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ABSTRACT

The two-phase flow in a convergent-divergent nozzle was analyzed.
The model used is that of one-dimensional equilibrium conditions,

uniform temperature in a cross-section and zero wall friction.
The liquid phase is assumed to consist of uniformly distributed
spherical droplets of equal diameter, whose size is determined
by the limiting Weber number breakup criterion. Smaller droplets
may be fed to the nozzle initially. Formulas for mass-flux
density, thrust and overall efficiency are given. The results
provided by a computer program include the slip ratio (i.e.
velocity ratio of the two phases) along the nozzle axis and

the corresponding variation of the droplet size and the local
friction losses due to droplet drag. The cone angle of the
nozzle may be prescribed or it may be determined from a selected
slip ratio gradient.

Initial conditions of slip ratio and droplet size required were

investigated in detail. The ratio of droplet size to nozzle }
diameter is found to vary with nozzle size because of Reynolds |
and Weber number effects. !

T

The slip model is found to predict a much higher mass-flux

density at the throat than that given by the I.H.E. (Isentropic,
Homogeneous, Equilibrium) model. Maximum mass-flux densities i
and minimum droplet sizes at the throat are outputs. |

The two-dimensional two-phase flow in impulse turbine buckets was
also investigated. The parameters that control the deviation
angle of the droplets from the steam or gas path are identified.
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INTRODUCTION

Two-phase nozzles are employed to accelerate a cloud of liquid
droplets suspended in a gaseous carrier to impart kinetic energy

to the liquid phase for the purpose of driving a two-phase or liquid
turbine. Large available pressure heads result in relatively

modest discharge velocities of the mixtures because the droplets
effectively increase the molecular weight of the mixture. Since

the sonic velocity in the mixture is also lowered, the spouting
velocity of the nozzle is generally supersonic, resulting in a
converging-diverging geometry.

The performance of a two-phase nozzle is expected to increase
with decreasing droplet size. A mathematical model has been
developed to study the quantitative relationship between nozzle
design, droplet size, and relative velocity or slip between the
liquid and gaseous phases and the effects of irreversibilities.
That is an important consideration, since the characteristics of
the mixture will subsequently affect the turbine design and
performance.

B

% © The simplest model would be the so-called Isentropic Homogeneous

; Equilibrium (IHE) model® which does not include slip and therefore
friction losses or heat-transfer across the nozzle wall, nor does
it admit any metastable states.?2»®

The problems of supersonic nozzle design are the determination of
the following:

1. Critical mass-flux density or the size of the throat _
area for a given mass flow rate. i

w4 The required area ratio (discharge area/throat area).

J T T T s

I Predicted performance (efficiency) as a function of |
HE- nozzle geometry, initial pressure, initial vapor
i fraction, approach velocity (and possibly time available i
‘ for droplet breakup).
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The first two may be well approximated for higher vapor fractions
(i.e., x > 0.2) by the IHE model. However, the region of most
interest in two-phase turbine applications is that for which the
IHE model gives the poorest predictions. Thus a more sophisti-
cated model that considers slip must be developed to enable
nozzle predictions to be made for two-phase turbines.

The complexity of such an analysis depends on whether or not
further evaporation occurs during the course of the expansion,
which changes the vapor fraction.

Case I, with constant vapor fraction, is approached by two compo-

nent systems consisting of a mixture of initially saturated or
superheated steam and an oil of low vapor pressure.

Also, mixtures of air with water, initially at room temperature
and elevated pressure, fall into that category.

Case II, with evaporation, is represented by single component
systems exemplified by expanding wet steam.

Case III, which involves evaporation in a two-component system,
is found for example in an initially pressurized, heated mixture
of two liquids, to be expanded such that one liquid flashes into
vapor. That case is not treated here in detail, since the
emphasis was placed on Case II, the analysis of wet steam nozzle
flow with droplets trailing the steam. The application of the
analysis to Case I with constant vapor fraction which is realized
for example in a mixture of water droplets in air is relatively

easily made (it is a special, simpler case) but is not pursued
further at this time.

Biphase Energy Systems presently has a computer code in its
library that can predict nozzle performance in the region of

' interest. However, the code requires the input of a pressure
profile along the nozzle axis, with the nozzle geometry being
2
¥
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an output. This restriction makes the off-design study of nozzle
performance cumbersome. In particular, it is difficult to study
the performance of straight conical nozzles (which are easy to
make) with the present code. In addition, the existing program
includes heat-transfer effects between the two phases which makes

the analysis more cumbersome. Independent analysis and experimen-
tal results show that for small droplets the heat flux is very
high and therefore a more simplified approach may concentrate on
the more important influences on the droplet formation in a two-
phase nozzle with slip.

Such a simplified analysis of the physical phenomena occurring in
two-phase flow is presented in Part I.

While the progression of droplet breakup, of local friction losses

between the slower moving droplets and the driving steam and the
variation of the slip (or velocity) ratio is studied by means of
the computer program which integrates numerically the differential
equation for the slip ratio step by step along the expansion path,
certain conclusions can be directly developed from the equations

about the conditions at the nozzle inlet and at the throat. Some

such results are the initial slip ratio and the ratio of droplet

e T

size to nozzle diameter at the inlet as a function of nozzle inlet

S

C XN

size.

e

At the throat, upper limits of the mass-flux density can be deter-
mined as a function of temperature and slip ratio at the throat.
Such results are of prime interest because of the considerable
under-prediction of the mass-flow rate of wet steam nozzles with
small initial vapor mass fractions by the simpler theories.

It will be seen that the theory given here indeed predicts higher

mass-flux density, and also shows that small nozzles develop smaller {
droplets at the inlet, although somewhat larger than would be given

by a direct proportion to the opening diameter. The initial slip

ratio is correspondingly larger for the small nozzle. Lower inlet
temperature and vapor fraction also make the achievement of good
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nozzle performance a challenge. The study of the conditions at
the nozzle inlet will determine the initial droplet size that
needs to be fed to the nozzle in order to achieve certain per-
formance objectives. The question of how the preatomization
could most effectively be achieved is not treated here. A sep-
arate bibliography compiled in Appendix I gives an idea of the

‘work already done in that area as well as other topics related

to two-phase flow in turbines like erosion characteristics.

The results of Part I should primarily be considered as work-
ing tools for a design study of a two-phase engine. The formu-
lations provided allow the calculation of all that is needed in
a basic model study when the initial vapor fraction and the slip
ratio are given. When these are unknown, they may be found by
means of the computer program.

In Part II, two-phase flow in the turbine is considered. A result
of the nozzle study is the final droplet size emerging from the
nozzle. That leads to a consideration of whether more conven-
tional turbines may be used effectively, that is without undue
separation and impingement of droplets on the bucket walls. The
formation of a thin liquid film on the buckets is associated with
considerable friction losses because of the unfavorably small
hydraulic diameter of such a film. Special bucket shapes that
concentrate the film to a larger hydraulic diameter may alleviate
the problem and were proposed in Reference 8. The deviation of
the droplet path from the path of the gas is treated in Part II.

Besides the study of particle trajectories, a turbine design
would have to be adapted to accommodate supersonic two-phase flow
through the buckets at starting and design conditions. The
reader is referred to items 8 to 13 in the Bibliography (page
T-41, 42) of Reference 4.
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The results of Part II may not enable final conclusions to be
drawn concerning the general feasibility of two-phase impulse
turbines. However, the tools given will form the basis for a
specific study to be proposed.

APPROACH AND RESULTS

The present work uses first principles to develop the basic
relationships that influence nozzle performance. The analysis
is similar to that presented in References 5 and 6 which is

very general when the loss mechanism is excluded. The loss
formulation of References 5 and 6 used an impact (billiard ball)
model between fluid elements moving at different velocities.

The impact model is replaced in this work by the model employed
by Elliott and Weinberg’ which is based on the orderly movement
of a cloud of spherical liquid droplets of equal diameter uni-
formly dispersed in the gaseous phase. Other assumptions used in

the analysis are:
1. The fluids are in chemical and thermal equilibrium.

2. Flow is one-dimensional in the direction of the nozzle

axis.
3. No friction at the wall.

4, Droplet breakup is controlled by a limiting Weber
number criterion.

Since Reference 5 was based on the expansion of wet steam, the
same single component fluid was used here, even though the con-
sideration of Case II with continuously evaporating water droplets
(and therefore changing vapor fraction) was more complicated
analytically than the study of Case I with a constant vapor
fraction. Also, the development of an algorithm for wet steam
properties was considerably more involved than the use of ideal




gas properties. However, the potential practical usefulness of
g such a representation, particularly in a computer simulation,

which includes viscosity and surface tension, was determined to
justify the additional complexity.

The analysis is presented in detail in Part I. The first step

: was the formulation of the basic ’ifferential equation containing

§ the derivative of the slip ratio with respect to pressure. A

! - loss mechanism was not included in the early formulation, but,
rather, the relative loss term (1 - nN) was employed as a para-
meter in the analysis. The simplified relationships (Equation

i

| (58) in Part I) were programmed on the computer and parameter sweeps
i were run to determine the initial slip ratio and droplet size

)

without preatomization.

The next step was to formulate the relative loss based on the
frictional drag of the trailing droplets. The initial slip ratio
obtained from the simplified analysis was used to predict the {,

o »

{ relative loss of energy in the first increment of the nozzle.
The resulting governing differential equation is given by
Equation (90), which is an ordinary equation of the first order.

40 As pointed out in the introduction, a separate program was written
for the determination of the initial slip ratio K to be used at
the inlet to the nozzle. A criterion was found in the form of
dK/dp = 0 (Equation (90)) which enables a limiting droplet

o size d; to be determined for an assumed slip ratio K;. Which

) d; and K; should then be used is a question of the droplet size

] that can be provided at the inlet. One approach is to use the

| Weber Number criterion for the droplet breakup which in effect

| gives another curve dw as a function of K. The intersection of ;
the d  and d; lines gives the solution at the nozzle inlet if no i
preatomization is provided for. Another approach is to prescribe
the maximum droplet size at the nozzle inlet by the use of a

’ separate preatomizer. The prescribed droplet diameter is then 1
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set equal to d;; the d; curve pertaining to the selected inlet
diameter will then give the initial slip ratio K.

The above study also provides a basis for a study of similarity
relationships as, for example, the ratio of droplet to noz:zle

diameter at the nozzle inlet for geometrically similar nozzles.
Reference 8 describes an inve-tigation of similarity relations
which was based upon small slip ratios. Conclusions were drawn
as to the effect of vapor fraction and initial pressure levels.
The loss formulation (Equatior (82) and (83)) given in Part I
shows that the ratio of droplet diameter to nozzle diameter is

a significant non-dimensional parameter. It seems that a simple
similarity rule were possible in terms of the initial droplet
size/nozzle diameter ratio if it were not for the presence of
the Reynolds number effect on the droplet drag coefficient. Also,
use of the Weber number criterion for the droplet breakup intro-
duces effects which cause deviations from a simple similarity
rule based on an initial droplet size/nozzle diameter ratio.

Details are given in Part I.

Besides the special study of the initial conditions required at
the nozzle inlet, the general theory presented in Part I can also
be used to establish limits of the mass-flux density at the nozzle
throat. Conclusions regarding possible droplet size can also be
drawn. Provided the slip ratio K is decreasing in the diverging
part of the nozzie, the droplet size would be increasing according
to the Weber number criterion. However, it is reasonable to
assume that no coalescence of droplets occurs and that the droplet
size reached at the throat will be maintained thereafter to the
nozzle exit. That final droplet size will be important for the
performance of a two-phase turbine.

As far as the workings of the computer program for the slip
variation are concerned, no peculiarities or difficulties were
encountered in the expansion of a two-phase mixture in the con-
verging straight conical part of the nozzle. Much time, however,
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was absorbed in interpreting the results for the diverging part
of a nozzle. For small nozzles (with one centimeter inlet diam-
eter) the slip ratio was large and the further expansion seemed

to require a departure from the straight cone geometry. A trial

and error adjustment of the cone angle was used to arrive at
favorable conditions. See the end of Part I for further dis-
cussions.

On the whole it is felt that basic nozzle design tools were
developed in the form of equations [for example Equations (21),
(23), (26), (27), (30), (34), (37), (38), (57), (58), (79), (82)
(83), (86) and (90)], and in the form of three computer programs:
for the initial condition, for the limiting throat conditions
and for the study of the entire expansion. An optimum nozzle
design could not be concluded at this point, since no specific
conditions or applications were defined as a requirement. More
work is needed to define certain types of nozzle conditions and

the corresponding design recommendations and performance poten-
tials.

Since the nozzle performance study of Part I forms the basis for
further two-phase turbine work (Part II), the latter could only
be advanced to the development of basic procedures for its design
work. Once the preatomization and nozzle expansion problem is
sufficiently organized, more specific conclusions may be drawn
for tlie turbine performance potentials in terms of the steam
conditions, sizes and ratings. Since development work is in
progress with liquid turbines a separate similar program for two-
phase turbines should be initiated. g

For a further discussion of results see '"Conclusions and Recom- !

mendations'".




PART I
ONE DIMENSIONAL MODEL FOR NOZZLE WITH SLIP

In the IHE model it was assumed that the velocity of the droplets,
Cb , equals exactly the velocity of the gaseous carrier, Ca .

If we allow now a slip ratio
K = Ca/cb 2 1.0

in a one-dimensional flow, (that is in a flow where uniform
conditions prevail across any section at the length coordinate x*),
we must also distinguish between a volume or void fraction a of
the gaseous phase (out of the total volume present at static con-
ditions), and the vapor flow fraction, or quality, x which is the
ratio of the gaseous mass flow pate, referred to the total mass
flow per unit time at a given section.

While the mass density of the gaseous phase, referred to its
volume is 1/va , the mass density, referred to the total volume
is a/va . The gaseous mass flux density, referred to the total
cross-section is m, /A = oC /v, . By definition ﬁa/A = xmp/A .
Consequently, the total mass-flux density is

aC
g SRk (1)
mT/A V;f

Considering that the static volume fraction of the liquid is
1-a and its mass flow fraction 1-x, the corresponding equation
for the total mass-flux density is in terms of vy is

. (l-u)Cb
mT/A = Vt;-(l—_—xj- (2)
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Equating (1) and (2) allows o to be calculated when x , k
and the density ratio v /v, is known:

<

& |w

3
(1-a) a-0 (%)
The static void fraction a corresponds only to the density cor-
rected flow fraction x if the slip ratio K is unity; otherwise
differences in velocity bring about changes in flow rates for the
same void fractions. Equation (3) solved for 1/a and 1/(l-a) gives

v
1eqs -8 by (4)
o X Va

or
) X Yu
et S & £33 —g T (5)

The basic equations will now be formulated for the momentum,
energy and continuity of the nozzle flow, following Reference 5.
Neglecting frictional shear forces at the nozzle wall the
momentum equation for steady flow is

Rop = ~dlal, * G) (6)

= -d[mT(xCa*(l-x)Cb)]

Since ﬁT is constant along the nozzle

m
dp = -5 d[xC, + (1-X)Cy] o

The velocities may be eliminated using Equations (1) and (2):

w - (e [( e S o
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Substitution of Equations (4) and (5) for o and 1l-o gives

dp = ( )d{(jg)[. + x(l-x)[%? + va] + (l-x)zvb]} (9)

Following Reference 5, the expression in brackets can be
expressed as the product of the quantities x and v defined
as follows:

x = a2k A2 (10)

and

<4

XV
& a
—?r + (l-x)vb\/K ; (11)

Using x and v Equation (9) becomes

dp = -(_T)d{-ﬁ‘l i{r} (12)
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The Energy Equation

With im defined as stagnation enthalpy of the mixture, we get
0

im°= x(ia+ E%-z-)+(1-x) (ib + %b:) : (13)

The mixture enthalpy is

im = Xia + (l-x)ib . (14)
Therefore °

i = § * l[xC 2 4+ (1-x)C 2] 15

mo m 2 a ‘b * ( )

The expression in the brackets may be defined as CE’- (See
Equation (21) below.) Again eliminating Ca and Cb by means of
Equations (1) and (2) we get

’ o ﬁT : 3vaz . e} vb2
i b s i

Using again Equations (4) and (5) we get

s =3 ﬁ ¥ 3 2 2 Va{
dlm = 7Td K) x*v, + x%(1-x) ZVaVbK + E; )

(17)

" x(l-x)z(zvaVb " 3 21(2) + (1-x)%v 2]}
K b b

Using the definition (11) for v and the additional abbreviation

; (18)

12
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it is seen that the expression in the square brackets of Equa-
tion (17) can be replaced by xv? . The energy equation
finally reads

(5 =

Integrated between the stagnation point, where ﬁT/A =0 and
a general point we get

1 (M)’
Iy, =1y ” ;(7) Sl (20)

We are now in a position to formulate the deviations in velocity
from the ideal slip and loss-free condition. When K=1 , x=1 ,

G=vm so that (20) yields

Mo {2 Bt
| L &g e %( T m) . B (21)

which is the kinetic energy of the uniformly accelerated mixture.

Note that CE is not necessarily a result of an ideal isentropic
expansion.

Combining Equations (1) and (4), the mass-flow density in terms
of the gaseous velocity is

s I A A O ) g 0 o 3.5

? A a2~ [xv, + (1-x)v K] v VK

. (22)
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Equation (20) solved for ﬁT/A, and with the definition (21) for
CE substituted gives

oy 1
ik ( )CE (23)

This equation expresses the mass-flux density in terms of the slip
ratio K, the vapor mass fraction x, the specific volumes and the

enthalpy change CE’/Z.

Without slip the predicted mass-flow rate is

(_T). Ss
A Sk A (24)

The flow correction factor for the influence of slip therefore

becomes

oy (v () S
() e wk ] \Cs

The above factor may be applied to the formulas developed in a
previous analysis for slip-free conditions. For a convergent-

divergent nozzle the conditions at the throat are flow controlling;
therefore the slip ratio K and the vapor mass fraction x have to be

known at the throat.

Special values for the flow correction are as follows:

v
For vy <<v,: mo. Jx

v

14
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When x = 0: J;_ - ‘/f . T ™ Ji—

vvx

v
When x = 1: T ow o e 1.0

Wk
The result is that at low x values the presence of slip raises
the flow over the no-slip prediction.

n

Equating Equations (22) and (23) yields

¢, = /= C (26)

E (27)

Note: Check of equations for special cases:

1) X =0 ¢

J=

X = ; € = KCp

[k

Cy

When x = 0 there is no vapor; therefore intuitively:

E

C,6 = 0and K =0, X + o .

2) x= 3% : s & K 3 L, = Cg

When x = 1 there is no liquid; therefore Cb = 0, K+ «», The equa-
tions are found to work even under extreme conditions.
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The significance of Equations (26) and (27) is that the phase
velocities C, and C, are now expressed in terms of slip ratio K,
vapor fraction x, and the energy velocity Cg that represents the

enthalpy change of the mixture.
The thrust and nozzle efficiency may now be expressed similarly.
Thrust

Neglecting off-design conditions with possible deviations of the
static pressure inside the nozzle from the back pressure, the
axial thrust F is expressed as

F e ﬁ\T[xca + (1-x)cb]N2 (28)

where the velocities Ca and Cb and the vapor mass fraction x are
to be taken at the nozzle exit ("N2").

After substitution of Equations (26) and (27)

F = m (EE) [x K + (1-x) 1] (29)
| 7 s
J; N2 J? N2

The expression in brackets is recognized as x defined in Equation
(10); therefore

(30)

o2
]
.
-3
—a~
m
B
S —

Again the result is expressed in terms of the slip ratio K at the
nozzle exit and the vapor mass fraction x and the energy velocity

16




W

CE at that station. The kinetic energy CE’/Z represents the en-

thalpy change of the mixture, which may differ from an isentropic
change on account of friction losses inside the flow. The thrust
correction factor on account of slip is (when Mo is considered a

measured value)

) - (3
K=1 Vx| "
yhere K and x are taken at the nozzle exit station. If the flow

correction factor (27) is included, the thrust correction factor
is

(—%)NZ ; (‘\/—%)* (‘/’;:—lz (32)

Thrust Coefficient

We introduce the velocity CS = \/Z(io-is)m » Wwhich follows from

an isentropic expansion from the stagnation condition im « The
; i o
thrust coefficient may then be defined as

(@]

E

W nikiich, e < el

C

C
T . .
i b -

(33)
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Using Equation (30) we get

& = () (EE) B
= (
V& o\ Cs )
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Efficiency

An efficiency can be defined as

2 2
maca/z + mbe/Z

n )
R hiC. /2
2
2 2 2
xc,? + (=067 (cg
: : & e
CE s
Substituting Equations (26) and (27) for Ca and Cb we get
c 2
K 1 E
gy = fx= # [1-x) — (——)
N [ X Kx] Cs 8

Considering definition (18) for x reduces the expression in the
brackets to unity (as it should be for the fulfillment of the
energy Equation (15)). Therefore

C
Iy *® (EE) (37)

The slip losses show up only indirectly in the decrease of CE
below Cs due to friction losses on account of relative motion
between the phases.

A "thrust efficiency' amounts to taking the square of the thrust
coefficient, Equation (33):

2 (i)’(cﬁ) x?
C ol o g o (38)
T X CS X N
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In Reference 7 relative slips are defined. Correspondingly, the
difference between C, and Cp may be referred to the energy velocity
CE or to a momentum velocity CM’ where

e.* g s c.*
E a b
- P ) 39
5 x + (1-x) > (39)
F X
C = -_— = C —
oo ( E V& )NZ e

Accordingly, from Equations (26) and (27)

G % K

(41)
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n
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]

(1]
XIIH

(#3) o

The relative slip S depends therefore not only on K but also on
the vapor mass fraction x.

Special cases:

S W 1 o Kol =
x = 0; x = ¥ x-= J%r - SE K-1 SM (43)
x=1; $=K,x=vK ,S; =1-%=5 (44)
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The Determination of the Slip Ratio K
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The above relationships allow the calculation of mass-flow, thrust
and efficiency when the slip ratio K, the vapor mass fraction x,
and the specific volumes L and v, are known at the throat and
exit sections.

In a first part it will be shown that the combination of the momen-
tum Equation (12) with the energy Equation (19) yields an ordinary
differential equation of first order in K, provided the losses are
known. This first part, which excludes the loss formulation, is
independent of the form of the flow, that is, whether one or each
of the phases form a connected space.

To this point the procedure will run parallel to that of Reference 5.
A radical departure is then taken in the loss formulation from the
impact model of Reference 5 to the frictional drag of a swarm of
droplets, a procedure more similar to Reference 7.

WYV AT e

The point of departure are equations (12) and (19)

#
dp = -(75) d

il 2
S e | d{(—l) X Vz} (energy) (19)
m 2

s
3 X Vv (momentum) (12)

Differentiation of the momentum Equation (12) gives

m i b
T = = -l g
d (7( ¢ X V’) = 7} d(x v) + x v d(—I)

A
and

e \? d (th/A) |

T - - - - T i

-dp = (——) d(xX V) ¢+ X V —m0u

A [ fip A (45) ¥
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Similarly for Equation (19)

ﬁTZA -5 0 _ (‘hT)2 & =3 "1(§I)d ﬁl)
d{(—&-)xv } - d(x v%) + 2xv = =

and
tho\ 2 d(x v2) d (../A)
Thah (__) BT ol G L (46)
m A x v? mT/A

Substitution of Equation (13) for the mass-flux density and elimi-

nation of d(ﬁ'T/A) between Equations (45) and (46) gives
mT/A
% Cg? d(x v) d(x v?)
di » =y dp # —— = —— (47)
m X # 2 XV X ¥
According to the laws of differentiation of products
d(x v) dx dv
2B e P am— |
XV X v S |
!
d(x v?) dx av
o 49
x v? X v (49
f
Substitution of (48) and (49) into (47) yields
a B ® dx dx
; X - 1%
di = ZIvdp+ —12 — - —
m X 2 { x X } >4
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Referring to the definitions (10) and (14) for x and x s, differen-
tiation gives (when considering x and K as variables)

g SV e e

dx = [xl(-%x—)]gx& +(K-]1z)dx (52)

The enthalpy change of the mixture, dim may be eliminated by the
definition of local efficiency, which is assumed to be known for
the time being

di
m

vmdp

N (53)

After substitution of (53) into (50) and multiplication of the

equation by X X we get
CEz/Z

dp
+2%dx -xdx = 0 (54)

Ce

Substitution of Equations (51) and (52) into the last two terms
of (54) after rearranging gives

: 248 . e Pt 4 g 3 -x)4K
2 xdx - xdx @f 3 )[(x 1)dx - 2x(1 x)K (55)
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The first term of Equation (54) can be rearranged as follows

2x(x v - ny X vm)-—2 = 2x(x v - x vm) + 2XxX vm(l - nN) C_z
CE i E
Tt 1 v
= -Zxx(l-x)(\/!(_ - _)(_a_ - Kv )
] vk /\k b
XX ' 56
+2xxvm(1-nN) -—E; (56)

Recombining Equations (55) and (56) yields

x-1 d X X vy, (1 - ny)
o P Tl S {;("_a-va)-"”mf“y } o| osn
K 2x(1-x) €p K x(l-x)(K—\/—_ﬁ—)

Multiplying by K/dp gives the alternate form

dK  (x-1)K dx K (-xXv_(1 - ny) N
esdvy’ ; P L N + x(_a - Kvb) = 0 (58)
dp 2x(1-x) dp CE2

Equation (57) or (58) is the desired differential equation for K
with p as the independent variable. The kinetic energy cé/z
represents the enthalpy change from the stagnation condition to
the pressure p at the inlet to the flow element investigated
between two neighboring sections inside the nozzle. For Case I,
with constant vapor fraction x, the second term for dx/dp becomes
zero. In Case II with evaporation, for example, of wet steam
dx/dp may be calculated according to Appendix II, which gives
relationships for the calculation of steam properties.
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Solutions of Equation (57) have been obtained for an assumed
elemental relative loss (l-nN) for wet steam. It was found that
certain limits in (l-nN) have to be observed.

Solution of Equation (57) turned out to be easier if (l-nN) is
eliminated by a certain loss model to be treated next.

Loss Model

Consider a control volume of length dx* and cross sectional area
A containing n spherical droplets of diameter d. The ratio of

liquid volume Vb to size of control volume Vc is

mMa3
Yy ngd® (59)
\' Adx*

©| =
[
[

The liquid mass flow can then be expressed with the liquid velocity

Cb and its specific volume vy as follows

M3
| R iR PN (60)
i b v, $ vV, dx¥
‘ b b

The total mass-flow follows

s RS ik SRR
C

ﬁt = ﬁb/(lwx) & (61)

Assuming a drag force DF between droplets and vapor defined by
the drag coefficient CD and the relative velocity Ca-Cb,

D - s (62)

- 2
« e LNt
L 2

F X
4

The power loss of n droplets is, neglecting buoyancy

L = n DF(Ca-Cb) . (63)
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Here the droplets are considered spaced sufficiently far apart
so that the flow around the spheres is not mutually influenced

by neighboring spheres.

The loss per unit mass follows by dividing Equation (63) by
Equation (61) with ﬁb according to Equation (60))

. nD.(C_-C,.) v, dx*(1-x)
Pés = Y2 B ’ b (64)
g d’ C
n 3- b
Substitution of DF according to (62) gives
| . 3¢ (1-x)b dx* c 2(k-1)* .

Eliminating C, according to Equation (27), Cbz = CEz/Ki .

i e e

yields
v C.t
& | Tds = 3¢y {2E B dxX® gyt B
g | X a d 2K (66)
* |
&
& |
v | Considering that the relative loss is
% Fon .. 2RkdS
- N v dp (67)
|
| we get 2
oW o IR T gt Tyt TR . (68)
N - dp vma

i
!
|
?
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Accordingly, the relative loss increases strongly with K ; the
inverse dependency upon droplet size d is at first surprising.
The contrary intuitive perception is that nozzle performance
improves with smaller droplet size. It will be seen that indeed
the final results confirm that expectation, after all terms are
completely developed, especially the dependence of the slip ratio
K on d. It was later found that Equation (68) is in agreement
with Equation (78) and (79) of Reference 9.

Of all the quantities occurring in Equation (68), the length in-
crement dx* needs the most elaboration, since it needs to be

expressed in terms of x , ¥y « ¥ oa K, Cg, and dp .
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®
Calculation of the Diameter Change dD and the Length Increment dx .

One possible way to express dx* is via a mass-flux density change
and therefore a diameter change. If the slope of the nozzle walls
is assumed as known by the half angle &6 , the diameter change
dD is linked with dx* according to

dD = 2dx*. tan § . (69)

The sign convention for the half-angle & can be selected such
that for the converging part of the nozzle & 1is taken as negative.
That way dx* will be positive throughout the nozzle.

The change in mass-flux density can be linked to the desired
independent variables by means of the momentum equation. Combining
Equations (45), (23) and (48) gives

sd(m/A) XV dp , dk , d¥ (70)
m/A % €0 % v

E

Since the mass-flow rate is constant along the axis the left-hand
side of Equation (44) can be reduced to

-d(m/A) _  2dD (71)
m/A D

for a circular cross-section of diameter D.

Using Equation (71), the momentum Equation (70) becomes

L . xv dp , dx dv (72)

X MY
s .
CE X

where dD may be replaced by 2dx* tan & .

Dividing the equation by dp gives

(73)

<)

S = 2dx* tan§
dp D/Z

R P R

Cg? Xxdp Vdp D dp

X lx)

for the momentum equation.
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On the left hand side dx*/dp constitutes the reciprocal of the
3 axial pressure gradient.

In the case of single phase flow the change in mass-flux density

is easily obtained as
td d(f/a) = d(pC) = pdC + Cdp . (74)

In normalized form, using the specific volume v instead of the

. density p we get
d(m/A) _ d4C _ dv . (75)
(m/A) C v

Euler's equation for one-dimensional, gravity-free isentropic flow

yields

g—c- = :V_dR “ (76)
C e

Equations (75) and (76) combined give

(77)
-d(m/A) _ vdp , dv |,
m/A c? v

i

A comparison of the equation with Eq.(70) shows the meaning of

the individual terms in Equation (70). ;cfrdp/iCE2 represents the
effect of a relative velocity change; dx/x constitutes the effect
of a change in vapor fraction; dv/v represents the influence of

a specific volume change. For single phase flow, in the converging
part of a nozzle the effect of the velocity increase more than
offsets the increase in specific volume, therefore the mass-flux

density progressively increases; in the diverging part the opposite |
is true. For two-phase flow the additional change in vapor fraction

e 2o v o e i et e B o b i e




appears and the effect of slip is present in the quantities

+ §, x and v . To show the effect of changes in the slip ratio,
dKk , the differentials dx and dv have to be expressed in
more basic terms.

On the right hand side of Equation (73) the differential dx was
previously given in Equation (51). The differential dv is
similarly derived from the definition of v in Equation (11) (when

- neglecting the change in the specific volume of the liquid)
(78)

- xv v
dv = -[ — -(1-x) vb\/f] §§+(_a__ - vbﬁ) dx + =X- dv &

Substitution of dx and dv from Equations (51) and (78) gives
for the momentum Equation (73)

(79)
e c- dv
S = 2. _d_Q = de tan6 = _V. 1 + _v_. .g(- + "d—x + ——_—x ——a
D dp dp D/2 x €' 2K dp dp vJK dp
where V and Z are defined as follows
1-x b |
x\ff - — - (1-x) v Jﬁq
v JR [J? : ® 1 w0
X v
4 Jr/, \Jk__® . (81)
x v

The derivative of the vapor specific volume dva/dp is given in the
Appendix II.
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Again, the right hand side of Equation (79) is a function of x,

Vasr Vo K, and CE

A discussion of the signs of each term will show whether its
influence is increasing the mass-flux density (for positive terms)
or the opposite. In the expansion of wet steam for example, the
last term in Equation (79), x dva/dp vJVK is always negative; Z
is always positive, therefore Zdx/dp is always negative. The
first term ii/iCEz is always positive. Since the first term in
V is negative for small vapor fractions x , and since the
éecond term of V approaches -1 in value, a flow with increasing
slip (dK/dp<o) will tend to give an increasing mass-flux density.

! If, in the overall effect, S 1is positive, the nozzle will be con-
verging, with tané being negative. '

The relative loss, Equation (47), may now be reformulated in terms

g of S = 4dx* tan §/D dp . For this purpose we define the fol-
% lowing:
{ _ _ \'¢ _133

| oo B xb (KD 2 . @)
ls | 2 S d tand
1
?‘ r‘ Equation (68) in terms of S and W now becomes
%
_ | 2

WS Cg /4 : (83)
l_n = e ———

i N v
| m
|
1 Since W 1is dimensionless and S has the units of reciprocal
g pressure, the dimensions check. 1
% The important conclusion is that the relative loss is not only
i determined by the slip ratio K and the droplet size d which are
;1 . represented by W but the normalized inverse pressure gradient
; SCEZ/Vm : good local efficiencies are possible with large K

R

ratios.

BT PN T (I

30

.
. G o AR R IR I RO AL 0 A e O ——

b e O = TN w?—vﬁr“?-:—_- - -



o
Droplet Size
2 In order to evaluate W with Equation (82), the droplet size d
must be known, so that the drag coefficient CD can also be
evaluated.

A criterion for the droplet size is that of a limiting Weber Number

33 2
i o el O g (84)
Zvao

where ¢ is the surface tension, which is given in Appendix II,.
The droplet size limitations are given by

d % TEEE (85)
i 2
(C,-Cp)

This criterion was used by Elliott in Reference 7; it also implies ' B
that the droplets are spherical in shape, and that they are all of i
the same diameter. A further discussion of the break-up criteria

was already given for example by J.0. Hinze in 1947 in Reference 10.

Using the definition of the slip ratio K and Equation (27) for
the liquid velocity Cb in terms of the energy velocity CE of
Equation (21), Equation (85) reduces to

d i 12 VaO' Kx : (86)
CEz(K-l)’
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The drag coefficient "D is a function of the Reynolds number,

defined as

g M Sl e (87)

Vala

Reference 7 uses Stonecypher's least-square fit to Perry's tabu-
lation as follows:

In Cy = 3.271 - 0.8893 1n Re
2
. + 0.03417 (1nRe) (88)
+ 0.001443 (1nRe)?,
within the limits

U « Re - Zyxid* .

Again, the Reynolds number may be expressed as a function of the
basic variables

d C K-1
~ e T (89)
et
Vaha VKx
In conclusion, W may now be calculated in terms of x, Vas Vo
CE’ K, and the viscosity n, (see Appendix II) by substituting
Equations (86), (88), (89) into Equation (82).
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The Final Differential Equation For The Slip Ratio K

We are now in a position to eliminate the unknown relative loss
l-nN in Equation (58) by the use of the relation (83), where S
has to be expressed by Equation (79). Fortunately the elimination
of l-nN is possible without changing the character of the differ-
ential Equation (58) to find

~ A v e & -
k{2l dx . X (-—a - va>+ : ["2‘2’ . ixR”
dp L XXWV
2Q
1
here Q = 4x(1-x)(q K - = ) and (91)
> JK
R = ZQ5 ¥ X dva . (92)
dp vJK P

Equation (90) also includes a term with dx/dp , the change of
the vapor fraction with dp as the expansion progresses. The
calculation of dx/dp for wet steam is given in the Appendix II.

With the conditions T, x, Voo CE’ K; O, Na» dx/dp and the diam-
eter D known at the inlet to a concical nozzle element, it is
possible to calculate the droplet size d with Equation (86),

the Reynolds number with Equation (89), the drag coefficient CD
with Equation (88), so that W follows from Equation (82). The
derivative dK/dp follows then from Equation (90), and the relative
diameter change S = 2dD/D dp from Equation (79). A problem is
posed by the dependence on C. of dK/dp , of d(~1/CE’) , of

Re (~CEd) and of CD , and therefore W = f(CE) . The depen-
dence on CE is also present in S according to Equation (79),

and in the local efficiency n

N
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While the enthalpy change, CE2/2 , from the stagnation point to
& the inlet of the element that is being investigated may be assumed

as known, the outlet value must be calculated for ready use in the
next increment.

The static enthalpy change of the mixture, across the element
considered, equals

di = my v dp - (93)

The local efficiency follows from the loss formula (83), whereas
dp follows for wet steam from Clapeyron's equation, if dT is
known

EB = a b = _.rL_ ’ (94)
dT ¥V T(va-vb)

where r_ is the heat of evaporation, given in the Appendix II.
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The Influence of the Enthalpy Change Cg?/2 Over a Nozzle Element

At first sight the elimination of (1 - ny) in Eq. (58) for dK/dp

seems to make an iterative procedure unnecessary. However, since
e : .
CE = -2[(1 - 10) + anmdp] ~ (95)

and Cg is present in the formula for droplet size, for Re and
therefore W, besides its direct presence in Eq.(90) for dK/dp,
evaluation of dK/dp at successive points in the course of expan-

sion over a nozzle element is affected by changes in dp within
the element.

It is not possible to eliminate Ce and at the same time preserve
the form of the differential Eq.(90) that is explicitly solved for
dK/dp. The following iterative procedure was therefore followed.

The value of CE2 at the inlet to the nozzle element considered is
assumed as known, either by being initially prescribed or by being
carried over from the outlet of the previous element. As outlined
befere the values of d, Re, CD and W may then be determined.

In order to eliminate the effect of CE2 on W, a new quantity W' is
defined

, €. (1-x)(K-1)°% v, D
TORGIRSUNE |, APNgs g ) - (96)

2 5y 22 2
4vaE 32 xX°K ¥y vmtans o}

which does not contain droplet size and CE2 directly. Similarly,
the derivative S (Eq. (73)) can be expressed as

= V dK XV (97
S —~ (R"’z—KaE)*f — 2 )
xCE
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The expression (1 - n\.)/CE2 in Eq.(58) for dK/dp can now be
replaced by

1 SRR :
\ T V\S - e 2
e = r—vm W SCE
“E (98)

¥ By » | B¥
W [(R + -Z—K a-f_))UE + T]

After substitution into Eq.(58) we get

(R-1) K dx _ K A(Va S ) i ( i :‘u})
e T_(_—TX T-x HE —CEZ X P Kv b + A'W RCE + T
== (99)

[1 - AW CE’-]

where

Y m " (100)

The idea is to use the value of CE2 at the element entrance for a

first approximation of dK/dp, according to Eq.(99), where CE2 occurs

three times.

An improved value of C.? is obtained as follows. From Eq. (98)

j - wn(R + Vv dK)C L R wn%‘lc 2 -

N ZX dp)“E E

Multiplying the above equation by vmdp (where dp is the pressure
change from the inlet of the element to the particular station in-
side the element that is being considered) and eliminating ny by
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means of Eq.(93) yields a quadratic equation for CE2

ZW"( R + %% %g-)vmdeE“ + (ZW" %; vpdpd - 1) CE2 - 2(a1 + vmdp) =0

T RSO

(101)

where Al = i1 - io, the enthalpy change from the stagnation condi-

tions to the inlet of the element considered.

It was found that the minus sign in front of the square root of the
discriminant gives the desired results for CEZ. The result of Eq.(99)

is used for dK/dp in Eq.(101). The new value of CE2 is then rein-
troduced into Eq.(99), where W" is previously adjusted for the
change in CD. The recycling is stopped when initial and final values

of CE2 agree within a certain relative error(lO").
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Solving the Differential Equation

The differential Eq.(99) is an ordinary equation of the first order.
Basically, at each temperature the properties V,s Vy, are known, and
if the change in the vapor fraction dx/dT 1is predictable, as it is
(see Appendix II), x is known and dva/dp, the change of specific
volume of the vapor with respect to the pressure. If the derivative
dK/dp were only a function of the pressure, a simple integration
would do, but since the derivative dK/dp depends on the dependent
Gariable, the slip ratio, K, a more elaborate procedure is required.
(That dependence on K is present in the factor K itself, the compound
quantities §, X, ¥, Q, V, Z and R, which are all functions of t, x
and K).

The Bulirsch-Stoer integration algorithm was selected, which is des-
cribed in Ref. 11§12. The algorithm was extensively tested with vary-
ing step sizes in the nozzle program as well as in the solution of

a test case in form of the differential equation y' = -y , which

has as an exact solution the function y = Ce ™. Assuming as given
the function value y = 1.0 (C=1) at x = 0, together with the slope

y!
¥
agrees exactly within the six displayed digits with y = e

-1.0, the Bulirsch-Stoer algorithm yielded the function value
0.006738 for the chosen step size of five (x = 5). That

-5

The algorithm consists of two parts, a discretization part and an
extrapolation part. As the independent variable, (for example,
temperature), is changed by a selected step size, approximate func-
tion values are determined in the first discretization part accord-
ing to a procedure to be described next. Starting values are the
function value and the derivative at the beginning of the step.
Approximate function values are found at values of the independent
variable that are found by subdividing into equal increments the

total step, for example, by values N[H] = 1, 2, 3, 4, 6, 8, 12,
16, 24, 32 and 48, where H= ¢, 1, 2, ..., 10. Figure 1




illustrates the procedure. Figure la shows the way a first
approximation for the end point of the step is found. The same
method is used for obtaining an approximate function value at

the point nearest to the starting point of the step, as shown

in Figure 1b. The same figure'illustrates the procedure used

to move on to the following point, C. The derivative Or tangent is
found at the preceding point, B, and a line is drawn parallel to the
tangent, again through the preceding point A. The approximation

to the function value at the end of the step is stored for each
f=0,1,2, ..., 48 into a matrix T[O,H]

Second part: Extrapolation to zero step size. A rational function
is used for that purpose. A two-dimensional matrix T[J,I] is
constructed, with the integer I varying from zero to ten corres-
ponding to the change in H from zero to ten. The columns are
designated by the integers J. The approximate function values at
the end of the step, T(O,H] form the column designated as J = 0.

To the left of it (J = -1) a column of zeros is placed. The suc-
ceeding columns for J =1, 2, ..., 9 are found recursively from
the formula (Ref. 13).

TLI-2. 1413 - T[81,.1]

[ h{I] ]2{1 S MEScigiet) S Bfact, 1Y b

FLI; 8] = TLJ=-1;i*1] »

hl{I+J Tpd=Tylel ss Bl =< , I+

(102)

Such an extrapolation matrix is to be calculated for both the final
value of the slip ratio K at the end of the step, and the final value
of CEZ, which is a measure of the enthalpy change to the end of the
step. Typical values for the matrices are given in Table I. The
last values, corresponding to T[J=9,I=1] and E[J=9,I=1] are finally
used.




Note: Two special conditions have arisen when the convergence
is very rapid: (a) The denominator T[J-1, I+1] - T[J-2, I+2]
becomes zero; in that case the extrapolation may be terminated
at that point; (b) The entire denominator []{ }-1 may become
zero; in that case the very large default value for 1/0 of the
computer was used for the quotient.
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THE BULIRSCH-STOER DISCRETIZATION FOR N=1,2

C=1

Figure 1a
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“ Table 1. Solution Matrices for Slip Ratio and Enthalpy Change |
1 T[0.1) mATRIX STEP SIZE 0.25% f
I\ 0 1 H 3 4
0 2.693794 2.693661 2.693690 2.693685 2.693683
1 2.693694 2.693690 2.693676 2.691683 2.693682
2 2.693692 2.693686 2.693683 2.693681 2.693681
] 3 2.693689 2.693684 2.693681 2.693681 2.693679
4 2.693686 2.693682 2.693681 2.693680 2.693680
5 2.693685 2.69368) 2.693680 2.693680 2.693676
6 2.693683 2.693681 2.693680 2.693679 2.693679
| 7 2.693682 2.693680 2.693679 2.693679 0.000000
i 8 2.693681 2.693680 2.693679 0.000000 0.000000
i X : 9 2.693680 2.693680 0.000000 0.000000 0.000000
; 10 2.693680 0.000000 0.000000 0.000000 0.000000
) 1\J 5 6 7 8 9
2 0 2.693680 2.693681 2.693680 2.693680 2.693678
: = 1 2.69368) 2.691680 2.693680 2.693680 Ee53c79) -k,
i 2 2.693681 2.693680 2.693679 2.693679 0.000000
A 3 2.693680 2.693680 2.693679 0.000000 0.000000
3 4 2.693680 2.693679 0.000000 0.009000 0.000000
S 2.693679 0.000000 0.000000 0.000000 0.000000
i 6 0.000000 0.000000 0.000000 0.000000 0.000000
; 7 0.000000 0.000000 0.000000 0.000000 0.000000
4 8 0.000000 0.000000 0.000000 0.000000 0.000000
% 9 0.000000 0.000000 0.000000 0.000000 0.000000
: 3 10 0.000000 0.000000 0.000000 0.000000 0.000000
E[.1] MATRIX
1\J 0 1 2 3 4
0 2766.481628 2766.081376 2765.991353 2765.951776 2765.923308
1 2706.181429 2766.0080628 2765.958896 2765.926913 2705.911481
2 2766.085426 2765.976526 2765.935236 2765.913948 2765.917195
3 2766.037781 2705.950025 2765.920021 765.917097 2765.922832
4 2765.989027 2765.931152 2765.917496 2765.970505 2705.898250
5 2765.963706 2765.921882 2765.852380 2765.900079 2765.801309
6 2765.940470  2765.894940 2765.900810 2765.891655 2765.874392
3 7 2765.920550 2765.899610 2766.008755 2765.875619 0.000000
8 2765.908917 2765.857237 2765.877608 0.000000 0.000000
9 2765.886307 2765.875760 0.000000 0.000000 0.000000
10 2765.880448 0.000000 0.000000 0.000000 0.000000
|
\J 5 6 7 8 9
p 0 2765.910613 2765.916724 2765.907135 2765.896062 2765.921942 :
1 2765.916993 2765.908338 2765.896255 2765.925809 'CEZ
1 2 2765.911894 2765.896615 2765.939563 2765.873445 0.000000
3 3 2765.897175 2766.027232 2765.873896 0.000000 0.000000
. ] 2765.751926 2765.874370 0.000000 0.000000 0.000000
3 5 2765.874602 0.000000 0.000000 0.000000 0.000000
' y 6 0.000000 0.000000 0.000000 0.000000 0.000000
2 : 7 0.000000 0.000000 0.000000 0.000000 0.000000
1 8 0.000000 :-3000"0 0.000000 0.000000 0.000000
: 9 0.000000 o 0.000000 0.000000 0.000000
| 4 10 0.000000 0.000000 0.000000 0.000000 0.000000
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The Stepping Procedure of the Program

For wet steam as a medium, temperature was selected as the inde-
pendent variable. A step size is selected, an initial noz:zle
diameter, the initial slip ratio K is taken over from the result
(final value) of the previous step (concerning the value at the
inlet, see the next section) together with the vapor fraction x
and the enthalpy change (CEZ/Z) from the stagnation condition

as reference. At the beginning of each step the mass-flux den-
ity m/A = CE/(Q VX ) is calculated. Since the mass-flux is
the same along the nozzle axis, the ratio of the mass-flux densi-
ties from step to step equals the inverse of the cross-sectional

D (m/A)
D‘:‘ = N (103)

2

area ratio, or

A local efficiency can also be calculated, from the ratio of

enthalpy change across a step to vmdp:
ACEZ/Z
L S v.dp : (104)

The nozzle throat is defined by the maxiumum mass-flux density.
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The Initial Condition

An initial kinetic energy can be prescribed together with an inlet
diameter of the nozzle and the temperature and vapor fraction con-
ditions. The initial slip ratio K can also be selected; however,
experience with running the program suggests that K is best se-
lected such as to make the derivative dK/dp at the inlet equal

to zero, in order to avoid sharp adjustments in K at the begin-
ning of the expansion in the nozzle.

<

When Eq. (90) for dK/dp 1is set equal to zero, a condition for

a limiting value of W, 1is obtained as follows

WL Y 2 (105)
[ : L R]
e
kv Q@ = axa-0 (K - 711\_—) (106)
dv
5 dx X a -
\/i'- p 1 2wk
- b
AR JE— + V@T (108) r

The value W, is a function of temperature (pressure), vapor
fraction x, L and Vi dx/dp, dva/dp, K and the initially assumed
Ce?2. From the definition Eq. (82) for W follows

E
°¢ _ 3.0 You-x)ix-1)*
(o ZW tand v, X K
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In order to solve for the limiting droplet size, dL’ required
to make dK/dp = 0, the expression for the Reynolds number (87)
is divided by CD as follows

%S i dLCE(K-l) e
D CD VKX Vana

Eq. (109) for dL/CD may be substituted into the above Eq. (110) for

Be/CD‘ Since the drag coefficient CD is a function of Re,
InCp s A+ By + Cy* « by (111)
where Yy & 1n Re , (112)

CD/Re may be expressed as a function of Re as follows

C
ln(Rg) REa TR L]y + ST & Byt (113)

which leads to a cubic equation for y when CD/Re is given

y! % y? « gﬁl y + A ¢ IB(CD/RG) = ¢ .(114)
Substitution of y = x - é% leads to the cubic equation

X “ax+b » 9 (115)
where a = 81 .1 (%)2 (116)

b = A+ 1n(Cp/Re) , 2 (c e & - (3-1)
D i AD S P\D

The discriminant follows




If A < 0 , which is usually the case, there are three real

solutions, including

x = 2 ,/--‘3‘- cos(¢ + 240°) .

where ¢ follows from

cos 3¢ =

The values of the constants are, according to Eq. (88) A = 3.271,
B=-0.8893, C = 0.03417, D = 0.001443, so that a = -1496.198 and
(a/3)® = -1.240518 x 10°. The constant b/2 becomes

b/2 = 6792.464 + 346.5 ln(Re/CD)
and y = x - 7.89328.

As the slip ratio K is varied, the limiting dL required to make
dK/dp = 0 may be calculated. A typical plot is shown in Figure 2.
The relative loss (1 - nN) encountered due to the dragging of the
droplets may be calculated and plotted on the same figure. At

the same time the Weber Number criterion yields a droplet si:ze dw
from Eq. (86), which may also be plotted as a function of K. It

is seen in Figure 2 that the dL and dw lines intersect at some K
value. That value of the slip ratio is the one to be used ini-
tially if no pre-atomization is provided before the nozzle and the
"Weber breakup'" is assumed. It was found that indeed when such

an initial K value was used with the main program the slip would
initially obey dK/dp = 0.

Similarity - The initial value problem for K just described gives

B

the possibility of studying the performance of geometrically similar

e iyt

R T N e



TR

nozzles of a certain ratio of droplet size to nozzle diameter at
the inlet. Figures 2, 3, 4 and 5 show the "limiting droplet size
dL" required to give dK/dp = 0 for different size nozzles (D =
0.005, 0.01, 0.1 and 0.2 m). While the magnitude of WL is
independent of nozzle diameter, d;/C, contains D in Eq.(109).
The loss curve (1 - nN), however, is independent of diameter
since S of Eq. (79) is independent of D and

8 cE2
o '_ITG:__—

1

Similarly, the droplet size according to the Weber criterion is
independent of nozzle diameter D, according to Eq. (86)

. 12 ¥ ok X
e s e e D
K - 1)

The points of intersection of the lines dL and dW move to smaller
K ratios as the nozzle size increases. The droplet size, follow-
ing the dw curve increases correspondingly. The ratio D/dL
varies with K and D as follows:

D Ko dL=dW D/d l-nN N
m - um - - -
0.01 4.30 190 $2.65 0.478  0.522
0.025 3.50 255 98.04 0.488 0.512
0.05 3.04 335 149.25 0.430 0.570
0.1 2.68 435 229.88 0.462 0.538
0.2 2.39 578 346.02 0.442 0.558
0.5 2.09 855 584.80 0.410 0.590

for dK/dp = 0

The result is that the ratio of the nozzle and droplet diameters

decreases for smaller nozzles.
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The Throat Conditions

The throat is located at the plane of maximum mass-flux density

ﬁ/A. At the same time the local relative losses should reach their
minimum at the throat. Since the relative loss 1 - ny 1is propor-
tional to the product WS , the slope at the wall, tan &§, cancels
out, so that a discontinuity can be tolerated by the one-dimensional
theory. Since the axial length increment dx* is theoretically

zero at a sharp throat, the loss should accordingly be zero. That
requires the pressure gradient dp/dx* to tend toward infinity,

see Eq. (73).

In an actual program execution it was initially found difficult to
maintain the accuracyrequired to achieve coincidence at one and the
same temperature of the two events of maximum mass-flux density on one
hand, maximum gradient and minimum efficiency on the other hand.
The difficulty was attributed to the effect of CEI/Z, (that is,
the value by which the local enthalpy differs from the value at
stagnation conditions). The effect of CE is explicitly present
in the differential Eq. (90), as well as implicitly through the pre-
sence in W, see Eq. (96).

A refined equation for dK/dp was first developed, based upon the
assumption of a negligible effect on droplet size of a varying
relative velocity at the droplet over the axial extent of an ele-
ment. Next the influence of a varying C. was considered every-
where else and was algebraically eliminated. Further details were
already given in connection with the quadratic Eq. (101) for ng.

The question is whether the peak in mass-flux density m/A can be
accurately determined when m/A depends on W, and the value of W
should be adjusted according to its definition - Eq. (82), to the
changing tan § at the throat (from the value in the converging -
part to the value in the diverging part).
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The answer is that if (1 - nN)-+0 at the throat, Eq. (58) for
dK/dp may be resorted to, which is entirely general, (the loss
mechanism being represented solely by (1 - "N) in one of the
terms). Since a change in tan § at the throat only affects the
loss formulation, a negligible loss situation ig made independent
of § and is represented by Eq. (58) with (1 - “V)"O’ that is
dK (1-X) _ dx K_ ¢ (Va g,
HE + 2-—-(-1—” . a—p— + - - X -K- K\b 0 (122)
E
For lower values of x and moderate K values we have (1-X) >0, and
# dx/dp < 0. The third term is always positive when Vo>V, and much
larger than the second term of Eq.(122). As a result dK/dp is gen-
erally negative, that is, the slip increases at the throat. That
is borne out by actual computer runs.
The other relation that has to be met at the throat is Eq. (73),
which represents the reciprocal of the normalized pressure gradient.
f With the pressure gradient tending towards infinity, S becomes :zero.
; & If the temperature (or pressure) and the vapor fraction is assumed
i as known at the throat, the enthalpy difference CE2/2 may be cal-
; culated from Eq.(73) for an assumed slip ratio K as follows:
Vv o
~( a 2XV
X( - Kv ) il
AR L F S B § ¢ S (123)
x-1 dx . 2R
2x(1-x) dp N
where
d dv
f R Z 35 + X TTE
f p gg: -2
L
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were given before.

A check may be obtained for Eq.
single phase operation with an ideal gas as follows:

For K = 1.0 (no slip):

For a Single Phase

a
Va * Vb
Vi
7 dx S i dva
dp v dp

(123) by setting conditions for

2= = Ry e (l-x)vb]/vm




P

SRR

For an Ideal Cas:

g _ =1ip
v X p
so that
1
R = - 1\?

After substitution into Eq. (123) we get

r

“Va ¥
£ * s oy o ¥ (124)
Xp

That is the square of the sonic velocity in an ideal gas.

Returning now to two-phase conditions, Eq. (123) may be programmed
and results obtained as presented in Figure 6 for the variation
of CE with changing slip ratio K, and throat temperature as a
parameter. Additional exploration over a wide range of K values
shows that for a given temperature CE reaches a minimum value for
a certain slip ratio. Over a range of temperatures from 100 to

200°C, that minimum value changes only from about 118 m/s to 120 m/s.

Knowledge of the value of Ce and the slip ratio K at the throat
(for given temperature and vapor mass fraction x) allows the cal-
culation of the mass-flux density m/A at the throat, which is
useful for the sizing of the throat for a required mass flow.
Typical mass-flux densities are shown in Figure 7 for x = 0.125
and t 100 to 150°C at the throat.
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In Reference 4 a normalized mass-flux density

o = RJRT, /Amp, (125) §

was presented based upon the slip-free IHE model, and a given
nozzle inlet temperature in the range from 100°C to 300°C.

Note that according to Equation (25) an increased mass-flux

, density at the throat is due to the ratio vm/G VK, which tends
toward K for small x, and the speed ratio (CE/CS)*.

DU s e . o s T A I PBN, - 63

. It is necessary to distinguish clearly between three situations:
(1) the conditions and results of the IHE model, (2) the
results of the slip model at K>1, (3) the results of the slip

‘) model at K=1. A comparison of mass-flux density may be made

! based upon either (a) the same inlet stagnation conditions or (b) the

E same pressure and temperature condition at the throat. Equation

i (25) yields for K=1 (no slip)

s s W & 256 e

e | m Co. \#
¢ %« (me) 1HE Cs

If the temperature at the throat and at the inlet is assumed the
same for both models, the enthalpy drop should also be the same
for no slip, that is CE* = C* and the results of the two models
(1) and (3) should coincide for K=1.

R

Since Equation (123) gives a value of Cg® which is only de- (g

pendent on the quantities t, x and K, it is not tied to a _
certain inlet condition to’ except that it should not exceed Cs 5?
and therefore calls for a maximum ty- The above assumption of g

equal stagnation conditions for the two models when the throat P
condition is the same is therefore not necessarily justified, and




e et T et

i A bt WA b G

T, T

foicve,

larger mass-flux densities are possible for the slip model when
the throat conditions are reached at a lower enthalpy than for
the IHE model (starting from the same stagnation enthalpy).

The curves for Cg of Figure 6 show a strong increase of CE towards
lower slip ratios K. Its influence on mass-flux density seems to
override the effect of the first factor of Equation (25), since
Figure 7 shows the highest mass-flux density at small slip ratios.
Since CE is only weekly dependent upon temperature, according to
Figure 6, the question of how the mass-flux densities compare for
the two models, based upon identical stagnation conditions may
have to be answered by actual computer runs for both, the IHE
model and the slip model (in order to locate the throat).

From a series of such computer runs it was borne out that the
limiting values of CE and m/A given in Figures 6 and 7 are
closely approached if the local efficiency is high. Low local
efficiencies near the throat are, however, possible if the pres-
sure gradient is low. Throat values of CE and m/A are then much
lower than the limiting values given.

A basic question touched upon is that of the value of the sonic
velocity at the throat in a two-phase mixture with slip. For
further details see References 6, 9 and 14

The limiting value of CE given as a function of K allows also the
determination of a minimum droplet size as a function of K that

may be expected at the throat and thereafter. Figure 8 shows such
results. It is seen that values of d of the order of a few
microns are possible if high local efficiencies near the throat

are realized.
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Experience With Running The Computer Program for the Nozzle
Expansion

The program was systematically debugged; the results of the sub-
routine for the properties of wet steam were checked against
tabular values, until the deviations were a fraction of one per
cent. For the viscosity of saturated steam the latest interna-
tional standards were initially used; in order to reduce the
program running time a formula of the form of SUTHERLAND's was
selected and the two constants adjusted such that close agree-
ment with the "International Formula'" was achieved, see
Appendix II.

Most running experience was obtained with 150°C inlet temperature,
an initial vapor mass fraction of x=0.1, an initial velocity Cg of
17.4 m/s, and a very small nozzle inlet diameter of 0.01 m (see
Figure 9). Without preatomization, the Weber Number criterion
gives an initial droplet size (for dK/dp=0) of 190 um, and an
initial slip ratio of K=4.30=C,/C, . It climbs initially when
using 8= -150 =constant over the converging part. The slip ratio
thereafter decreases and reaches a minimum of K=4.05 at about
143°C and then increases again towards the throat, where it
reaches a value of K=5.70 at a temperature of 126.5°9C. The vapor
fraction at the throat is 0.1399, the mass-flux density
m/A=3202.2 kg/sm?, the droplet size d=11.6 um, the velocity Cg
corresponding to the enthalpy change Cg=141.7 m/s, the throat
diameter D=5.702 mm and an S-value of $=1.60 x 10°®* m*/N. A

sharp transition from one cone angle to another of opposite sign
is permissible at the throat; the K curve will then show a dis-
continuity of the derivative, whereas the efficiency and the gra-
dient S will experience step changes. As the angle § changes

its sign, W will also change sign from positive to negative, and
S will change sign from plus to minus.

While the normalized inverse of the pressure gradient, S, may be
used to calculate the diameter change for a certain temperature
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or pressure change, it is more accurate to calculate the mass-
flux density from Equation (23) at each inlet to an elementary
step, and use its ratio across a step to determine the area ratio
required. Still, the quantity S gives an indication of the
diameter changes and the local efficiency potential.

Near the throat, S tends to be very small and the pressure
changes are large for a given temperature change.

In the diverging part of the nozzle,a negative S should increase
in its absolute value in order to aliow the expansion to proceed
- with smaller and smaller pressure changes (for given uniform
temperature changes). At the same time the losses are bound to
increase according to Equation (83). |

i For very small nozzles (of the order of 0.5 cm throat diameter)
the slip ratio was large, and orderly expansion in the diverging
part was found difficult to obtain with a simple straight cone

w i b &

geometry. The program, however, allows changing the cone angle
§ at every elementary step such that a compromise in the varia-
tion of S and e is obtained.

| With a prescribed fixed cone angle in the diverging part of the i

nozzle, the situation was encountered where a negative S would in-
crease in absolute value with progressing expansion. While the
mass-flux density was still decreasing from step to step, the '
pressure changes were large, the efficiency was rising, and even-
| tually, when S was allowed to change sign from the normal negative
to a positive sign, the pressure gradient would reverse and the {
efficiency would reach unity at the same point. Within the cen- %
straints of the prescribed equation system, which does not make }
allowance for the occurrence of shocks, only an increase in cone ?

angle § downstream of that point could avert the physically un-
tenable condition of a rising pressure linked to a prescribed ‘
falling temperature. The limiting condition as described,
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gradually develops when the absolute value of S has been de-
creasing steadily, which means that for uniform steps of tem-
perature the diameter increase and therefore the axial movement
of the state point along the nozzle has become less and less.
That condition benefits the local efficiency because the drag
work becomes less and less, until (when S changes sign and goes
through zero) the losses go to zero when the axial displacement
dx* has ceased to develop. Obviously, at this point no further
regular expansion is possible: the selected cone angle § is in-
sufficient to accommodate an increasing volume flow. The above
development goes parallel with a steadily increasing slip ratio K.

A guideline for the required cone angle § may be obtained by
solving for W while dK/dp of Equation (90) has a prescribed in-

creasing value (dK<0). The equation for W, becomes accordingly

§

(dK Jok - dx . % )
: O * K[r(—Tx il R e e K"b)];

= - — — (126)
6 L5xxV dK/dp + K(xZV/CE2 + XxxR)

The cone angle & required follows from Equation (82). Use of
Equation (126) in the program leads to an automatic calculation of
the required nozzle geometry that will give a prescribed slip
ratio slope at the inlet to each nozzle element.

Such a sample solution is given in Figure 10.
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PART 11
DROPLET TRAJECTORIES IN A TURBINE PASSAGE

In a cylindrical coordinate system (r,9,z) the material derivative
is (Cr = radial, Cu = peripheral velocity components of the droplet)

C
. Bl Pul v s 27
Dt 5t Crar *T 350 °* Czaz ’ (1273

The projections a.,a,,a, of the acceleration vector of a liquid
droplet in the coordinate directions are

2
R S
T Dt T
DC €.C
S e ru (128)
au Dt 3 r
De,
a = =
z Dt

If we neglect the force due to the pressure gradient in the passage,
the buoyancy and mass changes of the droplet, the aerodynamic drag
is the only remaining force with the drag coefficient CD

L £ : N
D = Cplo,F : (129)

Using the mass of a spherical droplet

(130}
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->
and equating D to ma we

get
C, o
- 3 D . >
= — | C C (131)
a
TaT Py .o
Equating the individual components we obtain
2

DC, g Cu 8 CD 23 e

Dt r T T WE B
p

o NG, A clc (132)

% Dt T Ipr *u
DCZ e CDi)i cle
Dt S 3 b | z

G,

results.

ference 4.

locity C.
is thereby given.

0) in Reference 15 by numerical integration.

Such a set of equations was solved for the two-dimensional case

Unfortunately

insufficient information is given there for generalizing the

A simple analysis of droplet trajectories was developed in Re-
The result will be given by the ratio of the radial
drift velocity wy of the droplets in relation to the steam ve-

A flow angle deviation of the droplets from the steam

Since considerable analysis was applied to the study of the processes
in the nozzle (because they form the foundation of what is to happen
thereafter in the turbine) the criteria developed in Reference 4
will be repeated here, together with some sample calculations.

The relative velocity between droplet and steam in radial direction
is designated as wy and needs to be calculated.
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The drag force on the droplet of diameter d is defined by

1 wbzﬂ &
b d - (133)
a

D = CD

where v, is the specific volume of the surrounding medium. The
drag coefficient CD is given as a function of Reynolds number

Re = wy d/va in Figure 11 according to a relation given in Re-
ference 7 which is valid for 0.1 <Re < 20,000: [See also Eq.(88).]

In C; = 3.271 - 0.8893 1n Re + 0.03417(1n Re)? + 0.001443(1n Re)’®
Since the slip velocity Wi is not initially known for the calcula-
tion of Re and CD, the quantity ReJEB was plotted against Re in
Figure 12 , since ReJCD is expressible in terms of known values

as follows.

R

The inertia force on a spherical droplet of diameter d and speci-
fic volume v, that travels with velocity C on an initially assumed

| circular path of radius of curvature, res 1is

i
| 1. nd” g2 5
e | F = —— —_— c (134) g
L | Vb 6 i g
f
i Corrected for buoyance B we get
| ST Ll vb (135)
F -8 = —ol8 & (1 s —) :
| LE(-3
|
| Equating the two forces of Equations (133) and (135) gives 4
| b /4 g 2 ["a ]
| - —_— = -1 y (136) ;
| c S Sl .
: £
§
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It is convenient to refer velocities to the reference velocity
= : ) to t e a J
e ,h)va and lengths he mean free path length

VaNa
)\a = = . (137)
Accordingly
W
b d
Re = — —
e Aa
V3
and (139)

Ao
5

olo
>-‘la‘

ReJEB

"
o0
u\

Ia

21y
()5 - 1]
rk ka Vb

Therefore, the proof is furnished that the quantity ReJEE- is
solely composed of known quantities, namely the droplet diameter
d, the vapor property ),, the ratio of specific volumes va/vb,
the radius of curvature of the path, Ty and the normali:zed abso-
lute velocity C/e (~ Mach number) along the path. Entering
Figure 12 on the ordinate will yield Re and consequently the
desired wb/e from (138) 5

T : (140)

Equation (139) shows that the expression ReJE; is a function of
the relative droplet velocity C/e in the path with radius of
curvature r,. The resulting relative slip velocity wb/e is a
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measure of the deviation from the original path. For this
purpose the ratio wb/C is significant and may be used for a
step by step trajectory analysis.

An illustrative example might be helpful. Assume an absolute
pressure of steam of 0.250 bar that corresponds to a saturation
temperature of 65°C. Accordingly

v
‘ 2 . 8.208 . g0
b 10
e = Jpv, = 3939 a/s
v_n =
’s aa, 6.206 x 1.065x10 ) -2

Aa = - 3930 1.678x 10 m
d = 2 um
L - 11019

a

Ty ™ 10 cm = 0.1 m

C = 250 m/s
r = 0.635 :

Equation (139) yields

ol J4 d d \¢[Va _ % 0772
RefCp = ¢ zr—(r)— 1] .-

k \"a/ Vb
From Figure 12: Re = 0.46
and o I T IR I e o
e 37Aa 11.910 ¥
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b _ 0.0386 _
or T T 0. 08608 ’

or an angle deviation of T

If the droplet size is diminished to 1 ym the result is

ReJCp = 1.0885
! Re = 19.06
wre = 352 - 0.0101
w,/C = 0.0159
a = 0.908°

It is seen that the deviation of the liquid droplets from the
path of the steam due to drift is small for such small droplet
sizes and a radius of curvature of 10 cm, see Figure 13.

To summarize, the non-dimensional parameters which control the
droplet trajectories in the turbine are

g the Mach index of the steam flow,

d the ratio of droplet size to the radius of

r, curvature of the path in the bucket,

d the ratio of droplet diameter to the mean

Ay free path length of the molecules in the steam,
Va

the specific volume ratio of steam to liquid .

<
o
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Figure 13. Deviations of Droplet Velocities
From Steam Velocities in an Impulse Bucket
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The smaller ReJEB , the smaller Re, and therefore

The lower the specific volume v, of the steam, the lower the drop-
let deviation wb/e. For Re £ 0.1 the simple Stokes formula is

valid

‘ € =t : (141)

‘Therefore,

ReC = JZ4 Re
D

and after substitution into Equation (139) we get

L TR WL Re
b o C/e iC7eii37Aai
(142)
S A 11[2-1]
18 € r Aa vy

The normalized deviation wb/C in the Stokes regime is propor-
tional to droplet diameter squared, the Mach index C/{pv, ,
the ratio va/vb (if Va>>vb) and inversely proportional to the
product T A, For further discussion see " Conclusions and

Pecommendations'.
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CONCLUSIONS AND RECOMMENDATIONS

Two areas of two-phase flow were considered: (a) the one-
dimensional flow of wet steam in a converging-diverging nozzle,
(b) the two-dimensional flow through impulse turbine buckets.

A theory based upon a simple model was developed for the nozzle

problem, which is a foundation for the turbine problem.

Both the slip ratio K and the droplet size d at the nozzle
discharge are needed for the solution of the turbine problem.
To determine the slip ratio, a proven local relative-loss model

was used to express the frictional drag losses between droplets
and steam, while the droplet size was established by limiting

WRHINEL LT TN S e e

the value of the Weber number to six.

Expressions for the mass-flux density, vapor and liquid velo-
cities, droplet size, thrust and overall nozzle efficiency have
been included. These relationships have been solved numerically
by a digital computer.

The results predict an increased mass-flux density is to be

expected in the presence of slip for mixtures of low vapor mass
fractions compared to the prediction of the IHE model. In addi-

tion, the model indicates that larger slip ratios do not neces-
sarily mean large losses and, hence, low local efficiencies, ;
although this is generally the case for the overall efficiency.

In the absence of preatomization, purely algebraic considera- i ]
tions establish the initial slip ratio and droplet size at the 1
nozzle inlet. If, on the other hand, the droplet size is pre- ‘

determined by means preceding the nozzle, the corresponding -’
initial slip ratio can also be determined algebraically.

The ratio of the nozzle and droplet diameters is predicted to
increase as the nozzle diameter increases, which results in a
higher nozzle performance. For a given nozzle size, smaller

S —

R v —
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droplets (below the Weber threshold) result in lower values
of slip and local losses if K< 2.5.

In the development of the computer program for the step-wise

nozzle cxpansion, entirely different situations were encountered
in the converging as compared to the diverging part of the
nozzle. While the assumption of a given cone angle throughout
the converging portion lead to solutions without difficulties,

a similar assumption for the diverging part would be acceptable
for a certain portion, but would eventually lead to a tie-up

of further expansion (within the constraints of the formula-
tions used, like continuous expansion, no shock waves admitted).

By allowing a change in the cone angle § along the axis, which
means a departure from the straight cone geometry, orderly ex-
pansion can be obtained. The choice of the angle, however, is
critical since too small an angle leads to poor local efficiencies
(coupled with a drop of the slip ratio K and a decrease of the
value of the pressure gradient and an increase in droplet size d.

Since the behavior of K, n and pressure gradient is interrelated,
it is possible to find a suitable nozzle contour (or cone angle
§) by prescribing a certain gradient dK/dT at the inlet of each
step. A solution obtained for a small nozzle is shown in

Figure 10 where dK/dT was uniformly equal to 0.02 at the begin-
ning of each step.

The investigation of two-phase flow in an impulse turbine was
necessarily brief and is given in Part II. The results given

at the end of Part II show that the relative deviation of the
droplets from the steam path will increase with the Mach index
of the steam flow, the ratio of droplet diameter to the radius
of curvature of the flow in the turbine bucket and the ratio of
droplet diameter to the '"mean free path length of the steam mol-
ecules". Also, the larger the specific volume of the steam, the
larger the droplet flow deviation. Combining the mean-free path
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length with the other steam conditions gives for the '"Stokes
Regime"
b S 0

18 Vbnark

wb/Ca =

which has the form of a Reynolds Number, with dz/rk as refer-

ence length. To minimize droplet impingement on the buckets,
4 large radius of curvature Ty of the flow path is needed,
together with low steam velocities and small droplet diameters.
Even with droplet impingement and liquid film formation,
acceptable performance seems possible with dished radial out-
ward buckets as were proposed in Reference 8.

Further studies are required, especially with larger machine
dimensions. Systematic applications of the computer programs
developed should give nozzle designs of the characteristics
required for high performance machines. That conclusion is
supported by the results of Reference 7.
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NOMENCLATURE
(Page 1 of 4)

Arabic

a Acceleration

A Cross-sectional area of nozzle

A* Throat area of nozzle

C;-C" Specific heat of saturated steam
s Cy=C' Specific heat of saturated water

C Index for independent variable

Ca Velocity of steam

Cb Velocity of water droplets

CD Drag coefficient

CE Z(imo- 1m)

CS Velocity from isentropic expansion

d Droplet diameter

D Nozzle diameter

DF Droplet drag

e = \Jpv Reference velocity

H Index for successive discretizations
i Static enthalpy
1. Static enthalpy of mixture
I Index in solution matrix T[J,I]
J Index in solution matrix T[J,I]
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NOMENCLATURE
(Page 2 of 4)

K Ca/Cb slip ratio
L Power 1loss
m Mass.flow
ﬁT Total mass flow

N[H] Number by which step size is divided by

| p Static pressure
|
; Q 4x(1-x) (WK - 1/NK)
¢
i T, Latent heat of evaporation
3
i Ty Radius of curvature of path
13
] dv
R Z dx/dp + _x Ta
: wK ¢P
g Re Reynolds number dw/vana
&
& (0
% S Entropy
| s 2dD/Ddp
3 t Temperature [°C]
i T Temperature [°K]
: v Specific volume

v Specific volume of mixture

.
=
<

= a
v —2 + (1-x)v.JK :
VK + ‘
4
XV E
" xK - 2 g - a0 vk :
x v
4
t . 80
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NOMENCLATURE
(Page 3 of 4)

W Relative velocity between droplet and steam

Se B-x) "o (8-1)0 D
v P | s

o N K dtan$
2
: b'e Vapor mass fraction (quality)
. %" Axial length coordinate of nozzle
X xK + (1-x)/K

x . xK + (1-x)NK

Y[C,H] Dependent variable, approximation of

& . (G- n)
s
x v
g | Greek
b |
a Static void fraction
§ Half angle of conical nozzle element
n, Viscosity of steam
N Nozzle efficiency (local and overall)
Aa vana/e ""Mean free path length of steam molecules" *
p Mass density
Surface tension
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NOMENCLATURE
(Page 4 of 4)

Subscripts and Superscripts

0 Stagnation conditions
1 Nozzle inlet
‘a Steam
]
; b Liquid
* Throat conditions
|
|
;|
4
i
g
e
:
1
!
X
: 82
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APPENDIX II

PROPERTIES OF WET STEAM
UP TO 250°C

-1. The Callendar Equation of State

The Callendar equation of state was used

10/3
w BRL. 273.2 (I1-1)
va o 0.075 ( T ) + vy ’

where T is in degrees Kelvin, and the specific volume in m3/s.

2. The Change in Vapor Specific Volume

The change in dva is
(ava) v, (112
dVa = Tr— pdT + 3T po U )

From Eq. (Al) the partial derivatives are as follows

v 7/3
(__é.) = R 4 o0.075 %g (273.2) (273.2) :
oT ¢ i
g T? (I1I-3)
) = - R—T . (11-4)
T p’
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The Clausius-Clapeyron Eq. (60) gives the required dp/dT

d " C
ar ot w v (11-5)
so that we get finally
dv Vv 3V
a L a dT a I11-2"
= e )pas*(Tp‘)T G
r 4
or
dv v v
A b a a d ’ _9n
o ('a'T )p 3 (Sp )T & LEE-20

5. Saturation Pressure, Latent Heat, Enthalpy and Entropy of Liquid

The remainder of the relations required was compiled from Ref. 16
and with exception of the specific heats, is summarized in Table
IT-1. Single primed quantities represent saturated water proper-
ties; double primed quantities represent saturated steam properties.

4. Specific Heat of Saturated Water and Steam

The specific heat of the saturated liquid is calculated using
V. Regnault data, see Ref. 16, page 227

-5 -y =
€, = 4186(1 + 4xi10 s 9x10 t?) kek

(II-6)
The temperature t is to be taken in degrees Celsius.

The specific heat of the saturated vapor was determined from the

basic equations of thermodynamics as follows

azva
(~ = C = - - d -
) e e
P
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with v_ = BT, C 273.2)" + v according to Callend that
a P i b g a ndar, so a
aielk s (273.2)" | ]
(;’;) Cn(n+1) _.TW_ ’ i
P
where C = 0.075 m*/kg, n = 10/3, iﬁ
j
and : c = 1996.7 J/kgC,
p0

the low pressure ideal gas specific heat of water vapor.

We finally get

073
€ = 1996.7 ¢ 1.0833(31%;3) B o (II-14)

a
where the units of p are [N/m?], and those of T in degrees Kelvin[K].

5. Calculation of dx, The Change in Vapor Mass Fraction

The total differential dx follows from

o Fax X
« e e

Following Ref. (5) we get for a two-phase mixture like wet steam

3 - [(3s/3p)
(&) - fpim (L1-16)




where s" - s' is the entropy change upon evaporation. Since
s = xs" + (1-x)s' (I1-18)
as) . ds" ixy 88 II-1
(ap)x X g+ (-0 g ( 9)

The differential ds" is
. o = as'l as'l g ',
3 ds (TﬁT)po + (TTr)p dT (11-20)

For an assumed ideal gas model for the saturated vapor of specific
heat CP’ the Eq. of Gibbs is

Tds = € dT - vdp » (I1-21)
and therefore:
35" b3 5 VH
(TET)T ot i o (11-22)

and

.

3_5_) S (1I-23)
(57), - *

Use of the Clapeyron Equation

S o= o3 : (11-24)
TALII

gives after substitution of Eq. (1I-24), (II-22) and (II-23) into
Eq. (II-20)

dS" & 3 V" + SF (V" - V')
dp g (s" - s') (11-25)
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which is ready for substitution into Eq. (II-19),

For the saturated liquid of specific heat ¢’

ds' _ . .ds' dT c' (v - v')
(S" 2

qp - AL 88 T

which is to.be substituted into Eq. (II-19) also.

Final substitution of Eq. (II-17) and (II-19) into Eq. (II-16)

(11-26)
s')

The second term in Eq. (II-15) may be written

X ds d
(%), & &

From the definition of efficiency,

N
Gibbs Equation, Tds =

di - vdp,

l-nN =

= di/vdp, we get from the

ives (a_x) x(v'-v') Va + A CP]
g ap s T(s"-s') (v'"-v") (s"-s')
(I11-27)
5 S:_' (Vn 2 V')
kst = '8*)"
or
x(c' - c) '
axl o i MR TR Y
i (-B—T)s T(l = V_) Tc

(11-29)

(11-30)




so that finally, from Egs.

(IT-15) and (II1-17)

T T’lN)

dx _ (3x) = vm(1
ar aT S T(v'" - v')

6. Viscosity of Saturated Steam

where

(11-31)

The final formula used is of the Sutherland type, as follows

(11-32)

results from the above formula.

n, = 8.6843 x 10°° [kg/ms]
C = 498 3732 7]
T = Temperature [°k1 .

VISCOSITY OF SATURATED STEAM

¢ International Sutherland
Formula 1975 Formula

[oC] n [kg/ms ] n [kg/ms]
100 1.227760x10"° 1.2285x10°°
110 1.262300x10" 1.2637x10" "
120 1.297068x10 ° 1.2987x10"°
130 1.331996x10° 1.3336x10"°
140 1.367034x10"° 1.3684x10°°
150 1.402147x10°° 1.4030x10"°

Sample values were calculated according to the latest international
2 formula, see Reference 17; they are tabulated below together with
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7. Surface Tension of Water

The "International Association for the Properties of Steam"
released in September 1975 the following formula for the sur-
face tension of water (that is valid between the triple point

and the critical point)

1.256¢
o = 0.2358 (1 4 BT'rT—rs) ’[1 - 0.625 (1 . WT_E)] (11-33)

Y ]
where T is to be given in [°K], and the units of surface tension o

are [N/m], see Reference 17.

11-7
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Table II-1. Saturated Steam Properties

3 +eTk“(1 - i%;]
=2

T T T
1 - a+bT (l - ) +dT 3(1 - )
o (15)- (- &)k - &) e - £

P =
T/Tk 1 + ka (1 T/Tk)
(11-8)
p/py = 10"  Good up to critical point
5 273\N
i = 1996.7 T - [o.o7scn+1)(-T—) - v']p + 1.9441x10° J/kgK
i or (11-9)
% & R r. which is more accurate than Eq.(7) for saturated steam
Ry 346.6{/Tk - T [kJ/kg] Latent heat of evaporation (I1-10)

st = 10.1796 1og(7;3) - 8.6229x10° " (T-273)

+ 1.8836x10°°(T-273)° kJ/kg°kK (11-11)
0 -
qQ = 4.186(t +2.0x10 °t® + 3.0x10 7t’) [kJ/kg] (I11-12)
i''= 1 +v'p = q+ px10~° [kJ/kg] Enthalpy of Liquid (II-13)
Q
AR | 273.2\10/8
v 2. 0.075(-%—-) > YW (I1-1)
Eq. (II-8) By Smith, Keyes & Gerry, 1934 (Plank, R., p. 112)
C (11-10) By M. Jakob, 1935 (Plank, p. 125)
(II-12) Regnault Data for Spec. Heat of Liquid, see Eq. (II-6)
(11-11) By integration from (II-12)
C

(11-13) By integration from (II-12)
(I1-1) Callendar Eq. of State

(11-9) From General Eq. of Thermodynamics and Eq. (II-1).
I1-8
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