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\ ABSTRACT

Inference planning techniques have been implemented and incor-
porated within a prototype deductive processor designed to support
the extraction of information implied by, but mot explicitly inclu-
ded in, the contents of a relationally structured data base.
Deductive pathfinding and inference planning are used to select
small sets of relevant premises &nd to comstruct skeletal deriva-
tions. When these “skeletons™ are verified, the system uses them
as plans to create data-base access strategies that guide the
retrieval of data values, to assemble answers to user requests, and

= to produce proofs supporting those answvers. Several examples are
presented to illustrate the current capability of the prototype

Deductively Augmented Data Management (DADM) system. _ TR

ADAO70801

INTRODUCTION

Not only are computerized data bases growing in size, number,
and complexity, but the number of on-line users is also growing
rapidly. The availability of larger and cheaper memories is making
it feasible to store vast quantities of data on-line, but this
often serves only to increase the frustration of users, who,
because of limitations in current data-base retrieval techmology,
are unable to take full advantage of the information. A major
deficiency in present data-bsse systems is an inability to dis-
cover (at the direction of users) implicit relatjonships among the
data items explicitly present.
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180 KELLOGG, KLAHR AND TRAVIS

Deductive logic offers considerable potential for improving
on-line access to large, complex data-base domains. The prototype
Deductively Augmented Data Management (DADM) system described in
this paper has been designed to:

1. Permit a user to pose complex and subtle queries to the

8 erential ect
- £ epts to data-base structur
2. ate for the user uctively connected ’

chains that he can use in evaluating the utility and
credibility of information derived from the data base.*

In particular, user-system interactive techniques have been
developed whereby the system creates and displays inference plans
and chains of evidence as an integral part of the question-answering
process. The user actively participates by supplying advice,
refining his queries, and requesting additional plans and evidence
as necessary. This interactive cycle continues until the user is
satisfied with the quality as well as the guantity of the derived
information. Sometimes this entails the provision of evidence both
for and against a user's conjecture or working hypothesis. Some-
times the system provides a user with a conditional (yes if...)
answer rather than a strictly categorical answer. In all cases,
the system permits a user to ask for corroborative evidence by
requesting alternative derivations for an answer. (Multiple evi-
dence chains may often reinforce the user's confidence in the
value of the information received.)

APPROACH

The design for the deductive processor described in this paper
evolved out of research on an English question-ansvering system
called CONVERSE (Kellogg et al. [1971) and Travis et al. [1973]).
This system consisted of a language processor (driven by English
syntax rules and a semantic network) and a relational data manage-
ment system that accessed specific facts realized as I tuple menm-
bers of predicate (relation) extemsions. When analyz.ng a query
such as "Who is mayor of Denver?", the system would use its semantic
network to infer that the reference was to the City of Denver, mot
the County of Denver. The inference was based on the general pro-
position, repreqented in the semantic metwork, that the range of
the relation being mayor of includes cities but mot counties.

applying rules of strict logical reasoning, the information (the set
of general assertions or premises) that is being used to comstruct

®* It is important to note that while the deductive processor will be N for
White Section#

evidence chains may range in degree of plausibility from "hard" Buif Section [

(strictly true) to "soft" (possibly the cause). 'NCED
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DEDUCTIVE PLANNING AND PATHFINDING 181

Further, in analyzing more complex queries such as "What cities are
in states with a population less than that of the City of Boston?",
the system would infer which states possess the property of having
a population smaller than that of Boston--an ad hoc property mot
directly available in the network or data base. While useful,
these kinds of inferences are special purpose and limited. We
decided that a more general-purpose inferential capability needed
to be designed and added to the system for use in many different
contexts and for many different purposes (Klahr [1975], Kellogg et
al. [1976], Klahr [1978], and Kellogg et al. [1977]).

Two design criteria were crucial in the development of the
deductive processor (DP). The first criterion was that the DP
would be an independent system yet capable of being "added on" to
existing and emerging relational data management systems (RDMSs).
This led to a distinct separation between a store of extensional
data (specific facts) and a store of intensional data (general
statements, premises, rules). The former is accessed by an RDMS,
while the latter is accessed by the DP (see Figure 1). (This
separation of data is also suggested in a recemt proposal by
Reiter [1978].) No change is necessary to the RDMS to add on the
DP. This same criterion of an RDMS add-on also led to a focus on
deduction by exception: user queries not requiring deduction should
be identified as such and sent directly to the RDMS.

The second criterion focused on the selection of relevant
premises. Premises, or inference rules, are general statements
that can be used in making deductions. Given a large number of
such premises, a crucial problem arises in controlling the deduc-
tive search space. An inference planning process has been designed
and implemented to locate potentially relevant premises. This pro-
cess must be fast and efficient to compensate for the overhead
processing involved. But such planning is needed in order to give
the system guidance in its deductive searching. Furthermore, the
planning process is used to guide and direct relational data-base
searching by specifying what facts are needed to support the
deductions and proofs found to answer.user queries.

N\
ABSTRACTING AND SEMANTICALLY RESTRICTING DEDUCTIVE INTERACTIONS

Processes of abstraction (of deductive interactions) and
restriction (of semantic scope) are central to our approach to
relevant premise selection. Where possible these abstraction and
restriction processes are carried out during premise input in order
to minimize processing time during query analysis and deductive
question-answering.
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DEDUCTIVE PLANNING AND PATHFINDING 183

Premises and queries are entered into the system as primitive
conditional statements (Travis et al. [1973]).%* A primitive condi-
tional is a first-order predicate-calculus normal form whose cen-

- tral connective is the implication sign. The antecedent of the
implication contains the assumptions of the premise/query and the
consequent contains the goals of the premise/query. Assumptions
and goals are literals, that is, atomic predicate occurrences or
negated atomic predicate occurrences. Within a given antecedent or
consequent, literals may be combined either conjunctively or dis-
junctively. Each predicate occurrence is an instance of a predi-
cate (relation) along with its argument terms (namely variables,
constants, or functions). Primitive conditionals are used because
they support the introduction of general assertions in & natural
wvay, similar to the way production rules are used in knmowledge-
based systems; see Davis and King [1975].

Several kinds of information are abstracted from the premises
during input and used to create a yredicate connection graph
(PCG),** as well as other storage structures that promote efficient
association of deductive and semantic information (Klahr [1975]).
A premise is first converted into a Skolemized, quantifier-free
form. The implication (as well ag other truth-functional) connec-
tions among the predicate occurrences in a premise are encoded into
the PCG as a series of deductive dependency Links. Further, the
deductive interactions (or unifications--see Robinson [1965])
between predicate occurrences in the new premise and predicate
occurrences in existing premises are pre-computed and encoded into
the PCG as a series of interpremise associative Arcs. The variable
substitutions required for unification are stored elsewhere, for
later use in verifying skeletal derivations (i.e., inference or
proof) planms.

Semantically restrictive information is introduced in several
different forms in order to restrict the logically possible unifi-
cations to those that are semantically meaningful for particular
application domains.

The variables and constants occurring in premises can be
"typed", that is, assigned to specific domain classes. For example,
the variable "X" might be assigned the type DOCUMENT, and the con-
stant "Sanm" assigned the type SCIENTIST. Then, whenever "X" and
"Sam" occur in the same argument position of different instances
of a relation, those relation instances will not unify, and they
will not be connected in the PCG, due to their semantically

# In an operational system, premises would normally be entered by
the data-base administrator.

#% See Kowalski [1975] and Sickel [1976] for the use of connection
graphs in theorem proving.
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184 KELLOGG, KLAHR AND TRAVIS

incompatible types.

Compound types, consisting of set union, intersection, and
difference operations over simple types, may also be used to lpecify
more complex semantic restrictions on predicate domains. A
semantic network is used to represent set relationships between
types.* Class inclusion paths within this network are used, for
example, to permit unification of instances of type SCIENTIST with
instances of type MAMMAL. As new premises are entered into the
system, this semantic network is automatically updated to reflect
nev predicate-domain associations.

In addition to this use of semantic information to restrict
unification by means of types, unification between multiple occur-
rences of a predicate within the same premise may sometimes be
avoided by restating the premise's assertion by use of logical pro-
perties. For example, the predicate "North-of" could be charac-
terized by the premises:

¥x ¥y (North-of(x,y) & North-of(y,z) > North-of(x,z))
¥x Yy (North-of(x,y) D = North-of(y,x))
Vx (= North-of (x,¥))

The first premise specifies that North-of is tramsitive. This
premise is recursive and can deductively interact with itself and
the other premises to cause a rapid expansion of the deductive
search space. To help avoid this problem, the DADM system permits
binary predicates to be characterized by their logical properties
(for example North-of would be assigned the logical properties:
transitive, asymmetric, and irreflexive). Computational procedures
can then be called to effect special-purpose inferences associated
with various groupings of logical properties. Recursive premises
describing logical properties of predicates are therefore replaced,
vhere possible, by special-purpose subroutines. Subroutines are
being implemented for consistent combinstions of the logical
properties identified by Elliott [1965].%** Puture effort will
involve other properties such as a relation being hereditary with
respect to amother relation, e.g., P being hereditary over R in

¥x ¥y P(x) & R(x,y) 2 P(y)

* See McSkimin and Minker [1977, 1978] for related research on
introducing semantic information into a deductive system.

#% Properties and examples are: reflexive (equal-to), irreflexive
(greater-then), symmetric (equal-to), asymmetric (North-of), tran-
sitive (located-in), l-leader (mother-of), l-follower (weighs),
noregrowth (son-of), and unlooped (mother-of).
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Logical properties of binary relations are identified by a
user-system dialog that is initiated, as shown below, for the predi-
cate "North-of" (user input is preceded by an asterisk):

* Define (North-of)

Suppose one thing is North-of a second thing that in turn
is North-of a third thing. Is the first thing North-of
the third? \

*® Yes

If one thing is North-of a second thing, will it always be
the case that the second is North-of the first?

* No
Might it ever be the case?
* No

After the third yes/no response, the system is able to identify
"North-of" as a transitive, asymmetric, irreflexive, and unlooped
relation.

Variable typing reduces the number of unifications in the PCG
by making use of semantic domain restrictions. Logical properties
replace some kinds of recursive premises, and their often trouble-
some unifications, with special-purpose inferencing procedures. A
third form of semantic restriction used in the DADM system does not
directly eliminate unifications in the PCG, but does limit the
selection and use of premises and predicates by means of advice
supplied by a data-base administrator or user during query process-
ing.

A data-base administrator enters semantic advice in the form
of "Conditions + Recommendations" rules. For example, one could
advise that a ship return to its home pcrt if it is damaged by
specifying:

(Assumption Damaged(Ship)) + Returns(Ship Ports)

The system would try using premises containing the Returns relation
wvhen the Damaged relation occurs as an assumption. Advice rules
are stored in an advice file, where they are automatically selected
and applied whenever their condition part holds for imput queries.
In addition to such advice rules, the user could supply advice for
a particular query by stating only the advised recommendation for
that query.
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Advice most typically involves recommendations on the use of
particular premises or predicates in finding deductions. For ad-
vised premises, the system will try using them whenever possible in
the course of constructing a proof. For advised predicates, the
system will try chaining through occurrences of them in premises.
In the case of negative advice, specified premises and predicates
are avoided in proof comstruction.

INFERENCE PLANNING AND DEDUCTIVE QUESTION ANSWERING

The developmeny, refinement, and execution of inference plans
proceeds through a series of phases. These phases are designed
to progressively apply a series of increasingly more stringent de-
ductive, semantic, and pragmatic constraints until a user receives
his desired information or is convinced that he has explored all
reasonable deductive pathways into the data base. These phases are
described below.

Deductive Pathfinding

Symbolic queries (in the form of primitive conditionals) are
decomposed into a set of assumptions (antecedents of the condi-
tional) and a set of goals (consequents of the conditiomal).
Deductive pathfinding employs a process of middle-term chaining
(Klahr [1978]) to be illustrated later. This process uses the
predicate connection graph to find chains of middle-term predicates
needed to deductively connect assumptions to goals. Middle-term
chaining combines the processes of forward chaining from the assump-
tions in a query and backward chaining from the goals in a query.
When a query contains no assumptions, and the system cannot dis-
cover plausible ones to use--say, as a result of semantic advice--
middle-term chaining defaults to backward chaining. As chaining
proceeds, a series of expanding deductive-interaction "wave fronts"
are generated from assumptions toward goals and from goals toward
assumptions. Intersections are performed on the wave fronts
until a non-empty intersection occurs, at which time the system has
found an implication chain from an assumption to a goal. Several
such implication chains are usually found (shortest chains first)
before a user-controlled limit is reached. Middle-term chaining
1s further constrained by the use of semantic advice and plausi-
bility measures. The plausibility measures are assigned to premises
and are used to order the predicate occurrences comprising middle-
term chain wave fronts to ensure that the deductive paths involving
the most plausible premises are selected first. In a similar
fashion, semantic advice obtained from the advice file or from the
user is transformed into premise and predicate alert lists that are
used to ensure that advised premises and predicates are given pri-
ority or avoided, depending upon whether the advice is positive or
negative.
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The same assumptions may be used to find deductive support for
different goals (and subgoals). When assumptions are mot supplied
in a query, useful assumptions may sometimes be found by following
semantic network predicate-domain connections, or by using advised
predicates as possible assumptions.

% Plan Generation

For each middle-term chain generated, the system extracts the
premises whose occurrences are part of the chain. Subgoals result-
ing from the premises are set up to be resolved either by deductive
support through the premises, by data-base search through the rela-
tional file, or by procedural computation. Subgoals are added to
a proof-proposal tree, which contains the inference plans being
formed and developed. Once inferemce plans have mo remaining deduc-
tive subgoals, they are available for verification, user review,
and instantiation.

Plan Verification

Skeletal plans constructed during plan generation are valid
proofs at the truth-functional level. In plan verification, the
variable substitutions associated with the unifications in each
plan are examined for consistency. If there are mo clashes—-that
is, if no variables are assigned more than one distinct constant
value—then verification is successful and instantiation by data-
base search may follow. During this stage, classes of variables
that must take on the same value are constructed and used to refor-
mulate skeletal derivations into search-compute plan components
(i.e., data-base access strategies) and inference plan components
(comprising deduced goals, deduced subgoals, and assumptions).

Plan Review, Plan Selection, and Query Refinement

Though on-line interaction may be initiated by the user or
prompted by the system at various points during pathfinding and
plan generation, most user review and interaction occurs after plan
verification. Verified plans are usually reviewed in the order in
which they were generated. (Recall that plans using the shortest
paths, most plausible premises, and advised premises and predicates
are generated first.)

During review, a user may reject a plan, instantiate it (by
requesting data-base search) or suspend further action on it until
other plans have been reviewed. In this manner, the user can mini-
mize unnecessary data-base searching by reviewing the derived plan
information and reaching conclusions about the likely data-base
searching consequences of his original request. Plan review may,
for example indicate that additional assumptions, goals, or advice
should be associsted with the original request, or that the original
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query should be refined or replaced by a wore specific (or general)
request. Considerable insight into interpreting complex requests
with respect to large data bases can be achieved, short of actually
searching the data base, by this process.

Data-Base Search and Answer Generation

An inference plan constitutes a complete proof just in case mo
search/compute plan is produced (i.e., all subgoals are deduced
from premises). More typically, one or more subgoals require data-
base and/or procedural (compute) support. Search/compute plans are
executed, in general, in three phases: first, all computable
functions and predicates having only constants as arguments are
evaluated; second, a sequence of relstional search requests is exe-
cuted against the data base; third, remaining computable functions
and predicates are applied to the results of data-base search.
Ansvers are extracted from the N-tuples of data values associated
with search/compute plan variables. (Each of these N-tuples
supplies instantiation values that may be used to convert the ori-
g8inal inference plan into a complete proof or "chain of evidence".)
An ansver may be categorical (for example, "yes" if no variables
occur in the original request, and data-base search is satisfied),
descriptive (a set of search-derived query-variable values displayed
in tabular format), or conditional ("yes if..." the specified
predicate-argument conditions can be verified by the user to hold
true for the application domain).

Often these categorical, descriptive, or conditional answers
wvill satisfy the user's original information requirement. In other
cases, he may wish to proceed to the next (and final) step in the
inference plan development-execution-review cycle.

Ansver Explanation and Evidence Review

Just as the plan review, plan selection, and query refinement
process is designed to aid the user in understanding the full com-
puter-developed implications of his query, the answer explanation
and evidence review phase of processing is designed to support him
in his evaluation of computer-derived answers. In a later section,
several computer examples illustrate current proof displays. Though
this form is often sufficient to enable users to determine the
validity and/or utility of derived answers, a more interactive and
easily comprehended dialog format for evidence display is under
development. This new facility will permit a user to selectively
interrogate the system concerning particular answers, relations,
and domains. By repetitive interrogation, he may delve as deeply
as he desires into particular lines of reasoning or evidentary
support, without resorting to the current practice of full proof
display.
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Inference Planning, Data-Base Semantics,
and Generalized Navigation

The relational (extensional) data base constitutes a logical
model or interpretation for many of the relations used in the pre-
mise (intensional) file. Conversely, the intensional information
constitutes a partial but precise representation of the semantics
of the extensional data base. Inference planning uses this inten-
sional information to develop both the semantic implications of
user-request assumptions and the semantic antecedents of user-
request goals. Therefore, inference planning may be used to support
generalized navigation or browsing operations through the semantics
of a data base. Generalized navigation is further supported by
allowing users to enter requests containing unrestricted relations
(i.e., relations with no arguments). Given queries of this sort,
the system can quickly find deductive paths through system restric-
ted concepts supporting goal relations and concepts linking assump-
tions to goals. This system feature has proved most useful as a
tool for exploring the interrelationships between intensional con-
cepts.

DEDUCTIVE PROCESSOR COMPONENTS

Figure 2 shows the components of our DADM system prototype.
At present, users communicate directly with the control processor;
a language processor will be incorporated at a later date. The
control processor accepts premises and queries in primitive condi-
tional form as well as user advice and commands. It accesses and
coordinates the use of the several system components briefly des-
cribed below.

Array Initialization and Maintenance

Information abstracted from the premises is segmented into
seven internal arrays. This segmentation contributes to system
modularization and increases processing efficiency. The seven
arrays are:

(1) Premise Array. Each entry represents a premise and con-
tains a list of the predicate occurrences in the premise, the
plausibility of the premise, and the premise itself (both symbolic
and English) for purposes of display. ;

(2) Predicate Array, The predicate array contsins the rela-
tions known to the system as well as the support indicator asso-
ciated with each relation, which indicates how to resolve each rela-
tion when it occurs as a subgoal (deduce, search data base, compute) .
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DEDUCTIVE PLANNING AND PATHFINDING 191
(3) Predicate Occurrence Array. Each entry represents a

predicate occurrence and contains the following information about
the occurrence: its predicate name (index into predicate array),
the sign of the occurrence (positive or negative), whether the
occurrence is in the antecedent or consequent of the implication,
the main connective (conjunction or disjunction) governing the
occurrence, and the numerical position of the occurence within its
premise. The information is compactly stored in a single-word bit
vector to save storage space.

(4) Argument Array. The argument strings of the predicate
occurrences are stored in the argument array in one-to-one corre-
spondence to the positions of the occuriences in the predicate
occurrence array.

(5) Link Array. Truth-functional dependencies within pre-
mises are stored in the link array. These dependencies can be
implicational, disjunctive, or conjunctive. For each predicate
occurrence, a list of the occurrences with which it is truth-func-
tionally connected is entered into the array.

(6) Unifications Array. Each entry contains a list of the
unifications (deductive interactions) associated with the given
occurrence. The unifications array and the links array comprise
the predicate connection graph.

(7) Variable-Substitutions Array. The substitution lists

associated with unifications are stored in one-to-dne correspon-
dence with the positions of the unifications in the unification
array.

Chain Generator, Plan Generator, and Plan Verifier

The Chain Generator, Plan Generator, and Plan Verifier support
the deductive pathfinding, plan generation, and verification pro-
cesses. They communicate with one another by means of the control
processor and with the user by means of the display processor.

Display Processor

Plan and proof (evidence) review and query refinement pro-
cesses are supported by the Display Processor. The user can, for
example, examine middle-term chains generated, plans formed, sub-
goals, verified plans, data-base search requests, data-base values
returned, answers, completed proofs, and premises used in proofs.
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KELLOGG, KLAHR AND TRAVIS
DEDUCTION EXAMPLES

Figures 3 and 4 1llustrate the current operation of the deduc-
tive processor (DP) prototype interfaced to a small RDMS. (Both DP
and RMS are written in LISP 1.5 and operate on SDC's Amdahl 470/V5
computer.)

The first example illustrates the generation of short inference
and search/compute plans for the question, "What ships are closer to
the Kittyhawk's home port than the Kittyhawk 18?" The query is
first shown in English and then in the primitive conditional sym-
bolic form that the prototype currently recognizes. The query is
expressed in terms of a conjunctive goal composed of the predicates
CLOSER-THAN and HOME-PORT. Constants (such as Kittyhawk) are
specified by being enclosed in parentheses, while variables (such
as x and y) are not. One of the query goals (HOME-PORT) is to be
given data-base support; that is, it has been defined by data base
values, while the other goal (CLOSER-THAN) is to be deduced. Since
the antecedent in the query is empty, the system back-chains from
CLOSER-THAN through premise 29. The plausibility of the plan in
this case is simply the plausibility of the single premise used
(plausibility measures are assigned by the data-base administrator
and range from 1 (very low plausibility) to 99 (always the case)).
Two new search requests (in addition to HOME-PORT) result from pre-
mise 29, as well as a compute relation containing functional argu-
ments. Computations for the functions and the relation are delayed
until values for the variables x and y (the values needed to satisfy
the search requests) have been found in the data base.

The system sends the four search requests to the RDMS, which
finds two ships, the Forrestal and the CGridley, that are closer
to the Kittyhawk's home port (San Diego) than the Kittyhawk is.
The system then displays the proof that lad to the first answer
(the Forrestal). A proof using the other answer would be identical
to this one except that Gridley would replace Porrestal in the
proof, and the distance between the Gridley and San Diego would
replace 310 (the distance between the Forrestal and San Diego).
The symbols G2, G3, etc., represent modes in the proof proposal
tree and are used here for reference. G2 and G3 represent the
original goals as also shown in the inferemce plan. G5, G6, and
G7 are subgoals that resulted from premise 29, which was used to
deduce G2. Thus, these three subgoals are indented below G2.

The middle-term-chaining and planning processes are more evi-
dent in the example in Figure 4. The input query contains two
assumptions (DAMAGED and DESTINATION) and one goal (TRANSPORT).
Taurus and NY are constants; Cargo and x are variables. The query
asks the system to find values for x that satisfy the query. The
variable x is also restricted to range over ships. This is an
example of a type restriction on a variable. In the course of
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*WHAT SHIPS ARE CLOSER TO THE KITTYHAWK'S HOME PORT
*THAN THE KITTYHAWK IS?

QUERY((( )lﬂP(ADiCLOSER-THAN X (KITTYHAWK) Y)
HOME-PORT (KITTYHAWK) Y))))
INFERENCE PLAN:

DEDUCE 62 *CLOSER-THAN X KITTYHAWK Y
SEARCH 63 *HOME-PORT KITTYHAWK Y
PREMISES USED: (29) PLAN PLAUSIBILITY: 99
SEARCH/COMPUTE PLAN:
SEARCH *SHIPS KITTYHAWK
SEARCH *SHIPS X
SEARCH *HOME-PORT KITTYHAWK Y
COMPUTE *GREATER-THAN (DISTANCE-BETWEEN KITTYHAWK Y) (
DISTANCE-BETWEEN X Y)
ENTERING DATA BASE
DATA-BASE SEARCH SUCCESSFUL
Rhkdkkkdkhddk kit
ANSWER SUMMARY --
VARIABLES:
(x Y)
ANSWERS:
FORRESTAL SAN-DIEGO)
GRIDLEY SAN-DIEGO)
fhhkkkhkhddddir
PROOF DISPLAY:
DEDUCED G2 *CLOSER-THAN FORRESTAL KITTYHAWK SAN-DIEGO
FACT G5 **SHIPS KITTYHAWK
FACT 66 **SHIPS FORRESTAL
COMPUTED G7 **GREATER-THAN 378 310
FACT G3 *HOME-PORT KITTYHAWK SAN-DIEGO
PREMISES USED: (29) PROOF PLAUSIBILITY: 99
TYPE PREMISE MUMBER TO DISPLAY, OR 'END':

(iALL X79) (ALL X80) (ALL X81)
AND (SHIPS X79) (SHIPS X80))
(GREATER-THAN (DISTANCE-BETWEEN X79 Xx81)
(DISTANCE-BETWEEN X80 X81))

IMP (CLOSER-THAN X80 X79 X81)
PLAUSIBILITY: 99
IY';E PREMISE NUMBER TO DISPLAY, OR 'END':
END DISPLAY

Pigure 3. Deduction Involving Deduce, Data-Base Search, and
Compute Predicates
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_ *IF THE TAURUS WERE DAMAGED WHILE DESTINED FOR NEW
] *YORK MTH A CARGO, WHAT SHIPS COULD TRANSPORT THE
) *CARGO TO NEW YORK?

wﬂlY((iHHAT (SHIP . X))
A ?JAMGED (TAURUS))
DESTIMATION (TAURUS) (NY) CARGO))
IMP (TRANSPORT X CARGO (NY))))
INFERENCE PLAN:
DEDUCE  G1 *TRANSPORT SHIP#X X75 NY
ASSUME *DESTINATION TAURUS NY X75

DEDUCE 63 **OFFLOAD TAURUS X75 X72
ASSUME **DAMAGED TAURUS
MID-TERM  **RETURNS TAURUS X72

PREMISES USED: (23 7 15) PLAN PLAUSIBILITY: 80
SEARCH/COMPUTE PLAN:
SEARCH *HOME-PORT TAURUS X72
SEARCH *CARRY TAURUS X75
SEARCH *AVAILABLE SHIP#X X72
ENTERING DATA BASE
DATA-BASE SEARCH SUCCESSFUL
RRRA AR AR AA TR hdr
ANSWER SUMMARY --
VARIABLES:
(X)
ANSWERS :
PISCES)
GEMINI)
RRERRRRRR R AR AL
PROOF DISPLAY:
DEDUCED G1 *TRANSPORT PISCES OIL NY
AS SUME *DESTINATION TAURUS NY OIL

DEDUCED G3 **OFFLOAD TAURUS OIL FREEPORT
ASSUME **DAMAGED TAURUS
MID-TERM  **RETURNS TAURUS FREEPORT

FACT  G11***HOME-PORT TAURUS FREEPORT

FACT  G12***CARRY TAURUS OIL

FACT 64 ***AVAILABLE PISCES FREEPORT
PREMISES USED: (23 7 15)  PROOF PLAUSIBILITY: 80
END DISPLAY

Figure 4. Deduction Using Middle-Term Chaining
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developing deductions, the system will not allow values that
belong to domain classes other than ships to be substituted for x.

The inference plan shown in Figure 4 has already been verified.
To see the planning mechanism more clearly, refer to Figure 5. The
first middle-term chain generated connects the DESTIRATION assump-
tion to the TRANSPORT goal via premise 23. This is shown by the
unifications (deductive interactions) u; and u; in Figure 5a. The
predicate occurrences involving the relations AVAILABLE and
OFFLOAD become subproblems. The former is to be given data-base
support; the latter is deduced by a middle-term chain from the
DAMAGED assumption through premises 7 and 15. This chain is shown
in Figure 5b by the unifications uj, u;, and ug. The two new sub-
problems are to be given data-base support. Thus the plan generated
uses three premises and contains three subproblems requiring data-
base search. The plausibility of the plan is calculated by a
fuzzy intersection (the minimum of the plausibilities of the
premises involved—Zadeh [1965]).

The plan is then verified with variable substitutions inserted
in the plan and in the search requests (Figure 4). Note the
variable constraints in the search requests. The variable x7
represents the home port of Taurus; values found for this variable
must be the same as those found for x3 in the AVAILABLE search
request. Thus, those ships that are available in Taurus's home
port are the ones we are interested in. The proof display is given
for the first answer found (the Pisces).

In Figure 5b, mote that the unifications u; and us were com-
puted when these premises were first entered into the system and
stored in the PCG. Also stored in the PCG were the truth-functional
dependencies within the premises (for example, between DAMAGED and
RETURNS, between RETURNS and OFFLOAD, and between DESTINATION and
TRANSPORT). The unifications uj, uj, and uy involve query predi-
cates. Hence they were computed after query input to locate possi-
ble middle-term-chain end points. Once these were found, only the
PCG was used for middle-term chaining.

COMPLETENESS ISSUES

The deductive logic on which our system is based is that of an
extensional first-order predicate calculus where the issue of logi-
cal completeness often arises. In our discussion, we will distin-
guish between expressional completeness and derivational complete-
ness.

By expressional completeness is meant the ability to repre-
sent, in our primitive-conditional form, equivalents of all the
well-formed formulas of a first-order predicate calculus. A worry
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might arise because only one level of nesting is alloved in primi-
tive conditionals, i.e., the conjuncts or disjuncts of an antece-
dent or of a consequent must be composed of literals (megated or
unnegated predicate occurrences). The worry can be put to rest,
however, when it is recalled that even simpler normal forms are
expressionally complete, for example, the conjunctive mormal form.
A conjunctive normal form (CNF) expression is a conjunction of dis-
junctions of literals. In our logic, a primitive conditional with
} no antecedents is interpreted as unconditionally asserting the
consequent. Thus a CNF disjunction can alvays be represented as a
primitive conditional with a disjunctive consequent and no ante-
cedent; and any CNF expression as a conjunction of such condi-
tionals. Through the use of the inference rules of simplification
; (G&v~+¢; ¢ &y -+ y) and of adjunction (¢, + ¢ & ¥), primitive

N conditionals may be combined or separated to provide expressional

1 completeness.

By derivational completeness is meant the ability to generate
; all valid derivations. Our system is derivationally complete in
theory, but the important issue for us has been the system's prac-
/. tical efficiency and effectiveness in an applications-oriented
enviromment. That our system is derivationally complete follows
il from the fact that it is expressionally complete and handles all
A of the deductive interactions associated with unification (inclu-
4! ding Skolem functions) as used in resolution systems, as well as

i all forms of deductive dependencies that may occur between predi-
il | cates (see Klahr [1975) for more detail). The derivational com-
8] | pleteness problem for our system is analogous to the completeness
, problem for a resolution system constrained to use a set-of-support
%
f

strategy which has long been known to be derivationally complete
(Wos et al. [196°]). Middle-term chains generated in response to
a query initially involve the desired conclusion (query goals).
Subsequent chains involve subgoals resulting from premises used in
chains to query goals, etc.

In practice, almost any performance-oriented planning strategy
including ours will initially apply selection constraints that may
preclude certain deductive interactions from being considered and
thus lead to possible incompleteness. However, successive relaxa-
tion of these selection constraints will enable the system to
achieve all possible deductive paths.

SUMMARY AND FUTURE PLANS

We have described a deductive processor specifically designed to
sugment relational data base systems and user-oriented language pro-
cessors. The processes of deductive pathfinding, inference planning,
verification, user review of plans, answer extraction, and proof dis-
play have been outlined and illustrated with several examples.
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F | Several of the more important design features that are inte-
: gral to this approach are:’

® Verification (checking for consistency of variable substi-
tutions) and instantiation (data-base search) are delayed
until one or more global inference plans have been con-
constructed.

® Precomputed deductive interactions (unifications) among pre-
3 mises are used to avoid their constant recomputation during
2 deductive processing.

® Variable types (domain classes) are used to semantically
restrict the range of predicate expressions.

® Shortest assumption-to-goal deductive paths are found first.

® Inference plans and data-base access strategies are created
from the premise file without requiring access to data-base
values.

® Advice can be given on the use of particular premises and
predicates to aid in the discovery of relevant inference
plans.

The prototype is currently being expanded along several dif-
‘- ferent dimensions in line with our goal of eventually incorporating }
R | the deductive processor into an operational data management system i
]l and language processor environment. A number of improvements in { &
| man-machine interaction and user displays are being made to support {4
| more direct and flexible control of plan-generation and data-base 3
| search. Additional semantic constraints on the generation of plans
! will be introduced by expanded use of the semantic network, and by
extension of the semantic-advice formalism. We also plan additional
| investigations in the use of incomplete and plausible knowledge,
and logical properties.
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