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Sequential Medical Trials Involving Paired Data

Herman Chernoff
Department of Mathematics
Massachusetts Institute of Technology

A. John Petkau
Department of Mathematics
University of British Columbia

SUMMARY

A continuous time version of Anscombe's formulation of the problem
of comparing two treatments in the context of medical trials is considered
and the Bayes sequential procedure is explicitly determined. Various
suboptimal procedures are proposed, evaluated and compared to the optimal
procedure; the approximation to the optimal procedure proposed by Anscombe
turns out to be surprisingly efficient. Comparison with the discrete time
version demonstrates that the continuous time version provides accurate
approximations for clinical trials involving horizon sizes as small as 100.
The optimal procedure determined here provides a design which is relevant

for clinical trials involving either normal or Bernoulli responses.

R;

Some key words: clinical trials; optimal stopping; Wiener process; free

boundary problem.

AMS 1970 subject classifications: Primary 62L10; secondary 62C10, 62L15.




1. INTRODUCTION

A natural formulation for many statistical problems is that
combining Bayesian, sequential and decision theoretic aspects. There exists
a body of literature developing an approach to this formulation where
sums of successive observations are replaced by a continuous time Wiener
process and the heat equation plays a prominent role in the resulting
analysis. In particular, optimal procedures may be characterized in terms
of solutions of free boundary problems related to the heat equation.

Some of the resulting analysis is quite complicated and more
work remains to be done on many aspects of this analysis. It would seem
that the formidable appearance of some of the technicalities of this
literature has distracted potential users from taking advantage of other
aspects which are easy or routine and which contribute clarity, asymptotic
results with important theoretical implications, and numerical descriptions
of optimal sequential procedures and the resulting risks.

We have become aware of recent work by Siegmund together with
some of his colleagues (1978) and by Begg and Mehta (1978) on a sequential
medical trials model first proposed by Anscombe (1963). This same model,
except for the Bayesian aspect, had been considered earlier by Maurice (1959)
in the context of industrial productidn. We suggest that there is much to
be said about this problem in terms of the approach and literature described
above. In this paper we develop the model and present these results with
two objectives. First, we wish to present the optimal procedure and its
properties and show how it compares with several suboptimal procedures.
Second, we wish to use the Anscombe model as an illustration to show how

such results may be obtained for other similar sequential decision theoretic
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problems.

The formulation that we refer to as the Anscombe model for

sequential medical trials involving paired data is the following: There

is a horizon of N patients to be treated by one of two available treat-
ments. In the initial (experimental) phase, n pairs of patients are
treated sequentially, with different treatments randomly assigned to the
patients in each pair. The differences, Xy in the values of the outcomes
for the i-th (i=1,2,°°°,n) pair are assumed to be independently and
normally distributed with unknown mean u and known variance 02 (and

are assumed to be instantaneously available after treatment). After n

is selected by some sequential decision rule, the remaining N-2n patients
are all assigned to the treatment which is inferred to be superior. The
expected loss involved has twe components. The first is E(n|u|) which
represents the expected cost in patient benefit incurred during the experi-
mental period where n of the 2n patients treated were assigned the
inferior treatment. The second is the expected cost due to the possibility
of selecting the wrong treatment for the final stage and thus losing
(N-2n)|ul . An optimal solution exists for this sequential decision problem
if it is posed in a Bayesian framework with u being given a prior normal
distribution with mean Ho and variance cg .
cation of the parameters, this Bayes sequential design may be determined,

For any particular specifi-

at least in principle, by the backward induction method of dynamic program-

ming. Although such computations have been carried out by Day (1969) and

Siegmund (1978) for a few specific cases, for larger values of N this

rapidly becomes unfeasible. Further, the method fails to characterize the

optimal solution in terms of the parameters involved in an explicit fashion.
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1 Without some theory, the results are less illuminating than they could be.

In Sections 2 and 3 we describe the continuous time model and
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some of the results that may be derived and computed from it. One result
is that the optimal procedure can be described by a single curve in the
(t,8) plane where, at any time, t represents that proportion of the

? potential information that is currently available and B is the current
nominal significance level for testing the hypothesis uy = 0 . Thus the
optimal procedure may be described as a sequence of repeated significance

tests with the appropriate significance level varying with the amount of

information available. The experimehtal period terminates when an appro-
priate significance level is achieved. The fact that the solution can be
so described implies that one curve applies for an entire family of problems

independent of the parameters Hyr ag,.cz and N . Moreover, it suggests

that this same curve is meaningful for variations of this problem where

the data and the priors are not necessarily normal.

Two other results are that the suboptimal procedure proposed by

Anscombe (1963) is remarkably close to optimal (this result was first

discovered by Siegmund (1978)) and that the expected cost due to ignorance

B P A I SR T 40w

of u is of the order of magnitude of (log N)2 which may seen surprisingly

small.




2. MODEL AND PROCEDURES

2.1. Posterior probabilities and risks

Upon observing the differences xl,xz,'",xn , the posterior

* *
distribution of u becomes N(Yn,sn) where

n
* -2 -3 -2 -2
e (oo Bg + O Z xi)/(oo +no ") ,
i=1
(2.1.1)

* -2 -2, -1
'n = (oo + no ) )

Further, it can be shown that for n > m , the marginal distribution of

* *

* * * *
Yn - Ym (treating u as random) is N(O, S, sn) and Yn - Ym is

independent of Y; . Thus as sampling continues, Y: , the posterior mean
of u , behaves like a Gaussian process of independent increments starting
from Y; =1y - Once the experimental phase is cdhcludad, the preferred
choice of treatment for the remaining N - 2n patients is clearly decided
by the sign of Y; . Also, the expected loss or posterior risk associated
with stopping after treating exactly n pairs of patients is

nE(|u|) + (N-2n)E[max{0, - sgn(Y;)u}] , where E represents expectation
with respect to the posterior distribution of u given Y; . It is easy

4 .

to verify that E(|u|) = 23; w(y;s;‘ ) and E[max{0, -sgn(Y;)u}] -

05 * i-ﬁ * '
s, ¥(¥s ") - |¥ |/2 which leads to the expression
LT 2 * L
Ns w(Ynsn i (N/2-n)|¥n| for the posterior risk where

v(u) = ¢(u) + u{d(u) - 1/2} (2.1.2)

- -

S




3 and ¢ and ¢ are the standard normal density and cumulative respectively.

*
Using (2.1.1) to substitute for n in terms of S, - the posterior risk

can be written as

¢ L *dy LR 2, -1 *_] *
. 4, (Y ;8 ) =Hs “$(X 8 ") -0"(s " =8 >|Ynl {2.1.3)
where
-1 _ =2 -2
. H, 00 + No /2 (2.1.4)

may be regarded as the total potential information available for estimating

B . The problem of selecting the best sequential procedure for stopping
is equivalent to the optimal stopping problem where the Gaussian process

*
Yn is observed and one selects the stopping time n to minimize the

L

* *
expected risk Edl(Yn,sn) :

2.2. Continuous time version

e st~ i

A natural approximation to the above problem results if the

n
discrete sequence of partial sums, _lei , is replaced by the continuous
i=

: *
. time Wiener process, X(t ) , with drift u and variance 02 per unit

2

time. We may write E{dx(t')} = udt* and Var{dx(t*)} =g dt* for

*
0<t SN/2 . The posterior distribution of u given X(t') for

* * * *
0st' st is N(Y (s ), s ) where

. » -2 -2, . * -2 % =2
Y(s) = {ao Mg *+ O X(t )}/(oo + €8¢ )

* - X ) - ‘
24t 2) o :




In parallel with Section 2.1, Y*(s*) is a Wiener process with drift O
and variance 1 per unit in the -s* scale, and originates at the initial

L A TR S *
point (yo,so) where Sy = % and ¥ " Y (so) =1 - Note that as t
increases from 0 to N/2 , s* decréﬁses from s; to s, , as defined
in (2.1.4).

Once more the posterior risk corresponding to stopping at
(Y*(s*), s*) is given by dl(Y*(s*), s*) , as specified in (2.1.3), and
our current problem is also an optimal stopping problem which differs
from the original problem only in that it involves the continuous time
process Y* . Indeed, the original problem may be regarded as a particular
version of the continuous time problem where the possible stopping times
in the s* scale are restricted to only those values of s* which are
of the form (052 +n0 %"l . From this point of view it is clear that
the expected risk for the discrete time stopping problem is larger than
for the continuous version.

For each initial point (y;,s;) , there is a corresponding
optimal stopping problem. Let pl(y;,s;) be the optimal risk as a
function of the initial point. Then pl(y;,s;) < dl(y;,s;) and it pays

* * * *
to continue taking observations if and only if pl(yo,so) < dl(yo,so) .

* * * *

But, since Y (s ) is a process of independent increments, pl(y 'S )
* *
is the optimal conditional risk given Y(s ) =y . Hence one may
characterize the optimal procedure as the rule to stop sampling as soon
» » * * *
as pl(Y (s),s) = dl(Y (s ), s*) . Thus the optimal rule is determined
* * *

by an optimal stopping set S, in the (y ,s ) space where p, =d, or

. *
by its complement the optimal continuation set C1 where CH < d1 . This




characterization suggests that in searching for the optimal procedure

we restrict attention to procedures defined by stopping or continuation

* *
sets in (y ,s ) space. In what follows we will refer to the optimal

;} ki procedure as procedure O .

E 2.3. Suboptimal procedures

Working in the context of the original discrete time problem,

Anscombe (1963, p. 376) proposed a procedure which he argued should be

close to optimal. In our notation his procedure, which we shall label A,

consists of stopping as soon as

g 1-0(z)) s t/2, (2.3.1)

4 where

| | z2=v(s)s"" (2.3.2)

e

and

TR D

-2 * 2 -2 -2 *
t = (co +to )/(oo + No “/2) , 0t <N/2, (2.3.3)

. is that proportion of the potential information that is currently available. I
Also working in the context of the original discrete time problem,
Begg and Mehta (1978) proposed a procedure which consists of stopping as

soon as there is no fixed additional time of observation which does as well

as stopping. We shall call the analogue of this procedure for our continuous

g

time version of the problem procedure F . This procedure has been considered

previously in the context of other continuous time optimal stopping problems

by Chernoff (1965a) and Petkau (1978). i




In the remainder of this paper we shall be particularly concerned

with comparisons of procedures O, A and F . However, for discussion

purposes it will occasionally be useful to refer to two other procedures.
The first of these, which we shall label FS , is the best fixed sampling
time procedure given the initial prior. The second, which we shall label
ND , is the no decision procedure where the entire set of N patients is

evenly divided between the two treatments. The Bayes risk for this pro-

cedure can easily be evaluated as Noow(uo/oo) which is of the order of
magnitude of N .

There are several additional procedures of interest which we
shall not discuss in this paper. One of these would be a Wald type pro-

cedure which would consist of a stopping region determined by two horizontal

* *
lines in the original (X(t ),t ) scale. Such procedures have been

considered previously in the context of the discrete time problem by

i Xt

Maurice (1959), Colton (1963) and Siegmund (1978).




3. RESULTS

3.1. Stopping rules

The optimal procedure for the continuous time problem may be ex-
pressed by the curve (topping boundary), Eo(t) =1 - @(;o(t)) , presented
in detail in Table 1. It is interpreted as follows: Let 2 and t be
as defined in (2.3.2) and (2.3.3). If at any time p = 1 - ¢(|z|) < Eo(t) ;
stop taking observations and for the remaining N-Zt* units of time use
the treatment in accord with the sign of Y* . Since the posterior dis-
tribution of u is N(Y*(s*),s*) , 2 1is simply the number of standard
deviations that the current Bayes estimate of u is away from zero and B
is the observed P value for a one-sided test of u = 0 based on the
data and the prior. At time ¢t , the curve Zo(t) specifies the number
of standard derivations required for stopping and Eo(t) is the corresponding
nominal significance level. Thus the optimal procedure is a type of
repeated significance test with the nominal significance level varying
with the amount of information available. Note that as the proportion of
information available increases from O to 1 , the nominal significance

level becomes less stringent, increasing from O to 1/2.

Table 1 about here

The definition of procedure F makes it clear that this procedure
always prescribes early stopping relative to the optimal procedure. We do
not present a tabulation of procedure F since, as we shall demonstrate,
this is quite an inefficient procedure. On the other hand, there is no
need to tabulate Anscombe's procedure A since the nominal significance level

for that procedure is simply EA(t) =1 - Q(EA(t)) = t/2 . The stopping
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boundaries for procedures 0 , A and F are presented in the (B8,t)

scale in Fig. 1. Note that F prescribes very early stopping relative to
the optimal procedure, particularly for small values of t . Procedure A

is much more comparable to the optimal procedure, prescribing later stopping

for small values of t and earlier stopping for large values of ¢t .

Fig. 1 about here

While procedure FS cannot be represented in the (B,t) scale
as the other procedures, it is relatively easy to characterize. 1In partic-

ular, for the case u. = 0 , it consists of sampling the fixed time

0

*
th = N/{(9 + 4N0§/02)H + 3} which agrees exactly with the corresponding

result obtained by Colton (1963, p.393) in the context of the discrete

*
time problem. Note that for large values of N , tes = NH
90 N~ 1603 y

2 2
o/ 200 - 307/ 40, +
Although Fig. 1 provides a clear overall picture of the behavior
of the stopping boundaries of these procedures, the exact form of these
boundaries near the distinguished points t = 0 where few patients have

been treated and t = 1 where nearly all the patients have been treated is

of particular interest. Asymptotic expansions indicate that for small values

of t
~ ~2 ~2 -2 “‘4 eee
-2 1log t ~ zo + log zZ, + log(2m) + Zzo + 2z + p
-21lcg t z, + log z, + log(m/2) + ZzA + eee
-21log t* 2: + 5 log 2; + 2 + log(m/8) + e«+e ,
and
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£[1 + 3(log t)"2/4] ,

2

w
"

t/2 ,

™

® et(-log t)2 .

Somewhat less important expansions for values of t close to 1

are easily derived. These indicate that
'Zo(t) R (l-t)"{o.7642 + 0.2737(1-t) + 0.1659(1-1:)2 + cee}, k
EA(t) R (1-t) {1.2533 + 0.3281(1-1:)2 + 0.1804(1-1:)4 + eee} ,

~

(e ™ (l-t)k{0.3854 + 0.1528(1-t) + **<} ,

Zp
and
By(t) = 0.5 - 0.3049(1-t) 7 , [
B, (t) = 0.5 - 0.5(1-t) , -'
Bo(t) ¥ 0.5 - 0.1537(1-t) * .

The region of small values of t is particularly relevant for
problems involving large values of the horizon size N and therefore it .
is important to note the accuracy of the approximation EO ® ¢t for small

values of t in Table 1. Further, the expansions above indicate that

while the stopping boundaries of procedures O and A behave similarly
in this region, the behavior of the boundary of procedure F is qualitatively
different. Thus, at least for problems involving large horizon sizes, while

we expect procedure F to perform poorly relative to the optimal procedure,

there is some evidence that procedure A may be a reasonable competitor.
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3.2. Bayes risks

While comparison of the stopping boundaries indicates how
these procedures differ in their stopping rules, of greater interest are ’
the risks incurred when these procedures are employed. How do the risks
for the alternative procedures compare and what are their orders of

magnitude? Let R represent the Bayes risk for procedure P where P

1P
may be 0 (optimal), A, F or FS. These risks depend upcn the four
parameters Hye Oyr o and N . For simplicity in tabular presentation

we may use the normalization

2 -1 :
RlP =070, ¢(zo)RP

where R% depends only on

-2 -2 -2
to = ao /(0o + No /2)
and

zy = ¥o/%

which are the initial values of t and 2 .
The normalized risks Rﬁ and the ratios E = R6/R§ for these
procedures are presented in Table 2. 1In each case the proportion rﬁ of the

Bayes risk which is due to the experimental period of the medical trial .

is tabulated in parenthesis. Each point (to,zo) at which the normalized

risks have been tabulated is in the interior of the continuation r.jions
of procedures O, A and F . Note that for every initial point considered [
in Table 2, the Anscombe procedure dominates F which in turn, of course,

dominates FS . Procedure F is quite inefficient even for relatively

large values of to and its behavior deteriorates rapidly as to decreases.
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The Anscombe procedure, on the other hand, is highly efficient for

R&/Ri varies from 0.94 to 1.00 over the range of the table. Further,
while a slightly greater proportion of the Bayes risk is due to the
experimental period of the medical trial for A than for O , procedure

F differs dramatically from both 0 and A in this respect. It is clear
that F prescribes early termination of the experimental period which
leads to a greatly increased chance of selecting the inferior treatment

at the time of termination. :

Table 2 about here

The apparent low efficiencies of procedures. F and FS are

somewhat exaggerated by considering the ratios R6/R£ . Another perspective

comes from considering some special cases corresponding to different values

=0, 02 = 02 =1, and then §

0
1

of the horizon size N . In Table 3 we let uo

list the Bayes risks R for various values of N = 2(t5 - 1l). In each

1P
case the proportion of the risk which is due to the experimental period and

the expected number of pairs of patients sampled are also tabulated. Considering

that the risk for the no decision procedure ND is R = Noow(zo) which

1IND

is N/Y2m® when uo =0 and o0, =1, it is evident that procedures F and

0
FS are reasonably effective in spite of the fact that they behave poorly

relative to procedures O and A . From this point of view, the efficiency

of the Anscombe procedure is even more remarkable.

g

Table 3 about here

To return to Table 2, we remark that if to is small and u is {8
not, not many observations are required to reveal the sign of u . Hence l

if to is small and z, is not large, the Bayes risks for these procedures
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are mainly due to the contribution of small values of u and the rough
approximation RlP = 029(0)R§ where g(0) is the non-zero prior density
at u = 0 is meaningful even if the prior is not normal.

Finally, if td‘ is small and z, Ys not large, the leading
behavior of an asymptotic expansion indicates that

on2=T 2
Rlo = 070, ¢(zo)(log to)
which means that the optimal Bayes risk is of the order of magnitude of

(log N)2 . This should be compared to the Bayes risks of the no decision
procedure and the best fixed sample size procedure which are of the order

of magnitude of N and N% respectively.

3.3. Discrete time

The original problem was a discrete time version of the continuous
time stopping problem whose solution has been tabulated in Table 1. We may
regard the former as one where the possible stopping times are restricted

to those for which t takes on the values tn = (052 + nc-z)/(c;2 + No-2/2).

When N is large the successive differences in tn become small and the
solution of the continuous time problem is a good approximation to the
solution of the original problem. Moreover this approximation can be

improved considerably by the adjustment

h 2 =2

;6(t) = Eo(t) -kt (o %o T N/Z)-H

where k = - z(1/2)//27 = 0.5826.
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The accuracy of these approximations can be examined by comparing

the stopping boundaries EO and 26 to the solution of the discrete time
2

problem. The latter was computed for the specific case N = 100, 0" =1
and for a few values of a = oz/Na: = t0/2(1-t0) to compare with some
tabulations by Day (1969). Grid sizes for the nuwerical integrations
involved in the backward induction were taken refined enough so that the

A
solutions z, are accurate to within relative errors of 0.3%. We present

~ A *
zo, 26 and zo corresponding to integer values of t = n for a few values
of a in Table 4. Note the excellent agreement between the adjusted values

2

56 and the "exact" discrete results QO throughout the table. The
exceptional accuracy of the continuous time approximation may be somewhat
surprising since the particular discrete time problem being considered

involves at most 50 pairs of patients.

>

Table 4 about here

That the continuous time solution provides an excellent approximation
to the optimal stopping rule for the discrete time problem has important
practical implications. Although this solution would provide a suboptimal.
procedure when used in any particular discrete time problem, the accuracy
of the approximation indicates that the use of this suboptimal procedure
would result in a negligible increase in risk. For all practical purposes,
the stopping rule tabulated in Table 1 provides the solution to all discrete
time problems involving large, moderate and even fairly small horizon sizes.

Theoretical results on the difference between the risks for the
discrete and continuous cases are incomplete. As has already been pointed
out, the continuous time problem is more favorable since sampling may be

terminated at any time and consequently the Bayes risk for the discrete
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time problem is larger than for the continuous version. Table 5 compares

R6 with its discrete analogue for the specific case N = 100, 02 = 1

My = 0 for a few values of a and demonstrates that this discrepancy is

reasonably small.

Table 5 about here

Begg and Mehta (1978) have recently considered the procedure F
within the context of the discrete time problem and have provided a table
presenting their computation of the discrete version of the stopping
boundary for various values of the horizon size N from 102 to 106 “
When the corresponding table is constructed from the continuous time
version of procedure F , the entries in all cases agree to within one

unit in the last decimal place displayed in their table. Again the

continuous time problem provides an excellent approximation.




4. DERIVATION OF RESULTS

We shall now indicate how the results presented in Section 3 may
be cbtained. There are several major steps. First the continuous time
problem is normalized so that its solution can be expressed in terms of

o ’
N and o . This is why one table in the (B,t) space suffices for all

a stopping set which does not depend on any of the parameters g ¢ O

parameter sets.
The solution of this normalized problem is then related to a |

free boundary problem involving the heat equation. This relationship

leads directly to methods of deriving the asymptotic behavior of the
optimal procedure. The corresponding results for suboptimal procedures
F and FS are obtained in a straightforward manner.

Finally the relation between the solutions of the discrete and

continuous time problems is indicated. This gives rise to an effective

adjustment in a simple backward induction algorithm for computing the 3
optimal solution. It is indicated how minor modifications of this
backward induction algorithm can be applied to evaluate the suboptimal

procedures A and F .

4.1. Normalization

In Section 2, the continuous time version of our problem was

* *
stated as an optimal stopping problem involving the Wiener process Y (s )
2

L. * < * s -
for oo = so s s, ® (co

*
stopping was given by dl(Y*(s*),s ) and where the initial point was i

+ Na-2/2)-1 where the loss associated with

2
(uo.ao) -




= * *
and the initial point (yo,so) = (uo,ag) is transformed to (yo,so) where

Since the transformation

* 2 *
Y=aY , s =as

* *
replaces Y (s ) by a Wiener Process Y(s) (in the -s scale), we may

normalize our problem by selecting a so that the terminal value s,

*
of s goes into azs* = 1 . Thus we select

h

=y =2\ 5 o™ 7o

a=s," = (0,

Then

Y(s) =Y (s) (072 + No~22) ",

' - -
s as(o’2+N0'2/2)=t1,

z =s"%"(s") = s (s *

-2 _2 l’ A
Yo = uo(oo + No 7/2)° ,
2, =2 -2 -1
Sy = oo(oo + NO /2) = to .
* 2 *
Finally, setting y=ay ,s=as , for S 2 s 21 we have

Y

dl(y*,s*) - Na 's w(ys-a) - a02(1-5-1)|y| = d,(y,s) .

Thus the solution of our continuous time optimal stopping problem

can be described in terms of a stopping set in the (y,s) space which

involves at most one parameter, Na-]'/ao2 = Nax-zcx-2 . However we shall

now show that the skw term in d2 is irrelevant to the solution and our
problem is equivalent to solving the parameter free stopping problem

corresponding to minimizing the expected value, on stopping, of
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d,(y,s) = - (l-s-l)lyl »

Then the parameters enter only in the determination of the starting
*
point (yo,so) and the translation back to the original (X,t ) scale.

To verify that the skw term is irrelevant, note that

sW(ys™ = E(|¥(0)]/2 | ¥(s) = y}

represents the expected payoff that would be made if another observer
continued to follow the process until s = 0 and was then paid |[¥(0)|/2 .
The presence of such a payoff independent of our stopping time should not
affect the optimal strategy, nor should replacing the payoff by its

conditional expectation upon stopping do so.
4.2 The free boundary problem

The Wiener process is closely associated with the heat equation

Huyy =u_ . If S is a stopping set in the (y,s) space and d is a

function of y and s , then the function
u(y,s) = E{d(¥(s),S) | ¥(s) =y} ,

where (Y(S),S) is the first point after (y,s) where the process enters
S , 1is a solution of the heat equation. For example

L]

s #(Yl-k

) = {|¥(0)/2| | ¥(s) = y} , which corresponds to d = |y|/2 and

S = {(y,s): s=0} , is a solution of the heat equation. "
For an arbitrary procedure associated with a stopping set S

and our stopping cost function d2 , the risk u(yo,so) associated with

an initial starting point (yo,so) or, equivalently the conditional risk

given Y(so)- Yo ¢ satisfies
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4

! = ¢F
‘fuyy(Y's) = us(YIs) for (YIS) e € S ’

u(y,s) = dz(y,s) for (y,s) € S .

The stopping set for which u(y,s) is minimized (uniformly for all (y,s))

is determined by the extra boundary condition
uy(y.l) = dzy(y,-) for (y,s) € aS .

Hence the optimization problem is associated with a free boundary problem

for the heat equation where the conditions u = d2 and uy = dzy on

the boundary determine the optimal boundary as well as the associated

L ] w
optimal risk oz(y.s) =-P,Y ,8 ) . This associated free boundary problem

5 Y

provides another way to show that we may ignore the s W(Yl- ) term in

d, and deal with d,(y,s) = - (l-l-l)lyl . Observe that since shw
is a solution of the heat equation for s > 0 , subtracting a multiple

of it from u and from d2 will not affect whether or not the boundary

conditions are satisfied. The interested reader is referred to Chernoff

(1972) for a detailed developement of the above results.
4.3. Asymptotic behavior near t = 1.

Near t = 1 or equivalently, s = 1, our method will be to
construct a class of solutions Py of the heat equation and to modify
them and the boundary in successive steps so as to approximate the
boundary conditions for d,(y,s) = - (l-s-l)lyl . This particular
problem is symmetric in y and so it is convenient to deal with the
upper half of the boundary. It is also convenient to transform coordinates
to

r=g -1,
(4.3.1)

vaygr ",




The boundary conditions for P3 then become

Py Wi vrh(l - 1/(1+r)) ,

(4.3.2)

Pae * = (1 = 1/(3+x)) .

For r near O (s near 1), the right hand sides of the above equations

may be expanded in powers of rh . This suggests that we seek separable,

n/

even solutions of the heat equation of the form «r 2Hn(v) where Hn(v)

may itself be expanded in a power series in v . Solutions of the heat
equation of this form may be obtained in terms of the confluent hyper-

geometric functions which solve
" '
Hn(v) + vﬂn(v) = an(v)
or by defining
H (v) = [Gn(v) + Gn(-v)]/2
where

G, (V) = (1/aY) I“(v+e)n¢(s)de

-

Note that for n 21, G;(v) =G _,(v) and

1

Gn(v) = Pn(v)Q(v) + Qn(v)¢(v)

where Pn and Qn are polynomials, a few of which are listed in Chernoff
and Ray (1965, p.1394). For example, Go(v) = 9(v), Gl(v) = vd(v) +¢(v) ,

26, (v) = (v+1)8(v) + vé(v) and 6G,(v) = (V+3IV) (V) + (vo42)6(v) .
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Assuming

(-]
0,9 = [arm
n=1

and that the optimal boundary corresponds to

¥(s) = Zcrnr
n=0 o

the coefficients an and c, are obtained alternately by matching

coefficients of equal powers of r in the equations obtained by

substituting these expressions into the boundary conditions (4.3.2).

Expanding the Hn about c¢ and matching coefficients, we are led to the

Q

results:

a,=a, =0, n=1,2,°°, a

| 4 is the unique positive solution of 4

(1-c§)¢(co) - cg[¢(co) - %} ,

and a
= 2¢ /(c2+5) l
o Bmiin dhap Wl . 3
2. 2 g ST &8 |
| c, = 1+ (9+co)c1 - 7(1+c1)(c°+10co+5)/(co+16co+35)]/2c0 b ;
z
- while :

3
33 = ‘2CO/¢(CO) ’ :

<) 2
ag = 40c0/(c0+5)¢(c0) ’

3 2 4 2
a7 = -1680c0(1+c1)/(co+16co+35)¢(co) °
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Numerical values of these coefficients, correct to the number

of digits displayed, are as follows:

cy = 0.764226, a, = -2.996457,
¢, = 0.273718, ag = 10.732217, f
¢, ==0.107795, a, =-60.547318. :
1
These asymptotic expansions for Py and- v translate into equivalent ;
ones in texms of y and s or z and t . In particular, from (4.3.1), i

-1 |

y -1 |

V=y/(s-1)" = Eo(t)/(l-t)k can be expanded in powers of r=s - 1=t
and this leads directly to the expansion of Eo(t) in powers of (l-t)
as given in Section 3.1.

The type of argument required to prove that these formal

expansions are in fact asymptotic expansions for the solution is presented

in Breakwell and Chernoff (1964).

4.4. Asymptotic behavior near t = 0

Near t = 0 or where s is large, it is convenient to introduce
b
d4(y,s) = d3(y,s) + 2s Y (2)

where z = ys-H . The term added to d3 is an even solution of the heat

equation, and hence does not affect our optimal policy. On the other hand
for large lz| , it is approximately |y| and has the attribute of
cancelling the major part of d3 with a solution of the heat equation.

(The term that we dropped out of d to get d. had the same attribute.

2 3

However it depended, in part, on a parameter of the problem and using d2

would then involve this unnecessary parameter). This modification




facilitates matching terms on the boundary for large s and 2z in the

following exapansions. The boundary conditions on the upper boundary are

p, = s-kz + Zsk{¢(z) - z[1-0(2)1} ,

-1

=g - 2[1 - Q(Z)]. (4.4.1)

D4y

Following Chernoff (1965a) we consider solutions of the heat equation of

the form

Py = xs'*¢(z) + g(z,s) (4.4.2)

where

g(z,s) = E{£[¥(0)]]| Y(s)=y}

= I.f(y+es5)¢(e)de i

-0

= rub-z)f(s"b)db ; (4.4.3)

while the boundary will be represented by an expansion of the form
log s = 22/2 +a. logz+a, +a 2'2 +a §-4+ cee
-1 0 1l 2 4

-‘:»:2/2+a_1log‘i+ao+n.

(4.4.4)

The unknown coefficients a, are to be determined along with the unknown
symmetric function f from the boundary conditions (4.4.1). Along the

boundary represented by (4.4.4), the term Ks-y

$(z) in (4.4.2) is relatively
negligible and, proceeding as in Chernoff (1965a), the boundary conditions

reduce to

Hl
I8
I




i 2s.
I}
rl
| £(s"2) + (/20822 (s%2) + (1:3/40)8% W (s"2)+ ...
(|l (4.4.5)
1§ & a_ -2 5 a = i
?g =s H{z + 2z 2 (2m) l’e oe“[1-3z 2+1Sz X eee]} ,
(!

: £ (%) 4+ (1:3/30)88F (s%2) + (1:3+5/51)826(5) (¥z)4 ooo

. (4.4.6)

a a
- i1 - 20 2 (2w)-&e O *

1-2~ +3z-4- eee]} .

With the initial approximation fo(x) = 2|x|-llog x2 , the main terms

a
match in (4.4.5) and (4.4.6) if a_ - l1=0 and -1=1 - 2(2«)-&e i
or

a, = Xeo a, = log(2m) /2 .

-Applying the resulting approximation

log s = 52/2 + log Z + log(2m)/2

o N

i to (4.4.5), we obtain a discrepancy (left side minus right side) which is

L

’ (s z)-l[3 log zz + log(2m) = 1 + o.(z-z)]

* -
where 0 (2 2k) is used to represent an expression which is bounded by

g % some power of log z2 divided by sz as z +® ., To compensate for

this discrepancy we apply a correction to fo which gives

£, = |x|7M2 1og x” - 3 10g(2 log x)) - log(2m + 1! .  (4.4.7)
Applying this approximation to (4.4.6) yields a discrepancy

k]

2) "2 [2(a,-1) + 0 (2]

(s
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in which the leading term vanishes if the choice a, = 1 is made.
Proceeding one more step in this iterative process we obtain the further

correction

-1
£,(x) = |x| 7" [2 1og x° - 3 1log(2 log x2) ~- log(2m) + 1 .

S (4.4.8)
+ (2 1o x2)"1{9 1og(2 log x2) + 3 1og(2%) - 4}] -

which when applied to (4.4.6) yields a discrepency, the main part of which
can be made to vanish by the choice a, = 1/2 . To this limited number

of terms we then have the formal expansion

2+~-4

21log s~ Ez + log 22+ log(2m) + 2% P

which is exactly the expansion for the optimal boundary given in Section

< [ 38

One may continue in éhe fashion described above and a proof that
these formal expansions yield asymptotic expansions to G and the optimal
boundary follows along the lines of Chernoff (1965a).

If one were to substitute f2 for £ in (4.4.3) instead of in
the formal expansion for Pq given by (4.4.5), the integral diverges.
However, if f is bounded or set equal to zero for some finite interval

about zero, the integral converges and is approximated by (4.4.5) for z

large, which is where the boundary is. y

The Bayes risk for moderate values of 2z is of particular interest.

From (4.4.2) and (4.4.3) and the symmetry of f , we have

04(1{.3) = Ks'l’cb(z) + I ¢(b-z)f(s"b)db v

-0

(4.4.9)

= n"’o(z) + 20(2) f e--j_/ 2cosh(bt)f(n"b)db 5




A careful analysis of this expression (see appendix) with a bounded version

of f2 substituted for f yields that for s + ® and bounded =z

ok

04(¥,8) % s % (2) [(log s)2 - 3(1og s)log(log s) + {2h(z) + c}{2log s - 3log(logs)}

(4.4.10)
+ %{log(log s) }2 + 4 log(log s) + 0(1)]

where (here Yy = Euler's constant)

c=2-1og 2 - %-loq m™T-y =0.15727

e 2
h(z) = I b ie™ Frcehbal - 1D .
0

Note that h'(z) = [¢(z) - 1/2]/¢(2) and, for any fixed value of z , h(z)

can be easily evaluated numerically. Since

2 -1 4 2 -1
pz(y,s) =00,’s p4(y,S) = 20045 %(2) ,

the result (4.4.9) leads directly to the leading term expansion given in

Section 3.2 for the optimal Bayes risk Rlo = pz(yo,so) .

Given an arbitrary procedure P , one may be interested in the

(frequentist) risk R,_(u) as a function of the unknown mean u as well

1P
as the Bayes risk

-1
Ru, = Iku(u) % ¢((u-uo)/0°)du .

Let P be O , the Bayes procedure associated with Hgr Ogr © and N

whezre t. = 052/(052+No-2/2) is small and z, = u /0, is not large.

(0]
The above expansion for Pa is consistent with the conjecture that

2 | 3 109(2 log 1)}

2 -1 ,
RipM) = o [u]™"{2 log
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for large values of yu .

4.5. Procedures F and FS

The procedure which we have called procedure F consists of
stopping at any point where no fixed sampling time will reduce the expected

risk. Thus on the stopping set for this procedure

d3(y,s) = inf Id3(y +(s-sl)He,sl)¢(6)de .

1$slss

and setting the derivative with respect to s, of

Defining A2 =8 -8 1

1
the right hand side equal to zero leads to the two determining relations

for the stopping boundary ?r(s) for procedure F ,

a,(y,8) = - 28(1-s7 1) (v/8)
(4.5.1)

0 = a7 a-sThoym) - 2a87% (/)
Assuming that ?F/A and Az/(svl) approach constants as s > 1 leads
to consideration of formal expansions of the form
;F/A =a, +a(s-l)+ o,
sl-l = bo(s-l) + bl(s-l)2+ e

Substituting these expansions into (4.5.1) and successively matching terms

leads to the expansions as s + 1 ,

s, ~ 1+ 0.793165(s-1) - 0.099480(s-1) 2+ «=o ,

1

n

13

§F(s) (s-1?5[0.385387 + 0.152838(s=1)+ **°] .




For large values of s , both ?F/A and s/sl are expected to

be large. In this case the relations (4.5.1) lead to the expansions as

PR

2s/s1 ~ 2 log s - 5 log(2log s) = log(m/8) + 3 + e ,

2_~ 21logs - 5 log(2log s) - log(m/8) = 2 + - .

In addition to these asymptotic expansions, the stopping boundary
of procedure F can be tabulated since it is relatively easy to solve

(4.5.1) numerically for sl(s) and ;F(s) s
Finally, we note that we have implicity carried out the analysis
for the procedure FS where the risk i

(y,s) = inf Id3(y + (s-sl)ﬁe, sl)¢(e)dc

153153

P3ps

is evaluated as

(y,8) = inf {~2A(1-s_Y)v(y/8)}

1
153153

S0 e et 0 Tt et Bekvme:

P3ps

and the appropriate value of s, is the solution of the second equation

1
in (4.5.1).

4.6. Relation of discrete and continuous time problems

In the context of the sequential analysis problem of testing

for the sign of a normal mean, Chernoff (1965b) established the relationship
between the discrete time version of the stopping problem and the continuous
time version. If the intervals between successive possible stopping

values of s is &8s , the difference between the optimal boundaries in , 2
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the (y,s) space is &Y which is approximately k(Gs)k where

k =-%(1/2)/Y27 = 0.5826. This is easily translated to the (z,t) space
where t = s°1 and, corresponding to successive observations where
6t* =1, 6t= 0-2/(0-3 + N0'2/2) . It is interesting to note that in
the original (x,t*) space, 60X is approximately independent of =
except for t* close to 0 and N/2 . -
Given the solution to the continuous time problem, we may
approximate'that of the discrete time version. How do we get the former?
In a manner that seems circular, one may obtain it by using backward
induction in the (y,s) scale. In fact this is not circular for one
may first apply the backward induction with stopping permitted at a fine
grid of s values, then apply the correction to approximate the solution
of the continuous time problem, and finally appl& the correction to that
in order to approximate the solution of the discrete time problem
corresponding to arbitrary values of o , oo and N . Thus a single
refined backward induction can be used to obtain approximations to the
continuous time solution and the whole class of discrete time solutions.
What is of even more value is that the same backward induction
method can be employed where the Wiener process Y is replaced by the
discrete time process where Y(s-n) = Y(s) % nh , each with probability
1/2. Here E{Y(s-n) - ¥(s)} = 0 and E{Y(s-n) - Y(s)}2 = n . The back-

ward induction evaluation of the solution of the optimal stopping problem

for this process involves the very simple equation

p(y,s +n) = min[d(y,s+n), {D(y+n5,s) +ﬂ(Y-nH.S)}/2]

which is considerably simpler to implement than the numerical integration




required for the discrete time normal process. With this simple random

walk process, Chernoff and Petkau (1976) have established that the same

T —

{ correction applies as before except that the constant k must be replaced

by by 0.5. This technique was used by Petkau (1978) and it and some elaborations

will be discussed elsewhere.

A P T

% The application of this technique to derive very refined estimates

: would require an exorbitant amount of computation. Nevertheless, it is
extremely easy to program and relatively coarse grids on the s axis

7 yield surprisingly accurate estimates.

1} ; A slight modification of this backward induction calculation

permits one to approximate the Bayes risk for an arbitrary ( not necessarily

optimal) stopping-;et S . Here we simply use 1

p(y,s+n) = d(y,s+n) for (y,s+n) € S,

= {p(y+n”.s) + p(y—n",s)}/z for (y,s+n) ¢ C =S .

This method was applied to evaluate the procedures A and F .

e

Finally we remark that this last technique was also applied to
i evaluate the (Bayes) expected duration of the experimental period of the
. medical trial as well as the contribution to the Bayes risk of the

experimental period for each of the procedures O, A and F .
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5. DISCUSSION

In Section 3 we have presented a few of the results that can be
obtained in a relatively straightforward manner using the continuous time
approach. We have shown that, irrespective of the parameter values Hyr
oo , 0 and N , the optimal stopping procedure may be expressed as a
sequence of repeated significance tests where the (one-tail) nominal
significance level B depends only on t , the proportion of the potential
information currently accumulated. The simple function which displays
this dependence has been tabulated in Table 1; this facilitates the
implementation of the optimal procedure. As was first discovered by
Siegmund (1978), the procedure proposed by Anscombe is extremely close
to optimal. On the other hand, the procedure of stopping when there'is
no fixed samplisg time that would be an improvement over stopping is a
relatively poor competitor. There are simple continuity corrections that
are extremely effective in relating the continuous time problem to the
(more relevant) original discrete time normal problem and to the random
walk problem which is useful in computing the optimal procedure. When these
corrections are applied, the solution of the continuous time problem provides
remarkably accurate results even for discrete time normal problems involving
horizon sizes as small as 100. Orders of magnitude and asymptotic expansions
are available. For example, when little information is available, the
appropriate nominal significance level for the optimal procedure should

be approximately t . Further, the order of magnitude of the optimal Baye<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>