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ABSTRACT

Infere nce planning techniqu es have been iapl ent.d and incor-
porated within a pro totype deductive processo r designed to support
the extraction of information implied by, but net explicitly inclu-
ded in, the contents of a relatlonally structured data base.
Deductive pathfinding and inf er ence planni ng are used to select
small sets of relevant presis.s and to construct skeletal deriva-
tions • When these “~keletons’~~ re verified , the .ystsm uses thma
as plans to create data—base access strategies tha t guide the
retrieval of data values, to aismable answers to user requests, and
to produce proofs supp orti ng those answers. Several examples are
presented to illustrate the current capabilit y of the prototype

0. Deductively Augmented Data Management (DADM) system. ~~~~~~_

C-,
INTRODUCT ION

—I Not only are computerized data bases growing in size , a~~ber ,
and complexity, but the nember of on-line users is also growing
rapidly. The availability of larger and cheaper . ories is making

~~ 
it feasible to store flat quantities of data on—line, but this

~~~~~ often serves only to increase the frustration of users, who ,
because of limita t ions in current data-base retrie val techuslogy,
are unable to take fall advantage of the information. A major
deficiency in present data—base syst s is an inability to dis-
cover (at the direction of users) implicit relationsh ips ~~~ng the
data i t s  implicitly present .
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Deductive logic off ers considerable potential for improving
os-lime access to large complex data-base domains. The prototype
Deductively Augmented Data Management (DADM) System describ ed in
this paper has bess designed to:

1. Permit a user to nose complex and subtle queries to the
.vst~~~ which, in turn, finds infere ntial connections
linkina user—snecif led concepts to data—base structu res

2. Generate for the user deductivel y connected evidenc e .
chains that he can use in evaluatin a the utilit y and
credibility of informa tion der ived from the data ba se.*

In particular , user— system interactive techniqu es have been
developed whereby the system creates and displays inference plans
and chains of evidence as an int egral part of the quest ion—answering
pro cess . The user actively particip ates by supplying advice ,
refining his queries , and requesti ng additional plans and evidence
as necessary. This interactive cycle continues unt il the user is
satisfied with the eualitv as well as the quantit y of the derived
informa t ion. Somet imes this entails the provisio n of evidence both
for and against a user ’s conj ectur e or working hypothesis . Some-
times the system provides a user with a conditiona l (yes i f .. .)
answer rather than a strictly categorical answer . In all cases,
the system permits a user to ask for corro bora t ive evidence by
requesting alternative derivatio ns for an answer . (Mult iple evi—
deuce chains may often reinforce the user ’s confidenc e in the
value of the information received.)

APPROACH

The design for the deductive processor described in this paper
evolved out of research on an Engl ish question—answering system
called ~~NV~~SE (Rellogg et al. (1971] and Travis et *1. (1973]).
This system consisted of a language processor (driven by English
syntax rules and a s antic network ) and a relational data manage-
ment system that accessed specif ic facts realized as ?‘ topic mem-
bers of predicate (relation) extensions • When snalyr ..ng a quer y
such as “Who is mayor of Denver?” , the system would use its semanti c
network to infer that the refere nce mas to the City of Denver , net
the Co~mty of Denver • The inf er ence was based on the general pro-
position, r.pr.qented in the s ntic network , tha t the ra nge of
the relation beina mayor of includes cities but cot counties .

* It is important to wt~ that while the deducti ve processor will be N f~applying rules of strict ’ logical reasoning, the information (the set
of general assertions or pr omises) that is being used to construct ~~ite Section
evidence chains may ra nge in degree of plausibilit y from “hard” Buff Section D
(strictly true ) to “soft ” (possibly the cause) . PICW D

JUSTIFICATI~N 
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DEDUCTIVE PLANNING AND PATHFINDING 181

Further , in analyzing wore complex queries such as “Wha t cities are
in states with a population less than that of the City of Boston? ”,
the system would infer which states possess the proper ty of having
a population aller than that of Boston—an ad hoc pro perty net
directly available in the network or data base. While useful ,
these kinds of inf erences are special purpose and limited. We
decided that a mare general—purpose inferential capability needed
to be designed and added to the system for use in many different
contexts and for many different purposes (Ilahr (1975), Kellogg et
.1. [1976], Klahr [1978], and Kellogg et al. (1977]).

Two design criteria were crucial in the development of the
deductive processor (DP). The first criterion was that the DP
would be an independent system yet capable of being “added on” to
existing and emerging relational data management systems (RDMSs) .
This led to a distinct separation between a store of extensional
data (specific facts) and a store of intensional data (general
statements, premises, rules) . The former is accessed by an RDMS ,
while the latter is accessed by the DP (see Figure 1). (This
separation of data is also suggested in a recent proposal by
Reiter [1978].) No change is necessary to the RDMS to add on the
DP. This same criterion of an RDMS add-on also led to a focus on
deduction by exception: user queries net requir ing deduction should
be identified as such and sent directly to the RDMS .

The second criterion focused on the selection of relevant
premises. Premises, or inf erence rules , are general statements
that can be used in making deductions. Given a large number of
such premises, a crucial problem arises in controlling the deduc-
tive search space. An inference planning process has been designed
and implemented to locate potentially relevant premises. This pro —
cesa must be fast and efficient to compensate for the overhead
processi ng involved • But such planning is needed in order to give
the system guidance in its deductive searching. Furthermore, the
planninp~ process is used to gu ide and direct relational data—base
searchi ng by specifying what facts are needed to supp ort the
deductio ns and proofs found to answer , user queries.

A3STRACTING AND S~ 4~~rICALLY RESTRICTING DEDUCTIVE I)fl~~ACTIONS

• Processes of abstraction (of deductive interactions ) and
restriction (of semant ic scope) are central to our approach to
relevant premis e selection. Wher e possible these abstraction and
restriction processes are carried out duri ng premise input in order
to minimize processi ng time dur ing query analysis and deductive
questio n—a nswering .

S . S__-—_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _
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DEDUCTIVE PLANNING AND PATHYINDING 183

Promises and queries are entered into the system as nrimitive
conditional statements (Travis et .1. (1973)) •* A primi t ive condi-
tional is a first-order predicate—calculus coral form whose cen-
tra l connective is the implicatio n sign . The antecedent of the
implication contains the assusptions of the premise/query and the
consequent contains the goals of the pramise/query . Assuaptions
and goals are liter als, that is, atomic predicate occurrences or
negated atomic predicate occurrences • Within a given antecedent or
consequent , lit erals may be combined either conjunctively or dis-
j unct ively. Each predicate occurrence is an inetance of a predi-
cate (relation) along with its arg usent terms (namely variabl es,
constants, or functions). Primitive conditional s are used becAuse
they support the introduction of general assert ions in a natural
way, similar to the way production rules are used in knuwledge—
based systems; see Davis and King [1975].

Several kinds of information are abstracted from the premises
during input and used to create a ],redicate connection &raph
(PCG) , ** as well as other storage structures that promote efficient
association of deduct ive and semantic informat ion (Klahr [19751).
A premise is firs t converted into a Skol..iz.d, quantif ier—free
form . The implication (as well a~ other truth—functional ) connec—
tions among the predicate occurre~ces in a premise are encoded into
the PCG as a series of deductive dependency Links. Further, the
deductive interactions (or unifications ——see Robinson (1965])
between predicate occurrences in the new premise and predicate
occurrences in existing premises are pre—computed and encoded into
the PCG as a series of interpremise associative 

~~~~~~~~~~~ 
The variable

substitutions required for unification are stored elsewhere , for
later use in verifying skeletal derivations (i.e., inference or
proof) plans.

Semantically restrictive information is introduced in several
different forms in order to restrict the logically possible unif i—
catious to those that are semanticall y meaningful for particular
application domains.

The variables and constants occurring in premises can be
“typed”, that is, assigned to specific domain classes • For example ,
the variable “r’ might be assigned the type DOCUMENT , and the con-
stant “Sam ” assigned the type SCIENTIST . Then , whenever “I” and

• “Sam” occur in the same arg usent position of different instance s
of a relation, those relation instances will cot unif y, and they
will net be connected in the PCG, due to their semantically

• * In an operational system, promises would corually be enter ed by
the data—base administrator.

** See Kovalski [1975] and Sickel (1976] for the use of connection
graph. in thenrem proving .
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184 KELLOGG, KLAHR AND TRAVIS

incompatible types.

Compound types, consisting of set union, intersection , and
difference operations over simple types, may also be used to specif y
mare complex semantic restrictions on predicate domains • A
s~~~ntic network is used to represent set relationships between
types .~~ Class inclusion paths within this network are used, for
example, to permit unification of instances of type SCIENTIST with
instances of type W,184AL. As new promises are entered into the
system, this semantic network is automatically updated to r flect
new predicate—doma in associations.

In addition to this use of semantic information to restric t
unification by means of types, unification between multiple occur-
rences of a predicate within the same prom ise y sometimes be
avoided by restati ng the premise ’s assertion by use of logical pro-
perties. For example, the predicate “North-of” could be charac-
terized by the premises:

Va Vy (North-of(x,y) & lbrth—of (y ,s) ~ North-of (z,z))

Yx Vy (North-of(x,y) ~ —‘ North-of (y, x))

Yx (—ir tbrth-of(z,~ ))

The first premise specifies that North—o f is transitive. This
premise is recursive and can deductively interact with itself and
the other premises to cause a rapid expansion of the deductive
search space. To help avoid this probl em, the DADM system permits
binary predicates to be characterized by their logical properties
(for example North-of would be assigned the logical properties:
transiti ve, asymuetric , and irreflexive) . Computational procedures
can then be called to effect special—purpose inferences associated
with various groupings of logical properties. Recursive pre mises
describing logical properties of predicates are therefore rep laced ,
~there possible, by special—purpose subroutines. Subroutines are
being implemented for consistent combinations of the logical
properties identified by Elliott (1965] •** Future effort will
involve other properties such as a relation being hereditary with
respect to anether relation, e.g., P being hereditary over R in

Va Vy P(x) & R (z ,y) ~ P(y)

* See McSkimin and Minker [1977 , 1978) for related research on
introducing semantic inf ormat ion into a deductive system.

** Properties and examples are : reflexiv e (equal—to ), irrefle xive
• (greater—then) , syometric (equal—to) , asynnetric (North -of),  tran-

sitive (located—in ) , 1—leader (mother -of), 1—follower (weighs ),
wregrowth (son—of), and unlooped (mother—of ) .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



— ~~~T~7~~—---— —-
~~~~~

DNDUCTIVE PLANNING AND PATHYINDING 185

Logical properties of binary relations are identified by a
user— system dialog that is initiated, as shown below, for the predi-
cate “North-of” (user input is preceded by an asterisk) :

* Define (North-of)

Suppose one thing is North-of a second thing that in turn
is North-of a third thing . Is the first thing North-of
the third?

* Yes

If one thing is North-of a second thing, will it always be
the case that the second is North-of the first?

* No

Might it ever be the case?

* No

After the third yes/co response, the system is able to identify
“North-of” as a transitive, asy etric , irreflexive, and unlooped
relation.

Variable typing reduces the number of unificatio ns in the PCG
by making use of semantic domain restrictions . Logical properties
replace some kinds of recursive promises, and their often trouble-
some unifications, with special—purpose inferencing procedures. A
third form of semantic restriction used in the DADM system does cot
directly eliminate unifications in the PCG, but does limit the
selection and use of premises and predicates by means of advice
supplied by a data—base administra to r or user during query process-
ing.

A data—base administrator enters semantic advice in the form
of “Conditions -‘ Recomoendations” rules . For example, one could
advise tha t a ship return to its home port if it is damaged by
specif ying :

(Assumption Damaged(Ship)) * Returns(Ship Porte)

The system would try using premises containi ng the Returns relation
when the Damaged relation occurs as an assumption. Advice rules
are stored in an advice file, where they are automatically selected
and applied whenever thei r condition part holds for input queries .
In addition to such advice rules , the user could supply advice for
a particular query by stati ng only the advised reco endation for
that query.
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Advice mast typically involves recennendat ions on the use of
part icular premises or predicates in finding deductions. For ad-
vised premises , the system will try using them whenever possible in
the course of constructing a proof. For advised predi cates , the
system will try chaining through occurrences of them in prem ises.
In the case of negat ive advice , specified premises and predicates
are avoided in proof construction.

INF~~ENCE PLANNING AIR) D~ )UCTIVE QUESTION ANSWERING

The develop.en~, refinement, 
and execution of inference plans

proceeds through a series of phases . These phases are designed
to progressivel y apply a series of increas ingly mare stri ngent de-
ductive , semantic , and pragmatic constraints until a user receives
his desired information or is convinced that he has explored all
reasonable deductive pathways into the data base. These phases are
described below.

Deductive Pathfinding

Symbolic queries (in the form of primitiv e conditionals ) are
decomposed into a set of assum ptions (antecedent s of the condi-
tional) and a set of goals (consequents of the conditional ) .
Deductive pathfinding employs a process of middle—term chainina
(Klahr [1978)) to be illustrated later . This process uses the
predicate connection graph to f ind chains of middle—tern predicates
needed to deductively connect assumptions to goals . Middle—tern
chaining combines the processes of forward chaining from the assump-
t ions in a query and backward chaining from the goals in a query .
Wh en a query contains ma assumpt ions, and the system ca~~~t dis-
cover plausible ones to use—say, as a resul t of s ntic advice—
middle—term chaining defaults to backward chaining. As chaining
proceeds, a series of expanding deductive-interaction “wave fronts”
are generated fro m assumptions towar d goal s and from goals toward
assumptions. Intersections are performed on the wave fronts
until a con—empty intersection occurs, at which time the system has
found an implication chain from an assumption to a goal . Several
such implication chains are usually found (shortest chains first)
before a user —contr olled limit is reached. Middle-term chaining
is further constrained by the use of semantic advice and plausi-
bility measures. The plausibility measures are assigned to pr omises
and are used to order the predicate occurrences comprising middle-

• term chain wave fronts to ensure that the deductive paths involving
the mast plausible premises are selected f irst .  In a similar
fashion, semantic advice obtained f rom the advice file or from the
user is transformed into premise and predicate alert lists that are
used to ensure that advised premises and predicates are given pri-
ority or avoided , depending upon whether the advice is positive or
negative.
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The same assumptions may be used to find deductive support for
different goals (and subgoals) . When assumptions are cot supplied
in a query, useful assumptions may sometimes be found by following
semantic network predicate-domain connections, or by using advised
predicates as possible assumptions .

Plan Generation

For each middle—term chain generated , the system extracts the
premises whose occurrences are part of the chain . Subgoals result-
ing from the premises are set up to be resolved either by deducti ve
support through the premises , by data—bas e search thro ugh the rela-
tiona l file, or by procedural computation . Subgoals are added to
a proof—prop osal tree , which contains the inference plans being
formed and developed . Once inference plans have ma r aining deduc-
tive subgoals, they are available for verification, user review,
and instantiation.

Plan Verification

Skeletal plans constructed during plan generation are valid
proofs at the truth—funct ional level. In plan verification , the
variable substitut ions associated with the unifications in each
plan are examined for consistenc y. If ther e are ma clashes—that
is , if ma variables are assigned more than one distinc t constant
value—then verification is successful and instantiation by da ta-
base search may follow . During this stage, classes of variables
tha t must take on the sam e value are constructed and uaei to refor-
mulate skeletal derivations into search—compute vlan components
(i.e., data—base access strategies) and inference ulan components
(comprising deduced goals, deduced subgoals, and assumptions).

Plan Review, Plan Selection, and Query Refinement

Though on—line interaction may be initiated by the user or
prompted by the system at various points dur ing pathfinding and
plan generation, moat user review and inter action occurs after plan
verification. Verified plans are usually reviewed in the orde r in
which they were generated . (Recal l that plans using the shortest
paths, mast plausibl e premises , and advised premises and predicates
are generated first. )

During review , a user may rej ect a plan , instantiate it (by
r equesting data—base search ) or suspend further action on it until
other plans have been reviewed • In this manner , the user can mini-

• . size unnecessary data—base search ing by reviewing the derived plan
information and reachi ng conclusions about the likely data-base
searching consequences of his original request. Plan review may,
for example indicate that additional assumption s, goal., or advice
should be associated with the orig inal reques t , or that the origina l
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query should be refined or replaced by a mare specific (or gener al)
request . Considerable insight into interpreting complex req uests
with respect to large da ta bases can be achieved , short of actually
searching the data base , by this process.

Data—Bas e Search and Answer Generation

An inference plan constitut es a complete proo f J ust in case ma
search/ compute plan is produced (i.e., all subgoals are deduc ed
from promises) . Ibre typically, one or more subgoals require da ta-
base and /or procedural (compute) suppor t . Search / compute plans are
executed, in general , in three phases: first , all computable
funct ions and predicates having only constants as arguments are
evaluated; second, a sequence of relational. search requests is exe-
cuted against the data base; third , remaining computable functions
and predicates are applied to the results of data—base search .
Answers are extracted from the N—tuples of data values associated
with searc h/compute plan var iabl es . (Each of these N—tup les
supplies instant iation values that n.y be used to convert the on-
ginal inference plan into a complete proof or “chain of evidence”.)
An answer may be categorical (for example, “yes” if ma variables
occur in the original request, and data—base search is satisfied),
descriptive (a set of search-derived query—variable values displayed
in tabular format), or conditional (‘ yes i f . . .” the specified
predicate—arg ument conditions can be verified by the user to hold
true for th . appl ication domain) .

Often these categorical , descriptive, or conditional answers
will satisfy the umer ’s original informat ion requirement . In other
cases, he may wish to proceed to the next (and f inal) step in the
inference plan d.velopaent-execut ion-review cycle.

Answer Ixplanat ion and Evidence Review

Just as the plan review, plan selection, and query refinement
process is designed to aid the user in understanding the full con-
put er—developed implications of his query, the answer explanation
and evidence review phase of processing is designed to support him
in his evaluation of computer—derived answers • In a later section,
several computer emples illustrate current proo f displays . 1~~ugh
this form is often sufficient to enable users to determine the
validity and/or utility of derived answers, a more interactive and
easily comprehended dialog forma t for evidenc e display is und er
development. This new facility will permit a user to selectively
interro gate the system concerning particular answer s, relations,
and domains. By repetitiv e interrogation , he may delve as deeply
as he desir es into particular lines of reasoni ng or evidentary
support , without resorti ng to the current practice of full proof
display .
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Inference Planning, Data—Base Semantics,
and Generalized Navigation

The relational (extensional ) data base constitutes a logical
model or inte rpretation for many of the relations used in the pre-
mise (intensional) file. Conversely, the intensional information
consti tutes a partial but prec ise representation of the semantics
of the extensional data base. Inference planning uses this inten—
sional information to develop both the semantic implications of
user—request assumptions and the semantic antecedents of user—
request goals. Therefore , inferenc e planni ng may be used to supp ort
generalized navigation or browsing operations through the semantics
of a data base. Generali zed navigation is further supp orted by
allowing user s to enter requests containi ng unrestricted relations
(i.e. , relations with ma arguments ) . Given queries of this sort,
the system can quic kly find deductive paths through system restric—

• ted concepts supporti ng goal relatio ns and concepts linking assump-
tions to goals. This system featur e has prov ed mast useful as a
tool for exploring the interrelationships between intensional con-
cepts.

DEDUCTIVE PROCESSOR COMPONENT S

Figure 2 shows the components of’ our DADM system prototype .
At present, users comaunicate directly with the control processor;
a language processor will be incorporated at a later date. The
control processor accepts premises and queries in primitive cond i-
tional form as well as user advice and coumands . It accesses and
coordinates the use of the several system components briefly des-
cribed below.

Array Initialization and Maintenance

Information abstracted from the premises is segmented into
seven internal arrays • This segmentation contributes to system
aodularization and increases processing efficiency. The seven
arrays are:

(1) Premise Array • Each ent ry represents a premise and con-
tains a list of the predicate occurrences in the pr omise, the
plausibility of the promise, and the premise itself (both syW olic
and English) for pur poses of displa y .

(2) Predicate Array, The predicate array contains the rela-
tions kwwn to the system as veil as the support indicator asso-
ciated with each relation, which indicates how to resolve each rela-
tion when it occurs as a subgoal (deduce , search data base , compute ) .

________________________
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(3) Predicate Occurrence Array . Each entry represents a
predicate occurrence and contains the following information about
the occurrence: its predicate name (index into predicate array),
the sign of the occurrence (positive or negative), whether the
occurrence is in the antecedent or consequent of the implication,
the main connective (conjunction or disjunction) governing the
occurrence, and the numerical position of the occurence within its
premise. The information is compactly stored in a single—mard bit
vector to save storage space.

(4) Argument Array. The arg ument stri ngs of the predicate
occurrences are stored in the argument array in one—to-one corre-
spondence to the positions of the occur 1 ences in the predicate
occurrence array.

• (5) Link Array. Truth—functional dependencies within pre-
mises are stored in the link array • These dependencies can be
implicational, disjunctive, or conjunctive. For each predicate
occurrence, a list of the occurrences with which it is truth—func-
tionally connected is entered into the array.

(6) Unifications Array. Each entry conta ins a list of the
unifications (deductive int eractions) associated with the given
occurrence. The unifications array and the links array comprise
the predicate connection graph .

( 7) Variable—Substitut ions Array. The substitution lists
associated with unifications are stored in one—to~~ne correspon—
dence with the positions of the unifica t ions in the unification
array.

Chain Generator, Plan Generator, and Plan Verifier

The Chain Generator, Plan Generator, and Plan Verifier support
the deductive pathfinding, plan generation, and verification pro-
cesses. They coumunicate with one another by means of the control
processor and with the user by means of the display processor.

Display Processor

Plan and proof (evidence) review and query refinement pro-
cesses are supported by the Display Processor. The user can , for

• example, examine middle—tern chains generated , plans for med , sub-
goals , verified plans, data—base search requests , data—base values
returned , answer s, completed proofs , and premises used in proofs.
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DEDUCTION EXAMPLES

Figures 3 and 4 illustrate the curre nt operat ion of the deduc-
tive processor (DP) prototype interfaced to a omill RDMS. (Both DP
and EMS are written in LISP 1.5 and operate on SDC’s Amdahl 470/V5
computer.)

The first example illustrates the generation of short inference
and search /comput e plans for the question , “What ships are closer to
the Kittyhawk ‘s home port than the Kittyhawk is?” The query is
first shown in English and then in the primitive conditional sym-
bolic form that the prototype currently recognizes. The query is
expressed in terms of a conjunctive goal composed of the predicates
CLOSEX-THAN and HOME—PORT . Constants (such as Kittyhavk) are
specified by being enclosed in parentheses, while variables (such
as x and y) are not • One of the query goal s (HOME— PORT) is to be
given data—base supp ort; that is, it has been defined by data base
values , while the other goal (CWS~~—TEAN ) is to be deduced. Since
the antecedent in the query is empty, the system back—chains from
CLOS~~-THAN through premise 29 • The plausibility of the plan in
this case is simply the plausibility of the single premise used
(plausibility measures are assigned by the data—base administrator
and ra nge from 1 (very low plausibility ) to 99 (almays the case)).

• Two new search requests (in addition to HOME—PORT) result from pre-
mise 29, as veil as a comput, relation containing functional argu-
ments . Computatio ns for the funct ions and the relation are delayed
until values for the variables x and y (the values need ed to satisfy
the search requests) have been found in the data base .

The system sends the four searc h r.qu ests to the EDMS, which
finds two ships , the Forres tal and the Cridley , that are closer
to the Kittyha wk ’s home port (San Diego) than the Eittyhavk is.
The system then displays the proof that lad to the first answer
(:he Forrestal ). A proo f using the other a~~ ,er would be identical
to this one except that Cridley would replace Porrestal in the
proof , and the distance between the Gridley and San Diego would
replace 310 (the distance between the Porrestal and San Diego)
The sy~~ols C2 , G3 , etc., represent nodes in the proof prop osal
tree and are used here for ref erence . 62 and 63 represent the
original goals as also shown in the inference plan. CS, 66, and
Cl are subgoals that resulted from pr omise 29, which wes used to
deduce G2. Thus , these three subgoals are indented below G2.

The middle—term—chaini ng and planni ng processes are mare evi-
dent in the example in Figure 4. The input query contains two
assumpt ions (DAMA GED and DESTINATION ) and one goal (TRANSPORT ) .
Taurus and NY are constants; Cargo and x are variables . The query
asks the system to find values for x tha t satisfy the query . The
variable x is also restricted to ra nge over ships . This is an
exampl e of a type restriction on a variable. In the course of
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°WHAT SHIPS ARE CLOSER 10. ThE KITTY HAWK ’S HOME PORT
•THA N THE KITIYHAWK IS?

~
JERY((OINP(A ND (CLOSER-THAN X (KITTYHAWK) Y)

r (HOME-PORT (KITTYHAWI() Y ) ) ) )
I*ERENC E PLAN:

DEDUCE G2 °CLOSER-THA N X KITTYHAW K Y
SEARCH G3 *HOME.. PORT KITTYHAWK Y

PR EMISES USED: (29) PLAN PLAUSIBILITY : 99
SEARCH/COMPUTE PLAN:

SEARCH *SHIPS KITTYHA WK
SEARCH *SHIPS X
SEARCH *HOME ..PORT KITTYHAWK Y
COMPUTE *GREATER_ flIAN (DISTANCE-BETWEEN KITTYHAW K Y) (

DISTANCE-BETWEEN X Y)
ENT ER I NG DATA BASE
DATA—BASE SEARCH SUCCESSFUL
* * ** * ** * ** * ****
ANSWER SU~~~RY --
VAR IABLES:
(x Y)
ANSW ERS:
(FORRESTAL SAN-DIEGO )
(GRIDLEY SAN-DIEGO )

PROOF DISPLA Y :
DEDUCED G2 °CLOSER.T~~N FORRESTAL KITTYHAWK SAN-DIEGO
FACT G5 **SHIPS KITTYHA WK
FACT G6 ~~SHIPS FORRESTAL
COMPUTED G7 **GREATER_THAN 378 310
FACT G3 *HOME..PORT KITTYNAWK SAN -D I EGO

PR EMISES USED : (29) PROOF PLAUSIBILITY: 99
TYPE PREM ISE PIJSER TO DISPLA Y , OR END ’:
29
( (ALL X79) (ALL XBO) (ALL XB1 )

(AND (SHIPS X79) (SHIPS XBO)) .

(GREATER-ThA N (DISTANCE-BETWEEN X79 X81 )
(DISTANCE-BETWEEN X8O XB1 )))

IMP (CLOSER-ThA N X80 X79 X8 1))
PLAUSIBILITY: 99
TYPE PREMISE *JMBER TO DISPLA Y. OR ‘END ’ :
END
END DISPLAY

• Figure 3. Deduction Involving Deduce , Data- Base Search , and
Compute Predicates 

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . - ____
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°IF THE TAURUS WERE DAMAGED WHILE DESTINED FOR NEW
YORK ITh A CARGO. WHAT SHIPS COULD TRANSPORT ThE

• °CARGO TO NEW YORK?

QUERY((( WHA T (SHIP . x) )
(AND (DAMAGED (TAURUS))

(DESTINATION (TAURUS) (NY ) CARGO))
IMP (TRANSPORT X CARGO (NY)) ) )

INFERENC E PLAN:
DEDUCE 61 *TMNSPORT SHIP#X X75 NY
ASSUME •DESTINATIO N TAURUS NY XiS

DEDUCE 63 **OFFLDAD TAURUS X75 X72
• ASSUME °~DAMAGED TAURUS

MID-TER N **RETURNS TAURUS X72

PREMISES USED: (23 7 15) PLAN PLAUSIBILITY : 80
SEARCH/COMPUTE PLAN :

SEARCH *~~~E..PORT TAURUS X72
SEARCH *CARRY TAURUS X75
SEARCH *AVAILABLE SHIP#X X72

ENTERING DATA BASE
DATA-BASE SEARCH SUCCESSFUL
****** ***** ****

ANSWER SUMMARY —-
VARIABLES:(x )
ANSWERS:
(P1 SC ES)
(GEMIN I)

PROOF DISPLAY:
DEDUCED Gi *~‘D~NSPfl~T PISCES OIL NY
ASSUM E *DESTINAT ION TAURU S NY OIL

DEDUCED 63 ~°OFFLOAD TAURUS OIL FREEPOR T
ASSUME ~~DAMAGED TAURUS
MID-TERM °~R ETURNS TAURUS FREEPORT

FACT 611°°°HOME-PORT TAURUS FREEPORT
• FACT G12~ *CARRY TAURUS OIL

FACT 64 °°°AVAILABL E PISCES FREEPORT
PREMISES USED: (23 7 15) PROOF PLAUSIBILITY: 80

• END DISPLAY

Figure 4. Deduction Using Middle—Term Chaining
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developing deductions , the system vii i not allow values that
belong to domain classes other than ships to be substituted for x.

The inf erence plan shown in Figure 4 has already been verified
To see the planning mechanis. mare clearly, refer to Figure 5. The
first middle— term chain generated connects the DESTIMTION assump-
tion to the TRANSPORT goal via promise 23 • This is shown by the
unificat ions (deductive interactions ) u1 and u2 in Figure Sa. The
predicate occurrences involving the relations AVAILABLE and
OFFLOAD become subprobl oms. The former is to be given data—base
support; the latter is deduced by a middle—term chain from the
DAMA GED assumption through promises 7 and 15. This chain is shown
in Figur e Sb by the unifications u3, uj, and u5. The two new sub-
problems are to be given data—base support. Thus the plan generated
uses three premises and contains three subprobloms requiring data-
base search. The plausibility of the plan is calculated by a
fuzzy intersect ion (the minimum of the plau sibilities of the
promises involved —Zadeh (1965)).

The plan is then verified with variable substitut ions inserted
in the plan and in the search requests (F igure 4) . Note the
var iable constraints in the search requests. The variable X72
represents the home port of Taurus; values found for this variable
must be the same as those found for x72 in the AVA ILABL E search
request. Thus, those ships that are iva ilable in Taurus ’s home
por t are the ones we are interested in. The proof display is given
for the first answer found (the Pisces).

In Figure 5b, note that the unifications u~ and U5 were com-
puted when these premises were first entered into the system and
sto red in the PCC. Also stored in the PCG were the truth—functional
dependencies within the premises (for example , between DAMCED and
RETURNS, between RETURNS and OFFLOAD, and between DESTINATION and
TRANSPORT) . The unifications ul, u3, and u2 involve query predi-
cates. Hence they were compu ted after query input to locate possi-
ble middle—term—c hain end points . Once these were found , only the
FCC was used for middle-term chaining .

COMPLETENESS ISSUES

The deductive logic on which our system is based is tha t of an
extensional first—order predicate calculus where the issue of logi—

• cal completeness often arises . In our discussion , we will distin-
guish between expressional completeness and derivational complete-
ness.

By sapressio nal completeness is meant the ability to r epre-
sent , in our primitive—conditional form , equivalents of all the
veil—formed formulas of a first-order predicate calculus. A worry

— •-~~~— • ~~-• ~~~_ .__ ~~ _ ~~~~•— ,-— •-— - - ~~~~~~ - • -  •s_ - ~~~~~~ —~~~



~T ~~~~~~~ ~

196 ~zuocc, LLABR MW TRAVIS

_ — —

K• a a U, a a
In 0

DI — a
I. p.- I’I

a C%J 10 a S
~~~

. 
~, PC ~~~~~J ~,a a a a

PC PC 40 C.J PC PCin —,-_ ~~
- PC PC I- I-

2 2 2 2
~ 

0
E

S.- I-.

n n~~P n~ n
._.. \ ~~~~~ 

SO
— ___ —~~ ___ —

p. 
~ c~.JP.. t

,~~~I , ,%  p..j !~n e %  in
PC .0 PC .0 ~~ PC I PC .0

‘~~~ 1
.-.~~~~ %~~ I

~~I I— I 8— w 1 —I. — • I C
~~~~~l ~a a a

In I, ~~ 4fl I ____

C%J 40 P4 1 10 ~ VI
40 ~~~~~ I
~. 

..
~~~~ 

PC ~ PC I.
a ~— ~ 40 iE~ i~~ % •e ~ — n PC 4.’ I~ 4.’
r.. _ e ~X S~•~~~~, C ~~~~ I — a, - n  e m c.D i i—

‘~ r..
PC ~J 4.’ 41) _ V

8 — I.—
.5 H

I.
Ia. Ia.

— — e
— C —C • C a a

C • V 40
I. 10 10 1. VI .0
S .0 P..
U PC I. ~ ~~a I S

~~
p.. •

PC Si PCIn a —. 41) a
- s ,-

I. r-. ~ . 
p.

PC n
45 V ‘5• 5- K ‘V 5- K

~ C — C..~~~ — ..z —Co I— I.- Co I_ I—
4.’ 0’ ~~~~~

a p. 5— —~~ 4,) “ 5- 0
— ‘• 4.b~~~ —

~~~K 5- .p. 
~~~~~~~a —  in ii. a-  in in

~~~)— Ia.I
C

VI Ia __ 4,) —
105 aS 40 SC  .5 .0— —



~
iirr 

— 

~~~~~ 

,

~~~~~~~

---.-—

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

-

~~~~~~~

-- —-.- —

~~~~ 

-

~~~~

DEDUCTIVE PUNNING AND PATMPIII)ING 197

might arise because only one level of nesting is allowed in pri mi-
tive conditio nals , i.e., the eonjuncts or disjuncts of an antece-
dent or of a consequen t must be composed of literal. (negated or
unnegated predicate occurrences) . The worry can be put to rest,
however, when it is recalle d that even simpler normal forms are
expressiona lly complet e, for example, the conjunctive normal fo rm .
A conjunctive normal form (CNF) expression is a conj unction of dis-
junctions of literals • In our logic, a primitive conditional with
no antec edents is interpret ed as unconditionally asserti ng the
consequent . Thus a CMP disju nction can always be represented as a
primitive conditional with a disjunctive consequent and no ante-
cedent; and any CNP expression as a conjunction of such condi-
tionals. Through the use of the inf er ence rules of simplificatio n
(, & $; • 6 ~ 

-
~~ *) and of adjunction (

~.* * ~ & $), primitive
conditionals may be combined or separated to provide .xpressio nal
completeness.

By derivational completeness is meant the abilit y to generate
all valid derivations. Our system is derivationally complete in
theory, but the important issue for us has been the system’s prac—
tical efficiency and effectiveness in an appl ications-oriented
environsent. That our system is derivationally complete follows
from the fact tha t it is expressionally complete and handles all
of the deductive interactions associated with unification (inclu-
ding Skolem functions ) as used in resolution systems, as well as
all forms of deductive dependencies that may occur between predi-
cates (see Klahr (1975] for more detail ). The derivational com-
pleteness problem for our system is analogous to the completeness
problem for a resolution system constr ained to use a set-of—supp ort
strategy which has long been known to be derivat ional3 .y complete
(Woe et al (196’]). Middle—term chains generated in resp onse to
a query initially involve the desired conclusion (query goals).
Subsequent chains involve subgoals resulti ng from premises used in
chains to query goals , etc .

In practice , almost any performance—oriented planning strategy
including ours will initially apply selection const raints tha t may
preclude certain deduc t ive interactions f rom being considered and
thus lead to possible incompleteness. However , successive relaxa-
tion of these selection constraints will enable the system to
achieve all possible deductive paths.

SUIIIARY MW FUTtZE PLANS

We have described a deductive proc essor specifically designed to
augment relational da ta base systems and user -oriented language pro-
cessors • The processes of deductive path! inding, inference planning,
verification, user review of plans, answe r extraction, and proof dis-
play have been outlined and illustrated with several examples.

~
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Several of the more important design features that are inte-
gral to this approach are:

• Verification (checking for consistency of variable substi-
tutions) and instantiation (data-base search) are delayed
until one or more global inference plan s have been con-
constructed .

• Precomputed deductive interactions (unifications) among pre-
mises are used to avoid their constant recomputation during
deductive processing .

• Variable types (domain classes) are used to semantically
• restrict the range of predicate expressions.

• Shortest assumpt ion—to—goal deductive paths are found first .

• Inference plans and data—base access strategies are created
from the premise file without requiring access to data—base
values .

• Advice can be given on the use of par ticular premises and
predicates to aid in the discovery of relevant inference
plans.

The proto type is currentl y being expanded along several di f-
ferent dimensions in line with our goal of eventually incorporating
the deductive processor into an operational data management system
and language processor environment . A number of improvements in
man-machine interaction and user displays are being made to supp ort
more direct and flexible control of plan—generation and da ta—base
search . Additional semantic constraints on the generation of plans
will be introduced by expanded use of the semantic network, and by
extension of the semantic—advice formalism . We also plan additional
investigat ions in the use of incomplete and plausible knowledge,
and logical properties .
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