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INTRODUCTION

Many authors have sought, with varying degrees of success, to account for
the pyroelectric and piezoelectric properties of poly(vinylidene fluoride) (PVDF).
In the recent model by Broadhurst, et_;]!. these properties are directly propor-
tional to remnant polarization. The achieQement of a given degree of polarization,
however, depends in a complex way, not yet understood, upon a number of variables
associated with the poling process. Optimization of this process to achieve
pyroelectric and piezoelectric activities that are both large and stable are
therefore entirely empirical at this time.

One of the major obstacles in the development of poling techniques has been
a strong tendency toward generalization based upon inadequate data. In particular,
the following statements have in the past been commonly accepted:

1) An elevated temperature during poling is essential for high activity.

2) Poling is virtually complete after about 30 minutes.

3) Because form II (q-phase) crystalites are not polar they therefore
cannot contribute to pyroelectric or piezoelectric activity.

4) ... breakdown of electroded samples occurs at room temperature before
fields high enough to pole the material can be reached."?

The “traditional” requirement of an elevated poling temperature has been
largely demolished by the success of corona poling.2*3 Early studies“~® of the |
effect.of poling time seemed to indicate a saturation of activity with time after
30 minutes or so, but Blevin7 has shown how activity continues to increase (at
100 MVm~!) over a long period, with faster poling rates at higher temperature.
X-ray studies® of corona poled PVDF have indicated that form II (a-phase) crystal-
ftes can be converted to a polar form, since the molecular chain does have a
dipole moment. That fully-electroded PVDF can be "conventionally" poled to high
activity at room temperature was first reported, to our knowledge, by Sharp and
Garn® who obtained 25 uCK~!m=2 with a field of 300 MVm~! (in 6-um biaxially oriented
PVOF with nichrome electrodes). A fuller exploration of the room temperature poling

of fully-electroded samples is reported here.
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PROCEDURES
Initial attempts to increase the pyroelectric and piezoelectric activity of
PVDF made apparent the importance of electrical breakdown as the limiting factor.

Flashover to the walls of a brass sample cell used for elevated temperature poling,

and large thermal inertia of the cell, were experimental difficulties which were
eliminated with room temperature poling, for which no cell was needed. Large
unelectroded margins of PVDF around the electrodes, to prevent edge flashovers,

and the use of grease or 0il over and around the electrodes, permitted very high
voltages to be applied, resulting in higher pyroelectric and piezoelectric activiyy

than was generally obtained by elevated temperature poling. Breakdown, however,

appeared erratic, making difficult the achievement of high activity in undamaged

samples. It became apparent that the breakdown at a given voltage depended on

the time of application of that voltage, so a study was made of time-to-breakdown

as a function of field.

. Circular electrodes, generally aluminum 106 nm (1000 R) thick and 37 mm in
diameter, were vacuum.deposited by evaporation onto 25 um (nominal) films of |
biaxially stretched (blow molded, as supplied) "capacitor grade" PVDF from Kureha
Chemical Co., Ltd.* A large "tab" extension of each electrode allowed tinfoil
leads to be attached with silver-filled rubber cement. Orientation of the tabs

180° apart kept them out of the field, so that self-healing of the electrodes 'f
by evaporationm of the aluminum during breakdown would not be inhibited by the |
attached leads.

A grounded guard ring, 136 mm inner diameter, was applied to the film around

one electrode in order ta intercept surface leakage. 'One-e1ectrode was connected
to ground via a combinationm current and charge meter (designed for this work to

have very Tow drift) which drove a dual-channel chart recorder,

*Tdentification of a commercial product is made only to facilitate experimental

reproducibility and does not imply endorsement by NBS.
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To avoid instantaneous sample breakdown initiated by external flashover, it be-
came necessary to immerse the samples in a light paraffin oil (Savbolt viscosity 125/135)
when poling at high fields. The samples were later cleaned with methanol.

Following the breakdown study, other samples were poled with a wide range of
fields for specific lengths of time using a microprocessor-type controller to
program the poling voltage source. As one second was the minimum ramp time for
this controller, the shortest ooling time used was ten seconds at the nominal
(constant) field. A different sample was used for each combination of poling time
and field. Pyroelectric specimens of 28 mm diameter were punched from the poled
samples and stored within folded tinfoil prior to their measurement between 7 and
14 days after poling. When breakdowns occured, they aimost invaribly took place
at the edges of the electrodes, except after many breakdowns (when damage pro-
gressed inward). The smaller diameter of the punched area, therefore, allcwed
the areas damaged by breakdown to be excluded from measurements. The pyroelectric
activity of the punched specimens was determined by measuring the (reversibls’
current resulting from ramping the sample temperature over a range of about *wo
kelvin at close to room temperature, as described by Broadhurst, et al.? A small
irreversible component of sample current was compensated for by measuring currents
for both increasing and decreasing temperatures and taking the difference between
these at the same temperature. The assumption that the small temperature cycle
did not alter the irreversible current was verified by comparing the pre-cycling
and post-cycling currents of several samples at the same steady temperature.

Previous to these measurements a number of samples, poled at room temperature
at 100 MVm=! and 200 MVm~!, had been measured for pyroelectric activity using the
same current amplifier and also using a low=-drift charge amplifier. These samples
were also measured® for hydrostatic piezoelectric activity in the same sample cell,
using the charge amplifier, with the cell temperature monitored to permit a

correction for pyroelectric charge.
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RESULTS
As time did not permit the measurement of piezoelectric activity for most
samples, it is useful to have a conversion factor between the pyroelectric

coefficient, Py> and hydrostatic piezoelectric coefficient, d,, for this partic-

p?
ular material, poled and measured at room temperature. As shown by figure 1,
the ratio of dp to py is quite consistent to within the precision of measurement.
The lower group of points represent samples poled at 100 Mvm~!, and the upper
group samples poled at 200 MVm~!, with poling times ranging from 50 seconds
to 3 hours. The average ratio of dp to py is 0.478 uKPa~!, with a sample standard
deviation of 0.0157. Dropping the single most deviant datum (which also represented
the Towest activity), the average ratio is 0.474 uKPa~!, with a sample standard
deviation of 0.0081. These ratios are in good agreement with the predicted value!
of 0.5 uKPa~!, It must be noted, however, that subsequent poling was done at
much higher fields. Virtually identical values of pyroelectric activipy were
obtained by measuring charge as by measuring current.

The breakdown data for aluminum-electroded samples is shown in figure 2;
most of the data fit a straight line with a slope of 100 MVm~! per time decade.
At the lowest field strengths there is an upward deviation, as would be expected,
but the testing was not continued to fields low enough to closely approach a
vertical asymptote (limit of time dependence). A common line seems to fit the
data for both air-poled and oil-poled samples, although the later appear toc have
a slightly longer time to breakdown at the same field. Above 420 MVm~! breakdown,
even under o0il, appeared to be instantaneous, probably occurring in most cases
before the nominal voltage was reached. Subsequent poling of other samoles for
fixed times shorter than the breakdown times of figure 2 resulted in some rapid

breakdowns at fields below 420 MVm~!, perhaps due to contamination of the oil

from previous breakdowns or from exposure of the oil to the air. Improved techniques,

such as 01l degassing, or the use of a more suitable type of oil, may extend

d
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the straight portion of figure 2 to higher fields or at least provide better
consistancy.

A number of samples with electrodes of metals other than aluminum were poled
to breakdown in air at 300 Mym~! ., The results are shown in figure 3, which is
an enlargement of the area outlined near the center of figqure 2, Four aluminum-
electroded samples were also poled to breakdown at this field, all of which,
including one poled in 0il, had unusually short breakdown times. There appears
to be too much scatter to generalize about these electrode differences with regard
to breakdown time. With regard to current during poling, however, the results
are more conclusive, as shown by figure 4. As the field was first applied there
was a large current which gradually dropped to an almost constant value, which
is plotted in Figure 4, before gradually rising monotonically until breakdown
occured. The currents at breakdown and at fixed intervals after applying the
field were also noted, but did not provide any more precise prediction of time
to breakdown than does figure 2. Comparing work-functions!? with the ordering
of metals in figure 4, the higher currents correspond to the larger work-functions,
except for gold which is badly out of sequence (but which does not bond well to
PVDF). Superimposed on the slowly varying current were small and very narrow
spikes, usually positive but frequently negative. The frequency (average spacing)
of these spikes was reduced when poling in 0il, so they are presumed to be associated
with corona from exposed leads; this has not been studied, however,

The pyroelectric activity as a function of field strength of samples poled
(generally) for times shorter than those of the curve in Figure 2 are shown in
figures 5 and 6, the latter using decibel notation (20 1og10py) of arbitrary
reference (0 d8: 1 uCK"!m"2) to provide a better indication of the significance
of activity di fferences. The decibel increments should be the same for piezo-
electric and pyroelectric activities. There is a discontinuity between data

for air-poled and oil-poled samples, probably as a result of a smaller temperature
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rise in 0il due to heating of the sample by the poling current. Considering

separately the data above and below this discontinuity, there appears to be no
abrupt saturation of activity with field in figure 5, although, as shown by
figure 6, the relative increase in activity due to poling above 250 Mvm~! is

only about 3 dB, and may not be large enough in many applications to compensate

E for the problems of poling at higher fields. The highest-field sample (550 Mvm=!)
experienced almost continuous breakdown, reducing the average poling field below i

the nominal value for most of the poling time; this may account for the relatively

small increase in activity relative to 500 MVm:! Breakdowns in other samples 1
were generally isolated and probably caused little deviation from nominal conditions,

especially for poling times of 100 seconds or more. The pyroelectric activity of

these same samples as a function of poling time is shown in figures 7 and 8, the

latter using decibel notétion. As with field, there appears to be no abruot j

saturation with time although at 100 MVm~! and above there is less than 1-dB

cnange in activity for each decade of poling time. At the highest fields, a

scarcity of data and possible errors due to breakdowns preclude generalization. gi
By interpolation and extrapolation from the (unsmoothed) activity dependence |
plots, constant activity values were derived and combined with the breakdown curve
(with exfrapo]ations) of figure 2 to produce figures 9 and 10. (Values derived
from extrapolations are connected by broken lines). Of significance here are the

intersections between the breakdown curve and the constant-activity curves. It is

readily apparent that the highest activity is obtained at the highest fields, even
though poling time may be severely limited by breakdown. The optimum poling

conditions and the maximum obtainable activity depend upon the highest field strength

that can be reached without an "instantaneous" breakdown and which, in turn, depends
upon the precautions taken to prevent external flashovers that seem to initiate ?

breakdowns. For the particular breakdown curve shown, with the "instantaneous"

breakdown 1imit a vertical line, optimum poling time would be about 100 seconds,
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since the small slope in the constant activity lines reduces the activity by a very
slight amount for shorter poling times along the (vertical) limiting portion of the
breakdown curve. For practical applications one may wish to avoid breakdown damage
by poling outside the breakdown region by a reasonable safety margin, Pyroelectric
activities approaching 30 uCK™!m=2 without breakdown appear to be possible. (In
oil, py > 30LK"Im~2 was actually obtained with 400 MVm-! for 10 s, and in air,

py > 29 uCK-!m=2 was obtained with 250 MVm~! for 10%s.) If breakdown damage can be
tolerated, as when damaged areas can be trimmed off, even higher activities are
possible. (py > 36 uCK-!m-2 was obtained with 550 MVm=! for 10 s, in o0il, although
damage was extensive, and Py > 35 uCK~!m=2 was obtained with 450 Mvm=! for 100s, in
0il, with only one small hole).

Theory predicts! a linear dependence of pyroelectric (and piezoelectric)
actﬁvity on remnant polarization. In figure 11, pyroelectric activity has been
plotted against the total irreversible poling charge, i.e., the net charge that
had passed through the external electrodes of the sample after the poling field
had been reduced to zero and after the current transient had disappeared. This
represents the remnant polarization plus the integral of the leakage current and
instrumentation (error) currents. For many samples, this charge was not determined
due to saturation of the first (current-to-voltage) stage of the current and charge
meter by transients during either turn-on or turn-off of the poling supply, or to
saturation of the integrator. When breakdowns occured, a correction was made for
charge lost (the usual case). Because of scaling problems and the need to avoid
overload, the accuracy of the poling charge measurement was frequently poor, even
neglecting error currents. It may be seen from figure 11, however, that the
activity of the samples poled at low-fields is reasonably oroportional to charge.
Notable exceptions include a 200 MVm~! sample where a poling time of 10“ seconds
may have allowed a sizable charge accumulation from error currents. The other

badly deviant samples were all poled at 300 MVm~! and above, and all experienced

3 o TN et




breakdown. Total current, however, was not visibly changed by breakdowns, following

recovery, and a correction was made for any charge disturbance, as has been mentioned.

Large error currents should result in a clear seraration of points by poling time (and

by field, for large leakage currents) but there is only slight evidence of such separation.

CONCLUSIONS

High pyroelectric and piezoelectric activity can be obtained with biaxially
stretched PVYDF by poling fully-electroded samples at room temgerature using a
sufficiently high field. Time-to-breakdown and constant-activity plots can be
used to optimize activity while avoiding or minimizing breakdown damage. Highest
activity at other poling temperatures and for other materials can be obtained
in similar fashion -- by determining the time and field dependence of both activity
and breakdown.

For the particul&r material investigated, poling at room temperature does
not yield a hard saturation of activity with either field or time, although there
is Tittle practical benefit in using either the highest fields or the longest
times. The lack of hard saturation may be due to the gradual alteration in crystal
packing of TGTG” polymer chains from antipolar form I[I (z-phase) to polar alignment,
as recently proposed? and perhaps at the highest field to a conversion the all-trans
polar form I (8 -phase).

There is no evidence that breakdown per se alters sample activity outside
the damaged area, but it does 1imit both the field and the poling time.

Although room temperature is particularly convenient for poling, and may
have commercial importance in the large-scale production of poled material or
in the fabrication of large "monolithic" transducer arrays, etc., higher activity
may be attainable at some other temperature, although it has yet to be demonstrated
that the improvement would be significant. A determination of the long-term
stability of activity as a function of poling conditions would probably be more

important than a small improvement in initial activity. Hicher activity might

.
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be obtained by the use of much shorter poling times, which may allow higher
fields to be applied. The large current nweded to rapidly charge and discharge
a sample of reasonable area, however, presents experimental difficulties. Finally,

the dependence of activity on electrode material needs to be better understood.
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. As in figure 9, but using pyroelectric activity expressed in

Determination of the ratio between hydrostatic piezoelectric activity
and pyroelectric activity for samples poled and measured at room
temperature.

Time to breakdown as a function of field strength.

Enlarged portion of figure 2 with added data for samples electroded

with various metals, as shown, and poled in air.

Minimum poling current density as a function of poling field.
Pyroelectric activity as a function of poling field with noling
time as a parameter.

As in figure 5, but with the pyroelectric activity expressed in
decibels.

Pyroelectric activity as a function of poling time (on a log scale)
with poling field as a parameter.

As in Figure 7, bqt with the pyroelectric activity expressed in
decibels.

Constant pyroelectric activity curves, taken from figures 5 and
7, and breakdown, taken from figure 2, as functions of ooling

field and poling time.

decibels taken from figures 6 and 8.

Pyroelectric activity as a function of ooling charge density.
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