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This report consists of a set of three papers describing technical
progress on Contract No. N00014-78-€-0458, which were presented at the
Thirteenth International Symposium on Remote Sensing of Environment.
The titles of the papers are listed below according to the tasks under
which the research was carried out. The technical monitor for this
contract was Mr. Hans Dolezalek, and the principal investigator was

Dr. David R. Lyzenga. Project manager was Mr. Fred Thomson.

1. BEACH ENVIRONMENT TASK:
14
N The Use of Remote Sensing in the Determination of Beach Sand

Parameters;
by C.F. Davis, R.A. Shuchman, and G.H. Suits

2./ MARINE ENVIRONMENT TASK:
"> Shallow-Water Reflectance Modeling with Applications to Remote
Sensing of the Ocean Floor: '
by D.R. Lyzenga

“ Evaluation of an Algorithm for Mapping Bottom Features Under a
Variable Depth of Water, .
by D.R. Lyzenga, R.A. Shuchman, and R.A. Arnone




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whew Deta Entered)

REPORT DOCUMENTATION PAGE WL
[T WEPSRY NUMBER |2 GOVYACCESSIBN NS |

/
134400-7-T (Part 1)

4 NTLE (and Suduile) § TYPE OF hﬂmponv C]] v

Technical Report

THE USE OF REMOTE SENSING IN THE DETERMINATION OF 3~1-78 to 2-28-79
REACH SAND PARAMETERS @ PERFORMING ORG REPORT NUMBER
lBAQ!)‘!)-;-;;
7 AUTHOR(3) 8 CONTRA ANT NUMBER [
C.F. Davis, R.A. Shuchman, and G.H. Suits N00014-78-C-0458
PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT PROJECT TASK

AREA 8 WORK UNIT NUMBERS

nvironmental Research Institute of Michigan Rsach FEavircoment Task

Applications Division, P.O. Box 8618

g 48107 R
11 CONTROLLING OFFICE NAME AND ADDRESS 12 REPORY DATE
Geography Branch April 1979 i
Office of Naval Research 3 “““"fao' PAGES
ﬁ%&%&?&%&&%ﬁs 18 SECURITY CLASS (of thu report)
(1f differemt from Contrelimg Offise)
Unclassified
1S4 DECLASSIFICATION/ DOWNGRADING
SCHEDULE

76 OISTRIBUTION STATEMENT (o tbis Report)

Distribution of this document is unlimited.

17 DISTRIBUTION STATEMENT (of the ubstract enteved i Block 20, if different from Report)

T8 SUPPLEMENTARY NOTES

This report was presented at the Thirteenth International Symposium on Remote
Sensing of Environment, April 23-27, 1979. Two other papers describing this
task have been submitted for publication, and will be distributed under

> A
1] EEV 5%033 }(’.umn on reverse sude if necessury and sdenisfy by block number)

Remote Sensing
Multispectral Scanner
Data Processing

[2© ";"‘C'(Cumuc on revevse side if necessury and identify by block number)

A reflectance model (AQUASAND) was developed to gain insight into the
spectral effects of changing mineralogy, moisture, and grain size related
to beach sands. The model, a modification of the Suits radiative transfer
vegetation canopy model, uses the transmittance and reflectance of the
component minerals, the desired sand moisture content, and the desired
sand grain size to produce a reflectance spectrum in the .35 to 2.5 um range.

DD ," Q"M , 1473 EOITION OF | NOV 68 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whew Data Fntered)

TeNteSner e




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whew Dutu Enteved)

20. ABSTRACT(continued)

Using information from AQUASAND, a mineralogy, moisture, and grain ’
4 size predictive algorithms (MOGS), was developed based on laboratory sand
- reflectance spectra. Input to the algorithm is a set of 17 spectral

| reflectance '"bands" simulating an airborne multispectral scanner (MSS)
conf iguration. The MOGS algorithm first determines the appropriate !
mineralogical class for the input sand. Within a given class, regression

equat ions are used to determine moisture and grain size. ;

| The predictive results of the MOGS algorithm are very encouraging.
When tested on 70 of the sand reflectance spectra from which it was
derived, the correlation of actual to predicted moisture was 96X. The

| correlation of actual to predicted grain size based on 46 samples was

4 88%. Tests on independently collected sand spectra yielded similar
results. The algorithm was also successfully applied to actual MSS data,
H collected over the Lake Michigan coastline, to generate moisture
distribution and grain size distribution digital images of the beach
region.

,TJ

UNCLASSIFIED

SECURITY CLASSIFICATION OF TH1S PAGE (W Aw Dol wteved)




A WA A I

THE USE_OF REMOTE SENSING IN THE DETERMINATION
OF BEACH SAND PARAHETERS*

C.F. Davis, R.A. Shuchman, and G.H. Suits

Environmental Research Institute of Michigan
Ann Arbor, Michigan

ABSTRACT
A reflectance model (AQUASAND) was developed to pain insight
into the spectral effects of changing mineralogy, moisture, and
grain size related to beach sands. The model, a modification of
the Suits radiative transfer vegetation canopy model, uses the
transmittance and reflectance of the component minerals, the desired
sand moisture content, and the desirved sand prain size to produce a
reflectance spectrum in the .35 to 2.5 um range.

Using information from AQUASAND, a mineralogy, moisture, and
grain size predictive algorithm (MOGS) was developed based on
laboratory sand reflectance spectra. Input to the algorithm is a
set of 17 spectral reflectance "bands" simulating an airborne
multispectral scanner (MSS) configuration. The MOGS algorithm firvst
determines the appropriate mineralogical class for the input sand.
Within a given class, regression equations are used to determine
moisture and grain size.

The predictive results of the MOGS algorithm are very encouraging
When tested on 70 of the sand reflectance spectra from which it was
derived, the correlation of actual to predicted moisture was 96%.
The correlation of actual to predicted grain size based on 46 samples
was 838%. Tests on independently collected sand spectra vielded similar
results. The algorithm was also successfully applied to actual MSS
data, collected over the Lake Michigan coastline, to generate moisture
distribution and grain size distribution digital images of the beach
region.

1. IJTKWTRODUCTION

Historically remote sensing has been proven useful in the delineation ot
rock types most often with the applications of future mineral exploration in
mind. In this investigation, beach sands were analvzed with the intention of
determining not only mineralogy but also moisture and grain size. These three
parameters are of interest from a beach trafficability and sediment transport
point of view. Recognition of these parameters would also allow the identifica-
tion of beach mineral deposits based on grain size and minervalogy. Since
beaches are formed by intense erosion of the parent materials, harder minerals
tend to be preserved and concentrated while others are dissipated. Depending
on the origin of the sand, these residual minerals may be economically valuable.

In order to fully understand the effects of changes in mineralogy, moisture,
and grain size on the spectral reflectance of beach sand, a sand reflectance
model was used. The model, an adaptation of the Suits radiative transfer
vegetation canopy model, is known as AQUASAND (Suits, 1972). It uses, as inputs,

—
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the reflectance and transmittance for each mineral comprising the beach sand
(i.e., quartz, feldspar, kaolinite, etc.). In addition, input to the model
includes the sand grain size, the void space in the sand, and the moisture pro-
file as a function of depth. By varying these input parameters insight was
gained into the effect of physical changes on the bulk sand reflectance.

Using the information obtained from AQUASAND, the mineralogy, moisture, and
grain size (MOGS) algorithm was developed using reflectance spectra measured on
a Cary l4 spectrophotometer.* These spectra ranged from 0.35 to 2.5 um, an
interval practical for existing remote sensing technology. The MOGS algorithm
was evaluated both on the reflectance spectra from which it was derived and on
spectra collected following the algorithm development. In addition digital images
of grain size distribution and moisture distribution were developed from actual
multispectral scanner data.

2. PROCEDURL

The research involved in the construction of the MOGS algorithm was divided
into two parts. First the Suits radiative transfer vegetation canopy model was
converted to a model which could be applied to beach sands (AQUASAND) and, second,
the MOGS algorithm was developed using insight obtained from the AQUASAND model.

2.1 THE AQUASAND MODEL

The most elementary model of sand reflectance is the simple plane mixture
model. The model employs the assumptions that all sand particles are opaque
and are randomly mixed. The surface of the sand is made up of the cross-
sectional areas of the individual particles. The model calculates the bulk
reflectance as being a weighted average of the particle reflectances. The
model fails to achieve good accuracy because the transmittance of some particles
in a finely divided state can be quite large and multiple scattering between
particles is often significant.

A more complex model and the one used in this work, employs concepts
identical to those employed in the directional reflectance model for vegetative
canopies (Suits, 1972). Although a vegetative canopy and a sand profile are
visually quite different, the essence of the reflection, transmission, and multiple
scattering phenomena is much the same for both cases.

2.1.1 MODEL ASSUMPTIONS

The first assumption of the model is that the scattering components are
distributed in more or less uniform layers. Because of the wind and wave action
involved in the creation of a beach, sand profiles tend to be vertically strati-
fied into horizontal layers and thus the assumption is satisfied.

The second assumption of the model is that spectral flux interacting with
the sand may be divided into two types: specular and diffuse. Specular flux
represents radiation which passes between the sand grains through voids and
cracks without deviation. All incoming radiation is specular before it reaches
the sand surface. Diffuse flux is some fraction of the specular flux which has
been intercepted by a scattering component (sand grain) at least once. Following
this interception it may be scattered forward or backwards, either interacting
with other sand particles, or heading upwards to the sensor.

A third assumption of the model is that the individual particles making up
the sand can be represented by a set of horizontal and vertical Lambertian
panels which have the same reflectance and transmittance properties as do the
sand particles. This assumption defines a simplified scattering phase function
which allows the calculation of ensemble reflectances in closed form. Fortunately

*ZThe Cary 14 spectrophotometer is a device which is capable of digitally
recording the reflectance spectrum of a surface in the .35 to 2.5 um range.)
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in sands, as in vegetative canopies, multiple scattering dominates over phase
function scattering because of the high density of the scattering components.
This characteristic greatly simplifies the necessary model calculations.

The fourth assumption of the model is that the diffuse flux moves in a
Lambertian manner, both upward and downward, as a first approximation. The
ensemble reflectance need not be perfectly Lambertian, however, it should be
approximately so. Both vegetation and sand meet this criterion.

As mentioned earlier the AQUASAND model operates on the reflectance (,)
and transmittance (1) of a set component minerals for a given grain size to
predict the reflectance spectrum of a beach. One method of obtaining the
necessary ; and t values would be to measure them exactly for each potential
grain size. This would potentially require many measurements and considerable
sample preparation. Another method, and the one used in this study would be to
derive the components of transmittance and reflectance for each mineral and
analytically predict the ¢ and 1 for any given grain size. The necessary
components needed to derive such information are absorption (a), internal
scattering (s), and the forward scattering fraction (FS). These basic measure-
ments were obtained by measuring the 1 and ¢ of 3 thin sections of each potential
mineral type. Each thin section was a slightly different thickness than the
others. By using an iterative curve fitting procedure the a, s, and FS values
were derived using the Duntley equations (Duntley, 1942). With these values
calculated at 10 nm interval throughout the spectrum we were able to predict the
transmittance and reflectance spectra of a given mineral and any grain size we
chose. The p and : values were then entered into the AQUASAND model to produce
a bulk sand reflectance spectrum (Figure 1).

Moisture content was entered into the model by adding an appropriate water
spectral absorption factor at each wavelength for which a spectral value was
computed for the sand. By entering the desired percent-by-volume water content
the correct attenuation due to water was computed within the optical pathway
equations.

2.1.2. MODEL RESULTS AND EVALUATION

By manipulating the mineralogical, grain size, and moisture model input
parameters we were able to 'create'" any sand type we wished. Model generated
spectra were compared to empirical spectra obtained from seven diverse beach
types (Figure 2). The empirical measurements were made on a Cary 14 spectro-
photometer which allows both continuous scanning of spectra in the .35 to 2.5 um
range and digital recording of the output spectra.

The carbonate beach type (Figure 2a) is composed of 99% exoskelatal fragments
of marine organisms with approximately 1% dark organic debris mixed in. Carbonate
sands are characteristically high in reflectance with high reflectance in the
"red" spectral region (0.6 ym). As is apparent in Figure 2 the model captures
this characteristic quite well.

Figure 2b and ¢ are spectra of predominately iron-stained quartz beaches
characteristic of the Delaware coastline. In general these spectra ave depressed
due to the iron staining and have substantial amounts of feldspar incorporated
with them.

Figure 2d is a non-iron stained, 98% pure quartz beach. This beach tvpe
is typical of that found on the Gulf of Mexico coastline. These beaches have
high reflectance due to the lack of iron stain and other dark minerals. Besides
quartz there are trace amounts of carbonate and organic matter amounting to
approximately 2%.

Figure 2e and f are spectra of iron-stained beaches from the Lake Michigan
coastline. Both sands exhibit relatively low reflectance although spectrum 2f
is definitely the lower of the two. This difference is related to the more
intense iron-staining and larger percentage of opaque rock fragments in the latter
beach type.




Figure 2g is a heavy mineral beach spectra coilected on the coast of Oregon, |
which exhibits a characteristically low reflectance in the visible region This
is due to a high amount of iron-staining in addition to a large percentage of

. high density, opaque minerals (i.e., ilmenite, magnetite, etc.). Beaches of
this type tend to have relatively low percentages of quartz, on the order of
30 to 40 percent, coupled with equal amounts of feldspar. Except for minor errors,

the AQUASAND model correctly predicted the spectrum of the empirically measured
sand in all seven cases. With this successful validation, work began on the
alpgorithm predicting mineralogy, moisture, and grain size based on sand
reflectance spectra in the .33 to 2.5 um range.

2.2 DEVELOPMENT OF THE MOGS ALGORITHM

From inspection of both the AQUASAUD generated, and empirical spectra it
became apparent that mineralogy had by far the greatest influence on bulk
reflectance. So great is this influence that it tends to mask the more subtle
features of changes in grain size and, to a much lesser extent, moisture. 1t
was decided that in order for the algorithm to handle a broad variety of sand
types and still maintain the resolution needed to detect small spectral features,
a preprocessing classification of mineralogy would be necessary.

2.2.1 THE CLASSIFICATION OF MINERALOGY

In order to discriminate mineralogy a vector length decision framework
was used. The concept is developed as follows.

Suppose that there are two points, A and B, located in two dimensional
space. The distance, or vector length, L, from A and B can be expressed in
terms of the X and Y coordinate locations of points A and B as

)

et .
L = ’ (XA - X“) e (\A = \B\ ! (1)

This is, of course, related to the Pythagorean Theorem. Now suppose we have a
p-dimensional system with A and B located in each dimension. The vector length
can be expressed as

- ¢
L = VL T ) (2) H
] iA iB” :
_5'
where X is the location of point A in the ith dimension and X, iB is the %
logatio* of point B in the ith dimension. ¢
This rationale can be used to classify some point, T, as being the member
of one of n classes (AA‘ j=1,n), by finding the minimum vector length from
T to Ag(j-l.n). In other words T is said to be a member of the class which is
closest to it, on the average, across all p dimensions. The minimum vector
length is defined as "
N 5
L . = min 3 R = B a ) (3
min i=1,...,nfi=1 iy iAj ;
¥
Notice that equation 3 has no provision for variability in the n classes, there- ¢
fore. is chosen as being the shortest linear vector length. If each class 1
has the égme variability associated with it this causes no difficulty. In this £
experiment, however, there were considerable differences in variability between !

the classes so that a modification of equation 3 had to be made. The standard
deviation (SD) was used to modify the distance between T and Aj related to each
dimension thus removing the effects of variability from each class. This
normalized minimum distance equation is expressed as

) A}

Y o 2 :
151 (RiT XIAJ)/SD. (&)

= min
H“i" h l.....n/




h class in the ith

where SD;; is the standard deviation associated with the jt
dimension.?

In the application of this method to the classification of mineralogv, the
"dimensions'" are spectral bands or ratios of spectral bands and the '"classes"
are mineralogical types. Eight spectral bands (Table 1) and all possible unique
ratios of those spectral bands were used to classify the mineralogical type of
an input sand as one of five categories (Table 2). The object was to make each
category as homogeneous as possible so that the moisture and grain size regres-
sions which followed would be sensitive to small scale spectral changes.

2.2.2. THE DEVELOPMENT OF MOISTURE AND GRAIN SIZE REGRESSIONS

Using the AQUASAND model we found that information related to moisture
content of sands is best derived from the spectral region beyond 1.0 um. This
is due to the fact that the spectral reflectance of sand in this region is
reduced by absorption in proportion to the amount of water present. Exceptionally
high spectral absorption is noted near 1.4 and 1.9 uym. Although the spectral
reflectance in these regions is highly correlated to moisture we did not consider
them since atmsopheric absorption prohibits their use by an airborne sensor.

Changes in grain size seem to manifest themselves most clearly in the
shorter wavelengths (.4-.7 um). Grain size information is gained by light
being reflected from sand grains below the surface through surface grains. The
transmittance through the surface grains is reduced by internal scattering and
absorption of the particle. Since both of these factors are dependent on thick-
ness, the bulk reflectance of a sand is dependent to some degree on the grain
size. Theoretically a large grain sand should have a lower reflectance than a
small grain sand of the same mineralogical composition and with similar moisture
content. According to our measurements this appears to be the case.

This grain size phenomenon can be confounded in two ways. First if there
is no scattering or absorption within the grains (i.e., a perfectly clear
material at all wavelengths) there can be no attenuation. Fortunately, even in
our purest quartz sands there were enough impurities and inclusions to give some
attenuation. Second, the sand grains may be opaque and thus attenuate too much
light. This appears to be the case in the heavy mineral and carbonate beaches.
Most of the bulk reflectance for these two types was due to surface reflectance and
little if any was due to light transmitted through the surface grains from below.
We were unable to create accurate grain size equations for these types.

Utilizing the physical phenomena discussed above we were able to
develop multiple linear regression equations for predicting moisture in all
five mineralogical classes and grain size for three of the five mineralogical
classes. The basis for all the regressions except one was the sample group
corresponding to a given mineralogical class. The single exception was the
grain size equation corresponding to a pure quartz beach. Our samples within
this type consisted of a single grain size (0.22 mm) and, as such did not provide
an adequate basis for regression equations. For this case we used AQUASAND
generated spectra to simulate a wide range of grain sizes in order to add grain
size variability to the data set.

Seventeen spectral bands between 0.4 and 2.5 um were chosen for use in the
regressions (Table 3). Within the 17 bands, only those which were predicted by
the AQUASAND model to be most informative were used. In this way we could be
reasonably certain that the regression equations would respond tge correct
parameter and thus yield accurate predictions. The predictive equations
together with the associated standard errors (SE), and coefficient of variation
(R4) are given in Table 4.

In summary the MOGS algorithm (Figure 3) represents a computer controlled
package of equations. The input is a set of 17 spectral reflectance bands
obtained from an unknown sand. Based on these bands, the sand is classified as
being a member one of five mineralogical types. Depending on the mineralogical
type, the appropriate moisture and grain size (where applicable) equations are
applied to the data. The output from the MOGS algorithm is the predicted mineralogi-
cal class, the predicted moisture, and the predicted grain size.
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3. TEST RESULTS OF THe MOGS ALGORITHM OW LABORATORY SPECTRA

The MOGS algorithm was first tested on 70 of the 81 samples from which it was
derived and the results were very promising as can be seen in Table 5 The
classification of mineralogy was 99+% correct. The overall correlation of
predicted to actual moisture was 96% (significant at the .00l level) and the
overall correlation of predicted to actual grain size was 88% (significant at
the .00l level). However, testing any equation or algorithm on the samples
from which it was derived is not conclusive. For this reason the MOGS algorithm
was (ested on several other beach sand samples which were independently collected
and spectrally measured following the algorithm construction. These results
are given in Table 6. In each case the MOGS algorithm selected a mineralogy
which allowed the moisture and grain size regression to operate correctly.

The independent test yielded an actual moisture to predicted moisture corvelation
of .95 (significant at the .01 level). The prediction of grain size was in no
case more than 0.07 mm different from the actual grain size.

4. TEST OF THE MOGS ALGORITHMS ON MSS DATA

The next logical test for the MOGS algorithm was to evaluate it on actual
MSS data. Such an investigation is presently underway using data obtained from
the Environmeutal Research Institute of Michigan (ERIM) multispectral-scanner
(MSS) flown over a portion of the Lake Michigan shoreline (November 1, 1978).
The MOGS algorithm was modified to conform to the 12 band configuration of the
ERIM scanner.

Although a complete discussion ot the Lake Michigan MSS test is beyvond the
scope of this paper, preliminary results look quite good (Table 7). The correla-
tion of predicted to actual moisture content is .91 (significant at the .01 level)
and the prediction of grain size is, in no case, greater than .09 mm different
from the actual grain size.

fhe moisture prediction appears particularly poor for high moisture contents.
This may be due to the fact that wet sand at the test sites appeared to exhibit
bi-directional dependencies (i.e., a failure to behave in a Lambertian manner).
These bi-divectional characteristics are enhanced at low sun angles and are not
accounted for by thg MOGS algorithm. Although the flight took place at 1:30 EST
the sun was only 38% above the horizon on November 1. To minimize bi-directional
retlectance, future aircraft flights should be made during complete mid-altitude
(3000 m) cloud cover or sunny skies with the sun close to the zenith (summer sun)

Applying the same moisture and grain size equations used in the previous
analysis, the entire Pentwater State Park beach on a pixel by pixel basis (in
this case 1.5 x 1.5 meters) was classified with respect to grain size and moisture
content. The two MOGS generated digital maps (see Figure 4) show the predicted
moisture and grain size distributions on the beach at Pentwater. The ground truth
measurements taken at the time of flight correlate well with these images.
Figure & helps to demonstrate how an entire sandy coastline could be analvzed in
respect to moisture, grain size, and gross mineralogy using a small subsection
as calibration.

5. CONCLUSTION

The development of the MOGS algorithm has demonstrated the feasibility of
obtaining quantitative moisture and grain size information from the spectral
reflectance of beach sands. The determination of grain size is dependent on the
sand grains being neither opaque or perfectly clear.

The two stage nature of the MOGS algorithm is directly responsible for its
broad applicability without loss of detail. By separating the mineralogical
types prior to the prediction of moisture and grain size much of the variability
which could easily hide small scale changes is removed. The use of a vector
length discriminant function to classify mineralogy worked extremely
well in this application, since 36 different dimensions could be simultaneously
evaluated. The use of a multistage approach involving multiple classification




techniques is a powerful tool; one which will very likely be useful in many
areas of remote sensing.

. The Lake Michigan field test has further demonstrated the MOGS algorithm's
applicability to actual remotely sensed data. Grain size was predicted to within .09
mean diameter of actual while beach moistures less than 20" were accurately pre-
dicted. 1In all cases the computer algorithm correctly identified the Michigan
beach mineralogy as being a predominantly quartz iron stained-feldspar beach.

Table 1. The 8 spectral bands used in the breakdown of
beach mineralogy into 1 of 5 categories. 1In
addition to these 8 bands all unique ratio
combinations were also used.

Band # Wavelength Range (um)

L43-T47
2 .47-.49
3 +51-.53
4 .53-.56
5 .59-.63
6 .80-.90
7 .90-1.0
8 1.0-1.1

Table 2. The 5 potential mineralogical classifications

Class # Description
==t r,____R_,__

ron stained Atlantic coast type
Iron stained Michigan coast type
Iron stained pure quartz type
Heavy mineral type

Carbonate type

wmweswn

Table 3. The 17 bands used in the development of moisture
and grain size regression equations

Band ¢ Wavelenéth Range (um)
2 0.47-0.49
3 0.49-0.51
4 0.51-0.53
5 0.53-0.56
6 0.56-0.59
7 0.59-0.63
8 0.63-0.67
9 0.70-0.75
10 0.75-0.80
11 0.80-0.90 |
12 0.90-1.00 ‘
13 1.00-1.10
14 1.10-1.20
15 1.20-1.35
16 1.50-1.85
17 2.10-2.50
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Table 4. Multiple linear regression equations for the
prediction of moisture and gr..n size.
equations are listed by mineralogical class.

Grain size is in mm.

Iron stained quartz - Atlantic coast

Predicted moisture % = 67.964 - 65.046 (

S.E. = 3.08%, RZ = 0.888
Predicted grain size = 6.87 - 3.4634

S.E. = 0.13 mm, R?

= 0.603

Iron stained quartz - Michigan coast
Predicted moisture % = 60.149-49.961
S.E. = 2.56%, RZ = .970

Predicted grain size = 0.6405-0.0152
S.E. = 0.055 m, R? = 0.558

Non-Iron stained quartz

Predicted Moisture % = 127.02-65.159
S.E. = 2.12%, RZ = 0.971

Predicted grain size = 1.158-2.328 (Band 10) + .3201 (B304 7y4 0.2358 (Band 19

S.E. and R? not applicable

Carbonate

Ban

(Band )% + .0300 (Band 1) + .01672(Band 15)

Band 16

(Bana 1T

(Band 5)

Band 16
Ban

(

Predicted moisture 7% = 596.28-642 (%%%g—%%)—

S.E. = 4.09%, R2 = 879 No grain size equation.

Heavy mineral

Band 16

Band 17
)-2.226 (EEEH_T_)
~ .0047 (Band 17)
) - 64.054 (Band 13,

Predicted Moisture % = 19.284+11.194 (Band 1,

Band 1

1.081 (Band 14) + 0.1538 (Band 17)

- 1.081 (Band 14) + 0.1538 (Band 17)

S.E. = 4,09%, R% = .879 No grain size equation.

The



Table 5. Comparison of actual sand parameters to predicted
classification by the MOGS algorithm

Sand I.D. Moisture % Grain Size mn
Actual Predicted Actual Predicted Actual Predicted
Al A 4.5 3.8 .35 .36
A2 A 29.4 26.4 .35 .46
A3 A 15.0 11.8 37 .40
A4 A 28.4 28.0 .50 .48
A5 A 13 12.9 .43 .49
A6 A 33.4 27.1 32 .39
A7 A 13.1 13.8 .35 .43
A8 A 24.9 27353 .38 .37
A9 A 8.8 19.4 .44 .30
Al0 A 29.7 27.9 43 A
Bl B 21.0 17.8 40 .62
B2 B 24.6 25.5 76 .58
B3 B 14.2 15.1 46 <57
B4 B 27 .2 26.3 88 .76
B5 B 11.0 8.9 63 .82
B6 B 19.0 25.6 .95 < 1h
B7 B 26.8 28.2 71 .76
BS B 24.9 21..0 76 .63
B9 B 6.2 5.9 71 .62
B10 B * 7.5 7L w37
5 Bll B 20.0 23.0 81 .76
B12 B 34.0 33.1 .69 |
B13 A 6.0 4.4 55 .60
Bl4 B 31.0 26.0 83 il
B15 B 18.0 222 67 .69
Bl6 B 32.0 31.5 57 Sy
B17 B 18.0 20.8 56 .67
B18 B 23.0 23.9 65 .76
B19 B 3.0 (el 94 .68
B20 B 23.0 27.8 60 .61
M1 M 5 8.2 36 o2
M2 M 15 13.4 36 .28
M3 M 25 26.2 36 .34
M4 M 30 27.4 36 .36
M5 M 5 959 41 .38
M6 M 15 15.7 41 .45
M7 M 0 0.0 23 ol
M8 M 0 0.0 .29 .29
M9 M 0 0.0 41 .39
M10 M 0 0.0 36 g
M11 M 10 12.0 23 <3
M12 M 25 24. 4 23 =28
M13 M 30 272 23 .25
M14 M 10 12.8 41 .36
M15 M 20 20.6 41 .40
M16 M 15 16.8 23 .26
01 H 0 0 no grain size
. 02 H 5 6.4 no grain size
03 H 10 1Y, 7 no grain size
04 H 15 20.3 no grain size
05 H 20 22.0 no grain size
x 06 H 25 21.9 no grain size
07 H 30 275 no grain size

*No moisture data
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Table 5.  (Continued) ‘

Sand 1.D. Moisture % Grain Size mn

Actual Predicted Actual = Predicted Actual Predicted ’
08 H 35 24.7 no prain size
MX1 MX 23 24.6 .22 32
MX2 MX 0 0.0 22 10
MX3 MX 10 L4, 1 22 1
MX4 MX 15 14 B 22 , 22
MX5 MX 30 342 22 4
MXo6 MX 35 33. 7 .22 .34
MX 7 MX 20 23.1 .22 3
MX8 MX 5 6.9 22 X
Ccl C 0 \] no prain size
Cc2 C 10 7.8 no prain size

C3 C 5 3.4 no prain size
Ca C 20 13.4 no prain size
CS C 15 18.8 no prain size
Co C 30 30.8 no prain size
c/ ¢ 25 27.9 no prain size
Cc8 C 40 8.4 no prain size
Cc9 C 50 464 no prain size
Table 6. Cowparison of actual parameters to predicted
classificattions by the MOGS algorithm. Samples
used here were collected independently ot those
on which the algorithm is based.
Sample Mineralog Moisture % Grain Size (mm)

Actual '/Fr-(-ﬁ%gt ed Actual — Predicted Actual redicted
MICHT TMICH e 2061 26 28
MICH2 MICH 3.8 3u7 W 30
MICH3 MICH 0.3 0.0 D S
MICH4 MICH 12.1 16.0 23 .29
MICHS MICH 15.0 12.7 25 230
MICH6 MICH 28.0 26.2 2 29

Table 7. Comparison of actual parameters to predicted
classifications by the MOGS algorithm. The sand
spectra used here were collected by the ERIM MSS.

Sample Mineralogy Moisture % Grain Size (mm)

Actual Predicted Actual Predicted Actual Predicted
MICH1 MICH 283 12.1 25 7
MICH?2 MICH 1.0 0.0 23 .28
MICH3 MICH 8.0 10.1 22 - {.
MICH4 MICH 23.0 16.9 26 i 51
MICHS MICH 5.0 2.2 24 20
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FIGURE 3. FLOW DIAGRAM OF THE MOGS ALGORITHM.

13

15 R




I

FLIOHTER SHADE INDICATES HIGHER MO ISTURE

CONTENT

MOTSTURE DISTRIBUTTON IMAGL

INDICATES LARCER GRAIN w100

SHAN

DISTRIBUTTON TG LIGHTER

GRAIN S0

.25 O mm O

25 mm

-

T, aéw }“.T

!
».'!
d
4
PANCHROMATTC AFRTAL PHOTOGRARH :

DIGITAL IMAGERY, GENERATED BY THE MOGS ALCORITHM SHOWING TIE DISTRIRUTION

OF [HOISTURE AND GRAIN S1.E ON PENTWATER BEACH (PENTWATER STATE PARK., |

MICHIGAW) WHITE AREAS ARE EITHER UNCLASSIFIED REGIONS OR OI'EN WATER

1a

b
{




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS no:{j'ﬁ Data Entered)

TR
REPORT DOCUMENTATION PAGE e S
Z GOVY ACCESSION NS 3 |

[V]
134400~7-T (Part 2)

4 TTLE (und Subutle] 8 TYPE OF REPORT & PERIOD COVERED |

SHALLOW WATER REFLECTANCE MODELING WITH FECINICAL Soriwte

: : 3/1/78 to 2/28/79
APPLICATIONS TO REMOTE SENSING OF THE OCEAN e
134200-7 °F

FLOOR

7. AUTHOR(3) 8 CONTRACT OR GRANT NUMBER (5] |
D. R. Lvzenga N00014-78-C-0458

© PERFORMING ORGANIZATION NAME AND ADDRESS '0 PROGRAM ELEMENT PROJECT TASK

Environmental Research Institute of Michigan T S TSR T S

P.0. Box 8618, APPLICATIONS DIVISION

M: > Envi 1t Task
Ann Arbor, MI 48107 arine Environment s E
1 CONTROLLING OF FICE NAME AND ADDRESS 12 REPORY DATE 3
Geography Branch April 1979
Of fice of Naval Research 13 NUMBER OF PAGES
Arlington VA 22217 20
4 uounoame’actncv NAME AND ADDRESS 1S SECURITY CLASS (of thss report)
(1of different from Controllmg Offiie)
Unclassified
154 DECLASSIFICATION/DOWNGRADING
SCHEDULE

76 DISTRIBUTION STATEMENT (of this Report)

Distribut ion of this document is unlimited.

17 DISTRIBUTION STATEMENT (of the ubstract enteved i Block 20, if different from Report)

(78 SUPPLEMENTARY NOTES
This report was presented at the Thirteenth International Symposium on
Remote Sensing of Environment, April 23-27, 1979.

19 KEY WORDS (Contmue on reverse sude 1f necessary and identify By block mumber)

REMOTE SENSING
MULTISPECTRAL SCANNER
DATA PROCESSING

20 ABSTRACT (Continue om reverse side if necessary and identify by block number)

Features attributable to the reflection of light from the ocean floor
are observable in remote sensing data for water depths less than 1-2 optical
attenuat fon lengths. Information about the characteristics of the bottom and
the water depth can be obtained by comparing the observed radiances in two or
more wavelength bands with radiances calculated from a radiative transfer
model.

00 ,"2RM 4 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whew Data [ nieved)




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whew Dutulnieved)

20. ABSTRACT (Continued)

To first order, the bottom-reflected radiance in a given spectral band

is proportional to the bottom reflectance and exponentially dependent on t
water depth. Deviations form this simple model are caused by volume

‘ scattering, internal reflection at the water surface, and effects due to
the variation of water parameters within the spectral bandwidth of the
detector. Most of these effects are not readily observable in remote
sensing data because of the spatial variability of water and bottom
parameters. Thus, the simple model is useful for understanding the main
features of the data and for suggesting methods of extracting the desired
information from the scanner data, but a more comprehensive radiative
transfer model is needed to evaluate the accuracy of these methods.

As an example of the application of radiative transfer models, an
algoritim for mapping bottom reflectance variations is described, and an
evaluat ion of this algorithm is presented using a model based on the quasi-
single-scattering approximation. Input parameters for this model include
water attenution coefficients tabulated by Jerlov, volume scattering
functions reported by Petzold, and bottom reflectances measured in St.
Andrew Bay, Florida. Results are presented for the case of clear ocean
water (Jerlov type IB) and for relatively turbid coastal water (Jerlov type
5). The effects of system noise are included, and the improvement in
classification accuracy obtained by increasing the number of input
wavelength bands is evaluated.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W hov Dt l ntevesd)

| - ——




SHALLOW-WATER REFLECTANCE MODELING
ITH_APPLICATTONS TO REMOTE SENSTNG OF THE OCEAN FLOOR

David R. Lyzenga

Environmental Research Institute of Michigan
Ann Arbor, Michigan

ABSTRACT

Features attributable to the reflection of light from
the ocean floor are observable in remote sensing data for water
depths less than 1-2 optical attenuation lengths. Information
about the characteristics of the bottom and the water depth can
be obtained by comparing the observed radiances in two or more
wavelength bands with radiances calculated from a radiative
transfer model.

To first order, the bottom-reflected radiance in a given
spectral band is proportional to the bottom reflectance and
exponentially dependent on the water depth. Deviations from
this simple modeY are caused by volume scattering, internal
reflection at the water surface, and effects due to the
variation of water parameters within the spectral bandwidth
of the detector. Most of these effects are not readily
observable in remote sensing data because of the spatial
variability of water and bottom parameters. Thus, the simple
model is useful for understanding the main features of the data
and for suggesting methods of extracting the desired information
from the scanner data, but a more comprehensive radiative
transfer model is needed to evaluate the accuracy of these
methods.

An an example of the application of radiative transfer
models, an algorithm for mapping bottom reflectance variations
is described, and an evaluation of this algorithm is presented
using a model based on the quasi-single-scattering approximation.
Input parameters for this model include water attenuation
coefficients tabulated by Jerlov, volume scattering functions
reported by Petzold, and bottom reflectances measured in
St. Andrew Bay, Florida. Results are presented for the case
of clear ocean water (Jerlov type IB) and for relatively
turbid coastal water (Jerlov type 5). The effects of system
noise are included, and the improvement in classification
accuracy obtained by increasing the number of input wavelength
bands is evaluated.

1. INTRODUCTION

Remote sensing data over shallow water areas contain information about both
the water depth and the bottom composition, since both of these factors contri-
bute to the observed radiance. The feasibility of extracting this information
depends on the extent to which the contributions of each of these factors can be
separated. The role of modeling is to determine the dependence of the observed
radiance upon all of the relevant physical factors, to devise methods or
algorithms for extracting information about these factors from the observed
radiance, and to evaluate the accuracy of these algorithms under various conditions.

In this paper, efforts at modeling the reflectance of shallow water are
described and an example of the use of these models for devising and evaluating




information extraction algorithms is presented. The example is of an algorithm
tor recognizing and classifying bottom types under a variable depth of water.
This problem is in a sense prior to the problem of calculating water depths from
multispectral scanner data, since bottom types can be recognized without knowledpe
of the water depth but the water depth cannot be calculated in the general case
without knowledge of the bottom type.® In addition to its relevance to the
problem of remote sensing of water depth, the capability of mapping bottom
reflectance variations may be useful in geological and biological studies of the
shallow ocean floor. Reflectance variations are caused mainly by the growth of
benthic vegetation, which is indicative of the substrate material and of
ecological conditions in the littoral zone. Muds and silts can also be discrimi-
nated from quartz or carbonate sand as another indication of bottom conditions.

2. SHALLOW-WATER REFLECTANCE MODELS

The reflectance of the ocean or of any other body of water is determined by
the surface state, the optical properties of the water, and in the case of shallow
water by the depth and reflectance of the bottom., Since the water reflectance
cannot be calculated exactly, except by numerical methods, a number of approximate
models have been developed. Some of these models are described in the following
sections.

2.1 SIMPLE ATTENUATION LAW

It is well known that in an absorbing medium the intensity of radiation
decreases exponentially with distance (Bouguer's Law). Although this law holds
strictly for collimated light, or light measured with a detector having a narrvow
field of view, the assumption is commonly made that the same law holds for
irradiance. Thus, measurements of downwelling irradiance in the ocean are
summarized by the irradiance attenuation coeftficient™ K, which implies that
the irradiance decreases with depth according to the equation.

E(z) = E(oc) o % 08

The simplest model for predicting the reflectance of a shallow body of water is
to assume that this relationship holds for both downwelling light and upwelling
light reflected from the bottom. Thus, for a water depth = and a bottom reflec-
tance Ry, the reflectance of the body of water is given by the simple equation

E 4 x ()

b

R = ka e

where k is a factor which includes the transmittance of the water surface for
downwelling and upwelling light, and Rs is the reflectance of the water surface.
When the reflectance is measured from an aerial platform, the same formula is
used except the factor k must include the transmittance of the atmosphere and
Rg must include the path radiance.

Despite the crudeness of this model, it seems to account quite well for the
signals recorded by a multispectral scanner over shallow water. Deviations
certainly occur from the purely exponential dependence on depth predicted bv the
model, but the variability in bottom reflectance and water attenuation coefficients
in most natural areas provides a plausible explanation for these deviations.

*
In many cases the depth can be calculated to a good approximation without exact
knowledge of the bottom type by assuming that the ratio of the bottom reflectances
in two wavelength bands is the same for all bottom types in the scene.

*
* Also called the dittuse attenuation coetticient, although this term is misleading
since it implies that the direct beam is excluded from the measurement, whereas

the measurement actually includes both direct and diffuse irrvadiance.




Experimentally then, this model has not been conclusively disproved with remote
sensing data. Theoretically, however, these are reasons for mistrusting this
simple model and there are methods of constructing more accurate models based
upon tne radiative transfer equation. Some of these models are discussed in the i
following section.

2.2 RADIATIVE TRANSFER MODELS

Tne radiative transfer equation in principle completely describes the
radiation field in any macroscopic medium in terms of the scattering function and
the optical depth within the medium. Since this equation does not have exact
analytical solutions, except in the simplest cases, two approaches may be taken
to obtain useable results. One approach is to apply numerical integration
techniques to solve the equation for a specific set of conditions. Examples of
this approach are matrix operator methods (1] and Monte Carlo methods [2]. Given
enough computer time these methods can yield results to any required degree of
accuracy, but because of the highly anisotropic nature of the scattering function
in water some compromises with accuracy must usually be made to keep the time and
cost within acceptable limits.

v A3

The other approach to using the radiative transfer equation is to obtain
approximate analytical solutions by simplifying either the equations or the form
of the scattering function. In the two-stream approximation [3] the radiation
field is characterized by two parameters and a simplified form of the transfer
equation is assumed. Neglecting the effects of internal reflection at the water
surface, this approximation yields the following equation for the subsurface
reflectance of a shallow body of water:

= SNt SRR RS TP, « e L

Rb/l-xz cosh (Rz) + (x-Rb) sinh (Kz) s
R' =
YW /TX? cosh (Kz) + (1-xR,) sinh (Kz)

.
where e Bl = - 4)
and K az + 2ab (5)

a is cne absorption coefficient and b is the backscattering coefficient of the
water. A plot of this reflectance as a function of Kz is shown in Figure 1 for
the case Rp = 0.5, with values of x ranging from 0.1 to 0.9. As z » «, the
subsurface reflectance approaches the value

R'v e et (6)
1 + /I-x?
The reflectance predicted by this model can be closely approximated by the
equation
- -2Kz
R'w R'b e + R'v (7)
where
4 Blp = By =By "

and K is defined by equation (5). The difference between equations (3) and
(7) is less than 2 percent for R, < 0.5. Thus, the effects of scattering as
calculated by this model can be Rescribed in terms of the simple attenuation

law as a decrease in the apparent bottom reflectance and an increase in the deep-
water reflectance. This model does not allow the angular distribution of the
light to be calculated, nor does it account for changes in the angular distribu-
tion of the light field with depth. Thus, it does not allow a complete assessment




of the effects of scattering in the water, but it does demonstrate that back-
scattering per se does not cause a noticeable deviation from the exponential
dependence on depth predicted by the simple attenuation model.

Another approximate solution of the radiative transfer equation is the
quasi-single-scattering approximation [4]. In this approximation the actual
scattering function, which is strongly peaked at =0, is replaced by the function

~
~r
Y

p' (8) = 9)
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and the effects of multiple scattering are neglected by dropping the integral

1 term in the radiative transfer equation. The angular distribution of the upwelling
: iight can be calculated with this approximation, although the angular distribution
] of the downwelling light is not accurately represented, since all forward
scattering is assumed to be concentrated in a single direction. For direct
incident light, the radiance predicted by the quasi-single-scattering approxima-
tion can again be written as a simple exponential function of the depth. In

this case, the deep-water radiance beneath the surface is given by

Blug) E'
L'y “(atb) GiF uo) L)

where E'y is the downwelling irradiance beneath the surface, iy is the cosine

of the angle of incidence (under water), i is the cosine of the view angle under
water, ug is the cosine of the angle between these two directions, and :(ug) is
the volume scattering function for the water. The attenuation coefficient is
given by

Ky = (a+b)/uo (11}

for the downwelling irradiance and

K, = (a+b)/u (12)

for the upwelling radiance. The diffuse reflectance can be obtained from this
model by integrating over y and u_. This gives rise to a slightly non-
exponential behavior since the radiance at larger polar angles is attenuated
more rapidly than that at small angles.

A second effect which causes a deviation from the simple attenuation law is
the effect of internal reflection at the water surface. Although only a small
fraction of the upwelling light is reflected from the water surface at normal
incidence, this fraction increases to 100 percent at the critical angle (48.69).
If the upwelling light is isotropically distributed, the total fraction of the
upwelling irradiance reflected at the surface is about 48 percent. The effects
of internal reflection can be incorporated into the radiative transfer equation
as a boundary condition, and evaluated exactly using numerical methods. An
approximate evaluation of this effect can also be made by assuming that beneath
the surface the body of water acts as a Lambertian reflector. The total
reflectance above the surface is then

(1-R) (1-R' OR'_
. AT i, o
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where R' is the subsurface reflectance, R'g is the internal reflectance of

the water surface (0.475), and Rg is the external reflectance of the water surface
(0.020 for collimated light incident normally, 0.067 for diffuse light). This
effect is illustrated in Figure 2 for various values of the bottom reflectance.

The dashed lines in this figure indicate the reflectance calculated from the simple
attenuation law ignoring internal reflection effects and the solid lines indicate
the reflectance calculated from equation (13). The effect of internal reflection
is appreciable for very shallow water and high bottom reflectances, but falls

off rapidly with increasing water depth.

A third effect which causes a deviation froma purely exponential relation-
ship between the reflectance and the water depth is the effect of averaging
the reflectance over a range of wavelengths. The previous equations for reflec-
tance are strictly true only for monochromatic light. When light is collected
by a detector system having a finite spectral bandwidth, the spectral components
within this bandwidth may be attenuated at different rates. As a result the
total irradiance within the band has a larger effective attenuation coefficient
in shallow water where all components are present than in deeper water where only
the less rapidly attenuated components remain. An example of this effect is
shown in Figure 3. This figure shows the reflectance for Jerlov's water type
IB with a sand bottom, calculated from a model based on the quasi-single-scattering
approximation including the effects of internal reflection. The dashed lines
indicate the monochromatic reflectances at 0.55 um and 0.65 um as a function of
water depth. The solid lines indicate reflectances averaged over Landsat bands
MSS4 and MSS5, which are centered at the same wavelengths but have bandwidths
of 0.10 um each. The effective attenuation coefficient for MSS4, as indicated
by the slope of the upper solid line, is slightly larger than the attenuation
coefficient at 0.55 um in shallow water, but approaches the same value in
deeper water. In the case of MSS5, the effective attenuation coefficient is equal
to the monochromatic value in shallow water but becomes smaller as the depth
increases. The magnitude of this effect depends upon the degree to which the
attenuation coefficient varies over the spectral band under consideration. Thus,
if the band is narrow or is located in a region of the spectrum where the
attenuation coefficient is relatively constant, the effect may be negligible.
For broadband systems, however, the effect is appreciable.

2.3 INPUT PARAMETERS FOR WATER REFLECTANCE MODELS

A complete set of input parameters for calculating the shallow water
reflectance would include the spectral absorption and scattering coefficients
of the water, the volume scattering function, and the bottom reflectance.
Unfortunately, simultaneous measurements of all these parameters are very scarce.
Petzold [5] has measured volume scattering functions at one wavelength for several
different water types (Figure 4) and used the measurements along with the beam
attenuation coefficient to infer the absorption and scattering coefficients.
However, spectral measurements of these quantities are still lacking. Jerlov [6)
has devised a scheme of optical classification of water types, and tabulated
spectral values of the irradiance attenuation coefficient for each type
(Figure 5).No information is given by Jerlov about the scattering properties of
these water types.

In order to synthesize these measurements into a complete set of optical
properties, the empirical relationship reported by Shannon [7] between beam
attenuation coefficients and irradiance attenuation coefficients has been used
to estimate the scattering coefficient for each of Jerlov's water types. An
average scattering function was obtained from Petzold's measurements by summing
the volume scattering functions for all the stations and dividing by the sum of
the scattering coefficients. The wavelength dependence of the scattering
function is estimated by decomposing the scattering function into a Rayleigh
or molecular component and a particulate component. The Rayleigh componen*
varies with the fourth power of the wavelength, and the particle component is
assumed to be wavelength independent.

Measurements of bottom reflectance are even more scarce than water optical
properties. A limited number of bottom reflectance measurements were made by
the author in St. Andrew Bay, Florida using an ISCO Spectroradiometer with a




submersible fiber optic probe. The radiance just above the bottom was measured
and compared with the radiance over a set of calibrated reflectance panels on
the bottom. This method allows corrections to be made for absorption and
scattering in the water path between the detector and the bottom. The results
of these measurements for sand, shoal grass, and turtle grass are shown in
Figure 6. Other sources of information include measurements made using a
photographic technique with filters and reflectance panels for a variety of
bottom types in the Bahamas [8]%*, and laboratory measurements of beach sands
from a number of locations using a Cary-14 spectrometer [9].

3. BOTTOM RECOGWNITION ALGORITHM

The problem of mapping bottom reflectance variations under a variable depth
of water is illustrated in Figure 7. This figure shows a portion of Landsat
frame 1925-15015 over the Great Bahama Bank. A comparison with hydrographic
charts of the area shows a general correlation between the MSS4 reflectance and
the water depth, but there are some notable discrepancies. The two areas
indicated on the image have the same MSS4 signal level (about 28 digital counts),
but the lower area has a depth of 3 meters while the upper area is about twice
as deep. Low-altitude color aerial photography shows that the lower area is
quite heavily vegetated, presumably because of the protection afforded by the
row of islands to the west, while the upper area has a sand bottom. Thus, the
difference in depth is offset by the change in bottom reflectance, causing the
MSS4 signal to be the same in both areas. 1In order to separate the effects of
water depth and bottom reflectance, an algorithm which combines information from
at least two wavelength bands is needed. Conventional multispectral classification
techniques do not work well for this purpose because they depend upon the
existence of well-defined spectral signatures for each category, which do not
exist in this case because of the effects of water depth variations. An
algorithm which combines the signals in such a way as to remove the effects of
water depth variations is described in the following section.

3.1 FORMULATION OF ALGORITHM

A method of combining multispectral signals in order to create a depth-
invariant index of the bottom type is suggested by the simple reflectance model
described in section 2.1. This model predicts that if the radiances over a given
bottom type are plotted in the space defined by the variables

X, = ln(Li - LS

§ 3 (14)

where Li is the radiance in band i for water depth z and Lgj is the deep-water
radiance, the set of points generated by allowing z to vary continuously over
a range of depths will fall along a straight line having direction cosines

rn 2
L & (15)
b B

which are independent of the bottom reflectance. For a different bottom type,

the radiances will, therefore, fall along a parallel line which is displaced
from the first by a distance

Yy = Ky/

a2 =% @n ragd® = 4 b v 1n £, ) (16)
i=1 i=1

where ry; is the ratio of bottom reflectances** for the two bottom types in

*Further measurements of bottom reflectances in the Bahamas are currently being
made by F.C. Polcyn under sponsorship of the Defense Mapping Agency (contract
no. DMA 300-78-C-0060).

**When volume scattering is appreciable, the "effective' bottom reflectance
defined by equation (8) must be used instead of the actual bottom reflectance.
1f the effective bottom reflectance is negative, as is possible in extreme
cases of high scattering and low bottom reflectance, the Xj variables are not
defined and the algorithm as formulated above is not applicable. However, a
reformulation of the algorithm is possible to include these cases.
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band i. These points may be projected onto a plane perpendicular to the direction
defined by equation (15), thereby producing a new set of variables (Yj...Yp_7)
which are independent of the water depth [10]. If d # O, the two bottom

types are theoretically separable at any depth if the system noise is sufficiently
low.

This formulation depends upon the assumption that the radiance is a purely
exponential function of the water depth (with an additive constant). Since
there are effects which cause a deviation from this behavior, as discussed in
section 2, the projected variables (Y]...Y,_1) are not completely depth-invariant
even if the water optical properties are uniform throughout the scene. Therefore,
an evaluation of the accuracy of this algorithm is necessary using a more detailed
radiative transfer model which takes account of these effects. Such an evaluation
is presented for two cases in sections 3.2 and 3.3.

3.2 EVALUATION IN CLEAR OCEANIC WATER

The first case considered is for Jerlov's oceanic water type IB (c.f.
Figure 6) with bottom types consisting of sand and turtle grass (c.f. Figure 6).
This set of parameters was chosen to model conditions occurring in the north-
western part of the Great Bahama Bank. Measurements of the irradiance attenuation
coefficients in this area [8] have shown that the water is similar to Jerlov's
water cype IB, anu observations of the bottom indicate that the most common
bottom types in shallow water are sand and turtle grass (thalassia). In order
to model the Landsat data for this area, radiances were calculated for the
wavelength range from 0.5 ym to 0.7 um and averaged over bands MSS4 (0.5-0.6 m)
and MSSS (0.6-0.7 ym)*, The reflectances over a sand bottom as a function of
depth were shown in Figure 3 of section 2.2. A plot of the radiances for MSS4
and MSS5, transformed as in equation (l4), are shown in Figure 8 for the two
bottom types. Although the Xj are not strictly linear functions of depth because
of the effects described in section 2, only a small amount of nonlinearity is
observed in Figure 8 because the effects in one band tend to cancel those in
tne other.

Since only two wavelength bands are considered, the transformation described
in section 3.1 results in a single bottom-type index, which, for the parameters
used in this example can be written as

Y; = 0.975 In(L; - L) - 0.223 In(Ly - Lg,) an

where L} is the radiance in MSS4 and L)y is the radiance in MSS5. The values of
Y] over sand and turtle grass are -0.98 and -2.11, respectively. Thus, a given
sample would be classified as sand if the value of Y] is greater than -1.55,
and as turtle grass if the value of Y; is less than -1.55. This is equivalent
to drawing a decision boundary parallel to the two lines in Figure 8 and midway
petween them. Points falling above this boundary are classified as sand, and
points below the boundary are classified as turtle grass.

In order to calculate the probabilities of misclassification of the bottom
types in the presence of noise (which in this context includes the fluctuation
in the observed signal due to surface reflections), a Monte Carlo procedure
was used. At each depth, two sets of normally distributed random numbers were
generated with mean values L)} and Ly and standard deviations of o] and o,, where
L] and L2 are the radiances calculated from the model for the two bands and
0] and 0) are the noise-equivalent radiance values. The values of 0] and 02
were taken to be 0.0l mW cm-2 sr-l based on the observed standard deviations of

*The model used for calculating these radiances is based on the quasi-single-
scattering approximation, and includes the effects of internal reflection at
tne water surface. Atmospheric effects are also calculated using a double-
delta approximation [11]. The atmospheric visibility assumed for this
calculation was 23 km, and the solar zenith angle was 459,
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the Landsat deep-water signals for this area. For each of these randomly
generated radiance pairs, che value of Yp is calculated and the bottom is
classified as sand or turtle grass. 1If either radiance is less than the deep-
water radiance, the sample is placed in the "unclassified" catepgory. The
probability of corvect classification is the fraction of the random samples for
a given catepory which are classified into the same category from which they
were drawn.

The classification accuracies for sand and turtle grass are plotted versus
depth in Figure 9, The depth at which the probability of misclassification
reaches 50 percent is about 4 meters for turtle grass and 6.5 meters for sand,

The classification errors are higher for turtle grass than for sand because the
radiances are lower over turtle grass, so there is a higher probability of the
radiance falling below the deep-water rvadiance in the presence of noiset. The
noise equivalent radiance can be reduced by spatial filtering, at the cost of
decreased spatial resolution. If a ? x 2 pixel boxcar smoothing function is
applied, the noise is reduced by a factor of two and the depths for 50 percent
misclassification are increased to about 5 meters for turtle grass and 7.5

meters for sand. The irradiance attenuation length for MSSS is about 3 meters

for this water type, so the maximum depth for which turtle grass can be recognized
with better than random accuracy is between 1 and 2 attenuation lengths, depending
on the amount of noise in the data. These results have been generally confirmed
with experimental data near North Cat Cay, which show accurate classification of
turtle grass throughout the range of depths (1 to 4 meters) in which it was

found to exist.

3.3 EVALUATION IN TURBID COASTAL WATER

The second case for which the bottom recognition algorithm has been evaluated
is in water described by Jerlov's coastal type 5 attenuation coefficients (c.f.
Figure b%). This case is intended to simulate the conditions occurring at a test
site in St. Andrew Bay, Florida. Multispectral scanner data and a detailed set
of subsurface observations were collected at this site, and an empirical
evaluation of the bottom recognition algorithm was made comparing these observations
with the results of processing the scanner data [12]. Four bottom types were
observed in this scene including white sand, shoal grass, turtle grass, and a
dark organic silt. Reflectances of the first three bottom types were measured
in situ as was described in section 2.3 and plotted in Figure 6. The reflectance
of the silt was not measured but was assumed, on the basis of the scanner data,
to have a reflectance about half that of the sand. This assumed reflectance is
also plotted as the dashed curve in Figure 6.

Multispectral scanner data were collected in several wavelengths bands,
including the three bands centered at approximately 0.50 ym, 0.55um and 0.65 um
which were selected for bottom recognition processing. Radiances were calculated
for these bands in order to simulate the aircraft data set collected on 26 May 1977 %
The transformed radiances in bands 1| and 2 are plotted versus the band 3 radiances
in Figures 10a and 1ub, respectively, for water depths ranging from 0 to 5 meters.
In the X1-X3 plane (Figure lla) the curves for turtle grass and shoal grass are
nearly coincident, while in the X-X3 plane (Figure 10b) the curves for shoal

rass and silt are very close together. Probabilities of correct classification
or these two wavelength pairs were calculated in the same manngr as described
in section 3.2 using a noise-equivalent radiance of 0.05 aW cm < sr-! ym=1 for
the aircraft scanner data. These results are plotted in Figures |1a and Uib,
The relatively low classification accuracies for shoal grass and turtle grass in
the first case, and for shoal grass and silt in the second case, are due to the
closeness of the curves in Figure 10, as discussed above.

*
Virtually all of the misclassification of turtle grass s into the "unclassitied"
category, with less than 2 percent being classified as sand at anv depth.

*k
These radiances were calculated using the same model as in section 3.2, The
solar zenith angle and atmospheric visibility were the same as in the earlier
case, but the platform altitude was 300 meters instead of spacecraft altitude.
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vext, the classification accuracy using all three bands was evaluated. In
this case each data point is projected onto a plane perpendicular to the "depth
axis", resulting in two depth-invariant indices Y] and Y). The projections onto
this plane of the radiance values for each of the four bottom types are shown
in Figure 12. The classification accuracy for a given bottom type is evaluated
by generating random sets of radiance values for each band, calculating the
values of Y] and Y, for each sample, and determining the distances from each
sample to each of the "signatures" shown in Figure 1.. The fraction of the random
samples which are classified into the same catepory from which they were drawn
is again the classification accuracy for that bottom type.

The results of these three-band calculations are shown in Fipure 13 An
interesting feature of this figure is the relative classification accuracy of
shoal grass, as compared with the two-band results. In both two-band cases,
shoal grass was the least accurately classified material. This was due to the
proximity of the Y| value to that of turtle grass and the Yy value to that of
silt. In the three-band case, however, the shoal grass signature is well
separated from its neighbors and consequently the classification accuracy is much
improved.

The average classification accuracy for the tour bottom tvpes is plotted in
Figure 14 for the optimum two-band case (the 0.55/0.65 ym band pair) and for the
three-band case. The average probability of corrvect classification is significantly
improved in shallow water as the number of wavelength bands is increased from
two to three, but the depth at which the accuracy equals that of a random guess
(25 percent) remains about 3 meters. For deeper water, the probability of mis-
classification is actually larger for the three-band case because of the increased
likelihood that one of the radiance values will fall below the deep-water rvadiance
The addition of a tourth band (0.60 jm) does not materially increase the classi-
fication accuracy in shallow water, and decreases it slightly in deeper water
because of the above-mentioned ettect. The irradiance attenuation length at
0.65 um is about 2 meters, so the maximum depth for a better than random bottom
classification accuracy is again between 1 and 2 attenuation lengths for the
least penetrating wavelength band.

4, CONCLUSIONS

Theoretical modeling efforts have shown that the reflectance of+shallow
water can be approximately represented by a simple equation with two terms, the
first being an exponential function of the water depth and the second an additive
constant .  Relatively small deviations from this simple exponential model arve
caused by volume scattering, internal reflection at the water surtface, and
selective absorption within the spectral bandwidth of the detector.

An algorithm for mapping bottom reflectance variations under a variable
depth of water was proposed on the basis of the simple model described above
and has been evaluated using a more complete model which includes the effects
of scattering, internal reflection, and wavelength averaging. This theorvetical
evaluat ion indicates that bottom types such as sand and vegetation can be
recognized to a maximum depth of one or two irradiance attenuation lengths tor
typical multispectral scanner systems. For relatively distinct bottowm types,
adequate results may be obtained with only two wavelength bands. For more subtle
variations in bottom reflectance, the classification accuracy can be improved,
within limits, by increasing vhe number of wavelenpth bands

The advantage of a preliminary evaluation using a theorvetical rvetflectance
model is that feasibility can be demonstrated tor a wide variety of environmental
conditions and operational constraints at a relatively low cost. The reliability
of such theoretical results depends not only upon the mathematical consistency
of the model but upon the accuracy of the input parvameters as well. More
measurements of shallow-water optical properties and bottom rveflectances are
needed for a variety of coastal environments. Studies of the relationships
among the physical and biological environments and the optical properties arve
also needed to improve the models and to develop new applications of vemote seunsiug
in shallow water areas. For example, large variations in bottom reflectance
are caused by the growth of benthic vegetation, which is controlled by the
availability of light and nutrients, the amount of wave action, and the tvpe of
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substrate. Variation of water parameters is due to land runoff, growth of
phytoplankton, and resuspension of sediments by wave action on the bottom.
Understanding the magnitude of these variations will allow a more accurate
modeling of reflectance and may also lead to the use of remote sensing for
making inferences about the environmental conditions which give rise to these
variations.
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ABSTRACT

conventional maximum-likelihood classification

tech-
niques do not

accurately map bottom {eatures under a vari-
able depth of water, because of the variance in the spectral
signatures of the bottom introduced by attenuation in the
water. A processing technique has been developed for reduc-
ing the variance in the bhottom signatures by vemoving the
effects of attenuation in the water column. This technique
is described, and its accuracy is evaluated using an air-
cratt data set and surface-truth observations in St. Andrew
Bayv, Florida.

A test area of 150m by 180m was surveved bv
and the bottom was classitied into 10 categories,
sand, silt,

divers
including
shoal prass, turtle prass, and vavious mixtuves.
Multispectral scanner data for the same area was processed
to produce a four-catepgory bottom map utilizing two and
three input channels. The averape classification accuracy
was found to be 58 percent usging the two input chamnels

and 65 percent using three input channels For a two
category classification, the average classification accu-
racy is 7o percent using two input channels and 83 percent
using three input channels.

1. INTRODUCTION

The subject of this paper is the empivical evaluation of
tor the recognition and cla:
water,

a proposed algorvithm
sification of bottom tvpes under a variable depth of
The primary motivation for the development of this algorithm was to
improve the accuracy of water depth calculations from multispectral scamer data,
however, the technique has potent ial applications to peological and biological
studies of shallow-water aveas as well. A specialized technique for recopni-ing
bottom types under water is necessary because the variance in the bottom sipna
tures induced by absorption and scattering in the water column prevents the use

of conventional multispectral classitication techniques

The evaluation was carvied out at a test site in St. Andrew Bav, Vlorvida
Detailed subsurface observations were made in the 150m by 180m test site and
a multispectral scanner data set was collected at low altitude using the ERIM
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M-8 scanner*, This data set was processed to produce bottom-type maps of the
area using two and three wavelength bands, and the results were compared with
the subsurface observations on a point-by-point basis. Discrimination of four
bottom types was attempted, including sand, silt, shoal grass, and turtle grass.
Water optical properties at the test site were similar to Jerlov's Coastal

Water type 5. Because of the relatively hiph water attenuation and the number
of bottom types in the scene, this situation probably represents a limiting case
for which the technique is applicable.

2. TEST SITE DESCRIPTION

The test site for this evaluation was in St. Andrew Bay, near the Naval
Coastal Systems Center in Panama City, Florida. This is an inland bay which is
fed by several small creeks and discharges through a narrow outlet to the Gulfl
of Mexico. Fresh water coming from these creeks contains high concentrations
of humic and tannic acid, resulting in relatively poor visibility. The test
site is located on the west side of the Bay near the NCSC Marina, and includes
a narrow channel leading into the Marina. The maximum depth in the test site
is approximately 2.5 meters, which corresponds to roughly one-irradiance atten-
uation length (i.e. 1/K, where K is the maximum irradiance attenuation coeffi-
cient for the water).

2.1 SUBSURFACE OBSERVATIONS

A 150 by 180 meter area centered about the NCSC marina channel was selected
for detailed subsurface and water measurements. During the week prior to 25 May
1977 a grid system was set up within the test area and detailed observations of
the bottom types and the water depth were made at the arid points. The depth
measurements were processed on a Hewlett Packard Programmable Calculator 9825
and used to generate a contour plot of the bottom topography [11. The bottom-
type observations were organized into six basic categories plus four mixtures
ol these categories. The six basic bottom types observed in the test site were

(1) clean white quartz sand
(2) thin shoal grass (7.5 ¢m long)
(3) thick shoal grass (7.5 em long)
(4) thin turtle grass (15 em long)
(5) thick turtle grass ( 15 em long)
(6) dark organic silty sand

Representative underwater photographs of sand, shoal grass, and turtle grass
taken at the test site on 26 Mav 1977 are shown in Figure 1. The bottom
observations were summarized in the form of a second chart showing the distribu-
tion of bottom types in the test area [11. These observations indicate that
shoal grass occurs primarily in the 0.5 - 1.0 metor depth range while the turtle
grass grows mostly in water deeper than 1 meter. Sand occurs near the shoreline
in less than 0.5 meters of water and in scatteved patches at all depths. The
silt category was observed only in the bottom of the marina channel.

On the 25th and 26th of May, 1977 a set of measurements of water optical
properties were also made at various points within the test site. Most of
these measurements were made with a beam transmissometer, but some measurements
of the irradiance attenuation coefficient were also made. The trangmissometer
measured beam attenuation coefficients on the order of 1.5 - 2.0 m™ ', from which

*The M-8 scanner records the scene radiance in eipht spectral bands in the visi-
ble and near IR regions. The spatial resolution is 2.5 milliradians and the
scan rate is 60 per second. The instrument also incorporates two laser illu-
minations and detection systems, but this capability was not utilized during
the present study.
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a range of irradiance attenuation coefficients from 0.3 - 0.4 m'1 was inferred
using the relationship reported by Shannon (2]. This relationship was generally
confirmed by spot measurements of irradiance attenuation at other locations.
Maximum water transmission was observed for wavelengths around 0.57 um due to
the high concentrations of '"yellow substance' in the bay. These observations
characterize the water as being similar to Jerlov's water type 5 [3].

These observations were carried out under a program organized by the Naval
Coastal Systems Center (NCSC) to evaluate the use of remote sensing techniques
for coastal reconnaissance [1, 4). The primary focus of this program was on
water depth mapping, rather than bottom feature extraction. During the present
study some of the data collected as a part of this program was re-analyzed for
the specific purpose of evaluating a multichannel bottom recognition algorithm
which was not fully developed at the time of the original program. In order to
facilitate a comparison between the bottom-type observations and the results of
processing the aircraft data set (c.f. section 2.2), the bottom-type map was
converted into a digital file. This file consists of a set of 200 by 240 pixels,
each corresponding to an area of 0.75m by 0.75m on the bottom. A number repre-
senting the bottom type is stored at each pixel location. A display of this
digital file is shown in Figure 2. In this display the two shoal grass cate-
gories have been combined together, as have the two turtle prass catecories.
Sand and silt are shown separately, and the various mixture categories are
indicated by the cross-hatched areas.

2.2 MULTISPECTRAL SCANNER DATA SET

Multispectral scanner data was collected over the NCSC test site with the
ERIM M-8 scanner system on the morning of 26 May, 1977. The platform altitude
was 300 meters and the speed was about 45 meters/sec, resulting in a spatial
resolution and pixel size of about 0.75 meters. The solar zenith angle was
about 45 degrees at the time of the overflight. Data was collected in the eight
wavelength bands indicated in Table 1. An image display of the data in band 4
(.52-.57 ym) is shown in Figure 3.

This data was collected under the NCSC bathymetry experiment mentioned in
Section 2.1, and was processed to produce water depth charts as part of that
program [4]. During the present study, this data set was re-processed using a
newly developed multichannel bottom recognition algorithm. The details of this
processing are discussed in the following sections.

3. BOTTOM RECOGMITION PROCESSING

The algorithm which was used for processing the aircraft data set was pro-
posed earlier [5] and has been theoretically evaluated for the same set of con-
ditions as encountered in this test [6]. Briefly, the steps involved in the
bottom recognition processing algorithm are: (1) subtracting the deep-water
signals, (2) calculating the natural logarithm of the signals after deep-water
subtractions, (3) taking linear combinations of these logarithms in order to
create a set of N-1 depth-invariant signal channels from the original set of
N data channels, and (4) using these depth-invariant signals as inputs to a
conventional multispectral classification routine in order to categorize the
bottom types.

Prior to the first step in this sequence, two pre-processing steps were
carried out on the NCSC data set. The first was a spatial filtering, or
smoothing, to reduce the noise in the data. The second step was to edit out
land areas using a threshold value in the near-infrared band (band 8), which
has a high reflectance ovr . land and a low reflectance over water. The deep-
water signals were obtaiwd by averaging a set of scan lines in the along-
track direction, so as to obtain the deep-water signal as a function of the
pixel number or scan angie. The sequence of steps outlined above was then
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carried out using subsets of two and three input wavelength bands. Details and
results of this processing are described in the following sections.

3.1 TWO-BAND RESULTS
The first test of the algorithm was made usino two input wavelen th bands.
The bands selected for processing were bands 4 (. 52-.57 ym) and 7 (. 6 -.70 um).
The second step in the sequence outlined above yields the variables

Xl = 1ln (Vl-Vsl) (D

and

Xy = In (V2-V52) (2)

where V; is the data value in band 4, Vsl is the deep-water signal in band 4,

and V2 and Vs2 are the corresponding values for band 7. A plot of the relative
frequency of occurrence of these variables is shown in Fipure 4. These variables
are approximately linear functions of the water depth. Thus, a change in the
water depth causes a displacement of the data points for a given bottom type
along the direction indicated by the straight line in Figure 4. The data points
in this figure fall into two main groups corresponding to sand and turtle grass,
which together constitute about 70 percent of the total scene area. A projec-
tion of the data points onto a line perpendicular to the direction indicated on
Figure 4 yields the depth-invariant index

Y, = 0.740 X - 0.673 X, 3

which has an average value of 0.07 over sand, -0.47 over silt, -0.54 over shoal
grass, and -0.70 over shoal grass. Since there is only one depth-invariant
index of bottom type for this case, the fourth step in the processing sequence
reduces to a simple threshold criterion on the value of this index. The results
of this processing are displayed in Figure 5.

Next, a detailed pixel-by-pixel comparison was made between the subsurface
observations of the bottom type (Figure 2), and the two-band bottom recognition
map (Figure 5). In order to simpliéy the presentation, the two shoal grass
categories were combined into a single category, as were the two turtle grass
categories. The mixed bottom types were ignored for this comparison. The num-
ber of pixels classified into each recognition category were then calculated
separately for each observed bottom type. The results of this calculation are
shown in Table 2. The probabilities of correct classification are 81.8 percent
for sand, 61.7 percent for turtle grass, 52.3 percent for silt, and 35.4 percent
for shoal grass. The average classification accuracy for the four bottom types
is 57.8 percent, as compared with a value of 25 percent for a purely random
guess. The low classification accuracy of silt and shoal grass is due to the
small difference in the Yl values for these materials which is in turn due to
the similarity in the reflectances of these materials. Shoal grass has a thin
blade structure which has a relatively small projected area when viewed verti-
cally, and is also frequently covered with small bubbles and organic detritus
which makes its color similar to the silt observed in the channel. 1If a less
ambitious classification of the bottom types into two categories (''vegetated"
versus ''mon-vegetated'") is attempted, the classification accuracies are higher,
as shown in Table 3. The average classification accuracy for this case is 75.8
percent, as compared with 50 percent for a random guess. These results are in
fair agreement with the theoretically predicted classification accuracies [6)
for an average depth of about 1.5 meters.




3.2 THREE-BAND RESULTS

In order to evaluate the effect of increasing the number of operating wave-
length bands, the bottom recognition processing was repeated using three bands,
including band 2 (.48-.52 ym) in addition to the two bands used earlier. In this
case, two depth-invariant indices, Yl and Y2 are penerated from the three inout
data values for each pixel. A plot of the frequency of occurrence of each
(YL, Y2) pair in the test site is shown in Figqure 6. In this case a set of
decision boundaries in two-space must be used for the bottom classification.
These decision boundaries are also indicated in Figure 6.

The bottom-type map generated from the three channel algorithm is shown in
Figure 7. This map shows a much clearer differentiation between the silt cate-
gory in the channel and the shoal grass outside of the channel. This improved
differentiation is also reflected in the statistics shown in Table 4. The
classification accuracy for silt has increased to 64.6 percent, and that for
shoal grass has increased to 52.2 percent, while the figures for sand and
turtle grass have remained virtually unchanged. The theoretical evaluation (6]
predicted a somewhat larger increase in the classification accuracies of silt
and shoal grass, along with a small decline in the classification accuracy of
turtle grass which did not occur in the experimental data, although such a
phenomenon might have occurred if the decision boundaries had been shifted
slightly toward the turtle grass signature.

The average classification accuracy for the four bottom categories using
the three-band algorithm is 65.1 percent, as compared with 57.8 percent for
the two-band case. The frequency of classification of each of the observed
bottom types into the combined "vegetated" and "non-vegetated" categpories are
shown in Table 5. The average probability of correct classification into these
two categories is 82.7 percent for the three-band case, as compared with 75.8
percent for the two-band case.

4. CONCLUSIONS

The two-band bottom recognition algorithm described in this report gives
satisfactory classification accuracies %nr distinct bottom types such as sand
and turtle grass in water depths ranging from zero to about one attenuation
length. The probabilities of correct classification are in excess of 90 percent
when only these two categories are considered. Vhen the classification scheme
is extended to include bottom types which are less distinct, such as shoal

grass and dark organic silt, the average classification accuracy falls to 57.8
percent for four categories and 75.8 percent for two categories. The inclusion
of a third wavelength band increases the classification accuracies of silt and
shoal grass considerably, resulting in an average probability of correct clas-
sification of 65.1 percent for four categories and 82.7 percent for two cate-
gories. These observed classification accuracies are comparable to those pre-
dicted using a theoretical water reflectance model.
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TABLE 1. MULTISPECTRAL SCANNER WAVELENGTH BANDS

Band Wavelength (um)

L46-.49
.48-.52
.50-.54
e 2l
.55-.60
.58-.64
.62-.70
1.5-1.8

NN WO

TABLE 2. FOUR-CATEGORY CLASSIFICATION STATISTICS
FOR BOTTOM RECOGNITION ALGORITHM WITH TWO INPUT BANDS

Observed % Recognized as

% Bottom Type Sand Silt Shoal Grass Turtle Grass
Sand 81.8 10.1 i 0.4
Silt 0.1 52.3 47.4 0.2
Shoal Grass 9.2 28.9 35.4 30.5
Turtle Grass 0.2 6.9 31.2 61.7

TABLE 3. TWO-CATEGORY CLASSIFICATION STATISTICS
FOR BOTTOM RECOGNITION ALGORITHM WITH TWO INPUT BANDS

Observed % Recognized as
Bottom Type Non-vegetated Vegetated
Sand 91.9 8.1
Silt 52.4 47.6
Shoal Grass 34.1 65.9
Turtle Grass el 92.9

TABLE 4. FOUR-CATEGORY CLASSIFICATION STATISTICS
FOR BOTTOM RECOGNITIOM ALGORITHM WITH THREE INPUT BANDS

Observed % Recognized as

Bottom Type Sand Silt Shoal Grass Turtle Grass
Sand 81.8 6.4 10.8 b
Sile 0.1 64.6 34.1 1.2
Shoal Grass Fo3 13.5 922 29.0
Turtle Grass 0.2 3.0 34.9 61.9

TABLE 5. TWOQ-CATEGORY CLASSIFICATION STATISTICS
FOR BOTTOM RECOGNITION ALGORITHM WITH THREE INPUT BANDS

Observed % Recognized as
Bottom Type Non-vegetated Vegetated
Sand £88.2 11.8
Silt 64.7 353
Shoal Grass 18.8 81.2
Turtle Grass Jod 96.8
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FIGURE 1.

(a) Sand

(b) Shoal Grass

(¢) Turtle Grass

UNDERWATER PHOTOGRAPHS OF SAND, SHOAL GRASS, AND TURTLE GRASS TAKEN
IN ST. ANDREW BAY, FLORIDA.
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FIGURE «.

X1

IWO~DIMENSTONAL SCATTER PLOT OF TRANSFORMED RADIANCE VALULS
\Xl AND X;,) IN TEST AREA.  DASHED LINE INDICATES OIRECTION OF
DISPLACEMENT DUE TO WATER DEPTH VARIATIONS.
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FIGURE 5. BOTTOM-TYPE WMAP GENERATED FROM TWO-BAND ALGORITHM
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FIGURE 0.  TWO-DIMENSIONAL SCATTER PLOT OF DEPFTH-INVARIANT BOTTOM INDICES
(Y1 AND Y)) IN TEST AREA.  LINES INDICATE DECISION BOUNDARIES FOR
BOTTOM CLASSIFICATLON,
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