) aepJ.r(t) dtj

So we see that the survival function P , and hence the distribution

function hF in uniquely determined by the failure rate function r(t).

For the exponential distribution,

r(t) - / exp (-x /lO I

1/e

i.e. the exponential distribution has oonetanwt fahiure rate.

Other classes of life distributions of interest are the Inoreasing

Faiture Rate (ZFR) distributions and the Deceaeeing FaiZure Rate (DFR)

distributions. As the name suggests, a life distribution F is IFR if

r(x) is increasing and similarly, F is DFR if r(x) is decreasing.

Usually, items which during their life-span are subjected to wear tend to

have life distributions which are IFR, The closest to a constant failure

rate in exhibited by life distributions of electronic components which

degrade very slowly and then only at the atomic level.

The interpretation of IFR is that as the item on test gets older, the

distribution of the residual life tends to get closer to zero in some sense.
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In terms of probabilities,

Prob [X > x + y X > x]

decreases in x for all y > 0 , assuming, of course, Prob IX > x) > 0

A similar explanation applies to DFR distributions. For a rigorous

treatment of the above sea [8].
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II. TOTAL TIME ON TEST

This classification of life distributions into IFR, DFR and constant

failure rate distributions is of particular interest in reliability

engineering and maintenance planning. For example, in formulating replace-

ment policies, if it is known that the life distribution is either

exponential or DFR, then clearly tite optimal policy is to replace only

upon failure.

Let us now suppose that we have a random sample

XlX 2 . Xn

from a life distribution F

Let X(l) X( 2)< . X

be the ordered observations. Then,

i
T(Xci)) + (n - i) Xci)

is defined to be the totat time on test till the ith failure.

In general, if we denote by n(u) the number of items on test at

time U ,

X

T(x) nJ W~ du
0

is the total time on test till x
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The total time on test we have defined above is not scale-independent

so usually it is scaled by dividing by T(X n))

Define

H~i/n)- T(n)

Then Hn(i/v.) is called the scaled total time on test till the ith

failure and the plot of (i/n,H (i/n)) where adjacent points are joined

by straight lines is known as the empirical scaled total time on test.

We define Hn(O) w 0 so that the plot lies in the unit square and is

0 at 0 and 1 at 1.

If the underlying life distribution were really exponential it can be

nn-lquite easily shown (see [2]) that ( .. , ()) are jointly

distributed like the order statistics from a sample of size n - 1 from

a Uniform [0,11 distribution. Hence, we might expect Hn(-) to lien nl

close to 1/n so that the plot would be quite close to the diagonal.

Figure 1 shows an empirical scal.ed total time on test computed from a

simulated exponential distribution with n - 20 .

The theoretical basis for considering this plot as an exploratory

tool for determining whether the underlying distribution is IFR, DFR or

exponential is as follows:

Let F n(n) be the empirical distribution function determined by

the sample.
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0 if x < X(1 )

F W /n if X(i) <

if X <x.
P61~

Then it can be shown quite easily that

X(1
T(X ) (1 - Fn(u)) dn

0

Now define a transform of the actual distribution function as

follows

F'l(t)
m'l(t) " -o (1- F(u)) du 0O<t l < .

The slope of H~lt at t - F(x) can be shown to be

Suppose that F has finite expectation, then the plot of

(t. --F is known as the scaled total time on test plot of F.

Figure 2 shows scaled total time on test plats of selected Weibull

distributions. The significance of this plot is that the total time on

test plot of an exponential distribution is the dia:onal, that of an IFR
Sdistribution is a concave curve and that of a DFR distribution is a convex

Scurve. Note that the Weibull family has both IFR and DFR members

depending on the shape parameter.
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It has been proved (see [2]) that as the sample size increases the

empirical plot converges to the total time on test plot of the actual

distribution co that the empirical scaled total time on test is a very

valid graphical tool to study the failure rate with.

Figure 3 is based on failures of engines of a certain model tractor.

Data on 22 tractors were available and we had the times of failures of the

tractors due to engine failure. When the original engine failed it was

replaced by a reconditioned one and when it failed it was replaced by yet

another reconditioned engine. An analysis of the life times of the engines

showed that the original engines had life times which were quite IFR but

the reconditioned engines were not quite as IFR (see (4]). For a related

paper which contains several kinds of data see [1](

When the underlying life distribution is exponential we saw that the

empirical scaled total time on test tends to lie close to the diagonal.

This fact can be exploited to formulate a very simple test for exponential-

ity. If the plot were to follow the diagonal we might expect it to cross

the diagonal a number of times. Then the number of crossings of the diagonal

by the plot could be used as a test statistic. This was proposed by

Barlow and Campo [2] and they computed the sampling distribution of the

number of crossings when n a 20 using simulation. The exact distribution

of the number of crossings has been computed by Bergman [5].
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III. APPLICATIONS

One application of the total time on test plot is a method for

determining graphically optimum replacement policies. We will use the

tractor engine data for an example. Suppose c1 is the cost of a

tractor failing in service and c2  is the cost of pulling out a tractor

and replacing it during a planned maintenance period. We will assume that

c > 02 . Let F denote the underlying life distribution and let R be

the planned operating time between overhauls of the engine. Then the

expected long run cost of using the maintenance policy R is

ScF(R) + c2 (I - F(R))C(R)-

f(l - F(u)) duI? 0

Since F is unknown we replace it with F , the empirical distribu-
n

tion function. Then, given cl and c2 we want to determine the optimal

R by minimizing

+CFn(R) + 02(1 - FD (R))
C(R) - R

f(l - Fn(u)) du

Usually this is done numerically but we can use the total time on

test plot to do it much more easily.

Recall that the total time on test till the ith failure was

defined to be

Xi)

T(Xi) M J n(u) du

0
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X(1Sx~i)

- n J l - Fn(u)) du

0

So that,

X~j

'I (.~).TT(X~~ (1. - (u)) du

0

Now, minimizing C(R) is equivalent to maximizing

1 , (1/n) - T(R)
C(R) ClF'q(R) + c 2(1. Fn (R))

(1/n) , T(R)

C -1  )1 -2 + n

T(X(n)) T(R)/T(X(n))
02

n(c 1 - c 2 ) c1 -2 + Fn(R)

Clearly, maximizing the above is equivalent to maximizing

T(R)/T(X(0)
c2

cI 2 c2 + F n(R)

To get the R which maximizes the above, draw the tangent from

c
2 to the empirical scaled total time on test plot.

cI - c 2
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Let s denote the abscissa of the point of tangency. Then F (s) is

the desired value of R . From the graph (Figure 4) it is seen that the

slope of the tangent is the maximum value of (*).

This procedure can be implemented on an interactive cumputer graphics

system to determine the sensitivity of R to different values of the costs

c1 and * Of course, the major drawback of this method is that

if the empirical total time on test plot is based on a very unrepresentative

sample then the resulting value of R may be worthless. On the other hand,

if F were known we would use the transform of the actual distribution

and the same method can be applied to the plot of the transform to compute

R . In Figure 4 we have taken ca - 3c2 and the optimum replacement

policy is to overhaul the engines after 4815 operating hours. For related

work see [4], [6].
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IV. THE BIVARIATE CASE

One area of reliability theory where not much work has been done is

in graphical analysis of multivariate data. The problem has been to

represent higher dimensional data or statistics on paper or any 2-dimensional

medium. Some initial attempts have been made to tackle the problem in

the bivariate case. We present below a technique for extending the total

time on test concept to bivariate data.

In the univariate case the life distribution was completely determined

by the failure rate function r(x) and the total time on test plot was

used to determine the behaviour of r(x) . In the bivariate came, in

addition to aging we have the added complication of dependence. So instead

of having just the failure rate we have a hazard gradient which is written

as

(xy) (r 1 (x,y),r 2 (xy))

As in the univariate case, if the underlying life distribution

F(x,y) on [O,-) X [O,c) is absolutely continuous, then r(x,y) determines

F(x,y) uniquely. In fact it can be shown [9] that

P(Xy) - sxp - f .

where P(x,y) - Prob (X > x , Y > y) and the line integral is

path-independent.

The interpretation of the hazard gradient is as follows:

r (x,y) - Conditional failure rate of

X given Y > y
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r 2 (x,y) = Conditional failure rate of

Y given X > x

One of the properties of the hazard gradient is that the behaviour

of r 1 (x,y) as y varies and the behaviour of r 2 (x,y) as x varies

describe the nature of the dependence between X and Y . For instance,

Eif r,(x,y) is decreasing in y then the conditional failure rate of

X given Y > y decreases as y increases, which is a form of positive

dependence.

Now let us suppose we have a sample

(XlYl) , ... , (X nYn)

from absolutely continuous bivariate distribution F on [0,-) x [O,w)

Let

Y(1) < Y(2) <" Y(n)

be ordered Y-values. Let X(WO) be the order statistic of the

X-values associated with Y(M)

Now define a sequence of subsamples of the X-values as follows:

0Mox {" x(i()) x(n ())}

X " ) (. (n))

X2x "x(X(),.. x (Tr(n))

-l *[X

n-i ((()
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Define

Tk(j) 1i)Tl k J) k ,,J-

-k k n-k
where (X1)' '** are the ordered observations in X

Now plot

( ,Ti 0 <_k _n- 1

0 <j In-k,

We call this the empirical-conditional scaled bivariate total time on

tout plot of X given Y . From this plot, as in the univariate case, we

can determine the behaviour of rl(x,y) . We do a similar plot with1.the Y's in order to study r 2 (x,y)

Figure 5 shows a bivariate plot based on running and down times of

the Yankee Nuclear Power Plant. We present the conditional plot of the

down times given running times. The plot indicates that the down and

running times are positively dependent and the down times are DFR. A

Bivariate Weibull appears to be a likely model. The bivariate came is

discussed In detail in [7].

378

i t SS tI SJ SUItt $ JILj.W.±II.,"Mfrk l t•M'j



I

V

I
I

ui

e 4

v-i

� C

379



REFERENCES

[1] Ascher, Harold and Harry Feingold, "Is There Repair After Failure?,"
Proceedings 1978 Annual Reliability and Maintainability
Symposium, (1978).

[21 Barlow, Richard E. and Rafael A. Campo, "Total Time on Test
Processes and Applications to Failure Data Analysis,"
Aerospace Research Laboratory Technical Report, (1975).

[3] Barlow, Richard E. and Frank Proschan, STATISTICAL THEORY OF
RELIABILITY AND LIFE TESTING, Holt, Rinehart and Winston, (1975).

[4] Barlow, Richard E. and Bernard Davis, "Analysis of Time Between
Failures for Repairable Components," Proceedings of SIAM
Conference on Nuclear Systems Reliability Engineering and Risk
Assessment, (1978).

[5] Bergman, B., "Crossings in the Total Time on Test Plot," Scandinavian
Journal of Statistics, (1977). *1

[6] Bergman, B., "On Age Replacement and the Total Time on Test Concept,"
Technical Report, University of Lund, Sweden, (1978).

[71 Davis, Bernard, "Graphical Techniques in Reliability Theory,"
Ph.D. Thesis, University of California, Berkeley, (1979).

(8] Langbert, Naftali A., Ram6n V. Ldon and Frank Proschan,
Characteriwation of Nonparametric Classes of Life Distributions,"
Technical Report, Florida State University, (1978).

[9] Marshall, A. W., Some Comments on the Hazard Gradient," Stochastic
Procses and Their Applications, (1975).

380



PITMAN-CLOSENESS EFFICIENCY OF ESTIMATORS
OF RELIABILITY WITH APPLICATION TO THE

EXPONENTIAL FAILURE MODEL

Danny Dyer I
Department of Mathematics

University of Texas at Arlington
Arlington, Texas 76019

Jerome P. Keating
Bell Helicopter Textron

Fort Worth, Texas 76101

ABSTRACT

When there are available several point estimators of component or
system reliability, it would be of interest to compare such estimators
through some "closeness to the true value of reliability" criteria.
Along these lines, the concept of Pitman-closeness efficiency is
introduced. Essentially, when comparing two estimators of reliability
for a given situation, Pitman-closeness efficiency gives the odds in
favor of one of the estimators being closer to the true value of
reliability than Is the other. Theory is developed which provides a 0
straightforward way to evaluate this measure of efficiency under
fairly general conditions on the estimators. Based on this methodology,
a comparison is made of several estimators of reliability based on
Type II censored data from the one-parameter exponential failure model.

Key words: Pitman-closeness efficiency; Reliability function;
Exponential failure model; Comparison of estimators.
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PITMAN-CLOSENESS EFFICIENCY OF ESTIMATORS

OF RELIABILITY WITH APPLICATION TO THE

EXPONENTIAL FAILURE MODEL

Danny Dyer and Jerome P. Keating

1. INTRODUCTION

Point estimation of component or system reliability at time T,

R(r) uProb(X 2 T) where X in the failure time, is a frequently con-

sidered problem. Generally speaking, for the commonly assumed failure

models# there are various methods by which an estimate may be obtained.

When there are available several point estimators of R(T)9 the tradL-

tional method of comparing such estimators is mean squared efficiency

(i.e., the ratio of mean squared errors). However, except for a few

case* (e.g., Zacks and Even 19665 Sinha 19721 exponential failure

models Zaoks and Milton 1971t normal failure model), the determination

of a closed-form expression for mean squared error can prove to be a

difficult task. Furthermore, mean squared efficiency compares the

average performance of an estimator relative to another; consequently,

its usefulness isn't always clear, especially when a single estimate

is to be made. Finally, mean squared efficiency can be misleading and

unreliable Case, e.g., Dyer, KeatLnig and Hensley 1977; Box and TLao

1973, p. $07).
We, therefore, propose another measure of efficiency motivated by

the following idea due essentially to Pitman (1939). Let
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Or) gs(Xirn), 1 - 1,2, be two estimators of reliabiL•ity

R(V) - b(T,S) based on a random sampzle X of msie n from a given

fatlure model with ulknown pazemeter 8. Then 11(T) is smld to be

a litman-closer estimator of R(T) than Is () £ if

Prob(Ilc, M) - Rcl j 12c(T) - (€)j _ .1 5

for all Crsen) with strict inequality for mane (T0 9 %ono), [motel

Under Pitman's or'iginal. concept, PZ'ob(I'l(t) -R(T)I 'c 1' 2(T) R()1

would be a fiducial probability statement. Zn this papers, however,

Preb(1k1(r) - R(T)j Aj1(T) - R(r)I) Is determined in the classical

sense ends therefore, has a welative-frequemV interpretatLon. We

define the Pit•an-olosenees (PC) efficiency of I(T) relative to

2 (T) as
le.1.eff Pc(RI() ',N (T) IT'Gon)

Pvob(Iil~t) - Rjcl- R2 (Om) ft(T)J) (.2

J ~Pz'ob(IR 2 () - R(jr)t -c li(-r) - R(jr)I)

Pitman-closeness efficiency gives the odds that one estimator is

closer (in absolute value) to the true value of reliability than In

the other estimator. For example, If rel.eff.PC(R{(T),R2 (T)1

i,en) v 1.5, then the odds are 3 to 2 in favor of Ri(T) being closer

to R(iT) than is R2(T). When relseff.,pC(Ri(T)qR 2(T);T,9.n) 20 1

for some (roOono), we shall say that k 1(r) in more Pitman-closeness

efficient than R2(T) at (T0,O0.n~,). If rel.eff.pc(Ri(1r)s

k(i);TqOn) :P 1 for all (T,e,n) with a strict Inequality for
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ifi
some (•0, e0, no), then R2(T) is said to be Pittman-closeness inad-

missible relative to R1(r).

In this papers we develop theory which provides a straightforward

way to evaluate (1.2) under fairly general conditions on the esti-

mators. Through the use of PiLman-aloseness effideency, we then

cupuz'e several estimators of reliability based on Type 11 censored

test data from the (one-parameter).exponential failure model. The

estimators considered are based on (a) the method of maximum likelihoods

(b) minimum variance unbiasedness, and (a) the mean and median of

Fraser's structural distribution of R(M).

2. THEORY AND METHODOLOGY

Let R(T;n) be an estimator of reliability R(T) which depends on

(L) the sample size n, and (Hi) T and the life-test data only through

a statistic T whose range ins . We shall say that R(T n) is a non-

deaoreasing fjuZ-ranvg entimtor of R(r) if, for fixed n,

(i) I S n2 [091, (it may be that one or both endpoints of

[0.13 are attained only by considering the extended range

of T), and

(Ui) R(T;n) is a nondecreasing function of T on I but is strictly

increasing on II C 1, where 0 < R(T;n) < I whenever T E I.

We assume Prob(T e6'1) 0 o.

A nondecreasing full-range estimator of R( ') is necessarily continuous

on I.
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!P ion 2.1 Let R1 (T;n), i.l,2, be nondeoreasing full-range

estbators of R( ). For fixed n, x0 is naid to be a point of inte.r.

seettone of R T n and R2(i)provided

(L) R,(x0;n) aR xni

(11) for arbitrarily small 9 0 09 (0  in R2(x .

(N) + CIA)X RN +)in

and R1(x0 - Ctn) - R2(NO - E;n) have opposite signs.

VIP, 0 ... Let R1,(Tin), ial,2, be nondeceeasing full-range

estimators of R(T). For fixed n, yo is said to be a switching point

Aof R (Tin) and R (Trin) at RTr) provided R 00+ X (Yo;n) a 2R(T).
Not* that x0 depends only on the sample size n; y0 depends on

n an well as R(T). For fixed n, let I C I be the set of points for

which R1(Tin) and R2 (Tin) are not both zero or both one, When
T G1A, RI(Tin) + R2(T;n) is continuous and incresing, thus the

A A

switching poitnt of R,(Tin) and gR(Tin) at R(T) is unique. We now

prove the main result of this section.

Theotem 9.! Let Ri(Tin), iul,2, be nondecriasing full-range esti-

mators of R(w). In I n a (a,b), let y 0 be the unique switching point

at R(M) and suppose that Rl(tin) a R2 (t;n) only at a finite number

of points of intersection, say, xlI,,,,xN. f Ri(t;n) : R2 (tin) when-

ever t (i, min(xl,,,,,xN)), then

Prob(IR(Tin) - R(T)j c IR2 (T;n) -

[•(N+1)/25
E:Prob{x (2k) T c x (2k+l)}, (2.1)

kvO
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where x(a) a s, x(l) m sin (Y 0,X 1 ,...,x,),.. ., X(N+)

msx(YO,xl,....,XN), X(N+ 2 ) b.

P0oo0 If you xL for some ., the result follow. immediately by

taeking x() x x(jl) Y0 • xJ, where there are exactly j-1 of the

xi's less than Y0 ,

Assume that Y x for any 1. Consider the partition of Irn

determined by the distinct points a x(0) 4 X(l) 4" *me x(vl) 4

"x(+2) • b. We identify those open intervals mI) * (x(j), x(j+1))

such that whenever t G In(j), the inequality

JR1(t;n) - R(o)I; 1R(tin) - R(T)I (2.2)

holds. When t e (x(0)g x( 1 )), (2.2) holds by hypothesis. Conse-

quently, the theorem will follow by showing that (2.2) holds over

exactly one of two adjacent open intervals, says I n(i) " (x(M), x(L+I))

and In('+') • (xO+l), X(L2)).

C6t 1: Y0 4 x(j)s When y0 _ x(L), then R1(t;n) + R2(tin) * 2k(•)l

thus R2(t;n) - R(T) > R(r) - Rl(t•;i), where t 6 In(i) .

Suppose k1(tin) ) F"?(tin), t eI (i). Then R1 (t;n) - M(i) •

R2 (t~n) - R(T), and R(T) - R (ftn) e R22(tin) - Mt-) 0 Rl(tin) - R(T).

Cone~snty,1R(tin) -R(i)I ' (tin) - R(T)I since R1(tin) :-M0
Cosqety A 2 A 1C i

Furthermore, Rk(tin) - R2 (tin), t e In(1+l); hence R1(tin) - R(0) e
A A

R(g)- R(iT). It follow. that 100T - R (tin) et R (tin) -R(-r) e

R (tin) - R(-0 or, eqnivalentlyg 1R1(tin) - R(it)I - 1'2(t in) - R(,r)t

since R 2(tin) 3 R(N). On the other hand, if R1 (t;n) v ;.2(tin),

t e In (1), then (2.2) clearlv holds over In(i) but not over In(i+l).
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When yo txhe+2  n l;R(t;n) + 12 (tin) < 2K(T)i

thus R2(t;n) - R(T) < R(T) - R1 (t;n), wher.e t I (I) U II (1+). If
n ni

( 1tin) 1 R2((tin), t e In(I)$ then R (tin) - R(T) > R(tn) - t(T).

Thus Rtin) - R(t) < R (tin) - R(T) R(0 - R (t;n), and
2 2A

jiR(tin) - 2(T)l < 'R^(tin) - R(0)1 since R(T) ) R2(tin). Moreover,
A A

RIl(ti<n)< t 6 Zn(i.l); hence (t;n) - R(T) < R 2(t1,n) - R(1).
Conequently, Rl(t;n) - R(T) < R2(tin) - R(T) < R(T) - R 1(tin), and
IRA 1 -since(T) ) Rl(t:n. On the

2 "1

other hand, if R 1 (tn) < R2 (t;n), t 6 1(i), qthen (2.2) clearly holds

over I U(+l) but not over I (I).
n n

CUS 1 0 x(y+a )' When U0 ( then R11 (tn) + R2(tin) < 2R(?),

t *?n(i); however,, R,(tin) + R2 (t;n) : 2R(r) t GCIn(.+.). If

R,(t:n) 4lR 2 (tin), t 6Z(i), 1 then R (tin) 4C R (tin), t I1n(L+l),

and (see Cases 1 and 2) (2.2) holds over 1In(1+1) but not over I (I).SIf R(tbn) ) R2(t;n), t 61 C(1), then t(tin) > R (tin), t EI (L+1)0

and (see Cases 1 and 2) (2.2) holds over 11(1) but not over 1,(i+l).

The proof Is now complete. m

If, for a given n, there are no points of intersection of

Rll(Tn) and l 2(Tin) In In$ we then have the following

CO/wUO&Y 2.1. Let R^L(Tin), ial-2, be nondecreasing full-range

estimLators of R(T). Suppose there are no points of Intersection of

"R,(Tin) and • in I I (ab). If Rl(tin) b I t2(t;n), t 4 10 then

Prob) R1(TT&n) - R(r)0n1< 1R2(Tn

SProb(a 4 T -cy0 ) (2.3)
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where y is the unique switching point of •3.(T;n) and i2(Tin) at R(t),

We point out, in pausing, that if (in the theorem an well as

the corollary) R•(tin) -c R2 (t;n) whenever t e(a, min(xl,...,x)),
1 A

then Prob(IR (Tin) - R(T)I < 1R2(Tin) - R(T)I} clearly equals one

minus the right hand side of (2.1) or, in the case of the corollary,

3. ESTIMATORS OF PELIABILITY

We consider a specific failure model, namely, the one-parameter

exponential. Let X(1 ) X(2) 4 , X(k) be the ordered first k

failure times in a random staple of sise n (i.e., a Type 11 censored

sample) from fx(xN;) a (1/o) exp(.x/O), x > 0. The reliability at

time Tr : 0 is given by R(T) u Prob{X > T) = exp(-T/0). The

statistic

T mi nkx()/ (3.1) .

is complete sufficient for R(T). Furthermore, It is well known

(Epstein and Sobel 1954) that T has a gamma distribution with shape

parameter k and scale parameter C-lnR(r)]"1 , We point out that, for

a given k, the distribution of T depends on T and e only through R(T).

In other words, we need only specify the value of R(W) and not that

of i and 0 to index the distribution of T. Consequently, we hence-

forth write R instead of R('). It follows that 2(-1nR)T ham a chi-

I' square distribution with 2k degrees of freedom.

By the invariance property of maximum likelihood estimators, the

maximum likelihood estimator (MLE) of R is
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Dasu (1954) has shown that the minimum variance unbiased estimator

S(MYUE) of Ris

RMVUE(T~ik)o 0 0<T < 1

U (1* /T)kl T > 1, kc 1. (3.3)

We now discuss two other estimators of R based on Fraser's

(1969) structural inference (a group-theoretic approach to Fisher's

fiducial theory), In the structural approach, as in the Bayesian
lie ". .:approach, the given data induce a probability measure (called the

structural density) on the parameter space. Unlike the Bayesian

. el approach, however, this is achieved by assuming the existence of a

structural model rather than a prior probability measure.* The

structural density of Rg given T *t 0, is (Maxwell 1973)

gK Sr it) 0 t c(-lnr) lrtlr(k) , 0 < r < 1, k >~ 1. (3.4)

Expression (3.4) is also the Bayesian posterior density of R under

Jeffreys' noninformative prior for a scale pairamieter (see Box and

Tiao 1973, p. 44).

Measures of central tendency of the structural density of R

would seem natural choices for point estimators of R. Since

E(Rjt) 4 g(rlt)dr * /(til)J , an estimator of R based on

the mean (SION) of the structural density of R is

RgMN(T;k) 1 l /(T+1~)3Jk, T > 0, kc 1. (3.5)
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In addition, by solving the equation I, g(rlt)dr .5 for m, we ob-

tain an estimator of R based on the median (SMD) of the structural

density of R. The solution isR SHD(T k) T- > 0, k,

(Tk exp(-m 2k /2T), T>0 35

where M2k is the median of a chi-square distribution with 2k degrese

of freedom. For specified k, the value of m2k can be found in

Harter (1964). It is interesting to note that RSHD(T~k) could also

be obtained by a classical argument. Since 2(-InR)T has a chi-square

distribution with 2k degrees of freedoms RSMD(Tik) is a 50 percent

lower (upper) confidence bound on R. Thus, %,A)(T~k) is as likely

to underestimate as to overestimate the true value of R. In this
A

sense, RSMD(T;k) is sometimes called a median unbiased estimator

(Lehmann 1959, p. 983).

For k Z_ 1, we note that lT-k), RSiN(TiO), and RSMD(T;k) are

each nondecreasing full-range estimators of R. Furthermore, RUE(Tik)

also has this property provided k > 2. When k 2 1, RMVuE(T;1) is a

zero-one estimator of R and, as such, is of no practical interest.

Henceforth, any discussion concerning RMV1E(T;k) will assume k > 2.

4. PAIRWISE COMPARISON or ESTIMATORS

The theory and methodology of Section 2 will now be applied to

the estimators of Section 3.

4.1 R hw(Thk) and I (T-k)

We show that RME(T;k) and RIME(T;k) have a single point of
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intersection in Ik (O,+-), k > 2. There is clearly no point of

intersection in (013. When t • 1, R%,X(t;k) 4 RAIjE(t;k) ii

equivalent to

h(t) = t lntt/(t-1)] k k/(k-1). (4.1)

Since exp[l/(t-l)] > t/(t-l) t 1, then h'(t) c 0; thus, h(t)

Is decreasing. The existence of a unique root for (4.1) follows

since 1 < h(t) < +a and h(t) is continuous. By Theorem 2.1,

Prob(I1E(T;k) - RJI -c (?) -(j)

a Prob{0 c T c min(x,,y 0 )) + Prob(T > mex(x,y 0 ))

"X2 C2-lnR) min(x 0oy); 2k0

+ 1 - X2 [2(-lnR) max(x 0 ,y 0 ); 2k0, (4.2)

where for specified k > 2, x0 is the solution to exp(-k/xO)

k-l k-i
(I - i/x 0)k ; Y0 is the solution to exp(-k/y 0 ) + (U - 1/y 0 ) = 2R

whenever R >.5 exp(-k), otherwise, y0 = -k/ln(2R). We write

X2(.;m) an the chi-square distribution function with m degrees of

freedom. When k = 2,3,5,7,10, and 20, expression (4.2) has been
evaluated numerically for R = 0(0.01)1.0. Based on these results,

the graphs of rel.off.c (T;k),iUE(T;k);R,k) versus R

are given in Figure A.

14.2 ILE(Tik) and 
.4lD(T*k)

There are no points of intersection of %ME(Tk) and RSMDTMk)

In Ik * (0,+-), k > 1. This follows since the median Is less than
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the mean of a chi-squaze distz•ibution (Groeneveld and Meeden 1977)1

consequently, PsD(t;k) - exp(-m2k/2t) e ,xp(-k/t) • (t*k),

AI.7 t 0. By Corollar 2.1,

Prob(IRND(T;k) - <I (T -1 R

a Prob tC y0) x2C2(-lnK)y0 ; 2k], (4.3)

wheoe for specs. -A k > I and R, Yo Is the solution to exp(-m2k/2y0)

+ exp(-k/y0)

For fixed k 1, .ND(t;k) RN(t;k), t • 0; furthermore,

P D(T;k) undezesiumates R, on the average, 50 percent of the time,

Zt follow. that RSND(T;k) is closer to the true value of R than is

R=(T;k), on the average, at least 50 percent of the time. It will

be instructive to prove

Thto.*h 4.41 RMLE(T;k) is P.tman-cloaeness inadmissible relative

to • (T;k).

PYO For fixed k and R,

lexp(-k/y 0 ) exp(m -2k/2yo)J"

< Iexp(-k/yo) + exp(-m2k/2yo)]/2

< exp(-m2k/2y0),

since the geometric mean of two unequal positive real numbers is loss

than their arithmetic mean. By simplification,

M2k 4 2(-2nR)y 0 4 (m2k + 2k)/2.

Henoe, for k 1 and 0 R < 1,
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.5 -C ?t2(-lnR)y-o 2k3( X2C(,,,2k + 2k)/2; 2k3

(1+1ln2
,, m2 4. 2)/21 2 .J(1/2) exp(-x/2)dx a .571.

0

By (4.3)o it follws that

1, 4 1.331. (

From the proof of Theorem 4.1, the odds in favor of %f.1 (Tjk) being

closer to R than is RmLE(T;k) range from sLghtly better than even

to approximately 4 to 3. The exact extent of this efficiency can

be determined from the graphs (based on numerical evaluation of

(4•3)) of rel.eff. {LMD(Tjk),RL..(Tjk);Rk) versus R given inPCM

Figure S.

4.3 (Th) and

We use an argument similar to that of Subsection 4.1 to show

that %,D(T;k) and (T;k) have a single point of Intersection

in (1,+-). When t > 1, RSHD(tik) a WjE:(tik) is equivalent to

h(t) n t: ln~t/(t-l)J m m2k /2(k-1). (4.4)

However, h(t) Is continuous and decreasing; fuithermorse, 1 - h(t) < +..

Since 2(k-l) is the mode of a chi-square distribution with 2k degrees

of freedom and is less than m2k (Groeneveld and Meeden 1977), it

follows that a unique root for (4.4) exists. By Theorem 2.1,

Prob(IMD(T-k) - RI < IR",(T;k) - R11

2X [2(-lnR) mLn(xo yO); 2k]

+ 1 - X2t2(-lnR) max(xo,yo); 2k], (4.5)
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where for specified k . 2, x0 is the solution to exp(-m2 k/ 2xo)

U( - l/xo)k-l YO ins the solution to exp(-m 2 k/2yo) + (1 - 1/yo)k-1

a 2R whenever R > .5 exp(-m 2k/2), otherVise, yO 8 -m2Ik/2ln(2R).
A A

ror fixed k Z. 2, RSMD(t;k) I- R.wE(t;k) if and only if

t 6 (O,xo). Consequently, a conclusion similar to that which i•medI-

ately preceded Theorem 4.1 cannot be made. Nevertheless, we have the

folloimLng

ThteoQJ 4. f Rwim(T ;k) is PLtman-olosenesm inadmissible relative

to (T~k).

PAOOp For fixed k, let x0 be the unique point of intersection and

k-lRo(k) a exp(-m2k/2xO) a (1 - l/x)'. When R t Ro(k), then I I x0 < YOt

where yO is the switching point at R. Thus, exp(-m 2 k/2yo)

k-i
< rexp(-m2 k/2•O) + (1 - l/yo) 3/2 or, equivalently, *g2 , 2 (-lnR)yo.

From (4.5),

Prob (t%MD (;k) - RI <IRME(T;ik) - RI)

2 2
• 2-nPx;2k) + 1 - [2(-n ); 2k)

> x2[2(-lnR)xo; 2k3 + I - x (m2k; 2k) , .5.

When R < Ro(k), then < Yo and exp(-m 2 k/2yO) E Cexp(-u 2 k/2yo)

+ R,,VQ(Yotk)J/2. Thus, m• 2 2(-lnR)yO. From (4.5),

Prob( IRSKD (T 1k) - RI cI RNW(T 1k) - RI)

X2 [2(-lnR)yo; 2k3 + 1 - x2[2(-ln)Oxo; 2k]

2x2 (m 2 k ; 2k) u .5 U

While Theorem 4.2 says that RsND(Tjk) is to be preferred over
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R,,(Tjk) from a Pitman-closeness efficiency point of view, the

extent of this efficiency can be determined from the graphs (based

on numerical evaluation of (4.5)) of rel.eff. 0 (l,(Tik)O

,MVE(T~k) 1t~k} versus R given In Figure C.

£4.4 ID(T~k)and %Ru(Tsk)

We show that RSMD(T;k) and 1W (T~k) have a single point of

Intersection in I x (O,+w), k :P 1, When t O* lgs.l(t~k)

191W(t;k) is equivalent to

A(N) * t ln(1 + l/t) " m2k/ 2k. (4.6)

since exp(-X) > I x, 0 4 x < 1, AI(t) •ln(l + L/t) 1/(t+1) •0 '!!

and M(t) is continuous and Increasing. For fixed k • 1, It follows

that a unique root for (4.6) exists since 0 -c A(t) < 1, t o 0. and

"2k 4 2k. Denote the root by x,# When t t xO, A(t) 4 m2k/ 2k1

aonsequently, .9 1W(t;(c) • R$D(t;k). By Theorem 2.1,

Prob(jRS (T;k) - RI t 14SMD(T.k) - RI)

X2[2(-lnR) mLn(xo,yo)i 2k3

+ 1 - X2 [2(-lnR) maX(xo,Yo); 20d, (4.7)

where for specified k ! 1 and R, x0 Id the solution to

exp(-m 2k/2x%) * U - 1/(x0 + 1)3 k Yo is the solution to

exp(-m2k/2yO) + Ci - W/(y0 + 1 )3k a 2R. The graphs (based on

numerical evaluation of (4.7)) of rel.eff.pC(RMD(Tik).Rs141 (T;k);R~k)

versus R are given in Figure D.
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There are no points of intez'uction of l (Tik) and AW(Tk)

In 1k (0, +,,), k > 1. Since exp(I/t) ) 1 + 1/t, then

R1•(t'k) o *xp(-k/t) [< [ l/(t+1)3k • S(k)9 t > 0. By

Corollazry 2.1,

P ob(IR (Tik) RI <RP'.Mj(Tjk) -Rj)

a Prob(T - y0  X •x2(-1nR)y ; 2k3, (4,)
FO 0

where for' specified k > 1 and R, y0 is the solution to exp(-k/y 0 )

+ El - 1/(Y09+1)1 a 2R.

Tke4.0m 4.3 �$ R% (T;k) is more Pitman-closeness efficient than
AI.(TIk) if and only if R I l(k) a sxp(-m2k/2xO), where for

specified k Z. 1, x1 is the solution to exp(-lm2 k/ 2x! ) (sxp(-k/x3) +

[I.- l/(xv+l)]k)/2, Furtermore, .199t R6(k) -c *'Ii .6 9, k 1- 1. s I

Piwo The average of R (T;k) and (Tk) i a nondeaeasLng full-

range estimator of R. We first ihow that RI,(T;k) and CRMLE (T;k) +

Rk C(T;k)3/2 have a single point of intersection in (0,+-). When

t '0, 0 6"Sm(t;k) u [NLE(t;k) + RSMN(t;k))/2 is equivalent to

h(t;k) a t 1n2 - t ln(exp(-k/t) + (1 - 1/(t+1)3 k

M .2k /2. (4.9)

F.o' fixed k >_ 1, h(tik) is continuous and increasing over (0,+w).

Furthermore, iim h(tik) a ki thus 0 < h(t;k) -c k, t o 0. Sinca

m2k < 2k, the existence of a unique root, say x•, for (4.9) is

established. Let RI(k) M exp(-m 2 /2xo). When t • x6, h(t~k) - m2k/2;
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thus, R (t ;k) + I:•at(.t)k) + For specified R,MID

let yo be the switching point of RN.a(T;k) and RO8 N(Tlk) at l.

1When R 3 Rp(k), lszw(Yolk) : [ERWZ(Yok) + . l(yoik)]/2, i

ors equivalently, m2k ( 2(-lnR)y0 . by (4.8),

hrONIkb,,(Tlk) - RI -I jiM(Tjk) - R•)

0 X2[2(-lnR)yo; 2k3 • x2 (mk 2k) x .2.

The last inequality Is reversed when R R60(k).

For fixed k !. 1, exp(-2k/m2 k) + Cm k/( +2k)I)k - 2eo; thus,

h(m2k/ 2;k) > m2k/2. Since h(t1k) is Increasing In t, then

x6 4C *2I/ 2 and RO(k) - N .368, k • .. sFurtheor=,, Mk/2x

deorease@ with inoreasing k. The solution to h(xil ) m w2/2 Is

* .42891 thus, min R6(k) a RI(i) I GxpC-m 2/2(1•L209)3a .192. a
k

Although the true value of R Is unknown, most situations of

interest would presuppose that reliability to at least 37 percent*

In these situations, RSHN(Tlk) would be preferred over ILE(TIk

from a Pitman-closeness efficiency point of view. The extent of

this efficiency may be determined from the graphs (based on numerical

evaluation of (4.6)) of Ael.eff.pc (T LE

versus R given In Figure rE.

4.6 RSI4 (T1k) and P.VLM(T k)

For specified k t 2, we show there is exactly one point of
intrection oMk R),(Tik) and I(Ti)) in (1,4a). There is clearly

no point of intersection In (O,1X. When t • 1, RMN(tik) = a w(tik)

Is equivalent to
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"$•10(i + 2) ()k + 1)2k', (4.l0)

where p t-1 :s- 0. Equation (4.10) may be written as a polynomial

equation In p of degree 2k-2, 1.0,6

2Y i--i1 2k-ij 0

Let a1 be the coefficient of P2k-•- For 11&. uk,

~~ * - (2k-11] (2k- 21+2J a~.(~~
A for k'l,...,2k-l,

a

Then a1  It a2 * k-11 and mince 3 -(k-i), it follows that

a i 0, c 0 31.#,,2k-1. Connequently, by Descartes' rule of signs

there is exactly one positive root for (4.11), and thus for (4.10).

By Theorem 2.1,

Prob{IRN(T;k) - RI -c I .M., (T;k) - RI)

a x2 C2(-lnR) min(x 0 , y0 ); 2k3

+ I - X2 E2(-inR) max(x 0, y0 ); 2k), (4.12)

k
where for specified k !.2, x 0 is the solution to El - 1/(x 0 ÷1)3
(I - 1 /o)k-l; yois the solution to El - 1/(y0l)k + (I - jyd)k-l

k/+11) l/k 1 1 /y
2R whenever R , ( 1/ 2 )k , otherwise, y0  El - ( 2 R)l/k - 1.

As previously mentioned, when the true value of reliability Is

at least 37 percents, R8 (T;k) would be preferred over Rnt (7 k) from

a Pitman-closeness efficiency point of view. A similar statement can
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be made with regard to ReN(T;k) and RWM(T;k).

TW. Am 4.4 When R * ."I, ,Lk (T;k) Is morse Pitman-loseness efficient

than NYUZ(T i)I)

P~.e For specified k 2, let %0(k) * ~(xo;k) Am xkl
whereo x0 In the point of Lnteweor.ion of %,1(T~k) and P, (Tjk).

fy a Pade rational approximation of index 2 to the binomial meoies
(ie,, (1.4x)1M [2 + (n+l)xl/[2 (n-l)49, Ralston 19865, pp. 278-280),

ck - .51 thus, I(k) a It op 2. Let y0 be the switching

point of ftBW(T1k) and Nt(T'k) at: 1. Note that when f p e 1 , then

X< y0 ,
The average of RSV"(Tjk) and RUS(Tik) is a nondeoreasing full-

range estimator of It. When k 4 4, there are no points of Intersection
of 'e(TIk) and CRSN(T~k) + *-E(Tik)J/2 In (0.4a) sinceo1f AND a)

%MD(tlk) t ftm(t;k) + PvW (t;k)j/2s t ), 0o Thus, RSK(Yotk) o
AA

[•+lk) + RWM(y 0Ik)I/2 a t or , equivalently, m2k :, 2(.leA)y0,
k 4. From (4.12), for k.1%4 and R)t- e-1

Pob(I E(Ti) - "I < - l

X t2 2(-lnR) max(xo3yo)j 2k3

" x 2r2(-lnR) min(x 0 ,y0 ); 2k4

2 xrt2(-lnt)yo; 20k_ - x t2(-nR)x ; 20k
4 x 2(m2kI 2k) - x2 2(-lnR)xo; 2k0 .5. (4.13)

When k * 2 or, 3, there is a unique point of intersection, may

M1of RSND (Tik) and tAS8 U(Ti~c) + Rm.(Tik)3/2 in (0,1). However,
the Inequality fHD(t1k) < RBN(tCl) + -lm(t;k)]/2 still holds
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for t >1. Since x* < I < x, hen (4.13) holds for k >2.

Thaoram 4.4 is somewhat conservative in the following Iene. For

a given k :P>2, it Is quite likely that Fig (Tek) moe Pitman-

closeness effi5ient than CS(Tik) for vaue of R onsiderably

loss than .5. Thees e fficiency is inherenty dpnshown in the

graphs(base paranmetrica fvaunation being2) o esi et~ed .Sincejk~

AR.M/O'i|kIRsk} versus R gi.ven I-n Figure F.

So DISCUSSION 0OF RESULTS

Pitman-closeness efficiency Is inherently dependent upon the

probability that an estimator underestimates (or overestimates) the

tru value of the parametric function being estimated. Since

Proý{RMLZ(Ttk) < R) n X 2(kj=k) 1, J# k !_ 19 then %LETi)ted

to underestimate R. On the other hond, "W U ,(T;k) tends to over-

estimate R whenever R W e1 U .356. To see that this is so, first

note that m2 o > 2k - .7, k ! 11 thus Em2k/(m2k - 2 )3k4 _.

I - c1.3-)]i < or, equivalently, 2(. - exp[-l/(k-1)3)}"

M 2k' 'or fixed k, q(R;k) a 2(-lnR)El - R1/(kl)]"1 is a de-

creasing function of R. Thus, for fixed k !.2 and R ,

q(Rik) < q(e' 1k) w 2(1 - exp[-l/(k-1))}" • m2k. The result now

follows since Prob(;RuE(Tik) > R) a I - x2tq(R;k); 20]. Moreover,

as R decreases from e" to 0, both R4VUE(T;k) as well tas of course,

RMLE(TIk) tend to underestilnate N. Generally speaking, from Figure

A, IL~(T;k) is more Pitman-closene•s efficient than PU(T;k). For
RMLE
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low to moderate reliability, the odds in favor of RHE(T;k) being

closer to the true value of R are quite high. For high rellability,

the odds still favor •1(T;k) but are only slightly better than

Oven. This result Is somewhat consistent with a mean squared efficiency

comparison given by Zacks and Even (1966, Figure 3). They show

grphically that RMLE(T;k) is more mean squared efficient than ,VE(T~k)

over the Interval .03 8 R <.5l (n u k u 4,S). Maximum mean squared

efficiency Is reaohed at approximately R a .22, And although RMVtM(Tjk)

Is more man squared efficient than RMT(Tjk) when R >) .61, the

mean squared error of R4VLM (T;k) is only slghtly less than that of

When R a e", Fraser's structural inference provides estimatore

which fall between the maximum likelihood estimator (which tends to

underestimate R) and the minimum varianoe unbiased estimator (which

tends to overestimate R). In other words, when R ; ." (i.e.a

t k - .5), either (a) RMTE(t;k) < RsH•(tIk) - R9M(t;k) < R. (t;k)

or (b) R E(t;k) < Sf (t;k) < RSMD(t~k) e: (t;k) holds. It is

the latter inequality, i.e., (b), that is true if reliability is high.

When R 4. s"l, the structural estimators give estimates of R which

are larger than thoan given by the maximum likelihood or minimum

variance unbiased estimators both of which tend to underestimate R.

In any event, by Theorems 4.1 and 4.2, RMLCE(T;k) and R14VUE(Tjk)

are both Pitmen-closeness inadmissible relative to RSMD(Tjk). Con-

sequently, from a Pitman-closeness efficiency point of view, the
A A A

preference among the estimators RML(l;k), R. (T;k), RS(k) ad
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R$1N(T~k) reduces to comparing only the latter two except in the

following relatively minor situation. When k * 2 and .17 <R < .22,

ktgN(T;k) is more Pitman-closeness efficient than M k), in turns

SD(T;k) in more Pitman-closeness efficient than fiaE(Tjk); et
A

R= i(Tsk) is more Pitman-closenese efficient than s (Tk). A

similar statement can be made when k , 3 and .20 ' R4 .22. F'ortu-

nately, this circular paradox vanishes when k _ L4. It Is because

of this apparent absence of a general transitivity property that

pairwise comparisons of the estimators were made in Section 4.

For fixed kg a preference set for R sD(T;k) (R3I(Tik))Ls the
subinterval(s) of the R-interval, it.e., C09-3, over which RSND(Tik)

(kMN(T~k)) is more Pitman-closeness efficient than RS4(T1k)

(S I(Tik)). Preference sets as well as the specific odds In favor

of being closer to the true value of reliability may be determined
A

from Figure D. Regardless of the number of failures, R,,,(Tlk) is

preferred when reliability is high or low. The odds are slightly

better than even, in this case, that •MD(T;k) will be closer to

the true value of reliability. On the other hand, regardless of the

number of failures, RSHN(T;k) is preferred for the middle values of

reliability, I.e., the component is about as reliable as it is unre-

liable. In this cade, the odds favoring R,,(T;k) being closer to

the true value of reliability are, generally speaking, quite high.
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