
AQ40 70 752 HONEYWELL INC MINNEAPOLIS I4I NN SYSTEMS AND RESEARCH —ETC q/2
SET OF SAMPLE PROBLEMS FOR DOD HIGH ORDER LANGUAGE PROGRAM. GRE——ETC (U)
APR 79 MDA903 77 C 0331

UNCLASS IFI ED It

OF

~ ______

AO7C Th

•

END
D~~Tt

fl iNt 0

‘ O I~ ~ 2.8 U1 2.5
I .~ i~

_ _ _
~~~~~~ ~ 2.2L 
~ 36 II~~~~

I I  ~ JJ)~
J2. O

IIIII~Hill ~25 lflfl ’~ ~~
MICROCOPY RESOLUTION TEST CHART



4



—
~~~~~~~~

—-—
~ ~r - i~ J

I

I
~~~

cOF 1AMPLVm~MS 7
I I FOR DOD HIGH ORDER lANGUAGE PROGRAM
i / I :

I ~LJiNILUTIONSI /‘
~ D ~

I ~~~~~~~~
Systems and Research Center /

2600 Ridgway Parkway, Minneapolis, MN 55413

Cli Honeywell BullIi 68 Route de Versadles
78430 Lou , France

/II Qc,p ,1tc~d No. 7 C

ii ‘(7;:7;—1 ~~~~~~~~~~ f.2~ ( ~~~~~~~~~~~~~~~~~~~~ 7o L_— ——-~ -
~~~~~ x . - 

7/3
[1 (1

I r
I
I

Problem 1 : Polled Asynchronous Interrupt;)

I Pro blem 2 : ~ Priority In te r rup t System , ,

Problem 3 : 4A Small File Handling Package

t Pro blem 4 ~~ Dynamic Pict~ife~~
Problem 5 : A Database Protection Modul~~)

Problem 6 : ~A Pr ocess Contra]. l~~)

Problem 7 :~“ AdaptatiVe Routing Algorithm for a Nodewithin a Data Switching Ne~~~~~ 1~

Problem 8 ~~~~ General Purpose Real-Time Scheduler,.

Problem 9 : Distributed Parallel Output~~~~
~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Problem l&~:~~ Unpacking and Conversion of Data~~~~~~~~~

L ~0~~~ 5ion10r

~~ :~;
—

~~~~~~~~\

U
\~ -~~~~ ._ a~~
\~~~~~~\hvatt~~ ]./01

- 1



7 E
1. Polled Asynchronous Interrupt

1.1 Sample Problem 1

3 
— 

Pur pose :

An exercise to program a device and interrupt handler relying primar ily
upon polling techniques.

Prob lem:

(1) A channel handler will expect input by the function procedure call

Rk~AD(DEVICE_L’WMBER)

and return a character from that device s input—stream.

(2) i~here should be a minimum delay from the time a character is
introduced into the circular buffer and the time it may be accessible
by a READ . (the input will be displayed on the appropriate CRT by
the reading process. Apparent simultaneity of hitting the key and
appearance on the CRT is desired , i.e. the system should be reasonably
efficient and thus provide good response—time .

(3) No input shall be lost.

Assumptions:

(1) A 16—bit, byte adressable mac h ine

(2) At least l~ asynchronous input devices (keyboards) sharing I/O channel

(3) A hardwired circular buffer of 128 bytes located at byte—location
5økJ (8). Two pointers are provided in conjunction with the circular
bu f f e r :

U HEADPOINTER — a pointer to the most recent input

TAILPOINTER — a pointer to the tail of the circular input queue

Green 1 — 1 Sample Problems
1.;



~ J~~-~ ~~~~~~~~~~~~~~~~~

(4) the I/O channel will initialize both the HEAD— and the TAIL—pointer to
the same location when the system is reset.

(5) A difference in the contents of the HEAD— and the TAIL—pointer
indicates that input has occurred . Maintenance of the HEAD—pointer is
the province of the I/O channel. Maintenance of the TAIL—pointer is
the province of the channel handler.

(6) No in te r r u pt shall occur when input is cleared except as no ted in 7
below. The HEAD—pointer is incremented and the input stored in two
bytes specified by the address contained in the HEAD—pointer.

(7) An interrupt will occur when the head pointer is pointing to the
input—entry just below the entry indicated by the tail pointer to
indicate that processing must occur to prevent loss of input.

(8) The interrupt location for channel ~ is 44k~(8) and is two bytes in
length to specify the location of the interrupt handling routine .

(9) An interrupt causes an implicit call of the specified routine . When
processing of the interrupt has been completed , a re turn  will  cause
the interrupted process to resume .

(10) To simplify matters , assume
1) The context of the interrupted process is

automatically saved and restored ; that
2) no priority interrupt levels need be considered ; and that
3) no clearing of the interrupt is required .

3.5 (remark)

Each input consists of two bytes: j
Byte k) contains the ASCII character
Byte 1 contains the device identifie r , 0—9 to identify the
send ing keyboard

Gui delines:

It should be tried to formulate the program as hardware—indeoendent as
possible and clearly separate the interface to the hardware—dependent
information .

Green 1 — 2 0 Sample Pro blems

_ _ _ _ _0 0

~ 

— .- -.
~
- “-- .--.---0

~
- -- .

~~~~~~~~ 
--- —0

~
— - -

,- ~ J - ’~~~~~~~~~~ --’-_
~~

.
~ ~~~—t -

~~

-
0
~~

;

l

0

1

1.2 Green Solution to Problem 1

(a) specific assumptions

HEAD and TAIL pointers must be located at specific addresses, since
-~ they are manipulated by hardware.

Since they are pointers , and the machine is byte—aadressable , each
-~ operation must increment them by 2.

On occurrence of the interrupt , the response is to disable furtner
input until at least one read has occurred . This is achieved by
sending a disable signal on a separate line. Keyboards are reenabled

0 by an enable signal.

- (b) synopsis of the solution

The channel—handler is programmed as a task. Several similar channels
could be provided by making this task a family.

The control of the input buffer and actual multiplexing is done by a
nested task , POLLING: when some input has occurred , the first
character to be output is transmitted to the appropriate program by an
intermediate task family LOGICAL_KEYBOARD. Each member of this family
performs a tight loop, successively receiving a character from
POLLING, and sending it as a response to an external READ.

The user calls this RtAD indirectly by calling the value—returning
orocedure READ defined by the channel—handler , and which takes the
device index as parameter.

•

1

• t I

Green 1 — 3 Sample Problems

Li
• Ii

task CHANNEL_HANDLER is
type DEVICE is new INTEGER range ~ .. 9;
procedure READ CD: DEVICE) return CHARACTER;

end ;

task body CHANNEL_HANDLER is

type ITEM is
recor d

CHAR: CHARACTER;
DEV : DEVICE;

end recor d ;

task LOGICAL KEYBOARD(DEVICE L’IRST •. DEVICE LAST) t8
entry READ (C: out CHARACTER);

• entry DEPOSIT(C: in CHARACTER) ;
end ;

task POLLING;

procedure READ(D: DEVICE) return CHARACTER is
C: CHARACTER;

0

begin . 1
LOGICAL_KEYBOARD(D).READ(C);
return (C)

end ;

task body LOGICAL KEYBOARD is
LAST CHARACTER ~ CHARACTER;

• OK_TO_READ : BOOLEAN := TRUE ;
beg in

loop
select

accept DEPOSIT(C: in CHARACTER) do
if not OK TO READ then

• LAST CHA~ACTER : C;
end if ;

end ;
OK_TO_READ : TRUE ; 3

or when OK TO READ =>
accept READ(C: out CHARACTER) do

C := LAST_CHARACTER;
0 end ;

• OK_TO READ :~ r’ALSE;
end select;

0

0 end loop ;
end ;

Green 1 — 4 Sample Problems •

— . - — • - 000_ ~~~

_•—
~
—., W~~~~ ~~~~~~~~ I!~~~~ W~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

-
~———-

1 0

I
task body POLLING is

I subtype INDEX is INTEGER range 0 .. 63;
BUFFER : array (INDEX FIRST .. INDEX LAST) of ITEM;
HEAD, rAIL: INTEGER range 8*500 .. 8*677;— — initialized to 8#5o0 by I/O channel
NEXT: INDEX;

T entry INT E RRUPT ;
procedure ENABLE is separate; -— restore keyboard input
procedure DISABLE is separate ; —— inhibits input from keyboard

— DISABLED: BOOLEAN : FALSE;

I POLLING PERIOD : constant TIME : 0.1-SECONDS ;

for BUFFER use at 8#5o0;
y for ITEI4 use

record at mod 2;
CHAR at 0 range 0 .. 7;

- DEV at 1 range 0 ..1. end recor d;
for HEAD use at —— head address;
for TAIL use at —— tail address;
for INTERRUPT use at 8*440;

begin -- POLLING
loop

select
when HEAD = TAIL => -- buffer empty

delay POLLING_PERIOD ;
or when not DISABLED =>

accept INTERRUPT ;
DISABLED : TRUE ;
DISABLE ;r —— Other act ions may be taken

or when HEAD /= TAIL =>
delay 0; —— e f f e c t of a guarded else
if TAIL=8#676 then PAIL a 8*500; else TAIL :— TAIL+2; end i f ;
NEXT := (TAIL — 8 t 5o 0)/ 2 ;
LOGICAL KEYBOA R D (B U F F E R (N E X T) .DEV) .DEPOSI T (BUFF ER (NEXT) .CHAR) ;
if DISAILED then

T DISABLED := FALSE ;
ENABLE ;

end i f ;
end select;

end loop ; 0

U end POLLING;

begin
U initiate POLLING , LOGICAL KEYBOARD(DEVICE FIRST - . DEVI CE LAST) ;

end CHANNEL_HANDLEB; 0

II
II

Green 1 — 5 Sample Problems

11 •

L - -- ~~~~~~~~ •0 — •
~

0

F -V—--

~

•‘

~~~~~~~~

‘• • .•- — 
—_~~ ---~0• - •  -•- , - ,.

~~~
--•

~
.,-• • - —-.- •-

~ ~

— — .• ~—•---.--

—

~~

[1 2. Priority Interrupt System

2.1 Sample Problem 2
4.

-~ Pur pose :

An exercise to program an i n te r r up t kerne l support ing f o u r levels of
- - priori ty.

0

Problem:

An i n t e r rup t handling mechanism shall be described wi th the fol lowing
functional capabilities:

(1) digher p r i o r i t y in te r rup t s should be able to preempt lower p r i o r i t y
in te r ruot processes.

(2) As much processing as possible should be done wi th higher priority
interrupts enabled. (Remark: In general , interrupts should only be
disabled for the shortest possible time).

(3) A proper mechanism for the resumption of processing of preempted lo~~ r
level intetruot (handler)s must be provided.

(4) To simplify matters , the body of each inte r r u pt handler may be
• simulated , e.g. by a count of the interrupts for that priority level .

Assumptions:

(1) There are four interrupt priority levels: 0, 1, 2, 3.
The lowe r the num ber , the higher the priority.

(2) There is an interrupt vector located at 2o(8) with 4 bytes for each
pr ior ity level:
20(8): priority 0, 24(8): P1, 30(8): P2, 34(8): 23.

These locations specify the address of the interrupt handler for the
corresponding priority level.

(3) The i n t e r ru pt rou tine is invoke d by an implici t call when the
interrupt occurs.
At completion of the handler s processing , A return is to be
performed.

Green 2 — 1 Sample Problems

U
IL •

• -- • ~~ - fl. .~~-~~— !’rr- ~~ • ‘.‘

Li
(4) To simpl i fy ma tters , assume that the interrupted processes context is

• automatically saved and restored upon call and return. However , the
in format ion concerning the enablement and disablement of interrupts is
not par t of the context.

(5) I n te r rup t s are enabled and disabled with a • set interrupt
instruction : j

SIN<OP ERAN D> .
The in t e r rup t s to be enabled/disabled are specified by bits o—3 in the
word addressed by the operand . The bit f ie lds are :
Bit 0(LSB) : pr io r i t y 0 , bi t 1 : p r i o r i t y 1, etc .

The val ues of these f i e lds are:
disable 1 : enable

In order to disable all interrupts , perform an instruction
~sin d isable all , where the contents of DA = 0.

r (6) No clearing of the i n t e r rup t s is required .

Guidel ines:

Same as for Example 1. It should also be easy to replace the bodies of the
i n t e r r u p t — h a n d l e r s . (e .g. at r u n t i m e , to allow for f lexible reactions to an
in te r rup t , according to c i rcumstances) .

Green 2 — 2 Sample Problems

[1
_ _ _ _ _ _ _ _ _ _- — —

~~ — ~~~~~~~~ • . •--


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 00 • •~ ~~~~~~~~~~~~~~~ ~0~~~~~~~~~~~~~

4.

2 .2  Green Solution to Problem 2
II

- The solution introduces a generic package INTERRUPT _HANDLING , to which the
- 

service rout ines can be passed as parameters .  Thus , a typical use , for
instance for counting i n t e r rup t s , would be

declar e
• COUNT 0 , COUNT_i , COUNT_ 2 , COUNT _3: INTEGER : = 0;

proceaure INC_O is
begin

COUNT 0 : COUNT 0 + 1;-- end ;
—— and s imi la r ly  for  INC _i , INC _2 , INC_3
package COUNT INTERRUPTS is

0 new INTERR(JPT HANDLIING(INC O , INC_i, INC_2, INC_3);
I ’  begin
S .  ...

end ;

This package contains a fami ly  of four  tasks , each one to execute the
0 rout ine  when an i n t e r r u p t  occurs .  In addit ion , the task DISPATCH receives 0

- the in te r rup t s , and releases the va r ious  HANDLER tasks when appropria te .
Each handler can wait by call ing the serve en t ry  correspondinq to its

• - interrupt level (serve is a fami ly  of entr ies) . The i n t e r rup t s  themselves
are l in ked to the en trie s INT_i of DISPATCH.

THe physical masking and unmasking of in te r rupts  is done by the Green
run time.

When an i n t e r rup t  is received at a g iven level , it is recorded by set t ing
the corresponding PENDING f l ag .  When an i n t e r rup t  is thus  pending,  and
other interrupts are not pend ing at higher levels, the corresponding

- -  handler is released by accepting a call to the appropriate  serve en t ry .
vlhen the rout ine  has been executed by the handler , the i n t e r r u p t  is cleared
by cal l ing the RTI en t ry  of DISPATCH , which will  reset the PENDING f l a g .

Note that each handler runs at a different priority. This is necessary
only to ensure that a higher priority interrupt can preemot execution of a
handler for a lower pr ior ity one. The task p r io r i t i e s  are not used to
control when an interrupt can be accepted .

Ii H

Green 2 — 3 Sample Problems
4 - .

- __________ - - - ~• ~~~ 
0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- —



F T ~~~~~~~~~~ 
- 

- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

generic (procedure ROU TO ;
procedure ROUT1;
procedure ROUT2;
procedure ROUT3)

package INTERRUPT_HANDLING ;

package body INTERRUPT_HANDLINr is

type LEVEL is new INTEGER range 0 .. 3; 
. 

-

task DISPATCH is

entry INT_0;
entry INT_i;
en try I N T _2;
entry INT_3;

entry SERVE (LEVEL FIRST .. LEVEL~ LAST);
entry RTI (LVL: LEVEL);

for INT_0 use at 8*20; )
for INT_1 use at 8*24;
for INT_2 use at 8*30;
for INT_3 use at 8*34;

end ;

task HANDLER (LEVEL FIRST -. LEVEL LAST);
task body HANDLER is

ME: constant LEVEL := HANDLSR~ INDEX;
• begin
• SET PRIORITY(SYSTEM MAX_PRIORITY - ( I N T E G E R ( M E ) + l )) ;

loop
DISPATCH. SERVE (ME)
case ME of

when 0 => ROUT O ;
when 1 => ROUT 1;
when 2 > ROUT2 ;
when 3 ) ROUT 3;

end case ;
DISPATCH.RTI (ME);

end loop ;
end HANDLER ;

LI
U

• Green 2 — 4 Sample Problems

4

_ _ _ _



.,~ ~~~~~~~~~~~ ~— —~~ ~~~~~~~~~ .~~~~ ~~~~~~~

U
ES

F task body DISPATCH is

PENDING : array (LEVEL FIRST .. LEVEL LAST) of BOOLEAN :
• 0 (FALSE , FALSE , FALSE, FALSE);

begin —— DISPATCH
SET_PRIORITY(SYSTEM MAX PRIORITY);
loop

select
when not PENDING (0) >

accept INT 0;
PENDING(ki) : TRUE ;

or when not PENDING(1) =>
accept INT_i;
PENDING(l) := TRUE ;

- - 
or when not PENDING(2) =>

accept INT 2;
P E NDI N G(2) ~~: TRUE ;

-
~~~ or when not PENDING(3) =>

• accept INT_3;
- - PEND ING (3) := TRUE ;

or when PENDING (0) =>
accept SERVE (0);

or when PENDING(0 .. 1) = (FALSE , TRUE) =>
accept SERVE(l);

or when PENDING(0 .. 2) = (FALS E , FALSE , TRUE) =>
accept SERVE(2);

or when PENDING(0 .. 3) = (FALS E , FALSE , FALSE , TRUE) a>
-- accept SERVE(3);

.. or
accept RTI(LVL: LEVEL) do

PEND IN G (L V L) : FALSE;
end ;

end select;
end loop;

end DISPATCH;

begin —— initialization of INTERRUPT HANDLING
initiate DISPATCH , HANDLER (LEVE L ñRST .. LEVEL~ LAST) ;

end INTERR UPT_HANDLIN G;

13
U •

• •

Green 2 — 5 Sample Problems

- •• • • ••• • • • • •~• • 0~ ~~~• — ~pO s a~~~~~~~~~~~~~~~~~~ ..t ~ a &ka.a~~1a_ • - -

—

~~ -~~r, ~ ur ~~~~~~~

3. A Small File Handling Package

::
3.1 Sample Problem 3

• Purpose :

An exercise to show how higher—level I/O functions can be constructed and• -~ used.

Problem:

- - Program a f i le system accordin g to the followin g specif ications :

-
(1) Files are built by producers who can perform the following operations:

CREATE (FILENAME , ESTIMATED—SIZE)
WRITE (FILENAME , DATA—AREA)
ENDWR ITE (F ILENAME)

The data contained in data—area are written on the file with ~filename .
Data—area s can be anything from a single var iable to an a r r a y of
structures in memory.

Files are sequential , so each write adds a record to the end .
ENDWRITE signals completion of writing .

(2) Files are read by one or more consumers who use the followin g
operation :

READ (FILENAME , RECORD-NO., DATA-AREA)

t Here , data are read from a given record from file filename .

(3) Once all read ing is complete , the f i le may be destroyed by calling :
U DESTROY (FILEN AME)

El Exceptions shall be raised in at least the following cases:

Green 3 — 1 Sample Problems

•••- •• • - —- - - - - 0

(A) If a producer wants to create a file with an already existing filename

(B) If a user wants to wr i te on a nonexistent f i l e

(C) If a consumer wants to read from a nonexistent file or from an
existing file with a nonexistent record number U

(D) If a file shall be destroyed while it is still used by somebody else.

Assumptions:

Assume a disk as storage medium .

Guidelines:

The design should prevent deadlock of file storage , allow disk operations Lto be scheduled according to any schedule (where the scheduler qoes should
be indicated) , and prevent users from accessing anything but the above five
operations.

4•

i f

U
U

• Green 3 - 2 Sample Problems

• U
- -• r~~~~~~~~-~~~~~~~~ •-- -- --—-- ---——- —~~~~~~~~


~~~~~- -

-. 3.2 Green Solution to Problem 3

The solution to the File Handling Package is developed in three levels : a
-- high level introduces the notion of files of elements of a given type, and

as such is generic. It defines the desired operations CREATE , DESTROY,
READ, WRITE. END_WRITE. READ and WRITE operate on single elements of the
file component type. At this level , f i le  names are merel y designa ted by a

• string of characters.

The second level defines an untyped f i l e  han dling packa ge : read and wri te
• operations work on arbitrary number of bytes. Files are designated by a

charac ter str in g and an unfor geable key , the use of which will be explained
• later.

-- The third level defines individual files as tasks, a file directory to map
• file names into task indices, an d lastly a d isk handler , which maps file

storage onto disk storage.

• Use of Keys

Since the FILE_b packa ge is generic , several instances of it can be
created. All instances will be mapped on the FILE_MANAGER task. Since
files are designated at the user level by a cnaracter string , the system
must be capable of distinguishing between two fTles created by two
different instances of FILE_tO , and , more impo r tan tly, to guarantee that a- .  file created by one instance of FILE_b is not written onto (or read) by

• another instance. For this purpose , a unique key is assigned to each
instance of FILE_IO, and used as an additional parameter to identify files.

- Note that a different approach could be taken to ensure the type integrity
of f i les , e.g. to use internal file names , allocated by CREATE. This is

- -  actually what is done in the user—level input—output facilities defined in

- 
the language.

Files, and the File Directory

In order to get as much idependence in the use of files as possible, each
file is defined as an independent task : a task family FILE is defined in
FILE_MA NAGER , and a CREATE operation will associate a particular member of
the family with the f i l e  name , and initiate that member . As a result , the

“ correspondence between file names and file indices must be maintained .
This is the domain of the task DIRECTORY.

Disk Handling

.. At the user level ,, read and write operations are per formed on single
elements of the component type of the file. At lower levels, however , these

• r operations are defined in terms of the operand address in memory, and its

L size as a number of bytes. Furthermore, each file is divided into a
• certain number of blocks, each block being stored in one sector of the

disk. In order to map file blocks Onto disk blocks (i.e., to determine
fl which disk sector corresponds to block b of file F) • a disk map is
U maintained by the disk handler . Thus a disk request is made concerning a

block of a file, and is translated to the appropriate disk address.

Green 3 — 3 Sample Problems

-~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~
• .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
— 0~~• ~~~~~~~~~

1~ 
• :•~

restr icted (FILE_MANAGER)
generic (type £LEM)
package FILE_b is

1 - 
subtype FILE_NAME is STRING;

procedure CREATE (F: FILE_NAME ; SIZE: INTEGER);
procedure DESTROY (F: FILE_NAME);
procedure WRITE (F:  FILE_NAME; DATA : ELEM) ;
procedure END_W R I T E ( F :  FILE N A M E ) ;
procedure READ (F: FILE_NAME; RECORD_NO: INTEGER ; DATA : out ELEM);

• INVALID _FILE : exception renames FILE_MANAGER . INVALID_FILE ;
FILE_EXISTS : exception renames FILE MANAGER .FILE_EXISTS ;
DIRECTORY _FULL : exception renames FILE_MANAGCR.DIRECTORY_FULL;
R E A D  ERROR : exception renames FILE MANAGER .READ ERROR;
M~1rE _ERROR : exception renames FILE_MANAGER.wRIrE_ERROR;
FI I~E_SI Z E  EXCEEDED: exception renames FILE_MANAGER .FILE_SIZC_EXCEEDED;
ILLEGAL_READ : exception renames FILE MANAGER . ILLEGAL READ;
ILLEGAL_r~RITE : exception renames FIL MANAGER .ILLEGA L_WR IT E;
ILLEGAL CLOSE : exception renames FILE MANAGER .ILLEGAL CLOSE;

end FILE_ID;

package body FILE_b is
—— All the calls of the typed operations of FILE_b are conver ted—— to the lower—level , untyped , operations of FILE_MANAGER.

KEY : FILE MANAGER .KEY TYPE;

procedure CREATE (F: FILE_NAME; SIZE: INTEGER ) is
begin

FILE_HANAGER.CREATE(F , KEY , SIZ E ELEM SI Z E ) ;
end ;

procedure DESTROY (F: FILE_NAME) is
beg in

F ILE_MANAGER.DESTROY(f, KEY ) ;
end ;

procedure WRI’2E(F: FILE_NAME; DATA: ELEM) is
• begin

FILE_MANAGER.WRITE(F, KEY , DATA ADDRESS , ELEM SIZE);
end ;

procedure END_W R I T E ( F :  FILE_NAME) is
begin

FILE_MANAGER.END_WRI’rE(F, KEY);
end ;

procedure READ(F: FILE NAME ; RECORD_NO: INTEGER ; DATA : out ELEM) is
SIZE: constant INTEGER := RECORD_NO”ELEM~ SIZE;

begin
FI LE_MANAGER.READ(1, KEY S SIZE , DATA ADDRESS , ELEM~ SIZE ); - •

end ;

• U
• Green 3 — 4 Sample Problems

11
-- - -  -• • • • • • •  •



I
~~~S

• begin
FILE_MANAGER GET NEW KEY (KEY);

end FILE_lO;

• task FILE_MANAGER is

subtype FILE_NAME is STRING;
restricted type KEY_TYPE is private ;

•

entry CREATE (F: FILE_NAME ; K: KEY TYPE; SIZE: INTEGER) ;
entry DESTROY(F : FILE _NAM E; K: KEY TYPE);

procedure W R I T E (F : FILE NAME ;
K: KEY TYPE ;

• SOURCE~ADDR: INTEGER ;
N_BYTES : INTEGER) ;

1’

• procedure READ (F: FILE NAME ;
K: KEY TYPE ;
RECORD ADDR: INTEGER ;
DEST ADDR: INTEGER ;
N_BYTES: INTEGER); I

procedure END_WR IT E(F : FILE_NAME ; K: KEY_T Y P E) ;

entry GET_NEW_KEY(KEY : out KEY_TYPE);

- • - INVALID FILE , FILE EXISTS , DIRECTORY FULL ,
READ_ERROR , WRITE _ERROR , FILE_SI ZE EXCEEDED ,
ILLEGAL_READ , ILLEGAL_WRITE , ILLEGAL_CLOSE: exception;

• private
type KEY_TYPE is new INTEGE R ;

end FILE_MANAGER;

task body FILE_MANAGER is

MAX_FILES : constant INTEGER : 100;
.5 type FILE_INDEX is new INTEGER range 1 .. MAX_FILES ;
-. LAST_KEY : KEY_TYPE := KEY_TYPE FIRST;

-- The package DIRECTORY provides a mapping from extended
—— file names (augmented with keys) to internal indices

U’ package DIRECTORY is
function SEARCH (F: FILE NAME ; K: KEY TYPE) r e turn FILE INDEX;
procedure ADD (F: F ILE NAME ; K0: KEY TYPE) return FILE INDEX;

U procedure REMOVE(F: FILE_NAME ; K: KEY_TYPE);
end DIRECT ORY;

II
• Green 3 — 5 Sample Problems

F

Ti • 0

—— Each member of the family FILE separately controls—— access to a given f i l e . It is ini t ia ted when—— the f i l e is crea ted , and termina tes when the f i le
•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0

task FILE(FILE INDEX FIRST .. FILE INDEX LAST) is
procedure R~AD(RECORD ADDR: INTEGER ;

DEST ADDR : INTEGER ; •

N_BYTES : INTEGER ) ;

entry vJRITE(SOURCE_ADDR: INTEGER; N_BYTES: INTEGER);
entry END_WRITE ;
entry OPEN(SIZE: INTEGER);
entry CLOSE ; - •

end FILE ;

—— The DISK_HANDLER both provides a mapping between file—— blocks and disk blocks , and gives access to the actual—— disk operations.

task DISK_HANDLER is •

BLOCK_SIZE:  constant INTEGER : 1024;
MAX BLOCKS: constant INTEGER : 800;

subtype BLOCK_INDEX is INTEGER range 1 .. MAX_BLOCKS ;
subtype BYTE_OFFSET is INTEGER range 0 .. BLOCK_SIZE — 1;

entry READ ( DATA_ADDR: INTEGER;
B: BLOCK INDEX;
DI SPL : BYTE OFFSET ;
N_BYTES : INTEGER) ;

entry WRITE (DATA_ADDR: INTEGER ;
B: BLOCK INDE X ;
DISPL: BYTE OFFSET;
N_BYTES : INTEGER) ;

entry RESERVE(F: FILE_ INDEX ; N_BLOCKS: INTEGER );
entry RELEASE(F: FILE_ INDEX ); H

function BLOCK_ADDR (F: FILE_INDEX;
BLOCK_NUM: INTEGER) return BLOCK_ INDEX;

INEXISTENT_BLOC K , DISK_FULL , DISK_ERROR: exception ;

end DISK_HANDLER; H

U .
Green 3 - 6 Sample Problems

________________ 

_ 11 1



W~~~~ -,- --~~•~~~~ -:

U

package body DIRECTORY is separa te ;
task body VILE is separate ;
task body DISK_HANDLER is separate ;

procedure WRITE(F: FILE_MME ;
K: KEY TYPE;
SOURC E ADOR: INTEGER ;
N_BYTE~: INTEGER) isuse DIRECTORY ;

FX: FILE INDEX : SEARCH(F. IC);
begin

FILE (FX).WRITE(SOURC E ADDR, ti_BYTES);
exception

when TASKING _ERRO R ->
raise INVALID FILE;

end ;

procedure END_WR ITE(? : FILE _NAME ; K :KEY_TYPE) is
use DIRECTORY;
FX : FILE_INDEX :— SEARCH(F. K);

begin
FILE (FX) .END_WRITE ;

- • end ;

procedure READ(F: FILE NAME;
K: KE Y TY PE;
RECORD ADDR: INTEGER ;
DEST A~DR: INTEGER;N_BYTES: INTEGER) is

use DIRECTORY ;
FX: F ILE_ INDEX : SEARC H (F S IC) ;

-~~ begin
F ILE (F X) .READ( R ECORD ADDR , DEST ADDR , N BYT E S ) ;

end;

•5

~ ll
- B

LI
Green 3 — 7 Sample Problems

________________________



_ _ _

~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~—w—__ 
~~~~~— - — — -- —

beg in -- body of FILE_MANAGER• loop
beg in •

select
accept GET_NEW_KEY(KEY: out KEY_TYPE) do

• KEY := LAST_K E Y ; l i
end ;
if LAST_KEY = KEY TYPE L.AST then

LAST_KEY := KEY_TYPE FIRST;
else

LAST KEY : LAST KEY + 1;
end if;

accept CREAT E (F: FILE NAME;
K: KEY TYPE ;
SIZE : INTEGER) do

declare
FX: FILE_ INDEX; (

• beg in• begin
FX : DIRECTORY.SEARCH(F, K); -

•

raise FILE_EXISTS ;
exception

when INVALID FILE => nul l ;
end ;
FX := DIRECTORY.ADD(F, K) ;
initiate FILE(FX) ;
FILE (FX).OPEN (SIZE);

end ;
end CREATE ;

or
accept DESTROY(F : FILE_NAME; K: KEY_TYPE) do

declare
FX : FILE INDEX : DIRECTORY.SEARCH (F, K) ;

begin
FILE (FX) .CLOSE;
DIRECTORY .REMOVE(r’, K) ;

end ;
end DESTROY ;

end select;
exception

when others => null;
end ;

end loop ;
end FILE_MANAGER ;

H

U
• Green 3 — 8 Sample Problems

II
h • •~~~~ •• ••~~~~~~ •-~

-— - • —-—-•
~~~~~~~~~~~ —• •~~~~--~~~~

-- ~
—

~
-
~

-
~• • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



p 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

— —— separately compiled bodies

restricted(VILE_MANAGER)
separate package body DIRECTORY is

type NAME_REF is access FILE_NAME;
type DIR ENTRY is

recora
NAME: NAME REF ;
KEY : KEY_TYPE;

end record;

• FILE_MAP: array(FILE_ INDEX FIRST .. FILE_INDEX LAST)
of DIR_ENTRY;

function SEARCH(F: FILE_NAME ; K: KEY_TYPE) return FILE INDEX is
begin

for I in FILE_ IN DEX FIR ST .. FILE_INDEX LAST loop
if FILE_MAP(I).NAME / = null

and then FILE_MAP (I).NAME.all — F
and then FILE_MAP(I).KEY = K then

*
0 0 0 return I;

end if ;
end loop ;
raise INVALID_FILE ;

end SEARCH;

• procedure ADD(F: FILE_NAME; K: KEY_TYPE) return FILE_INDEX is
FX: FILE_INDEX;

begin
begin

FX : SEARCH(F, K);
raise FILE_EXISTS;

exception
when INVALID_FILE => null;

end ;
for I in FILE_ INDEX FIR ST .. FILE_INDEX LAST loop

if FILE_MAP (I).NAME = null then
FILE MAP(I).NAME := new NAME REF(?);
FILE M A P (I) .KEY : K;
return I;

end if ;
end loop ;
raise DIRECTORY_FULL;

end ADD ;

procedure REMOVE(F: FILE NAME ; K: KEY TYPE) is
FX: FILE_ INDEX := SEARCH (P, K);

1,. begin
FILE_MAP (IX) .NA ME : null;

end REMOVE ;
JJ end DIRECTORY ;

Green 3 — 9 Sample Problems

L • ~~~- ----•---~•-- - --— —----- • 0 •~~• • -0•~~~~ 0 - 0 • 0~~~~~~~~~ • •

~~0~ _

•

restricted (FILE_MANAGER)
separate task body FILE is

use DISK_HANDLER;
-

~• ME: constant FILE_ INDE X := FILE IND EX; 0

FILE SIZE : INTEGER ;
LAST_WRITTEN: INTEGER : 0;
DONE WRITING: BOOLEAN:= FALSE;
N READE RS : INT EGER: = 0;
CLOSED : BOOLEAN := FALSE;

-

•
entry START_READ ;
en try STOP_READ;

procedure READ(RECORD ADDR: INTEGER;
DEST ADDR : INTEGER ;
N BYTES : INTEGER) is

ADDR , CURR ENT BLOCK , BYTES_LEF T , BYTES _IN _BLOCK , OFFSET: INTEGER ;
begin

if (not DONE _WRITING)
• or RECORD_ADDR > FILE_SIZE then

r aise ILLEGA L READ;
end if ;
ADDR : DEST_AODR ; -

CURRENT BLOCK : (RECORD ADDR/BLOCK SIZE) + 1;
OFFSET := RECORD ADDR mod BLOCK SIZE;
BYTES _LEFT : N_BYTES ;
START READ;—— the following loop d i s t r ibu tes the read operation—— over all the blocks that contain par t of the—— desired informa tion
loop

if BLOCK SIZE — OFFSET > BYTES LEFT then
BYTES IN BLOCK : BYTES LEFT;
BYTES LEFT : 0;

else
BYTES 114 BLOCK : BLOCK SIZE — OFFSET;
BYTES LEFT : BYTES LEFT — BYTES IN BLOCK;

end if ;
begin - -

DISK HANDLER.READ (ADDR,
BLOCK_ADDR(ME , CURRENT_BLOCK),
OFFSET S L
BYTES_ IN_BLOCK);

exception
when DISK ERROR I INEXI STENT BLOCK — >

raise READ_ERROR;
end ;
exit when BYTES LEFT — 0;
ADDR := ADDR + ~YTES IN BLOCK ; H
CURRENT BLOCK : CUR~ENI_BLOCK + 1;

OFFSET : 0;
end loop;
STOP READ;

end REA~~;

U
G r e e n 3 — 10 Sample Problems

—
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • •  - . ~~~~~~~ -~~~ -~~~ - -  — I



____  ____  ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~

beg in -- FILE
accept OPEN (SIZE: INTEGER) do

begin
if SIZE mod BLOCK SIZE - d then

RES E RVE(M E , SIZE/BLOCK_SIZE);
•

-- else
RESERVE(ME , SIZE/BLOCK_SI ZE + 1); •

end i f ;
FILE_SIZE : SIZE;

exception
* when DISK_FULL -)

raise DIRECTORY FULL ;
end ;

• end OPEN ;

while not DONE_WRITING loop -— writing phase

~
P declare

ADDR , BYTES _ IN _BLOCK , BYTES_LEFT ,
CURRENT _BLOC K , OFFSET : INTEGER ;

begin
select

accept WRITE (SOURCE_ADDR : INTEGER ; N_BYTES: INTEGER) do
if LAST_WRIT TEN > FI LE_SIZE then

raise FILE SI Z E EXCEEDED;
end if;
ADDR := SOURC E ADDR ;
CURRENT BLOCK := ((LAST WRITTEN + 1)/BLO CK SIZE) + 1;
OFFSET := (LAST WRITTEN + 1) mod BLOCK S I ZE ;
BYTES_LEFT := NThYTES;—— loop s imi lar to the one done for READ

• loop
i f BLOCK SIZE — OFFSET > BYTES LEFT then

BYTES IN BLOCK : BYTES LEFT;
BYTES LEFT := 0;

else
BYTES IN BLOCK : BLOCK SIZE — OFF SET ;
BYTES LEFT : BYTES_LEFT — BYTES IN BLOCK; - -

-s end if;
beg in

DISK HANDLER.WRITE (ADDR,
BLOCK ADDR(ME , CURRENT BLOCK) ,
OFFSET ,
BYTES_IN_B LOCK) ;

exception
when DISK ERROR I INEXISTENT BLOCK >

•
raise WRITE_ERROR;

end ;
exit when BYTES LEFT = 0;

~~ ADDR : ADDR + BYTES IN BLOCK;
CURREN T_BLOCK : CURRENT _BLOCK + 1;
OFFSET : 0;

end loop;
H LAST_WRITTEN := LAST_WRITTEN + N_BYTES;

end WRITE ;

Green 3 — 11 Sample Problems

L
-~~~~~~~ —•~~~~—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ---~~~ 0-— —— •• _~——— ._ —~-~~ -- •~~•———- -— — — - - -0 .

~~~~~~ —- - 0- -—-0 — . - —  I



I I I  -~r~~~~~~’~~~
0 

~~~~~ —~- ‘~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~~~

_ - - ~—~- _ • - -

¶1
or

accept END WRITE ;
DONE WRITIi~G : TRUE;
FILEThIZE := LAST_WRITTEN;

or
accept CLOSE do

raise ILLEGAL_CLOSE;
end CLOSE;

• end aelect;
exception

when others — > null ;
end ;

end loop;

while (not CLOSED) loop -— reading phase
beg in

select
accept START READ;
N_READERS : = N_READERS + 1;

or
— accept STOP READ;
— N_READERS : N_READE RS - 1; 0-

or
accept CLOSE do

if N_READERS > 0 then
r aise ILLEGA L CLOSE;

else
RELEASE (M E) ;

end i f ;
end ;
CLOSED : TRUE ;

or
accept WRITE do

raise ILLEGAL_WRITE;
end WRI TE; 0 I

or
accept END_WRITE do

raise ILLEGAL_WRITE ;
end END_WRITE ;

end select; - —
exception

when others — > nul l ;
end ;

end loop; - —

end FILE ;

U
Green 3 — 12 Sample Problems

II
L —

- - ~~~~~~
-
~~~~~~~~~

-
~~~

• •
-

• 0 •~--1~ - --~~~~~

- -
-00

~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

~~~~~~~

restricted (FILE _MANAGER )
separate task body DISK_HANDLER is

type *3LOCK_DESC is
record

FREE : BOOLEAN : TRUE ; —

FX: FILE INDEX;
BX: BLOC1~ INDEX;end ;

DI SK_MAP: array(BLOCK _ INDEX FIRST .. BLOCK INDEX LAST)
of BLOCK_DESC ;

FREE_BLOCKS : INTEGER : MAX_BLOCKS;

function BLOCK_ADDR(F: FILE_INDEX;
BLOCK_NUM: INTEGER) return BLOCK_ INDEX is

• - —— returns the disk address of the BLOCK NUMth—— block of f i l e  F
begin

for I in BLOCK INDEX FIRST .. BLOCK INDEX LAST loop
if DIS K_MA P(I) = (FALSE , F, BLOC~_NUM) then

4 re turn I ; -
end if;

end loop ;o 
raise INEXISTENT_BLOCK;

• * end BLOCK_ADDR ;

begin
loop

declare
B : BLOCK_ INDEX;

beg in
select

accept RESERVE(F: FILE INDEX;
N_BLOCKS: INTEGER) do—— f in d the requested num ber of free bloc ks—— in the disk map , and allocate them to file f.

if N_BLOCKS > FREE _BLOCKS then
raise DISK_FULL ;

else
FREE _BLOCKS := FREE BLOCKS — N_BLOCKS;
B := 1;
for I in 1 .. N_BLOCKS loop

while not DISX_M A P ( B ) . F R E E  loop
B : B + 1;

end loop ;
DISK_MAP(B) : (FALS E , F, I ) ;

_ end loop ;
end if ;

U end RESERVE ;

c
Green 3 - 13 Sample Problems

11 .
~~~~~•~~~~~~0*~~ -~ •~~~ °° O ° - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•~~~~-—•~- - -  —•-• o- - 0-

~~~ ~~~~~~~~~~~~~~~ ~~~~- ~~o0 ~~~~~~~~~~~~ ~~~~~~~ -



I;

or
accept RELEASE(F: FILE_INDEX) do -—— free all the blocks of file F in the disk map

for B in BLOCK_ INDEX FIRST - . BLOCK_ INDEX LAST) loop
if (not DISK_MAP(B).FREE)

- and DISK MAP(B) .FX = F then
DISK MAPTB).FREE : TRUE ; U
FREE BLOCKS := FREE BLOCKS + 1;

end if; -
end loop;

• end RELEASE ;
or - - ——— the rest of DISK_HANDLER is—— concerned with scheduling disk - 

I—— 10 requests and is not given .end select;
exception /

when others => null ;
end ;

end loop;
end DISK_HANDLER; -

~~~~ 
~

•

Green 3 — 14 Samole Problems

p
•

~~~ 

ii~

- —0- - ~~~~~~~~~~~~rr~~~~r- r-~~ 
—



. “°°r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--0— -- _ 0 ~ 

S -

~ 
4. Dynamic Pic tures

5~~~

V . .
4.1 Sample Problem 4

Purpose:

An exercise to show how a graphic display of a dynamic situation can be
programmed .

Problem:
5 .

On a display screen , a rectangular pattern of e.g. 10 horizontal and lk
vertical lines shall be drawn . (One might also imag ine that the background
is a simplified map.)

- -  Within this grid , two movable objects shall be shown. They shall be
discriminated either by color or by shape.

The speed and direction of each object shall be controlled by an
-o input—device , e.g. a joystick.

There shall be a reset—button , which allows to bring the objects into some
• predefiried position and a start—button , which causes them to move. If the

objects collide , they shall start to blink and , after some seconds, return
to their homing—position. This shall be equivalent to a reset.

. Assumptions:

The start and the reset button shall be connected to the
interrupt—handling mechanism of the underlying system in a way that
different interrupts occur when different buttons are oressed .

The controlling input devices shall be purely passive , i.e. the position of —

the stick (left, right , forward , reverse) and its deviation from position
zero , controlling the speed of the objects , have to be rea d in explicitly
by the program. The position of the input—device shall be accessible to
the program via two 16—bit registers (two bytes), one for each coordinate .

fl Each byte shall contain a six—bit integer number (right adjusted ) which
U represen ts the deflection in this particular direction in the moment of

read—in. There exist all kinds of reasonable combinations of these
value s, e.g. 15_right— 60_forwar d , 56_left—lO_reverse . The construction of

• the hardware shall be such that unreasonable combinations cannot occur ,
like l0_left—2i~_right.

1~
•

Green 4 — 1 Sample Pro blems 

0000_o— - - - - - - - -



-~ — •  _~_~0~ _~• ~~~~~~~~~~~~~ -~~‘~~~*~ -0’• o—•-—o~~••--—•~~~-~~•-0.—*~ • •-0~ O•~••~~ OO~ _ •*~•~
_
~~~-0 ~_~~~__*O•O —

- -

Guidelines:

The hardware characteristics of the display—device were mainly left out to I -

prevent the solutions from becoming too lengthy .

The algorithms shall be independent of the actual characteristics of the
display device , e.g . it shall not matter whether the display device has a

*

vector generator or whether it is just able to plot random points. Whether
the objects can be crea ted by a pattern genera tor , or whe ther they have to
be put together from points and/or lines. The necessary hardware
dependencie s should never theless be clearly iden ti f i ed and as wel l
localized as possible.

The program shall be written and structured in a way that it will work with
the most primitive display—hardware , e.g. a random—point display, wh ich has
a precision o f 1~ bits for each coor dina te , but tha t the rou tines necessary
for s imula t ing more complex display capabili t ies can be easily removed .

To s impl i fy mat te rs , it can be assumed that the lowest level of
ou tpu t—rout ines need not be included in the example , i .e . as f a r as the
problem is concerned , the output shall be regar ded as comple ted , as soon as
the co—ordinates of points (l ines , objects , e tc .) have been deposited as
integer numbers in the appropr ia te b u f f e r s .

It is le f t to the designer how he chooses to implemen t the graphic
represen tation , e.g. by formatting procedures (similar to character
formats) operating on built—in data types or by special—data structures. -

It is also lef t to him how he wan ts to implemen t the emer gency reac tion ,
e.g. by a s o f t w a r e — i n t e r r u p t or by exceptions. -

I i
t~~0)

Li
Green 4 - 2 Sample Problems

11
-~ I ______________ _____________

____ -
~°“~~~ ____________0-—

1

L -

4.2 Green Solution to Problem 4

The objects are controlled by a process DISPLAY . This process provides a
l024xld24 grid which we assume to be read by an independent process (not
given here) which uses it to refresh the screen. The objects are drawn on
the grid by a procedure DRAW_OBJECT, also not given.

We provide a controller for each JOYSTICK , which performs the reading when
r equired .

DISPLAY repeatedly computes the position of the objects , and has them
drawn , except when they are bl inking and must therefore not be drawn . An
object can b l ink for at most 5 second s, dur ing which it will be alternately
on and off for pe r iods of one th i rd of a second (the gr id is recomputed
every thirtieth of a second). Objects start blinking when they collide , or
when they hit the qrid limits.e.

task DISPLAY is
type OBJECT_ID is (SQUARE , CIRCLE);
subtype SPEED is INTEGER range —63 .. 63;
subtype POSITION is INTEGER range 0 .. 1023;

- - type OBJECT_INFO is
record

X,Y : POSITION ;
SLINK : BOOLEAN ;

end record;

type OBJECT is array(SQUARE .. CIRCLE) of OBJECT_INFO;
procedure DRAW_OBJECr(WHIcH : OBJECT_ID);

GRID - : array(0 .. 1023, 0 .. 1023) of BOOLEAN;
BASIC_PERIOD : constant TIME : 0.O33mSECONDS ;
SLINKING_DURATION : constant TIME :— 5~SECONDS;BLINKING _PERIOD : constant INTEGER :- 10;

entry START;
entry RESET;

for START use at ...; —— interrupt for start
for RESET use at ...; —— interrupt for reset

end ;

C

II
11

Green 4 — 3 Sample Proble ms

— •~~~~—-0- - - -— — - — — ~~~~~~~~~ •~~~ -~~ • -0~~~~~~0~~~~~~~~ ~
_

~~-0~o 0 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 0 -
_

~~~!



task JOYSTICK(SQUARE .. CIRCLE) is -

entry READ(SX,SY : out SPEED);
end ; 

1

task body JOYSTICK is • -

type JOYSTICK_INFO is i ( 0
record

LEFT SPEED ,
RIGHT SPEED ,
FORWARD_SPEED ,
RE VER SE_SPEED : INTEGER range 0..63;

end record;

bE VICE : array ( SQUARE .. CIRCLE) of INTEGER : ...; ~• ) 
-—— con tains the device number of each joystick; -

REGISTER : array(SQUARE . * CIRCLE) of JOYSTICK_INFO; I ~ 
-—— the device registers for each joystick

ME : constant OBJECT ID : JOYSTICK INDEX;
BYTE : Constant INTEGER : 8; 

* 0’

for REGISTER use at ...; —— address of device registers -

for JOYSTICK_INFO use -Jrecord at mod 4; -

LEFT_SPEED at 0 range 2 .. 7;
RIGHT_SPEED at 1-BYTE range 2 .. 7; 1FORWARD_SPEED at 2-BYTE range 2 .. 7;
REVERSE_SPEED at 3’BYTE range 2 .. 7;

end record ;

begin
loop

accept READ(SX , SY : out SPEED) do
SEND_CONTROL (DEVICE (ME), REGISTER (ME) ADDRESS);
delay ~J.00l~SECONDS ;if REGISTER (ME).LEFT SPEED > 0 then - •

SX := —REGISTER (ME).LEFT SPEED;
else U

SX := REGISTER(ME).RIGHT_SPEED;
end if ;

if REGISTER(ME).REVERSE SPEED > 0 then
SY : —REGISTER (ME) .REVERSE_SPEED;

else
SY : REG I STER(ME). F ORWARD _SPEED;

end i f ;
end READ ;

end loop ;
end JOYSTICK;

I, 

• 
i i

• 
(
~1Green 4 — 4 Sample Problems

• U
_ _  - - 0

00 

- o  ~~~~~~~~ 00 o 0 0 0  -~~~~~~~~~~~~~



task body DISPLAY is
— SPEED_UNIT : constan t INTEGER :a ...;
4 —— assume a cons tan t period : SPEED_UNIT gives—— the distance covesquare during thu period by

-- an object movinq at speed 1.
OB : OBJECT;

• SLINK ON : BOOLEAN ;
BLINK TIME : TItlE;
SWITCH_BLINK : INTEGER;
SX , BY : SPEED;

procedure INIT is
beg in

for I in SQUARE .. CIRCLE loop
O B ( I ) . X  : 0;

o O B ( I ) . Y  :a o;
U B( I ) . B L I N K  := FALSk ;

end loop ;
SLINK_TIME :a kL~ i;
SWITCH_BLI NK :z 0; —

BLINK ON : FALSE;
end ;

procedure STARr _BLINK is
begin

if SLI NK TIME = o .o  then
BLINK TIME a BLINKING DURALION ;
SWIrC~_SLL~K: a BLI NKI~G_PER1OD;SLINK ON : FALS E ;

end i f ;  —

end ;

procedure DRA iq_O3JE CT( WH ICa : OBJECT _ ID ) is separate ;

beg in -— DISt~LAY
accept t*5E-r ;
loop

IN IT ;
accept STAR ’l ;
loop

select
4 delay BASIC_PERIOD;

if BLIN K LIME > ~~~~~~~ then
BLINK TIME a SLI;lK TIM ~, — SASIC PERIOD ;
SW I tCH BLINK a SWITCH BLINK — 17
if BLI~ K_TIM~ 0.~ then

ex i t ;
elsif SWITCH BLINK a 

~ then
h BLINK ON 7- not BLINK ON;
U SWITCH BLINK :a BLINKING PERIOD ;

end i f ;
end i f;

Green 4 — 5 Samole Proolams

~~~~~~ - -
_ -

—~~ - 0- - 0 -0 —- - - - —~~~~

~uII—
— — ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ° , r~~~~~~ ’-’~i~ r ~~~~~~~~~~~~

for I in SQUARE .. CIRCLE loop
if not OB(I).BLINK then

JOYSTICK(I).READ(SX,SY);
if (OB(I).XaO and S X < 0)

or (OB(I).X—lO23 and S X > 0) - -

or(OB(I).YaO and S y< 0) ‘ /

or (OB(I).Y — 1023 and SY > 0) then
OB(I).BLINK : TRUE;
START_BLINK;

else I IOB(I).X :a OB(I).X + SPEED UNIT SX;
OB(I).Y : OB(I).Y + SPEED~UNITaSY;

end i f ; -

end i f ;
end loop; -

if OB (CIRC L E) . X a OB(SQUARE).X
and OB(CIRCLE).Y = OB(SQUARE).Y then —— collision

OB(CIRCLE).BLINK : TRUE;
OB(SQUARE).BLINK : TRUE;
START BLINK;

Iend i f ;

for I in SQUARE .. CIRCLE loop H
if not O B (I) . B L I N K or BLINK ON then

DRA W_OBJEC T (I) ;
end i f ; -

end loop ;
-

or - -
accept RESET ; -

exit;

end select ;
end loop ;

end loop ;
end DISPLAY;

~0~~

U-

• Li

1~~I Li
Green 4 — 6 Sample Problems

U
- • - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~ H — _T ~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~ _i-

L -

L

5. A Database Protection Module
~ 0

‘-- 5.1 Sample Problem 5

Pur pose : —

An exercise to demonstrate now complex synchronization mechanisms can be
constructed on user level .

Problem:

- - A DBMS shall contain a module which controls access to given data areas.

!‘ The user (or a running process) shall be able to indicate whether he
requires exclusive access to a certain part of a data base (~data—set~ ) orwhether he is willing to share this resource with other users (e.g. for
reading).

- The respective operations shall look like the following:

EXCLUSIVE (DATA—SET—NAME , PREEMPTION—PARAMETER) ;

SHARED (DATA—SET—NAME , PREEMPTION-PARAMETER);
I’

By the following operation , the user shall be able to indicate that he no

-. 
longer wants to use the data—set:

FREE (DATA—SET—NAME);

It shall be possible to specify,  either by an executable statement at any —

time or by a kind of declaration at scope entry or at compile—time :

(A) Whether an exclusive reservation has priority over a shared
reservation

(B) How many users may share a resource
- (this number may e.g. be limited by the length of some waiting queues)

(C) Which users may execute which kind of access

~ (D) Whether preemption is possible and , if not , whether an exception shall
be raised in case of an attempt to use the preemption parameter.

o n
Green 5 — 1 Sample Problems



-- *~~~~~~~~~~~~~ *°W~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~ * * ~~~~~ W ~°7~~~~~( 
-

~~~ 
-- 0-0~~~~~~~

(5) Whether differen t users have different priorities , and , if so , which
ones

(F) Whether the demanding process shall just wait for the availability of
the desired resource or whether in this case an exception shall be
raised to allow for evasive action.

Note that user ’ may in this example also always mean : running process ’.

The module shall be coded in the complete form it would require to put it I
into a library. .1

o Proper procedures for cleanups shall be provided in case of preemDtion.

Assumptions:

No specific assumptions as far as the hardware is concerned .

Guidelines:

It is the implementor s option whether he prefers to provide one very ij
general module with all these capabilities , or whether he wants to use
generic facilities to create modules with a proper subset of the

-

-
functional ities dependent of the actual requirements at the point of

- instantiation .

11
-

0

.1

r II
f II

Green 5 — 2 Sample Problems

11
_ _ _ _ _ _ _ _ _ _ _ _ _ -

r ~~

—--

~

o-0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 0_ -0
0°~~~~~~~~~~~~ _ o

5.2 Green Solution to Problem 5

We implement the desired protection as follows:
Access to each data—set is controlled by a separate task in a family. On

—
the other hand , each user is , upon login , attributed a task , e.g., an

- interactive command interpreter , which defines the desired functions
EXEC UTE , FREE and SHARED for that user . The task index can be (and is)
used as a user—identification , and can be passed to other tasks executin g

1: on behalf of that user , if desired .

The system has a constan t table of access r i ghts. ACCESS_TABLE , initialized- in the program .

-
- -

One simpl i f y i ng assumption has been made:

We assume that if a task makes a request with preemption , but cannot be
granted the desired access immediately (because access has already been
given to higher prior ity tasks, since we assume tha t a task cannot preempt
one wi th a higher prior ity), then , if the task can wait , it is suspended ,
but loses the preemption attribute . Without this assumption , two more
entr ies would be needed at each p r i o r i t y level .

We give a br ie f summary of what happens when a user wishes exclusive access
to a data set (the workings are similar for shared access).

I ~ (1) The user calls EXCLU SI VE , giving it the data—set name and the
preemption parameter.

• (2) This procedure merely calls the homonymic procedure in the task$
•1 corresponding to the data—set , passing the user—id as argument ,

together with the preemption parameter .

(3) Accesses are then val idated , by checkinq the access list of that user
for the given data set. If the request is not rejected , it is queued
on an en try TEST_EXCLUSIVE for the appropriate priority .

(4) TEST_EXCLUSIVE will check if the request can be granted (possibly
preempting other users), and if so, will actually honor it. If the
request cannot be granted , a status flag passed as out parameter is
set to false.

(5) If TEST EXCLUSIVE did not satisfy the request , and the task is willing
to wait , it is queued on the entry WAIT EXCLUSIVE for the appropriate

F
prior ity. —

The correct handling of priorities is performed by appropriately guarding
the var ious accept statement in. the body of DATA_SET.

La Lastly, we should describe how preemption is communicated to the user
task. Each user task has a vector of booleans, one for each data—set. The
flag corresponding to the data—set that was preempted is set to true , and
the FAILURE exception is raised in the user task. When this exception is
received , the vector is scanned , to determine if FAILURE was caused by
preemption , and if so, from which data—set. If it t u rn s Out that all flags

Gre en 5 - 3 Samole Problems

—
———--—0-— —- - — - __0_

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
—-

~~~~ o-~~~~ ’-0— -o—, —_



•
~~~~~~~~~~~~~~~~~~~~~~~~~~

,_
~~__•~~~~

,__ - °~~~~~~~~~ y —‘--° - •- ~~~~~~~~~~~ -~ *— ------- 0------ o-•--~
0-

-
- -- -- - - 0~~~~~

•0 - 04

were false , then the user can deduce that the exception corresponded to a
tea]. failure , instead of a mere preemption. A sample body for a user -

process (in the form of an interactive command interpreter) is given to
show how exceptions can be handled , here resulting in messages to be output
on user terminal. -

/

$ 1

. 4

p
.

ii

LI

• T~ ~
Green 5 — 4 Sample Problems

11
L —------~~ — _ --~~~ J - ~~~~~- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - ---
~~~~

- 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

°

~~~~~

‘•  —o,p.
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---~~----~-—

-
~~~~~ ~~~~~~~~~~~~~~~~~~~ -‘

4—

T 

package DATA_SET_PROTECTION_MODULE is

MAX_DATA_SET : constant INTEGER : 50;
MAX_USER : constant INTEGER : 100;
MAX_PRIO : constant INTEGER := 64;

1~. type DS_NAME is new INTEGER range l..MAX_DA’rA SET;
type USER_NAME is new INTEGER range l..MAX_USER;
type PRIO is new INTEGER range l..MAX_PRIO;

type RIGHTS is
(EXCLUSIVE _OK , SHARE_OK , PREEMPT_OK , WAIT_OK , SIGNAL_PREEMPT );

j , . type RIGHTS_LIST is
array (RIGHTS FIRST .. RIGHTS LAST) of BOOLEAN ;

type USER_LIST is
array (USER_NAME~FIRST .. USER_NAME LAST) of BOOLEAN ;

type DS. LIST is
array(DS_NAME FIRST .. DS_NAME LAST) of BOOLEAN ;

type RIGHTS_TABLE is
ar ray(DS NAME ?IRST .. DS NAME LAST,

- USER NAME FIRST .. USER NAME LAST) of RIGHTS LIST;
I l~

- .  type REQUEST _CODE is ...;
-. —— d i f f e r en t kin ds of access requests that can be made

PERMISSION_DENIED, PREEMPTION_DENIED, UNAVAILABLE : exception ;

* 
ACCESS TABLE : RIGHTS TABLE := —— global access matr i x ;
PRIORITY : array (USER JAME FIRST .. USER_NAME LAST)

of PRIO;

task (JSER_PROCESS(USER_NAME~FIR5T .. USER_NAME LAST) is

procedure EXCLUSIVE (DS : DS_NAME; PREEMPT : BOOLEAN);
procedure SHARED (DS : DS_NAME ; PREEMPT : BOOLEAN) ;
procedure FREE (DS : DS_NAt4E);

• procedure REQUEST (DS : DS_NAME; WHA T : REQUEST_CODE);
function GET_RIGHTS(DS : DS_NAME) return RIGHTS_LIST;

PREEt4PTED DS : DS_LIST;

end USER_PROCESS;

end DATA_SET_PROTECTION_MODULE ;

Green 5 — 5 Sample Problems

* *

L1_ -~--_~_-_-_- - - - - - - - -  — ---o- - -- - - — --_~ -~- o -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

~~~
__ -

~~~~~ 
-— --—



,~ --.-- 

~~~~

- •

~~~~ 

- ~-r

- - 14

restricted(TEXT_IO)
package body DATA_SET_PROTECTION_MODULE is 

-

task DATA_SE T(DSj~AME FIRST .. DS_NAME LAST) is
procedure EXCLUSIVE (WHO : USER_NAME; PREEMPT : BOOLEAN);
procedure SHARED (WHO : USER NAME; PREEMPT : BOOLEAN); I 

-

procedure FREE (WHO : USER_NAME); L
procedure REQUEST (WHO : USER_NAME ; WHAT : REQUEST_CODE);
function GET_RIGHTS(WHO : USER_NAME) return RIGHTS_LIST; • -

• end DATA_SET ; I

task body USER_PROCESS is
use TEXT_IO; 

- 
-
• 

-

ME : constant USER NAME := USER PROCESS~ INDEX; 
~DS_SET : DS_LIST : (DS_NAME FIRST .. DS_NAI4E LAST > FALSE);—— set of currently reserved data sets

procedure £XCLUSIVE (DS : DS_NAME; PREEMPT : SOOLEAN) is
begin 0 p 

-
-

DATA_SET(DS) .EXCLUS IV E (ME , PRE EMPT) ; ‘
1 

-

-

~~ end ;

procedure SHARED(DS : DS_NAME ; PREEMPT : BOOLEAN ) is 
-~begin

DATA_SET(DS) .SHARED(ME, PREEMPT);
end ; - -

procedure FREE (DS : DS_NAME ) is -

beg in -

DATA_SET (DS) . FREE (ME);
end ; -~~~

procedure REQUEST(DS : DS_NAME; WHAT : REQUEST_CODE ) is
begin

DATA_SET ( DS ) .RE QUEST(ME , WHAT) ;
end ;

function GET_RIGHTS(DS : DS_NAME) return RIGHTS_LIST is
begin

return DATA_SET(DS).GET_RIGHTS(ME);
end ;

i i

ij•

I_I
ii ;

Green 5 — 6 Sample Problems

ci 
- -- - : --i: :~~. ~ - --~- ~~~~~~~~~~~~~~~~~ -~~~~~ o - 0  ~~~~~~ ‘~ :- L ~~~~~; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--- 

- I



beg in —— body of USER_PROCESS
loop

begin—— read command—— execu te comman d
exception

when UNAV AILABLE =>
PUT(~data set is busy”);when PREEMPTION DENIED =>

• PUT(~preemptTon refused~ );when PERMISSION DENIED >
PUT(~ access viola tion~ );for X in DS_NAME FIRST .. DS_NAME LAST loop

if DS SET (X) then
F R E E ( X ) ;

end if;
U 

- end loop ;
raise ; —— access violat ion is a fa tal e r ro r

when FAILURE =>
declare

BAD ERROR : BOOLEAN : TRUE ;
begin

- for X in DS_NAME FIRST .. DS_NAME LAST loop
if PREEMPTED DS(X)  then

BAD_ERROR : FALSE;
PUT(’you have been preempted from data set :
PUT(X);
PREEMPTED_DS(X) : FALSE;
exi t ;

0 end if;
end loop;
if BAD_ERROR then —

PUT (~ killed1 );
for X in DS_NAME FIRST .. DS_NAME LAST loop

if DS SE T(X) then 4
FREE(X);

- .  - end if;
end loop;
raise ; 0

end if;
end ;

end ;
end loop ;

end USER_PROCESS ;

I

t

-

’

Green 5 — 7 Sample Problems

L 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0~• o

-_r~~~~~~~~~~~~~ ’~~” ’~~~~~~W~~~~~~~ - -
~

1 !

•
-

task body DATA_SET is d

ME : constant DS_NAME := DATA_SET INDEX ;

MAX_SHARING : constant INTEGER :— —— some constant;
-— note : MAX_SHARING cannot be modified while the—— data—set is still active , i.e., still being accessed .

USERS : USER_LIST;
- -—— set of users currently accessing the data—set

MODE : (IN SHARED , IN EXCLUSIVE) : IN SHARED;
N USERS : INTEGER := 0;
PRIORITY FOR EXCLUSIVE : BOOLEAN : TRUE;
REQUEST _COUNT : ar ray (PRIO ’FIRST .. PRIO LAST) of INTEGER

: (PRIO FIRST .. PRIO LAST > 0) ;

entry TEST EXCLUS IVE (PRIQ FIRST .. PRIO LAST)
(CHECK : out BOOLEAN ; WHO : USER_NAME ; PREEMPr : BOOLEAN); 4

entry TEST_SHARED (P RIO FIRST .. PRIO’LAST)
(CHECK : out BOOLEAN ; WHO : USER_NAME ; PREEMPT : BOOLEAN) ;

4

entry WAIT _EXC LUSIVE(PRIO FIRST .. PRIO LAST) (WHO : USER_NAME);

entry WAIT_SHARED(PRIO FIRST .. PRIO LAST) (WHO : USER_N A M E) ;

entry RELEASE(WHO : USER_NAME);
entry RESERVE (P : PRIO);

procedure ASK (CHECK : out BOOLEAN ;
WHO : USER NAME ;
PREEMPT, EXCL : BOOLEAN);

procedure F RE E (WHO : USER_NAME) is
beg in

if not USERS (WHO) then
raise PERMISSION_DENIED ;

else
RELEASE(WHO);

end i f ;
end FREE ;

procedure REQUES T (WHO : USER _NAME; WHAT : REQUEST _CODE) is
begin

if not USERS (WHO) then
r aise PERMISSION _DENIED;

else—— - p e r fo rm the access : no synchronizat ion is necessary,—— since it has been achieved by the reserva tion requests
end i f; -

end REQUEST ;
0

0 0

ii-

Green 5 — 8 Sample Problems
- 0

0-
—- - — - --i

~~~~~~~~~~~ —-~~ 
—0- 

~~——-~~~~ - 

- • 

-~~~



—~ - F —
_ _ _  “I— 

procedure EX CLLJSIVE (WI1O : USER NAME ; PREEMPT : BOOLEAN) is
MY RIGHTS : constant RIGHTS LIST : ACCESS TABLE(ME , WH O ) ;
AC~ EPTED : BOOLEAN ;

begin
if not MY _RIGHTS (EXC LUSIVE_OK) then

- raise PERMISSION _DENIED;
elsif PREEMPT and not MY RIGHTS (PREEMPTION OK) then

if MY _RIGHTS(S IGNAL_PREEMPT ) then
. raise PREEMPTION _DENIED;

else
PREEMPT := FALSE;

end i f ;
end i f ;
RESERVE ( P R I O R I T Y ( W H O ) ) ;
rEsT_E XC LUsIvE (P R I OR I TY (W H O ) )  (ACCEPTED ,WHO , PREEMPT );
if not ACCEPTED then

if not MY_RI GH TS(WAI T_OK) then
raise UNAVAILABLE ;

else
- • RESERVE (PRIORITY ( W H O ) ) ;

- WAIT EXCLUSIVE(PRIORITY(WHO))(WHO) ;
• end i f ;

end i f ;
end EXCLUSIVE;

procedure SHARED (WHO : USER_NAME ; PREEMPT : BOOLEAN ) is
MY RIGHTS : constant RIGHTS LIST :~ ACCESS -r ABLE (ME , WHO) ;
ACCEPTED : BOOLEAN ;

beg in
if not MY_RIGHTS(SHARE _OK ) then

ra ise PERMISSION _DENIED;
elsif PREEMPT and not MY RIGIITS(PREEMPTION_OK) then

if MY RIGHTS (SIGNAL PREEMPT) then
- raTse PREEMPTION DENIED;

else —

PREEMPT : FALSE ;
end i f ;

- end i f ;
RESERVE (PRIORITY ( W H O ) ) ;
TEST_SHARED (PR I OR ITY (W HO) ) (ACCEPT ED ,WHO , PREEMP T ) ;
if not ACCEPTED then

if not MY _RIGH TS(WA IT _OK) then
raise UNA VAILABLE ;

else
RES E RVE(PR I O R I T Y ( W H O ) ) ;
WAIT_SHARED (PRIORITY (WHO));• end i f ;

- - end i f ;
• end SHARED;

function GET_RIGHTS ( WHO : USER _NAM E ) r e tu rn  RIGHTS _LIST is • 

0

begin
re tur n ACCESS_TABLE(ME , WHO);• end GET_RIGHTS ;

Green 5 — 9 Sample Problems

- - -4  ---——-0— --- 
-0—----



—~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--

—— The procedure ASK , which is not visible , per forms—— all the checks needed to permit a request.
-— If preemption must be done , it is performed here.

procedure ASK(CHECK : out BOOLEAN ;
WHO : USER NAME ; 

. •PREEMPT : BOOLIAN;
EXCL : BOOLEAN) is - ,  -

TEMP USERS : USER LIST : USERS;
CNT : INTEGER : 0; -

begin 
- 

-
‘

if MODE = IN_EXC LUSIVE or N_USERS a MAX_SHARING then—— preempt necessary if requested .
if PREEMP T then

for X in USER NAME FIRST .. USER NAME LAST loop
• if USERS (X) and PRIORITY(X) > PRIORITY (WHO) then
- CNT : CNT + 1;

-rEMP_usERs(x)  : FALSE; - 0

if EXC L then
CHECK : FALSE; .

~~~

r e tu rn ;
end i f ;

end i f ;
end loop;

if CNT MAX SHARING then
CHECI(: FALSE;
r e t u r n ;

elsif EXCL then —— preempt all
for X in USER_NAME FIRST .. USER_NAME LAST loop

if USERS(X) then
USERS(X) a FALSE;
USER_PROCESS(X) .PR EEMP TED_DS (ME) a -TRUE ;
r aise USER PROCESS(X). FA I LURE ;

end i f;
end loop;
N USERS a 0 ; 0

else —— preempt one of the possible users
declare

• X : USER NAME ;
begin

X : CHOOSE(TEM P_U SERS);—— assume CHOOSE returns an element—— chosen non_deterministically in the set.
U SER S(X) : FALSE;
USER PROCESS (X).PREEMPTE D DS(ME) : TRUE ;

o rais~ USER _PROCESS (X). FAItU RE ;
N_USERS := N_USERS — 1; 3

end ;
end i f;

else
CHECK := FALSE ;
re tu rn;

Green 5 — 10 Sample Problems

---0--
-

~~
- o0~

- 0-*-00~ - -
~~~~= -•-- —---0



__,_ o___,__ o _•~,_~
__ ,_ -.. — w - -0—-— r -0•000~-0 0 — — — °o 4 ~00 —~~~~~~~°_ _ _ o 0 ~~_ _  — - •~~~~° ° °  -

•

~~ L

I

end if;
end i f;
USERS (WHO ) : TRUE ;
N USE RS : N USERS + 1;
C~1ECK : TWUE;

- 

~~~ • if EXC L then
-
~

, • MODE : IN_EXC LUSIVE ;
end if;

end ASK;

begin —— body of DATA_SETloop
-~~~~ • • accept RESERVE(P : PRIO) do

REQUEST_COUN T(P) := REQUEST_COUNT(P) + 1;
end ;—— f lush the RESERVE queue
loop

select
accept RESERVE(P : PRIO) do

REQUEST COUNT(P) : REQUEST_COUNT(P)- + 1;
end ;

else -

exit;
end select;

end loop ;

for P in reverse PRIO FIRST .. PRIO LAST loop
if REQUEST _COUNT(P) > 0 then

select
accept TEST EXC LI USIVE (P) (CHECK : out BOOLEAN ;

WHO : USER NAME ;
PREEMPT : SOOLEAN) do

ASK (CHECK , WHO , PREEMPT , TRUE)
end ;

or when not PRIOR ITY FOR EXCLUSI VE
or TEST_EXCLUSIVE COUNT ~ a>

accept TEST_SHARED (P) (CHECK : out BOOLEAN ;
WHO : USER NAME;

• - PREEMPT : BOOLEAN) do
ASK (CHECK ,WHO , PREEMPT , FALSE);

end ;

or when N_USERS = 0 a>
accept WAIT EXCLUSIVE (P) -(WHO : USER NAME) do

USERS (WH~) : TRUE ;
end;
N_USERS :a

~~;

MODE ;a IN_EXC LUSIVE ;

D

or when (MODE - IN_SHARED and N_USERS < MAX_SHARING)
or (no t (N _USERS a 0 and PRIORITY _FOR_EXCLUSIVE

and (TEST EXC LU SIVE(P) ’COUNT >B
or W~ IT_EXCLUSIVE (P) COUNT>d))) —>

Green 5 — 11 Sample Problems

I,

~_0-0~_ —•—-—----—-•---- —o- —o —---—- — —

_ -p~~-~~~~r~~~~~~~~~~-, ~~~~~~~~~~~~~~ •~~~~
_
~~‘~~

- accept WAIT_SHARED(P)(WHO : USER NAME) do
-

4. USERS (WHO) : TRUE;
end ;
N_USERS : N_USERS + 1;

end select;

REQUEST_COUN T(P) := REQUEST_COUN T (P) — 1; /

exit; —— go and process newly arrived requests
end i f ;

-

end loop ;
loop

select
accept RELE A SE(WH O : USER_NAME) do

USERS(WHO) a FALSE;
end ; ‘ p

N USERS : N USERS — 1;
if MODE = IN EXC LUSIVE then 1) -

MODE a IN_SHARED; -
~~~~~

end i f ;
else

exi t ;
end select; *

end loop ;
end loop ;

end DATA_SET ;
end DATh_SET_PROTECT ION_MODULE ;

- y

L I

t.j

Li

- J

U

Green 5 — 12 Sample Problems

-~
--—--— —--

~
•-- -o - — =———--- ~~~~~~~~~~~ -0_0_ r — --- --~~——-----—— ______ • • .  . _. —



—-•- -_--.--,o--•.---
~

-•o — -0— -*— — —~~~ 
0_P0 — 

~~~ 
—_

~~~~~~~0 •— -,•
~~

—-‘- ~~~~~~~~~~~~~~~~~~~ ________________________

4’ ~ 6. A Process Control Example

6.1 Sample Problem 6

I ~~~~ Pur pose : 
—

An exerc ise to test interactions between parallel processing and exception
handling .

Problem: -

Assume four processes:

Process a which reads in data from the environment and stores them in a
buf fe r  area ,

process b which processes the data it finds in the buffer area according to
some algor ithm and stores - them in a result area ’, and

process c which produces output as a consequence of these data (either in
human—oriented form or as control—output for the process to be controlled). -j

1 Process d monitors and controls these three (and possibly other) processes
and interacts with the operator via a keyboard console.

It shall be further assumed that process a and process b interact in the
following specific way :

The buffer is organized as a ‘dOuble—buffer ’, i.e., af ter one of its two
• areas has been filled by process a, process b is notified and starts to

read out of the buffer . Process a continues by depositing data in the
second b u f f e r  area.  If this is ful l , process a tries to deposit data in
the first area again. Process b, in turn , notifies process a after hav ing
read one data area.

1% It is illegal to read a buffer area which has not previously been filled
U and to write into a buffer area which has not been completely read (except

in the ini t ial izat ion phase) .

- 
- The program shall be structured in a way that it is possible to replace

- process a by appropriate hardware without having to change the program
-. 

parts for processes b , c , and d.

Green 6 — 1 Sample Problems

- -

~~~~~ 

--- -o
~~~~~~~~~~~~~~~~~



• 
It shall also be possible to terminate process a and b at any time without
losing data , i.e. before termination a cleanup operation shall be invoked
which causes processing of any remaining data in either of the two buffer
areas.

Assumptions:

No par t icular  assumptions as far  as hardware  is concerned . - -~ -

The buffers and the result area ’ can be organized as arrays. -

Guidelines:

To simplify matters , it can be assumed that  actual input— output , i.e. the
communica tion wi th the har dware , as well as the processing of the data in -

process b is done by given l i b r a r y  rout ines .

The algori thm in process d may also be described in a h ighly  summarized
form , because this  is not what the example is to test.

. 0 1

6 .2  Green Solution to Problem 6

The solution presented here shows the flexibility and power of the Green
tasking faci l i t ies .  It is somewhat unconven tional , in that each buffer is
controlled by a separate task. The proper handling of mult iple  b u f f e r s  is 1
achieved exclusively by task synchronization.

The tasks A, B, C, and D are defined inside the package BUFFERS. The
buffer size, maximum number of bu f f e r s , and elemen t type are defined there
and could be modified (i.e., the solution will work for  an arbitrary number - -

of buffers). 
-

Task D repeatedly receives control commands , and can in par ticu lar receive . 1

an interrupt through the INTERRUPT entry.

Task C repeatedly performs the same action (e.g. display an image on a
screen) , using data found in RESULT_AREA . C is not synchronized with any
other task , as it is acceptable that the contents of RESULT_AREA be changed
while it is being read.

Task B repeatedly receives a buffer through its entry NEXT_BUFFER. The
number of elements contained in the buffer is also passed as parameter. If
the buf fe r  is not ful l , it is the last one, and is an indication that B 

-

-~ should terminate .  -

Green 6 — 2 Sample Problems
- 

- 

ii
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - ---— --- - -

- ----~~~~

1L
Each buffer is controlled by a task of the family WORKER. These tasks are

I

-
~~ local to task A, and are synchronized by A as follows. Each wor ker waits

-

~
on an accept statement for the entry RELEASE. A call to RELEASE signals the
worker to enter a writing phase. When the worker has filled its buffer , it

-- calls the entry FULL of A, to indicate that A can release the next worker ,
and it then sends its buffer to B by calling the entry NEXT BUFFER of B. If

-
~. all buffers are full , A will wait on the call to RELEASE. If all buff ers

are empty , A will wait on the accept statement for FULL.

Termination is handled as follows: when an interrupt is received by D, the
‘ entry STOP of A is called. A will call in turn the entry STOP of the worker

- I
- that is currently read ing. The worker will stop read ing and send the

7 curren t contents of its b u f f e r to B . while holding A in a rendezvous . When
~~~, the incomplete bu f f e r  has been accepted by B, the wor ker is released , which

will also release A. At this point, all input has been transmitted to B,
-- and A can safely abort all workers .

I J
4 .

I
package BUFFERS is

MAX_BUFFERS: constant INTEGER : 2;
, •  MAX_SIZE : constant INTEGER a 1000;

- subtype BUFF_RANGE is INTEGER range 1 .. MAX_SIZE;
subtype BUFF_NAME is INTEGER range 1 .. MAX_BUFFERS ;
type ITEM is new CHARACTER;
type BUFF_TYPE is ar r a y ( l  .. MAX_SIZE) of ITEM;

RESULT_AREA : -— work in g area f i l l ed by B and read by C

task A is
entry STOP;

end;
task B is

entry NEXT_BUF F ER(BUF : BUFF_TYPE; N_ELTS : INTEGER) ;
end ;
task C;
task D;

end;

L

~

-

- 

Ii

Green 6 — 3 Sample Problems

— 

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __4_ •~~~_~•__•_ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _—o_ 0~o_~~•-0_o_~


ul
package body BUFFERS is

procedure READ(C : in out ITEM) is separate ; - -

‘0

task body A is
FILLING: BUFF_NAME :a 1;

entry FULL ; .1
task WORK ER(BUFF _NAME FIRST .. BUFF_NAME LAST) is -

entry RELEASE ; -
‘

entry STOP; - -

end ; 4

function NEXT(B: BUFF_NAME) r eturn BUFF_NAME is
begin

return (B mod MAX_BUFFERS) + 1; - -

-~ end ;
- -

task body WORKER is
BUFFER: BUFF_TYPE;
ME : constant INTEGER : WORKER ’INDEX;

begin
<<FILL_BUFFER>> loop

accept RELEASE ;
for I in 1 .. MAX_SIZE loop -

~
select

accept STOP do
B.NEXT_BUFFER(BUFFER, I—i);

end STOP ; -

exit FILL_BUFFER ; -~~

else
R E A D (B U F F E R (I)) ;

end select;
end loop ; - . -

A. F ULL
B.NEXT_BUFFER(BUFFER , MAX_SIZE);

end loop FILL_BUFFER ;
end WORKER;

— begin -- A
initiate WORKER(BUFF_NAME FIRST .. BUFF_NAME ’LAST);
loop

WORKER(FILLING) .RELEASE;
select

accept FULL ;
- FILLING : NEXT (FILLING);

or when FULL COUNT = 0 —>
accept STOP;

-; WORKER (FILLING).STOP;
exit; -

-

end select;
end loop;
abort WORKER (BUF F_NAM E FIRS T .. BUFF_NAME LAST);

end A;

I

Green 6 — 4 Sample Problems

- — - _ _ i_~~~~~~~ _~~~~~~ — -—~~~~
o . - - -

~~~~~~~~~
--2-

~~~
-

~~
- —

~~~~~~~~~~~~~~~
— — - — -  0 _ ~~~ 

-



j  —-0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

task body B is
begin

loop
accept NEXT_BUFFER(BUF : BUFF _TYPE; N_ELTS : INTEGER) do

• - —— compute values using BUF, and store—— results in RESULT_AREA
• exit when N_ELTS < MAX_SIZE;

- 
I end NEXT_BUFFER; - -

• - end loop;
end B;

task body C is -

7~ begin
loop 

- 
-—— perform some actions, using contents of RESULT AREA

• • end loop ;
end C; H

task body D is
entry INTERRUPT ;
for INTERRUPT use at ..., ;

begin
• - loop

select
• accept INTERRUPT ;

A.STOP ; •

- 
or -— accept other controls, or do other things

-

~ end select;
• end loop ;

end D;

begin —— ini t ia l iza t ion of BUFFERS
initiate A , B , C , D;

end ;

II
El 

•

f l
Green 6 — 5 Sample Problems

U



-~~~ 

---

~~~~~~~~~~~~~~~~~~~~~~~~~

‘

~~~~~~~ 

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I f  
I

7. Adaptive Routing Algorithm for a Node within a Data Switching Network

7.1 Sample Problem 7

- Pur pose:
- 

- Test for language suitability for multicomputer and communications
- 

applications.

Problem: 
-

Develop the program for a multiprocessor within one node of a data
switching network to main tain the tables of

(1) distances,

(2) minimum delay time , and

(3) routing for the following adaptive routing algorithm:

L Each node in a network maintains a table of distances and a table of
minimum delay times between itself and all other nodes. The distance

- metric is the minimum number of hops required to reach each other node.
Both tables are maintained through updates in the form of table exchanges
which occur only between neighbor nodes (nodes of distance , one). Each

- node maintains a routing table which directs rout ing through that  neighbor
~
. ,de which achieves the minimum delay time. 

- -

Iti ~arallel with , and at the same periodic rate as this computing process,
;~~~ ~~&.~r ate computing processes at each node are computing the minimum delay

times to neighbors, and reading into computer memory the updated distance
table of each ne ighbor , and the updated minimum delay time tabl e of each
neighbor. Initially each node knows only the distance to each neighbor ,
which is one, and the minimum delay time to each neighbor . Other distancesL and minimum delay times are initially considered infinite . Each node
iteratively builds up its own distance and minimum delay time tables from
the distance and minimum delay time tables exchanged wi th its neighbors ,r~ and updates tables containing such information about itself. Other

- computing processes t r ansmi t  th is  informat ion  between such neighbors.
Hence , the routing table at each node is established and periodically
updated adaptively from the minimum delay times.

When a l ink is broken or established , a separate computing process at each
of the two former or new neighbors corrects the distance and minimum delay

ra

• Green 7 — 1 Sample Problems

I .

k. ~~~~~ - - - ---0    — - 0----- -- ---—_•--•’—- ------- ---—_*-— -•-- -------- - -- --~~ ---° --- -



time tables. 
-

The reason a distance table must be mined is that if the network is
disconnected the algorithm causes the distance between disconnected nodes

- 
I to increase without limit. Thus whenever the distance between two nodes

becomes greater than the number of nodes in the networ k, this distance and
minimum delay time is considered infinite, and the node is considered • -

- I unreachable.

In the example program , consider that the number of nodes in the networ k,
the neighbors of the programmed node , and the per iod ic update in terval are
constants known at compile time.

Assumptions. - -

None as far as the hardware is concerned .

Guidelines: - -

The actual interchange between the nodes can be assumed to be performed by
given library routines.

i _I

ii

Ii-

Green 7 - 2 Sample Problems

H 

- n-
~~~~~~~ - ~°T - H - - - - - - - ---- - :

~~~ — -  -~~~ -~~~-- - ‘—---- - - —- - 
-
~~~~ -~


_______ _______
- - o.~~~~~~~ *~~~ * T ~ ‘~~~~ ‘~~~~~~ “

- - __________________________ - - - - -

LI
- Ii

7.2 Green Solution to Problem 7

• At each node in the network , a task TABLE keeps a table of distances and
minimum delay times between the node itself and all other nodes

U

(NODE_TABLE). This task also maintains a routing table(NODE_ROUTE).

These tables are per iodically updated by a task UPDATE_TABLE which reads
all neighboring tables and computes new tables.

It is assumed that each node knows its neighbors through the table NEIGHBOR
and knows the delay time between itself and tnese nodes through

F NEIGHBOR_DEL. Whenever a link is established , the delay time between the
two nodes is passed to the updating task.

- The table of a ne ighbor node is obtained through a call to the l ib ra ry
- routine READ NEIGEBOR_TABLE which uses the entry READ of the correspon d ing

TABLE task. When the new tables have been computed , the updating is done
by copying them into the TABLE task of the current node through the entry

r WRITE. The entry GET_ROUTE of a task TABLE is used to interrogate the
routing table. The entries ESTABLSH_LINK and BREAK_LINK of the updating
task are used respectively when a new l ink is created or when a l ink is
broken.

Li

1_~
[1

- n
H

Green 7 — 3 Sample Problems


~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -- - - -•---,-— - - 

~~~~~~
- - • .- •-

- - - -
-

~~~~~~~~~~~~~~~~~~~ 
— ‘

~~~~~~~
°

--

-
S.-

package NETWORK INFO is

subtype NODE is INTEGER range 1. .50 ;
subtype DISTANCE is INTEGER range

NODE FIRST — 1 .. NODE LAST;
subtype EXTENDED_NODE is DISTANCE;

type NODE_INFO is
record

-
-

DEL : INTEGER ;
DIST : DISTANCE ;

end record ;

type ALL_INFO is array (NODE) of NODE _ INFO;
type ROUTE_INFO is array(NODE) of EXTENDED_NODE ;

INFINITY : constant INTEGER : INTEGER LAST;
NULL_NODE : constant EXTENDED_NODE := NODE FIRST — 1;
BASIC_PERIOD : constant INTEGER : 6O SECONDS ;

—— addit ional in forma tion rela tive to the cur r en t node
end NETWORK_INFO;

restricted (NETWORK _INFO)
procedure MAIN is

use NETWORK_ INFO ;

ME : constant NODE := —— index of the node—id of th is node;

NEIGHBOR : array (NODE FIRST .. NODE LAST) of BOOLEAN := ...;
NEIGHBOR_DEL : array(NODE FIRST .. NODE LAST) of INTEGER :=—— minimum delay time to the neighbors

package LIBRARY is

procedure READ NEIGHBOR PABLE(N : NODE ;
HIS_TABLE :out ALL_INFO);

-— this procedure 4 tele —issues a READ for -
- -

—- the process TABLE of node N H
end LIBRARY ;

task UPDATE TABLE is
entry ESTABLISH _L I N K (N : NODE ; DEL : INTEGER) ;
entry BREAK_LINK (N : NODE);

end UPDATE _TABLE ;

task TABLE is
entry READ(CURR_TABLE : out ALL_INFO);
en try WRITE(NEW _TABLE : ALL_ INFO;

NEW ROUTE : ROUTE_INFO);
entry GET_ROUTE (N : NOD E; R : Out EXTENDED _NODE) ;

end TABLE ; -

~i

Gr een 7 — 4 Sample Problems

I •0 - - ~~ — --- - ---• - --_ -— -°~~~~~~ -- -0 - - -- -- - - - - -_ --—

.

~

i-

_-__ •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- •--- -

~~~~~~

*-—-- ~0
-r

—

-

-
I]

task body TABLE is

NODE TABLE : ALL INFO :
(ME a) (DE L a> 0 , D IST => 0) ,
others a> (DEL => INFINITY , DIST a> NODE’LAST));

NODE_ROUTE : ROUTE_INFO :
(ME a> ME , others > NULL_NODE);

begin -- TABLE
loop

select
accept READ(CURR TABLE : out ALL INFO) do

CURR_TABLE : NODE_TABLC ;
end;

or
accept WRITE (NEW TABLE : ALL INFO ;

NEW ROUTE : ROUTE INFO) do
-

I NODE TABLE : NEW TABLE;
NODE_ROUTE := NEW_ROUTE ;

end ;
or

accept GET_ROUTE(N : NODE; R : Out EXTENDED_NODE) do
R : NODE ROUTE(N) ;

end ;
end select; -

end loop ;
end TABLE ;

task body UPDATE TABLE is
HIS TABLE : ALL INFO;
MY TABLE : ALL INFO :

(ME => (DEL a> 0, DIST => 0) ,
others => (DEL => INFINITY , DIST => NODE L A S T)) ;

ROUTE : ROUTE_ INFO :=
(ME => ME , others > NULL NODE);

START_TIME : T IME ;

begin -- UPDATE TABLE
loop

START_TIME : SYSTEM CLOCK;
for I in NODE FIRST .. NODE LAST loop

if NEIGHBOR(I) then
LIBRARY .READ NEIGHBOR NODE(I, HIS_TABLE);

[] for J in NODE FIRST .. NODE LAST loop
if ROUTE (J) = I then

if HIS TABLE (J) .D I ST < NODE LAST then

[I MY PABLE (J) :
(DIST a> HIS TABLE(J).DIST + 1,

DEL a> HIS TABLE(J).DEL +

NEIGHB~R_DEL(I));

J

I-I

Green 7 - 5 Sample Problems

—- 0-

-

—-- - - -0— - — — - — —--0 -0— -- - -0- —— ~~~~~ - °

—• —- - ~~°~~0~~0~ -000~ • --
00

~~ -0 - -~~~~~~- - -- - - ________________

- LI

else —— node J is unreachable
MY TABLE (J) a ° -

(DIST a> NODE LAST ,
DEL z> INFI NITY);

ROUTE (J) : NULL NODE ;
end i f;

• elsif HIS TABLE (J).DEL /— IN FINITY and then
MY TABtE(J).DEL > HIS TABLE (J) . D E L +

— NEIGHBOR_DEL(I) then—— establish a new ROUTE
ROUTE(J) : I; - -

-

MY TABLE(J) :a

(DIST a> HIS TABLE (J).DIST + 1,
DEL => HIS TABLE (J) . D E L +

NEIGHBOR_DEL(I));
end i f ;

end loop ;
end i f ;

end loop ;

TABLE.WRITE(MY_TABLE , ROUTE);
select

accept ESTABLISH L IN K (N : NODE; DEL : INTEGER) do
NEIG H BOR(N) : TRUE ;
NEIGHBOR DEL(N) :a DEL;
MY_TABLE(N) : (DIST a> 1, DEL —> DEL) ;
ROUTE(N) :a N;

end ;
or

accept BREAK L I N K (N : NODE) do
NEIGHBOR(N) :a FALSE;
for I in NODE FIRST .. NODE~LAST loopif ROUTE (I) a N then

MY TABLE(I).DEL :— INFINITY ;
end i!;

end loop;
end ;

end select;
delay START TIME + BASIC_PERIOD - SYSTEM CLOCK;

end loop ;
end UPDATE _TAB LE;

begin —- MAIN
initiate UPDATE_TABLE , TABLE;

end;

Green 7 — 6 Sample Problems

[1
~~-—-~~~~-~~~—, -~~~~~~

- -0---

_ _ _ ~~~~~~~~~~~~~~~~~ - - ~~~~~~ - -0 .-- -

P W~

I ,1$
1.

• 8. General Purpose Real—Time Scheduler

~~

- 8.1 Sample Problem 8

- - k’urpose :

An exercise to test the possibilities for relatinq computational processes
to real time.

-

• Problem:
- A library module shall be wr i t t en which allows to schedule computational
- processes in actual real time. -the number of these processes shall be

varying , determinable at l i n k— t i m e .

The scheduler shall receive the ticks of the real—time clock of the
system (e.g. by reacting to the respective interrupt) and transform them
into actual real time , e.g. by applying the proper comoile—time constants.

To simplify ma tters , the time span which can be handled by the scheduler
may be restricted to 24 hours , i.e. all times will be computed modulo 24
hours.

This real time shall be accessible to the program by the command

‘rIME (OPERAND)

which shall deposit the time (at the point in time the operation is
-

executed) in the location indicated by operand as an ASCII character
string with the following conventions :

first two characters: hours
second two characters: minutes
third two characters: seconds

But the main purpose of the scheduler shall be the initiation of the
fl execution of computational processes according to predefirted conditions in

• U real time. This shall be possible either once or repeatedly.

Processes shall be connected to the scheduler by operations of the form:

LI EXECUTE i’ROCESSNAME , TIME
EXECUTE TIME —— meaning the process which performs this operation

Green 8 — 1 Sample Problems

1 °

S - - - - - - - - -- — _ —-—-- —-_- ~0

--

execute PROCESSNAME, START—TIME, REPETITION—INTERVAL -

Intentionally , no exact representation for these operations is qiven in the
example (especially it shall not be implied that they are procedure calls).
The represen tation shall be proposed by the language designer in or der to:

(1) Fit into the tex t of a user program as simply and na tura l ly as
possible and

(2) be efficiently implementable in the language proposed.

If two processes are due for execu tion at the same poin t in time , they
shall be activated in priority order .

Note , that in order to achieve this, a librar y rou tine may have to be used ,
which sor ts the con tro l blocks of the scheduled processes accor d ing to
their priority. Because such a sorting routine is of general interest, it
should also be useable for other data—types. It should be demonstrated ,
how the parame ter passing mechan ism of such a rou tine is f it for this
purpose without causing too much runtime overhead.

For the purpose of the example , the sorting algorithm proper may be simple
and ineff ic ient, because it is not relevant for the demonstration .

It must also be possible to d isconnect processes from the scheduler at any
point in time , either by action from themselves or from other processes.

Assumptions:

Assume a system clock which deliver s ticks of a frequency which is
sufficient to do the necessary computations with the necessary precision.

The way in which processes can be made known to the scheduler depends on
the implemen tation model , which underlies the language proposal.

[~1Green 8 — 2 Sample Problems
°T

— — — — 0_ _~~
- -: ~~~~~~~~~ _ _ ; _ ~~ _~~ i~~~ - ———— — - -0 -

I i

____ -

1.
8.2 Green Solution to Problem 8

The real—time scheduler is implemented as a task (SCHEDULING_TASK), which
is to run independently, and with a higher priority than all user
processes. This task is defi.ned inside the body of the package SCHEDULER.

A “user process is any Green task which is “knOwn ” to the scheduler. In
order to be known , the user process must contain a declaration of the form:

package MY_TASK is new SCHEDULER.TASK_PATTERN(PROCE SSj~A M E) ;

This will make the process known to the scheduler , under the correspond ing
name (given as a string). It will also make the three commands EXECUTE,
DISCONNECT , and SIGN_OFF available to the user_process. Other user
processes can be refer red to in these commands by the name with which they
have signed on , wh ich may convenien tly be the Green task name , al though

I ’
this is not a necessity.

Meaning of Commands:

EXECUTE (process_name , start, time [, per iod]);

requests execution of indicated process at given time , and optionally
H per iodically thereafter . Note that , if the Green “keyword” notation is

used , this command can be wri tten:

EXEC UTE(process_name , AT_TIM E :a star t_time , THEN_EVERY := period);

The process name can also be omitted , in which case , it is assumed to refer
to the calling task , and will have the additional effect of suspending this
task , after scheduling it to be resumed at the indicated time. The same
effect will be achieved if the process_name that is explicitly given is
actually that of the caller .

DISCONNEC ’r(process_name) ; —

This will cancel any previous scheduling request made for the indicated
process.

•
SIGN_OFF

V This command terminates the interactions of the calling task with the
scheduler. It should be called before terminating a task (this is not a

• necessity, but avoids cluttering the name space of the scheduler).

H

Ii
Green 8 — 3 Sample Problems

i
_I p

~

0-~~~~~~~~~~~~~ - ---- - ---0- ~~-~~- - -~~~~~~~~~ -~~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~ ° - - ~_
-
~~~ :~~~ 



Additional Rules Enfor ced

Several restrictions are enforced by the scheduler : 
- -

The same name cannot be used by more than one task.

A command cannot be exec uted if the calling task has not signed on , or has
already signed off. If a task signs off , the only way to sign on again is
by a new generic instantia tion of TASK_PATTERN.

It is not possi ble to give a scheduling request for ano ther user process
that is still executing .

It is not possible to make a scheduling request for a process if one has
already been made - (although the effect can easily be achieved by the
DISCONNECT command). However , when a task suspends itself , the start_time
may be omitted , to use any previous scheduling coming from periodical
execution request.

It is not possible to make a scheduling request for a time that has already
elapsed.

Any violation of these rules raises an exception in the calling task.

Internal s of the Scheduler

The scheduler is a constan tly ac tive task to whic h user processes are
connected dynamically.  There is a maximum number of user processes that  can
be connected to the scheduler at a given time. The connection is
established by the qeneric instantiation of the package TASK_PATTERN. The
ini tial ization par t of TASK_PATTERN will actually call the entry SIGN_ON of
the scheduler.  Note that  all ent r ies  of the scheduler are not declared in
the visible par t, and can therefore  be called on ly ind irec tly throu gh the
packa ge TASK_PATTERN, which is nested in the scheduler .

Protection of the scheduler’s integrity is achieved by the use of an
in ternal process_name that cannot be manipulated or forged by
user _processes : upon signing on , a var iable local to the module par t of
TASK_PATTERN will  be ini tial ized by the scheduler , and thereafter used in
each entry call to unambiguously designate the process. One of the effects
o f SIGN_OFF is to reset th is  var iable to an inocuous val ue . A name table is
main tained by the scheduler , to real ize  the mappin g between process names
and the internal indices used to refer to them .

In terms of scheduling , a centra l  data structure , the delay list , is
maintained , which con tains informa tion about the user processes tha t are to
be scheduled . This list is sorted in chronological order , and , for a g iven
due date , in the order in which the tasks have been suspended . This list
only deals with  suspended tasks for wh ich a schedul ing re quest has been
made.

The flow of time is perceived by an entry TICK , possibly assoc iated wi th a
clock interrupt . The per iod of this clock is assumed to be sufficiently
long , so that no tick is lost.

Green 8 — 4 Sample Problems

1



~~ r------ -~~r0- - - “~~~~ ~wr.
.
~~~

0- - ° - - - 9- ~ -,- ---— -,r - -~~~ -~~~ - -

package SCHEDULER is

MAX_TIME : constant INTEGER a 86400;
type TIME is new INTE GER range 0 .. MAX_TIME;
function CLOCK return TIME ;

LATE REQUEST , ALREADY SCHEDULED , TOO MANY TASKS ,- . INEX I STENT_TASK , TAsK_STILL_ACTIVE , NoT_SIGNED_ON,
- - ALREADY_SIGNED_ON: exception ;

generic (S: STRING)
package TASK_PATTERN is

procedure EXECUTE(WHO : STRING;
- AT TIME : TIME a 0;

THEN _EVER Y : TIME a 0);

- -
procedure EXECUTE(AT TIME : TIME;

THEN _EVER Y : TIME :a 0) ; -
—

procedure DISCONNECT(WHO : STRING) ;
procedure SIGN_OFF ;

end TASK_PATTERN ;
F end SCHEDULER ;

package body SCHEDULER is

—— The task SCHEDULING _TASK is actually the real scheduler

I - task SCHEDULING_TASK is

MAX_TASK: constan t INTEGER :a 63;
type TASK_ INDEX is new INTEGER range 0 .. MAX_TASK;

- subtype TASK_ID is TASK_INDEX range 1 .. TASK_INDEX LAST;

function SEARCH_TASK(WHO : STRING) return TASK_ID;

I entry DISCONNECT(TSK: TASK_ ID);
entry REMOVE (TSK: TASK ID);

- entry SCHEDULE(TSK , CAtLER: TASK_ID; AT_TIME , THEN_EVERY: TIME);
-

entry SIGN ON (NAME : STRING; TSK: out TASK ID);
• entry WA IT (TASK _ ID FI RST .. TASK ID LAST) 1

end SCHED ULIN G_TASK;

- [i

1_I

U
Green 8 — 5 Sample Problems

-
_ _ _ _

I-

L ~~~~~ - ~~ - - -

-0

11

- H

—— The generic package TASK_PATTERN provides the user interfsce—— with the scheduler. Each new instantiation makes a new
- i —— process known to the scheduler , by the call to SIGN_ON -~~~—— done at initialization.

package body TASK_PATTERN is
use SCHEDULING_TASK;

-
ME: TASK_ INDEX ; —— ME is in fac t a constan t—— which receives a value upon—— package initialization.

—— EXECUTE corresponds to a scheduling request—— made for another process.

procedure EXECUTE(WHO : STRING;
AT TIME : TIME;
THEN EVERY : TIME) is

WHOSE_ID: TASK_ID;
begin

if ME = 0 then
raise NOT SIGNED ON;

end i f ;
WHOSE ID :a SEARCH TASK(WBO);
SCHEDULE (WHOSE ID, ME , AT TIM E, THEN EVERY);
if WHOSE ID = ME then

—

WAIT (~E);end if;
end EXECUTE ;

—— This version of EXECUTE also suspends the caller

procedure EXECUTE(AT TIME: TIME;
THEN_EVERY: TIME) is

begin
ifM E a O t h e n

raise NOT SIGNED_ON;
else - -

SCHEDULE(ME, ME , AT_TIM E, THEN_EVERY);
WAIT (ME); ——actually blocks the calling task

end if ;
end EXECUTE ;

—— To remove a scheduler entry
procedure DISCONNECT(WHO: STRING) is

-
~~ begin

SCHEDULING_TASK. DISCONNECT (SEAR CH_TAS K C WHO))
end DISCONNECT;

U
Green 8 — 6 Sample Problems

111
-
~~~-‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-
- ~::~- — --0— — -0— -—-- = ;i- — -~~~~~~~~~



—‘—-0— ~~- —~-~,•—---‘•~~•— 

— - —— ‘co remove the process name from the scheduler ’s table

procedure SIGN_OFF is
- - 

beg in
if ME then

raise NOT_SIGNED_ON;
else

REMOVE(ME);
ME : ~~~;.. end if ;

- - 
end SIGN_OFF;

- .  
begin ——ini tialization of TASK_PATTERN

• SIGN_ON(S, ME);
• end TASK_PATTERN;

—— BODY OF SCHEDULING_TASK

task body SCHEDULING _TASK is
- - type TASK_NAME is access STRING;

type TASK_STATUS is
record

ACTIVE , REQUESTED : BOOLEAN ;
• — START, PERIOD : TIME ;

NEXT, PREVIOUS : TASK_INDEX;
• end record ;

I TIME NOW : TIME : 
~~~;- :  DELAY_LIST: TASK_INDEX := 0;

TIME_TABLE: array (l .. MAX_TASK) of TASK_STATUS;
NAME_TABLE: array (1 .. MAX_TASK) of TASK_NAME ;

procedure LINK (TSK: TASK_ID);
procedure UNLI N K(TSK : TASK_ID) .;

entry TICK;

- for TICK use at —— interrupt address for tick;

—— Find the internal id correspond ing to a Drocess name

function SEARCH_TASK(WHO: STRING) return TASK_ID is
beg in

for I in TASK_ID~ FIRST .. TASK_ID LAST loopi- if NAME_TABLE(I) Ia null
— ii and then NAME_TABLE(I) .a l l = WHO then

return I;
-
~ end i f ;
I end loop;
- raise INEXISTENT_TASK;

end SEARCH TASK;

U
Green 8 — 7 Sample Problems

Ii
- —

- - 0-

- - =~~~~~~~~~ —_ - --•
- j j~~~

_
~~

_
~~~~~~ _



-- —-0---•—; -~~-- 
—-—-0-----— -‘-0 -‘-‘--0 ------0— -0 -‘-0- - — — -0 -0 ‘--0- - 

• 

-‘

function CLOCK return TIME is
begin

return TIME_NOW ; —
end CLOCK;

—— Add a process in the delay list.—— The process must have been already scheduled ,—— and must be blocked . - 

-

I procedure LINK(TSK: TASK ID) is
I: TASK_ID;
THIS: TASK_STATUS renames TIME TABLE (TSK);

begin 4

if DELAY LIST a 0 then
DELAY_LIST : TSK;
THIS.PREVIOUS :a 0;
THIs.NEX’r : 0;

else
I a DELAY LIST;
while TIME TABLE( I )  .START <a THIS.START

and TIME TABLE(I).NEXT 1= 0 loop
I: a TIME_TABLE (I) . NEXT ;

end loop;
if TIME_TABLE(I).START > THIS.START then

THIS.NEXT : I ;
THI S.PREV IOUS := TIME TABLE(I).PREVIOUS;
TIME TABLE ( I) . P REV I OUS :a TSK;

else
THIS.PREVIOUS : I; 

—

THIS.NEXT := TIME TABLE(I).NEXT ;
TIME_TABLE(I).NEX~ : TSK; I -

end if;
end i f ;

end LINK ;

—— remove a process from the delay list

procedure UNLINK(TSK : TASK_ID) is
THIS: TASK_STATUS renames TIME_TABLE (TSK );

begin
if THIS.NEXT /a 0 then

TIME TABLE (THIS.NEXT ) .PREVIOUS :a THIS.PREVIOUS;
end if;~if THIS.PREVIOUS /a 0 then

TIME_TABLE (THIS.PREVIOUS).NEXT :a THIS.NEXT;
THIS.PREVIOUS a 0;

else — — f i r s t  in delay list
DELAY_LIST := THIS.NEXT;

end i f;
THIS.NEXT : 0; - 

I

end UNLINK;

ElGreen 8 — 8 Sample Problems

I— ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __________



-- -~~~~~~~~~~~~~~~~~~~~ 
—‘-‘-,‘••—--~~ 

II
beg in -- body of scheduling_task - 

-

• - loop
declare —— this inner block to catch all exceptions

I: TASK_ID;
beg in

select
• • accept TICK;

TIME NOW : (TIME _NOW + 1) mod MAX_TIME ;
• • loop—— to release all processes due

-— to be awoken now
if DELAY_LIST /= 0

and then
- -  T IME I’ABLE ( DELAY_LIST ) .START a rIME _NOW then

I : DEL1A Y_L IST ;
UN L I N K ( I ) ;
TIME TABLE(I).ACTIVE := TRUE ; —

if TTMC_TAaLE(I).PERIOD > 0
i . and then TIME -rABLE(I).START

+ TIME TABLE (I).PERIOD
• - <a MAX TIME then

TIME ‘TABLE (IT.START :
TIME ‘rABLE(I).STAR’z’

+ TIME TABLE(I) .PERIOD;
TIME_TABLE(IT.REQUESTED :z £RUE ;

else
TIME_TABLE(I) .REQUES’TED : FALSE;

end i f ;
H accept W A I T ( I ) ; — —  ac tua l ly  release process

• —— with task—id I
else ex i t ;

i t end if ;
I end loop;

or —— remov es any previous re quest for P5K
accept DISCON JEC T (T SK :  TASK ID) do

- if TIME TABLE (TSK).REQUE~ TED then
UNLI~iK (TSK);

• end i f ;
H TIME TABLE (TSK).START :a 0;

rI4E TABLE (TsK).PERIOD : 0;
- - TI ME_TABLE(TSK).REQUESTED : FALSE;

end DISCONNECT;
or —— en ter new request for TSK

accept SCHEDULE (TSK, CALLER: TASK_ID;
AT ‘rIME, THEN EVERY: TIME) do

if ~~~ a CALLER then
TIME TABLC(TS K ) .ACTIVE := FALSE;f l end if ;~Ii if AT TIME > 0 then
if AT TIME < TIME_NOW then

raise LATE REQUEST;
II elsif TIME TABLE(TSK).ACTIVE then

raise TASK STILL_ACTIVE ;
elsif TIME TABLE (TSK).REQUESTED then

11 _

H
(~1

G r e e n  8 — 9 Sample Problems

Ii
____________________________________ I



—-0 ~~~~ •••••-0 -

- 
L I -

raise ALREADY_SCHEDULE D;
else •

TIME TABI,E(TSK).REQUESTED := TRUE ;
TIME TABLE (TSK).START :a AT TIME;
TIME TABLE (TSX).PERIOD := T1~EN EVERY ;

end if ; 
Helsif TSK /a CALLER then

raise LATE REQUEST;
end if;
if TIME TABLE (TSK) .REQUESTED then I I -

LINKTTSK);
end if;

end SCHEDULE ;
or H

accept REMOVE (TSK: TASK ID) do
NAME_TABLE (TSK) := nul l ;

end REMOVE ;
or —— en ter new name in name table—— and allocate corresponding task_id

accept SIGN_ON(NAME: STRING; TSK: out TASK_ID) do
f or I in TASK_ID’FIRST .. TASK_ID’LAST loop

if NAME TABLE(I) = null then
NAME_TA SLE (I )  := new TASK_NAME(NAME);
TSK := I;
TIME_TABLE(I) : (FALSE, FALSE , 0, ~~, 0, 0 ) ;
r e tu rn ;

elsif NAME_TABLE(I).all = NAME then
raise ALREADY SIGNED ON;

end i f ;
end loop ;
raise TOO_MANY_TASKS ;

end SIGN_ON;
end select;

exception
when others >

null ;
end ; -~~~

end loop ; j
end SCHEDULING _TASK;

begin —— initialization of SCHEDULER
initiate SCHEDULING_TASK; U

end SCHEDULER;

U

r :~
‘--0

d
Green 8 - 10 Sample Problems 

-- ~~~~::~ - -  ~~~~ -‘-0-~ --- ---~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



-0 - —~-~•~
- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

—-0
-

- —

-- - 0 - - j

~ ji 9. Distributed Parallel Output

-

~~~~~~

9.1 Sample Problem 9

— 
Purpose :

- - An exerc ise to demonstrate the ability of processing parallel events which
need not progress at the same rate .

- - Problem:

This program has encountered a mult iple  addressee message to be output over
- 

a number of asynchronous links.

H Each link is controlled by an individual process which performs all link
related processing. Each process can accept one packet of the message at a

- time and will notify the program when the last packet furnished to it has
- 

been acknowledged by the distant station .

When all. transmissions are complete , the program shall purge the message.

Assumptions:

(1) The message has f ive add ressees , but these can be d i f f e ren t for each
message. 

-

(2) The message is five packets long .

(3) Each packet is 80 bytes long.

(4) The buffer s containing the message are contiguously located.

(5) At initialization , the program shall be furnished the address of the
first buffer , the number of buffers , and the identity of the five

LI links over which the message is to be sent (each link is controlled by
an individual process, named L0..L9).

~ The link identification shall be in the form (Ln, Ln , Ln...) where n
has legal values between B and 9.

1.

Green 9 — 1 Sample Problems 

--0 - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- - 



~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ !~~
‘
~~I? ~~~~~

—-- ~~~~~~~~~~
-
~~

-

‘II
-

(6) An 8 bi t machine (one of today~s typical microprocessors)

(7) The program will be capable of processing up to ten addressees.

(8) There is no queuing delay, i.e. the link—processes are dedicated and
can react immediately.

Remark: One can assume that the individual link processes are resident in
ded icated microprocessors and that the coor d ination is done in another
processor to which they are connected by a bus.

Guidel ines:

None . -

-J

‘ii

ii

I]
Green 9 — 2 Sample Problems

II
______ —~~~~~~ --

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

9.2 Green Solution to Problem 9

In order to achieve the desired degree of parallelism, it is necessary tha t
a message transmission can be started before previous ones have been

H completed. In addition , the links should not be compelled to transmit
contiguous packets of the same message: the transmission of packets of
d i f f e r en t messages over a given link can be skewed (reassembly is assumed
to take place at the other end).

To these ends, a task , MESSAGE , repeatedly accepts transmission requests.
Since there is a maximum number of buffers in the system, and a f ixed

• ~~, number of addressees per message , there is a max imum number of message
transmissions that can be requested at a given time. For each message to

-
. be tran smitted over a par ticular l ink , a member of the task family

PACKETIZER is initiated : it will successively forward all the packets of
the message on the appropriate link.

• Each link is driven by a LINK_CONTROLLER which repeatedly accepts a packet
and sends it. It can also receive a distant acknowledgement which
identifies the message received . This causes an acknowledgement to be

- - forwarded to MESSAGE. When MESSAGE has received five acks for the same
-

- - message, it can release the.corresponding buffers.

For the sake of simplicity, we have adopted a fixed message size. Messages
are identified by the index of their first buffer , ra ther than by a complex
sequence number. Each buffer is guarded by an AVAILABLE flag. Resetting
the flag has the effect of releasing the buffer , thus purging its contents.

~ I

Li
-

— U

Green 9 - 3 Sample Problems

________________ - - . • - . ~~~
-- - -

~~
- - -

~
- • - —- -

‘—“—--0 -—’- —-0— -- --0 ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _. t,~~~~~~~
- - -~~ — -

~

package MESSAGE_TRANSMISSION is

N_LINKS : constant INTEGER : 10;
PKT_SIZE : constant INTEGER : 80;
MSG_SIZE : constant INTEGER := 5;
N_BUFFERS : constant INTEGER := 100;

type LINK is new INTEGER range B .. N_LINKS—i;
type DEST_SET is array (1 .. 5) of LINK; - - -

-

type PACKET is ar ray (1 .. PKT SIZE) of CHARACTER; I -

-
subtype MSG_ID is INTEGER range 1 .. N_BUFFERS; - ‘

BUFFERS : array (MSG_ID’FIRST .. MSG_ID’LAST) of PACKET;
AVAILABLE : array (MSG_ID’FIRST .. MSG_ID LAST) of BOOLEAN

:= (MSG_ID FIRST .. MSG_ID’LAST a> TRUE);

task MESSAGE is -
-

— entry SEND (MSG : MSG_ID; TO : DEST_SET);
entry ACK (MSG : MSG_ID; FROM : LINK);

end ;
end ;

package body MESSAGE _TRANSMISSION is

task PACKETIZER (1 .. 100) is
entry SEND (MSG : MSG_ID; TO : LINK);

end ;

task LINK_CONTROLLER (LINK FIRST .. LINK LAST) is
entry SEND (PKT , MSG : MSG_ID);
entry ACK (MSG : MSG_ID);

end ;
-

Li

task body PACKETIZER is
M : MSG_ID;
DEST : LINK ;

beg in
accept SEND (MSG : MSG_ID; TO : LINK) do

M : MSG ;
DEST : TO;

end SEND;

for I in 1 .. MSG SI ZE loop
LINK_CONTROLLER(DEST) .SEND(M+1 1, M);

end loop ;
end PACKET IZER;

- U

U
Green 9 - 4 Sample Problems

~~ i _ 0- 0- - - - - -~~ - ~~~~~~~- --—~~~~~~~~~~~- - ~~~~~~-

- -0- -— -0-.- ’- ~ -- -—~~~~~~- —0- -~~~~~~~~~
—0-- --- - --- -0

task body LINK _CONTROLLER is
-- begin

loop
selec t

accept SEND (PKT, MSG : MSG_ID) do—— transmit packet over the link
end SEND ;

or accept ACK (MSG : MSG ID) do
MESSAGE .ACK (MSG, LTNK_CONTROLLER INDEX);

end ACK;
end select;

end loop;
end LINK _CONTROLLER ;

• • task body MESSAGE is
ACK_COUNT : array (MSG_ID~FIRST .. MSG_ID ’LAST) of INTEGER

:a (MS G_ ID’FIRST .. MSG_ID LAST > 0);
- begin

loop
select

accept SEND (MSG : MSG_ID; TO : DEST_SET) do
- - for I in 1 .. MSG_SIZE loop

initiate PACKET IZER((MSG _ l)* MSG _SIZE + I) ;
• PACKETIZER((MSG—j)-MSG_SIZE + I) . S E N D (M S G , P 0 (I)) ;

end loop ;
end SEND;

or accept ACK (MSG : MSG ID; FROM : LINK) do
ACK COUNT(MSG) :a A C K COUNT (M S G) + 1;
if ~CK COUNT(MSG) = MSG SIZE then

ACK COUNT (MSG) : 0;
for I in 1 .. MSG SIZE loop

AVAILABLE (MSG + I - 1) := TRUE ;
end loop;

end i f ;
end ACK;

end select;
end loop ;

end MESSAGE ;

beg in -- body of MESSAGE TRANSMISSION
initiate MESSAGE , LINK CONTROLLER (LINK’FIRST .. LINK’LAST);

end MESSAGE_TRANSMISSION ;

U

-

Green 9 — 5 Sample Problems

ii
-0 --0- - 0 — - ---------—-__

~~~~~-- - --- -  --‘- --0 - ‘- -0- - - - -0 - - -

Is. S — — “ . -  JZ ._~ ~~~~ _._~ 
— —0- 0-—



--0 --0 - -~~~~~ -0

- 
( .

~~~~~~~
-
~~~~~~ —— —0--—- - - t

10. Unpacking and Conversion of Data

10.1 Sample Problem 10

- -  
Purpose :

An exerc ise to process a packed binary message header .

L Problem:

- .  A packed binary message packet has been received and placed in a buffer by
the line handler . This program ’s task is to determine the classification ,
precedence and destination of the message packet. These data shall then be
reor dered and placed in a queue entry for later processing by another
program .

Assumptions:

I I  1 An 8 bit machine (one of today ’s typical microprocessors)

2 The buffer is assigned from a buffer pool. The exact location of the
buffer is supplied to the program when it is invoked .

3 The packet may be up to 256 bytes long.

4 The packet—format is: 
- -

byte 0 — bits 0—2 : classification 0 top—secret
H 1 secret

2 confidential
3 unclass

U 

all others unknown

- 
- 

bits 3—4 : precedence 0 routine
- 1 pr iori ty

2 flash
- 

- 

H 
‘
3 unknown

bits 5—7 and byte 1 — bits 0— 7 : addressee

byte 2 — bits 0—7 : pac ket length in bytes

[I
Green 10 — 1 Sample Problems

: 1 1



- — -•
~~

__-__
1~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - - — -
- - - ~~

-— _ _ ~~_ _ .T 1: ~~~~~~~~~~~~~~~

- I.

5 Queue entry format

byte 0 —classification ascii characters (I)
T — top—secret
S — secret
C — confiden tial
U— unclassified
X — unknown

byte 1 —precedence F — flash I - I
P — pr ior i ty
R — rout ine
X — unknown

byte 2 and 3 — Addressee (right justified , not converted)

byte 4 —packet length

byte 5 —packet number

6 Queue entries are obtained from a common pool by calling the routine
GET_A_QUEUE..

7 To simplify matters , assume an infinite supply of queue entri~’s.

8 A packet is passed to a program prior to this routine~s termination.

Guidelines

None.

10.2 Green Solution to Problem 10

The solution uses two reco rd type declarations, PACKET_FORMAT and
QE_FORMAT, with adequate representation specifications. The unpacking and
conversion of addressee and packet length are just a matter of component
assignment. The conversions of classification and precedence must utilize a
case statement, as the representations for the corresponding enumeration
types are not ordered in the same way.

1

~

j

£1
-  Green 10 — 2 Sample Problems

A ~~~ . -- — ~~~~~~~~~ 
- ————-—— - —---——-—-- — ----



U ---—- 

—---0 -- - ---0-

‘ U  . 
-

restricted (LINE_HANDLER , QUEUE_HANDLER)
task PACKET_TO_QUEUE is

BYT E : constant INTEGER :a 8;
MAX_PACKET : constant INTEGER ga  255;

-

~~~ 

type PACKET NUMBER is new INTEGER range 0 .. MAX PACKET;

package PACKET_TYPE is
- - MAX_LENGTH : constant INTEGER : 256;

- . type CLASSIFICATION is
- . (TOP_SECRET, SECRET, CONFIDEN TIAL , UNCLASSIFIED,

UNX NOWN_4 , UN KNOWN_5 • UNKNOWN_6, UNKNOWN_7);
- ‘

type PRECEDENCE is
(ROUTINE, PRIORITY, FLASH, UNKNOWN);

type ADDRESS is new INTEGER range 0 .. 1023;
-

type LENGTH is new INTEGER range 0 .. MAX_LENGTH ;

type PACKET _FORMAT is
record

CLASS : CLASSIFICATION ;
PREC : PRECEDENCE;

- DEST : ADDRESS ;
LGTH : LENGTH;

end recor d;
-

‘ for CLASSIFICATION use
• - (TOP SECRET -> 0 ,
H SECRET => 1,

CONFIDENTIAL a> 2,
UNCLASSIFIED = 3,
UNKNOWN 4 > 4,
UNKN OWN 5 a) 5~UNKNO WN 6 — > 6 ,
UNKNOWN_7 —> 7) ;

for PRECEDENCE use
(ROUTINE > 0 ,

- - PRIORITY a> 1,
- FLASH a> 2,

- UNKN OWN a> 3);

for PACKET FORMAT use
record

CLASS at B BYTE range 0 .. 2;

— PREC at 0’BYTE range 3 .. 4;
Ii DEST at BWBYTE range 5 .. 15;—— note that bit positions may exceed word size

LGTH at 2KBYTE range 0 .. 7;

end record;

end PACKET TYPE;

II
Green 10 — 3 Sample Problems

ii
L - —~~~~~~~~~

-— —- .
~~~~



- 

L

L i :
package QUEUE_ENTR Y_~ZYPE istype CLASSIFICATION is new CHARACTER;

type PRECEDENCE is new CHARACTER;
subtype ADDRESS is PACKET TYPE.ADDRESS ;
subtype LENGTH is PACKET_TYPE.LENGTH ; -

type QE FORMAT is I I
record H

CLASS : CLASSIFICATION ;
PREC : PRECEDENCE ;
DEST : ADDRESS;
LGTH : LENGTH ; - -

NBR : PACKET _NUMBER; 
-end recor d;

for QE_FORMAT use - -
record

CLASS at 0’BYTE range 0 .. 7; - -

PREC at l~ BYTE r ange 0 .. 7; —

DEST at 2MBYTE range 0 .. 15; L

LGTH at 4M BY TE range 0 •. 7;
NBR at 5’~BYTE range 0 .. 7;

end recor d; I

end QUEUE _ENTRY _TYPE;

PKT INDEX : PACKET NUMBE R ;
CUR PKT : PACKET TYPE.PACKET FORMAT;
CURThE : QUEUE_~NTRY_TYPE.Q~_FORMAT ;

beg in
loop -

declare
use PACKET_TYPE , QUEUE _ENTRY_TYPE ;

begin -

LINE HANDLER.GET A PACKET (PKT INDEX);
CUR PKT := LINE HANDLER.BUFFER POOL(PKT_INDEX );
QUEUE_HANDLER. GET_A_QUEUE (C UR_QE )
case CUR PKT.CLASS of

when ~OP SECRET a> CUR QE.CLASS : ‘T” ;
when SECRET => CUR QE.Cr~ASS := ‘S ’ ;
when CONFIDENTIAL => CUR_QE.ICL.ASS :a “C ’ ; - L 

-

when UNCLASSIFIED => CUR QE .CLASS : “U ” ;
when others a> CUR QE.CLASS a “X” ;

end case ;
case CUR PKT.PREC of

when ROUTINE a> CUR_QE.PREC : “R ” ;
when PRIORITY a> CUR _QE.PREC :a “ P” ;
when FLASH a> CUR_QE .PREC :a •~F” ;
when others a> CUR_QE.PREC :— “X’s ;

end case;
CUR QE.DEST :* CUR PKT.DEST;
CUR QE.LGTH a CUR PKT.LGTH;
CUR QE .NBR g a  PKT~ INDEX ; •

QUEUE_HANDLER.SEND QUEUE (CUR_QE ) ;
end ;

• end loop;
end PACKET_TO_QUEUE;

Green 10 — 4 Sample Problem~

‘II-

‘
- -0 - - -0 - - - - - - - = ——- -- - - -— --.— - - — - -—- - - -0—-0 --0 —-0 -—— - - . - — -  

-0- —
~~~~~ I


