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Advances in fields of scientific endeavor are typically made in response to new

performance requirements. This certainly has been the case in the area of computational

plasticity where there have been increasing demands from government and industrial or-

ganizations for analytically determining accurate stress, strain, and displacement

fields in a wide range of complex structures subjected to severe environmental and

mechanical loading conditions. These considerations have been a motivating force be—

hind the development or general purpose programs for the plastic analysis of structures.

The “Decade of Progress” in computational plasticity is represented by the general

availability and acceptance of these multi—purpose computer programs for nonlinear

structural analysis. This achievement has been the direct result of advances in the

areas of structural mechanics and computer sciences. Specifically, the burgeoning de-

velopments in finite element methods, made possible by advances in computing hardware

and software , formed the foundation from which efficient and accurate algorithms for

• plastic analysis could be developed.

Several alternative algorithms have evolved and are currently being used in pro—

grams for plastic analysis. Each of these has computat ional advantages and liabilities

so that the analyst is presented with choices among acceptable procedures.

These procedures are reviewed to facilitate a rational selection among competing

procedures that best suit the needs of a particular problem class.

* HoffThan Maritime Consultants, Glen Head, N.Y. 1l51e2 (Formerly Associated with
Grui~~an Aerospace Corporation, Research Department , Bethpage , New York 11714)

• + Research Department , Grtm~man Aero spac e Cor poration , Bethpage , N.Y. 11711e
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The development of’ algorithms within the fr amework of finite element computational

techn iques for plastic analysis was accomplished independently from the development of

appropriate constitutive relations. Initially, only the simplest plasticity theories

were used. W i t h  the availability of a computational tool that could treat problems of

a more complex nature than previously practical (within constraints of computer time)

analysts could turn their attention towards the development of plasticity theories that

could more accurately predict the essential features of experimentally observed behavior

without the penalties of introducing unrealistic simplificatione.

Implicit in the development of any plasticity model are assumptions associated with

the behavior of the material . The number and degree of these assumptions effect the gen—

erality of the resulting model and its compatibility with actual material behavior. Some

assumptions generally employed are listed with a discussion of their implications . This

• is followed by a synoptic presentation of several models that incorporate these assumptions

or attempt to overcome their restrictions.

The models discussed have either been incorporated into available general purpose

plastic analysis programs or have been proposed for possible implementation.

ASSU~~T1ONS OF PLASTIC l~~1A’VIOR

— 1. The existC’nce of an initial yield condition defining the elastic limit of the

material in a multia.xlaI stress state. This assumption is most often used and represents

a mathenati~ al convenience that facilitates computational efficiency. Its applicability

varies with the material under consideration.

The two popular yield criteria for structural materials are those attributed to von

Mises and Tresca. The former implies that yielding begins at an arbitrary material point

whenever the combination of’ stresses is 8uch that the strain energy of distortion per

unit volume at the point is equal to the corresponding energy developed in a bar uniax-

tally stressed to the elastic limit.

• 
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The Tresca condition states that inelastic action at any point in a body begins only

• when the maximum shearing stress on some plane through the point reaches a value equal to

the maximum shearing stress in a tension specimen.

2. Th. existence of loading surfaces that define the limits of elastic and plastic

behavior beyond initial yielding —-- the response after initial yielding dirfers among

various plasticity theories. This post yielding response, called the hardening rule, is

described by specifying a subsequent yield surface, termed the “loading surface,” which

is a convenient mathematical idealization of some macroscopically observed behavior. The

• “consistency” condition requires that the stress state at any point remain on the loading

surface.

3. Plastic strain rates crc linearly related to their corresponding stress rates by

means of a flow rule (the basis of constitutive relations in the treatment of plasticity).

A flow rule that is generally used to describe elastic—ideally plastic behavior is the

Prandtl—Reuss relation, which is a generalization of the Levy—Mises equations. The

Prandtl-Reuss assumption is that the plastic strain increments, dci~
, is proportional to

the corresponding stress deviator, o~~, where the instantaneous non—negative value of the

constant of proportionality is left to the inventiveness of the user of these equations.

The concept of an effective stress or effective plastic strain (generally in terms of one

or a combination of their corresponding invarianta) is in itself an assumption that is

usually introduced to reduce the complexity of a multiaxial situation to one that can be

related to uniaxia.l behavior (I]. Thus, the proportionality parameter can be the ratio of

the effective plastic strain increment to the prevailing effective stress.

A more general approach to determining a flow rule is the use of’ the concept of’ a

plastic potential. The assumption is made that there exists a acalar function of stress,

say t (o~ 1
), from whtch the component of plastic strain increments may be determined (e.g.,

proport i onal to ~~~~~~~~ It f(o~~) represents the yield surface in stress space, then

the above assumption represents a result of Dr’ucker’s postulate [~~ ], which states that

3
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the work done by an external agency during a complete cycle of loading and unloading must

be non-negative. Furthermore, this assumption leads to an incremental, or associated

• linear flow theory of plasticity, in which the increment of plastic strain ( strain rate)

is in the direction of the outward normal to the surface represented by 
~~~~~~~ 

in stress

space, at the current value of stress. A strain rate vector deviating from the outward

normal to the yield surface in a direction independent of the stress rate vector consti-

tutes non—associated flow theoriee or plasticity. Non—associated flow theories are par-

ticularly suitable for work—softening materials and can reasonably fit the behavior ob-

served in some soils. Associated and non—associated flow theories are, in general , dis-

tinct from the deformation theory of plasticity, in which the total plastic strains are

related to the final stress etate. According to this latter theory, a relationship between

final states of stress and strain exists for any given loading process ——— unloading being
specified by a separate law.

l~. Materials are isotropic with respect to initial yielding -—— whether induced t~y
previous cold-working or as a result of an anisotropic distribution of crystals, most

structuxal materials exhibit some form of initial anisotropy. The von Mises and Tresca

cr i te r ia  assume i sotropy with respect to the orientation of the stresses and their sense

(tensile or compressive).

5. Plastic I ncompressibility — — — incompressibility assumptions are generally em—

ployed In most nonlinear structural analysis progr ams. Investigations of the influence

of hydrostatic pressure on the plastic response of metals have been considered by Bridgman

(3). Despite some evidence to the contrary ~~~ most investigations suggest that hydro-

static pressure has l i t t le  or no effect on the initial and subsequent behavior of metal s

under quasi-static loading rates. This has been most recently confirmed by Fung et ml.

[5 1.
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The use of plastic incompressibility requires treating a variable Poisson ratio,

i.e. an elastic value, and a value equal. to one—half in the plastic range. The impli-

cations of this are discussed in assumption 8.

The treatment of the plastic yielding of noumetals such as clay, ice , and concrete,

represents an area of investigation in which the effects of hydrostatic pressure are

significant. The plasticity theories employed for the treatment of these materials are

non—associated linear flow types.

6. Yielding and subsequent response are insensitive to rate of deformation — the

nature of the constitutive equations of plasticity for rate—sensitive material behavior

has been the subject of several notable investigations (see survey paper of [6) ) .  These

investigations have shown that limitB on dislocation velocity and rate of dislocation den-

sity for most structural materials are responsible for the generally observed fact that

plastic flow is retarded with increasing strain rate.

7. Elastic unloading and coincidence of yield and loading surfaces — this is an

Ideal ization of material, behavior, that impliee that unloading from some plastic stat e to

neighboring state results in a change in the elastic state only. Furthermore, implicit

in most analyses are the assumptions that additional plastic strains can occur only upon

reloading to a stress stat e beyond that of initial unloading and subsequent behavior

• (assuming no reverse yielding has occurred) is identical to that which would have been

obtained had unloading never occurred.

8. The total kinematic strain may be decomposed into elastic and plastic components

this assumption is employed in the linear flow theories of plasticity and is used in

developing many of the incremental constitutive equations. The assumption is mathematic-

ally convenient when used In conjunction with the concept of a well—defined yield surface

and is generally valid for small deformations. In addition, this assumption facilitates

• the use of a variable Poisson ratio when plastic incompressibility is employed.

• •.
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in addition to the above assumptions , most successful applications of classical smaLl

strain f low theories of plasticity have been generally limited to situations in which the

loading is monotonically increasing and the ratio of the various load components are held

~‘~‘nstan t (proportional loading). Applications of flow theory to problems involving severe

changes in stress ratio among the various components of stress, such as occurs during

p~.astic buckling , have been shown to be unconservative because the reduction in the in—plane

shear s t i ffness  is generaily underestimated. Hutchinson has discussed this problem exten—

sively in [7]. Deformation theory, on the other hand, has been shown to provide consis-

tently better correlation with results for bifurcation problems for plates and shells,

[
~~, ~~~ This situation illustrates a significant fact that, with few exceptions, appears

to have been overlooked in many experimental investigations. While the size, shape, and

definition of yield and subsequent loading surfaces are of considerable importance, equal

emphasis should be given to a proper description of the plastic hardening modulus under a

variety of conditions .

Cyclic loading situations involving reversed plastic flow during which the material

response may exhibit cyclic hardening or softening behavior falls into the category of

problems of general interest in which classical plasticity theories have met with limited

success. Applications of cyclic loading conditions to several problems ranging from

membrane stressed sheets to plates and shells have been presented in (10, II). In these

studies, ‘stabilized” material behavior was assumed.

Finally , most applications of plastic analysis have been limited to Isothermal condi—

tions. The influence of elevated temperatures on material response (elastic and In elast ic)

is generally treated within the framework of theories of viscous strain (creep). For a

great many problem areas, ranging from metal forming processes to the analysis of nuclear

reactor components, elevated stress and temperature levels of short duration must be tol-

erated. In these problems plastic strain development may be quite significant. Thus,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



non—isothermal plasticity theory is required . Furthermore, it is desirable that such a

theory include the effects of temperature on the ,, lastic , as well as the plastic proper—

ties of the materials.

14)DELS OF PLASTIC BEHAVIOR

The following is a brief description of some models for plastic behavior . Several

of these models have been developed within the framework of the assumptions mentioned;

others have been developed specifically to overcome one or more of the restrictions as-

sociated with these assumptions. The primary function of the models is to provide a set

of constjtutjve relations that can be used to describe the response history of nonlinearly

deforming media.

ISOTROPIC HARDENING

This theory, proposed by Hill [12] and Hodge [13), assumes that during plastic flow

the loading surface expands uniformly about the origin in stress space, maintaining the

same shape, center, and orientation as the yield surface. Figure 1 illustrates, on the

basis of a simplification to a two—dimensional plot, the yield and loading surfaces when

the stress state shifts from point 1 to 2. Unloading and subsequent reloading in the re—

verse direction will result in yielding at the stress state represented by point 3. The

path 2—3 will be elastic, and 0—2 is equal to 0—3.

Isotropic representation of work hardening does not account for the Bauschinger effect

exhibited by most structural materials. In fact, contrary to observat ions , this theory

implies that, because of work hardening, the material will exhibit an increase in the

• compressive yield stress equal to the increase in the tensile yield stress. Furthermore,

since plastic deformation is an anisotropic process, it cannot be expected that a theory

that predicts isotropy in the plastic range will lead to realistic results when complex

• loading paths, involving changes in direction of the stress vector in stress space (not

necessarily completely reversed), are considered.

_ _ _ _  ____ I, 
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SLIP T}(EORY

Utilizing the physical concept of  slip sur fac i in crystals, Batdorf and Budianaky

(it j have developed a theory that describes a loading surface that is distorted relative

t~’ the yield surface and previous loading surfaces. This theory predicts the formation

of corners at the instantaneous stress state on the loading surface during plastic deform-

ation. After some prestrain the yield locus is the minimum surface through the point of

prestrain and the Initial yield locus. A representation of the growth of the yield tune—

tion in going from a stress state at the origin 0 to the final state represented by point

3 Is given in Fig. 2. In this figure, the unshaded region is that enclosed by the yield

surface, and the various shaded regions indicate the stages (I, II and III) in the forma-

tion of the loading surfaces in going from stress state 0 to 3.

Since the stress state is almost always in a corner, the resulting constitutive rela-

tion between stresses and strains becomes quite complex. For this reason this theory is

rarely selected for application.

• , PIECEWISE LINEAR PLASTICITY

In thic representation , the yield surface consists of a finite number of plane surfaces

whose intersections constitute corners. The oldest and most widely used piecewise linear

yield surface is that associated with the Tresca yield condition. The loading surface is

assumed also to consist of plane surfaces, and the subsequent hardening behavior can be

classified as:

1. The hardening rule of independent plane loading surface --- one of the earliest
discussions of this representation of the hardening behavior is given in (15) and is illus-

trated in FIg. 3(A). As seen from this figure, in which and are the only nonzero

stress components, a loading path, 0-1—2, in any quadrant of the stress plane does not

affect the loading surface in the remaining quadrants. Thus, this hardening rule does

not take the Bauschinger effect into account.
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2. The hardening rule of interdependent loading surface --— this type of hardening

rule, originally proposed by Hodge (15), is a generalization of the hardening rule des—

cribed in the previous paragraph. By specifying a dependence between the planes that

- . compose the loading surface, a loading path intersecting any one plane of this surface

may effect changes in each of the remaining planes. As illustrated in Fig. 3(B), this J

hardening rule can be used to specify any piecewise linear loading surface and is capable •1
of taking the Bauschinger effect into account.

A special case of the interdependent loading surfaces is considered in (16). It is

assumed that plastic strain is due to slipping along three independent slip planes, along

any one of which the shear is a maximum. Piecewise linear stress—strain relations are

written in terms of coefficients representing the hardening behavior of the material.

These coefficients are functions of stress and are dependent upon a linear strain—harden-

ing rule employed in the analysis. By specifying the correspondence between various seg—

ments of the yield surface and the slip planes, total plastic strains for any loading are

computed as the sum of the contributions from the three independent sets of slip planes.

It is further assumed that the corresponding segments of the yield surface must maintain

a constant elastic range front positive to negative yielding. An illustration of the sub—

• sequent loading surfaces ietermined in this way is shown in Fig. 3(C). It is seen from

this figure that the Bauschinger effect can be taken into a-. ount.

• A comprehensive review of the piecewise linear strain—hardening theory of plasticity

[ is presented in (17].

KIN~ 4ATIC HARDENING

The hardening behavior postulated in this theory assumes that during plastic deforma-

tion the loading surface translates as a rigid body in stress space, maintaining the size,

shape , and orientation of the yield surface. The primary aim of this theory, due to

Prager (18, 193, is to provide a means of accounting for the Bauschinger effect.

L
C 
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For piecewise linear yield surfaces, kinematic hardening may be considered to be a

special case of the hardening rule of interdependent loading surfaces. However, it is

not limited to piecewise linear yield surfaces.

An illustration of kinematic hardening, as applied in conjunction with the von Misee •

yield curve in the C1, ~ plane, is provided in Fig. 14• The yield surface and loading

surface are shown in this figure for a shift of the stress state from point 1 to point 2.

The translation of the center of the yield surface is denoted by

As a consequence of assuming a rigid translation of the loading surface, kinematic

hardening predicts an ideal Bauschinger effect for completely reversed loading conditions.

A modification to this theory, proposed by Ziegler [20], eliminates inconsistencies that

arise when Prager’s original model is used in a subspace of stress.

Although originally devised to be used in conjunction with linear strain hardening

behavior, this model has been used for materials exhibiting nonlinear hardening [10, ii],

and has been further generalized to cyclic loading involving work—hardening and work-

• softening behavior [213.

A model of combined kinematic and isotropic hardening in which the subsequent loading

surfaces expand and translate is presented by Hodge (22].

MECHANICAL SUBLAYER AND FIELDS OF WORKHARDENING MODULI MODELS

A technique to model the arbitrary nonlinear mechanical behavior of a solid by means

of a parallel assemblage of elastic ideally plastic solids can be traced to Duvez [23],

with extensions by White (214) and Besseling [25). This modeling concept equates the in-

tegrated effect of a network of ideally plastic solids to the actual behavior. An exten—

sian of th!s isodel, proposed by Mroz (26, 27] to account for the work—hardening behavior

of metals under cyclic loading conditions, introduces the notion of a field of work—hard-

ening moduli and the variation of this field during the course of plastic deformation.

-



In this proposed model, a stress—s train curve of an initially isotropic material is

represented by n linear segment s of constant tangent plastic moduli, as shown in Fig . ~~.

In stress space, this approximation can be r.presented by n hypersurfaces t0, f1 ...,

where t
0 

is the initial yield surfaces, and t1 
to t5 define regions of constant work-

hardening moduli.

Figure 6 illustrates these hypersurfaces in the 
~~ 

0~, plane for an initially iso—

• tropic material. As seen in this figure, the surfaces 1’0~ 
fi • •~~ 

~
‘
n are similar and con—

• centric , and for simplicity are schematically represented by a family of circles. If we

consider porportiona.l loading in the 02 direction, 
corresponding to a in Fig. 6, and if

we assume that the surfaces can experience a rigid translation without experiencing a

• change of size or orientation, then when the stress state reaches point A on Fig. 6, the

( surface f0 
will translate until It reaches the circle f1 at the stress corresponding 

to

point B. The circles f0 and f1 translate together until point C is reached, where now

- f0, 
~1 

and t,,~ are attached at a common point of contact. For unloading and subsequent

reversed loading, when the stress reaches a point corresponding to point E (Fig. (~), re—

verse plastic flow occurs and the surface f0 
translates downward along the 0., axis until

- 
it reaches the surf~ce f 1 at F. Mi-az further proposes that the curve of reverse loading

in Fig . ~ join the curve OA’13’G that is obtained by symmetry with respect to the origin

[ • 
from OABC. Thus, the curve of reverse loading EFO is uniquely defined by- the curve of

• primary loading, represented by an equation of the form 0 f(e). If a new coordinate

system (a, ~ ), with origin at C is us~’d, we have for the curve CEFO, 0/2

This relation Is usually referred to as the Masing relation [28], end is a useful rule

for describing steady cyclic behavior.

In the generalization of this model to nonproportional loading, it is assumed that.

during translation of the hypersurfaces the individual surfaces do not intersa. but con-

( secutively contact and push each other. It should be noted that when f1 
tends to inf inity,

i •

Li 
Ii
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in which case the work-hardening modulus is constant (the work—hardening curve being

represented by- a straight line), the theory proposed by t’froz is identical to Prager’s

kinasatic hardening model.

The further generalization of the theory of work—hardening moduli is associated with

an expansion or contraction of the surfaces f0, f1 . . . ,  f~ so that transitory phenomena

(work—stiffening, work—softening, or non—isothermal conditions) can be treated. Thus,

the hypersurfaces are not constants but functions of a monotonically increasing scalar

parameter during plastic flow. One suggestion for the scalar is presented in [27].

TWO SURFACE THEORIES

Eisenberg and Phillips [29] presented an ear ly generalization of conv entional plas-

ticity theories to account for the phenomenon of noncoincident yield and reloading stress

states. To account for this behavior a two—surface plasticity theory ~as proposed involv—

ing a yield surface completely enclosed by a prescribed loading surface. The size of the

yield surface always remains unchanged. The loading surface on the other hand varies in

size , coinciding with the yield surface for elastic behavior and containi ng the stress

point for loading beyond initial yielding. During unloading the yield surface remains

unchanged and the loading surface shrinks to accommodate the stress stat e until it coin-

cides with the yield surface. Upon unloading and subsequent reloading the two surfaces

separate.

The incorporation of this behavior, should it be a significant factor for a material

under considerat ion, does not appear to pose any difficulties beyond those normally asso-

ciated with conventional theories.

A comprehensive and satisfying generalization of the concept of a two—surface plas—

• ticity theory was proposed by Dafalias and Popov [30]. In this theory the concept of a

bounding surface is introduced. This surface, always enclosing the yield and subsequent

loading surface in stress space, is used to model complex loading situations, including

• 12
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cyclic loading involving hardening and softening behavior. This work appears to have

• been motivated by the general observation of the noncoincidence of the yield and loading

stresses previously discussed. The approach to multiaxial loading as presented by Dafalias

and Popov is not tied to any hardening law and appears to be sufficiently general and

sound to warrant further examination.

A modification of Mroz’s fields of work—hardening moduli model has been recently

proposed by Krieg [31). This modification, similar to the model proposed by Dafalias

and Popow [30], replaces all but two of the discrete surfaces specified by a Mroz model

by a continuum of intermediate loading surfaces whose distribution is prescribed. The

two surfaces, are represented by an inner curve labelled by Krieg as the loading surface,

• and an outer curve, termed the limit surface. These two surfaces separate the material

behavior into three distinct zones: an elastic zone contained within the loading surface,

an asymptotic plastic zone outside the limit surface, and a so—called “metaelastic” zone be—

tvt~en the two surfaces. On the basis of a uniaxial stress—strain curve, these zones are

joined by a continuous function, generated for a variety of situations including reversed

loading. Both the loading and limit surface can vary according to a combined kinematic—

isotropic hardening behavior. The motion of the loading surface is identical to that

• assumed by Mroz. For the general multiaxial case the theory requires the retention of

three vectors and three scalars, a small increase over the two vectors required for kine-

matic hardening alone.

ANISOTROPIC THEORIES

One of the first treatments of the plastic flow of an initially anisotropic metal

was suggested by Hill [12]. In this theory an orthotropic yield criterion was assumed to

be quadratic in the stress components, and to reduce to the von Mises law when the degree

of anisotropy was small. In Cartesian coordinates the function, suggested by Hill, takes

the following form

13
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N~~a~o~ — 1 • 0 (1)

where the contracted tensor notation is used, i, j, k — 1, 2, . . .  6, and the parameter

Nij are constants related to the six yield stresses in the principal directions of aniso—

tropy. A consequence of this assumed function is an initial rotation of the von Mises

ellipse in the 01 — 02 space.

Similar anisotropic theories have been suggested by several investigators , most

notably Jackson, Smith and Lankford (32], Dorn [33] and Hu (31k]. Implicit in Hill’s

theory are the following assumptions:

Orthotropic anisotropy

The principal axes of anisotropy either coincide with the principal stress axes and

the principal strain axes or the transformation between the axes are known

The principal axes of anisotropy do not rotate during plastic flow

No distinction is made between tensile and compressive stresses

The anisotropic coefficients (Nij) remain unchanged during plastic flow.

A generalization of Hill’s equation for anisotropic plasticity-, and one that combines

isotropic and kinematic hardening is presented by Baltov and Savczuk (35). In compact

notation this theory assumes a yield condition in the following form

— N ij 
(o~ — ci

i
) — 1 — 0 (2)

Unlike previous investigations, the fourth order tensor of anisotropic coefficient,

is a prescribed function of the plastic strains, and hence changes during the course of

plastic flow. The kinematic hardening parameter, a1, is also a function of the plastic

strains. In a comparison of experimental results for combined tension and torsion it

was found that the proposed theory better suited the experimental data than the conven-

tional kinematic hardening theory.

_________ - 
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More recently, several investigations have been concerned with defining a strength

criterion for orthotropic materials with specific reference to advanced filamentary com-

posites. Generally , a criterion of this type is used to define a “failure surface” in

stress space. These failure surfaces may be useful for defining yield surfaces of ortho—

tropic metals. Notable among these proposed theories is the work of Tsai and Wu [36].

The basic assumption associated with this anisotropic strength criterion is a failure

surface in the following form

— N1a1 + N1~a1
a~ — 1 — 0 (3)

The parameters N1 and N 1~ are strength tensors of the second and fourth rank respectively

and are functions of an appropriate number of independent material strengths. The linear

term in the above equation can be used to account for the difference between tensile and

compressive induced “failure”.

RATE—SENSITIVE ~4)DELS

I - 
The survey paper of Lee [6] lists some 200 references associated with the investiga—

tion and application of dynamic plasticity. Various functional r epresentations and varying

degrees of complex ity have been proposed . Many of these are impractical for use, either

• because of their extreme complexity or because they have been simplified beyond the point

of usefulness.

• The most popular constitutive relation , suggested by Malvern (37], employs the con-

cept of a reference, or static, stress—strain function. The dynamic stress—strain behavior

if determined from the static curve in some prescribed manner as a function of the strain

rate. For uniaxial conditions this relation is in the following form

~~.-. _ i + ( ~) 1 i
m n ( 14)
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where n and D are material constants, and C are the static and dynamic yield stresses ,

respect ively , and ê is the strain rate.

A generalization of the above equation, as suggested by Perayna (38 ] ,  replaces the

uniaxial strain rate component by the tensor invariant of the plastic deformation rate

D~~.(ê~ 
.P )/2 (

Concepts associated with time-independent plastic models may be extended within the

framework of the above assumptions to treat rate—sensitive yielding. On this basis the

rate—dependent loading function may be written in the following form

~ 
½ f (D 

p½\lIfl l
r(a

ij ’ &~~~~ ) — 4— — 
[1 

+ \-~— J J ( 6)

where .J2 
is the second stress invariant, and It is the yield stress in shear.

Another aspect of rate sensitivity, in addition to its erfect on yield stress levels,

is the variation of the strain—hardening behavior of the material with varying levels of

strain rate. In conventional flow theories this dependence must be incorporated in the

plastic modulus which will now be a function of strain rate as well as stress level.

NON-ISOTHERMAL MODELS

A treatment of non—isothermal response of structures experiencing simultaneous changes

in load and temperature clearly requires a substantial modification of existing isothermal

procedures. Without consideration for irreversible thermodynamics and for the uncoupled,

quasi—static problem, the treatment of thermoplastic ity requires the elastic—plastic

constitutive equations to account for the influence of temperature on the elastic co-

efficients (primarily restricted to Young’s modulus), yi&d stress, plastic hardening

coefficient, and rate of thermal expansion.
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A theory of’ non—isothermal deformation of rigid , work hardening solids is presented

by Prager [39]. In this model a general constitutive law for plastic flow is developed

that is homogeneous of order one in the rates of temperature, stress , and strain. A yield

criterion is chosen to be a function of the state variables of stress, plastic strain,

degree of hardening and temperatures, i.e. f — f(0, / , h, T). The motivation for in—

cluding the degree of hardening (or hardening modulus) term , h, is to provide the material

with a “memory” of some previous plastic deformation that will affect subsequent behavior.

Conditions for loading, neutral loading and unloading from some plastic state are repre-

sented by the following conditions

> 0 loading

do + dT — 0 neutral loading (7 )

< 0 unloading

If the problem is discretized with respect to apace and some monotonically increasing

I - parameter that can be used to prescribe the applied mechanical and thermal history of load-

ing, then an incremental relation between plastic strain, stress and temperature can be

represented by the following linear relation

I i
— C1 ~o1 + ~~T (8)

1.
where the contracted tensor notation is used and C is the conventional plasticity compliance

matrix, modified to account for the effect of temperature on the hardening characteristics

of material; and ~ is a function of stress and accounts for the influence of temperature

varying yield stresses.

( Examples of the treatment of thermoplastic behavior formulated within the framework

of finite element methods is presented by Ueda and Yamakawa

L
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[141]. Problems in both geometric and material non.linearities are considered. The treat—

merit of changing elastic—plastic properties with temperature is of particular interest.

Accounting for varying material properties is a formidable computational problem since it

may lead to nonsymmetric stiffness influence coefficients. This situation is discussed

within the context of two general solution procedures presented in the next section, e.g.

the initial strain approach and the tangent modulus method.

MODELS WITHOUT A YIELD SURFACE

A theory that attempts to circumvent the ambiguities associated with defining a spe-

cific yield surface and prescribing hardening as the subsequent translation, expansion, or

distortion of that surface has been proposed by Valanis (142, 143). In his theory of plas-

ticity an intrinsic time parameter, independent of external clock time, is chosen to be a

• monotonicafly increasing function of deformation. One obtains the stress response by

monitoring this history of strain associated with this deformation.

From a physical viewpoint the theory has many advantages. Phenomen a such as cross—

hardening, noncoincident yield and loading points and cyclic hardening are capable of being

described. On the other hand, the absence of a yield surface does not facilitate the com-

putational effort in a general purpose discrete model analysis. In fact, it may introduce

additional effort.

IDEALLY PLASTIC BENAVIOR

The plasticity models discussed thus far are used to describe the hardening behavior

of materials subsequent to initial yielding. They attempt to describe the process of hard-

ening graphically as an expansion, translation, distortion, etc., of the initial yield sur-

face. For the case of elastic—ideally plastic behavior the yield surface is assumed to re-

main unchanged . In [11], the treatment of muitiax ial ideally plastic behavior requires

that the stress increment vector be tangent to the yield surface and the plastic strain

18
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increment vector be normal to the loading surface. Th. conditions on the stress rate is

the consistency condition ensuri ng the stre ss state to remain on the yttid surface. This

condition provides a linear relationship among the various components of stress rate. The

condition on the strain rate provides a linear relation among the various components of

plastic strain rates. The combination of independent increments of stress and plastic

strain are subsequently determined as a function of the incrsemnt of total strain as out—

lined in [ill .

REVIEW OF STATIC SOWTION PROCEDURES

In the following it is assumed that the reader is sufficiently familiar with the

derivation of the necessary components of elastic stiffness influence coefficients, form-

ulated within the framework of the displacement method of finite element analysis. The

matrix equation relating generalized displacements and loads may be written in the follow-

ing matrix notation

K u - P  (9)

where K is the matrix of conventior’al elastic stiffness influence coeff icients, u is the

vector of generalized displacements and P is the vector of generalized loads

• Basically, the procedure used to solve the small displacement plasticity problem may

be divide d into two categories: in one the effects of plasticity are accounted for directly

in the stiffness influence coefficients; the second treats plasticity as an effective load

that is used in conj unction with the applied wechanical and thermal loads for general equil—

ibrium. The latter is referred to as the residual force or initial strain method, and the

former is termed the tangent modulus method. A derivation of their corresponding equations

from virtual work principal s , the relationship between the appr oache s , end a discussion of

several variations are presented in h O], (11] end (lêlê].
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I ~The governing equation associated with esab technique is customarily written in incre-

mental form. The tangent modulus procedure, for example , uses the following form

K.r iu dP (10)

where the prefix notation t~ denotes the rate of change of the parameter following it with

respect to any monotonically increasing function of t ime , end K,~ represents the matrix of

elastic-plastic stiffness influence coefficients. The plasticity model chosen for use is

explicitly contained in K,~.

The residual force method uses the following matrix relation

K~u - a~ + (ii)

where the vector ~Q is the plastic residual load vector . For the initial strain approach

~Q is the product of the initial strain matrix and the increments of plastic strain ; AQ

K*~e~ . For the initial stress approach , ~~Q is the product of the initial stress matrix and

the increments of plastic strain. The plasticity model explicitly enters the analysis

through the calculation of the increment in plastic strain.

It should be mentioned that the treatment of ideally plastic behavior may be incorpor-

ated in the tangent modulus method or both approaches associated with the residual force

method.

The most obvious way of solving either set of equations for a complete history of

response is a forward Euler integration sc heme in which the applied load history is divided

into incremental load steps. Assuming the solution is known at some arbitrary step i, we

desire the solution for the increment of displacement associated with the applied increment

of load. The displacement solution is used to obtai n total strain increments ( from kinematic
I
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considerations). Using the elastic and plastic constitutive equations and the assumption

that allows the decomposition of the total strain into elastic and plastic components , we

can determine increments of plastic strain and stress. This information is used as a basis

for going on to the next step, and the process is repeated until the desired history has

been obtained. Thus, the solution to the nonlinear response is obtained as a sequence of

linear solutions In which the set of stiffness influence coefficients are modified by a

residual force to maintain equilibrium.

The advantages associated with each procedure are contained in the following synopsis:

o The tangent modulus method permits the use of larger load increments than the

residual force method because no approximation need be made for the current

increment of plastic strain. Step size is thus limited by the approximations

inherent in the assumptions of flow theory of plasticity.

o The residual force method retains the same set of elastic stiffness coefficients

throughout the analysis so that calculations associated with forming the stiff-

ness matrix and solving the governing equations need be performed only once.

Furthermore, this method may be used for the analysis of materials that exhibit

strain—softening behavior for materials that require a non—associative flow

rule to develop their plastic constitutive relations , and for non—isothermal

plasticity problems where the material compliances vary with temperature. In

each of these latter situations use of the tangent modulus approach results in

a nonsymmetric stiffness matrix that is generally costlier to deal with than the

symmetric case.

The disadvantages associated with each procedure are the mirror images of the above

advantages; namely:

o The tangent modulus method requires a successive reformulation and redecom—

position of the stiffness coefficient matrix, K.~. For optimum computational

efficiency this set of coefficients should be positive definite, thus pre-

cluding matertain that exhibit strain softening, or have non—associative flow

rules , or consider plastic material properties that vary with temperature.

t .  21
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o To maintain stability and accuracy, the residual force method requires small

load steps to be used in the successive linearization procedure, primarily

because a predicted value of the plastic strain increments is used in Eq. (11).

The size of the load increment is an obvious quantity that is commonly usec .5 a

basis of comparison between competing successive linearization schemes. However, it is

not and should not be construed as the overriding factor. For example, it is generally

recognized that in using the tangent modulus approach greater load increments than those

required for a comparable solution using the residual force method are possible. On the

surface, this would represent a strong argument favoring the former. It is the experience

of this writer , however , that the ratio of computational times required for a full decom—

position and subsequent solution (as required in the tangent modulus approach) to the

time required to obtain the solution alone (as in the residual force method) can be great

enough to offset the gains associated with the larger load increment . The question of

which approach is more cost—effective is now not quite so clear.

With either approach we can expect the successive linearization procedure to drift from

a true equilibrium position for the nonlinear response. This drifting is a combined result

of truncation , the successive linearization procedure and the fact that information not yet

available is required for a true solution. In the case of the tangent modulus method , this

information is necessary to form the updated stiffness coefficients K~ ; for the residual

force method , the value of the plastic strain increment is required to form t~Q. Several

techniques (iterative and non—iterative) can be applied to reduce the amount of drifting to

tolerable levels. Many of these techniques are reviewed by Tillerson (1~5]. With respect

to both the tangent modulus and residual force method the simplest corrective procedure

involves the introduction of an equilibrium correction term that may be added as a load

vector at regular intervals (not necessarily each step) in the incremental procedure.

The equilibrium correct ion term at the ith step is represented by R1 in the following

for the tangent modulus approach

(12)
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where f1 represents the internal forces at the start of the step. For the residual force

method

Ri =Kui _ P i _ Q i (13)

which can be shown to be

• Ri = K5 (~e
1 

— ~e
i_1) ( 114)

p p

If the system is in equilibrium at the ith step R~ is a null vector. Otherwise, it must

be added to the incremental equation at the j  + 1 step. This procedure represents a one—

st ep iteration. It can also be used in an iterative manner within a load step until the

correction term converges to a predetermined small value.

Several other techniques have been suggested and successfully incorporated to improve

the accuracy associated with an incremental Euler integration scheme for the static plastic

analysis of structures. These procedures are siitm~~rized in the following:

1. The use of mid—increment correction procedures: This technique used by Felippa

[146] in conjunction with the tangent modulus method to solve problems of combined geometric

and material nonlinearity requires the solution of two sets of equations wit’~iin a single

load step. Half the incremental load is applied and the solution used to evaluate the

tangent modulus coefficients at that mid—increment. The problem is then resolved using the

entire increment of load and the mid—increment tangent modulus. A two—stage iterative pro—

cess that allows larger load increments to be used in conjunction with the residual force

method is described by Vos [147]. This procedur e involves employing an iterative solution

to the problem at the beginning of the increment , assuming a fixed normal to the yield sur-

face , and then re—evaluating the normal at the midpoint of the plastic increment.

2. Stress st’aling to ensure consistency: It is possible that the successive linear-

ization procedure results in a situation where at the end of an increment of load the stress

state of an element may lie outside the yield surface. Stricklin, et al. [148] have shown

23
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that stress scaling back to the yield surface to ensure consistency, and subsequent ly di.—

tributing the unbalanced nodal forces during the next load increment is a computationally

efficient procedure.

3. The successive implementation of the constitutive relations on a subincrmnental

basis within each load step [149]: This allows for a larger load step to be used to eval-

uate displacements and total strain. These are then divided into a number of smaller in-

crements thnt are used with the coristitutive relations. Subincrenentation is of particular

importance when using the tangent modulus method where it is imperative to limit the number

of complete solutions to the governing equations without violati ng the plasticity theo ry.

14 . The use of multipoint stress locations: The use of multiple points within an ele-

ment for stress (or strain) evaluation assumes an important role in an elastic—plastic anal-

ysis. Since the constitutive relations are imposed at each of these points, the plastic

strain variation and hence the elastic—plastic boundary within an element is dependent on

the number and location of the stress points, the user in effect is modeling for the anti-

cipated plastic response.

This is a particularly useful notion when using the residual force method since the

finite element model can be formulated based on the necessary accuracy required to obtain

the displacement field and the definitions of the number and location of the stress points

determines the effective load vector . This procedure was followed for a three—dimensional

isoparametric hexahed.ra element by Levy et al. [50 ) for several elastic and elastic—plastic

problems. The cost—effectiveness of the procedure is not as clear when applied to the

tangent modulus method since the number and location of the stress points are an integral

part of the evaluation of the stiffness matrix.

5. The use of substructuring techniques: The objective of substructuring procedures,

or static condensation, is to reduce computational costs and improve the accuracy associated

with a nonlinear analysis by eliminating a substantial amount of computations. The method

is particularly well suited to the initial strain method for treating problems of contained

I
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1.
- plastic flow, and where the regions of pure elastic behavior and elastic—plastic behavior

can be distinguished and estimated with a high level of confidence. In this case, since

the stiffness matrix is not updated, a reduced matr ix obtained by stat ic condensat ion is

initially t’ormed and then used throughout the plastic analysis. Another associated saving

is obtained by recovering stresses and strains only in elements in the reduced set. The

substructuring technique can also be used with additional effort and complexity with the

tangent stiffness method [51]. A study of substructuring as applied to three particular

- 
problems involving small contained regions of plastic flow in which the residual force

method is used is presented in [52]. The results of this study may be summarized by stat—

• ing that a reduction of an order of magnitude in computing time requirements may be real—

ized per incremental step by incorporating a substructuring option.

I - 

Finally, the accuracy and efficiency of any solution to a nonlinear structural analysis

problem depends upon a number of other factors , not the least of which is the user ’s exper—

ience in setting the finite element idealization with respect to size, arrangement, and

type of elements used. These factors have been discussed by Waltz et al. L53 1  and Trueke

1 [514] for linear elastic systems and are equally applicable, if not more critical for elastic—

• plastic analyses.

o . NONLINEA R DYNAMI CS

A prerequisite to developing a successful nonlinear dynamic analysis capability is a

sound knowledge of’ the options and pitfalls associated with nonlinear static analysis.

Many of the comments concerning efficiency and accuracy discussed in connection with static

analyses are directly applicable to nonlinear- dynamics. The additional ingredients are the

inclusion of an inertia term to the governing equations and the introduction of a time in—

tegration scheme to solve the equations of motion. Much attention [55— 63] has been given

to the develoilnent and evaluation of discrete methods to numerically integrate the equations

of motion. Little will be added here to the technical content of these references , rather

we will outl ine the various options and pitfalls that exiet  with respect to nonl inear dynam ic

ana lysis and make some summary and experience based comments.
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At the outset it should be stated that a significant factor effecting time step size

for a dynamic plastic analysis is the plasticity theory. That is, the time step must be

such that the assumptions intrinsic to the plasticity theory are not violated. This is in

contrast to linear dynamic analysis for which step size is controlled entirely by numerical

stability and accuracy considerations.

Basically the procedures used to solve the equations of motion of both linear and non-

linear dynamic analysis are divided into two categories, direct time integration and modal

superposition . Some of the distinctions of the two methods are discussed below.

DIRECT INTEGRATION PROCEDURES

The coupled equations of motion for an undamped discrete system can be written as

MAii + t~f • tiP + R ( 15)

where M is the mass matrix , ~t, taP the incremental internal and external force vectors, re-

spectively, and R the residual load vector. Indices are omitted from Eq. (15) but it is

implied that the equation is written for the i + 1 increment, i.e., in passing from t~ to

t~ + ~~
. The two unknowns in Eq. (15) are the incremental vector of’ internal forces ~f, and

the incremental acceleration vector, tau. The mass matrix may be formulated on the basis of

a “consistent” or lumped mass approach. The distinction between the two being whether the

mass is represented by means of finite element interpolating functions or is directly dis—

cretized by lumping components at nodes. The former approach leads to a banded matrix

while the latter leads to a diagonal matrix. Which approach to use depends on the integra-

tion scheme employed in the analysis [614]. Two approaches to the solution of Eq. (15) can

be taken each effecting the form of the equation to be solved in a sequence of time steps.

In the first type, referred to as explicit, At’ is obtained entirely from previous informa-

tion so that elements of the mass matrix are the only coefficients of the unknowns (acceler-

ations or displacements). In the second type, termed implicit, combinations of the mass
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and stiffness matrices are combined to form coefficients of the unknowns . The choice of

• which method to use is clearer for linear problems than for nonlinear ones, with implicit

methods overwhelmingly used for structural dynamics and explicit methods for problems,

where high frequency response is significant, as in the treatment of wave propagation

effects.

Explicit integrators are generally conditionally stable [55] with the critical time

step inversely proportional to the highest frequency in the discrete model. Implicit inte—

grators are generally unconditionally stable and tend to filter out the higher frequency

response. This allows for larger time steps, the choice of which is controlled by the

modes necessary to predict the essential features of the response. For linear problems

using a constant time step, both methods lead to coefficient matrices that are constant

through the entire response spectrum.

The complicating factor for nonlinear problems is a consequence of the change in

stiffness due to plasticity. The operational choices on which method to use in this case

are not unlike the choices between using the tangent modulus or initial strain approaches

• for static nonlinear problems since they involve trade—of fs between smaller less “costly”

time steps for explicit integration versus larger but relatively more “costly” time steps

for implicit integration. Reference to the term “costly” here is related to the degree of

complexity and magnitude of subsidiary computations during each time step. Some of the

distinctions of the two methods are outlined below.

Explicit Integrator

The explicit formulation solves Eq. (15) directly as

MA~i = t a P — t af + R  (16)

with Af obtained from past information . For example, if Af • K~àu , then using the central

difference operator Au 2Aui 
— Au

1 1  + At Au1. Quantities without indices imply the
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+ increment. There is small distinction between the tangent stiffness and initial

strain approaches for explicit integration since Af — K,~Au for the tangent stiffness method

and Af  = KAu + AQ for the initial strain approach. In either case the end result is a re—

siduaJ. internal load vector. Further, the implication is that the operations are performed

on the element level, rather than performing operations on the larger global system. Since ,

as stated above the equations of motion require only the incremental vector of internal

forces, the notion of a stiffness matrix can be discarded altogether (as suggested by

Bely-tchko [ 6 5 ) ) ,  with Af obtained directly from an integral involving stress and the matrix

that maps displacement to strains. In either case calculations involve successive solutions

to Eq. (16) with incremental alterations to the right hand side. This becomes a simple

procedure with a diagonal mass matrix since the operation involves simple division. With

a consistent mass matrix an initial factorization can be performed so that subsequent solu-

tions require only a forward and back substitution of banded triangular matrices. In pas-

sing , we remark that Kreig and Key [ 6 14 ) indicate that there is an improvement in accuracy

when the lumped mass approach is used with an explicit integrator because the errors in the

discrete system caused by this combination tend to be counterbalancing. Because of the

ease in obtaining solutions to Eq. (16), the computation time for an explicit method becomes

strongly dependent on the element level stress/strain recovery ~nd the formation of Ar.

Computer costs are therefore directly tied to the number of elements in the discrete model

and the number of time steps necessary in the analysis. This leads to the major drawback

of explicit methods, namely that more refined models have an increased frequency spectrum,

which for numerical stability require a smaller time step. Consequently, there is a com-

plementary effect caused by a larger set of elements in combination with smaller time

steps. Because of this situation a break—even point occurs when the economics of simpler

calculations are overridden by the requirement of ever smaller time steps.

The most popular explicit technique currently in use is the constant step central dif-

ference operator [55]. It has been our preference, however, to use a variable time step

28

~~~~~~~ 
.. L__. ~~~~~~ 

--—~~ - -~~ - -~- - - - -~~— - -~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ _ _  
-

Modified Adams Predictor—Corrector method [66 ] that is explicit in the predictor and implicit

in the corrector solutions . The advantage of this method is that the time step is automa-

tically chosen to reflect current system stiffness and dynamic response. Our experience

has been that this method automatically choses time steps near those required by the central

difference method.

Use of an explicit integrator fits naturally into a nonlinear analysis since there are

very little additional calculations required compared to a linear analysis. The smaller

time steps are consistent with the initial premise that the assumptions of plasticity

theory are not to be violated. However, as the frequency spectrum increases, stability

requirements cause the critical time step to be reduced so that ultimately the method be-

comes uneconomical. We conclude this discussion with a direction for future research that

leads to an explicit integrator capable of f iltering out higher frequency response while

maintaining the desired accuracy in the lower frequency regime.

Implicit Integrator

The implicit formulation is based on difference operators that contain both the cur—

rently un known acceleration and displacement. When an operator of this form is substituted

into Eq. (15) this yields

j ~
A u = t a P + Q

d
+ R  (17)

where R + ‘
~~~t~~ ~d 

is a dynamic load vector that involves products of the mass matrix

and vectors of known quantities such as displacements, velocities, and accelerat ions , and

At and L~ are the time step and a parameter arising from the particular integrator used ,

respectively.

Unlike an explicit integrator there is a distinction between the tangent modulus and

initial strain approaches when using an implicit integrator. This distinction is in the

i :



same sense as that existing for static problems. That is, the effect of plasticity can

enter directly into the s t i ffness  matrix and thereby the coefficient matrix, ~, or it can

appear as an effective load vector. Equation (1.7) represents the tangent stiffness approach

since the coefficient matrix explicitly contains the tangent stiffness matrix KT. In this

case the matrix R must be reassembled and a complete solution obtained in each time step.

As the mesh size increases this becomes increasingly expensive and ultimately dominates

the calculations.

Using the initial strain approach leads to

( 18)

where K + ~~~~ K is the elastic stiffness matrix, end AQ is the plastic pseudoload

vector. If a constant time step approach is used the coefficient matrix remains constant

so that subsequent solutions require only forward and back substitutions of triangular

matrices. This procedure is competitive with an explicit technique since after the

F first step, computations involve only solutions of’ the factored coefficient matrix, the

ft-rmii~ i~ ii ~~t’ the dynain~ c load vector and the formation of AQ . It must be noted that

the time step used in this procedure must be controlled by the linearization implicit in

using estimated values of plastic strain increments, rather than accuracy consideration

defined entirely by the integrator.

An inner loop iterative procedure can be developed on the basis of Eqs. (3,7) or (16).

Iterations are performed until the structure is in equilibrium to within some predetermined

tolerance. This tolerance can be based on a measure of the change of displacement m ere-

ment [6(J or on the work done by the residual load vector [63), In either ease, if the

procedure does not converge within a prescribed number of iterations the time step is re-

duced. Thus, the iterations can define a variable time step approach in which the criterion
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for reducing the time step is based on the system nonlinearities. It is our opinion that

accuracy checks should also be included based on the current system dynamics in the same

manner as used in predictor—corrector methods. This has been suggested in [59 1 but to
our knowledge has not been implemented and tested in a general purpose program.

There are currently a number of implicit operators that are frequently used for

structural analysis. Among these are the Newmark—8 fami ly [67) ,  Wilson—O [ 68 ] , Houbolt

[69 ] and the more recently developed stiffly stable methods by Park [70). No one method

at this point seems to have been accepted as the “best” one for all problems.

SPECIAL CONSIDERATIONS

One of the distinguishing features of many practical problems associated with plastic

analyses is that the nonlinearities can be contained in localized regions. Because of

this, substructuring in a number of forms can be an important factor in reducing com—

putationa.l costs. The most straightforward approach is to simply use a Ouyan [71) re-

duction technique to reduce the number of degrees of freedom in the entire model, partic—

ularly in the elastic region and then to recover tresses end strains only in the limited

region where plastic flow is postulated. Mixed methods [72 , 73) are also used, where modal

techniques are utilized in some well defined lastic region with direct integration used in

the plastic region. Other methods are currently being developed [714—77) for use in mixed

media problems such as fluid structure interaction and hold promise for dynamic plastic

analysis. Hughes [ 71e ] has demonstrated a mixed implicit—explicit method with a predictor

corrector explicit operator and a Newmark family implicit integrator. Within our context

this method may be useful for elastic—plastic dynamic analysis with the implicit in—

tegrator used in the elastic region and the explicit used in the elastic—plastic region.

Other techniques that allow different time steps in different regions [75, 76 , 77], warrant

investigation since simple explicit integration with time steps consistent with the path

dependence attributes of plasticity theory could be combined with larger time step implicit

integration in a larger elastic region.
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~4)DAL t€THODS

Modal superposition for linear elastic systems requires the equations of motion to be -

transformed into an uncoupled form in which only a portion of the eigenvalues and eigen—

vectors are retained. To reduce computational costs this transformation may be preceded

by a condensation procedure that eliminates a prescribed set of degrees of freedom. One

of two procedures is usually employed to eliminate the unwanted information; the first is

the Ouyan reduction scheme [71], and the second procedure is a static (zero mass) conden-

sation method. Both procedures result in an approximate representation of the mass and

stiffness characteristics of the discrete model. As in the case of substructuring in a

static analysis, care must be taken to avoid eliminating regions where plasticity may

develop. The effects of plasticity may be treated within the framework of the tangent

modulus or residual force method.

The use of modal superposition for nonlinear problems appears, at first glance, to

violate the well—known fact that superposition principles are not applicable to nonlinear

systems. However, nonlinear dynamic analysis by modal superposition requires some addi-

tional considerations. When used in conjunction with the tangent modulus method the pro-

cedure requires that subsequent modes, developed beyond those associated with the elastic

state, be obtained during regular intervals of’ the load—time history. Nickell (781 has

discussed this procedure for the case of combined geometric and material nonlinearities.

Although Nickell ’s formulation is sufficiently general for combined plasticity and large

deflection , examples involving only geometric nonlinearities are considered in [78]. The

subsequent modal spectrum for nonlinear states is determined by an iterative procedure,

using the most recently determined spectrum as an initial estimate. A direct time m t.-.
gration scheme is then employed to solve the reduced set of uncoupled equations.

The use of a modal method in conjunction with the residual force approach does not

appear to have been given much consideration. On the surface it appears particularly at-

tractive since a single set of modes (based on the elastic behavior) could be used through—
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out the analysis. Only the residual force due to plasticity would have to be transformed

I . in each time step.

CLOSING CO~~~NTS

The computational capability available for the plastic analysis of structures has

- experienced a tremendous growth during the past decade. Indeed, the level of structural

analysis capability that has been achieved has at times outstripped our ability to describe

accurately complex material behavior such as cyclic , time, and temperature dependent plas-.

- 
- 

ticity. Prior to the development of the programs now available, the designer or analyst

confronted with a problem involving material nonlinearities was left with a choice of

- using his engineering judgment alone or in conjunction with potentially expensive labora—

• tory tests. He now has the further option of performing numerical analysis to gain insight

into the behavior of the structure.
- 

Most nonlinear analysis programs, with the exception of a few, have been developed

as a spin—off of existing programs that were originally designed for linear structural

analysis. Although this development is a natural one, this added dimension of generality

has placed great responsibilities on the user of such programs. Perhaps the greatest asset

of these programs, i.e., the ir abi lity to solve sophisticated problems also represents a

* potential liability , I.e., they always produce numbers. The user must still exercise en-

gineering judgment in order to interpret the results meaningfully. Hopefully, the analytic
- 

results will confirm these feelings and provide him with additional insight . However, he

now has the luxury of having his intuition fail him without suffering the consequences of

• 
a catastrophic failure or an overdesigned system.

For the analyst and researcher of fundamental structural and material phenomena , the

combination of advanced numerical analysis procedures and the appropriate modeling of plas—

ticity will continue to be used to gain insight into the significance of some of the many

factors associated with plastic deformation. A perusal through the preceedings of a sym-

posium dedicated to the numerical modeling of manufacturing processes [ 19 ] and (80] should

I .
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provide the reader with an appreciation of the application of some of the models and pro-

cedures discussed here. These models have contributed significantly toward the realistic

treatment of such problems as welding and metal forming .
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Fig. 2 Slip theory hardening.
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Fig. .3 Piecewise linear hardening (a) Independent loading sur faces
• (b) independ ent loading surfaces (c) Special case of (b) .

LI 43

_ _ _ _ _

L - - - -~~~~~~~~~~~~ . -—-~~—--~~~~~~~~~~~~~~~~~ -_



- 
~
-.— -

~~
--

~~~~
- - -—-

~~~~
-—---- -. - —- -- - - —

Fig. 4 Kinematic hardening.

j
414

~~~~~~~ 
- -- -—--—-—- -

~~~

--

~~~

- .  - - - . — -.— —



- • -- ~~ - -
~~ — --  

~~~~~~~~~~~~~ — -~~~~~~~-- --~~~~~~~~~- —~ -

B 
~

Fig. 5 Representat ion typical cyclic stress—strain
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curve by tangen t moduli.
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Fig. 6 Representation of hypersur facea for
mechanical sublayer model and Mroz model.
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