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ABSTRACT

Experimental tables of availabilities at time t are
obtained for a device whose performance is described by an
alternating renewal process with a finite number of failure-
renewal cycles, corresponding to having a finite spares
backlog. Failure and repair rates are assumed to be constant,
and attention is restricted to cases in which the repair rate

is larger than the failure rate.
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I. INTRODUCTION

The most commonly encountered working definition of the

"availability" of a device,

MTTF
(1.1) Availability =

MTTF + MTTR

represents the long-term or steady-state probability that

the device will be found in an "up'" or functioning condition
when two specific conditions are satisfied. One conditiomn is
that there is an alternation of failure and repair cycles

in which times to failure and times to repair are independent
realizations from some failure and repair distributions
satisfying minimal regularity conditions. The second, and
here most important condition, is that the alternation of
failure and repair continues indefinitely, so that the
performance of the device is described by a standard alternating
renewal process. ‘

For many equipments, the second condition cited above
implies access to an infinite backlog of spares. In many
operational contexts this sort of spares support cannot be
realistically assumed.

If availability is considered to derive from an alter-
nating renewal process with a finite number of cycles,
corresponding to a finite backlog of spares, then expressions

for availability become complex as compared with equation (1.1).
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This thesis is devoted to computationél experiments with
some "finite spares" availability expressions. The end
objective of such experiments is to be able to determine the
circumstances in which equation (1.1) furnishes an adequate
approximation, or alternately to be able to provide compu-

tationally feasible alternatives to its use.




II. MATHEMATICAL MODEL

The mathematical model on which the usual expressions
for the availability of a device are based is an alternating
renewal process with an infinite number of failure-repair
cycles. In situations where repair requires replacement of
a failured device by a spare, this.corresponds to having an
infinite number of spares. The model studied here is modi-
fied to allow only a finite number of failure-repair cycles,
corresponding to having a finite number of spares.

The simplest assumptions about failure and repair times

are made; failure rates are constant, and repair rates are

constant. Only those processes that begin with a functioning

device installed are considered.
In greater detail, the failure-repair process considered

is as shown in figure 2.1,

-

g s. | ‘« | ‘end
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.Figure 2.1 Failure-repair process.
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where n is the number of spares, To is the time to failure
for the original device, Tl, TZ,......Tn are the times to
failure for the n spares, and SO’ Sl"""'sn-l are the
times to replace the original device and the first n-1 spares.
It is assumed that TO’ SO’ """Tn-l’ sn-l’ '1‘n are inde-
pendent random variables, and that To,......, Tn are
exponentially distributed with failure rate A, while
SO”“"'Sn-l are exponentially distributed with repair
rate n.

The availability at time t, An(t), of the original
device, supported by its backlog of n spares, is the
probability that the process shown in Figure 2.1 is in an

"up" condition at time t; i.e., that at time t either the

original device or one of its spares is installed and still

functioning.

The increment in availability at time t due to the
k™! spare, I (t) is defined by ;
(201) Ik(t) -~ Ak(t) b Ak‘lct) k o 1,00..--, n.

Before proceeding to a derivation of expressions for
In(t) and An(t) in a general case, two special cases are

considered; repair rate n equal to infinity, and repair

g

rate n equal to failure rate A. These are boundary cases

for the cases of likely practical interest, in which it is

reasonable to expect that repair rate will exceed failure

rate.
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In any case, Ao(t), availability at time t with no
spares is given by’
At

€2.2) Ag(t) = P[T, > t] = " Ne S P

In the following sections, it will be convenient to let

(2.3) Un '_To L AP RR Th*

'(So + To) ¥ vwevve P (sn + Tn).

A. REPAIR RATE EQUAL TO INFINITY

The simplest case is the one in which no time is required
to repair a failed unit, provided a spare unit is available.

In this case the contribution of the first spare is

t
2.4 I.(t) = P[T, > t-s|U, = s] £. (s)d
(2.4) 1UJ;[1 v, g ()4

where

SRR P

is the gamma {1,\} density. Thus

t
(2.5) , Il(t) .yf- e-k(t-s)kefxs &5
: 0
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and the availability of a system having one spare is

(2.6) Alct) = Ao(t) + Ilct)

- oot

(1 + At)

The contribution of the second spare is

t
(2.7) I,(t) s‘fﬁ P[T, > t-s|u, = s]ful(s) ds
0

where
A%se 9

T e 0

is the gamma {2,\} density. Thus

t Z -As
(2.8) I,(t) = e~ (t-s) l—?%zy- ds
0

- 0ryle At %T .

and the availability of a system having two spares is
At (at) 2
(2.9) Az(t) = @ (L + At + 'ZT'_)

Generally, the contribution of the nth spare is

10

3
§
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t
(2.10) I_(t) = PIT_ > t-s|U_ . = g]f..- (s} ds ,
n - ‘n n-1 Un 1

where

e PRt e s 20, |

is the gamma {n,\} density. Thus

t : -
(2.11) fptey = & S0 gEEl A
0 I'(n)

= (}\t)n e'At l_n! "

and the availability of a system having n spares is
-At (at) 2

(2.12) An(t) = e (1L + it = “yp— *+
Availabilities An(t) obtained from equation (2.12) are

shown in table 1. In this table n represents the number of

th

spares, and the contribution In(t) of the n spare can be

found by subtracting An_1(t) from An(t). The availabilities
shown in the last column are for an alternating renewal pro-
cess with an infinite number of failure-repair cycles. This

corresponds to having an infinite number of spares.

B. REPAIR RATE EQUAL TO FAILURE RATE |
The failure-repair process considered is that in which
failure times and repair times are exponentially distributed

with equal rates, i.e., A = n,

11
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In this case, the contribution of the first spare is
t
(2.13) I (%) ifﬂ P[T, > t-sIWO = s]fWO(s) ds ,
0

where
A2seAS

WY T 2

is the gamma {2,\} density. Thus

DL W b B A e A A MM A s

| S e G i
: (2.14) I, () = e _I.{.;T_. ds ~_
0
_ aZenMt 2
Ite & "

and the availability of a system having one spare is

AL(E) = Ag(t) * I (t)

2
. g NC (1 + L;%l_)

th

Generally, the contribution of the n" spare is

t
(2.158) T () ._/ﬂ P[T, > t-s|W__, = sfy 1(s) ds ,
0

n-

where N
AZnSZn-le-ks i

£ - +
wn-ICS) o) s >80, :




is the gamma {2n,A} density. Thus

t -AS
(2.16) I (t) =f oA (t-s) %'%“ZET (as)2m-1 4
0

t
5 Azne'ktf e g
(Zn-1)7
0 AR

z%n, J £

and the availability of a system having n spares is

2 2n
(2.1 A =e M SR e BB

C. REPAIR RATE GREATER THAN FAILURE RATE

The failure-repair process considered in this section
is visualized as one in which the repair rate is greater
than the failure rate. This influences the format in which
the results are displayed.

In this case, the contribution of the nth spare is

t
(2.18) I_(t) -f PIT, > t-s|W__, = s] fy
0

(s) ds ,
n-1

where

t
£, (s)=| £ (s) £ (t-s) ds ,
Wi f; v g Ve

n-1 n-

14
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% . n
£ n-1 _-ns
; £ (s)-r'%m.s Nen VAT T
n-1

§

is the gamma {n,n} density,

while -
: £ (t-s) = L (t_s)n-l -A(t-s) 2-3 > 0

Uy.1 &y ! Sl e
is the gamma {n,\} density. Thus

t s ,
(2.19) I () =f e'}‘(t's)f I"?;T ult-1lg-nu I‘%r%' (s-u)n'l
0 0

.o MES] 4 as .

Inverting the order of integration, equation (2.19)

becomes
t pt = 4

(2.20) I_(t) :‘jn‘/~ g hE8) T ult-lg-nu I%ET (s-u)?1
0vu

o o750} 45 &u

. e '1 (n-A) ; n-1 |
= e n gt tem N4 (s-u)® ' ds du .
{PCn)}z~]; ~[; 5

Let v=5s - u., Then

t t-u a
f (s--u)n'l ds -f Vol gy a (t—;u)—
0 0

16




Thus equation (2.20) reduces to
-At n“x“ 2 -1 n -(n-A)u
(2.21) In(t) = e W up (t-u) e du ’
0

and the availability of a system having n spares is

(2.22) A(t) = Ay(E) + K + I_(t)

Note than when n = A, equation (2.21) reduces to

equation (2./6), since then

: 2n 28
I(t) =e At PTE)\TTIFITf Pleeey)? qu
- 0

t
f l&n°]'(t:--l-l-)n du
0

t
'f () 2 e (1-v) }® edv
0

Let w = tv, Then

t
= tznf v l1-v)® av
0

- g rsnargn+12
n+
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III. APPROXIMATION OF THE MATHEMATICAL MODEL

In section II, we derived a mathematical model for

availability.

In this section, we discuss methods of approximation to

obtain numerical values of availability.

A. EXPONENTIAL EXPANSION APPROXIMATION

The integral in equation (2.21) can be approximated by

expanding its exponential term, i.e.,

2
(3.1) L) SRR ar e ﬁlé.’!‘.Luz Sy

Thus the integral becomes

t
2
(3.2) f utlgoy)n {1-(n-x)“««(—“§-}L RPN B
0

\ t
e (n-x)f P (e-d)® du
0

o e 0 00 00 000 00

We know that,

19
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n+

o :
n-1. .0 = ¢2n I'(n)T(n+l)
'Jr; u .(t U) du t —TTT__IT__

Thus equation (3.2) becomes

e-ktnnxn

2n I'(n)T'(n+1)
n)l (n+ {t #i%n+Ii

E 2n+1l I'(n+1)T(n+l)
(n-A)t T(Zn+7)

(3.3) In(t)

2,20%2 1 (ne2)T (n+1)
2! I'(Zn+3)

+ (n'l)

NETIPRUEEN, |

F'(n+l)
n+

e me)tan)t ()
n+

r(n) (ﬂt-lt)

. (nt-At)? r(n+2)
s - B o v

Computational experiments, with the approximation
represented by equation (3.3) have indicated unsatisfactory
convergence behavior when (nt-At) is large, a case of some

practical interest, and so this approach was not pursued.

B. SIMPSON'S RULE APPROXIMATION

The integral in equation (2.21) can be approximated by

using Simpson's rule.

20 b
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1
= th‘Iﬂ Vn-1(1_v)n e-(nt-kt)v iy .
0

Thus equation (2.21) becomes
1

n n % i
(3.5) I (t) = oAt %‘f J(1-p® e (MEADY 4

0

Now Simpson's rule can be applied to the integral in

equation (3.5) to obtain numerical values of availability.

Simpson's rule as applied is

b

h

(3.6)‘{‘ f(x)dx = g(yl+4y2+2y3+4y4+....+2ym_1+4ym+ym+l)
a

where
b-
e
and xl = a, x2 ® 8*R, cevevey Xm+1 = a+mh = b,
21
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-fX), DR )
while y; = £(X)), v, = £(X,




IV. TABLE

In this section experimental tables of availabilities
An(t) are shown, which were obtained from the mathematical
model evaluated using Simpson's rule, i.e., using equation (3.6)
to evaluate equation (3.5) with m = 500, xl = 0.0001 and
X501 =0.9999. The reason for choosing m = 500 is that compu-
tational experiments with choices of m greater than or equal
to 500 gave a stable and accurate result.

In these tables n represents the number of spares,

and the contribution of the nth

spare In(t) can be found by
subtracting An_lct) from An(t).

The availabilities shown in this section, Table 3-12,
are for cases in which nt > At. :

The availabilities shown in the last column are for an
alternating renewal process with an infinite number of failure-

repair cycles. This corresponds to having an infinite number

of spares.

Sl 4 05 s i T
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V. SUMMARY AND CONCLUSIONS

Certain computational approaches were tried for obtain-
ing availabilities for a device supported by only a finite
backlog of spares, using the simple assumptions that failure
and repair rates are constant. Real failure and repair distri-
butions may be more complex, but the case considered is a
good case for initial computational experiments.

QOf the two approaches tried, neither proved entirely
satisfactory in obtaining availabilities in a way that is
fast and suitable for use with small-scale computational
facilities, e.g.. hand-held calculators. Also neither was
effective. over ﬁhe entire range of failure rate and repair
rate combinations that might be of interest.

Since an easily used, readily accessible,way to assess
the impact of finite spares backlogs on availability is
desirable in many mission planning contexts, further computa-
tional approaches should be tried.

The tables presented in section IV give availability
values with which the result of such experiments can be

compared.
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