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I. Introduction

Most approaches (Mott, Davis and Street (1975) , Street and Mott

$ 
~ (1975) , Kastner, Adler and Fritzsche (1976), Kastner and Fritzsche (1978))

I employed in understanding the electronic properties of amorphous semi—

• conductors focus on specific electronically active defects. The

corresponding states are localized, lie in the gap, and are therefore

supposed responsible for pinning the Fermi level, variable range hopping

(when it is observed), and are likely recombination centers in photo—

conduction. These approaches require elucidation of the nature of the

defect in each case and bypass the notion of an “ideal” or intrinsic

— noncrystalline semiconductor. The similarity of optical data for both

• 
.. amorphous and crystalline materials has led many theorists (Phillips (1971),

‘ Weaire (1971)) to suggest a small role for the underlying disorder. It is

I argued (Philips (1971)), for example, that atomic relaxation during glass

quenching acts to repel states from the region of the crystalline gap.

• Weaire (1971) has shown bow real gaps can occur in a simple model without

long—range order.

Anderson (1975) observed that the diamagnetic properties of many

glasses can follow from considering a statistical distribution of two

electron states or bonds . The distribution is in bond strength and within

this model no defect states with unpaired spins exist. The electrons are

paired due to the polaron energy gained through bond contraction (after

occupation) which more than compensates their electronic repulsion.

In this paper we examine the properties of the simple negative—U

model considered by Anderson (1975). The structure of the model follows

from two major assumptions:
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1) that disorder plays a major role in accounting for the

elementary electronic processes in glasses, especially those with low

coordination number.

2) that these materials are strongly coupled, i.e. that the

lattice—electron interaction is presumed large.

Little justification is provided for the former assumption beyond

the qualitative success of the model. In defect models it is usually

presumed that the host material (without defects) is described by an

electronic structure with a good gap (or pseudogap). The argument

typically given compares the energy of a deep level ~.l eV (relative to a

crystal) to the thermal energy available at the glass transition

temperature ~ .O5 eV. Thus usual defect counting arguments can give

densities as low as 1014/cm3 . We take the point of view that the

energy of formation of a gap state can be much smaller in a disordered

system. By similar entropy considerations, a reduction by only a factor

of two can produce ~~ more states near the Fermi level.

As an example, we may consider a typical valence band in a

random covalent semiconductor formed from the bonding states of the bonds.

A 10% variation of the band width is typically enough to wipe out any gap

which occurs at the top of the band. Since bonding energies are exponentially

related to bond lengths, we are considering a small variation in bond

lengths (consistent with X~rayana1ysis) to produce the effect.

Given our initial assumption, the second is required to produce

the observed properties. It should be emphasized that virtually all the

success of approaches which employ a quasi—crystalline defect model

follows. fromour considerations.

L -
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3.

In Section II we describe the elementary excitations within the

negative—U model . We also examine the consequence of introducing severe

site correlation between the coupling parameter and the local electronic

energy . In Section III we consider the system in non—equilibriated con-

figurations and study the question of metastability. Finally, the model

is generalized in Section IV to include phonon size effects. It is shown

that some observed thermodynamic properties follow from these simple con-

siderations .
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II. The Anderson Negative—U Model

For simplicity , we consider one site to illustrate the model. The

Hamiltonian 3? is

= E(n +n~~) + U nan~, + wbtb + g(n0+n~ ,)(b+bt) (1)

where n — ctc . The operator ct creates an electron in the center

with api: a and the b ,bt are ph:non operators . The parameter E is

the energy of an electron localized on the center, U is the Hubbard

electronic repulsion which contributes when there is double occupancy, and

w is the (Einstein) frequency of the phonon. The last term describes the

electron—phonon interaction where g is the coupling parameter. In order

to diagonalize the phonon part, we rewrite the above Ramiltonian in two

convenient forms appropriate to different occupations: For single occupa-

tion of the center,we write

E(n +n ) + U nan — 

2 C + (2)

— g na(b+b
t) + g(1_n~~)(b+b

t)

2
where C .

~~~~~
— and we define a displaced phonon operator b b + g/w

This form is diagonal for n0 — 1 , ~~ — 0 . For double occupancy ,

E(na+n a) + U nan_a - 2C + •

— 
(3)

— g(1_n~)( b+bt) —

where we have defined the doubly displaced phonon operator

.—~ ,,~~ —•—~••---
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is diagonal for — n_0 1 and the eigenvalue for this case, is

given by inspection.

In general, the wave function may be written * %.n) where the

electron occupation n5 — 0,1,2 and n is the phonon occupancy at the

center. With the phonon system in its ground configuration, i.e. n — 0, the

energy eigenvalues are given from eqs 1—3 :

n — 0 E — 0
4 e 0 

1E1 — E — - ~~C (4)

E2 — 2 E + U — 2 C

Thus we see for soft enough phonons, i.e. C > U the ground state requires

~e 0 or 2 depending on the electronic energy E • In particular , for

E > C — the ground state is empty and for E -c C — the ground state

is doubly occupied. -
It is straightforward to evaluate the excitation energy using

the Hamiltonian of equation (1) for the process of adding a particle to

a center in its ground state. As discussed by Anderson (1975), the frequency of

the process is important: for low frequencies (<w) , the phonon occupation

n remains approximately zero throughout the process and the slow excitation

energies E5 are given directly from eq. (4):

E~÷1 ”E 1 -E0 — E — 4 C (5a)

E~~1 — E 1 — E 2 — — E — U + ~~~C . (5b)

Eq. (Sb) gives the energy to add a hole to a doubly..occupied center. Note

that both these quantities are positive under the. assumption C > U with

the center initially in its ground occupancy.
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We also consider high frequency processes (Franck—Condon) in which the

excited n~ = 1 contains a large number of phonons. In this case, the

center does not relax to a configuration containing one electron but remains

(during the period of the process) in the phonon state appropriate for

~e 
— 0,2 . In the excited state ne 

— 1 , the coherent phonon system contains

energy w -
~~~ C and so equation (2) gives the energy E1,~ for the

state çb — l,n~ . Thus, the fast excitation energies E~ are given by

E~~1 — E~— E 0 — E (6a)

E~~1 — E~- E 2 ”— E — U + 2 C  (6b)

which includes the additional energy C/ 2.

In a solid , the real process requires two centers in which an electron

is promot ed from a doubly occupied state to an emp ty one (particle—hole
that

excitation). Assuming, for simplicity,A
the process involves two identical.

centers, the energy for an optical excitation is

— E~ 11 + — —U + 2C (7)

using eq. 6. The analysis implies (Spear (1977)) an

• optical gap even in the case of weak diamagnetism C ~ U

The corresponding slow gap ~~ given from eq. 5,

— E~~1 + E~~1 — —U + C (8)

defines the ~ue gap of the one-particle excitation spectrum.

A summary of these processes is illustrated in figure 1. The

abcissa denotes electron occupation and the states corresponding

to n5 — 0,1,2 are indicated. The vertical axis gives the energy
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I• o f  the configuration normalized to the electron energy E

In particular , we take U/E 0, C/E — 4/3 , in which 
~e 

= 2

is the ground state. The curves describe the energy dependence of excited

configurations for which the model of eq. (1) gives a quadratic dependence

on occupation. Optical excitations are vertical transitions in the diagram

(solid lines) and low frequency processes are indicated by the dashed lines.

Other processes are described in the section ~~ where the question of

metastability is discussed.

• Up to now, we have considered only one or two sites. To treat the

- solid, we introduce a spatial distribution of such centers which are each

• characterized by new site parameters E1 Ei — Ci/2 and U1 C~ —
where i labels the site. The parameters Ei,Cj and U~ are those defined

in equation (1) appropriate here for the site i . Anderson presumed

• that the renornialized quantities

• E~~~~U~~> 0

are random, taken each independently from some distribution. The system

Ham.iltonian may be written

— 

i~a 
E1

flj0 — 
~ 

U~. n~~ ~i~a + 

~~~~~~~ 

TijCiaCja

where we have now introduced a hopping term with a transfer matrix element

which allows the electron to hop from site I to site j . The

Ramiltonian equation (9) is equivalent to the Hubbard model with random

- 
negative correlation energy , and with random site energies E

1

• In the absence of electronic hopping, i.e. Ti~ 
— 0 ~ the model is solved

exactly with eigenvalues given in equation (4) in terms of the unrenormalized

parameters for each site.
- 

One can define a two—electron spectrum which in the absence of hopping

is a site—energy spectrum. It is convenient to adjust the occupation of the
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one—electron renormalized energies, 
~~j ,  so

that only states (sites) with < 0 are doubly—occupied in the ground

state with U1 — 0 for all I . This places the chemical potential for

adding two electrons at energy p2 — 2 — c 0 for iL~ positive for

all i . Note that in this case not all sites will be in their ground state

with respect to site occupation: some sites with 2 — U1 < 0 will

be unoccupied ( 2 Ei — > and others will be occupied with

O < 2E~~— U 1 < u 2

The model, as stated, does not prejudice the nature of the

center, e.g. bonding, non—bonding,~~~~.~,
’ but it is clear that any reasonable

energy distribution should require the density of states near the two—

electron chemical potential, 112 , to be depressed (pseudogap). Anderson

has argued that the randomness is likely to be severe, with a reduction of

only one or two orders of magnitude near 112 . This would account for the

strong Fermi—level pinning of most glassy semiconductors although recent

work (Spear (1977)) on the doping characteristics of silicon—hydrogen alloys

demonstrates that it can be much smaller.

It is important to realize that although the -chemical potential

may be pinned by the presence of a large number of two—particle states in

the pseudogap , the one—electron or excitation spectrum may have a well—

defined gap within this model . The absorp tion edge for particle-hole

• excitations occurs , for the process I + j , at min(E~—E 1+U~) : i~

- 

• satisfies > 112 /12 + Ü~/2 and < 112/2 + U1/2

I f and are uncorrelated, there are two possibilities for

forming a gap in the particle—hole excitation spectrum. One can, as Anderson

(1975) supposed, presume that at least for some materials there exist

a 

--• ~~-- -• --••-•- • -- - - -• • - - - -~ • - • •-• - - • • • •- • -~
- •- • - 
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no sites with U1 less than some mm . Alternatively, Licciardello (1978)

argued that some correlation certainly e...ats and that states near 112 tend

to have larger values of U1 . In addition to producing a gap ,the

absorption edge, in this case, may arise from states deep in the valence

band , perhaps from below the mobility edge. This is a very likely explana—

• tion of the sharpness of the absorption edge: it results from absorption

between mobile states. Anderson (1975) has also suggested that the mobility

gap for extended states may fall below the gap implied by mm

One may also examine the consequence of introducing severe

correlation. One possibility is shown in Figure 2 where we assume a

Gaussian—like relation between U and E . In a covalently bonded semi-

conductor, one may regard the zero of energy in Figure 2 as corresponding

to the atomic level out of which bonding occurs. Thus states < 0 are

typically bonding—like whereas states > 0 are antibonding in character.

Since states near zero are greatly perturbed from the simple bonding—antibonding

configuration, they are likely to be more strongly coupled with the lattice.

This occurs for two reasons: for broken bonds, i.e. defects,

the local phonons are likely to be softer, and the electronic states can be
(see eq. 1).

more severely localized giving rise to a larger electron—phonon coupling, g,,

Since U1 ~ g
2/wj, U~ can be much larger. Street and Mott (1975) , in their model

implicitly assumed that states in the gap were strongly lattice—coupled.
(Vanderbilt and Joannopoulos (1979))

A recent band ca1cu1ation,~for specific defect configurations in glassy Se

has demonstrated severe localization near coordination defects. The sharp

• fall—off of U for occupied state with large negative energy (i.e. deep in

-• 
the valence band) and unoccupied states with large positive energy (conduction

band states) is expected for extended two—particle wave functions. These

states should be derivable from a one—electron calculation of the
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crystal (band structure) within perturbation theory.

Also indicated in Figure 2 is the two—electron chemical potential

relation. There are several remarks about the ansatz of Figure 2 worth

mentioniz~ . One is that it predicts no true one—electron gap. That is,

the min(~~—~~+Ü1) , which occurs at the point labeled (a), vanishes. Low

energy excitationsmay occur at (b) and (c) but require the correlation

energy Ub and . Secondly, if a site is considered electrically

neutral if it is occupied when E < 0 and unoccupied when E > 0 , then

Figure 2 predicts strongly—coupled negative sites (part of curve where

E > 0 and 2 E — U < 142) and weakly—coupled positive sites (E < 0 and

2 E — U < . Detailed defect band calculations (Vanderbilt and

Joannopoulos (1979)) have shown this in Se and we suggest here the

pheonomenon may have very general validity. •
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III. Metastability

It is also possible to examine the question of stability with regard

to nonequilibráted occupations. In the absence of a T1~ tern~ of course,

1: stability is guaranteed for all configurations. Given a finite coupling,
1 

I
I however, an excited center may be unstable with respect to the spontaneous

addition of an electron or hole with a corresponding phonon emission

t (relaxation). We define metastable states as those which require the

absorption of a phonon (or photon) in order to spontaneously relax to a

state of lower energy with a different electronic occupation.

We consider excited 2—particle states with energy 
~2 

> 
~2 

• We

~

- take 112 = 0 for simplicity. The center will spontaneously emit one

particle if
- - E > E  (lOa)

2 1

• or both if

E2 > + 2C (lOb)

From equation (4) we see the former criterion requires E > 2C — U whereas

the second is satisfied when E 2C — U/2 , larger by U/2. Thus the

center is unstable with respect to emission o~ one electron,and metastable

2—particle states occur for

< < 2C — U + 312 
•. (ha)

Similar considerations for empty states with energy smaller than give

metastability in the range

— (2C—U) < E2 
c 112 . (jib)

We may also examine the stability of states occupied by one electron

• which may occur after photoexcitation and subsequent trapping. Such a

_ _ _  - • --—•--- -- -*-- - -------



- 

-

12.

configuration of energy E1 is unstable with respect to the absorption of

a second electron if E1 
Ic E2 + 4 C and unstable to emission -if < 

4 
C.

Thus, from equation (4), the band of two—particle energies metastable to

single occupation occurs in the range

— U + 
~2 

< E2 
< U + 

~~2 (12)

Note that the bandwidth of these paramagnetic metastable states does not

d~pend nn the strength of the electron—phonon coupling but only on the Hubbard

coulonibic repulsion. Since we have presumed throughout this work that U < C

this leads to a narrow band near the Fermi level

To examine absorptive processes it is useful to consider the

(fast) single particle excitation spectrum. We define this as the density

of states available to add a single electron of energy c or a single

hole of energy —c to a system in the ground or metastable configuration.

In any configuration the energy required to add a single electron

(without relaxations) to an empty state is (from eq. (6a)) E~~1 
— E

The contribution of this process to the spectrum is determined by the

availability of empty states. If the system is in the ground state, the

minimum energy for an empty state is determined by E2 > which from

equation (4) requires E~~1 > 
2C—U + • An excited system, however, may

contain metastable empty states, as calculated above, with minimum energy

E2 — — (2C—U) which requires only E~~1 > -t
-
• 

In addition, a metastable configuration may contain singly occupied

states as discussed above. Thus we consider the process E~42 which, using

the analysis of Section II, requires an energy E + U — C . Using the

range of energies (equation (12)) available to metastable 
~e ~ states

and equation (4), we find < E~÷~ Ic 

~f- 
+ U • Note that these



________________________ - - - - ~~~~~~~~ - -  —s- - r~~’~~-’~~’ —

13.

excitations are bound from above as well as from below.

Using similar arguments we may evaluate the energy to add a hole to

f fa doubly occupied state, E2~ 1 , or to a singly occupied one, E1÷0 . We

find: -

Ground State E~÷1 > 

—11~~ 

~~ 
2C—U

fMetastable ne — 2 State E2÷1 > —i—

fMetastable n = 1 State — T < F140 Ic —i- + U

Denoting these energies as — c , the full excitation spectrum is

shown in Figure 3. The energy separates electron excitations from hole

excitations and the figure represents a system in a metastable state. The

band of paramagnetic states at -r is displayed assuming U Ic (2C—U)/2

which,of course, is more restrictive than requiring Ic 0 . In addition,

the density of paramagnetic states is presumed much larger than metastable

two—particle states since the latter requires trapping of two electrons in

the same state after photoexcitation.

Possible absorptive mechanisms for this spectra, which we label a1,

are as follows:

a1 : 2 + 1 + 0 + 1  (13a)

a2 : 2 + 1 +1 + 2  (l3b)

a3 : 1 + 0 + 0 + 1  (l3c)

cs~ : 1 + 0 + 1+ 2  (l3d)
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The energies for these processes are:

t
ci3 = E 0 — E 1 +C - :

where the state energies E refer to the relaxed levels (ground or

aetastable) before photoexcitation. The absorption edge may be derived

from the range of E given in equations 9,10, and 11. In particular,ne
we find

mm

• for each process . Thus there is a complete collapse of the optical gap,

i.e. photodarkening, in this case of extreme fatigue. This is also

evident from inspection of Figure 3.

After moderate illumination, however, one expects very few two—

particle states to be occupied out of equilibrium. Paramagnetic states

will dominate the metastable populations and measurements of photoinduced

ESR reveal (Bishop, Strom, and Taylor (1977)) about 1017 spins/ca3. In this

case, process 1 wiU give the ground state gap, 2C—U, and processes 2 and 3 yield

half gap absorption at C—U/2. Process 4 is not expected to contribute for

concentrations a,10~ since it is proportional to matrix elements between para—

magnetic levels. Thus the absorption spectra should behave as shown in Figure 4.

Similar photoinduced absorption has been observed (Bishop, Strom, and Taylor (1975))

in the chalcogenide glass family. It should be noted that our model involves

• only distributions of two—particle states without reference to specific defects.

Thus we predict half—gap photoinduced absorption in a model -in which there are

no a priori. pseudogaps in the fundamental level structure. This is in sharp

contrast to defect models tStreet (1978), Philiips (1976)) of glasses. 

~~~~~~~~~~~~~~~ 
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ “~~~~~~~~~~ ‘ 
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IV. Phonon Sharing

The Anderson negative—U model we have been describing does not include

an important contribution to the microscopic picture: pair interactions.

These may be coulombic , in part , especially for the states near p2 which

we have argued are charged. We introduce here a different mechanism for

pair—pair interactions which gives rise to low energy electronic excitations.

We show that these excitations may account qualitatively for the observed

low—temperature thermodynamical behavior, attributed to atomic tunneling,

observed generally in glasses.

The idea is simple — in the model of equation (9), there is associated

with each site an independent oscillator system. Although the phonon variables

have been suppressed, their main contribution is .to renormalize the -

electronic energies 
~~~~

, U1 . In a real system, however, neighboring sites

• m a y  “share” the same phonon coordinates since there is, in general, more

than one covalent bond per atom. The effect may be to saturate the

attractive interaction between two electrons at one site leaving no remain-

ing displacement (coupling) between two electrons at the neighboring site.

The mechanism ~s illustrated in Figure 5. We imagine two sites

(states) coupled by a coummon spring. 
- 
In case (a), the state on the left is

occupied by two electrons (labeled by spin up + and spin down 4). The

effective negative interaction between the particles is mediated by atomic

motions schematically indicated by a compression in the spring (b). No further

interaction (compression) remains however, for providing an inter—

action for a pair of electrons additionally placed in the state on the

right. Alternatively, we could have placed the pair on the right initially (c),

again reducing the negative attractive interaction available for occupation

of the left site. The effect of this is to introduce an effective positive
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interaction between pairs at neighboring sites . The range of the interaction

may be longer than is suggested here , but the nature of the mechanism suggests

that it will at least be short—ranged.

This leads us to reconstruct the negative—U Hamiltonian. We

define the coupled system shown in Figure 5 as one site, say i , which

consists of two orbitals, say a and B . Thuc,in this representation,

the repulsive interaction is an intra—site term denoted by V~
8 

. It is

convenient to introduce pair creation and destruction operators, which

we denote by d~ dj,a ~ respectively. Introducing further a pair counting

operator niia = 4,adia , we may write the Hamiltonian 
-

H 
~ ~~i,a

ni,ct+ c18m16 ) + ~ V~~ ni
1~~~P1~~~~ (14)

where the energies c~~~ E 2E1~~ — . The Hamiltonian (14) is only
p 8

convenient insofar as we do not consider single particle excitations. For

the moment, we have, also neglected any coupling between the pair states

(see below) .

In order to develop an intuitive feel for the model, it is useful

to invoke a molecular bond interpretation of the states a and B . In general

covalently bonded atoms do, of course, involve two levels per bond — the

bonding (a) and antibonding (a*) states . In Anderson’s negative—U model,

no description is made of the nature of the state locally. There is only

one state per site. Generally, a*_like states would tend to occur with

energies larger than 
~2 and a states would tend to be occupied but no

attempt is made to associate an empty and occupied state spatially .

‘I The model of equation (14) specifically attempts to provide this

association. In general, the parameters £ ja~
Cj8t V~~ are site random

S 
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and no gaps are expected in general. At typical sites, however, Ca 
= L

a 
< P2

and L
8 

L
a* 

> to a good approximation these parameters are distributed

randomly about their probable values as depicted in Figure 6. The chemical

potential p2 is pinned by the CFO overlap . It is less useful to think of

the states near p2 as having a and a* character.

The model may be viewed as a collection of centers whose properties

depend on the values of the local parameters Cia~ Li8 ~~ which we

describe as follows.

1) typical center: Ca 
Ic £8 

) P2

which implies m a = 1 , m8 . 0 • These represent the familiar

picture of states in the valence and condution bands — bonding

orbitals are filled, antibonding orbitals are empty.

2) defect center: La < P2 , C~~ < P2 
and L

a 
+ €

8 
+ ~

a8 
<

which gives m a = m 8 
= 1 . These states reside in the gap, are

charged, and deviate from the normal coordination of the molecular

structure , presumably as in the pictures of MDS and KAF.

3) tunneling center: La £
8 

Ic p
2 

but L
a 

+ + ~a8 >

here we have m 1, m = 0 or m 0, m 1 with equala B a B
probability.

The model has , by construction, a two—level center at every site.

A much smaller number are at low energies L
a 

c
8 
: these may be properly

called tunneling centers and can contribute to a low temperature thermo—

dynamic properties .

It should be pointed out that low-energy two—electron excitations

already exist in Anderson’s original Hamiltonian (eq. (9)). These consist
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of two—electron excitations at p2 where , of course, there is no gap.

However , Phillips (1976) has pointed out that the assoiciated matrix elements

may be large for these processes and therefore may not contribute to

short—time thermodynamic measurements. The arguments presented in Sections II

and III support this point of view since these states tend to be strongly

localized (near p2 ) .

The generalized model allows another possibility,however: the

excitation of a pair from a + 8 at the site i where both € and £
a 8

are far from p2 • These excitations may be properly called biexcitons

since they involve two electrons excited to an empty state in which a

• relaxation “binds” the pair. The binding energy can take on a range of values

because La — £
8 

-is site random. In particular, it may take the value zero

(i.e. case 3) ) and it is expected that a condensate ~if biexcitons exists

in the ground state. Evidence for their existence has been discussed by

Street (1978) and they have been described as “intimate valence alternation

pairs” by Kastner et al.(1976, 1978) within the framework of a defect model.

We point out here that they are readily predicted from the continuous

microscopic model described by equation (15).
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Figure Captions

Fig. 1. The energy elgenvalue of the Hamiltonian (1) (normalized to

the electronic energy level E) as a function of electron

occupation 
~e 

for U — 0 and C/B = 4/3. The minima of

each of the three curves corresponds -to the eigenvalue

for the relaxed center with ne 
= 0, 1 and 2. The curves

describe the energy of the level resulting from displacing

the nuclear coordinates to positions corresponding to

electronic occupations different from the minima value.

The solid arrows describe optical transitions which result

in a charge of electronic occupation by one carrier. The

dashed arrows depict slow transitions.

Pig. 2. Conjectural correlation between the effective (negative) ~

and the effective site energy in a typical diamagnetic

glass. E — 0 is roughly where a non—bonded orbital would

occur. States corresponding to the part of the curve in the

shaded region are occupied by pairs of electrons.

Fig. 3. Excitation spectrum for model described in text. Here p2

is taken to be zero for simplicity. Metastable two—electron

states appear to the right of the Fermi level and metastable

zero—electron states to the left. The narrow band at center

consist3 of one—electron states.

Fig. 4. Photoinduced absorption spectn~~.

Absorption be~ina at an en equal t a l e 

~ii ~~
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(processes a2 and a3) and increases at full gap, when

process a1 begins to contribute.

Fig. 5. Schematic of neighboring two—electron states sharing a conunon

spring system (bond). Double occupation of both states is

energetically unfavorable (see text).

Fig. 6. Probability distribution of site energies a and B for

tunneling model presented in Section IV.
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