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SUMMARY

A new separation criterion for two-dimensional unsteady boundary

layers is proposed here. This criterion is derived by analogy, from its

counterpart for steady, three-dimensional boundary layers. Analogous

limiting streamlines for the unsteady, two-dimensional case are first de-

fined, and an envelope of these streamlines is used to signify unsteady

separation. To demonstrate this procedure, two previously studied prob-

lems are recalculated here. These are the unsteady responses to (1) a

sudden change in velocity in Howarth's problem, and (2) an impulsively- %
started circular cylinder. Our conclusion regarding separation for the |
cylinder problem disagrees with that of Telionis and Tsahalis based on the

singularity criterion, but appears to be consistent with the prediction

of Proudman and Johnson. Finally, we propose a three-dimensional, umn-

steady separation criterion on the basis of repeated applications of either

the steady, three-dimensional separation criterion at successive times or

the unsteady, two-dimensional separation criterion at fixed coordinate

planes.
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1. UNSTEADY SEPARATION IN TWO DIMENSIONS

1.1. Introduction

For steady, two-dimensional boundary layers, the separation criter-

ion first conceived by Prandtl is defined by the vanishing of skin friction.

This definition is mathematically simple and precise, and its application

is convenient. Associated with this idea of separation, there have also

been a number of common notions or symptoms, each of which characterizes a

certain aspect of the whole phenomenon. These include:

1.

Singularity - separation is said to reflect mathematically a
singularity of the boundary layer solution.

Reverse flow - separation is said to signify the onset of
flow reversal.

Inaccessibility - separation determines a separated region
which is inaccessible to the upstream flow.

Boundary layer thickening - separation is marked by a rapid
growth of the boundary layer thickness.

Breakdown of boundary layer assumptions - separation means
that the basic boundary layer assumptions become invalid.

‘Computation difficulties - convergence difficulty and increase

of the number of iterations imply separation.

Some of these factors, individually or in combination, have become

synonymous with separation and have even been taken as alternative defini-

tions. Indeed, it is interesting to note that these charactristics almost

imply one another in two-dimensional steady flow.
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In the present study, ‘however, we were concerned to know whether
these ideas are valid for the two-dimensional, unsteady case. We con-
cluded that some of these are valid while some are not, and that new
ones are needed. |

Items 4 thru 6, for example, are by and large still valid, but are
not suitable separation criteria. The breakdown of boundary layer assump-
tions is only a general qualitative statement, not a quantitative,
implementable criterion. The rapid growth of boundary layer thickness and
the computational difficulties are imprecise and unreliable, and computa-
tional difficulties can be caused for reasons other than separation.

Rott (1956) first pointed out that zero skin-friction does not
necessarily mean separation for moving walls. Moore (1958) recognized the
same, and proposed what lis now known as the MRS (after Moore, Rott and
Sears) criterion. A similar conclusion was also reached by Stewartson
(1960), who went on to distinguish between the term ''separation' and
"breakdown,'’ or 'breakaway.' ''Separation' is made to refer to the zero-
skin-friction point at the body, while 'breakdown' is used to signify
other symptoms usually related to separation. Further investigations on
unsteady separation were undertaken more recently by Sears and Telionis
(1971, 1975), who attempted to generalize mathematically the validity of
the Goldstein singularity and the MRS criterion for general unsteady
boundary layers. Telionis and Tsahalis (1974a, b) presented calculated
examples in support of the Goldstein singularity criterion, while Williams
and Johnson (1974a, b) did the same for the MRS criterion. As more will be

discussed later, items 1 through 3 no longer hold for the unsteady case.
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In this work, we shall first briefly review the work of Moore, and
of Sears and Telionis (Section 1) and then propose a new unsteady separa-
tion criterion (Section 2) based on an analogy to the envelope criterion
for the steady, three-dimensional case. Next, calculated examples are
presented in Section 3. Finally, the envelope criterion for the steady,
three-dimensional case is applied at successive instants of time in order
to derive a three-dimensional unsteady separation criterion. The same
objective can be realized by applying repeatedly the just-mentioned two-
dimensional unsteady separation criterion. Thus, the resulting unsteady,
three-dimensional separation criterion may be looked upon as a unified
separation criterion including as special c.ases those for two-dimensional,
unsteady separation and three-dimensional, steady separation.

A word of caution is needed regarding the coordinate notations. In
Section 1, because we shall for the most part review the literature on
the subject, it is desirable to retain the usual convention of denoting
the coordinates parallel and normal to the body, x and y, where u is the
velocity along the x-direction. In subsequent sections, z is used to de-
note the normal direction in accordance with the convention for three-
dimensional space, while other changes are introduced as they may arise.
Time is designated "t" throughout this work.

1.2. MRS Criterion and Goldstein Singularity
In a classical paper on unsteady separation, Moore (1958) defined
the separation for a steady moving-wall problem by

u=0
au“o}aty>0. (1a,b)
Wy




Here separation is marked by the simultaneous vanishing of velocity and
shear at some point above the wall. In contrast, these two conditions

are satisfied at a fixed wall for the usual two-dimensional steady case.
Moore illustrated the flow patterns as well as the velocity profiles as

shown in figure 1.
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Figure 1. MRS separation model for a moving wall.
(a) wall moving downstream, (b) wall
moving upstream.
Moore also suggested that equations (la,b) may be applied to a quasi-
steady boundary layer in a coordinate moving with the separation point,
and that Goldstein's (1948, Stewartson 1958) singularity for a steady flow

may also exist in the unsteady case.

‘Sears and Telionis (1971, 1975) pursued further the unsteady

separation question and attempted to generalize mathematically the validity
of Goldstein's singularity and the MRS criteria for general unsteady bound-
ary layers. Following Landau's (1959) approach to the Goldstein singularity

problem, Sears and Telionis expanded near the center of separation (xoyo)

(Figure 2).
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Figure 2. Goldstein's singularity.

~ 98y W,t)
ulx,y,t) = u,(,t) + 38 v t ., Tk —'1'5-)'—— x, )+ ..., (2

veey,t) = B0t g y,e) + .., (3)
: 2 X, X
where
b=y -y, 4)
u,(¥,t) = ulx,,y,t). (5)

Except that Yor Yyo B, and 81 are allowed to be time dependent here, these
expansions are otherwise identical to Landau's. Sears and Telionis idex;ti-
fied

B(Y,t) = AE) [uy(v,t) - U (0)] , 6)

where A(t), uo(v,t) remain undetermined and
dxc>
Us(t) = b N

i.e., Us is defined as the velocity of the center of separation. By




insisting that v and -g% are non-singular near (xo,yo) they obtained

u (V=0,t) = U_(t) (8)
and
auo(o,t) -

a3 T T ©)

Equation (8) states that the center of separation is a moving stagnation
point, and equation (9) says that the shear vanishes at (xo,yo). Thus
equations (2) through _(7) are considered to describe an analysis of the
unsteady Goldstein singularity, and equations (8), (9) to establish the
MRS criterion for general unsteady boundary layers.

The preceding analysis is not free from uncertainty. First, it is
obviously incomplete and hence not very convincing to say that the Goldstein
singularity or the MRS criterion has been demonstrated for a general unsteady
case. Second, the assumption that v and -g% are non-singular near (xo,yo) --
the basis for equations (8) and (9) -- seems to be arbitrary and no justifi-
cation has been given, except that it leads immediately to the desired
conclusions. This assumption does not appear to be consistent with its con-
verse; i.e., v and -g—;% are singular at x = Xy the basis for the expansion of
equations (2) and (3), unless one argues that v and %% are singular along
the line x = Xy excluding the particular point (xo,yo) and its neighborhood
in the middle.

The concept of MRS criterion certainly has an intuitive appeal in a
steady moving-wall problem, and its validity there can be readily accepted.
It is also clear that such steady flow over a moving-wall becomes unsteady

to an observer fixed with the wall or the separation point. However, it




remains to be demonstrated that general unsteady boundary layers can be
looked upon in the same light and that general unsteady separation is de-
termined by the same MRS criterion in a coordinate s&stem moving with
separation. Although solutions due to Williams and Johnson (1974a,b) and
Williams (1977) provided support to the MRS criterion, their special
assumptions regarding the relation between x and t virtually reduce un-
steady problems to steady ones for which, as noted above, there is little
doubt respecting its validity. 4 i
Laf:er papers by Telionis and Tsahalis (1974a,b) presented calculated
_ results, mostly for the normal velocity, and these were interpreted to
exhibit the features of Goldstein singularity. However, a recent calcu-
lation of Cebeci (1978) has contradicted their claims in the circular
cylinder problem; and similar disagreements are also noted in‘this work
(Section 3.3).

Aside from considerations of validity, neither the MRS criterion nor
the Goldstein singularity criterion is convenient to apply. In the case
of the MRS criterion, there is the need to defiﬁe a coordinate system
moving with the velocity at separation which, in turn, is not known until
the location of separation is determined. Thus, iteration is necessary.
In the case of the singularity criterion also there is no simple way to
know where the Goldstein singularity is located. For numerical solutions, :
the separation is still decided by the usual symptoms such as rapid change
of the normal component of velocity, boundary layer thicknesses, skin
friction, or the increase of the mumber of iterations, etc., while the
criterion will be used only afterwards to help interpret the results.




However, deciding whether particular results really exhibit typical square-
root singularity can be rather uncertain.

Both the unsteady MRS criterion and the unsteady Goldstein singularity
were extended from their counterparts for conventional, two-dimensional,
steady flows. Their extension to three-dimensional case remains to be
demonstrated. In contrast, the unsteady, twq:dipensianal envelope criterion
proposea'in Section 2 or the aﬁalpgous three-dimensional steady separation
criterion can be ré;dily generalized to yield a three-dimensional, unsteady

separation criterion (see Section 4).




2. ANALOGY APPROACH AND THE PROPOSED
SEPARATION CRITERION

2.1 Unsteady Analogy

The analogy approach for the two-dimensional unsteady boundary
layer is based on the observation that the relevant system of governing
equations embodies a mathematical structure similar to that for the
steady, three-dimensional boundary layer. The latter problem has been
extensively investigated in recent years by the author (Wang 1970, 1972,
1974, 1975a, 1976), and results have revealed new features of funda-
mental significance. By analogy, what has been learned from these in-
vestigations can be applied to the two-dimensional, unsteady case.
Various aspects of such an analogy were also previously noted by a number
of authors, including Stewartson (1960, 1963), Hall (1968), Dwyer (1969),
Krause etc. (1969) and Patel and Nash (1971, 1976).

Based on the unsteady analogy, Wang (1975b) extended the concept
of the zone of dependence and influence for the steady, three-dimensional
case (Warg, 1971) to the unsteady, two-dimensional case. The dependence
rule is especialiy importént with respect to the finite-difference method
of solution because it serves as a criterion for determining the conver-
gence and stability of mumerical solutions. Wang (1975b) further pointed
out (1) that the reversal of the crossflow over an inclined body (a
typical, steady three-dimensional problem) can be calculated as long as
the dependence is satisfied, and that (2) neither the vanishing of skin

friction nor the reversal of the crossflow necessarily signifies




separation. By analogy, reversed flow in the two-dimensional unsteady
case can also be calculated after passing through the zero skin-friction
point so long as the corresponding dependence rule is satisfied. These
conclusions agree both with the MRS criterion regarding that the vanishing
of skin friction does not mean separation, and with the work of Telionis
and Tsahalis (1974a,b) and Phillips and Ackerberg (1973) regarding the
”Ea..'léulab'ility of unsteady reversed flow; however, our conclusions were
“reached from a different viewpoint. In the present investigation we applied

the unsteady analogy to the questlon of separation.

2.2. Formal Reduction of Equations

We could start from the most general, steady, three-dimensional
.boundary layer equations to demonstrate their reduction to those for the
two-dimensional, unsteady case. However, since we planned to employ our
existing computing codes originally developed for the steady, three-

dimensional case to calculate examples for the present two-dimensional,

unsteady case (Section 3), we chose to start from the equations written

for a body of revolution (figure 3). However, this imposes no restriction

L, U

1w
1 x
Vo /( ; \L

Figure 3. Flow over an ellipsoid of revolution,




on the analogy discussed here, because, as we shall point out, the same
set of unsteady equations will result by the virtue of the analogy trans-

formation, equation 16.

ﬁwmdimumt.(!im!)muuofu. 8, z, where u and
9 are parallel to the body surface and z is normal to the body surface;
hu,hemmmmmmm;uu.v,wmth

velocities. Reversal of the v-velocity is allowed in our computing codes.

The relevant equations are:

au‘_vhl"h- a‘ s 3 ’azu
R YR YR CVERE Ciw o

- zv
sk v B ek e 3

with the boundary conditions:
,u=v=w=0 atz-+0>
u=U, v=V, at z + =,
where U and V are the corresponding outer-edge velocities.

The pressure relations are given by

oh

% U U v 0

= [ + V - ’

RZ E,;’a'u 5939 Enﬁeau
oh

- . APREORS: | (]

= U — o+ UV
598 h'_uau hy36 E‘E‘E

(10a)

(10b)

(10c)

(11a)

(12a)

12b)




The limiting streamlines are defined by

av)

hgdt t Mzao * (32 geg W2F -z it e (13)
h du ), _. + (o0 PSR sy

H z=0 (a—z- i fu

where Cso and Cg, are the skin-friction coefficients along the 8- and
u- directions. They are defined by

= (¥
43 Cfo (\az) zZ+0, (14a)
/R ocg, = (g%)-”o’ (14b)

where R is the Reynolds number.

The two components of displacement thickness are

By = v / (1-v/\V)dz, (15a)
U=+ o

A, = U / (1-u/U)dz . (15b)
ulevt J

To obtain the formal unsteady analogy, we let
B %y W% Xy

g2 = %, hu-» 1,
he" hx(x).
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Z,W Z,w
]/e,v X,V
=L, U Z‘t, u=l

Figure 4. Coordinate transformation.

Then equation 10(a) vanishes identically, and equations 10(b,c) become

2

Biv it sul o » o KR . (17a)

RUVEE'VE " AR’ oF

}'&‘5’? + % = 0. A7)
The boundary conditions (11a,b) become

v=w=0 at z = 0, '(183)

v=YV at z + =, (18b)
The pressure relation (12a) vanishes, equation 12(b) becomes

] };ag; - v,i‘,’; : 19)
The limiting streamline equation (13) is reduced to

hdx oy -

T A (5;) zm0 % (20)
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where the definition of skin-friction e follows from equation 14(a,b),
Ceo is redesignated as Cg» and £ vanishes. Similarly the displacement

thickness Au vanishes, and By is rewritten as

A= f ?I-V/V)dz. (21)
o v

In the time coordinate, there is, of course, no flow velocity to
speak of. Formal analogy is achieved by imposing u = 1 throughout the
whole flow field. A uniform flow component along a particular dimension
does not affect the rest of flow and, hence, is effectively the same as
no flow component at all along that direction. Also noteworthy is that
the condition u = 1 is applied even at z = o, although this seems to be
incompatible with the no-slip condition in equation 1i(a). However, our
rationalization here is that the uniform flow is only an imaginary one
to achieve formal analogy, and, hence, relaxing the no-slip condition is
of no consequence. On the other hand, insistence on a no-slip conditior
would have introduced a vortex sheet at the wall, making uniform flow as
conceived impossible.

Next, equations 10 and 12 differ from those for the most general
three-dimensional bouﬁdary layer equations only in terms containing
3h,/36. Since hu is taken to be 1 in the analogy transformation, those
terms would have disappeared anyway. Hence our use of equations 10(a,b,c)
as the starting point of discussion causes no loss of generality.

It is noteworthy that implicit in the no-slip condition (18a), v = o
at z = 0, the coordinate system is fixed with the body. Also among the
preceding reductions of equations, the reduction from equation (13) to
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equation (20) is of particular interest in the present work because it
continues the concept of the limiting streamlines for which the pattern
forms the basis of determining separation.

Equations 17 through 21 are all written m nondimensional forms:
t is non-dimensionalized with a/V_; a is a typical length, V., the

A I s —" 5O

velocity at infinite; x is non-dimensionalized with a, v with Vo, z with
: a/¥R , w with Vo/vR , p with PuVeo? where R(=Va/v) is the Reynolds number,
‘B v the kinematic viscosity, P_ the density at infinite. All these

; variables are thus in the physical forms, and no transformed variable is used.

2.3 Proposed Unsteady Separation Criterion j
2.3.1. Steady, three-dimensional separation
Separation of steady, three-dimensional flows has been discussed

recently by Wang (1976) in some length. Here only a brief recapitulation
* is given to provide a background for introducing our proposed unsteady

separation criterion.
For steady, three-dimensional flows, the separation line on a body
surface can be readily identified from a surface-flow visualization ex-

periment. In such flow photographs, the limiting streamlines are made
Clearly visible. As these limiting streamlines approach a separation line,
they turn tangentially to merge with the latter. The separation line

obtained in this way has the appearance of an envelope for the limiting

streamlines (figure 5) . In recent years, mmerical solutions of full
three-dimensional boundary layer equations have actually calculated the
limiting streamlines according ~1:0 equation (13), and the formation of an
envelope has been theoretically confirmed (for example, Wang, 1974, 1975a).

e
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(a) (®)

Open separation Closed separation

Figure 5. Three-dimensional, steady separation,

(a) Open separation.
(b) Closed separation.

Separation on a body surface can be classified into an open type
(figure 5a) and a closed type (figure Sb). Conventional concepts of
three-dimensional separation fall into the closed type. An open separation
is a new concept (Wang 1972, 1974, 1976). By an open separation is meant
that the separation line is not closed in the front 'seside surface and
does not originate or terminate at singular points in the sense that both
skin-friction components vanish. The limiting streamlines on both sides
of the separation line originate from the same front attachment point; i.e.,
the separated region is accessible to upstream flow. In contrast, for a
closed separation, the separation line is closed around the body, passing
through the singular points of the limiting streamlines so that the limiting
streamlines on two sides of the separation line originate from two different
attachment points.

There is no surface flow across separation line, open or closed
(similarly for the separation surface above the wall). In other words,
the skin-friction component normal to the separation line vanishes. Along
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the separation line, the limiting flow is therefore confined to the plane
normal to the body, and tends to lift-off as the word ''separation'' implies.
It may be asked at this point why the vanishing of normal skin
friction camnot be taken as a definition of separation analogous to
Prandtl's zero-wall-shear criterion for two-dimensional flows. The answer
is that actual determination of separation in accordance with this defini-
tion (i.e. vanishing of normal skin friction) is rather difficult, if not
impossible, because the separation line and its normal direction are not
known a priori. The vanishing of normal skin friction seems to be more a
consequence or symptom of the separation phenomenon, instead of a con-
veniently implementable criterion. Its relation to Prandtl's zero-wall-
shear criterion is also shallow because the simplicity, convenience and

some of the immediate consequences of Prandtl's criterion are missing.

2.3.2. Usteady two-dimensional separation

In analogy with equation 13, equation 20
DEx . - fay %5
dt 2Z/)z+0 """
may determine a family of limiting streamlines in the x,t-plane for the
unsteady, two-dimensional case, and these streamlines may also form an

< . s ov s
envelope (figure 6). The skin friction /R Ce = (-5-2-) z+o 352 function
of x,t must be first obtained from the complete boundary layer equations
17(a) and (b). Az is taken as a constant whose actual value has the same
effects as the length scales in an x,t-diagram, but it does not change
the physics of the problem. For convenience, Az may be set equal to 1.




A ' (a) " | (b)

Open separation Closed separation
line line

f
=t =t

Z\
/; Zero - c, line f Zero c, line

Figure 6. Two-dimensional unsteady separation,
(a) Open separation.
(b) Closed separation.

At each point (x,t), an arrow is drawn based on the skin-friction
value to represent the local direction so that the lines drawn parallel
to these arrows represents the analogous limiting streamlines. As these
lines cross the zero-skin-friction line, they turn downward, posing a
question as to whether an envelope to these limiting streamlines will be
formed.

It is the author's contention that such an envelope in the x,t-plane
may be taken as an indication of unsteady separation. Furthermore, un-
steady, two-dimensional separation may also be classified into an open
type (figure 6a) and a closed type (figure 6b). An unsteady open separa-
tion means that the separation line does not divide the x,t-plane into
two unconnected regions. Therefore, it can be approached on both sides
hy limiting streamlines originating from the front body at earlier times.

Separation does not occur at every instant of time. The unsteady growth

s
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of an impulsively-started motion from rest provides an example of open
separation, because at early times, the flow is inviscid and there is no
separation to speak of. Separation occurs only over the rear side at
large times. In contrast, an unsteady closed type of separation means
tﬁat separation occurs at every instant of time, and the separation line
divides the x,t-plane into two unconnected regions approached on two sides

by limiting streamlines not originating from the same side in the x,t-plane.

According to the MRS criterion, unsteady separation can no longer be
characterized by the wall shear. Instead, it must be determined by the
shear somewhere above the wall. While we agree that the zero-skin-
friction does not imply unsteady separation, it does not follow that
unsteady separation can not be characterized by the skin friction. It
appears to us that the question really hinges on what information about
the skin friction one chooses to use, the vanishing of local cg or the limit-
ing streamline pattern. -In our study, we chose the streamline pattern to
determine separation; and this streamline pattern depends, in turn, on
the skin friction distribution cf(x,t) as a function of x and t.

The right hand side of equation 20, (g_\zr)z-»oAz’ represents a limit-
ing velocity. At first glance, it may be thought that equation 20
determines a path line, but this is not so because the limiting velocity
is determined by Eulerian formulation rather than.by following a particular
fluid particle. Equation 20 actually defines lines the direction of which
in the x,t-plane coincides with the limiting velocity (z-+o) at that
particular time and space. In this sense, they are more appropriately
called streamlines. However, since t is not a space coordinate, they are

not the streamlines as usually understood.
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3. CALCULATED EXAMPLES

To demonstrate the proposed separation criterion, two problems
previously studied by Telionis and Tsahalis (1974a,b) are reconsidered
here. The first is concerned with the unsteady response to an impulsive
change of Howarth's linear outer-flow; the second deals with the boundary
layer growth over a circular cylinder impulsively started from rest. In
either case, the sudden change of the outer velocity immediately generates
a vortex sheet on the body due to the no-slip boundary condition. The
subsequent diffusion of such a vortex sheet in addition to convective flow
is the central physical process in these problems, which are intended to

demonstrate respectively closed and open separations.
3.1. Method of Calculation

Our computing programs previously developed for the steady, three-
dimensional boundary layers were modified for the present unsteady calcu-
lations, and two finite-difference schemes (Wang 1975b) were used. For
a fixed time t, scheme "a" (figure 7a) is first called for the non-reversed

flow region; then scheme 'b" (figure 7b) is called for the reversed flow

X
A

(a) x ®

o 1
L 3
4
3
J t iy
1 2 1

Figure 7. Computation meshes.
(@) Scheme a. (b) Scheme b.

©

(c) Loss of points as t advances,




region. In either scheme, point 4 is the unknown point to be determined
from known points 1, 2, 3, and the unsteady rule of dependence zone is ful-
filled at every point (x,t). Because of lack of initial data, employment
of the zig-zag scheme (figure 7b) necessitates, in general, the loss of
one x-station for each t-constant line (figure 7c). This means that small
Ax and large At must be used. Otherwise the calculable range in both the
x- and t-direction would be significantly curtailed and less reversed flow
would be determined.

Actually scheme 'b'' is applicable to both reversed and non-reversed
flow regions, but scheme "a'" has the advantages of simplicity while not
losing a space station as in scheme 'b" when no reversed flow is involved
in a whole t-constant line. Hence, if these two schemes are used in
combination, the range of calculation can be extended beyond what would
be the case if scheme 'b' alone were used throughout the whole calculation.
Computation proceeds first along the space coordinate from the leading-edge

or the front stagnation point downstream, then advances in time.
3.2 Impulsive Change of Howarth's Problem

To study steady separation, Howarth (1938) considered the boundary
layer with an outer velocity V = 1-ax where a is a constant. Our present
objective is to study the unsteady response of such a boundary layer

when V suddenly changes from V1 to V2 (Telionis and Tsahalis, 1974a) where

V; = l-ax, (22a)

v2 = 1-azx . (22b)

Rt o o T .
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a, shall be chosen to be greater than a; so that the separation point
corresponding to V2 will be upstream of the separation point corresponding
to Vl. This is due to the fact that the current initial-value finite-
difference method of solution can only handle the case when separation
moves upstream.

Furthermore, when AV = V2 - V1 is small compared to Vi and V2
(i.e., small change), the boundary layer response will be slow in reaching
the final steady-state. This consideration tends to suggest that the
present problem may not be a suitable example for studying unsteady
boundary layer growth even though simple linear outflow served well for
Howarth's original purpose. However, in order to demonstrate our proposed
separation criterion, this consideration is only a side issue.

To start numerical solutions, the temporal initial profiles v(x,z,to)

and the spatial initial profiles v(xo,z,t) are needed. The temporal

initial profiles may be obtained from the first approximation of the usual

small-time expansion (see Schlichting 1968, 'Ielionis and Tsahalis 1974a), i.e.,

vix,2,t,) = vig (,2) + (VpeVyders (-z-z-ﬁ—_) : (23)

o
where the first term represents Howarth's steady solution coresponding to
Vi which prevails for t<o, an. the second term represents viscous
diffusion due to the sudden changes V,-V,, with erf as the error function.
The spatial initial profiles may be obtained from the steady solution
for either vy orV, valid at small x. This is because diffusion and con-
vection affect the downstream flow only; consequently, solution near x = 0

is nearly independent of time. Furthermore, for small x, V1 and V2 are
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almost equal. The required initial profiles may be taken either from
the numerical solution of the steady problem at small x or from Howarth's
series solution with the first term only (Howarth 1938).

Since Howarth's series solution is believed not to be accurate enough
for large x, the required Howarth's steady-state solutions corresponding
to vy and V, were first obtained by a separate camputing program. In doing
this, it was found that results are very sensitive to the edge-condition,

i.e.,;
V-v.

where Vn-l is the velocity just one Az below the outer edge . Although € =
0.01 is normally considered to be reasonable, it gives umacceptable results
for the present problem. The skin friction distributions with € = 0.00S
and 0.0025 for A = 0.05 and 0.07 are shown in figure 8, and they still re-
veal some differences. The separation point is located at x = 1.78 and
2.42 for € = 0.0025, and at 1.81 and 2.52 for € = 0.005.. These values are
a little higher than those given by Howarth, and by Telionis and Tsahalis
whose values are 1.71 and 2.40.

By setting hx = 1, equations 17 and 18 can now be calculated with
those known initial profiles. The initial time and space were chosen as
t, = 0.06 and x, = 0.0134. The range of calculation extends spacewise
0.134 £ x < 2.5 and timewise 0.06 <t < 38. The x step, Ax, was 0.00S,
and several values of the time step At = 0.04, 0.10, 0.25, 0.50 were used.
Smaller values (0.04, 0.10) were used at early times (t < 1.0); larger
ones (0.25, 0.50) were used at later times, a value of 0.25 was used for
1.0 ¢ t < 13 and 0.5 for the rest.
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Figure 8. cg of Howarth's steady-state problem.

The calculated skin friction cg is shovn in figure 9. At a fixed 2

time, c £ decreases sharply near the leading edge, then reaches zero and

becomes negative. At a fixed x, c¢ is nearly independent of time at smaller

x's but decreases rather slowly at larger x's as t increases. A zero-Cg )

line separates, in the x,t-plane, the areas with positive and negative c.

respectively. The area of negative c £ calculated in the present problem

is apparently very limited. &
The displacement thickness A is shown in figure 10. At fixed times,
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A increases from zero at the leading edge in the downstream, the rate of
such increase quickening somewhat upon approaching separation. Again,
using this symptom as a separation criterion is very imprecise and may
even be misleading. At a fixed x, A is almost constant in time for
smaller x's but increases slowly at. larger x's. Both figures 9 and 10
bear out the statement above, that the unsteady response in the present
problem is slow.

Our main interest is to ccnstruct the limiting flow pattern in
accordance with equation 20 once the Ce distribution is known; then to
examine whether an envelope is formed for the resulting flow pattern.
Figure 11 shows the resultant flow pattern, where the arrows indicate the

2.4)
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1.8
2-2\ \\ Unsteady
e NN separation line
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0 g e
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Figure 11. Limiting flow pattern and separation line.
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local flow direction in the x,t-plane, and the solid lines drawn parallel
to the arrows are the limiting streamlines. The expected envelope clearly
appears at the top, starting from the initial steady-state separation
point and asymptotic_ally approaching the final steady state separation
point. This envelope is referred to as the unsteady separation line.
Since this line partitions the x,t-plane into two unconnected regions,
the separation belongs to a ''closed" type.

Some results of the present calcualtion are compared in figure 12
with those of Telionis and Tsahalis (1974a). There are agreements in

some general trénds, but discrepancies in others. The differences in the

2.6
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Figure 12. Comparison of zero-cg¢ line and separation line,
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separation location at the initial and final steady-state were discussed
above in connection with figure 8, but the main difference has to do with
how the zero-c ¢ curves and the separation lines approach the asymptotic
steady-state values. The Telionis and Tsahalis results indicate a much
faster approach than ours. It is not clear what causes ﬁhis difference,
and especially puzzling is the fact that we have used the same computing
program for the present Howarth's problem as we did for the cylinder
problem (Section 3.3); however, our zero-c g curve for the cylinder problem
agrees extremely well with theirs (see figure 17).

Agreements are also noted in figure 12. ‘Inmedi'ately after the im-
pulsive change of the outer flow, the unsteady process takes over and the
zero-cg point and the separation point no longer coincide with each other.
For small times 0 St $ 1.0, the zero-c point moves downstream with time;
for examples, xg = 1.35, 1.75, 1.85, 1.95, and 2.05 for t = 0.07, 0.10,
0.14, 0.18, 0.22 and 0.26. For t > 1.0, this trend is reversed so that
the zero-cg point continues moving upstream. Moreover, the relation be-
tween the zero-cg path and the separation line is very similar in both

calculations in spite of the differences noted above.

3.3. Impulsively-Started Circular Cylinder

The unsteady boundary layer over a circular cylinder impulsively
started from rest, then moving with constant velocity, is a classical
problem (figure 13). It has been studied by many authors using a variety
of methods (Blasius 1908, Goldstein and Rosenhead 1936, Telionis and
Tsahalis 1974b, to name just a few). In comparison to the unsteady

Howarth's problem discussed in the preceding section, the present one is




& . more common in practice, and more interesting with respect to the separa-
£ | “tion problem.

Z, W
: 8, v

8

Figure 13. Circular cylinder,

Here the angular coordinate ¢ is used in place of x in equations
17 through 20, the metric coefficient h, = hy = 1, when nondimensionalized {
with the cylinder radius. Immediately after starting, the flow is inviscid :

with an outer velocity

V = 2 sine. (25) 1
For the temporal initial profiles (t = t ) the first approximation |
of a small-time expansion is adequate, i.e.

0,z,t) =V rf(—z-) y 26
v(e,z,t,) e 2/1_:; (26)

where erf is the error function.
For the spatial initial profiles (eseo), solution of the steady, two-

dimensional stagnation flow is valid; or equivalently the first approxima-
tion of the series expansion for steady boundary layer may be used. They
are tabulated in standard texts (see Schlichting 1968).

O The initial time t, and space X, were set at t, = 0.10 and eo = 0.5°,

.the time step At was 0.01, and the space step A8 was 0.5°. The time range
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[ of calculation extends to t = 2.3 at which the solutions appear to have
reached the steady-state conditions.

Figure 14 shows the skin friction distribution in the 6,t-plane.
At fixed initial times, e.g., t = 0.1, s increases from zero at the front

stagnation point € = 0° to a maximm at about 6 = 80°, then gradually de-

creases to zero at the rear stagnation point 6 = 180°. At fixed larger

lf ¥ times, Ce falls to zero over the aft-body and then becomes negative.

it

2 On the other hand, at a fixed front-body station, e.g., 6 = 40°,

3 Ce decreases slowly for small times, but then remains constant at later

1 times. This suggests that the front-body boundary layer reaches its

steady-state condition very rapidly. In contrast, at a fixed aft-body

station, e.g., 6 = 120°, Ce falls rapidly with time and shows no sign of
becoming steady within the present range of calculation. This reflects
the idea that temporal development of the boundary layer is really con-
fined to the rear body.

The area (in the 6, t-plane) with negative c £ is marked '‘reversed

flow area." Following that is an "uncalculated area'" which arises due to

the zig-zag finite-difference scheme mentioned in Section 3.1. However,

D 5 ASERGIION o8 R\ T e

at the rear stagnation point 6 = 180°, symmetry of flow requires Cg to be
zero. Thus, one can reasonably conjecture that in the "uncalculated ’
area," Ce varies as indicated by the broken line along t = 0.9.

Large values of c ¢ appear at early times because, immediately after

the impulsive start, vorticity is concentrated in a vortex sheet around

the body, and Cg is theoretically everywhere infinite. Also, it should be
noted that the rate at which Ce drops to zero increases with time, and is
accompanied by a sharp increase in the displacement thickness (figure 15).
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Although these factors are two of several indications which signal a
gradual approach toward separation, it is difficult to define from these
signals precisely where separation begins; and such conclusions can be
misleading.

The first time at which c. becomes zero ahead of the rear stagnation
point has been the subject attracting a good deal of discussion. Some
authors (Blasius 1908, Telionic and Tsahalis 1974b) determined this value
as t = 0.35, others (Goldstein and Rosenhead 1936, Proudman and Johnson
1962) gave t = 0.32. Our determlnatlon for thls value is 0.33.

Figure 15 shows a map for the displacement thickness A. At fixed..
jnitial times, A is zero at t = 0* and uniformly thin around the body at
t = 0.1. At later times, A grows sharply over the rear body. At fixed
space stations 6 = 40° and 80°, A remains practically constant for t
roughly greater than 0.5. In comparison, at fixed rear-body statioms, e.g.,
§ = 120°, A increases sharply in time.

The sharp growth of A over the rear body at large times, such as t
= 1.3, should be studied carefully. One must guard against concluding that
the sharp increase is an immediate symptom of singularity and, hence, flow
separation. Such a sharp increase may not continue all the way to the rear
stagnation point. Instead, the increase may taper off as indicated by the
broken line in figure 15 because the outer-edge velocity as well as the ex-
tent of reversal decreases toward the rear stagnation region. In any event,
results of both Ce and A agree well with intuitive expectations.

Figure 16 shows the limiting flow pattern in the 6,t-plane. Again

the arrows indicate the local flow direction in accordance with equation 20.
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__separation occurs prior to t = 1.7, and that the envelope emergi.hg there-
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The solid lines drawn parallel to the arrows are the analogous limiting
streamlines. The crux of the matter here is to check whether an envelope

is formed to these limiting streamlines. It is somewhat surprising that
for a rather long time, roughly t = 1.7 (i-.e., in the physical form,
t+v1.7 a/Vo where a is the cylinder's radius), there is no sign of any
envelope formation. Starting from t = 1.7 an envelope appears to become
visible, but it is still difficult to pinpoint the precise starting time. 1
It may be t = 1.65, 1.75, or 1.80. §

-

Based on our proposed criterion, we are led to conclude that no

after can be designated as the separat_ion _1ine. The latter gives separa-
tion at 6 = 105°, when t = 2.3, which differs very little from asymptotic
steady-state value of 104.5° given by Terrill (1960).

In the uncalculated area (figure 16), an estimated limiting stream-

line (represented by the broken lines) is inserted to indicate possible

trends. This streamline is based on the estimated (broken) arrows, which,
in turn, arise from the estimated negative c £ in figure 14. The open-type i

separation obtained is analogous to that for the steady three-dimensional

case, because it is approached on both the upper and lower sides by the
limiting streamlines originating from the front body at earlier times.
Figures 17 and 18 compare our results with those of Telionis and E
Tsahalis (1974b). Figure 17 shows that our zero-skin-friction line is in
good agreement with that of Telionis and Tsahalis as well as with that of ¢
Thoman and Szewezyk (1969) from a Navier-Stokes solution. Figure 18 shows that
Telionis and Tsahalis predicted a much earlier separation than we do. Our

e e i b 3 i NI



o

"SOUTT UOTIJTLI-UTYS-0XdZ JO uostiedwo) °/[ aandty

9

.., 0°¢ 8’1 91 Al e 1 0T [ 3 2 I
M p— _ _ . : ; w~c o.c v.c Na 0 0 0
/
L o 8
- 0 w O E m ol 8~
Q
uw — 021
I11143) Aq ajeys-Apeays —— — —
¥Azamazs g uewoyj O § oz.mmﬁmos
sijleyes] g s|uoij3) O 6
Juasa.ly — 091
—Jost




auj| uoyjesedas
Juasald

aul| uojje.edas
sijeyesj 3 sjuoljal

saujjweans buiwi

—10v1




separation is determined by the envelope criterion, theirs by the singu-
larity criterion. In our calculation, singularity was not detected at

the place and time shown for their calculation. Figure 19(a), reproduced
from their paper, is cited to demonstrate the development of the singular
behavior. The quantity plotted in figure 19(a) is the normal velocity, w,
at a certain height from the wall, which varies with time around the
cylinder. As time t increases to 1.001 and 1.101, w increases very sharply.
This effect was taken by the authors to signify Goldstein's singularity.

A similar plot (but not exactly at the same normal distance, and
with differences in scales and dimensionless variables) based on our calcu-
lation is shown in Figure 19(b). As time increases to t = 1.106, w indeed
increases rapidly near 6 = 110°. However, after passing a peak value, w
starts to decrease and hence follows the same pattern as for smaller t.
When the boundary layer calculation was extended farther downstream, to
9 = 140°, we found that even there, termination was caused by the lack of
jinitial data mentioned above rather than by separation phenomena. It
appears, therefore, that the calculation of Telionis and Tsahalis was
terminated prematurely and that their inference from the Goldstein singu-
larity at the presumed separation points is doubtful.

Proudman and Johnson (1962) considered the boundary layer growth near
the rear stagnation point. They concluded, based on a scaling argument, that
"separation, in the less trivial sense of a substantial modification of
the external flow, cannot 'begin' (in the limit of v + 0) at any finite
time." Presumably, in their framework, infinite time could mean some large
instant in an actual calculation, in which case the present prediction of
separation only after a long time appears to agree generally with Proudman
and Johnson.
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Although we have argued that unsteady separation in this impulsively-
started cylinder problem is of the open type, we did not expect its
occurrence to be delayed to such a late time. In this respect, the
present conclusions about separation at first were surprising. The present
cylinder problem has thus provided a crucial testing case for our proposed
unsteady separation criterion. This is because, in an open separation,

a deeper question is involved, namely, does separation occur at all for a
* given time? In contrast, for a closed-type separation (such as in the

preceding Howarth problem), separation is expected a priori to occur at

all times between the Separation points of the initial and final steady

states.

After the calculations described above were completed, we realized
that the preceding "uncalculated area' actually could be calculated. The

LT el with TSR

arguments are based on simple consideration of flow symmetry. As the

et

computation reaches 6 = 180°, the rear stagnation point (figure 20),

i application of the zig-zag scheme shown in figure 7(b) could not determine

Figure 20. Computation at the rear stagnation point.




point 4 in figure 20 because point 3 is outside of the computation domain.
However, in the present case (but not true for the Howarth problem dis-
cussed above), since flow is symmetric at 6 = 180°, solutions at point'S
are the same at the known point 3' except for a sign difference. Thus
point 4 can be calculated, and employment of the zig-zag scheme does not
necessarily prevent camputation from being continued up to 6 = 180° at all
times. It is clear that, at 6 = 180°, the parallel velocity v is identi-

cally zero, but 3v/36 is nonvanishing, so that the continuity equation

v w
w"‘gz- 0,

enables one to determine a nontrivial normal velocity w.
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4. UNSTEADY SEPARATION IN THREE DIMENSIONS

4.1 Proposed Separation Criterion

The unsteady separation criterion for three-dimensional flows can
be derived in two ways: 1) from an extension of three-dimensional, steady
separation criterion, and 2) from the two dimension unsteady separation
criterion. For the convenience of reference, let the first be referred
to as the time-fixed representation and the second, the space-fixed

representation.
4.1.1 Time-fixed representation

For the unsteady, three-dimensional case, it is intuitive to look for
an envelope of the limiting streamlines at each instant of time. In other
words, we apply the envelope criterion for the steady, three-dimensional
separation at each instantaneous time. The instantaneous envelope will be
taken as the instantaneous separation line, and connecting a sequence of
such separation lines results in an unsteady separation surface.

To illustrate, consider a simple system consisting of the space coor-
dinates x,y,z and the time t. x and y are parallel to and z is normal to
the body, while u, v, and w are the velocities along x,y,z. Figure 21
depicts the body surface (represented by the x,y-plane) at t = t, and t,.
The lines AB and CD represent the corresponding instantaneous separation
lines, and the surface ABCD signifies the unsteady separation surface in
the x,y,t-space. The arrow-curves are instantaneous limiting streamlines.
In the three-dimensional unsteady case, there is the question of open

versus closed separation in both the t-fixed and x- or y-fixed planes.




&

R i

e i — i e - A 4 3

43

 —Plane tZ

Separation
surface

Instantaneous
limiting —
streamlines
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Figure 21. t-fixed representation of three-dimensional
unsteady separation.

(In figure 21, an open separation in the x,y-plane is shown).
It should be clear that such a presentation of separation can be
readily realized in experiment if one photographs the surface-flow pattern

at successive times.
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To construct the unsteady separation surface shown in figure 21,
the boundary layer solution must be obtained first to yield the limiting

velocities (or the skin frictions),

u, = u(x,y,z = o,t)+ (g—‘;—) sho 4% * *=»

(27a,b)
v
Y, » v(x,y,z = o,t)+(5-z-) 20 Az + ---,
Then the equation
dr . &, (28)
Yo Yo

determines the limiting streamlines by successively setting t = tl, ty, ..o

t. Equation 28 is the same as equation 13 except for the fact that u,
and LA in equation 28 are time-dependent, and the same graphical pro-
cedures can be used to obtain the limiting streamlines. An envelope of
these limiting streamlines then becomes the instantaneous separation line,
such as lines AB and CD in figure 21. Connecting the successive instan-
taneous separation lines in the xyt-space gives a separation surface such
as ABCD in the figure.

One should not confuse this description of determining an unsteady
separation with a quasi-steady approximation. The crucial distinction is
that we are not advocating a solution to the unsteady boundary layer
equation by successively setting t equal to some constant. Instead, the
full unsteady equations are first solved exactly to determine the unsteady
velocity profiles u(x,y,z,t) and v(x,y,z,t), from which u, and v, are to

be obtained. This prescribed procedure really amounts to a choice to

-
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present the results of the limiting surface-flow pattern in succession
of time. This procedure is obviously not different from taking surface-

flow pattern pictures in an unsteady experiment at successively instants

of time.

4.1.2. Space-fixed representation

In the above t-fixed representation, we confine our attention to

the t-fixed planes, which is the usual experimental way of observing the

flow. This is certainly a strong advantage; however, it is equally valid

to consider the same problem by confining our attention to the successive

x-constant planes, figure 22 (similarly for the y-constant planes).

Separation surface

/Plane Xy

Plane x

D
A
,l // B Limiting streamlines
/I/
y

Figure 22. x-fixed representation of three dimensional
unsteady separation.
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Admittedly, it is difficult to simulate this procedure in an experiment,
but there is no logical preference of the present representation to the

preceding one. Using the relation

d
Vf = dt » (29)

one can construct the limiting streamlines in the x-fixed planes such as
those shown in figure 22. If envelopes like AC and BD are formed by the
limiting streamlines, these envelopes can be analogously taken as the
separation lines. Connecting all such separation lines results again in
a separation surface in the xyt-space, and the separation surface thus
constructed should be the same as that shown in figure 21. Equation 29
is similar to equation 20. The x(or y)-fixed representation entails
obviously repeated applications of the two-dimensional unsteady separation
idea discussed in sections 2 and 3. Again there is the question of open
versus closed separations just as in Section 4.1.1 above, but details are
notrepeated here.

It is understood that in the x,y,t-space, the general limiting

streamlines are defined by

dy . &

Yo Yo

= dt. (30)

However, we are not interested in solving these two simultaneous equations
to determine general limiting streamlines in the x,y,t-space. Instead,
the two representations above confine our attention to either the t-fixed
or the x-fixed planes. The result of separation should be the same whether

equation 28, 29 or 30 is used.
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We have illustrated that a three-dimensional, unsteady separation

criterion can be obtained from repeated applications of either the

steady, three-dimensional separation criterion or the unsteady, two-
dinensional separation criterion. Conversely, we may say that our pro-
posed unsteady separation criterion for three-dimensional flows is general,
and logically includes both the known steady, three-dimensional separa-
tion criterion and the unsteady, two-dimensional separation criterion
discussed in Sections 2 and 3 as special cases. On the other hand, the
extension of the MRS criterion or the Goldstein singularity criterion has

yet to be demonstrated.

4.2. Eichelbrenner's unsteady criterion

Eichelbrenner (1971) also discussed the question of unsteady separa-
tion in three dimensions. His main idea is expressed:

"...Thus we can define the unsteady separation line on the obstacle
as the path of a unique (also instantaneous) stream surface on the
obstacle, which passes through an instantaneous zero-friction point and
separates the points of Groups I and II of the boundary layer.'" The
points of Group I and II are further defined as those points connected by
an instantaneous streamline at the stagnation point (or line), and those
which are not connected to this point. :

In a manner similar to our preceding discussion, Eichelbrenner's
idea amounts to employing the steady-flow separation concept at each in-

stant of time. However his concept of unsteady separation can be faulted

for the same reason as his concept of steady separation (Eichelbrenner 1973),




namely, the characterization of the separation line passing through the
zero-friction point and the division of points into I and II. These
procedures apply only to the conventional kind of closed separation,
but exclude the newer kind of open separation.

Eichelbrenner (1971) also states: 'As the (instantaneous) separa-
tion surface of the external and internal points is approached, these
streamlines become progressively tangential to this surface, which is
thus itself a (unique) stream surface. Its path on the wall is then an
instantaneous wall streamline delimiting wall streamlines at the ex-
terior and interior of the separated zone. It is an asymptotic boundary
of these lines (not an envelope)..."

Again his inference to the interior and exterior streamlines is
valid only for the closed type of separation just noted. His emphasis
that the separation line is itself a streamline, not an envelope, renews
an old dispute. Earlier, Eichelbrenner advocated the envelope idea but
apparently changed later to the streamline version. Lighthill (1963)
first disputed the envelope version and suggested the streamline version.
More recently, Legendre (1977) also concluded that he supported the stream-
line version. On the other hand, Stewartson and Brown (1968) have argued
in favor of the envelope version discussed by Maskell (1955). Wang (1972)
pointed out that Lighthill's definition of separation fits well with the
conventional closed type of separation, but does not apply to the new
open type of separation.

Analysis of isolated singularities such as nodal and saddle points
(Lighthill 1963, Legendre 1977) and their combinations led to the con-

clusion that the separation line is a streamline distinguished from other
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streamlines by it_:s passing through the singular point. According to
this version of separation, the limiting streamlines meet the separation
line only at a nodal singularity.

On the other hand, based on the surface-flow visualization and
recent limited calculated results, the limiting streamlines tend to come
close together as they approach the separation line; or one may say, the
limiting streamlines turn tangentially into the separation line. In
particular the limiting streamlines do not appear to meet the separation
line only at the nodal singularity, instead different limiting streamlines
turn tangent to the separation line at different points along the latter.
These features strongly suggest that the separation line is an envelope
of the limiting streamlines. One clear advantage of the envelope defini-
tion of separation is that it applies to both open and closed separations.
In our previous work, we have used this envelope version of separation.

By definition, envelope is a singular solution of the differential
equation, say equation 13 or 20. So long as it is a solution, singular or
regular, of the same limiting streamline equation, an envelope is certainly
also a limiting streamline. At every point of the envelope, the flow is
directed along the envelope. Hence there is nothing contradictory to call
an envelope as a streamline. However, the streamline version of separation
discussed above not only refers to the separation line as a limiting stream-
line, but also conceives that the separation line must pass through the
singular points and meet the limiting streamline only at the nodal point.
It is these latter features which do not hold in general.

The dispute between the streamline and the envelope definitions of

separation is likely to continue presumably until more complete topological
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surface-flow pictures over typical bodies become better understood and
more rigorous studies near the separation line are available. Meanwhile
the running-together of limiting streamlines as the physical characteri-
zation of separation (with the implication of vanishing normal skin
friction) seems to be well accepted; Lighthill himself did not dispute
this characterization although he objected to the envelope idea. For all
intents and purposes, it appears that this particular feature alone is
suffice to identifying separation in experiments as well as in calcula-
tions even though the search for a universally-agreed definition of

separation may continue for some time to come.
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5. CONCLUSIONS

E | It appears that the validity of the MRS criterion and the Goldstein
singularity criterion for general unsteady flows remain unproven. Al-

though the solutions of Williams and Johnson have demonstrated the MRS

criterion, the special assumptions used there reduce the problems essen-
E tially to steady ones for which the validity of the MRS criterion has not
| been in doubt. The cylinder solution by Telionis and Tsahalis gave

support to the Goldstein singularity criterion, but this solution was

subsequently contradicted by later calculations. Apart from the basic

validity question, both of these criteria are inconvenient to apply; in

addition, their extension to three-dimensional case has not been shown.
The limiting streamlines and their envelope as the separation line

for steady, three-dimensional boundary layers have been well demonstrated

by experiments and to a lesser extent by calculations. These concepts

are analogically applied here to the unsteady, two-dimensional case.

e — bt s kg Wl

Pertinent equations are formally transformed from one to the other; simi-

lar limiting streamlines are defined in the x,t-plane for the unsteady

case; and the envelope of those limiting streamlines is proposed as a new" \
’ unsteady separation criterion. This criterion determines separation with-

out relying on usual symptoms such as rapid increase of boundary layer

R———

thickness, etc., and it is also consistent with the criterion for general

' unsteady separation in three dimensions discussed in this work.

‘ Analogous to the three-dimensional, steady case, separation can also
be classified as an open or a closed type for the two-dimensional, unsteady




52

case. The word ''closed" or 'open,' means that the separation line as an
envelope of the limiting streamlines does or does notdivide the x,t-plane into
two unconnected regions. -’I‘o illustrate these types of separation, two
previously studied examples have been recalculated. The first one - un-
steady response to a sudden change of the Howarth steady problem presents
a closed separation; the second one - unsteady growth of an impulsively
started circular cylinder from rest - presents an open separation. The
calculations were made through analogy using the existing computing codes
previously developed for the steady, three-dimensional problems.

Results have been compared to those of Telionis and Tsahalis. For
the first problem, agreements were noted in general trends of the separa-
tion line in relation to the zero-skin-friction line, but discrepancies
are found in actual locations of these lines. Also their results show a
muchfaster approach toward the final steady-state condition than ours.

For the second problem, results of the zero-skin-friction agree very well,
but those of the separation line are entirely different. Our separation
is determined by the converging together or an envelope of the limiting
streamlines, theirs by the singularity criterion. In our calculation,

no singularity was detected at the place and time shown from their calcu-
lations. While they predicted a much earlier separation, we predicted
separation occurring only at 1large times. Our separation prediction
appears. to be consistent with that of Proudman and Johnson.

General unsteady separation in three-dimensions has been described
also. It is based on the application of steady three-dimensional criteri-

on at successive instants of time. This simulates the usual sequence of

[ ]
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{ observing an unsteady flow, and does not necessarily imply a quasi-steady
approach. Alternatively, it may be looked upon as applying the unsteady,
k] two-dimensional criterion to staggering fixed coordinate planes. Hence
the three-dimensional unsteady separation we propose here includes both
the steady, three-dimensional separation and the unsteady, two-dimensional

DT W T TN S 1 T T
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separation as special cases. Our unsteady, three-dimensional separation

e

criterion differs from that of Eichelbrenner in that the latter contains

only the closed type of separation, while it excludes the open type.
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