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ABSTRACT 
-

The two-phase flow in a convergent-divergent nozzle was analyzed.
The model used is that of one-dimensional equilibrium conditions ,
uniform temperature in a cross-section and zero wall friction .
The liqu id phase is assumed to consist of uniformly distributed
spherical droplets of equal diameter , whose size is determined
by the limiting Weber number breakup criterion. Smaller droplets
may be fed to the nozzle initially. Formulas for mass-flux
density, thrust and overall efficiency are given. The results

provided by a computer program include the slip ratio (i.e.
velocity ratio of the two phases) along the nozzle axis and
the corresponding variation of the droplet size and the local
friction losses due to droplet drag. The cone angle of the
nozzle may be prescribed or it may be determined from a selected
slip ratio gradient.

Initial conditions of slip ratio and droplet size required were
investigated in detail. The ratio of droplet size to nozzle
diameter is found to vary with nozzle size because of Reynolds
and Weber number effects.

The slip model is found to predict a much higher mass-flux

density at the throat than that given by the I.H.E. (Isentrop ic ,
Homogeneou s, Equilibrium) model. Maximum mass-flux densities
and minimum droplet sizes at the throat are outputs.

The two-dimensional two-phase flow in impulse turbine buckets was

also investigated. The parameters that control the deviation

angle of the droplets from the steam or gas path are identified.
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INTRODUCTION

Two-phase nozzles are employed to accelerate a cloud of liquid
droplets suspended in a gaseous carrier to impart kinetic energy
to the liquid phase for the purpose of driving a two-phase or liquid
turbine. Large available pressure heads result in relatively
modest discharge velocities of the mixtures because the droplets
effectively increase the molecular weight of the mixture. Since
the sonic velocity in the mixture is also lowered , the spouting
velocity of the nozzle is generally supersonic , resulting in a
converging-diverging geometry .

The performance of a two-phase nozzle is expected to increase
with decreasing droplet size. A mathematical model has been
developed to study the quantitative relationship between nozzle
design , droplet size, and relative velocity or slip between the
liquid and gaseous phases and the effects of irreversibilities.
That is an important consideration , since the characteristics of
the mixture will subsequently affect the turbine design and
performance .

(~~~i The simplest model would be the so-called Isentropic Homogeneous
Equilibrium (IHE) model ’ which does not include slip and therefore
friction losses or heat-transfer across the nozzle wall , nor does
it admit any metastable states.2 ’3

The problems of supersonic nozzle design are the determination of
the following :

1. Critical mass-flux density or the size of the throat
area for a given mass flow rate.

2. The required area ratio (discharge area/throat area).

3. Predicted performance (efficiency) as a function of

nozzle geometry, initial pressure , initial vapor
fraction, approach velocity (and possibly time available
for droplet breakup).

1
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The first two may be well approximated for higher vapor fractions

(i.e., x > 0.2) by the IHE model. However, the region of most

interest in two-phase turbine applications is that for which the
IHE model gives the poorest predictions . Thus a more sophisti-
cated model that considers slip must be developed to enable
nozzle predictions to be made for two-phase turbines.

The complexity of such an analysis depends on whether or not
further evaporation occurs during the course of the expansion ,
which changes the vapor fraction.

Case I, with constant vapor fraction, is approached by two compo-
nent systems consisting of a mixture of initially saturated or
superheated steam and an oil of low vapor pressure .

Also , mixtures of air with water, initially at room temperature
and elevated pressure , fall into that category .

Case II , with evaporation , is represented by single component
systems exemplified by expanding wet steam .

Case III , which involves evaporation in a two-component system ,
is found for example in an initially pressurized , heated mixture

of two liquids , to be expanded such that one liquid flashes into

vapor. That case is not treated here in detail , since the

emphasis was placed on Case II , the analysis of wet steam nozzle

flow with droplets trailing the steam. The application of the

analysis to Case I with constant vapor fraction which is realized

for example in a mixture of water droplets in air is relatively

z. easily made (it is a special , simp ler case) but is not pursued
further at this time.

Biphase Energy Systems presently has a computer code in its

library that can predict nozzle performance in the region of

• interest. However , the code requires the input of a pressure

profile along the nozzle axis , with the nozzle geometry being

C
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an output . This restriction makes the off-design study of nozzle

performance cumbersome . In particular , it is difficult to study

the performance of straight conical nozzles (which are easy to

make) with the present code . In addition , the existing program
includes heat-transfer effects between the two phases which makes

the analysis more cumbersome . Independent analysis and experimen-

tal results show that for small droplets the heat flux is very

high and therefore a more simplified approach may concentrate on

the more important influences on the droplet formation in a two -

phase nozzle with slip .

Such a simplified analysis of the physical phenomena occurring in

two-phase flow is presented in Part I.

While the progression of droplet breakup , of local friction losses

between the slower moving droplets and the driving steam and the

variation of the slip (or velocity) ratio is studied by means of

the computer program which integrates numerically the differential

equation for the slip ratio step by step along the expansion path ,

certain conclusions can be directly developed from the equations

about the conditions at the nozzle inlet and at the throat. Some

such results are the initial slip ratio and the ratio of droplet

size to nozzle diameter at the inlet as a function of nozzle inlet

size.

At the throat, upper limits of the mass-flux density can be deter-
mined as a function of temperature and slip ratio at the throat.
Such results are of prime interest because of the considerable

under-pred iction of the mass-flow rate of wet steam nozzles with

small initial vapor mass fractions by the simpler theories.

It will be seen that the theory given here indeed predicts higher
mass-flux density , and also shows that small nozzles develop smaller

droplets at the inlet, although somewhat larger than would be given
by a direct proportion to the opening diameter . The initial slip

ratio is correspond ingly larger for the small nozzle. Lower inlet
temperature and vapor fraction also make the achievement of good

1’ ___________ 
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nozzle performance a challenge . The study of the conditions at
the nozzle inlet will determine the initial droplet size that
needs to be fed to the nozzle in order to achieve certain per-
formance objectives. The question of how the preatomization
could most effectively be achieved is not treated here . A sep-
arate bibliography compiled in Appendix I gives an idea of the
work already done in that area as well as other topics related
to two-phase flow in turbines like erosion characteristics .

The results of Part I should primarily be considered as work-
ing tools for a design study of a two-phase engine . The formu-
lations provided allow the calculation of all that is needed in
a basic model study when the initial vapor fraction and the slip
ratio are given. When these are unknown, they may be found by
means of the computer program .

In Part II , two-phase flow in the turbine is considered. A result
of the nozzle study is the final droplet size emerging from the

nozzle. That leads to a consideration of whether more conven -
tional turbines may be used effectively , that is without undue

separation and impingement of droplets on the bucket walls. The
-) formation of a thin liquid film on the buckets is associated with

considerable friction losses because of the unfavorably small

hydraulic diameter of such a film. Special bucket shapes that

concentrate the film to a larger hydraulic diameter may alleviate

the problem and were proposed in Reference 8. The deviation of

the droplet path from the path of the gas is treated in Part II.

Besides the study of particle trajectories , a turbine design

would have to be adapted to accommodate supersonic two-phase flow

through the buckets at starting and design conditions . The

reader is referred to items 8 to 13 in the Bibliography (page

T-41, 42) of Reference 4.

C
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The results of Part II may not enable final conclusions to be

drawn concerning the general feasibility of two-phase impulse

turb ines. However , the tools given will form the basis for a

specific study to be proposed.

APPROACH AND RESULTS

The present work uses first principles to develop the basic
relationships that influence nozzle performance . The analysis
is similar to that presented in References 5 and 6 which is
very general when the loss mechanism is excluded. The loss
formulation of References 5 and 6 used an impact (billiard ball)
model between fluid elements moving at different velocities.
The impact model is replaced in this work by the model employed

by Elliott and Weinberg 7 which is based on the orderly movement
of a cloud of spherical liquid droplets of equal diameter uni-
formly dispersed in the gaseous phase. Other assumptions used in

the analysis are:

1. The fluids are in chemical and thermal equilibrium .

2. Flow is one-dimensional in the direction of the nozzle

axis.

3. No friction at the wall.

4. Droplet breakup is controlled by a limiting Weber

number criterion .

Since Reference 5 was based on the expansion of wet steam, the
same single component fluid was used here , even though the con-

sideration of Case II with continuously evaporating water droplets

(and therefore changing vapor fraction) was more complicated
analytically than the study of Case I with a constant vapor

fraction . Also , the development of an algorithm for wet steam

properties was considerably more involved than the use of ideal

5
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gas properties. However , the potential practical usefulness of
such a representation , particularly in a computer simulation ,
which includes viscosity and surface tension , was determined to
justify the additional complexity .

The analysis is presented in detail in Part I. The first step
was the formulation of the basic -‘ifferential equation containing
the derivative of the slip ratio with respect to pressure . A
loss mechanism was not included in the early formulation , but ,
rather , the relative loss term (1. - Ti

N
) was employed as a para-

• meter in the analysis. The simplified relationships (Equation
(58) in Part I) were programmed on the computer and parameter sweeps
were run to determine the initial slip ratio and droplet size
without preatomization .

The next step was to formulate the relative loss based on the
frictional drag of the trailing droplets. The initial slip ratio
obtained from the simplified analysis was used to predict the

relative loss of energy in the first increment of the nozzle.
The resulting governing differential equation is given by

Equation (90), which is an ordinary equation of the first order .

o As pointed out in the introduction , a separate program was written
for the determination of the initial slip ratio K to be used at
the inlet to the nozzle. A criterion was found in the form of

dK/dp = 0 (Equation (90)) which enables a limiting drop let

size dL to be determined for an assumed slip ratio XL. 
Which

dL and KL should then be used is a question of the droplet size
that can be provided at the inlet . One approach is to use the

Weber Number criterion for the droplet breakup which in effect
• gives another curve d

~ 
as a function of K. The intersection of

the d
~ 

and dL lines gives the solution at the nozzle inlet if no
preatomization is provided for. Another approach is to prescribe
the maximum droplet size at the nozzle inlet by the use of a

P separate preatomizer. The prescribed droplet diameter is then

6
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Li
set equal to dL; the dL curve pertaining to the selected inlet

diameter will then give the initial sli p ratio K.

The above study also provides a basis for a study of similarity

relationships as , for example , the ratio of droplet to nozzle

diameter at the nozzle inlet for geometrically similar nozzles.
Reference 8 describes an inve-ti gation of similarity relations
which was based upon small slip ratios. Conclusions were drawn
as to the effect of vapor fraction and initial pressure levels.
The loss formulation (Equation (82) and (83)) given in Part I

shows that the ratio of droplet diameter to nozzle diameter is

a significant non-dimensional parameter . It seems that a simple

similarity rule were possible in terms of the initial droplet
size/nozzle diameter ratio if it were not for the presence of
the Reynolds number effect on the droplet drag coefficient . Also ,
use of the Weber number criterion for the drop let breakup intro-

duces effects which cause deviations from a simple similarity
rule based on an initial droplet size/nozzle diameter ratio.
Details are given in Part I.

2 Besides the special study of the initial conditions required at
the nozzle inlet , the general theory presented in Part I can also
be used to establish limits of the mass-flux density at the nozzle
throat. Conclusions regarding possible droplet size can also be
drawn. Provided the slip ratio K is decreasing in the diverg ing
part of the nozzle , the droplet size would be increasing according
to the Weber number criterion. However , it is reasonable to
assume that no coalescence of droplets occurs and that the droplet

- I 
size reached at the throat will be maintained thereafter to the
nozzle exit. That final droplet size will be important for the
performance of a two-phase turbine .

As far as the workings of the computer program for the slip

variation are concerned , no peculiarities or difficulties were

encountered in the expansion of a two-phase mixture in the con-

verging straight conical part of the nozzle. Much time , however,

7
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was absorbed in interpreting the results for the diverging part

of a nozzle. For small nozzles (with one centimeter inlet diam-

eter) the slip ratio was large and the further expansion seemed
to require a departure from the straight cone geometry . A trial

and error adjustment of the cone angle was used to arrive at

favorable conditions . See the end of Part I for further dis-

cussions.

On the whole it is felt that basic nozzle design tools were

developed in the form of equations [for example Equations (21),
(23), (26), (27), (30), (34), (37), (38), (57), (58), (79), (82)

(83), (86) and (90)], and in the form of three computer programs :

for the initial condition , for the limiting throat conditions

and for the study of the entire expansion. An optimum nozzle

design could not be concluded at this point , since no specific

conditions or applications were defined as a requirement. More

work is needed to define certain types of nozzle conditions and

the corresponding design recommendations and performance poten-

tials.

Since the nozzle performance study of Part I forms the basis for

further two-phase turbine work (Part II), the latter could only

be advanced to the development of basic procedures for its design

work. Once the preatomization and nozzle expansion problem is
* 

sufficiently organized , more specific conclusions may be drawn

for t ’
~te turbine performance potentials in terms of the steam

conditions , sizes and ratings . Since development work is in

progress with liquid turbines a separate similar program for two-

phase turbines should be initiated.

For a further discussion of results see “Conclusions and Recom-

mendations”.
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PART I

ONE DIMENSIONAL MODEL FOR NOZZLE WITH SLIP

In the IHE model it was assumed that the velocity of the droplets ,
Cb , equals exactly the velocity of the gaseous carrier , Ca

If we allow now a slip ratio

K Ca/Cb � l•O

in a one-dimensional flow , (that is in a flow where uniform 
*conditions prevail across any Section at the length coordinate x ),

we must also distinguish between a volume or void fraction a of
the gaseous phase (out of the total volume present at static con-
ditions), and the vapor flow fraction , or quality, x which is the
ratio of the gaseous mass flow ~ate , referred to the total mass
flow per unit time at a given section .

t While the mass density of the gaseous phase , referred to its

volume is 1/Va , the mass density , referred to the total volume
is a/va . The gaseous mass flux density , referred to the total

cross-section is 
~ah’A = aCa/va . By definition 

~~~~ 
= XrnT/A

Consequently , the total mass-flux density is

rn
T
/A
~~~~~~ 

(1)

Considering that the static volume fraction of the liquid is

1-a and its mass flow fraction 1-x , the corresponding equation

for the total mass-flux density is in terms of vb is

(l-cz)Cbm
T
/A 

~~~~~~~~~ 
(2)

C
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I.

Equating (1) and (2) allows a to be calculated when x , k
and the density ratio y

b/Va is known :
S-p

a - 
x V a

(1-a) (l-x) Vb

The static void fraction a corresponds only to the density cor-

rected flow fraction x if the slip ratio K is unity ; otherwise

differences in velocity bring about changes in flow rates for the
same void fractions . Equation (3) solved for 1/a and l/(l-u) gives

. i= i +  ~~-~- -—~- K  . (4)
‘a X V~

or

1 = 1  x V
1 (5)

The basic equations will now be formulated for the momentum ,

energy and continuity of the nozzle flow , following Reference 5.

Neglecting frictional shear forces at the nozzle wall the

momentum equation for steady flow is

Adp = 
~
d (ñIaCa 

+ mbcb) (6)

= -d [m T (xC +( l~~x) C b )]

Since is constant along the nozzle

dp = -
~~~~~ 

d[XCa + (l-x)C b) 
- 

(7)

The velocities may be eliminated using Equations (1) and (2):

~ T T 

dp (m T)d~~
m
T)(~~

va + 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .r
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Substitution of Equations (4) and (5) for a and 1-a gives

dp = _ (~~)d~(~~~)[x
2 va 

+ x (l-x)[_j~ + VbX] + (l5-x)2 v
b]J 

(9)

- .  Following Reference 5, the expression in brackets can be
expressed as the product of the quantities i and ~ defined
as follows :

- 
~~~~~ 

(1-x) (10)

- 

and

+ (l-x)v b \1k . (11)

Using i and ~ Equation (9) becomes

L 
dp 

~(~) dt~ 
i~c~r~ (12)

C

I
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The Energy Equation

L. 
With i~ defined as stagnation enthalpy of the mixture , we get

1m0 x(ia
+ ~~

.
~)+(l~x) (ib + _

~

•••_) • (13)

The mixture enthalpy is

= Xi + (l_x)i
b . (14)

• Therefore

= im 
+ ~.[XC

2 
+ (l~x)Cb 2] . (15)

The expression in the brackets may be defined as CE
2 
. (See

Equation (21) below .) Again eliminating Ca and Cb by means of
Equations (1) and (2) we get

~~~ 
~ 2~~- 

~~ 
2 v 2 1

- - di = - Id ( ..~ii Ix~4 (1-xV b (16)m 2 \ A / ~ a (l-a)2J

Using again Equations (4) and (5) we get

dim - ..1d
{(!~)2[x

3v 2+ x2(l5-x)(2v vbI( 
+ 

V 2

)

- 

(17)

+ x(l~x)2(2’~~~
b 

+ Vb K ) + (l~
x)3vb 2]~

Using the definition (11) for ~ and the additional abbreviation

1-xx xK+_ j_ ‘ (18)

12
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it is seen that the expression in the square brackets of Equa-
tion (17) can be replaced by ~~~~~2 The energy equation
finally reads

dim 
- -.

~~d 
~~~~~~ (19)

Integrated between the stagnation point , where Ii
~T
/A - 0 and

a general point we get

= 

~ 

(

~~~

)

2 

~ .~.2 (20)

We are now in a position to formulate the deviations in velocity
from the ideal slip and loss-free condition. When K=l ,

Vm so that (20) yields

It

____________________________________________

~~~ 
- 

~m 
= 1(rn T\r

m)
2 

= 

C
2 

(21)

which is the kinetic energy of the uniformly accelerated mixture .
Note that CE is not necessarily a result of an ideal isentrop ic
expansion .

Combining Equations (1) and (4), the mass-flow density in terms
of the gaseous velocity is

rnT ct C
— — a 

— 
a 

— — 
a (22)A V a

X 
[XV a 

+ (l-x)v bK]

13
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Equation (20) solved for I
~T

/A , and with the definition (21) for
CE substituted gives

m
_~~~ — 

L IC 23~~ 1 A
v X  V

This equation expresses the mass-flux density in terms of the slip
ratio K, the vapor mass fraction x, the specific volumes and the
enthalpy change CE

2/2.

Without slip the predicted mass-flow rate is

C~
— (2 4)

m

The flow correction factor for the influence of slip therefore
becomes

~~~. L

(rnT)K = ( v m )(~!) (25)
(mT)IHE ~~

C

The above factor may be applied to the formulas developed in a
previous analysis for slip-free conditions . For a convergent-

divergent nozzle the conditions at the throat are flow controlling ;
therefore the slip ratio K and the vapor mass fraction x have to be

known at the throat .

Special values for the flow correction are as follows :

For vb <<v a: a
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When x - 0: JU ;

-- 
When x 1: = 

V
m a 1.0

The result is that at low x values the presence of slip raises
the flow over the no-slip pred iction .

Equating Equations (22) and (23) yields

[ 

Ca J
’

~~
CE (2 6)

Considering that K Ca/Cb we also get

1Cb — 
7~~~

CE (2 7)
VKx

Note: Check of equations for special cases:

1) x — 0 :  = 
1 Ca KCE

Cb - CE

When x 0 there is no vapor; therefore intuitively:

Ca - 0 and K - 0, ~
2) x — 1 :  - K ;  Ca — CE

Cb - CE/IC

When x - 1 there is no liquid ; therefore Cb 
• 0, K • ~~~~. The equa-

tions are found to work even under extreme conditions.

-  

T~~~~~
,,

)
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The significance of Equations (26) and (27) is that the phase
velocities Ca and Cb are now expressed in terms of slip ratio K ,
vapor fraction x , and the energy velocity CE that represents the

enthalpy change of the mixture .

The thrust and nozzle efficiency may now be expressed similarly .

Thrust

Neglecting off-design conditions with possible deviations of the

static pressure inside the nozzle from the back pressure , the

axial thrust F is expressed as

F = rnT[xca + (l-x)C bJ (28)

where the velocities Ca and Cb and the vapor mass fraction x are
to be taken at the nozzle exit (“N2”).

After substitution of Equations (26) and (27)

C
F = rnT(_) fr~ii~

- + (l-x)_LJ (29)
X N2 ~~~ N2

The expression in brackets is recognized as i defined in Equation
(10); therefore

F - n%T (cç=) 
(30)

X N2

Again the resul t is expressed in terms of the slip ratio K at the
nozzle exit and the vapor mass fraction x and the energy velocity

16
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CE at that station . 

The kinetic energy CE /2 represents the en-

thalpy change of the mixture , which may differ from an isentropic

change on account of friction losses inside the flow . The thrust

correction factor on account of slip is (when tnT is considered a

measured value)

~~ 

F~ \ - ~
kF KII l/ ‘ 2 

(3 1)

where K and x are taken at the nozzle exit station. If the flow
• correction factor (27) is included , the thrust correction factor

is

( FK \ -

~ 
F~~~J1,~2 I~Q) 

“~~~~2 
(32)

Thrust Coefficient

We introduce the velocity C~ = J2
~~o

i s)tn , which follows from
an isentropic expansion from the stagnation condition i

~ 
. The

-
~~~ thrust coefficient may then be defined as

c = 
F 

= 
F C

E
T rnTCS 

- 

rnTCE 
CS (33)

Using Equation (30) we get

[CT - (
~2N2(~)] 

t34)

$ 
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Efficiency

An efficiency can be defined as

- 
t h C ~~’2 +

~~T
C
s

12

L 

— 
[xC 2 

CE

Substituting Equations (26) and (27) for Ca and Cb we get

2

= + (l-x) ~~~~~
5]  (~~~

) (36)

Cons ider ing definition (18) for ~ reduces the expression in the
brackets to unity (as it should be for the fulfillment of the
energy Equation (15)). Therefore

0 
_ _ _ _ _ _ _ _ _ _ _

2

= (37)

C

The slip losses show up only indirectly in the decrease of CE
below C~ due to friction losses on account of relative motion
between the phases.

A “thrust efficiency” amounts to taking the square of the thrust
coefficient , Equation (33):

LCT
2  

- 

1~M 
(38) 
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In Reference 7 relative slips are defined . Correspondingly, the
difference between Ca and Cb may be referred to the energy velocity
CE or to a momentum velocity C11, where -

C 2 C 2 C 2

- 4 = x-1.— + (l-x)_L (39)

c = 1. - c —
~~
-M mT ‘ 

Ej~ ‘N2 
(40)

Accord ingly, from Equations (26) and (27)

SE 
= 

C 

~E 

Cb 
= ~JT - ____ = 

~~~~ . (ii - 1) (41)

C
a~~~~

Cb
\/

~~~~~~~~~ ~~5~~~i ’I - I

CM x x \

The relative slip S depends therefore not only on K but also on I
the vapor mass fraction x.

Spec ial cases:

x — 0; ~ 
, — , SE = K 1  = ~~ (43)

x — 1; 
- ~ 

= K , — ‘./i~ , SE = 1 - — SM (44) I

I
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The Determination of the Slip Ratio K

The above relationships allow the calculation of mass-flow , thrust
and efficiency when the slip ratio K , the vapor mass fraction x ,
and the specific volumes va and Vb are known at the throat and
exit sections .

In a first part it will be shown that the combination of the momen-
tum Equation (12) with the energy Equation (19) yields an ordinary
differential equation of first order in K, provided the losses are
known. This first part , which excludes the loss formulation , is
independent of the form of the flow , that is , whether one or each
of the phases form a connected space.

To this point the procedure will run parallel to that of Reference 5.
A radical departure is then taken in the loss formulation from the
impact model of Reference 5 to the frictional drag of a swarm of

droplets , a procedure more similar to Reference 7.

The point of departure are equations (12) and (19)

‘fr

dp = 
-(i) 

d (momentum) (12)

di = - d (ii
’) ~ ~~2 ( e n e r g y )  (19)

m 2

Differentiation of the momentum Equation (12) gives

d (~~~~.i~~~) 
= —1d(i~~)

and

d(th /A)1 1I -d p = i— i  I d x  ~) + 
~ 

T

L ~A , ~ 
mT A j (45) 

J
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Similarly for Equation (19)

N

and 

dt (~~~)~~ 
= 

(

~~~~
)2 ~~2 )  + 2~~~ir2(_I

) 
d(_I

)

L2~~
m = 

(

t h)

2 

~~z {d(~ :: + 2 
ThTIA J] 

(46)

Substitution of Equation (13) for the mass-flux density and elim i-
nation of d(mT/A) between Equations (45) and (46) gives

C~
2 d(i ~

) d(~ ~~
)

di = ~ dp + — 2 
- - 

- 
“ 2 (47)m x 2 x v  x v

According to the laws of differentiation of products

d(i~~) di d~____ = + -

~~~

- 

(48)

d(~ ~ 2 )  d~ d~
_ _ _ _ _ _  = + 2_  I I

A —  A — ~ Jx v  x V

Substitution of (48) and (49) into (47) yields

A CE
2 di d~dim - ~~~~dp +—  2—  (50)
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Referring to the definitions (10) and (14) for i and x , differen-
tiation gives (when considering x and K as variables)

- ~ [xuir- 
~~~~~~~

- i
~~~~~~ 

+ (11 - )
dx (51)

- 

d~ = txK 
- 
(l-x) + 

(K 

- dx (52)

The enthalpy change of the mixture , dim may be eliminated by the
definition of local efficiency, which is assumed to be known for
the time being

= (53)

After substitution of (53) into (50) and multiplication of the
equation by X X we get

CE /2

dp
2~~~ ~t - 

~N ~ 
Vm) ~~~ 

+ 2 ~di 
- id~ = 0 (54)

E

Substitution of Equations (51) and (52) into the last two terms

of (54) after rearranging gives

2 ~dx 
- id~ - - 

~~~~~~ )[c~ 
- l)dx - 2x (l

~
x)
~ I 

(55)

C
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The first term of Equation (54) can be rearranged as follows

2~ (~ v 
- ‘

~N ~ 
vm)

_!_ - 
[2~~
(~ ~~~ 

- 
~~~ 

Vm) 
+ ~~~~ Vm (1 

- T1&

J 
~~~~~

= [-2x~ c1-x)(v’~ 
- - Kvb)

+ 2~~~~v (1 
- 
~ )]— 

(56)m N 11 , 2
J ‘~E

Recomb in ing Equations (55) and (56) yields

- 

2x (1~ x ) 
dx + - Kv

b) 
- _ _ _ _  =

Multiplying by K/dp gives the alternate form

9 dK (~ -l)K dx K -xiv (1 - 
A / V

—  - ______  — + — m + x(-i - KVb , = 0 (58)
dp 2x(1-x) dp CE

2 x(1-x) (sJi -
j~-) ~K

Equation (57) or (58) is the desired differential equation for K
— 

with p as the independent variable. The kinetic energy C~/2
represents -the enthalpy change from the stagnation condition to
the pressure p at the inlet to the flow element investigated
between two neighboring sections inside the nozzle. For Case I,

with constant vapor fraction x, the second term for dx/dp becomes
zero. In Case II with evaporation , for ex ample , of we t s team
dx /dp may be calculated according to Appendix II , which gives
rela tionsh ips for the calculation of steam properties.
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Solutions of Equation (57) have been obtained for an assumed

5-. elemental relative loss (1-n N) for wet steam . It was found that
- S 

certain limits in (l-~~) have to be observed .

Solution of Equation (57) turned out to be easier if (in ) is

eliminated by a certain loss model to be treated next.

Loss Model

Consider a control volume of length dx* and cross sectional area

A containing n spherical droplets of diameter d. The ratio of

liquid volume Vb to size of control volume Vc is

y TT~.i31 — b — 

fl~~~ L (59)
Adx *

The liquid mass flow can then be expressed with the liquid velocity

Cb and its specific volume vb as follows

- 
CbA - 

Cbn~
.d 3 

. (60)mb - - 

VbdX*

0 The total mass-flow follows

= mb~
’(
~~~~ 

, (61)

Assum ing a dra g forc e DF between droplets and vapor defined by

the drag coefficient CD and the relative velocity Ca~
Cb~

DF = CD l 
(Ca~

Cb)
2 
~ d

2 
. (62)

Va 2 4

The power loss of n droplets is , neglecting buoyancy

:; L = n DF (Ca~
Cb) . (63)

C
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Here the droplets are considered spaced sufficiently far apart

so that the flow around the spheres is not mutually influenced

by ne ighboring spheres.

The loss per unit mass follows by dividing Equation (63) by

Equation (61) with 1% according to Equation (60))

nDF(C -Cb) VbdX*(lX)Tds = 
a (64)

,r d3 Cn~~ b

Substitution of DF 
according to (62) gives

Tds = ~ 
CD(

l_x )
~k 

dx* Cb (K l) (65)

Eliminating Cb according to Equation (27), Cb
2 CE /kx ,

yields

- 

Tds = 3 C
D 

(l x) b 
~~~~~~~~ (K -  l)~

~ 
va d 2K (66)

~~~

Considering that the relative loss is

- 
- Tds

- 
VmdP (67)

we get 2

— ~ c (l-xJ vb dx* (K-i)3 CE /2 (68)
1
~~N 

- D K v
~
d

C
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Accordingly, the relative loss increases strongly with K ; the
inverse dependency upon droplet size d is at first surprising .
The contrary intuitive perception is that nozzle performance
improves with smaller droplet size. It will be seen that indeed
the final results confirm that expectation , after all terms are
completely developed , especially the dependence of the slip ratio
K on d. It was later found that Equation (68) is in agreement
with Equation (78) and (79) of Reference 9.

Of all the quantities occurring in Equation (68), the length in-
crement dx* needs the most elaboration , since it needs to be

- 

expressed in terms of x , Va , vb , K , CE , and dp

— S

4. -
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Calculation of the Diameter Change dD and the Length Increment dx .

‘5- One possible way to express dx* is via a mass-flux density change
and therefore a diameter change . If the slope of the nozzle walls
is assumed as known by the half angle 6 , the diameter change
dD is linked with dx* accord ing to

dD — 2dx * • tan 6 . (69)

The sign convention for the half-angle 6 can be selected such
that for the converging part of the nozzle 6 is taken as negative .
That way dx* will be positive throughout the nozzle.

The change in mass-flux density can be linked to the desired
independent variables by means of the momentum equation . Combining
Equations (45), (23) and (48) gives

_______  = ~Y ~E_ + + d~ (70)
rn/A i C~~

2 i

Since the mass-flow rate is constant along the axis the left-hand
side of Equation (44) can be reduced to

-d(m/A) 
= 

2dD (71)

D
‘ C
if. for a circular cross-section of diameter D.

Using Equation (71), the momentum Equation (70) becomes

2dD — ~~~~~~ ~~~~~~~~. + + ( 7 2 )
x 

~~~
2 - V

where dD may be replaced by 2dx* tan 6

• Dividing the equation by dp gives

S = 2dx* tan6 
— L. + ~.&... + ~.L. — 

(73)

dp D/2 i CE
2 idp ~dp D dp

for the momentum equation.
27
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On the left hand side dx*/dp constitutes the reciprocal of the

4 axial pressure gradient.

In the case of single phase flow the change in mass-flux density

is easily obtained as

d(ih/a) = d(pC) = pdC + Cdp . (74)

In norma lized for m , using the specific volume v instead of the

density p we get

• d(th/A) 
= 

dC 
- 

dv . (75)

- 

(~h/A) C v

Euler ’s equation for one-dimensional , gravity-free isentropic flow
‘ 5 -  yie lds

dC 
= 

-vdp . (76)

C C 2

Equations (75) and (76) combined give

(77)

~~. 0 -d(ii/A) 
= ~~~~~~~~~~~~~~~~~~~~ .

C2 v

A comparison of the equation with Eq (70) shows the meaning of
the individual terms in Equation (70). ~~dp/iCE

2 represents the
effect of a relative velocity change ; di/i Constitutes the effect
of a change in vapor fraction; d’~/~ represents the influence of
a specific volume change . For single phase flow , in the converging
part of a nozzle the effect of the velocity increase more than
offse ts the increase in spec if ic volum e, therefore the mass-flux
density progressively increases; in the diverging part the opposite
is true. For two-phase flow the additional change in vapor fraction

28 
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appears and the effect of slip is present in the quantities

$ ~c, i and ~ . To show the effect of change s in the slip ratio ,

dK , the differentials di and d~ have to be expressed in

more basic terms .

On the right hand side of Equation (73) the differential di was

previously given in Equation (51). The differential d~ is

similarly derived from the definition of ~ in Equation (11) (when

neglecting the change in the specific volume of the liquid)
(78)

4)

d~ = - 

[ 
~~a - (1 -x) Vb + (

~~
_. - Vb il) dx + dva

Substitution of di and d~ from Equations (51) and (78) gives

for the momentum Equation (73)
(79)

s = 
2 dD 

= 
2 dx * tan 6 

= ~~~~~ + !_ ~~~~~ + -
~~~~~ + 

x

D dp dp D/2 i C~~
2 2K dp dp ~ .J~ dp

C

where V and Z are defined as follows

= 

x~~~~- (1-x) 
{ 

(1-x) vb~~~] (80)

f~5~
-
~- l\ (V a

= _ _ _ _ _ _ _  

Vb / (81)

The derivative of the vapor specific volume dva/dP is given in the

Appendix II.
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Again , the right hand side of Equation (79) is a function of x ,
Va~ 

V b ,  K , and CE

A discussion of the signs of each term will show whether its
influence is increasing the mass-flux density (for positive terms)
or the opposite . In the expansion of we t steam for example , the
last term in Equation (79), x dva/dp ~I1 is always negative ; Z
is always positive , therefore Zdx/dp is always negative . The
first term 

~~
/iCE

2 is always positive . Since the first term in

V is negative for small vapor fractions x , and since the

second term of V approaches -l in value , a flow with increasing

slip (dK/dp<o) will tend to give an increasing mass-flux density .

If , in the overall effect , S is positive , the nozzle will be con-

verging , with tan6 being negative .

The relative loss, Equation (47), may now be re formula ted in terms

of S = 4dx* tan 6/D dp . For this purpose we define the fol-

lowing :

V 3w = -
~~
. c (l-x) b (K-i) 

______  . (82 )
2 D 

~ 
Va 

K d tan6

Equation (68) in terms of S and W now becomes

WS CE2/4 . (83)
= 

V
m

Since W is dimensionless and S has the uni ts of reciprocal

pressure, the dimensions check .

The important conclusion is that the relative loss is not only
determined by the slip ratio K and the droplet size d which are
represented by W but the normalized inverse pressure gradient
SCE2/Vm : good local efficiencies are possible with large K
ratios.

30
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~1 Droplet Size

In order to evaluate W with Equation (82), the droplet size d
must be known , so that the drag coefficient CD can also be
evaluated.

A criterion for the droplet size is that of a limiting Weber Number

We = 

(C - Cb ) d  <6 (84)

• 2Vaa

- 
. where a is the surface tension , which is given in Appendix II.

- 

The droplet size limitations are given by

‘S  d < 
l 2V aa . (85)

(Ca~Cb
)2

This criterion was used by Elliott in Reference 7; it also implies
that the droplets are spherical in shape , and that they are all of
the same diameter. A further discussion of the break-up criteria
was already given for example by J.O. Hinze in 1947 in Reference 10.

Using the definition of the slip ratio IC and Equation (27) for
the liquid velocity Cb in terms of the energy velocity CE of

- 

a Equation (21), Equation (85) reduces to

_____________________-

d < 12 VaC K~ (86)

CE (K l) -
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The drag coefficient CD is a function of the Reynolds number ,
defined as

Re 
d(C -Cb) . (87)
Vafla

Reference 7 uses Stonecypher ’s least-square fit to Perry ’s tabu-
lation as follows :

in CD = 3.271 - 0.8893 in Re
I

+ 0.03417 (lnRe ) (88)

+ 0.001443 (lnRe)’,

within the limits

0.1 < Re 2xl0~

Again, the Reynolds number may be expressed as a function of the
basic variables

d CE (K-l)Re = ____________ . ( )
A

• Vafla ..JK x
~~~

In conclusion , W may now be calculated in terms of x , V
a~ 

vb ,
CE, K, and the viscosity 

~a 
(see Appendix II) by substituting

Equations (86), (88), (89) into Equation (82).
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We are now in a position to eliminate the unknown relative loss
l55ri

N in Equation (58) by the use of the relation (83), where S
has to be expressed by Equation (79). Fortunately the elimination
of 1

~~N 
is possible without changing the character of the differ-

ential Equation (58) to find

K ~-l ~~ - .L(~~ - K V ~~+~~ ~_ !+ j~R
dK - 

2x(l-x) dp CE
2 ‘ K b1 ~ 

CE
2 

(90)

l-~~~~2Q

where Q 4x(l-x) (~.Ji - , ,.4..) and (91)

R x ‘a . (92)

dp i~f~ dp

Equation (90) also includes a term with dx/dp , the change of
the vapor fraction with dp as the expansion progresses. The
calculation of dx/dp for wet steam is given in the Appendix II.

With the conditions T~ x, V~~~p CE~ 
K, a, 

~a’ 
dx/dp and the diam-

eter D known at the inlet to a concical nozzle element , it is
possible to calculate the droplet size d with Equation (86), I :
the Reynolds number with Equation (89), the drag coefficient CD
with Equation (88), so that W follows from Equation (82). The

derivative dK/dp follows then from Equation (90), and the relative

diame ter change S 2dD/ D dp from Equation (79). A problem is
pos ed by the depend ence on CE of dK/ dp , of d(_l/CE

2) of

Re (_C Ed) and of CD , and therefore W - f (C E) . The depen-

dence on CE is also present in S according to Equation (79),

and in the local efficiency

I
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While the enthalpy change , CL
2 /2 , from the stagnation point to

the inlet of the element that is being investi gated may be assumed

as known , the outlet value must be calculated for ready use in the

next increment.

The static enthalpy change of the mixture , across the element

considered , equals

di = 
~N~~

’
m~~~ 

(93)

The local efficiency follows from the loss formula (83), whereas

dp follows for wet steam from Clapeyron ’s equation , if dT is

- 
known

-- = 
Sa

_S
b = 

r , (94)
dT Va~

Vb T(Va~
Vb)

where rc is the heat of evaporation , given in the Appendix II.

p
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The In f l u e n c e  of t h e  E n t h a l py C h a n g e  C E 2 / 2  Over  a N o z z l e  E lemen t

A t first sig ht the elimina t ion of (1 - in Eq. (58) for dK/dp
seems to make an iterative procedure unnecessary . However , since

Cf
2 = -2[(i - + 

~N
VmdPJ ‘ 

(95)

and CE is presen t in the formu la for droplet size , for Re and
therefore N , besides its direc t presence in Eq.(9O) for dK/d p,
evaluation of dK/dp at successive points in the course of expan-
sion over a nozzle element is affected by changes in dp within
the element.

It is not possible to eliminate CE and at the same time preserve
the form of the differential Eq.(90) tha t is expl ici t ly solved for
dK /dp. The foll owing iterat ive procedure was therefore follo w ed .

The value of Cf
2 at the inlet to the nozzle element considered is

assumed as known , ei ther by being ini t ially prescribed or by bein g
carried over from the outlet of the previous element . As outlined
before the values of d , Re , C and IV may then be determined .

- - - - U  0

In order to eliminate the effect of Cf
2 on IV , a new quant i ty Ic’ is

defined

N CD(l X ) (KSl) VbDN” = _______ = (96)
2 n ’-’ 24VmCE ~~ ~~~~~~ V tan6 a

which does not contain droplet size and Cf
2 direc tl y. Simil arly ,

the derivative S (Eq. (73)) can be expressed as

- V dK xvs — 
( R +

2
~~~~~~~~~~ . ) +

xC

I
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The expres sion (1 - fl\)/Cf
2 in Eq.(58) for dK/d p can now be

rep laced by

l~~~ fl \ WS
_________ — — i ’ ,~~ ’r 2____ - -

m (98)

= w’I
[(

R + 
~~~~~ 

+

After substitution into Eq .(58) we get

= 
N 

l A twu~~ :~~~~~~~~ 

+ A~ w..( Rc f
2 + 

(99)

[ 5 5  

~~~~E J

where

H ~ x v K  100A’ = 
x (l-x)(v1

~~- 1

The idea is to use the value of Cf 
2 at the element entrance for a

first approximation of dK/d p, accordin g to Eq.(99), where CE
2 occurs

three times.

An improved value of Cf
2 is obtained as follows. From Eq. (98)

1 - = w”(R + .

~~~~~ N)~ 
+

Mul tiplying the above equation by Vmdp (where dp is the pressure
change from the inlet of the element to the particular station in-
side the element that is being considered) and eliminating r

N 
by

I
36
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ii
means of Eq.(93) y ields a quadra t ic equat ion for Cf

2

( R + 
~~ 

N) ~‘md~~ E~ + 
(

zw” v d p - 1) CE
2 - 2(~ i + VmdP) 

=

(101)

where ~i = i - i~ , the enthalpy change from the stagnation condi-
tions to the inlet of the element considered.

- 
It was found tha t the minus sign in front of the square root of the
discriminant gives the desired results for CE

2 . The result of Eq.(99)
is used for dK/d p in Eq.(lOl). The new value of Cf

2 is then rein-
troduced into Eq .(99), where N” is previou sly adjus ted for the
change in CD. The recycling is stopped when ini tia l and fina l values
of CE

2 agree within a certain relative error (lO 1 ) .

~0~F 
~.
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Solvin g the Differen t ial Equation

The differential Eq.(99) is an ordinary equation of the first order .
Basicall y, at each temperature the properties va , Vb are known , and
if the change in the vapor fraction dx/dT is predictable , as it is
(see Append ix I I ) ,  x is known and dva/dp, the change of specific
volume of the vapor with respect to the pressure. If the derivative
dK/dp were only a function of the pressure , a simple integration
would do , but since the derivative dK/dp depends on the dependent
variable , the slip ratio , K , a more elaborate procedure is required.
(That dependence on K is present in the factor K itself , the compound
quantities x , x , v , Q, V , Z and R , wh ich  are a l l  f u n c t i o n s  of t , x
and K).

The Bulirsch-Stoer integration algorithm was selected , which is des-
cribed in Ref. l1~ l2. The algori thm was extensivel y tested wi th vary-
ing step sizes in the nozzle program as well as in the solution of

a test case in form of the differential equation y ’ = ->‘ , which
has as an exac t solution the function y = Ce~~

’. Assuming as g iven
the function value y = 1.0 (C=l) at x = 0, together wi th the slope

y ’ = -1.0 , the Bulirsch— Stoer algori thm yielded the function value
y = 0.006738 for the chosen step size of five (x = 5 ) .  That
agrees exactly within the six displayed digits with y = e~~ .

The algorithm consists of two  p a r t s , a discre tiza t ion par t and an
extrapolation part. As the independent variable , (for example ,
temperature), is changed by a selected step size , approximate func-

tion values are determined in the first discreti:ation part accord-
ing to a procedure to be described next . Starting values are the
function value and the derivative at the beg inning of the step .
Approximate function values are found at values of the independent
variable that are found by subdividing into equal increments the
total step, for example , by values N [HJ = 1, 2, 3, 4, 6, 8, 12 ,

16 , 24, 32 and 48, where H = 0, 1 , 2 , .. . , 10. Fi gure 1

38

~
_
- - ~._ __

~‘4- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-.5- - . 5  ___________________ ~~~~~~~ 
I

S  
.5__ -5- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

~~~~~~— -.---— —-- ~~~~~~~~~~~~~~ —5- —~~ -.5----S-— - - - - —  SS5- _~ .5 ~ • S~~ l~~ S5-S&~~~~~ - .



____________________________ - —.5 .55-.5.5_S_~_ ~~_~_5__’5 ~~~~~~~~~~~~~~~~~~~~~ .-—----S- ----S-. -- - .5 _______

p

LI

illustrat es the procedure . Figure la shows the wa a first

approxima t ion for the end point of the step is found. The same
method is used for obtaining an approximate function value at
the point nearest to the starting point of the step, as shown
in Figure lb. The same figure illustrates the procedure used

to move on to the following point , C. The derivative or tangent is

found at the preceding point , B, and a line is drawn paral lel to the
tangent , again through the preceding point A. The approximation
to the function value at the end of the step is stored for each

= 0, 1 , 2, .. . , 48 into a matrix T[O,H]

Second part: Extrapolation to zero step size. A rational function
is used for that purpose. A two-dimensional matrix T[J ,II is
constructed , with the integer I vary ing from zero to ten corres-
ponding to the change in H from zero to ten. The column s are
designa ted by the integers .J. The approximate function values at

the end of the step, TLO ,H form the column designated as J = 0.
To the left of it (J = -1) a column of zeros is placed. The suc-

ceeding columns for J = 1 , 2 , ..., 9 are found recur sively from

the formula (Ref. 13).

TE .J-l ,I+1] - T[.J-l ,I~
T[J ,I] = T[J-l ,I+l] +

f h E I ~ 12 
i. - 

T[J - l , r + l J  - T[J-1 , IJ 
-

T[.J-l ,I+1] - T [ J - 2 , I + l j

(102)

Such an extrapolation matrix is to be calculated for both the final
value of the sli p ratio K at the end of the step,  and the final value
of CE 

2, which is a measure of the enthalpy change to the end of the
step . Typ ical values for the matrices are given in Table I. The
last values , corresponding to T[.J=9,I=l] and E[J=9 ,I=l] are finally
used.
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Note: Two special conditions have arisen when the convergence
is very rapid: (a) The denominator T [.J- l , 1+1) - T(J- 2 , 1+2]
becomes zero ; in that case the extrapolation may be terminated
at that point; (b) The entire denominator [] 

~ 
}-l may become

zero ; in that case the very large default value for 1/0 of the
computer was used for the quotient.
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Fi gure 1. Procedure for Solving the Differential Equation~
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Table 1. Solution Matrices for Slip Ratio and Enthalpy Change

T(J .I] M A T R I X  ST IP 5121 0.25°C

1 \J  0 1 2 3 4

0 2 .693 194 2 .69366 1 2. 693690 2.693685 2.6936 83
2 .69369 4 2 .693690 2.6 936 76 2 .693683 2 .693682

2 2 .693692 2.693686 2. 693 683 2.6 9368 1 2 .6936 81
3 2. 693689 2 .693684 2 .69368 1 2 .6936 8 1 2 .493 679
4 2 .693686 2.693682 2.493681 2.493680 2.693680

5 2 .693685 2 .693681 2.693680 2.693680 2.693676

6 2.693683 2.693681 2.693680 2.693619 2.693679

7 2 .693682 2.693680 2 .693679 2 .693679 0.000000

8 2 .693681 2 .693680 2.693619 0.000000 0.000000

9 2 .693680 2.693680 0.000000 0.000000 0.000000
5- 

10 2.693680 0.000000 0.000000 0.000000 0.000000

5 6 7 8 9

0 2.693680 2 .6936 81 2.693680 2.693680 2.693678

1 2.693681 2 .693680 2.693680 2.693080 
_________

2 2.693681 2.693680 2.693679 2.693679 0.000000
3 2.693680 2 .693680 2 .693679 0.000000 0.000000
4 2.693680 2.693679 0.000000 o .ooonuo 0.000000
S 2 .693679 0.000000 0.000000 0.000000 0.000000
6 0.000000 0.000000 o .oooooo 0.000000 0.0000)10

7 0.000000 0.000000 0.000000 o.ouoooo o .oooouu
8 0.000000 0.000000 0.000000 0.000000 0.0001100

9 0.000000 0.000000 0.000000 0.00000)) 0.00(10(10

10 0.000000 0.000000 0.000000 O.000 I luO 0.00001)0

( P.’] MATRIX
0 1 2 3 4

0 2766 .481028 2766.081376 2765. 491353 276S .951 70 2765.923308
1 271,0.18142 9 2766.008028 2765 .958896 2765 .926913 2105 .911181

- - 
2 2766.085426 2765 .976526 2765 .935236 2 o 5 .913948 2765.9171 95
3 2760.037781 27o5.95 0025 2765.920021 27b5.91 7097 2765 .922832
4 2765 .989021 2765 .931152 2765.917496 2765 .970505 2705.898250
5 276S.963706 2765.921882 2765 .852380 2705.900079 27b5 .8o1309
6 2705 .940470 2765.894940 2765.900810 2765 .891 655 2765 .874392
1 2765.920550 2765 .899610 2766.008755 2765 .875o19 0.0000iI0
8 2765.90891’ 2765.857 23’ 2765.877608 0.000000 0.00001)0

9 2 65.886301 2765 .875760 0.000000 0.00001)0 0.000000
10 2765 .880418 0.0)10000 0.00(1000 0.000000 0.001)000

l\J 5 6 7 8 9
0 2765 .910613 2765 .916724 2765 .907135 2765.896062 2765.921941

1 Zl bS . 116993 2765.91)8338 2765 .896255 2765.925809 I278 5.8 ’3 n n* I~ C 1~
2 2705.911 894 2765.896615 2765 .939563 2765.873445 0.000000

3 2765 .897175 2706.02 72 32  276S .87389o 0.000000 0.000000

4 2765 .75 1 926 2765 .874370 0.000000 0.000000 0.000000

5 2765.814602 0.000000 0.000000 0.000000 0.000000

6 0.1)00000 0.000000 o.oooono 0.000000 o.o onon o
7 0.001)000 0.000000 0.000000 0.000000 o .oooooo

8 0.000000 0.000000 0.000000 0.00(1000 0.000000

9 0.01)0000 
0.1)00000 0.000000 0.000000 0.000000

10 0.0110000 0.000000 0.0011000 0.0001)00 0.000000

—-
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The Stepp ing P r o c e d u r e  of t h e  P r o t ~ram

For wet steam as a medium , temperature was selected as the inde-

penden t variable. A step size is selec ted , an ini t ial nozzle
diameter , the initial sli p ratio K is taken over from the result
(final value) of the previous step (concerning the value at the
inlet , see the next section) together with the vapor fraction x
and the enthalpy change (CE2/2) from the stagnation condition
as reference. At the beg inning of each step the mass-flux den-

~ity ti/A = C
E
I(v ~/~~ ) is calculated. Since the mass-flux is

the same along the nozzle axis , the ratio of the mass-flux densi-
ties from step to step equals the inverse of the cross-sectional
area ratio , or

D /(i~/A)2 _ I  
_ _ _ _  03D~ ~~7~j1 2

A local efficiency can also be calculated , from the ratio of
enthalpy change across a step to vmdp:

t 
~ C E

2 / 2
1
~~N 

= v d~~ 
(104)

.5- m
V

The nozzle throat is defined by the maxiumum mass-flux densi ty.
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The Ini t ial Cond it ion

An initial kinetic energy can be prescribed together with an inlet

diameter of the nozzle and the temperature and vapor fraction con-

ditions. The initial slip ratio K can also be selected ; however ,
experience with running the program suggests that K is best se-
lected such as to make the derivative dK/dp at the inlet equal
to zero , in order to avoid sharp adjustments in K at the beg in-

fling of the expansion in the nozzle.

When Eq. (90) for dK/dp is set equal to zero , a condi tion for
a limiting value of WL is obtained as follows

~ (V ~ 
~~- 1 dx

- Kvb J 
- 

2x(l-x) ~~
= ___________________________________— (105)

+ x ~ R

• IC E 2

where Q = 4x(l-x)(Ji - 5-_i—
) (106)f i

dx x a
= Z~~ j~ + 

~~ 
-a
~ 

(107)

1 va r~- - V 1~/K
z = VK + VJ~ . (108)

i

The value WL is a function of temperature (pressure), vapor

fraction x , V
a 

and Vb, dx/dp ,  dV
a
/dP~ 

K and the initially assumed

CE
2 . From the definition Eq. (82) for W follows

dL 
— 

3 D vb(1 x)(K l)3 (109)- 
2
~ Ltafl6 Va ~ K
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In order to solve for the limiting drop le t size , dL, required-- to make dK/dp = 0, the expression for the Reynolds number (87)
is divided b y C D as f o l l o w s

Re - 

d
L
C
E
(K

~~
l )

- 

CD ~Ji~ V f l  
(110)

Eq. (109) for dL/CD may be substituted into the above Eq. (110) for
R,e/CD. Since the drag coefficient CD is a function of Re ,

in CD = A + By -+ Cy 2 + Dy 3 (ill)

where y ln Re , (112)

CD/Re may be expressed as a function of Re as follows

ln(~~) = A + (B-l)y + Cy 2 + Dy 3 , (113)

which leads to a cubic equation for y when CD/Re is g iven

y l + \. + ~~~~~~~~ 
ln (C~ /Re) = ~ 

.(114)

-
, Substitution of y = x - leads to the cubic equation

x3 + ax + b = 0 (115)

where a = 

~~ 
- ~~~. (C)2 (116)

b A + ln(C~/Re) + 2 
~~~ 1 C (B-l\ S

S 

The discrimjnant follows

= (b)2  

~~~~~~ 
(117)
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If ~ < 0 , w h i c h  is u su a l l y  the ca se , there are three real
solutions , including

x = 2 c os (4  + 240 0 ) . (118)

where ~ follows from

cos 3~ = r
i
b
a~~, . (119)

2
I

The values of the constants are , according to Eq. (88) A — 3.271,
B = -0.8893 , C = 0.03417 , D = 0.001443 , so that a = -1496.198 and
(a/3)’ = -1.240518 x lO s . The constant b/2 becomes

b/2 = 6792.464 + 346.5 ln (Re/CD) (120)

and y = x - 7.89328.

As the sli p ratio K is varied , the limiting dL required to make

dK/dp = 0 may be calculated. A typ ical plot is shown in Figure 2.

The relative loss (1 - T1\) encountered due to the dragg ing of the
droplets may be calculated and plotted on the same figure. At
the same t ime the Weber Number cr it erion yields a drople t size dW
from Eq. (86), which may also be plo tt ed as a func tion of K . It
is seen in Figure 2 that the dL and dw lines intersec t at some K

value . That value of the slip ratio is the one to be used m i -
tially if no pre-atomization is provided be fo re  the  n o z z l e  and the
“Weber breakup” is assumed. It was found that indeed when such
an initial K value was used with the main program the slip would 

S

initially obey dK/dp = 0.

Similarity - The initial value problem for K just described gives
the possibility of studying the performance of geometrically similar

L 46
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nozzles of a cer tain ratio of droplet size to nozzle diameter at
the inlet. Fi gures 2 , 3 , 4 and 5 show th e  “ l io~i t in g  droplet  s i z e
dL” required to give dK/dp = 0 for different size nozzles (P =

0.005 , 0.01 , 0.1 and 0.2 m). While the magnitude of is
independent of nozzle diameter , dL/CD contains D in Eq. (109).
The loss curve (1 - however ,is independent of diameter
since S of Eq. (79) is independent of 0 and

WL S CE
2

= _ _ _ _ _

Similarly, the droplet size according to the Weber criterion is
independent of nozzle diameter D, according to Eq. (86)

12 v aK ~dw ~ a = f(t , x , K , CE
2) . (121)

CE (K - 1 )2

The points of intersection of the lines dL and dW move to smaller
K ratios as the nozzle size increases. The droplet size , follow-

~ I 
ing the dw curve increases correspondingl y. The rat io D/dL
varies with K and D as follows

________________________________________________________________________

D K
0 

d
L
=dW D/d

m - p m  - - -
0.01 4.30 190 52.63 0.478 0.522

0.025 3.50 255 98.04 0.488 0.512

0.05 3.04 335 149.25 0.430 0.570

0.1 2.68 435 229.88 0.462 0.538

0.2 2.39 578 346.02 0.442 0.558

0.5 2.09 855 584.80 0.410 0.590

for dK/dp = 0

The result is that the ratio of the nozzle and drop let diameters

decreases for smaller nozzles.
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LI
The Throat Condit ions

The throat is locatedat the p lane of maximum mass-flux density
,~/A. At the same t ime the local relative losses should reach their
minimum at the throat. Since the relative loss 1 - is propor -
tional to the product WS , the slope at the wall , tan 5 , cancels
out , so that a discontinuity can be tolerated by the one-dimensiona l
theory. Since the axial length increment dx * is theoreti cally
zero at a sharp throat , the loss should accordingl y be zero . That
requires the pressure gradient dp/dx* to tend toward infinity ,
see Eq. (73) .

In an actual program execution it was initially found difficult to

maintain the accuracy required to achieve coincidence at one and the

same temperature of the two events of maximum mass-flux density on one

• hand , maximum gradient and minimum efficiency on the other hand .
The difficulty was attributed to the effect of CE

2/2 , (that is ,
the value by which the local enthalpy differs from the value at
stagnation conditions). The effect of CE is explici t ly presen t

in the differential Eq. (90), as well as implici t ly through the pre-
sence in ic, see Eq. (96).

A refined equation for dK/d p was first developed , based upon the
assumption of a neg li gible effect on drop let size of a varying
relative velocity at the droplet over the axial extent of an ele-
ment. Next the influence of a varying C~ was considered every-

where else and was algebraically eliminated. Further details were

already given in connection with the quadratic Eq. (101) for CE
2 .

The question is whether the peak in mass-flux density it/A can be
accurately determined when ri/A depends on W , and the value of W
should be adjusted according to its definition - Eq. (82), to the
chang ing tan 6 at the throat (from the value in the converging

0 part to the value in the diverg ing part).
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LI
The answer is that if (1 - n\) -‘0 at the t h r o a t , Eq.  (58 )  for

dK/d p may be resorted to , which is entirel y general , (the loss
mechanism being represented solely by (1 - ri N

) in one of the

terms). Since a change in tan ~ at the throat only affects the

loss formulation , a neg lig ible loss situation i~ made independent

of ~5 and is represented by Eq. (58) with (1 - 

~~ ~
0, that is

+ 2x (1-x) ~ 
+ (

~ 
- Kv~,) = 0 (122)

For lower values of x and moderate K values we have (l-~ ) > 0, and

dx/dp < 0. The third term is always positive when V
a
>>V

b~ 
and much

larger than the second term of Eq.(122). As a result dK/dp is gen-
erally negative , that is , the sli p increases at the throa t . That
is borne out by actual computer runs.

The other relation that has to be met at the throat is Eq. (73),
which represents the reciprocal of the normalized pressure gradient .
With the pressure gradient tending towards infinity, S becomes zero .

If the temperature (or pressure) and the vapor fraction is assumed

as known at the throat , the enthalpy difference CE
2/2 may be cal-

culated from Eq.(73) for an assumed sli p ratio K as follows:

/V a \ 2~~xl -p- - Kvb I -

C 2 = (S = 0) (123)E 
~-l dx + 2R

2x(l-x) ~~~~~~~
-

where

dvdx x aR = Z~~~~ + _ _
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V

= 
x,JW 1 

- 

~~a - (1-x)v bJ~

were given before .

A check may be obtained for Eq. (123) by setting conditions for
sing le phase operation with an ideal gas as follows :

For K = 1.0 (no slip) :

x -~-l .0 ,

V = 2x - 1 - [XV - (l-x)v b ]/v

z 
v v b 

x dVa

For a Single Phase Gas:

vm~~ 
V
a~~ 

Vb O

V - ’ O

z - ’ l 
L

I 
~ 

R = 
dva/v

IS 
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I
For an Ideal (~as :

~~~~~= -l~~~

so that
1R - - ~~~

After substitution into Eq. (123) we get
I

c 2 = —
~~
. = a 

= k~~r ( 1~~ 4E R ~~a

That is the square of the sonic velocity in an ideal gas.

Returning now to two-phase conditions , Eq . (123) ma he p r o g r a m m e d
and resul ts obtained as presen ted in Fi gure 6 for the variation

of CE with chang ing sli p ratio K , and throat temperature as a
parameter. Additional exploration over a wide range of K values
shows that for a given temperature CE reaches a minimum value for
a certain sli p ratio . Over a range of temperatures from 100 to

U 200 °C , t ha t  m i n i m u m  v a l u e  changes  only  f rom about  118 rn / s  to 120 r n / s .

Knowled ge of the value of CE and the slip ratio K at the throat
(for given temperature and vapor mass fraction x) allows the cal-
culation of the mass-flux density 7~fl/ ~~~ at the throat , which is
useful for the sizing of the throat for a required mass flow .

Typical mass-flux densities are shown in Figure 7 for x = 0.125

and t = 100 to 150°C at the throat. 
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In Reference 4 a normalized mass-flux density

= m 
~
‘
~~~~O ~

‘‘T~o 
(125)

was presented based upon the slip-fr ee IHE model , and a given
nozzle inlet temperature in the range from 100°C to 300°C.

Note that according to Equation (25) an increased mass-flux
density at the throat is due to the ratio Vm/V Ji~ which tends
toward K for sma ll x , and the speed ratio (CE/Cs)* .

It is necessary to distinguish clearly between three situations :
(1) the conditions and results of the IHE model , (2) the
results of the slip model at Dl, (3) the results of the slip
model at K=l. A comparison of mass-flux density may be made
based upon either (a) the same inlet stagnation conditions or (b) the
same pressure and temperature condition at the throat. Equation
(25) yields for K=l (no slip)

(mt)K=l = 
(c \* 

-

IHE \c 5J

If the temperature at the throat and at the inlet is assumed the
same for both models , the en thalpy drop should also be the same
for no slip, that is CE* = C~* and the results of the two models

(1) and (3) should coincide for K=l.

Since Equation (123) gives a value ofC E
2 which is only de-

pendent on the quantities t, x and K, it is not tied to a
certain inlet condition to, except that it should not exceed C~
and therefore calls for a maximum to. The above assumption of
equal stagnation conditions for the two models when the throat
condition is the same is therefore not necessarily justified , and H
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larger mass-flux densities are possible for the slip mode l when
the throat conditions are reached at a lower enthalpy than for
the IHE model (starting from the same stagnation enthalpy).

The curves for CE of Figure 6 show a strong increase of CE towards
lower slip ratios K. Its influence on mass-flux density seems to
override the effect of the first factor of Equation (25), since
Figure 7 shows the highest mass-flux density at small slip ratios.
Since CE is only weekly dependent upon temperature , according to
Jigure 6, the question of how the mass-flux densities compare for

the two models , based upon identical stagnation conditions may
have to be answered by actual computer runs for both , the IHE
model and the slip model (in order to locate the throat).

From a series of such computer runs it was borne out that the
limiting values of CE and rn/A given in Figures 6 and 7 are
closely approached if the local efficiency is high. Low local
efficiencies near the throat are , however , possible if the pres-
sure gradient is low . Throat values of CE and i~t/A are then much
lower than the limiting value s given.

A basic question touched upon is that of the value of the sonic
velocity at the throat in a two-phase mixture with slip. For
further details see References 6, 9 and 14

The limiting value of CE given as a function of K allows also the
determination of a minimum droplet size as a function of K that

may be expected at the throat and thereafter. Figure 8 shows such
results. It is seen that values of d of the order of a few

microns are possible if high local efficiencies near the throat

are realized. -
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Experience Wi th Running The Computer Program for the Nozzle
Expansion

The program was systematically debugged ; the results of the sub-
routine for the properties of wet steam were checked against
tabular values , until the deviations were a fraction of one per
cent. For the viscosity of saturated steam the latest interna-
tional standards were initially used; in order to reduce the
program running time a formula of the form of SUTHERLAND ’e was
selected and the two constants adjusted such that close agree-

ment with the “International Formula” was achieved , see

Appendix II.

Most running experience was obtained with 150°C inlet temperature ,
an initial vapor mass fraction of x=0.l , an initial velocity CE of
17.4 rn/s. and a very small nozzle inlet diameter of 0.01 m (see
Figure 9). Without preatomization , the Weber Number criterion
gives an initial drop let size (for dK/dp=0) of 190 i.im , and an
initial slip ratio of K=4 .3O=C a/Cb - It climb s ini tia l ly  when
using 6= ~l50 =constant over the converging part . The slip ratio
thereafter decreases and reaches a minimum of K=4.0S at about
143°C and then increases again towards the throat , where it
reaches a value of K=5. 70 at a temperature of 126.5°C. The vapor
fraction at the throat is 0.1399 , the mass-flux density
i~/A=3202.2 kg/sm

2 , the drop let size d=ll .6 tim , the velocity CE
corresponding to the enthalpy change CE=l41.7 m/s, the throat
diameter D=5.702 mm and an S-value of S=l.60 x 10 ’ m 2/N. A
sharp transition from one cone angle to another of opposite sign
is permissible at the throat ; the K curve will then show a dis-
continuity of the derivative , whereas the efficiency and the gra-
dient S will experience step changes . As the angle 6 changes
its sign , W will also change sign from positive to negative , and
S will change sign from plus to minus .

While the normalized inverse of the pressure gradient , S, may be
used to calculate the diameter change for a certain temperature
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I
or pressure change , it is more accurate to calculate the mass-
flux density from Equation (23) at each inlet to an elementary
step, and use its ratio across a step to determine the area ratio
required. Still , the quantity S gives an indication of the
diameter changes and the local efficiency potential.

Near the throat , S tends to be very small and the pressure
changes are large for a given temperature change.

In the diverg ing part of the nozzle , a negative S should increase
in its absolute value in order to allow the expansion to proceed

• with smaller and smaller pressure changes (for given uniform
temperature changes). At the same time the losses are bound to
increase according to Equation (83).

For very small nozzles (of the order of 0.5 cm throat diameter)
the slip ratio was large , and orderly expansion in the diverging
part was found difficult to obtain with a simple straight cone
geometry . The program , however, allows changing the cone angle
6 at every elementary step such tha t a compromise in the varia-
tion of S and is obtained.

With a prescribed fixed cone angle in the diverg ing part of the

nozzle , the situation was encountered where a negative S would in-
crease in absolute value with progressing expansion. While the
mass-flux density was still decreasing from step to step , the
pressure changes were large , the efficiency was rising , and even-

tually, when S was allowed to change sign from the normal negative
to a positive sign , the pressure gradient would reverse and the
efficiency would reach unity at the same point . Within the con-

straints of the prescribed equation system , which does no t make
allowance for the occurrence of shocks, only an incr eas e in cone
angle 6 downstream of that point could avert the physically un-

tenable condition of a rising pressure linked to a prescribed

falling temperature. The limiting condition as described ,
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gradually develops when the absolute value of S has been de-
creasing steadily, which means that for uniform steps of tem-
perature the diameter increase and therefore the axial movement
of the state point along the nozzle has become less and less.
That condition benefits the local efficiency because the drag
work becomes less and less , until (when S changes sign and goes
through zero) the losses go to zero when the axial displacement

dx* has ceased to develop . Obviously, at this point no further

regular expansion is possible: the selected cone angle 6 is in-

sufficient to accommodate an increasing volume flow. The above
development goes parallel with a steadily increasing slip ratio K.

A guideline for the required cone angle 6 may be obtained by
solving for W while dK/dp of Equation (90) has a prescribed in-
creasing value (dK<0) . The equation for W6 becomes according ly

+ K I l-x dx 
+ ~ - K

~~dp L2x(l-x) ~~ ~~T ~
K— vbJJ~

W = — (126)
½i$~V dK/ dp K(~~

2 l~/CE
2 

+ i~R)

The cone angle 6 required follows from Equation (82). Use of

Equation (126) in the program leads to an automatic calculation of

the required nozzle geometry that will give a prescribed slip

ratio slope at the inlet to each nozzle element.

Such a sample solution is given in Figure 10.

I
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PART II

DROPLET TRAJECTORIES IN A TURBINE PASSAGE

In a cylindrical coordina te sys tem (r ,O ,z) the material derivative
is (C r 

= radial , C
~ 

= peri pheral velocity component s of the drople t )

D 
— + C + 

C 
a C a (l’~ )UI — 

r~F 
+ 

z~i 
-

The projec t ions a
r ,au ,az of the acceleration vector of a liquid

drople t in the coordinate directions are

DC C 2
ar 

= -

DC C C
a = 

U 4 r u  (128)u Dt r

DC
az 

=

If we neg lec t the fo rce due to the p r e ss u r e  g r a d i e n t  in the  passage ,
the buoyancy and mass changes of the drople t , the aerodynamic drag
is the only remaining force with the drag coefficient CD

D = C
D
AP

~~~~~ 
. (129)

Using the mass of a sp herical droplet

Sn. 
3 ,= 

~b 
~ d

I
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and equating D to ma we get

3 C0 ~a -

~~~~ (l~ 1)a = T T ~~~ 
C , C

Equating the individual components we obtain

DC C~~
2 

3 C D P
- -~~~~~~ + 

~~~ a s—. C Cr

DC
~ - 

C C  
~ 
C~ ~a C C (132)• U~~~~~~~~~r +

~~~~~~~~~~~~~~~~~~~~~~_ j ~~~~~~

DC 3 CD Pa
= 

~ T 
d C

Such a set of equations was solved for the two-dimensional case
(C.- = 0) in Reference 15 by numerical integration . Unfortunately
insufficient information is given there for generalizing the
results.

A simple analysis of droplet trajectories was developed in Re-
ference 4. The result will be given by the ratio of the radial
drift velocity wb of the droplets in relation to the steam ve-
locity C. A flow angle deviation of the droplets from the steam
is thereby given.

Since considerable analysis was applied to the stud y of the processes
in the nozzle (because they form the foundation of what is to happen
thereafter in the turbine) the criteria developed in Reference 4
will be repeated here , together with some sample calculations .

The retati-~e veT.oc’tj~ between droplet and steam in radial direction
is designated as wb and needs to b~ calculated .
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The drag force on the drop let of diameter d is defined by

w 2 21 b 57T 33= 

~~~~~~~~~

where va is the specific volume of the surrounding medium . The
drag coefficient C0 is given as a function of Reynolds number
Re = W b d/va in Figure 11 according to a relation given in Re-

ference 7 which is valid for 0.1 < Re < 20 ,000: [See also Eq. (88).]

ln CD 
= 3.271 - 0.8893 ln Re + 0.03417(ln Re)2 + 0.00l443(ln Re)3

Since the slip velocity wb is not initially known for the calcula-
t ion of Re and CD, the quantity Re~/~~ was plotted against P.e in
Figure 12 , since Rev€~ is expressible in terms of known values

as follows .

The inertia force on a spherical droplet of diameter d and speci-
fic volume vb that travels with velocity C on an initiall y assumed
circular path of radius of curva ture , rk, is

- 
1 rrd~ C2 

-

vb rk

Corrected for buoyance B we get

F - B = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ~ a )  
. (135)

Equating the two forces of Equations (133) and (135) gives

= 
/~~~~~~~~~;[~~~~~- i ]  . (136) 3
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It is convenient to refer veloc ities to the reference velocity

e = ~~~~~~ V~ and lengths to the mean free path length

v~~
= a a  (137)a e

According ly

and (139)

ReA =

- C /4 d I d ~~P’a 1
‘--5 

- 

~~cit~~
- 1 j .

Therefore , the proof is furnished that the quantity Rev’E~ is
solely composed of known quantities , namely the drople t diame ter

o d , the vapor property Xa~ 
the ratio of specific volumes Va/Vb~

the radius of curvature of the path , rk, and the normalized abso-
lute velocity d/e (‘~ Mach number) along the path. Entering S

Figure 12 on the ordinate will yield Re and consequently the
desired wb/e from (138) 3

wt_.. S

— Re C
_ _  - ‘ “

Equation (139) shows that the expression ~eJ~~ is a function of
the relative droplet velocity C/e in the path with radius of
curvature rk. The resulting relative slip velocity wb/e is a

_ _ _ _ _ _ _ _ _ _ _ _ _  - - 
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measure  of t he  d e v i a t i o n  f r o m  the  o r i g i n a l  p a t h .  For t h i s
purpose  the  r a t i o  w b /C is s i g n i f i ca n t  and may be used fo r  a
s tep  by s t ep  t r a j e c t o r y  a n a l y s i s .

An illustrative example mi ght be help ful. Assume an absolute
pressure of steam of 0.250 bar that corresponds to a saturation
temperature of 65°C. Accordingly

va — 6 .2 06 
—— 

3 — u~. 5 _,6
b 10

• e = 
~J p v a 

= 393.9 in /s

= ~~~~ 
= 

6 . 2 0 6  
~g~~:~~

6 5 x b 0 s 
l . 67 8 x 1 0 7

in

d = 2 j.zm

= 11.919
a

r k = 10 cm = 0.1 m

C = 2 50 rn/s

= 0 . 6 3 5

Equation (139) yields

Re.J~0 
= c .i ( d ) 2 [ ’ Ta 

- 

1] 
= 3.0 7 7 2

From Figure 12: Re = 0.46

S

and = 
d/A 

= 
11: 919 = 0.0386
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0.0386or = 
0 .635 = 0 .0608

0or an ang le deviation of 3.5

If the droplet size is diminished to 1 1Am the result is

Re...Jç = 1. 0885

Re = 0.06

wb/e = ____ = 0. 0101

W b/C = 0. 0159

a = 0. 908°

It is seen that the deviation of the li quid droplets from the
path of the steam due to drift is small for such small droplet
sizes and a radius of curvature of 10 cm , see Figure 13.

To summarize , the non-dimensional parameters which control the
drople t trajectories in the turbine are

the Mach index of the steam flow

d the r a t i o  of d rop le t  s i z e  to the  r ad ius  of
rk curvature of the path in the bucket 

,

d the ratio of droplet diameter to the mean
A free path length of the molecules in the steam ,

V
_A the specific volume ratio of steam to liquid

-. 
vb
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Figure 13. Deviations of Drop let Velocities
From Steam Velocities in an Impulse Bucket
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The smaller Re.,J~~ , the smaller Re , and therefore

Wb - Re
e d/X

The lower the specific volume va of the steam , the lower the drop-
let deviation wb/e. For Re ~ 0.1 the simple Stokes formula is
valid

C = 24 (141)S D Re

Therefore ,

ReJ~~ =

and after substitution into Equation (139) we get

Wb - 

wb/e - Re
— 

C/e (C/e) (d/A a)

(142)

1 C d d Iv a 1
- i-

~~ ~~

- —
~~~~~

- l
j

The normalized deviation wb/ C in the Stokes reg ime is propor-
t ional to drople t diame ter squared , the Mach index C/~J~- v 5
the ratio Va/Vb (if Va>>V b ) and inversely proportiona l to the
product rkX a . For further discussion dee ” Conclusions and

Recominendat ions ”.
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CONCLUSI ONS AND RE CO?~ff’1ENDATIONS

Two areas of two-p hase flow were considered: (a) the one -
dimensional flow of wet steam in a converging-diverg ing nozzle ,
(b) the two-dimensional flow through impulse turbine buckets.

A theory based upon a simple model was developed for the nozzle

prob lem , which is a foundation for the turbine problem.

Both the slip ratio K and the droplet size d at the nozzle
discharge are needed for the solution of the turbine problem .
To determine the slip ratio , a proven local relative-loss model
was used to express the frictional drag losses between droplets
and steam , while the droplet size was established by limiting
the value of the Weber number to six.

Expressions for the mass-flux density , vapor and liquid velo-
cities , droplet size , thrust arid overall nozzle efficiency have 

S

been included. These relationships have been solved numerically

4 by a digital computer.

The results predict an increased mass-flux density is to be
expected in the presence of slip for mixtures of low vapor mass
fractions compared to the prediction of the IHE model. In addi-
tion , the model indicates that larger slip ratios do not neces-
sarily mean large losses and , hence , low local efficiencies ,
although this is generally the case for the overall efficiency .

In the absence of preatomization , purely algebraic considera-

tions establish the initial slip ratio and drop let size at the
nozzle inlet. If, on the other hand , the droplet size is pre-
de termin ed by means preceding the nozzle , the corresponding
initial slip ratio can also be determined algebraically.

H The ratio of the nozzle and droplet diameters is predicted to
increase as the nozzle diameter increases , which results in a

higher nozzle performance . For a given nozzle size , smaller

76

- . 5- --5 .5 - 5 -  --- 5 -.- - -- - 5 -

; i:: I.i-~~~~~~~~~~~~~
-
~~ ~~~~~ 

-- 
~~~

-
~~~~~~~

:- I ~~~~~~~~~~~~~ ± .
~~~~~~~~ - -

~~~~~~~~~~~~~



- 

_~~_~~~ -5 -5 _  ~
_55_ __s_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

droplets (below the Weber threshold) result in lower values

of slip and local losses if K< 2.5.

In the development of the computer program for the step-wise
nozz le cxpans ion , entirely different situations were encountered
in the converging as compared to the diverging part of the
nozzle. While the assumption of a given cone angle throughout
the converging portion lead to solutions without difficulties ,
a similar assumption for the diverg ing part would be acceptable

for a certain portion , but would eventually lead to a tie-up
of further expansion (within the constraints of the formula-
tions used , like continuous expansion , no shock waves admitted) .

By allowing a change in the cone angle 6 along the axis , which
means a departure from the, straight cone geometry , orderly ex-
pansion can be obtained. The choice of the angle , however , is
critical since too small an angle leads to poor local efficiencies
(coupled with a drop of the slip ratio K and a decrease of the
value of the pressure gradient and an increase in droplet size d.

Since the behavior of K , r~ and pressure gradient is interrelated ,
it is possible to find a suitable nozzle contour (or cone angle
6) by prescribing a certain gradient dK/dT at the inlet of each
step . A solution obtained for a small nozzle is shown in

Figure 10 where dK/dT was uniformly equal to 0.02 at the begin-
ning of each step .

The investigation of two-p hase flow in an impulse turbine was
necessarily brief and is given in Part II. The results g iven
at the end of Part II show that the relative deviation of the
droplets from the steam path will increase with the Mach index
of the steam flow , the ratio of droplet diameter to the radius
of curvature of the flow in the turbine bucket and the ratio of

drop let diameter to the “mean free path length of the steam mol-
ecules”. Also , the larger the specific volume of the steam , the
larger the droplet flow deviation. Combining the mean-free path
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length with the other steam conditions gives for the “Stokes

Regime ”

/C ~~ 1 C d 2
Wb a~~~~j vbn r k

which has the form of a Reynolds Number , with d2/rk as refer-
ence length. To minimize drop let imp ingement on the buckets ,
t large radius of curvature rk of the flow path is needed ,
together with low steam velocities and small droplet diameters.

Even with droplet impingement and liquid film formation ,
acceptable performance seems possible with dished radial out-

ward buckets as were proposed in Reference 8.

Further studies are required , especially with larger machine

dimens ions. Systematic applications of the computer programs

developed should give n o z z l e  designs of the charac teris t ics
required for high performance machines. That conclusion is

- I suppor ted by the results of Reference 7.
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NOMENCLATURE
(Page 1 of 4)

Arab ic

a Acceleration

A Cross-sectional area of nozzle

A* Throat area of nozzle

C~”C” Specific heat of saturated steam

Cb=C’ Specific heat of saturated water

C Index for independent variable

Ca Velocity of steam

Cb Velocity of water droplets

CD Drag coefficient

CE ‘512(i i )

C~ Velocity from isentrop ic expansion

d Droplet diameter

D Nozzle diameter

DF Droplet drag

e = ‘I~V Reference velocity

H Index for successive discretizations

i Static enthalpy

1m Static enthalpy of mixture

I Index in solution matrix T[J,I]

J Index in solution matrix T[J,I]
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NOMENCLATURE
(Page 2 of 4)

K Ca/Cb slip ratio

L Power loss

Mass flow

- -  

~T 
Total mass flow

N [H] Numb er by which step size is divided by

p Static pressure

Q 4x(l-x) (J~ 
- ‘/sJ~ )

rc Latent heat of evaporation

rk Radius of curvature of path

R Z dx/dp +

Re Reynolds number dW/Vafla

S Entropy

S 2dD/Ddp 
S

t Temperature [°C)

T Temperature [°K]

v Spec if ic volume

V
m 

Specific volume of mixture

xv
y —!. + (1-x)v bJ~

(1-x) 
- 
[~~

a 
- (1-x)v bJ]

5 
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NOMENC LATURE
(Page 3of 4)

w Relative velocity between droplet and steam

c (1-x) 
Vb (K- i)3 DW 

~~ D ~ K d tan 6

w2dWe aa

x 

- 

Vapor mass fraction (quality)

x~ Axial length coordinate of nozzle

XX + (1-x)/K

i - x.Ji + (l-x)/’.Ji

Y[C ,H] Dependent variable , approximation of

+ 
(~~

_ - v b../i)

Greek

a Static void fraction

6 Half angle of conical nozzle element

Viscosity of steam

Nozzle efficiency (local and overall)

vaT~a
/e “Mean free path length of steam molecules”

p Mas s dens ity

a Surface tens ion
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NOMENCLATURE
(Page 4 of 4)

Subscripts and Superscripts

o Stagna tion cond itions

1 Nozz le inlet

Steam

Liquid

* Throat conditions

- V
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APPENDIX II

PROPERTIES OF WET STEAM

UP TO 250°C

-1. The Callendar Equation of State

T1~e Callendar equation of state was used

10/ 3

va 
= - 0 . 0 7 5  ( 2 7 3 . 2 )  + Vb ‘ (11—1)

where T is in degrees Kelvin , and the specific volume in m 3/s.

2.  The Change in Vapor Specific Volume

The change in dVa is

dVa = (;
~) dT + 

~~~ 
dp . (11-2)

- c  p T

From Eq. (Al) the partial derivatives are as follows

(h a) = + 0.07~~
10 (273j (2~~~.2) 

(11-3)

and

(
~~

‘T
a )  = - 

RT (11-4)

11-1
I. 
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LI
The Clausiu s-Clapeyron Eq. (bO ) g ives the required dp/dT

d r
~= T(v - Vb) 

‘ (11-5)

so that we get finall y

dv I~ v ‘ I~v ‘- a — I a ~ dl I a 1 (11—2’)aj5

5.

or -

= (
~~~ ) + (~

“
a) ~~ (11-2”)

.. Saturation Pressure, Latent Heat, Enthalpy and Entropy of Liquid

The remainder  of the  r e l a t i on s  requ i red  was comp iled from Ref . 16
and wi th  except ion  of the s p e c i f i c  hea t s , is s u m m a r i z e d  in Table
11-1. Sing le pr imed q u a n t i t i e s  r ep re sen t  s a t u r a t e d  wa te r  p r o p e r -
ties; double primed quantit ies repre sent sa turated s team proper t ies .

C
4. ~p~ c ific  Heat of Saturated Water  and Steam

The specific heat of the sa turated li quid is calculated us ing
V. Regnaul t  data , see R e f .  16 , page 227

C
b 

= 4186 (1 + 4x 10 5
t + 9x10 t 2) J

(11-6)
The t e m p e r a t u r e  t is to be taken in degrees  C e l s i u s .

The specific heat of the saturated vapor was determined from the
basic equations of thermodynamics as fol lows

C
a 

= = 

11-2 

- 

Tf(
.__

~) 
dp ‘ (11-7)
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RT /~ ‘3 ,\n
wi th  V

a 
= - T ~

) + v b according to Callendar , so that

(
~~2

v) = - C n (n + 1 )  (273~~~~)
fl

3T 2 T’1

where C = 0. 075 m3/k g, n = 10/3 ,

and C = 1996.7 J/k gC ,p0

t1~e low pressure ideal gas specif ic  heat of water vapor.

We f i n a l l y  get
i o/ ~

C = 1996.7 + l .0 833(27~~~2 )  ~ ( 11-14)

where the un i t s  of p are [N / rn 2 ] ,  and those of T in degrees Ke lvin [KJ .

S. Calculation of dx, The Change in Vapor Mass Fract ion

The to ta l  d i f f e r e n t i a l  dx fol lows from

dx = 
(~~~) d p + (}~.) ds . (11-15)

ij Following Ref .  (5) we get for  a two-p hase mix tu re  l ike  wet steam

j~ x \  = 
(~ s/ 3p)x
(~ s/~ x)p (11-16)

and

$ 

(}~)~ 
= 5” - S’ , (11-17)

11-3
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Li
where s” - s’ is the entropy change upon evaporation . Since

S = xs ” + (1-x)s ’ (11-18)

(
~~

)
~ 

= x + ( ] -x )  (11-19)

The d i f f e r e n t i a l  ds” is

ds ” = 
(~~~‘)T dP + 

~~~~~ 
dT • ( 11-20)

For an assumed ideal gas model for the saturated vapor of specific
heat C , the Eq. of Gibbs is

Tds = C d T  - vdp ‘ (11-21)

and there fore :

= -4-- ( 11-22)

and

— ( 11-23)
‘p

Use of the Clapeyron Equation

= (11-24)

gives a f te r  subst i tu t ion of Eq. ( 11-24) , ( 11-22) and (11-23) into
Eq. ( 11-20)

Cds” — v” p (v ” - v ’)
& 

— - + -‘r 
~~~ - s ’) ( 11-25)

11-4
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which  is read y f or s u b s t i t ut i o n  in to  Eq. (11-19).

For the saturated liquid of specific heat C’

ds ’ — ds ’ dT — C ’ Cv” - v ’) ( 11-26)— -a’r- aj~ 
— ‘r 

~~ - s’)

which is to - be substituted into Eq. (11-19) also.

F~na1 substitution of Eq. (11-17) and (11-19) into Eq. (11-16)

I ~ r v c’ - c13x 1 — x(v ” -v ’) i a p• gives i~ — i - I + _______

\ p!5 T(S ” - s ’)  L(v”-v ’) (s” -s’)
( 1 1- 2 7 )

c ’ Cv ”— v ’)
— 

~r (s’ -

or

j~ \ x(c’ - C )
= 

T(1 !L~ 
+ p 

c (11-28)

\ v”I

- 0
The second term in Eq. (Il-iS) may be written

(~ x\  ds dp

From the definition of efficiency , • di/vd p, we get from the
Gibbs Equation , Tds d i - vdp,

1 - - ;~ (11-29)

or
4.

-v (1 - n )ds 
• in N ( 11-30)p T

11-5
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:1
so that finally, from Eqs. (11-15) and (11-17)

I ~~~~~ 

= - 

~~~~~~~~ I (11-31)

6. Viscosity of Saturated Steam

TI~e final formula used is of the Sutherland type , as follows

,

• 2 7 3 + C I T I
= 

~o T + C ~~~!7~ J ‘

where

8.6843 x 10~~6 [kg/ms]

= 49R 3732 [°C]

T = Temperature [°K] .

Sample values were calculated according to the latest international
formula , see Reference 17; they are tabulated below together with

results from the above formula.

VISCOSITY OF SATURATED STEAM

Internationa l Sutherland
Formula 1975 Formula

[OC] n [Jcg/ms ] n [kg/ms ]

100 1 .227760 x 10 5 1.2 285x 10 5
— S

110 1.262300x10 1.2637x10
120 1.297068x 10 5 1 .2987x10 ~~
130 1.331996x10 5 1.3336x10 5

140 1.367034x10 5 1.3684x10
5

150 1.402147x10 5 1.4030x10 5

11-6
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7. Surface Tension of rater

The “International Associat ion for the Properties of Steam”

released in September 1975 the following formula for the sur-

face tension of water (that is valid between the triple point

— and the critical point)

- 

- 

a = 0 .2358  - 647.15) 

256

[ 
- 0 . 6 2 5  (i - 647.15) 1 

(II~ 33)

where I is to be given in [°K], and the units of surface tension a

are [N/rn ] , see Reference 17. 
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Table 11-1. Saturated Steam Properties

log 

~ 
(i - 

)
~ 

a+bT k(1 - 7)

~~~~~~ 

+dT~ 3(l - , _)3  +elk”(l -

P T/T~ 1 + 

~
Tk (1 - T/Tk)

( 11—8)
-z

- 10 Good up to critical point

1 1996.7 1 - [O.O7S(n+l)(i~~)~ 
- v’]P + 1.944 1x 106J/kg K

or (11-9)

i” = i’ + r( , which is n~re accurate than Eq. (7) for saturated steam

= 346.6
,fi~~

- I’ [kJf kg] Latent heat of evaporation (11-10)

s’ 10.1796 1og(-y~~.) 
- 8.6229xl0~~(T-273)

+ 1.8836xl0~
6
(T-2 73)

2 kJ/kg°K (11-11)

C)
q 4.186(t +2.0x10 5t 2 

+ 3.0x10 7t 3) [kJ/kg] (11-12)

i’ — 1 + v ’p = q + pxl0~~ [kJ/kg] Enthalpy of Liquid (11-13)

— E - 0 .0 7 5(2 7~~ 2)~
d/ 3

+ ~~~
‘ = 

~
‘a ( IT- i)

Eq. (11-8) By Smith , Key es ~ Gerry , i934 (Pl ank , R . ,  p .  112)

(11.10) By M. Jakob, 1935 (Plank, p. 125)

(11-12) Regnau].t Data for Spec. Heat of Liquid, see Eq. (11-6)

(11-11) By integration from (11-12)

(11-13) By integration from (11-12)

(Il-i) Callendar Eq. of State

(11-9) From General Eq. of Thermodynamics and Eq. (11-i).
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velocities, mass flux density and fficisnci* ~ s determined by numerical
integration from the basic diffe ____ 

.eqt*ticn. 

~~~The two-dimensional two-phase ttuli i ets was also investi-
gated. The parameters that 

- 
___

__ 
f the droplets from the
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