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i The first part of this work (Chapters 2 and 3) considers the problem
of radiation from sources in the presence of smooth, convex, impenetrable

objects and presents a brief survey of various high-frequency techniques.

A generalization of the geometrical theory of diffraction and two new
techniques -- based on the spectral domain approach and an asymptotic
evaluation of the radiation integral for the surface current -- also are
discussed. Some numerical results derived from the spectral domain formulas
are presented, and a comparison with available theoretical and experimental
data is included.

The second part of this work (Chapters 4 through 10) describes a
new technique for analyzing the radiation from a point electromagnetic
source located on an infinitely conducting solid cylinder with a finite
length. The method presented in this work is based upon a generalization

of STD to the case of curved surfaces.
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1. INTRODUCTION

The problems of radiation from sources in the presence of impenetrable
smooth convex objects and the diffraction of a plane wave by such objects are
of great practical interest in the design of antennas on structures, e.g.,
conformal arrays. Unfortunatelv, the exact analytical solutions to these
problems, based on the methods of '"separation of variables" or "function-
theoretic" procedures (Wiener-Hopf technique, residue calculus, etc.), exist
only for a very limited number of scattering geometries. Furthermore,
the exact solutions are typically highly complex in nature; hence, the process
of extracting numerical results from them can be very time-consuming sand is
by no means trivial. This situation has motivated many researchers to explore
approaches to the problems of radiation and scattering from smooth convex
structures.

In the low and resonant frequency ranges, several reliable numerical
procedures, e.g., the moment method, are available for solving the radiation
and scattering problems. However, in the high frequency domain, numerical
techniques based on matrix methods become unwieldy, if not impractical, prompting
one to employv asymptotic techniques suitable for large k(=27/1), where 1\ is
the wavelength of the illuminating wave.

In this work, we begin by presenting, in Chapter 2, a survey of various
high frequency asymptotic techniques for the problem stated above. The survey
will be necessarily brief, and will cover only the highlights of a number of
important approaches to the problem at hand, viz., Fock's theory, the geometrical
theory of diffraction (GTD), and the direct iutegral equation approach. The
reader interested in further details may choose to consult the works of Bowman,

et al. [1], Uslenghi (2], and Kouyoumjian [3].




In Chapter, 3, we consider the generalization of GTD and present some
new approaches to the curved surface radiation and scattering problems. Some
numerical results based on one of these new approaches are presented in Chapter
3, and a comparison with other available methods is included.

Throughaut the rest of the work, we apply the results of the new
approach combined with STD interpretation of wedge diffraction to some special
case of great theoretical and practical interest. The high frequency radiation
of an electromagnetic point source on the surface of conducting circular
cylinder with finite length is analyzed by a new technique combining the main
features of different asymptotic theories. Chapter 4 is concerned with the
general formulation of the problem. Chapters 5, 6, and 7 describe the methods
used in calculating different "constituents" of the total radiated field,
namely, sﬁrface and wedge diffracted rays. Chapter 8 is concerned with
analyzing the effect of the finiteness of the cylinder. Field evaluation
in paraxial region is explained in Chapter 9. Numerical results are discussed

in Chapter 10, and finally, a brief conclusion is given in Chapter 11.
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2. SURVEY OF AVAILABLE HIGH-FREQUENCY ASYMPTOTIC TECHNIQUES

2.1 Watson Transformation and Physical Optics

One of the first successful attempts to derive an asymptotic expansion
for the far-field generated by a point source located in the proximity of a
conducting surface was made by G. N. Watson in 1918 [4]. His method,
essentially, consisted of two steps: 1) transforming the original infinite
series solutfon into a contour integral (by Cauchy's residue theorem);
2) deforming the contour of integration so as to capture a set of complex
poles of the integrand. The original integral is then expressed in terms
of an i{nfinite series which converges very rapidly, provided the observation
point is in the shadow region. The first few terms of this series were later
interpreted as "creeping waves." The method was first applied to a sphere
and circular cylinder, and later to some other geometries as well. The
mathematical rigor of the method was the subject of further investigations by
other researchers ([S], [6], and [7]). Although the Watson transformation
can only be applied to a few simple geometries, e.g., the sphere, cyvlinder,
cone, spheroid, etc., it is still regarded as one of the cornerstones of the
general high frequency techniques because of {ts mathematical rigor. The
Watson transformation {s especially powerful in the shadow region of the
geometric optics field. In the lit region, the above-mentioned contour
integral {s evaluated using the "stationary phase" method and yvields the
reflected field from the surface. In this region, the most significant contri-
bution to the total scattered field typically comes from the surface current
induced on the smooth convex part of the object; the so-called "Physical Optics"
approximation can be applied ([8], (9], and [10]) to derive the reflected
fleld. The Phvsical Optics method is based upon approximating the induced

surface current in the lit region of the object by the current that would be




induced on the local tangent plane, and by assuming that the surface current
is zero in the shadow region. The far field is constructed by substituting
the above estimate for the induced surface current in the integral representa-
tion of the scattered field, and evaluating the same in an asymptotic sense.
The dominant term of the asymptotic expansion of this integral can be shown
to be identical to the first term of the Luneberg-Kline expansion of the
geometrical optics far field ({1l1] and (12]). However, the higher-order terms
derived from the physical optics approach do not provide us with correct
results in the shadow or trinaition regions where the diffracted field comtri-
butes the most.

In the next subsection, we discuss Fock's theory, which can fill the

gap between the Physical Optics in the lit region and the "creeping wave'"

representation in the shadow region.

2.2 Fock's Theorv

The region between the lit and the shadow part on a surface is called
"penumbra region." The angular width of this region is approximately given
by (\rf)/W)l/3 where \ is the wavelength of the illumination and r, is the
radius of curvature of the surface of the object in this region in the incident
plane (Fig. 1). Fock's theory invokes the principle of ’‘oca! character of
the field in the penumbra region [13] and is based on the conjecture that
all bodies with a smoothly varying curvature have the same current distribution
| in the penumbra region, provided that the curvature and the incident wave are
the same near the point under consideration. This principle allows one to
locally replace the surface of the object by a portion of a paraboloid of
revolution. A unique feature of the expressions for Fock currents is that

they provide a convenient transformation of the geometric optics currents
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in the lit region into the creeping wave currents in the shadow region.
Fock himself deduced the pertinent formulas for the surface currents by
treating a convex body problem ([14] described below:

Consider a convex body and a plane wave incident in the direction of the

x-axis. If the equation of the surface is

f(x,y,z) = 0 (2.1)

then the curve representing the boundary of geometrical shadow is given by

=i () (2.2)

Consider a point O on the boundary of a shadow region where we set up

a rectangular coordinate system as shown in Fig. 2 (z: normal to the surface,

x: in the direction of propagation, and v is the tangent to the boundarv of
shadow). In the vicinity of this point, the surface of the body could be

locally replaced by a paraboloid of revolution which is expressed by the

equation.

z + 1/2 (ax2 + 2bxy + cyz) = ( (2.3)

Each of the field components satisfies the Helmholtz equation

-
(7° + k%)Y = 0 (2.4)

The fact that the incident wave travels along the x-axis, suggests that ¥

be written in the form




v = yo kX (2.5)

where an exp(jwt) time dependence has been assumed. Substituting (5) in (&)

gives
vz* o 8 0 ”
Y-‘jk?;‘f-() (.uo)
At this point, two basic assumptions are introduced in Fock's theory,
viz.

1) ¥'s are relatively slowly varving function of coordinates
11) ¥ varies more rapidly in the z-direction than in x and v,
1.8,

' PSR

Do gn (2.7

Based upon (2.7), we can write (2.6) as

‘~ -
-

9 ¥ RA
e e 2k | 0 (2.8)

2
and consequently m'

have been omitted.
Inserting these estimates and assumptions into the Maxwell's equations,
we can find some simple expressions for all the field components in terms of

H and H . I[f we write H as
v 2 v

“

= m” (m is very large), where the terms of relative order l/m”




T ——————— . —

where Hg is the magnitude of the incident wave at infinity, then Y must

satisfy

%i; -2k =0 (2.10)
with boundary condition
g; -jk (ax + by + l) @ = 0 (2.11)
Y Vo
on the surface of the body. Equation (2.11) is the simplified version of the

Leontovich boundary condition where

o)
neeg=-=93-=
Jw

The final solution for Hy on the surface of the body,which satisfies
the boundary condition and the condition at infinity, may be written in the

form

ex
H =H G(\’—-' ) .
y y q (2.12)

where a;* = external field

3
G(E,q) = ¢ /P E v, (5,q)

Vl(i.q) = Fock function defined in the Appendix A.

¢ = m(ax + by) = reduced distance from the shadow boundary = u/d.

/ -
m = (kro/Z)l’3 y m . is the angular width of penumbra region.

2 /
d = che width of penumbra region = (lro“/k)l'3.

! = distance between the observation point and the shadow boundary along the
incident ray (Fig. 3).

SRESNVPREBIFSFVI- RS- 5 31 N SIS AT
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q = =jm/vn==(j/vn) %/%; (= 0 for conducting body).

The other tangential component of the magnetic field Hx on the surface

of the body can be obtained in a similar manner

3

5 o - (2.13)

where f(%) is another Fock function defined in Appendix A. Fock's
formulas not only give the surface value of the field, but also can be
utilized to find the field in the proximity of the object. For a plane wave
incidence, the first order, i.e., 0(1l/m) terms for the scattered field within
a certain laver around the object, can be written as

Ho=0, B =H I (0, w = ag I 30

JRX 1§/, £ =H, E = -H
v z z v

o -
Ex (j/m)Hy e
where

R ¥ :
o= 2am [z +1/D@Ex” + 2bxy + cyz)] = reduced height from the surface

of the body (see Fig. 4).

o o wl(t)-qw,(t)
S u k382173 87) ¢ =it WC . i W s
¥ je é . (wy(e=2) wi(t)-qv,T?T wp\teal &
(2.15)
7y 3
PRERERINE, | i s [0 o wo(t)
O = —1§ ] e Jse (wy(e=2) = GLTET w, (e=2)] dt
v ¢ "

The path of integration for ? and ¥ is shown in TAB ¥ &
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Fock's expressions for the field components in the penumbra region
(£ 3 0) can be extended to the shadow region, by introducing some modifications
in the definition of parameter {. Goodrich [l5] has generalized the
argument used by Fock in the penumbra region to anywhere in the shadow
region by introducing a new set of variables,{ and z,for the incremental
distances along the path leading into the shadow region. In this generalizationm,

the parameter £ as defined in (2.12) is replaced by

s
£ » [ (kR(s))1/3 ds

2 R(s) s

where s is the arc length along the geodesics which originate from the shadow
boundary and go into the shadow region along the surface, and R(s) is the
radius of curvature of the surface along the geodesics. For the case of a

circular cylinder of radius a (Fig. 6), the expression of § simplifies to
£ = (ka/2)Y3 9 = s/d (2.17)

Fock also treated the case where the point source was very close to
the surface of the body. He analyzed the radiation of electric dipoles near a
spherical model of the earth [16] and derived the formulas for the
scattered fields in terms of functions (attenuation functions) similar to ;

and ¥, which are valid both in the shadow and transition regions (17].

Fock's assumptions were later proven in a more systematic and mathematically
rigorous manner by Cullen [18] and Hong [19] by using a direct integral

equation approach. This method is described in the next section.
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2.3 Direct Integral Equation Approaches

This method, which is closely related to Fock's theory, can be
illustrated by analyzing the diffraction of a plane electromagnetic wave
by an arbitrary conducting body (large compared with 1\). Cullen [18] obtained
a first-order asymptotic solution to the integral equation for the induced

surface current

I = B x B=Q) -~ (W2l
(2.18)
[ ] e R GEy « R

J
s R’

;ij}

where ;(;)is the outward unit normal to the surface at ?. ﬁinc(;) is
the incident magnetic field on the surface (S) of the bodv,and R = T -
(;' is a variable point on the surface).

Fock used this integral equation to deduce the important principle
of local character of the field in the penumbra region. Cullen derived a
first-order asymptotic solution to (2.18) which agreed with Fock's results
given in (2.12) and (2.13). Cullen's method consists of transforming the two-
dimensional integral equation (2.18), in the penumbra region, to a one-dimensional,
Volterra-type equation. This is accomplished by applying the stationary
phase technique to the original integral while integrating with respect to
one of the variables. The resulting one-dimensional Volterra equation is then
solved in Cullen's method by the Fourier transform technique. A similar
procedure was used by Hong [19] to analyze, asyvmptotically, the diffraction
of electromagnetic and acoustic plane waves bv smooth convex bodies. We will

now proceed to explain Hong's method in a little more detail by referriag

back, once again, to the integral equation (2,18). The surface is parametrized




—
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by the geodesic coordinate system (o,v) such cthat the shadow boundary for the
incident plane wave traveling along the tangent 3(0,v) to the v = 0 curve is the
o = 0 curve. The quantities S(o,v). S(J.v) and ﬁ(a.v) form a right-hand local
orthonormal basis (n = 0 x b) as shown in Fig. 7.

Since the incident field has a phase factor e-Jko(o'O)'t(J‘O),

we write the surface current in the form

I® = 11,0 3@ + 1,0 5(®) o J0 (2.19)

where o is the arc length along the geodesic. Substituting (2.19) back into
(2.18) andrestricting the resulting equation to the points on the geodesic v=0,
we obtain two coupled, two-dimensional integral equations for Io(a,o) and
Ib(J.O). It can be shown that these integrals have saddle points at v=0 (for

the v-integration). Applying the "steepest descent path" method to v-integration,

1/3

9
and Keeping the terms up to the order l/Ma, where M = (ka, (0,0)) , we

0

obtain the following decoupled one-dimensional, Volterra~-tvpe integral equations

for Ib(i.O) and 10(5.0)

ol
inc

P =3
s - O - - ] = T
I,(5,0) = 2 175,00 = [ dr I (5,0) K (§=1) +004")

(2.20)

. lac .. e 5 " A
I,(5,0) = 2 1,7 (£,0) = [ dt I,(&,0) K (&~7) + 00¢")

-0

o_(o,v) is the radius of curvature of the surface along geodesics (v = constant

curves) at point (o,v).

Solving (2.20) by Fourier transforms, we obtain the expression for the

induced currents in the penumbra and shadow regions,and the first-order solutions

aiae s At caic i s s i bl R s i
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Figure 7:

Geodetic coordinate systam on a smoocth comnvex dody.
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are found to be the same as those of Fock and Keller's GTD [20]. One

of the important conclusions drawn from Hong's solution is that the leading

term in the asymptotic expansion, which is the same for the acoustic and electro-
magnetic problems, is independent of curvature in the direction transverse to the
geodesic, provided the divergence factor is suppressed. However, we should

bear in mind that Hong's method was designed for the case of axial incidence on
symmetric objects, and in this case, the geodesics are torsionless. The above
conclusion does not seem to be valid in the cases where the rays have nonzero
torsion ([21] and [22]). In Hong's expressions for the surface current, the
transverse curvature has only a second-order effect. It was also shown that up
to the terms of order (1;:;)0)-2/3 in the asymptotic expansion, the tangential and

binormal components of the creeping waves are not coupled.

Both Fock's theory and the '"direct integral equation approach" give the
induced surface current, or the scattered field in the neighborhood of the
surface of the scatterer, due to an incident plane wave. These expressions can
also be used to derive the radiated field via the use of the reciprocity theorem.
The methods which have been discussed thus far are mathematically
rigorous. However, they are limited in the scope of their application to
geometries satisfying some special smoothness and symmetry criteria. '"Geometrical
theory of diffraction" (GTD), which we discuss in the next section, has a
broader scope, although it does lack the mathematical rigor of approaches

described until now.

2.4 Geometrical Theorv of Diffraction (GTD)

Geometrical theory of diffraction (GTD), developed by J. B. Keller

([20], [23], [24], [25], and [26]) is a generalization of geometrical optics.
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It is based upon the assumption that fields propagate along rays. Keller's
major contribution was to introduce the new kinds of rays called the '"diffracted
rays!' which together with the geometrical optics rays constitute the total
field. In our problem, viz., source radiating in the proximity of the smooth
object, the diffracted rays travel along the curves on the surface of the
scatterer. By applying Fermat's principle to these surface rays, we conclude
that the above-mentioned curves should be geodesics on the surface of the body.
In the GTD procedure, one assigns a value to the field along each of these sur- 1
face rays.The total field at any point in the space is the sum of the fields
due to various rays (incident, reflected and diffracted) passing through that
point. An important advantage of the GTD approach is that it can be applied

to both scalar (acoustic) and vector (electromagnetic) problems and to smooth

convex objects of an arbitrary shape.

Consider the problem of determining the radiated field of a scalar point
source located on the surface of a smooth convex opaque body. If the observation
point is in the shadow region, the ray paths originating at Q and reaching P
(observation point) are comprised of two sections. One of the sections follows

straight line path P P, while the other travels along a geodesic on the surface

1
(Fig. 8). Let us consider the propagation of the field along each section,.

a) Rays in free space: Behavior of the fields along these rays can be
determined by obtaining a high~frequency asymptotic solution to Maxwell's

equation inasource-free homogeneous isotropic medium. We begin with the

Luneberg-Kline asymptotic expansion of the electric field ([11] and [12]):

-3k S(T) = N
I g™

BE(T) «k' e Zm(?) (2.21)

m=0




Figure 3:

Caustic lines

Diifraction by a smooth convex dody when the observation
point is in

the shadow region of the source Q.

Tigure 3:

e ]

Jiverging jencil of ravs ia iree space.
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and insert it into the Maxwell's equations. This results in the following

equations governing the propagation of electromagnetic fields along the rays.

| [vs(i:)]2 =1 (Eikonal equation) 2.22
i ( )
z(vs-V).m + (v S)em = -V Sy (Transport equation) (2.23)
2
' vs-em - -V°em_1 (Gauss's Law) (2.24)
-+ a = 2
e_l 0, m O Ly &4 o

The zeroth-order solution to the above system of equations,which turns out

to be in agreement with what one would obtain by geometric optics, may be

written as

fr—— =
e jk0J

goo 0 1°2 .
Eo) ~ £ (0)e : \/(‘3_-_—1”")("2’“’) (2.25)

where 0 is the distance traveled along the ray from the reference point

0(c=0) on the ray path (Fig. 9). f1 and p, are the principal radii of curvature of

the wavefront at o=0. It is apparent that the expression fails when om=0, or
g = =0y, i.e., at the caustic lines (Fig. 9). In the cases where it {is

convenient to choose the point of diffraction on the surface of a body as

the reference point 0, the formula (2.25) should be modified as follows:

a(&a) e (2.26)
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In these cases, the point of diffraction {tself is a caustic, and o is the

distance between this point and the second caustic.

b) Surface Rays: These rays follow the surface S along the geodesics
into the shadow region, and shed off energy tangentially as they propagate.
In order to study the behavior of the field along these rays, we introduce a

special ray-fixed coordinate system.é,ﬁ.s.

o: Unit vector tangent to the ray; n: outward unit normal to the
surface; and b=t xn or binormal direction; a vector field can be decomposed

into its components along these unit vectors as

5 : £ X
- + + 7 9
E Ec“ Enn Ebb (2.27)

At this point, several important assumptions are introduced in the GTD

approach [Levy and Keller, 1959]:
i) E and H are orthogonal to each other and to the ray.
i1) Variation of the phase of the field along the ray is
the same for both fields.
ii1) En and Eb propagate independently, and E_ = 0.

iv) E_ satisfies the scalar wave equation (7%4k?) u=0 with the

2 Q

boundary condition u=0 on the surface S,while En satisfies

the same equation with the boundary condition %% = 0.

The next step in the GTD approach is to conjecture,on the basis of the
solution to some canonical problems, that the surface field propagating along
each ray is comprised of an infinite set of "modes." Along a rav-fixed path
GTD assigns a complex value to each component of the field associated with

the individual modes. The propagation of this modal field is described bv

the equation
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j(¢0-k0)
a(o) = A(0) e (2.28)

where o isthe distance between an arbitrary point along the ray and the source

Q and ¢0 is the phase of the field at the source point. Next, invoking the
principle of conservation of energy between two adjacent rays, and using the fact
that the surface rays shed energy off tangentially, we can arrive at the

following expression for a(o)

d?l o
a(o) = K exp[-jko - [ a (0')do'] (2.29)
pdY, 0

where a(c) is the "attenuation constant,” K is proportional to the strength of

s
the source, and dWl, d¥, and o are shown in Fig. 10. The quantity [dWll(pdVZ)II/“
indicates the''spreading of the surface ray tube'" as it travels along the surface.
Equations (2.26) and (2.29) describe the laws of propagation for the rays which

originate from the source point Q, are diffracted at P,, and reach the

1
observation point P. To complete the solution, we need to determine the actual
values of the fields from these equations. These require the knowledge of KO
and K, which, in turn, are related to the initial values of the rays QPl and
PlP as well as the attenuation constant a(c). The initial value of the field
at Q is related to the strength of the source by L(Q), the so-called "launching
coefficient," while the initial value of the field at Pl is related to the
actual field on the surface at P1 through the "diffraction coefficient" D(Pl)'

If we now sum up the contributions of all the modes, we obtain the final solution
{25] for the field radiated in the shadow region by an infinitesimal magnetic

dipole of strength M located on a smooth convex conducting body
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Figure 10: Divergence of surface ravs.
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@) = i - (BQ@APF + 5QB®,)G] F il g S e
where
-jko fdy ®
_ -ike 1 h, .\ h y
F - ke v, L L@ @) exp (-] aloyde') (2.30b)

and the expression for G is obtained by replacing the superscript "h'" by

s" in (2.30b), where h and s stand for hard and soft boundary conditions,

viz., u=0 and 3u/3n = 0, respectively. The quantities L:‘s, D:'s and
a:'s. appearing ia (2.30b), in general, depend upon the local geometry and the

electromagnetic characteristic of the surface, frequency k, and the mode of
propagation. They are determined by studying the asymptotic expansions of

the exact solutions of some special canonical problems. Keller and Levy

([20] and [27]), have derived the first few terms of the asymptotic expansions
for D and a by considering the canonical problems of scalar diffraction by a
circular cylinder, sphere, elliptical and parabolic cylinder. A study of the
above-mentioned asymptotic expansions and the works of Franz and Klante [28]

and Voltmer [29], who have also investigated the same problem, as well as a
comparison with the results of the "direct integral equation approach,"

reveals the following characteristics of the solution: i) the first-order terms

in the asymptotic expansion of D and a are independent of whether the problem

under consideration is scalar or vector; ii) the first-order approximation of

D and a are dependent only on o , the radius of curvature of the surface along

the ray; iii) the second-order terms are functions not omnly of o _, but also of

5

de d=o g
"o c, and Fon (the radius of the curvature of the surface transverse
do do< 5

to the ray). Finally, the higher-order terms are different for scalar and

vector problems.
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The leading terms in the asymptotic expansion of "diffraction coefficient"

D, "attentuation constant" a and "launching coefficient" L are presented below:

"Soft" polarization:

R V7 S 7 a§/3 ,

(0%1° =
P 1/6 2 [Ai'(-rp)]2

k

eV, eJ“/G kro
Jp - (s==t)

()

1/3

2/3
s _ -in/12 M3 .3
Lp e (2vk) (koc)

"Hard" polarization:

V2 s8¢ M3
0 s T g

.-j1/12

« Al (-rp)

. im/12

(D ]° =
sl EETRe
rp [Al(-r p)]

h g eJT/6 ko‘
a o= R (—=

y b |
p LJ -

)1/3

b, odM12 V2 2173

1
P ko

where Ai(x) is the Airy function:

o 3

cos (&

3 + xt) de

O *—,

« Ai(=r'® -
s P

(X real)

+D
P

(2.31)

(2.32)

(2.33)

2.348)

(2.35)

(2.36a)

(2.36b)
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and Ai(-rp) = 0, Ai'(-r;) = 0, (Ai' is the derivative of Ai with respect
to its argument). Higher-order terms in the expansion of D, a and L have
been given in [25] and [30] and in some of the other works on GTD mentioned
earlier.

The expression (2.30) is convenient to use in the shadow region. How=-
ever, in the shadow part of the transition region, since the exponential decay
of the tarms in (2.30) is weak, the convergence of the series representation is

very slow. Furthermore, the series diverges in the lit part of the transition

region. Consequently, in these regions, it is more reasonable to use an integral

representation for the surface ray field, which, in our case, can be expressed
in terms of Fock functions (25].

Attempts have been made to establish the mathematical validity of GTD
and to minimize its "nondeductive parts' (parts which are based upon physical
intuition or the study of the asymptotic solution of some simple problem
geometrical concepts of different kinds of ravs, diffraction coefficients,
attenuation constants, etc.). Kravtsov [31] and Ludwig [32] have analyzed
the field near the caustic surface (smooth envelope of a family

of rays),and have developed a '

'uniform asvmptotic solution" in the sense that
it is finite at the caustic and reduces to geometrical optics awav from the

caustic.
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3. GENERALIZATION OF GTD AND INVESTIGATION OF ALTERNATE METHODS

3.1 Generalization of GTD to Arbitrary Surfaces

Keller's generalization of GTD for the analysis of the field diffracted
from a smooth convex object is closely related to what is known as the
"boundary layer technique” in the theory of differential equatioms [43].

On the other hand, the "uniform asymptotic theory" is analogous to the
method used by R. E. Langer [34) and F. J. Olver [35] to find the
asymptotic solutions of the second-order differential equations near their

"turning points," which are counterparts of the transition regiomns in our

case [33], [34] and [35].

The second prodecure is based upon the generalization of the G.O.
interpretation of the circular cylinder problem. The solution obtained by
this method involves some functions with unknown phase and amplitude, similar
to Bessel and Hankel functions. Since the surface of a smooth object is
actually the caustic surface of diffracted ravs, the above-mentioned formulation
is applicable in this case, too. Lewis et al. (36] have modified this
solution to make it satisfy the boundary condition on a convex body. Using
ray formalism, they have obtained an asymptotic solution in a complicated form,
which they call "creeping wave'" and satisfies the boundarv condition on and is
uniformly valid near and away from the surface. It should be mentioned that

the method has been developed primarily for scalar diffraction problems.

Creeping waves that travel on the surface of the body generate other
kinds of diffracted rays in the presence of any irregularities in the
geometric or electromagnetic characteristics of the surface. The effects of
discontinuity in the surface curvature, its higher-order derivatives, or the

surface impedance have been studied bv many authors [27], [38], [39] and {40].
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An exhaustive study of various diffraction mechanisms and corresponding
diffraction coefficients, and constants associated with the propagation of

creeping waves, has been carried out by Albertsen [41].

At this point, let us examine the most important features of the GTD
and its various modifications. GTD formulation is essentially scalar in nature
and is heuristic in some parts. Thus, when GTD is applied to a vector problem,
it is not surprising that the coupling between various components of the fields
are neglected, and each one of them is treated as an uncoupled scalar wave.
The other assumptions in GTD are concerned with the directions of these field
components and the kind of boundary conditions they satisfy (see Sec. 2.4).
As mentioned earlier, non-deductive parts of GTD are based on asymptotic
expansions of known solutions to some selected '"canonical problems. Quite
often these canonical problems are not general enough to fully and accurately
describe the local behavior of the field for an arbitrary structure. Finally,
most of the canonical problems investigated are two-dimensional in nature. The
only exception to this is the sphere. However, insofar as the geometric
properties of the surface are concerned, the sphere is a very special case
since its radius of curvature is the same in all directions and,consequently,
the surface rays are torsionless. Finally, GTD fails when the observation
point is located in the transition regions, shadow boundaries or in the neighbor-
hood of a caustic. In each of these regions, one needs to carefully modify the
GTD formulas and often such a modification is not too simple. Nevertheless,
in spite of these difficulties, GTD is recognized to be a powerful high-frequency
technique for computing the leading terms of the asvmptotic solution. Two of

the principal attributes of GTD are its simplicitv and wide scope of application.

i B} enr— - ey




28

3.2 Spectral Domain Approach

We now examine an approach different from GTD which uses the spectrum

of the induced current, or the expression for the radiated field, as a starting

point. In order to gain a better insight into the curved-surface radiation
and scattering problem and to verify the basic assumptionsof GTD, it is
worthwhile to consider such alternative approaches, particularly if they apply
to canonical problems which are more general in nature than those employed to
derive the GTD results. An example of such a studv would be to consider the
case of surface ray propagation with non-zero torsion, a situation that occurs
when a magnetic dipole source radiates from a location on the surface of a
circular cylinder.

The geometry of the problem is shown in Fig. 1l. The radius of the
cylinder is a and the source,which is an infinitesimal magnetic dipole with
density §,1s located at the point Q described by the spherical polar coordinates
(r=a, 3=90°, $=0°). Each point P on the surface of the cylinder is defined bv a
'""geodetical polar coordinate'" system (5,8), where o is the arclength of the
geodesic connecting Q to P and 8 is the angle between 5 (at point Q) and
geodesic QP. The local orthonormal basis vectors (é,é) are also associated with
these two parameters. The observation point in the far field is specified by
its spherical polar coordinates (r,8,$). The radiated field at an arbitrary
point can be expressed in terms of two potentials, ¢ and ¥ which, in cylindrical

coordinates, can be written as:

< i/ =jk_z

ad T o8 . e} Ik,

e OV G ERRAURIER W SO R dk, (3.1)
0 0 _kz
L CEQ L -
n;-me J gn(kz) Hn (kt“) e dkz (3.2)




Qbservation
point

Figure ll: Geometyry of the cyrliader problem.
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For the problem under consideration, we can express the spectral weight

coefficients as

-jweM
: £ (k) = —5r (3.3)
: B k H® (k) *a
-M nk M 4
1 z z ¢ .
S i (2)'(kta) ke oy 21rk2a] sy i
¢
where §
i
k2 - k2 o k>k ;
b4 2
kK = (3.5)

A e

In order to derive an asymptotic expansion of (3.1) and (3.2), we proceed
as follows. As a first step, we apply latsons transformation to the infinite
summation with respect to n and employ appropriate asymptotic formulas for
Hankel functions with large order and argument to derive the following expressions

for (3.1) and (3.2) under the conditions that ka is large and ¢ small compared to m:

weM Z
/2 Jm/4 f de o« B oo (2 (3.6)
(Zw)- a k
jw/é ® k
-jQ . 2 E 2 4 3 r
-—JE—- Y dk_+ e 5/3 U 3{»1) + 2m go(sl)]

(2m?a o s k

[ad

"




Q= kzz + kc[o+u(¢-ﬂ/2)]

m - e a/)t/?

& " m($=m/2)

fo. 8y 8, = Fock's functions defined in Appendix A.

M& and Mz = components of ﬁ. (ﬁ'n-O)

Next, applying the 'saddle-noint” technique to (42) and (43) and keeping only
the first-order terms, the far field can be written in terms of its components along

the normal and tangent to the surface at the 'stationary point" P1 as

" -jko -jkR
= -.‘ ¥ Lk———— . . ‘———
E“z (M 81) ( an ) 30(518) R
_ (o)) (°;'51) e T koo)l/B 45 o JKR
4ra .- (—3— : 31(;13 LS (3.8)
. Sy 2/3
(M<d,.) ($,°0,) ko -jkR
. s s ERRP o R B e
E, T =) e £5(5;8) * R (3.9

ro

s, N A ST S T BTN TS AT M 5"
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where
Pl: is the stationary point of Q which turns out to be the
same as the point of diffraction predicted by GTD.
1/3
ty = EY () - stnld

AR

b, ™ radius of curvature of geodesic QPl
0 = agrc length QP1

R = the distance between the point of diffraction Pl and

the observation point

~

n, = o, ¥ B8,; normal to the surface at P
-

2 2 1

The details of the derivations of (3.8) and (3.9) are given in Appendix B.

Fig. 12 illustrates the geometric meaning of some of the parameters
appearing in (3.8) and (3.9), for the observation point is located in the
shadow region. In this case, 51’, which is identical to § given in (2.16),
is the reduced distance traveled by the surface ray before leaving the
surface tangentially.

In the 1lit region, the geometric interpretations of ¢ and { are shown

in Fig. 13. The rays, like QPlP. that do not obey the generalized Fermat's

principle are called "pseudo-ravs" [(25]. The ray QPIP appears to travel

J? along the surface up to the point Pl and then leaves the surface at P tangen-

1

tially in the opposite direction, to reach the observation point P. It should bde

noted that formulas (3.8) and (3.9) give us the contribution of the rav which
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travels along the shortest path on the surface, and thus, suffers the least
attenuation. It is not difficult to see that, in general, there are infinitely
many rays which contribute to the total field at any observation point. However,
their contributions are very small compared to that of QP1 and their phases and

amplitudes can be determined in a similar manner (Appendix B). Several other

remarks on the formulas given in (3.8) and (3.9) are in order:

a) Numerical results indicate that good agreement between (3.8),

(3.9), and the exact modal solution is obtained for ka > 10.

"y o

b) The zeroth-order terms in the asymptotic expansion of the normal

component of the field E areidentical to those given bv GTD;

however, the k—l/3

terms derived from the two approaches are
different.
c) Tangential component of the field, EB' given by (3.9), also

is different from the corresponding expression based on GTD

by a multiplicative polarization factor. Specifically,

(¥4 )
Egin(43) = [Ty (6D (3.10)

R

Consequently, our results agree with GTD only for the circumferential

ray, i.e., for 8 = 0.In addition, for an axial magnetic dipole

" > -~ N
l M - o = 0), GTD gives a nonzero value for the field in the 3, direction;
i our solution predicts that this field is identically zero, a result

which is in complete agreement with the exact solution for the

problem.
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Yet another important distinguishing feature of the spectral domain
formulas from the corresponding ones based on GID is worth noting. As
mentioned earlier, GTD neglects the effect of torsion on the diffraction
of surface rays propagating along smooth objects. In contrast, the spectral
domain formulas (3.8) and (3.9) indeed contain the torsion effect of the
surface rays as may be seen from the discussion below.

To rearrange the formulas (3.8) and (3.9) in a manner such that the
effect of the torsion on the surface rays is explicitly illustrated, it is
n;cessary to examine the polarization factors in the above-mentioned formulas,
Referring to Fig. 12, the helical path of a surface ray with initial angle B

can be parametrized as:

;(o) = [a cos 6252529, a sin égsggg), o sing] (3.11)

The torsion of the ray, tr,is found from the relationm,

o "ma (3.12)

8 = nxo=nx %% (3.13)

and n is the outward unit normal to the surface of cylinder. For a helix
on a circular cylinder, the torsion is constant along the path and depends

solely on the initial angle of the curve. The torsion t is given by the

following simple formula:

R 1R TSR, D SN (R
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sinB « cosB (3.14)

=
¥ a

Combining the above relation with the expression for

- 2 3.15)
one ObCunso

tanB = tp_ (3.16)

The above relationship between 8, t and Py will be found useful in what follows.

Equation (3.16) enables one to rewrite the source polarization factors

in (3.8) and (3.9) in the following form:

> - - 2
(M-9.) - (9,°8,) + ~ tan8 .~ tan‘g
v b L w ) el S iy 2ot
2 cos™8
g (t0 ) 5 - (102
= (H'Ol) . . e (M-Bl) 3 (3.17)
b x
~coss = (Mrop) - () - (M-8,) (3.18)

The explicit manifestation of the torsion effect can be seen very
clearly if we use (3.17) and (3.18) in (3.8) and (3.9). The final result

can be written as




(o )2

m ~ T . :—p-g- - ..‘A S  emm—
(3.19)
-jko  ko_ =2/3 =JkR
TG e « 3
- pCID _ S 'ko-'ﬂw l“’e: -1/3
282 !82 (roo) (H-Bl) e ol (—2—
(3.20)
~jkR
RGTY R

where t is the torsion of the surface ray. Note that the effect of the
torsion on the surface ravs has been isolated and explicitly expressed in
the above expression. These appear as correction terms to GTD and are
proportional to ™, and (roo). As expected, the formulas given above reduce
to the conventional GTD results for the limiting case of no torsion, i.e.,
t =0,

In contrast to GTD, formulas (3.8) and (3.9) are valid irrespective
of the location of the observation point, be it in the lit, shadow or transi-
tion regions. Although not valid in the paraxial region (8390°), they can be
generalized to work along this direction also.

The solution to the problem of radiation of a normal electric dipole
can be found from the expressions (3.8) and (3.9) for the radiated far field
due to a magnetic dipole through an application of the reciprocitv theorem.

To show this, we apply this theorem to the following two reciprocal situations.
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; For the first case. let (E. H) from an infinitesimal -electric dipole source
of moment 5. located far from the cylinder at a point P. In the second

: situation, let {Em. H"} be the fields radiated by an infinitesimal dipole

of moment i. located at a point Q on the surface of the cylinder. As the
outer boundary surface of the volume, where the theorem is applied, goes

to infinity, the "cross flux" through it vanishes. Also there is no '"cross
flux" through the inner surface (cylinder). Therefore, invoking the recipro-

city relation, one can derive
-M-H8@Q =5 E*® (3.21)

Now if we apply reciprocity to another pair of cases, in which the first one

is the same as the first situation in the previous example and the second one
consists of the radiation {E', H%) of a normal electric dipole of moment 3.

we will have

F.EQ =7 @ (3.22)

Suppose the magnitudes of 3 and M are unity, then it follows from

(3.21) and (3.22)

H,Q = = ¢ @) (3.23a)
B,(Q) = 5+ B () (3.23b)

sen

: E,(Q =7 E (P) (3.23¢)

| where H”(Q). Hz(Q) and EC(Q) are the local field components in the cvlindrical

coordinate system coaxial with the conducting cylindrical surface. This field
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is generated by ; (Fig. 14). The following set of relations can be derived

from (3.23) by replacing 5 by 60 and 09 respectively,

Qe en
a .24

, @-x @ (3.24a)
£ (@) = 2*® (@) (3.24b)
o %
LN R
B, (@ = -ESS (®) (3.25a)

0
0
g0 Q) --g‘e“ (P) (3.25b)
” 0
‘0 c
B, (Q) =-E7€ (P) (3.25¢)
» (N
%
H = (Q =-E™ (P) (3.254d)
z 00

where E: (Q)y, & = 39 and sp is the normal electric field at Q due to an electric

> 3 Q ; Q s
dipole with moment p 30’ % located at P. Ho (Q) and Hz Q), a 90' and N

are the tangential components of the magnetic field generated by an electric

dipole of moment 5 = 90. % located at P. Invoking the Maxwell's equatioms, a

relationship can be set up between the desired far field e . (P), due to a

60

normal electric dipole of unit moment, and the known solutions g o

s 3
Voivo
(Equations (3.8) and (3.9)) to the problem of the radiation of a circumferential

(P)

(mc) and axial (ma) magnetic dipole on a cylinder. As a matter of fact, Ef and

{B:, H:} can be related by
a a
3H H
ED Q) = Joe [a 7% 3z Iy & 890 % (3.26)
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4 Figure 14. The source Mor J (Equations 3.21 and 3.22) are
b located at_ Q and the elemental electrical dipole
of moment p is located at P (the observation point).
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vhere § aid z are cylindrical coordinates of a point on the surface of the

cylinder. Using Equations (3.25), we have

IEgy (P)
en -1 1. _"% 3 _mc
M eit R TR =h, ™ (3.27a)
ey ..l (1.3 gma g 3 gme e
P e BN R ® W s:O ®)]. (3.27b)

It is noted that the derivatives are taken with respect to the source coordin-
ates, whereas Equations(3.8) and (3.9) give us the field components generated
by a tangential mangetic dipole, as a function of the observation point P
coordinates. However, the derivatives, with respect to the source coordinates,

are related with those with respect to the observation point locatiou through

a sign reversal. Therefore,

1 .1 3 3 mc
ES® (P) » = [= . = 22p) - == EF° @] (3.28a)
60 juwe "a 3¢° eo 3z° eo
en 1 el ) ) mc X
W —— - 0 c— P - wm— E P 3- uab)
1 R T £ @ -5 - B @] (

where 00 and z, are the observation point coordinates. The far-zone radiated
field due to a normal electric dipole of unit moment located on the surface

of a cylinder can be found by evaluating relations (3.28) using (3.8) and (3.9)




42

-jkR
em 5108, cosé, ko 2/3 -jko y » & ; (3.29a)
g8 2 ) reT - £(8 ) TR '
0 )
2 2 -§kR

pen . Jk(l+cos™8 )  -Jko S %j
‘0 YO 4w 0

k_ 1/3 _-jko o

ko 1/3  odka e : 3.29b)

g ) 4ra 81(513) R (

Finally, let us consider the possibility of the generalization of
(3.8) and (3.9) to other convex surfaces of more general nature. By "more
general surfaces," we mean those surfaces which are not substantially different
from cylinders, some examples being cylinders with noncircular (elliptical,
hyperbolic, and parabolic) cross sections and conical surfaces with small apex
angles. The key step in a svstematic approach to generalizing (3.8) and (3.9)
is to use the generalized definition of £ given in (2.16).

Fig. 15 exhibits some initial results of the generalization of these
formulas to the case of a cone. In these graphs, the Hughes results have been
reproduced from [63]. It is evident that results obtained from the present
approach agree quite well with the series solution which is rather tedious and
time-consuming. We also observe from Fig. 16 that there is a noticeable
discrepancy between the analytical solution and the experiment. Thus, within
the range of experimental error, our results agree quite well with those
published in the literature.

Before concluding this subsection, it is worth mentioning some basic
points concerning the applicability of this formulation to the case of lossy
surfaces which may be approximately described in terms of surface-impedances.

For this case, the simplifyving assumption of infinite conductivity for the
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thecretical (Yughes) and experimental (Hughes)
presumably attributable to experimental error.
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scatterer no longer holds, the problems become tremendously complicated,

D By 1

—

especially when the surface of the scatterer is curved. However, for special
cases where the frequency is high and the geometry of the body satisfies some
specific conditions, certain approximate procedures are available for solving
the problem [64], [65], [66]. Some of these approaches are based on the
modification of the exact boundary conditions in a manner such that the solu-
tion to the imperfectly conducting body scattering problem can be obtained as 1
a perturbation of the existing solutions for the ideal case of a perfectly
conducting surface. These approaches are mostly based on the use of the
Leontovich boundary conditions [64]. They relate the tangential components

of the electric and magnetic fields (or the normal components and their normal
derivatives) via a surface impedance condition which {8 a function only of the
electromagnetic properties of the materfal. They are valid for surfaces whose
radii of curvature are large compared with the penetration depth, and also for
materials which are not homogeneous, but whose properties vary slowly from
point to point. As the refractive index (or conductivity) increases to
infinity, the conditions go over uniformly to those for perfect conductivity.

The Leontovich boundary conditions can be expressed as

E-G@ Paenzaxid (3.30)

| where n is the unit normal to the surface, Z is the impedance of free space and

1 u

n- — -

N

u0 ] "0
f;— it £
0 0
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0, U, € = electromagnetic characteristic of the body
Z = Yu/e = free space impedance

N = complex refractive index of the body.

I—

The conditions for applicability of (3.30) to the curved surfaced can be

formulated as

;; IN| >> 1 (3.31a)
|Im N| ko >> 1 (3.31b)

where p is the smallest radius of curvature or dimension of the body [64].
| When n is very small,we can expand the fields {E,'ﬁ} around their
‘ values {Eb, ﬁb} for the case of perfectly conducting surfaces (n=0), in the

ascending powers of n as

| = 2 x>
: BB +nf, +0° £, + ... (3.32a)
;‘ -> -> -
§ H= H°+ nH1+n2ﬁ2 + vue (3.32b)

Inserting (3.32) in (3.30) one finds

g - @-E)a=o0 (3.33a)

El - (a - El) n=nZnx Ho (3.33b)
{ " - § - & a ﬁ V:xfl

Ez - (n . 2) a=nZn x Hl’ .- :?;;- (3.33¢)




Equation 3.33b is a first~order approximation for the boundary condition for

the tangential electric field on the surface of the body. The function EO

is the known solution for a purely conducting surface. Using boundary condition

(3.33b), one is able to find the first-order solution for the electric field

in the presence of imperfectly conducting homogeneous or inhomogeneous objects.

The higher-order solutions can be found in a similar manner.

3.3 Approach Based on an Asymptotic Evaluation of the Radiation
Integral of the Surface Current

As a final topic in this chapter, we consider an approach based on the
asymptotic evaluation of the radiation integral expressed in terms of the
induced surface current which is itself derived in an asymptotic manmner for
surfaces with large radius of curvature.

It was shown in Chapter 2 that Fock's theory can provide us with an
expression for the scattered field in the neighborhood of a smooth convex
body illuminated by a plane wave. Using this solution in conjunction with
the reciprocity principle, we can find the far field radiated by a point
source located on the surface of the body. By generalizing the definition
of £ in Fock's theory, we can also write the final result in a GTD
format and represent it as a surface ray. The total field at a point on
the surface is obtained by adding all the possible rays which reach the
observation point P. Various techniques can be used to determine the field
propagation along these rays. For instance, when the source is located on

the surface, and the surface is a conical one, the field at each point

can be decomposed into two parts
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F=F +F (3.34)

where Fl is the geometrical optics field when the observation point is directly

i{lluminated by the source, and is the creeping-wave contribution derivable

e

via an extension of Fock's theory when the point is in the shadow region. The
other term, F2’ is the so-called tip contribution, and can be obtained by
physical optics or GTD. Goodrich et al. [42] have applied this procedure to

find the radiation pattern of slot arrays on cones.

The approximate induced surface current distribution can be obtained by

Fock's theory, GTD [13], [14], [16], and [25] or some other appropriate

high frequency technique. The induced surface current due to a magnetic

dipole on a perfectly conducting circular cylinder and cone has been calculated
by Chang, et al. [44], and Chan, et al. [45], whose procedure is based upon

an asymptotic expansion of the exact modal solutiom to the above-mentioned
problems. Lee, et al. [46] and [22] have treated the same problem by a method
based on Fock's asymptotic solution of the problem of a sphere [47]. These
expressions for the current distribution can be used in the radiation

integral representation of the far field.

The numerical evaluation of this integral is a formidable task, especiallv
when the frequency is very high. Thus, it is highly desirable to have an
analytical and explicit formula for the far field expressed in terms of the
surface current. We now discuss an approach for accomplishing this task and
examine the problem of deriving an asymptotic expansion of the far field
radiated due to a point source located on the surface of a smooth, conducting,

and convex body of an arbitrary shape.

s b s o sl e e i - S




Consider an arbitrary smooth convex surface S shown in Fig. 17, Let
a magnetic dipole source be located at a point Q on S. We parametrize the
surface S introducing a '"geodetical polar coordinate" system with the pole

located at Q such that an arbitrary point P1 on the surface is defined by a

pair of numbers (¢,8), where o is the arc length of the geodesic QP1 and B
is the angle between QPl and some reference direction at Q. Unit vectors
along the constant parameter curves o and B are locally orthogonal. The
unit normal to the surface, ﬁ. is given by ﬁ - é x é. An element of length

in this coordinate system may be written as

Bt e dot + B AN (3.35)

The radiation integral for the scattered far field can be written as

£ - -“:u i J(1-RR) - EﬁRé:lEEl ds (3.36)
S

where R is the distance between any point on the surface and the observation
point. In the geodetical polar coordinate system, we can rewrite a scalar

component of (3.36), say M, in terms of a double integral of the following

general form

Ma [ F(s,8;P) &V_’LL[:{M&*‘_O)_] VG do dg (3.3
D

where we have assumed the following form for the surface current:
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Figure 17: Source radiacion in the presence of a smooth Jonvex suriace,
parametrized by geodetical polar coovdinate svstem.




3(91) - F(Pl) exp(=jk,0) = J o + I 8 _
(3.38) !

kl =k - jkz; k = 21/}, k2 240, k2 << k . ]

where ?(Pl) is a relatively slowly varying function when k, the free-space
wave number, is large. This assumption is based upon a close scrutiny of
different asymptotic formulas given for the induced surface current.

When the observation point P is located in the shadow region, the
main contribution to (3.37) comes from a small neighborhood of the stationary

point of the integrand, and the stationary phase method for multiple integrals

([48] and [49]) is applicable. The asymptotic expansion of (3.36) has been

derived up to the order of k-5/3. The details of calculation can be found

in Appendix C. The final result is

2
E = :5—2 @, + 0, + ok~117/6yy (3.39)

Sr

where

§ D,
Up = 8 J5 * =576

/g
s 2 R
R(R*°g: e (3.40)

KV

_ 2 jko, =jko,; 8
Uy I(AJS + 35 (Jge' e )8 + (BJ, + CJ )n]
(3.41)
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R L 65/6 2/3

¥ CTQUD T/ - e (3.42)
ra—in/a
b =e—— 70 ry T . i (3.43)

A, B, and C are dependent upon geometric properties of the surface at the

stationary point which turns out to be exactly the same as the "point of

diffraction" of surface rays. The quantities A, B, and C are given by

o) 88
T PONR. S P R
A=38 %° "2 "o (oo) *3 [oo

(3.44)

2
oS0 @

g~

patPigt? s s, (3.45)

where
P radius of curvature of the geodesic
08 = peodetic radius of curvature

LSS, LBo = coefficients of the second fundamental form of the surface (S).

A geometric interpretation of these parameters has been illustrated

o 1/2
in Fig. 18. It is evident from this figure that [E?§;§~T] is simply the
8

divergence factor of the ravs leaving the surface tangentially at the point
of diffraction. In using formula (3.43), we should bear in mind that the
various terms in U0 and U1 are not of the same order. For example, in the

deep shadow, J'J is exponentiallv larger than Jy
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The formulas given in (3.43) have been tested and compared with other
available solutions. An important conclusion derived from this comparison
is that although the method of radiation integral is based on less restrictive
assumptions, it is perhaps not as useful as the spectral domain approach
because the stationary point of the phase of the integrand in (3.37) is of the
second order, and hence, the asymptotic expansion of this integral converges

rather slowly except when koU is very large (40 or more).

§
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4. SOURCE RADIATION IN THE PRESENCE OF AN INFINITELY CONDUCTING CIRCULAR
CYLINDER OF FINITE LENGTH (GENERAL FORMULATION OF THE PROBLEM)

An asymptotic analysis of the problem of radiation of an electro-
magnetic point source located on a solid metallic cylinder of finite length
is the topic which is studied in detail in the remaining chapters. Because
of its theoretical and practical importance (small antennas mounted on the
body of the satellites, conformal arrays, electromagnetic coupling through
the slots on the surface of a cylinder, and etc.), the problem of radiation
in the presence of or the diffraction by the finite cylinder has been treated
by many investigators. Various numerical and asymptotic techniques have
limited application since they are usually valid only for a special range of
parameters, e.g., the length or radius of the cvlinder, the location of the
source, or a special type of incident field. When the length and the radius
of the cylinder are small, compared to the wavelength (fraction of a wavelength),
the 2-D integral equation for the surface magnetic field or the two one-
dimensional (generally coupled) integral equations for the transverse and
axial components of the induced surface current are solved by the moment method
or point-matching techniques [67], [68], [69], [70], and [71]. Other approaches
have been presented for the cases where the length of the cylinder is very
large and its radius is relatively small or the incident field has some special
characteristics (72], (73], [74], [75] and [76].

When the frequency is high or the length and the radius of the cvlinder
are large compared to the wavelength, several asvmototic procedures, mostly
based on GTD and its modification, have been designed and applied to this
problem (77], (78], [79], (80], and (81] with various degrees of success.

The asvmptotic method described in this work is essentiallv a spectral
domain approach and is verv closely related to the Spectral Theorv of Diffrac-

tion (STD) developed by R. Mittra et al. [82], [88], and [89].
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The present approach is presumably more accurate than the other avail-
able methods because it avoids most of the restrictive assumptions underlying
the conventional high frequency techniques. In this chapter, we merely
outline the basic steps to this approach. The details are presented in the
later chapters.

In the high frequency range where the ray formalism is the most con-
venient representation for the Maxwell's equations, the field at each point
of the space can be expressed as the sum of the contributions of different
ravs passing through that point. Various diffraction or reflection mechanisms
give rise to different types of reflected or diffracted rays which together
with the direct ray constitute the total field. In the present problem,
illustrated in Fig. 19, the effect of the firite solid cylinder ou the radiated
field at P due to the scurce Q (located on the surface) has been represented
by three types of rays. F® is the surface diffracted ray (or psuedoray, if
the P is in the lit region of Q) corresponding to the radiated field due to
current induced on the surface of the cyvlinder. FWl and sz are wedge diffracted

rays generated by the curved wedges at both ends of the cvlinder. To calculate

FS, if the source is far from both ends, the infinite cvlinder formula derived

in Chapter 3 or in [85] can be used. These formulas are discussed in Chapter

1

2
5. Wedge diffracted fields F'" and F' can be analyzed only when the surface

field or current are available. Chapters 6 and 7
wl

are devoted to computation
of F'~ and sz. In Chapter 8, by calculating the effect of truncation, we

remove the assumption made in Chapter 5 concerning the length of the cvlinder
and extend the range of applicability of the procedure to the cases where the
source is not too far from the upper or lower wedge of the cvlinder. Chanter

3 is devoted to the calculation of the field in the paraxial region. A

summary of numerical results and conclusions are given in Chapters 10 and ll.
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5. SURFACE DIFFRACTED RAYS

Let us consider the case where an infinitesimal magnetic dipole with

e =

the moment M placed on the surface at a location described by (p = a,
o =0, z=0). The orientation of the dipole is tangent to the surface and

the direction of observation is given by (8 ). If the observation po<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>