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EVALUATION

This report is intended to introduce the digital LSI/VLSI
test designer to the various methods available for generating
tests. These methods, described in the current literature
under many names, are described and compared here.

Most terms used in today's testing environment are ex-

“ plained and examples given. Methods outlined here are not
' peculiar to one logic family or another, but pertain to digital
logic as a whole. Thus, this is not a testing cookbook, but
rather a guide to the derivation of test methods. As such, it
will be of greatest benefit to those who must generate test
programs for unique device types or who need to know the rationale
behind existing test concepts for any reason.
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£ CHAPTER I

[ INTRODUCTION

Testing is an important activity in the design, acceptance,
and maintenance of large systems. In many areas of engineering
testing is an art requiring experience and judgement. Digital
circuit testing has been elevated beyond the artistic stage.
Techniques have been developed which éan be applied to any

} digital circuit given sufficient storage and time for analysis.

These techniques generate sets of inputs (test vectors) to be

applied to the circuit. Observation of the outputs produced in

————E

response to the test vectors can be used to determine whether
the device is functioning properly.
Digital circuit testing is used to ensure that a system
f operates as specified. Testing in the design phase of system

de#elopment serves as a tool for determining the correctness of

an implementation. Errors may be introduced during the fabri-

cation of a device. Thus, even after the design of a device has

been verified, a purchaser should test the circuits he buys to
establish that they are free of such errors. Finally, as a

result of age or misuse, a device may cease to function properly.

T .-

Thus, periodic maintenance should include device testing to

establish that the device is still functioning properly. This
report is concerned with acceptance testing. The test methods
considered could, however, be used for design verification or

maintenance testing. The criteria for selecting a test method




depends on the purpose of the tests.

Classical methods of testing digital systems were
developed during the era of small scale integration (SSI). A
system was composed of many packages, each containing a few
logic gates. The packages were interconnected on circuit
boards. The connection between the packages were accessible
for observation. Thus, tests could be performed by applying
inputs to the circuit and observing the response within the
circuit at various test points using scopes or meters. Even
though the structure within a package was not accessible, it
was sufficiently simple that a complete set of tests could be
developed.

: With the advent of medium scale integration (MSI), func-
tional units such as registers or adders were included in a
single package. Methods which were developed for SSI devices
were still applicable although the number of test points within
a circuit had been reduced. More care had to be taken in the
design of a set of tests for a device. Exhaustive testing was
becoming infeasible.

We are now in the age of large scale jntegration (LSI) and
very large scale integration (VLSI). Entire systems are con-
tained in a single package. The problems of testing a single
package have become the same as the problems of testing an
entire system with the added constraint that the only test
points available are the system inputs and outputs. In order

to test one part of a package, the stimulus (inputs) and the
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responses (results) may have to pass through many other parts.

In some cases, the desired outputs may not be directly observable
as in the case of testing whether an arithmetic logic unit (ALU)
within a microprocessor properly hardles a flag. In such cases
tests can only be performed indirectlv by observing other out-
puts such as the progxam counter. Another cause of difficulty

in testing VLSI packages is their generality. Microérocessors
are not designed for specific applications. They are general
purpose devices. They are programmable and contain many internal
states. Thus, a test consists of getting the processor into a
particular state, giving it the appropriate instruction and
supplying it with the appropriate input data.

Classical methods of digital circuit testing may be
theoretically applicable to VLSI testing but storage and time
requirements make them impractical. Since microprocessors are
used in applications—where malfunction would involve the loss of
life and/or propérty damage, new and accurate techniques must be
developed for acceptance and maintenance testing. The non-
observability of some outputs and the structural complexity of
the devices make this goal seem distant. In some cases'a
reduced confidence in device integrity is accepted in order to
make test generation feasible.

Many test schemes have been proposed in the literature.
This report attempts to identity the fundamental differences
between the test schemes and consider their various merits and

demerits. In doing so, we limit our study to two basic areas of
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basic test philosophy; test generation, and test application.
Under test generation we will consider three basic approaches to
generating test inputs. We consider the difficulty of generating
the inputs in terms of hardware and software requirements as well
as the limitations on test confidence imposed by each method.
Under test application we will consider the hardware and soft-
ware requirements for conducting a test. The essential features
of various test methods are abstracted in an attempt to develop
a system for classifying test application methods.

Chapter two defines the basic terminology that will be
used in the report and also discusses fault models and device
models that are currently in use. Chapter three presents a
discussion of test generation techniques for logic circuits,
which is centered around combinational and sequential circuits.
Chapter four presents test generation philosophy for LSI and
VLSI circuits. Also, it presents a taxonomy for test applica-
tion techniques. This discussion is based on structural,
functional and random testing. Chapter five considers some of

the currently available systems for testing VLSI devices.




CHAPTER II

DEFINITIONS

2.1 Introduction

In.this chapter we will discuss different concepts relevant
to faults and tests and describe some types of faults which occur
in different technologies such as LSI and VLSI circuits.

A fault can be considered to be a defect in design or an
aberration introduced in the manufacturing process which causes
a device behavior to deviate from what is specified.

In a general sense, testing consists of applying a sequence
of inputs to a circuit, observing the output sequence and com-
paring it with a precomputed expected output sequence. Any dis-
crepancy is said to constitute an error and the cause of this
error is said to be a physical fault.

2.2 Classification of Faults [1]

Faults can be broadly classified as logical, parametric or

pattern sensitive.

2.2.1 Logical Faults

A logical fault is one which causes a device to appear to

implement a different logic function than the one specified. A

. ——

typical logical fault which is frequently considered is stuck
at (sA) fault. 1In this class of faults circuit signals become
fixed at some constant value, say logical one, in which case the
signal is said to be stuck-at-one (s-a-l), or logical zero, in

which case the signal is said to be stuck-at-zero (s-a-0). For i




example, for a two input OR gate with inputs "a" and "b", a
s-a-0 fault on the "a" input causes the logic function of the
OR gate to change from a + b to b. Many faults such as short
circuits and open circuits can be modeled as logical faults.
Here one should note that under the SA model, failures

cause fixed signals to appear at leads - i.e. leads get

clamped. Thus, tests based on SA model deal with static faults. : ‘
Parameters that affect dynamic behavior, such as switching speed,
are verified by other tests. : 1

The stuck at (SA) fault model was first proposed for

ik

dealing with early logic circuit families [such as Diode

Transistor Logic (DTL) and Resistor Transistor Logic (RTL)] when

e R R S e S

discrete components were used. Just how well it fits large
scale integration (LSI) and very large scale integration (VLSI)
is not clear and perhaps the use of a SA model only to test LSI
and VLSI may not be justified.

Prominent among faults that are not adequately covered by
the SA model is shorting between adjacent conducting lines. In

technologies such as RTL, DTL and ECL (Emitter Coupled Logic), this

failure can Le modeled as the insertion of an AND or OR function
between the shortened leads. Even when this model is adequate -
in consideration of shorted lines - it introduces great com-
plexity into the testing process, due to the large number of

pair of lines on a chip. Therefore, it is necessary to eliminate
?‘ “ all lead pairs that are at a sufficient distance from each

other.




The SA model also falls down in dealing with intermittent
faults. Tests under the SA model can be easily described by the
conventional analytical tools for logic circuits such as Boolean
algebra. Hence, the SA model offers analytical convenience as
well as good representation of most of the (but not all) failure
mechanisms.

2.2.2 Parametric Faults

A parametric fault alters the magnitude of the circuit
parameter, thereby resulting in a change in some factor or
factors such as circuit speed, current or voltage. Parametric
faults may occur during storage due to factors such as tempera-
ture, humidity, leakage of sealed elements and aging. An
example of parametric faults would be a change in the clock
speed due to improper functioning of clock circuitry inside the
microprocessor.

Periodic testing should be carried out throughout the life-
time of a device since faults may occur or get introduced into a
logic circuit during manufacturing assembly, storage and while
the device is in service. During each of these periods, the
nature of the faults introduced and, hence, the type of testing
that must be performed will be different. At the time of manu-

facturing typical faults that may be introduced are (1) open

.

bonds, (2) open interconnections, (3) bulk shorts, (4) shorts due
to scratches, (5) shorts through the dielectric, (6) pin shorts,
(7) cracks, etc. Due to these factors, a manufactured circuit

may contain multiple faults, some permanent [this is a fault




that permanently changes the character of a device] and some
intermittent [this is a fault that is discontinuous, appearing

randomly over a period of time, an example of this would be the
shorting of two leads due to mechanical or voltage stressing].

Some of these faults can be modeled as logical faults while

others cannot. Faults may also be introduced during assembly

and testing. It is possible that faulty elements may not be -

discovered until after assembly. Also, during storage, circuits

might develop certain parametric faults. Finally, when the

device is in service, these same factors occur as well as others

caused by heat, dissipation, vibration, voltage and current 3

stresses. It is an established fact that as a circuit ages, the :

occurrence of intermittent faults increases. A probable cause )

of this problem is in the deterioration of contacts with time. 1
Failures are frequently not random but the result of an

imperfect manufacturing process. Hence, the accurate determina-

tion of the location and cause of such failures is important so

that the manufacturing processes can be improved.

2.2.3 Pattern Sensitive Faults

These faults occur in situations brought about by worst
case switching of addresses, topologically "next neighbor" {
metalization runs which are too close, bad poly insulators, etc. : %
Such a fault results in a failure of the LSI device under cer- l
tain combinations of addressing, writing and reading. The

failure occurs in the form of loss of stored information in one

PRSPPI

or more memory cell locations. For example, in the case of




random access memory (RAM), the result of reading or writing in
some register R is affected by the contents of the other
registers of the RAM. A frequently used approach for testing
such faults is functional in nature and is based upon treating
the RAM as a "black box" [this makes very little use of circuit
information), and applying test patterns which tend to "exercise"
the functional model.

2.3 Fault Distribution and Location

Irrespective of how the effect of a failure is modeled, one
should decide whether or not the assumption can be made that
faults only occur one at a time, or in combinations. Tests
based on single fault assumptions are simpler and shorter
than the ones that would consider all possible failure combina-
tions. However, sufficiency of single fault tests needs careful
evaluation. In production testing for high density LSI and VLSI
[even for MSI (Medium Scale Integration)] the single fault
assumption may not be valid. However, for equipment that has
been operational, the single fault assumption may be justified. It
is also true that a complete test for all single faults will
also detect‘the bulk of simultaneous faults. But this requires
careful study of the test results due to the fact that multiple
faults can produce misleading results.

Redundancy in tests can be used for fault location. As an
example, assume that there exists a fault in one of the four
units A, B, C or D. Suppose that test 1 in a sequence can

reveal that only unit A or B is faulty, test 2 detects faults




in either C or D units only, and test 3 detects faults in A or
C. Hence, tests 1 and 2 together are sufficient for fault
detection but all the three tests are required for fault loca-
tion. The condition for complete fault location is that if a
fault exists, it can be traced to a single unit, if for every
pair of units U; and Uj (i # j) there exists a test for which
the response in the presence of a fault in U; is different from
the response in the presence of a fault in U..

J
2.4 Device Models

Various device models are used for fault detection purposes,
namely (1) a Black Box Approach, (2) Functional Diagram, and (3)
Gate Level Description.

2.4.1 A Black Box Approach

In this approach, it is assumed that the test equipment has
access to device inputs and outputs. Testing would consist of
applying a test sequence to the device under consideration and
observing the corresponding outputs and comparing it with the
expected outputs or the output of a known good device (KGD).

This model seems to be a reasonable model for microprocessors
since we do not have access to the nodes internal to the VLSI
chip. Hence, the testing of the internal nodes can be carried
out only by inference. For this reason, a black box model is well
suited for fault detection and can be used for acceptance

testing at the manufacturing level. However, this model for

VLSI will serve little purpose if fault location is the criterion

for testing.

10




ks

4
{
3
!
1

Typically, the testing consists of applying a test sequence
to the input of the device under test (DUT). The corre-
sponding output sequence can be compared with a precomputed
expected output sequence to check whether the DUT is functioning
properly. Another way of verifying this would be to compare
the output sequence of the DUT with the output sequence of a so-
called "known good device" (also referred to as gold standard de-
vice in literature). Here, the concept of a known good device is
questionable since for a device to be fault free it has to be
completely tested and this is rather difficult because prevalent
test methods do not guarantee 100 percent test confidence.

Also, synchronization of a known good device with the DUT might

be very difficult.

2.4.2 Functional Diagram

In the functional diagram approach, one tries to partition a
given VLSI chip into different subblocks according to the function
performed by each subblock. After functional division each sub-
block is tested for proper functioning. In doing so, there may
be some overlapping tests between the subblocks. Currently,
this approach of testing seems to be the most popular one.

2.4.3 Gate Level Description

In this approach, subdivision of a VLSI chip down to the gate
level is considered. Proper functioning of the DUT is ensured
by testing each gate in the circuit. Problems with this
approach are: (1) Gate level description of the circuit may not

be available; (2) It is very difficult to test all 'gates and

11




some gates can only be tested by inference since the gate output
may not be directly observable at the device output; (3) Some of
the gates cannot be directly stimulated since gate inputs may not
be available at the device inputs. In this type of model, to
achieve high test confidence, one may require very long test
sequences, thereby making testing lengthy and time consuming.
However, the advantage of this approach is that if complete
testing is carried out one may accomplish a very high level of
test confidence relative to the test confidence achieved by
any other approach.

2.5 Test Generation Philosophies [5]

There are three basic approaches to testing digital

systems: (1) Functional Testing, (2) Structural Testing, and

(3) Random Testing.

2.5.1 Functional Testing

In this type of testing, the goal is to verify that the
device under test (DUT) behaves as required. This is done by
determining whether it performs its task properly. For example,
in the case of microprocessors functional testing would typically
verify that a program counter increments and decrements
correctly, that all ALU functions are performed properly, that
registers can be read from and written into, that transfer of
control occurs under proper conditions, etc.

Tests that verify functions (functional tests) are
suitable for central processing units or memory systems and

these tests find wide application in final assembly and

12




field maintenance.

Typically, functional tests would start by verifying that a
small portion of the system [called the hardcore] is functioning
properly and then progress outward through the circuits that
perform the remaining repertoire of operations. The drawback
with these tests is that they are, in general, written without
close examination of the hardware details, since the programmer
usually cannot be burdened with circuit details. Therefore, it
is likely that these tests may turn out to be somewhat incom-
plete. 1In fact, it is not unusual for functional tests to be
limited in their fault detecting capabilities to only half of the
possible faults in a digital unit. But tests derived solely on
the basis of functional considerations need not necessarily be
so limited in coverage; microprcgrammed machine organizations in
particular are amenable to fairly complete functionally derived
tests.

2.5.2 Structural Testing [5,6]

Tests based on structural criterion assure that individual
circuit elements of the unit under test are operating correctly.
Thus, a structural test assures that every gate on the DUT is
functioning correctly, that every flip flop goes through all its
states [namely set, reset or toggled as appropriate], that clock
signals occur at designed frequency and that parity checks are
correct and so on.

Designing functional tests calls for familiarity of the

device under test. For this reason, these tests can best be

13
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designed by the person or group of people who designed the
device under test. Typically, functional tests do not take into
consideration the fine structural details. When the tests are
designed from the structural viewpoint, one starts with the gate
level description. For this reason, these tests are more
suitable at the manufacturing level. This type of testing can
also be used for off-line repair. When strict dependability
requirements exist [i.e. failure of the device results in cata-
strophic damage] structural testing can be used for periodic
checking of real time systems, since structural testing yields

a high level of test confidence.

If the assumptions made regarding the effects of failure
are appropriate and if the correct network structure is known
at the time of developing structural tests, then structural
testing can furnish proper diagnostics through the use of the
algorithms developed for this purpose.

If no assumptions are made regarding the device's failure
modes, then the test will have to contain all possible input
sequences.

The key features of structural and functional testing are
summarized below.

(1) The level of confidence offered by the structural
testing depends on the accuracy of the fault model. If the
fault model is reasonably accurate, then these tests can yield a
very high level of test confidence.

(2) If the system under test is large [as in the case of
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microprocessors], then the structural testing may require very
long test sequences, thereby making testing very time consuming.
However, these tests can be developed by means of an algorithm
and they can be optimized as far as the sequence length is con-
cerned.

Functional tests on the other hand are very useful for large
systems but they are not complete in the sense that they cannot
yield a very high level of test confidence. The effectiveness
of functional testing depends on who designs these tests since
it requires a good knowledge of the system under test. [For
this reason, these tests will yield best results if they are
designed by the same person (or group of people) who designed
the device under test.]

2.5.3 Random Testing (8]

In this type of testing, input patterns are fed to a pro-
totype of a circuit to be tested and are analyzed for their
ability to detect failures. The disadvantage of this method is
that it produces a very large test set.

Very frequently, testing can be economically done by
comparing the outputs of the circuit under test with the outputs
of the known good unit, while both units are fed by the same
sequence of random inputs. However, a good unit may be
impractical to obtain and its reliability is not ensured. Also,
synchronization of both units may pose a difficult problem.

A new test method consists of feeding a long sequence of

random or pseudo random inputs, and computing some statistics

15
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of outputs [for exampLe, the frequency of logic ones in the
output sequence]. If the output statistics are satis-~
factory then the unit passes the test. However, due to the
probabilistic nature of testiné, it may be impossible to
achieve a high level of test confidence.

[Note: For discussion of Signature Analysis, refer to

Section 4.8.1.]
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CHAPTER III

TEST GENERATION PHILOSOPHIES FOR LOGIC CIRCUITS

3.1 Introduction

This chapter discusses different test generation philoso-
phies [structural, functional and random] for digital [both
combinational and sequential] circuits and test methods based
on these philosophies are also discussed.

A combinational circuit is one whose present output
value depends only on the present input value and is independent
of the past input values.

A sequential circuit is the one whose output depends on
two parameters: 1) present inputs, and 2) past inputs. Again,
sequential circuits can be divided into two sub-classes,

a) synchronous sequential circuits and b) asynchronous sequential

circuits. In synchronous sequential circuits, the inputs

are synchronized with some timing sequence tyr to oey tn. At

every occurrence of the timing sequence, the circuit samples

T T e

the input, the next state is entered and the next output is

produced. Typically, the circuitry that generates this timing

S

sequence is referred to as the clock circuitry and the timing
sequence as a clock signal.

On the other hand, the asynchronous sequential circuit is
the one that operates without a clocking signal.

3.2 Test Methods for Combinational Circuits [1,5]

A structural testing approach is very commonly used to

17




test this type of circuit. It means that typically, testing

) would consist of verifying whether individual hardware components

L | of the circuit under test are functioning properly or not. Since

the structural approach is used, most of the test methods can be
b | developed with the aid of algorithms.

Prominent test methods for testing combinational circuits
are a) Boolean Difference, b) Path Sensitization and c) the
D-Algorithm.

3.2.1 Boolean Difference

Let +, *, (® denote logical OR, logical AND and Exclusive
OR functions respectively. If x is a boolean variable, then X
represents its complement. Consider a combinational circuit
whose output z is the function of a set of inputs, say, X1r Xo

ceer X5 g0 ¥50 o..y X . Mathematically, this can be represented

as
z = f(xl'x2'""xi-l'xi'xi+1"'"xn) = f(x)
where X represents a vector (xl,xz,...,xi_l,xi,...,xn). v
If one of the inputs X4 is, say, stuck-at-l (s-a-1l) then this
can be represented as
I 2% il
zi e fi(xlpxz,...,xi_l,l,xi+l,...,xn) = fi(z(') (I)

Here, the notation fi means that the ith input is s-a-1l.

Similarly, if one of the inputs x.; is stuck-at-0 (s-a-0), it

i
can be represented by
zg = fg(xl,xz,...,xi_l,o,xi+l,...,xn) = fg(i) (1II)

18
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In general notation conditions I and II can be written

o ol | i g
aS Zi - fi(xl,lea--'xi_l,J’xi+l’-..,xn) - fi(',s) Where J . 1
for s-a-1 type of fault and J = 0 for s-a-0 type of fault.

The set of tests that will detect the fault J [(i.e. one
of the inputs i either stuck-at-1 (s-a-1l) or stuck-at-0 (s-a-0)]

corresponds to the function

RS BN
Y(xi)* = f fi + f fi
o J
= f() fi

consider only the stuck-at-0 type of fault (i.e. J=0). Applying
Shannon's expansion formula: f(xl,xz,...,xn) = xlf(l,xz,...,xn)

+ ilf(o,xz,...,xn) to Y yields: [Refer to Section 3.2.2]

For s-a-0 test, Ry = 1

- cpd o= gl 0
Tlag) = fmpcfy 4+ 3T @
1 =0 <5 6 (after due expansion and
M e e 1 imolificati
Xy fi fi + Xy fi fi simplification)

1 0
x; - (£] @ £])

The term fi() fg is referred to as the "Boolean difference"

of the combinational function f with respect to the input X, .

1f we denote f]i‘ ® fg by g-)—z‘—, it represents all the conditions for
i

which the value of f is sensitive to the input Xy alone.

dz
X4 EEI = 1 would represent the set of tests for the input xj to

Qs

be s-a-0 while a similar §; i. = 1 would represent the set of
i

tests for the input x; to be stuck-at-1.

o

[Note: Here X; represents a specific binary value of the vector x.]
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Example
Consider the combinational circuit given by the Boolean
expression z = f(x) = (x1 + xz)'x3 + §3-§4. The diagramatic

representation of the same is as shown in Fig. 3.2.1-1.

Ly
X1
b
¥
B
X, E>x>

Ly

Figo 3.2.1'—1

The set of tests which will detect the fault X s-a-0 is defined

by the Boolean expression X %3— where
3

dz _ .

Ex_; 5 f(xllleolx4) @ f(xllxzpl,x4)
=X, @ (x7 + x,) [After due simplification]
= X X X, + X X, + XX,

Hence, the set of all tests which detect this fault is defined

by the solutions to the Boolean expression




Y = x3(X;X,X, + X;X, + X,X,). An input combination X,

ib | detects this fault if and only if Y(x;) = 1.

3.2.2 Path Sensitization [1,5]

The basic principle involved in path sensitization can be

described as follows. Let k be the node in the circuit under

IRPTIT S, RS P YT

test which is to be tested for, say, a s-a-0 type of fault. To

achieve this, the input signals x must cause the signal at k in

2 the normal fault-free circuit to take the value 1. Similarly,

if the node k is to be tested for s-a-1 type of fault, then the

input signal must cause the signal at k to take the value 0. i
In the logic diagram of Fig. 3.2.2-1, each gate output is

labeled. Suppose we want to detect the fault L, s-a-0. An input

x5 must be such that Lz(xi) = 1. For this circuit it would

Fig. 3.2.2-1
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require that X) =X, = 1, denoted by XX,y = 1. This condition
is necessar§ but not sufficient since gate output L, is not
available at the device output.

This requires that a signal from L, should propagate along
some path to the output (i.e. Lg). For this circuit, there
exists only one path and that is through the OR gate to the output
Lg. In order to propagate the fault through LS' both the inputs
X3 and X, should be 0 so that Lg is 1 only if L, is 1.

Thus, the path sensitizing procedure can be described as
follows. In order to detect a fault in a combinational circuit:

(1) Determine input values required to generate the appro-

priate signal value at the point of the fault (0 for

s-a-1l and 1 for s-a-0 faults).

(2) Choose a path from the point of the fault to the cir-
cuit output. Determine additional signal values to
propagate the fault signal along this path to the
device output (Error Propagation).

(3) Choose input signals so as to produce the signal values :
specified in step 2.

3.2.3 D-Algorithm Method [1]

D-Algorithm gives an algorithmic path sensitization proce-

dure in terms of cubical algebra. It enables automatic test
generation and the algorithm is also useful in generating tests
for complex logic elements.

To describe D-Algorithm, it is required to define certain ;

terms. Let U represent a signal whose value is 1 for the normal
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operation and 0 in the case of a fault. U can be defined vice
versa.

Prime Implicant: If the Boolean expression representing the

digital circuit is expressed in the sum of products (minterms)
form then a prime implicant is a product term that cannot be
combined with others to yield a term with fewer literals.

We define three types of cubes [these terms are taken from
cubical algebra].

3.2.3.1 Primitive Cube (PC)

Consider the combinational circuit element that generates
a Boolean function f. Prime implicants of £ and f can be
represented with the aid of primitive cubes. These cubes
properly represent the logical behavior of the combinational

circuit under consideration.

Consider the combinational circuit shown in Fig. 3.2.3.1-1(a).

Assume that this circuit realizes a function represented by the
Karnaugh map in Fig. 3.2.3.1-1(b). The prime implicants of £
are x; and §3i2 and the prime implicants of f are X3X; and X,X,.
Labeling in Fig. 3.2.3.1-1(a) indicates that X, (=1, ey 3) 28
associated with each position i of the cube and the output
function is associated with position 4.

In Fig. 3.2.3.1-1(c) the first cube of o 0XX1 represents
the prime implicant §1 of £f. Here, 0 in a position implies the
complement of the variable, 1 represents the variable itself and

X indicates a don't care condition. The intersection of Fwo

cubes (o, and “j) is defined as the value of the two cube# in

'
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each position where they have identical values. If a position
in one of the cubes is a don't care, then the intersection has
the value of the corresponding position in the other cube. If
two cubes have specified unequal values in the same position

then the intersection does not exist, i.e. (ai n uj = ¢).

For example, if o 0XX1l and § = X101 and y = 1X10, then
aN § =0101 and a N y = ¢.

The intersection of two cubes (ai n uj) is said to be
inconsistent if the intersection of oy and Bj does not exist;
this means two conditions (belonging to two cubes respectively)
assign different values to the same line on the circuit.

3.2.3.2 A Primitive D-Cube of a Logical Fault (pdcf)

Let u denote the minimal input conditions that must be
applied to the logic device to produce an error signal (U or 7))
at the output. These input conditions can be determined from
the following two factors: 3

(1) primitive cubes of logical function f performed by

the circuit under the fault-free or normal conditions;

(2) fj' where fj represents the function performed by the

faulty circuit.

By knowing these two factors, the input conditions can be found

Lo e |

out as described below. : :
A faulty output U (or U) is produced by an input if it is

contained in the prime implicants of £ (or E) and also in the

prime implicants of fj (or Ej). Let oy (or uo) denote prime

implicants of £ (or E) and My (or uo) denote the prime

\
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implicants of fJ (or fj). Primitive D cubés of the fault that
result in output U can be obtained by intersecting inputs of each
cube in Y with that of each cube in a5 Similarly, primitive D-
cubes of a fault resulting in output U can be obtained by inter-
secting cubes in Yo and -

EX for a combinational circuit of Fig. 3.2.3.1-1(a), let the
faulty function fj be defined as in the Fig. 3.2.3.2-1(a) and
3.2.3.2-1(b).

EO - [
© o ~ (N
= o ~|w
i
) S
=
(=

ou
5 g pigheh P

Fig. 3.2.3.2-1(b)

s |
Figo 3.2.3.2-1(3)

1 2 3 4
0 0 1 U & A i
& .4 0% e
[Primitive D cubes of the fault]
e e e

} a9 N Uy
Fig. 3.2.3.2-1(c)

Fig. 3.2.3.2-1(c) shows primitive D-cubes of the fault. The first
cube in‘alf\ Yo is obtained by taking the intersection of the
first cube of o, and the first cube of Hoi the second cube in

ay r)uo is obtained by taking the intersection of the first cube
of a4 with the second cube of Mg+ The cube in a r\ul is obtained

by taking the intersection of the second cube in a with the
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first cube in My [here, other intersections do not exist (¢)].
Consider the first row in ay n Moi it specifies that if the
first and second inputs are set to 0 and if the third input is

set to 1, then the combinational gate output has the value U.

Here, the first cube specifies that if the first and
second inputs are set to 1 and if the third input is set to 0,
then the combinational gate output will have the value U,

Primitive D cubes for the stuck-at faults can be easily
constructed as follows. If the output of the combinational
circuit is s-a-1 then the output coordinate of every cube in %
is changed to U and, if the output is s-a-0, then the output
coordinate of every cube in oy is changed to U.

3.2.3.3 The Propagation D-Cubes of a Logic Element

This specifies minimal input conditions to the logic
element required to propagate an error signal between the input
and output of that element. Let the logical behavior of the
circuit under consideration be denoted by two sets of primitive
cubes % and ay that result in 0 and 1 outputs (from the logical
circuit) respectively. 1If "e" denotes an error signal, then in
order to propagate an error on the input line, the other inputs
should be defined in such a way that for e = 1 the resulting
cube is in Bl and for e = 0 the resulting cu.c is in BO. These
cubes can be derived by taking intersection of e = 0 with Bo
and e = 1 with Bl resulting in u or u or both e and output.

Consider the propagation of an error on line 1 through the

logic element defined in Fig. 3.2.3.1-1(a). The propagation
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D-cubes can be derived from the primitive cubes of Fig.

3.2.3.1-1(c) by intersecting cubes in a, for which the line 1

0
has the value 1; with those cubes in oy for which the line 1 has

the value 0, this results in the propagation D cubes as shown

in Plg. 3.2.3.3~=1.

1 2 3 4
U 1 X U
3] 1 X . U

Fig. 3.2.3.3-1

There are no cubes in %4 for which line 1 has the value 0.

3.2.3 Test Generation Procedure Using D-Algorithm [1]

(1) Choose a primitive D-cube of the fault under considera-
tion. This results in producing an error signal u or u at the
site of the fault. 1Initially a choice of D-cube will be
arbitrary, but as the algorithm proceeds, it may be necessary to
return and consider other choices. This process is called

backtracking.

(2) Implication - During the execution of Step 1 some

gate inputs or outputs may be specified. This requires speci-
fying values of the other signals. The -implication procedure
determines these signals in both the forward and backward direc-
tions. During this step, if an inconsistency occurs [i.e. a
value of O(l) is implied on some line which has been previously

specified to be the complementary value 1(0)], backtracking is




effected to the point where the choice existed, all the lines
are reset to their value at this point and the procedure

resumes with the new choice.

(3) D-Drive - Let D-frontier denote a set of all elements
whose output values are unspecified but whose input has some sig-
nal u or u. The D-drive selects an element in the D-frontier and

\ tries to propagate u or u at the input of the element under
consideration to the output. This is achieved by intersecting
the current circuit test cube [this cube specifies all pre-

viously determined signal values of the circuit] with a propa-

gation D-cube of the selected element. This results in a new

test cube for the element. If this intersection does not exist

wr i . e e T e i
RENSSNP————

then a new element is selected from the D-frontier. However,

S ——

if the intersection is undefined for all the elements of the D-

frontier, backtracking to the last point at which the choice
f existed is required. This backtracing'results in resetting all
lines to their values at that point and beginning with the

next choice.

(4) Implication of D-drive - Carry out Step 2
(Implication) for the test cube derived in Step 3.

(5) Repeat Steps 3 and 4 until the faulty signal has
been propagated to an output.

(6) Line Justification - Execution of Steps l1to 5 may

“ result in specifying the output value of an element but léaving
the inputs to the element unspecified. The inputs to such

:; elements are now specified to produce specified output values.
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1 { This is done by taking the intersection of the test cube with
y the primitive cubes of the element. Implication is then per-
formed on the new test cube and the process is repeated until all
the specified element outputs have been justified. Here again,
backtracking may be required.
3.3 Test Methods for Sequential Circuits [1]
Test generation for sequential circuits is a lot more
11 difficult than for combinational circuits. This is due to the
é~ fact that the present output is determined by the present and .
4 past input values. Usually, a test sequence is required to ?
i test these circuits rather than a single input vector as in the ;
f: ‘case of combinational circuits. f
% Primarily) there are three different ways of testing
? sequential circuits:
;i (1) verify whether the sequential circuit under considera-~
g tion is functioning properly or not [Functional Testing]l;
(2) convert the given sequential circuits into a set of com- :
binational circuits and test the resulting circuits with 1
the test methods used for testing combinational circuits; i
(3) verify if the sequential circuit under consideration i
behaves according to the truth table specified. ?
3.3.1 Functional Testing ;
In general, a sequential circuit consists of a combination
} of the following sequential circuit elements: (1) flip flops,
%' & (2) counters, (3) registers, (4) timing (clock) circuitry. Func- i

tional testing would mean verification of the functionality of
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these elements.

For flip flops such a testing would mean verifying that it
can change states as specified; for registers, that it can be
loaded and cleared and that all shifting operations are carried
out properly. It would test that counters increment and
decrement as required, that clock circuitry generates clock
signals at desired rates, etc. The effectiveness of such a
test is judged with the aid of simulation techniques. This
method can be effective if the test engineer is familiar with
the details of the sequential circuit under consideration. At
the stage of designing tests for sequential circuits, it
requires repeated simulation runs in order to improve test
effectiveness. For this reason, the method is timé and resource
consuming.

3.3.2 Testing by Treating a Sequential Circuit as an Iterative

Array of Combinational Circuits

Consider the block diagram representation of sequential
circuits, as shown in Fig. 3.3.2—1.A Here, the vector notation
5,.1 and Z are used to represent the input vector (xo,xl,...,xn),
the feedback vector (yo,yl,...,yn), and the output vector
(zo,zl,...,zn), respectively. Since we are considering
synchronous sequential Gircuits, the memory function is assumed
to be clocked, i.e. updating of the memory only occurs when
specified by the update (clock) signal.

The circuit in Fig. 3.3.2-1 works as follows. The

contents of the memory along with the input determine the
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Fig. 3.3.2-1

current output. When the update signal [initiated by the clock
circuitry] occurs, the contents of the memory are revised on the
basis of the inputs at that time and the contents of the memory
just prior to the update signal from the clock memory. The state
of the sequential circuit is left unchanged until the next update
signal from the clock.

Fig. 3.3.2-2 shows an equivalent combinational iterative
array for the synchronous sequential circuit of Fig. 3.3.2-1
This iterative array would generate the output z; from cell i in
response to the input x,; 1 < i < n. Here, Yo (i.e. the feed-
back at t = 0) is assumed to be known and its effect is treated
as an input to the iterative array. In this transformation
the clocked memory is modeled as a set of combinational elements
referred to as pseudo memory functions.

Since the memory is modeled as a combinational element,

the circuit in Fig. 3.3.2-2 can be tested by most of the
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techniques related to combinational circuits discussed earlier
in this chapter (Ref. Section 3.2).

Here, in effect, the time domain response of the sequential
circuit is mapped into the space domain response of the combina-
tional iterative model. A single fault in the sequential cir-
cuit corresponds to the multiple fault consisting of the same
fault in every cell of the iterative array. Since the size of
the iterative network is n times that of the original sequential
network, it is important to have an efficient algorithm for
fault detection in large combinational networks with multiple

faults.

ke

For asynchronous sequential circuits, the iterative model is
incapable of handling two major problems: namely, 1) that of ;

races (coincidence timing) and 2) hazards (false outputs).

3.3.3 State Table Approach [5]

This test method verifies that the sequential network under
test does operate according to its state table. The state table
helps represent two operations: i.e. 1) state updating, and 2)
output generation in tabular form. The state table uses a mealy
model for the synchronous sequential network.

Mealy model. - This model is also called the transition

triggered circuit since the circuit output is associated with
the state transition. Such a state table for the mod (4)
counter [counts up on an input of 0 and down on an input of 1] |

is given in table 3.3.3-1.




Input x
0 (up) 1 (Down)

Present NEXT STATE/ | NEXT STATE/
State OUTPUT OUTPUT

A B/0 D/Borrow

B c/0 a/0

C D/0 B/0

D A/Carry c/0

Table 3.3.3-1
Mealy Machine Representation for the Mod of 4 Counter
NOTATION: A, B, C and D represent the states of the counter.
1/J : Next state/output where I = A or B or
CorD J=0or1l

Inputs @5 L

States

A, B, C, D

Output : 0, CARRY, or BORROW.

The tests based on the verification of the truth table of the
sequential network are, based on the following assumptions:

(1) In the presence of a fault, the network under considera-
tion has no more states than those which are listed in
its truth table.

(2) For a normal (fault-free) network, there exists an input

sequence which can cause the machine to transfer from

each state to every other state.
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Since this method uses an abstract state table approach,
it is independent of the hardware: fault model.

This approach can also be extended to test asynchronous
sequential circuits. However, it is not very practical since
the number of entries in the state table depend on the number
of states in the network [if N = number of states in the network
then 2N = number of entries in the table]. Hence, for a network
with a large number of states, the number of entries in the
state table will be very large. This makes the construction of
the state table very tedious.

3.3.4 The ATVG Program: A Test Vector Generator For Secuential
Networks [7]

This technique is a practical computer algorithm for the
generation of test procedures for sequential networks.
Before describing the ATVG algorithm, it is required to
define certain terms.
A network is constructed from
(1) A finite number of logic elements which are either
combinatorial or memory (sequential) elements. Each
logic element in a sequential network is assumed to have
a finite number of input pins and an output pin. The
input pins are electrical loads and the output pin is a
source.
(2) Connector input terminals: These are the circuit ele-
ments to which the components of the test vector are

applied; hence, each is an electrical source.
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(3) Connector output terminals: The binary value at these
terminals constitutes the components of the network
output vector. Hence, each of these terminals is an
electrical load.

Logic elements and the entities mentioned above are con-
nected by electrical connections called leads to form a network.
Each lead is assumed to be a directed connection from a source
to a load. A network will have many paths of leads starting
at some source, traversing from lead to lead through the logic
elements and terminating on a load. The number of leads
traversed in a path is called its length.

A network can be considered as an interconnection of the
above entities as follows:

(1) There is at least one connector input terminal and one

connector output terminal.

(2) All sources are connected to at least one lead.

(3) All connector input terminals are connected to logic
element leads.

(4) All loads are connected from exactly one source.

(5) All paths are of finite length.

This algorithm is developed for synchronous sequential circuits;
it also requires that a network does not have pseudo elements
constructed from combinatorial elements as feedback. This,
however, does not mean that the actual circuit cannot have such
pseudo memory elements. It simply means that such elements

should be treated as combinational elements.
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Each logic element and each connector input terminal are
associated with one of the two binary values [0 or 1], or else
[except for memory elements] they may be unassigned. During the
test vector generation process, the values of each of the
entities will become assigned [i.e. it will have a value of 0 or
1) if it had not been initially. At the completion of this
process, all entities will be assigned. This (final) state of
the network will be the same as the actual circuit, given the

same memory element values and the same test vector applied to

¥y o

the input terminals.

3.3.4.1 Failure Conditions

The algorithm considers only the following types of

T —_—_n

failures: ;
(1) a lead s-a-0 or s-a-1

(2) only one failure condition exists in a network

Lo s

(3) if there is any open circuit then the corresponding load

e

is assumed to be s-a-0.
Hence, to test a network consisting of logic elements, it
is sufficient to verify that none of the leads connected to its
loads are open and each lead connected from its source is not

fixed.

A logic element test (or tests) is a vector of binary {
values which when applied to the loads of a logic element
: causes the value of the logic element to react to a particular

failure condition(s), i.e. a logic function performed by the

circuit will differ from the function performed under normal
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(fault-free) conditions.

A test T for a logic element L is said to be immediately
completed if the test vector T @s applied to L and a sensitive
path from L to an ocutput terminal exists [for definition of
sensitive path, refer to page 21]. 1In case T is
applied to L, but it is not.immediately completed, then one of
the two possibilities exists, either:

(1) there is at least one sensitive path from L to a memory

element; or,

(2) there is no sensitive path from L terminating on either

a memory element or an output terminal.
In the second case, T must be reapplied to L by some other test
vector in order for it to be complete.

In case 1 it is possible that T can be complete but not
during the application of the current test vector.

Let M denote a memory element on which a sensitive path
from L terminates. If the next state of M under a failure
condition differs from that which exists under normal condi-
tions, then M is said to be sensitive to the failure condition
of L, and the test is said to be stored in M. 1If in such a
case the next state vector is such that there is at least one
sensitive path from M to an output terminal, then T is complete.
If T is stored in M but not complete, then one of the two cases
listed above exists. If there is a sensitive path to memory
element My and it is sensitive to M, then T is stored in Mi'

By this process a test may be stored in many memory elements
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during a sequence of test vectors until it is either completed

or fails to be stored in any memory element. In conclusion,

a sensitive path in a synchronous network differs from that in

a combinational network in the sense that the last element of

the path may be a memory element. Hence, the memory element out-
put pins are a special form of the network's output terminals.

Additional requirements for generating test vectors for

synchronous networks over a combinational network are:

(1) Determine if a memory element is sensitive to a failure
condition when it is the last element in a sensitive
path.

(2) Creating sensitive paths from a set of elements (i.e.

a test is stored in a memory element) such that the
terminal element will react to the simultaneous choice
of these elements.

The‘ATVG algorithm generates a sequence of test vectors.

Each test vector does the following:

(1) applies tests [that are not completed and not stored in
memory elements] to some of the logic elements

(2) for these logic elements at least one sensitive path
exists to an oﬁtput terminal or to a memory element

(3) if the test is stored in a memory element [as a result
of a previous test vector] at least one sensitive path
exists, preferably to an output terminal, but otherwise

to another memory element.
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Test vector generation process.
Assumptions: (1) Initially binary values for each of the
combinational elements and the connector input terminals are
unassigned.
(2) Each memory element is assigned one of the
: binary values and some of the memory elements may be storing
tests.

(Step 1) For auget of memory elements storing the same
test vector, assign the minimum number of input terminals which
will create at least a sensitive path from the memory element
to an output terminal. If this is not possible, then assign the
minimum number of input terminals which will create at least one
sensitive path to a memory element. If no such assignment is
possible, then no input terminals are assigned.

(Step 2) 1If for a logic element a test remains to be
completed and is not currently stored in memory elements, assign

?;;f’ the minimum number of input terminals which will apply a test
vector to its loads. If no such assignment is possible, use
the same logic element for other tests if possible or consider
another logic element. If such a test is applied and if the
element under consideration is not a memory element, assign a

- minimum number of input terminals so that a sensitive path(s)
would be created as in Step 1.' If the test was applied to a
memory element, no sensitive path is created [this is due to
the fact that memory does not change state until the next

update signall. Hence, a memory element does not react to a
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failure condition until the next test vector is applied. For

the same reason, sensitive paths for memory elements which are
created in Step 1 have tests applied by the last test vector.
(Step 3) For every memory element, decide the next (after
the update signal) source value. If possible, assign the
minimum number of input terminals which will apply a vector to

its loads and will produce the above value.

(Step 4) Assign values to unassigned input terminals
at random.

The third step in the procedure above drives memory
elements in order to produce the desired next state of the net-
work. In most of the networks, the memory elements are inter-
connected in such a ééy that the next state of one may depend
on the present state of many other elements. If Step 3 is
executed after the first two steps, it may happen that the
network has been assigned to such an extent that the desired
control over the network state is not possible. For this
reason, Step 3 is sometimes performed before Step 2 or Step 1.
In order to produce a near minimum number of test vectors in a
test procedure, the state changes of each memory element must

be ~xvrfully controlled.

3.3.4.2 The ATVG Program

The input data for this program is 1) a description of the
circuit set, i.e., the allowable logic elements of the network,
2) a description of a specific network. Using this data, it i

generates a test procedure and a fault dictionary. A test
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vector generation algorithm uses the procedure described above
[for details refer to reference 7]}.

The most difficult part of the procedure is Step 3 since
it is not at all clear as to what strategies should be used to
drive the memory elements into "desirable" next states. One
cannot even define "desirable." However, in spite of this
problem, the program is very successful in practice. It is
observed that for the "average" network, the initial test proce-
dure can test a network for about 85 percent of the failure
conditions. However, this program allows the logic designer
to modify Step 3. This provision typically allows the completed

test procedure to be at least 95 percent effective.




CHAPTER 4

TEST GENERATION PHILOSOPHIES FOR LSI AND VLSI CIRCUITS

4.1 Problems of Testing LSI/VLSI Circuits

The test methods discussed earlier for combinational and
sequential circuits are based on structural considerations.
However, techniques based on structural considerations cannot
be applied with the same ease for LSI and VLSI circuits due to
the following reasons.

Any method based on structural considerations requires
either a gate level description or a state table of the digital
circuit under consideration. Due to the secrecy in design and
the number of gates on VLSI circuits being extremely large, it
may be very difficult to obtain a gate level description of the
VLSI circuit under consideration. On the other hand, if one
decides to construct a state table, due to the complexity of the
device, the state table will have a very large number of entries
thereby making this approach almost impossible to use.

Even if the gate level description is available, some of
the gates on the chip cannot be directly stimulated from the
device input pins; also, some of the gate outputs may not be
available at the device output pins, i.e. some gates may not be
observable from the device input and/or output pins thereby
making testing very complicated.

Due to device complexity, to test VLSI circuits from the

structural viewpoint, one may have to generate excessively long
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: E test sequences.
patterns by the test equipment. It may also mean

testing would be time consuming.

dence. Butﬁthe difficulties mentioned above make

T o

impossible to apply structural techniques to VLSI

circuits.
Random test and functional test philosophies
for testing VLSI circuits and a brief description

is given below.

4.2 Random Testing [8,9]

The test techniques for logical circuits can
classified as probabilistic or deterministic. An
the former is the random test generation method.

described in section 2 of this chapter fall under

oo SR ok ;. s R e e

This would require storage of long test

that the

In conclusion, we can say that rigorous structural testing

for VLSI circuits can yield a very high level of test confi-

it almost

are also used

of the same

be broadly
example of
Methods

the latter

category.

Test pattern generators (TPG) based on the deterministic
approach are not able to cope with the increasing complexity of
LSI and VLSI circuit packages and their low pin-to-circuit
ratio. Random testing isabne way of getting around this problem.
In the methods based on a random approach, random input patterns

are fed to a prototype lor a simulator] of the circuit to be

tested and are analyzed for their ability to detect failures.

The drawback of this test method is that it produces a very

large test set. To avoid this problem, the following method is
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suggested. In this method a set of randomly generated patterns are
applied to the primary inputs (PI's) [a primary input is one that
can be applied to the device's input terminals] of the device under
test. Since all PI's do not have the same functional importance [some
being more important than others], the method exercises certain PI's
more often than others [for definition refer to section 4.2.2].
During its development, the approach has undergone a number
of changes. 1In the beginning, the effectiveness of purely
random patterns was measured. At later stages weights were
assigned to the PI's in proportion to their relative importance.
Finally, the dynamic adaptive technique was developed by analyzing
the rate of change of switching activity inside the logic as a
result of exercising a PI.
The last modification achieved higher test coverages.
A pattern reduction technique can be used to compress the

patterns generated to a manageable size without any loss of test

coverage. | 3

4.2.1 Random Patterns

In this method a purely random technique assigns the same
numerical weight to every primary input (PI) of the chip to be
tested. Thus, each PI is exercised approximately the same
number of times and the resulting patterns have the characteris-
tic randomness. This approach is more suited to chips which
contain only combinational logic because they do not require
sequences of patterns; often, a set of equally weighted or

random patterns are all that is required. However, this method

46

., —— . —— e e




N —

is inadequate for sequential circuits when functional packages
such as counters and shift registers are included on the chip.

4.2.2 Weighted Adaptive Patterns

In this method weights are assigned to the PI's in propor-
tion to their relative importance. Off-line good machine
simulation is performed by software using a set of random
patterns as input. Each pattern from the generator activates
only one PI at a time. It is possible to count how many gates
inside the chip change for the first time from logic 1 to 0 and
vice versa, as the result of switching one of the PI's. The
switching activity count is then accumulated over the complete
set of patterns. By comparing the activity created by all PI's
one can determine the relative importance of each PI through
the use of this weight vector in generating new pattern sets of
equal length; iteration continues until the activity count
no longer increases.

Activity can be measured by observing the state of circuit
inputs by themselves or in combination with their output state.
Test results indicate that there is no appreciable difference
in fault coverage between the above two measurements. This
method proved to be a definite improvement over the equally
weighted patterns. However, the method does not give very satis-
factory results because of the following two problems: 1) im-
proper handling of reset lines, and 2) the difficulty created by
not having a set of weights with:the simulation process.

The problem with the reset lines is that they directly
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switch a large number of gates after applying a set of
patterns, the reset lines consistently show a high activity
count. In terms of the final fault detection patterns, over-
active resets are undesirable. The second problem is that of
having the adaptive weights one step behind the simulation.
Hence, these weights correspond to a history of what happened
in the past. Hence, it is a weight which would be more effi-
cient in changing the state of the same gate that has already
been switched. This method is not, however, predictive in the
sense that it does not assign the best possible weight to the
remaining gates which are not yet affected.

4.2.3 Dynamic Adaptive Patterns

This technique also measures activity in terms of gate
switching states. It searches for a rate of change of activity.
For example, consider two inputs to a circuit 1) clock and 2)
reset line. When the random pattern simulation is pexformed,
it is the reset line that initially shows the steepest incre-
ment activity. The activity count of the clock on the other
hand rises at a slower rate, and as shown in Fig. 4.2.3-1
its final value is reached at a much later stage than that of
the reset.

The faster initial slope of the reset line is due to the
switching of a large number of gates which are directly driven
by that line. By the time the first few random patterns have
been exercised, most of the gates will have already changed

states. For the next few hundred patterns, a few additional
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clock

,/’/’Vﬁ> reset

Number of Gates that
Changed Sta

Number of Patterns (Log Scale)
Fig. 4.2.3-1 [Ref. 9]

new gates will be switched by it. Consequently, the activity
of the reset line decreases. In the previous techniques, the
final weight associated with the reset line was the high value
of the activity count obtained during its initial performance.
The dynamic adaptive scheme locates a point where the
reset line is about to leave the knee of the curve (point 2).
Once this point is located, the simulation is interrupted to
continue from the pattern where the interruption occurred. At
the end, the clock weight [which was only slightly affected by
the resetting to 0 of the activity count] will have shown a
considerable increase in its activity, while reset can reach
only a steady-state value which is slightly more than its value
at the time of the intersection with line A. The final weight
of the clock line will therefore be high, and that of the reset
line low. This technique does not presuppose prior identifica-

tion of functional characteristics of the clock and reset lines.
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The weighted random test pattern generator (TPG) is used
to test different LSI technologies. This technique yields a
satisfactory failure coverage for simple LSI packages with pin
to circuit ratio not less than 1 to 3 and with a limited
number of logic levels between inputs and outputs.

In the case of more complex technologies wherein functional
elements were of sequential nature, weighted random TPG seems
to perform well.

Table 4.2.3-1 considers five integrated circuit packages of

varying degrees of complexity. The number of functional elements

in the circuit and the combined total of primary inputs (PI's) and

primary outputs (PO's) give the topological description of the
circuit. The complexity of a package is indicated by the
maximum number of logic levels that separate the PI's from the
PO's and the number of feedback cuts necessary to convert all
the sequential elements into combinational ones.

4.3 Functional Testing [5]

The conventional methods of testing cannot handle complexi-
ties of microprocessors. A microprocessor's logic structure is
not simply a collection of gates nor is it a well ordered
assembly as in the large scale integrated circuit memory. The
classic dc tests used to check the integrated circuits such as
measuring one and zero state output voltages, can do little to
ensure satisfactory microprocessor performance. In addition, the
commonly used computer aided simulation technique, which tests

the microprocessor with a string of inputs in a burst proves
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only that the device is free of steady-state faults such as
s-a-1l or s-a-0.

However, functional testing can provide comprehensive tests
for.microprocessors. The basic philosophy used for functional
testing is that of divide and conquer. In this approach the
problem is partitioned into smaller blocks. These sub-blocks
are tested for proper functioning and then combined. Hence, in
this approach, instead of solving a large, complicated problem
at once, one tries to solve several small nonhomogeneous
problems, generating several simpler results. This approach
often yields efficient solutions to problems in which the sub-
problems are smaller versions of the original problem.

An important step in functional testing is that of parti-
tioning the device under test (DUT) [32]. One possible approach
for partitioning the DUT is to model it as a directed graph. [A
directed graph is the ordered pair D = <A,R> where A is a
non-empty set of nodes (points, vertices) and R is a relation
in A, i.e., R is a set of ordered pairs which are called arcs
(lines, pointers).] The arcs of this graph represent the
direction of flow of information signals. The system is
tested by inserting various test signals at selectively located
test points and monitoring and evaluating the resulting outputs
at various output test points. Efficient fault detection and
location methods can be developed by inserting break points
within the system and priming the latter with test signals at

the entry vertices and monitoring and evaluating the resulting
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signal at the exit vertices. Here, the break point on an edge
of the system graph simply blocks or unblocks the flow of a
signal. However, it should be noted that the break points help
diagnose part of the system by reducing or severing its inter-
action with others; those severed edges must, in turn, be
tested later as a whole to verify their proper functioning.

Another way of partitioning the system would be to
represent the system as a set of interconnected elements, each
element having its own input and output pins. All inter-
connections within the system are assumed to be of one of the
three types:

(1) a primary input [an input to the element is said to be
primary if it can be applied directly to the element
from external pins on the device];

(2) an element output to a primary output [a primary output
is one that can appear on the device output pins from
the elements output directly];

(3) an element output to an element input.

It will be appropriate to assume that the entire testing
of the system must be accomplishéd through the primary inputs
and outputs.

Instead of considering the functional nature of each
element, one can assign a measure t which reflects the testa-
bility of the element relative to the other elements in the
system. This measure could be the number of tests required to

detect some percentage of stuck-at-faults or may be as simple
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as a component count.

Another important aspect of the testing problem is the
accessibility of these elements from the primary inputs and
outputs. For example, an element with a relatively small testa-
bility measure may turn out to be quite difficult to test
because it is buried deep in the system. Likewise, some primary
inputs and outputs may bear a far greater share of the test load
than others.

One way to do this is to picture the testing of an element
[with a measure t] as a flow process. Initially, a set of t
input tests or excitations are introduced onto the primary inputs
of the system. These excitations then propagate through the
system to the inputs of the elements involved. Here, they pass
through the element and emerge on an output as a set of t
detections. These detections then continue on to the primary
outputs of the system, where finally they can be examined for
indications of possible malfunction.

Hence, a testing process for an individual element can be
modeled by postulating a "test flow" through the system but
with added provision that the nature of the flow will change
(from excitations to detections) when it passes through the
element.

4.4 Modeling of Functional Sub-Blocks

After considering some of the methods of partitioning
large systems, one can consider different techniques for

modeling the functional sub-blocks. Two techniques available
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are: 1) Binary Decision Diagrams, and 2) A Graph Theory
i [ z Approach.
i

4.4.1 Binary Decision Diagrams

Once the functional division of a microprocessor (or VLSI)

E | is carried out, a function description of the sub-blocks is
required for testing. One method of achieving this would

2 be to use different sophisticated design languages. A
draw-back of such a description is that it makes a

detailed logical investigation difficult. On the other hand,

techniques such as truth tables, Boolean expressions and

Karnaugh maps can be used for extensive analysis. However,

b

;? j these techniques grow exponentially with the number of variables

involved.

i ; Binary Decision Diagrams give a concise description
regarding the logical structure and testing requirements of the
function involved. With the aid of these diagrams, one can
define a digital function diagramatically. This diagram is

essentially a means to compute the output value of the function

by examining the values of the inputs.
For example, consider a switching function £ = A(® B-C.

Given values of A, B and C one can find out the values of £

S ——

as follows:

Case 1: If A l, B=1and C =1, then £ =0
Case 2: IfA=1, Bor C =0, then £f =1
Case 3: IfA=0, B=C=1, then £ =1

Case 4: If A=0, Bor C=20, then £ = 0.
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A Binary Decision Diagram for this function is as shown

in Fig. 4.4.1-1.

f =A@®BC

Fig. 4.4.1-1

Fig. 4.4.1-1 shows a tree structure for this procedure.
[The procedure used to reduce the above tree structure is similar
to the one used to reduce the structure in Fig. 4.4.1-2.] The tree
is entered at the node indicated by the arrow and then proceeds
downward through the diagram. The value of the variable at each
node decides the branch to be followed. When a 0 or 1 value is
reached, it gives the value of the function f and the process ends.

The Binary Decision Diagram can also be constructed from
the truth table of the function f£. This is achieved by con-

structing a tree that has a one to one correspondence between
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the 2" rows of the table [the truth table for the Boolean
function f with n variables will have 2" rows] and the 2" paths
to the outputs of the diagram. These outputs can be labeled
with the corresponding values of £ and the required diagram
results. With n variables there will be initially L odes
but this number can be reduced by carrying out certain reduction
techniques as shown in the example below.

Consider the logic function f of three variables

f =B-C+(A(® B)

The corresponding truth table is:

>
o
Q
Hh

H H H 2 © ©o o o
~H K O o B+ P

H © +H © +H ©o += o
© O H R H i o

Table 4.4.1-1

The corresponding binary decision diagram is as shown in

Fig- 4.4.1-2a
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f = B.c +(A@®B)

Fig. 4.4.1-2

In Fig. 4.4.1-2, note that the rightmost C-node is 0 regard-
less of the value of C. Hence, this node can be replaced by
a 0, as shown in Fig. 4.4.1-3.

In Fig. 4.4.1-3 two rightmost C-nodes are 1 regardless
of the value of C. Hence, these nodes can be replaced by 1,
as shown in Fig. 4.4.1-4.

Fig. 4.4.1-4 is actually a simplified Binary Decision
Diagram for the function f = BC +(A @ B).

If, however, the switching function is specified by a
Boolean expression, a top down procedure can be used to derive f
the diagram by repeated application of Shannon's expansion i

formula:
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! Fig. 4.4.1-3

f=3B.c+(A®B)
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EOR. B, Civa.) ™ AE(YEB.Come v )+ AE(6,B,C,. )
For example, consider the function with five variables:

f = B(AC + CE) + E(AB + BD)
Begin by setting A = 0 in f to obtain the function f0 which must
be realized below the A = 0 branch. This is also done for the
A = 1 branch to obtain fl (Fig. 4.4.1-5). The process is
repeated for variable B to obtain functions in Fig. 4.4.1-6.
Note that two of the branches lead to the same function (DE)
so these may be directed to the same node [see Fig. 4.4.1-7].
In this fashion the merging of all the identical subfunctions

results in Fig. 4.4.1-8.

f=B (AC+CE) +E (AB+BD)

f0=B(c+ﬁ)+§(B+D) fl=BEE+§DE

Fig. 4.4.1-5

DE Cc+E DE CE
Fig. 4.4.1-6
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Fig. 4.4.1-8.

Typically, reductions of the diagram can be carried out by

omitting redundant nodes and merging identical subfunctions,
and then expanding each about one of its remaining variables
until all paths terminate with a 0 or 1. Clearly, all paths

will terminate in n steps.

4.4.1.1 A Property of the Binary Decision Diagrams

Each node in the diagram has two output branches and only
one of them is activated for the given input. Hence, for any

input exactly half of the branches in the diagram are activated
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and, also each node has one and only one active path to an
output value of 0 or 1.

These diagrams can be used to determine various logical
properties of the function(s) which they represent. For a
detailed description, see Ref. [30].

4.4.1.2 Test Generation Using Binary Decision Diagrams

Since the binary decision diagram provides a functional
description of the device, it is very difficult to find a set
of tests which will automatically provide complete fault
coverage for all implementatibns.

I1f, however, one generates a set of tests which fully
exercises all of the various nodes and branches of the diagram,
then it is possible to test a reasonable functional block with
the aid of these diagrams.

These diagrams are very useful to test stuck-at (Sa)
types of faults. Since at any time exactly half of the branches
in a diagram are activated, the tracing of active paths may be
less complicated compared to other testing techniques. For
the diagram with n nodes in the worst case, the depth of the

tree would be E%l, Hence, the maximum number of different

choices for the test paths would be E%l. This number seems to
be manageable compared to other methods in which the number of
test paths grows exponentially.

These diagrams will be of little use if a fault creates a

path between the nodes at the same level, or it creates a path

between nodes at different levels than that which a binary
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decision diagram allows. [The diagrams permit paths between
adjacent levels.] For such a fault, the response would be un-
predictable and the binary decision diagrams will not serve as a
correct fault model.

However, a more comprehensive test set can be obtained by
postulating various "diagram faults" analogous to the "stuck-at"
faults in an actual implementation and then generating a test
for discovering each of these faults. Again, such a procedure
will ensure that a functional block is put through a variety
of different modes of logical operations.

4.4.2 A Graph Theory Approach

This is a mathematical approach which is still in the
infantile stage. Although a lot of work has been carried out
in this area, little has been done in applying this technique
in practice. The advantage of the technique is that it provides
a mathematical background to the modeling of functional sub-
blocks, thereby giving some mathematical insight into the
problem.

4.5 Causes of LSI Microprocessor Failure [10]

LSI devices have all the reliability problems associated
with small-scale integration (SSI) and medium scale integration
(MSI) devices plus others. Since microprocessors are chips of

larger area, devices are more prone to defects inherent in the

semiconductor material thus increasing the probability and number

of process defects such as pin holes and metalization faults.

Larger packages are required to assemble the LSI devices,
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thereby introducing more bonds and increasing the probability
of bond failure. The larger packages are more difficult to
seal theoretically, increasing their susceptibility to leaks.

Unlike the simple TTL integrated circuit, the LSI device
must be tested as a system. This makes the testing more complex
and less thorough relative to the testing of SSI and MSI com-
ponents. Interaction between adjacent active elements of the
LSI circuit can give rise to unwanted parasitic transistor action,
coupled-capacitance effects, and under various combinations of
logic patterns, can cause an LSI device to lose stored informa-
tion~--a phenomenon called pattern sensitivity.

Experience has shown that systems using LSI dev. = s are
more reliable than systems using discrete components. (ne con-
tributing factor is the general improvement in semiconductors
in recent years.

The results of certain failure studies for LSI show that
approximately 45 percent of MOS LSI failures were chip related
failures and only 28 percent were due to package and assembly-
related failures. Twenty percent of the remaining failures
were attributed to handling and 7 percent were due to other
causes. Of the 45 percent chip-related failures, 20 percent
were attributed to oxide faults. [Ref. 10]

The oxide in an MOS (metal oxide semiconductor) performs
a dual function. It protects the semiconductor material and
determines the operating parameters of the MOS circuit. Micro-

processors, like all components, have unique failure mechanisms,
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as well as mechanisms in common with other semiconductors.
Typical causes of microprocessor failure [package and die
related failures] may yield any failure mode depending on
when and where on the chip they occur.

The assembly and package-related failure causes include
1) open-bonded wires, 2) lifted bonds, 3) lifted chips, and
4) loss of hermeticity.

Potential package-related failures are important for the
following reasons. The large die size could affect the proper
bonding of the die to the package. A large number of wire
bonding pads and the number of external package pins regquired
increase the probability of bad wire bonds occurring, and the
large package size could present sealing problems which are
noticed only by hermeticity and temperature cycling tests. The
integrity of #he die and wire bonds could be ensured by centri-
fuge tests, which must be performed with extreme care so as not
to crack the package.

4.5.1 Failure Modes

Failure modes of LSI devices (memories, microprocessors
and the like) are divided into two major categories:

a) catastrophic failures, and

b) soft failures.
The catastrophic failures can be attributed to the following:
I) oxide rupture, II) interruption of lines, III) wire bond

failures, and 1V) corrosion due to contamination.
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3 Soft failures, being hard to detect, can be simply out of

L specification conditions at certain operating conditions. 1In
some instances, soft failures cannot be reproduced. For example,
test system noise can cause failures and this noise cannot be

b reproduced. For this reason, characterization testing is
important. Most soft failures are single bit failures. They
occur due to one of the following reasons: slow access, loss of
data in cells or multiple addressing. The advent of the micro-
processor hés added soft failures related to software and the

interrelationship between software and hardware, such as

(1) pattern and pattern sequence sensitivity

(2) interrupt, such as trigger on wrong priorities for

multilevel interrupt

(3) failures to execute instruction and/or interrupt
(4) loss of carry and bits during circulation of data
(5) instruction and instruction sequence sen#itivity.

4.5.2 Electrical Testing

One of the critical areas of microprocessor reliability is

that of electrical testing. How does one adequately test a

Attt

Microprocessor Unit (MPU) to ensure that it has no shortcomings

o —

T —

for all possible conditions of use? Electrically testing a

microprocessor is very difficult due to the following reasons: ; E
i (1) the random logic nature of an MPU, (2) the bus organization,
(3) the on-chip interrelationship between functional blocks,
(4) chip layout and (5) relationship between software and hard-

ware and the like. [The microprocessor must be considered as
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a monolithic system of untested parts, the constituent com-
ponents of which are not accessible.]

For these reasons, it is important to perform first a
characterization test program. The results of this test program
are then used to develop a complete electrical test program that
is both meaningful and viable.

In electrical characterization, a sample of a given device
type is subjected to all practical combinations of supply
voltages, temperatures, timing conditions and parametric
variations.

The aim is to discover how the parts respond under these
conditions and within what limits they remain functional.

The tests include stringent functional stressing by
means of patterns, as well as timing and parametric
variations under temperature extremes. Worst-case patterns and
instructions with supply and timing variations are applied to
the device to expose as many of its failure modes as possible
and to determine its performance under the most severe condi-
tions.

If the characterization is well planned, electrical
characterization can provide much valuable data. The resulting
volume of data must then be put into a form that is easy to
interpret so that meaningful conclusions can be reached.

4.6 Testing of LSI Random Access Memories (RAM) [11]

Typically, RAM memories are manufactured using one of two

technologies, bipolar and metal oxide semiconductor (MOS). The
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MOS memories have a higher circuit density and, hence, have a
larger memory capacity. Unfortunately, these memories store
their data via the charge across a capacitor. Due to circuit
leakage, this charge must be re-established at fixed intervals,
otherwise the value of the bit stored will be lost. The
process of re-establishing the data in the memory is called
refreshing. Memories which require refreshing are called
dynamic. The following parameters have a significant effect on
how the memory is to be tested: 1) total capacity, 2) array
configuration, 3) addressing layout, and 4) refresh parameters.
Faults can occur in the memory matrix, decoders, input
buffers, read/write circuitry, data input circuitry or sense
amplifiers. These faults can lead to functional failures such
as inability to read or write, erroneous data storage, d.c.
parametric failures such as unacceptable output levels, or
dynamic failures such as slow access times. Specifically, the
semiconductor RAM memories exhibit malfunctions such as:
(1) opens and shorts
(2) open decoders - the total memory cannot be truly
addressed
(3) multiple wires - in the act of writing in one cell the
chip actually writes in more than one cell
(4) pattern sensitivity - the contents of a cell get comple-
mented due to read and write operations in "electroni-
cally adjacent" cells. Such an error may be a function

of (a) the information being read or written, (b) the
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cells being addressed and (c) the seéuence in which
these cells are addressed.

(5) write recovery - memory may not produce information at
the specified access time when each read cycle is pre-
ceded by a write cycle

(6) sense amplifier sensitivity - memory may not respond

- with the proper information after reading a long series
of similar data bits followed by a single transition of

the opposite data value

4 (7) poor retention - memory loses information in less

;

than the stated hold time [the hold time is defined as

the maximum period of time the data can be stored with-

vz

out re-establishing its value].

| The problem of pattern sensitivity arises mainly due to

high component density and related effects of unwanted inter-

L SIS T T

acting signals. Due to this problem, the following situations
may occur: (1) store (write) a value in cell K, (2) read this
value several times to verify that it is indeed stored in cell
K, (3) read and write in cells other than cell K, and (4) read
| cell K and find the value which is now wrong. This effect can
occur even though each cell is capable of being correctly
addressed and can individually store a 0 and a 1.

To prove that a read/write RAM is totally functional, the
following aspects must be verified:

(1) Every cell of the memory must be capable of storing a

0 and a 1; é
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(25 The cell addressing circuits, or decoders must

,i' | correctly address every cell;

(3) The sense amplifier must operate correctly;

(4) There must be no interaction between memory cells;

(5) For dynamic MOS memories, the cells must be capable of
storing data for a specified time without being

refreshed. -

It is a difficult task to design tests to cover the five
factors given above. Tests must also take into consideration
1 the chip configuration and electronic characteristics, since

each design exhibits its own unique failure characteristics.

It is often very difficult to determine exactly what fault modes

exist in these chips. In practice there are many different

. O

types of test patterns available for testing these memories.

Each has its place or use along with certain trade-offs as to

the sufficiency of the test, and test time. Certain patterns

are specifically aimed at certain problem areas. The most
common of these patterns are discussed below.

4.6.1 Write and Read Ones and Zeros ;

This is the simplest of all memory test patterns and is
widely used throughout the industry, although it is of limited
value. An LSI memory array could possibly have totally non-
functional decoders, with one memory cell selected and connected
to the input-output lines and still appear good with this

test. With all the decoders nonfunctional, there will always

AT

be one memory cell that is permanently selected because each
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nonfunctional decoder must be in either a permanent one or zero
state. When a logic one or zero is written, the one or zero
will be stored in the permanently selected memory cell and upon
checking the contents of the memory array for an all ones or
zeros pattern, the contents of the one selected memory cell
will always appear on the output as all ones or all zeros,
indicating that the device is good when it is not. ;

The all ones and zeros pattern is, however, useful but
its application is limited due to the problems mentioned above.

4.6.2 Marching Ones and Zeros

This is a basic test to ensure that the memory is

functional (that is, the addressing is operational and

each cell can be written and read in the input/output state).

The memory is first written to the all-zeros state. Then
sequentially, starting at the first address, the zero is read
and a one is written. This sequence is continued to the last
location (i.e. until the memory is full of ones). Then,
starting at the last location, a one is read and a zero is
written., The address is reduced in location and the sequence
is repeated until the first location is reached. This overall
sequence is then repeated with the data reversed.

As the memory is being scanned in the ascending direction,
any effect on a location above will be detected when it is
eventually read. If the effect is on a location below, it will
not be detected until the memory is scanned in reverse. This,

by no means, tests everything or all interactions, but does

T




reasonably assure that the memory is working and that no
! L defective elements are present.

4.6.3 Walking Ones and Zeros

The most widely used and most generally known test for

semiconductor memories is walking ones and zeros, sometimes

called ripple. This test is much more extensive than the
marching ones and zeros. Initially, all locations are written
to a "background" pattern of all zeros. Then starting at the

first location, a "test word" of one is written. All other

locations in the memory are sequentially scanned and read to

b

verify that they still contain the background pattern of all

zZeros. Thé "test word" one is then read and written back to

zero. After the first iteration, it is known that writing a one

e < Rkl AR

in the first location does not affect any other location. This

sequence is repeated for every location in the memory. At the

S Ll C

completion of walking one through a field of zeros, the
patterns are reversed and the zero is walked through a field of
ones. Overall, this test sequence results in 2(n2 + 4n) tests
where n is the number of locations in the memory. This test

pattern is useful for testing dc pattern sensitivity, func-

tionality and proper address operation. However, because of

infrequent data transitions during the read cycles, it is not

a good test for access-time determination.

: 4.6.4 Galloping Ones and Zeros (GALPAT)

This is one test pattern that includes testing all possible

address transitions. It uses the same data pattern sequence
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as walking ones and zeros. Initially, all locations are
written to a background pattern of zeros. Then, starting with
the first location, a test word of one is written followed by a
read sequence of read location two, read location one (test
word) , read location three, read location one, etc., until
every pair of transitions is checked. The test word is moved
to the second location and the sequence is repeated, checking
all transitions with the second location. This is repeated for
all locations. The patterns are reversed and the overall
sequence is again repeated.

The GALPAT test provides alternating data output during
successive read cycles and overcomes the‘access-time limitation
of the previous pattern. Write/read operations which are per-
formed only every n basic cycles, are less than rigorous;
however, overall, the GALPAT is a very good test procedure.
Other standard test patterns used in industry for testing LSI
memories include: galloping write recovery, multiple address
exercise test (MASEST) and checkerboard. Table 4.6-1 gives
the summary of performances of the various standard testing
patterns.

The n in the test time column of Table 4.6-1 refers to
the number of memory cells in the LSI memory array.

4.7 Functional Testing of Microprocessors ([3]

This approach involves the following procedure:
(1) Prepare a functional block diagram by partitioning the

processor into basic functional blocks. To develop a detailed
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functional diagram requires a gate level diagram, timing
E I diagram and a block diagram showing the major functional areas

; of the microprocessor and interconnecting data and control

paths. However, in many cases, microprocessor vendors supply

only a timing diagram and a block diagram. This is inadequate

o T AR

to prepare a detailed functional block diagram and one has tc
g i rely on the best available information.
For partitioning the microprocessor, the test engineer

should study the hardware architecture and software response

L
e

specifications of the microprocessor under test. Architecture
| refers to the internal organization of the device: an ordered
i set of modules such as a program counter, arithmetic logic

unit (ALU), accumulator, stack pointer, etc. Software response

refers to applying a set of instructions to the microprocessor ﬁ

under test in order to monitor the operation of various modules.

After familiarization with the above, an ordered set of test

sequences can be developed in the microprocessor's programming :

language for testing the modules.

There is a wide variety of microprocessors available on

the market today and each has its own architecture; of all the
Fo product types, 8 bit units like the Intel 8080, Motorola 6800, and
MOS 6500 series, have gained the widest market acceptance.
Block diagrams of the Intel 8080 and Motorola 6800 are as shown in
Figures 4.7-1 and 4.7-2 respectively.

4 Typically, an 8 bit microprocessor [refer to Figs.

4.7-1 and 4.7-2] has two internal busses, an 8-bit bi-directional
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Fig. 4.7-2 Mc6800 Block Diagram [39]

data bus and a 16-bit unidirectional address bus. The typical
i functional block diagram of such a processor would resemble
Fig. 4.7-3. The data bus carries both instruction codes and data.
The instructions are decoded and executed in connection with the

appropriate controls and the data goes to both the arithmetic

b logic unit and the accumulator to be manipulated by specific

This test philosophy was developed by General Electric ﬁ
for RADC.
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arithmetic or logic operations. The address bus links with the

main memory where both instruction codes and data are stored.

Stack pointers, program location counters and register files

also supply information to the address bus.

(2) Test each functional block wusing proven test

patterns. [This testing should yield a high test confidence




level.] Some of the functional blocks can be exhaustively

tested using only 'a few test vectors.
The following is a typical procedure to achieve this.

4.7.1 Pin Independence

This is achieved by verifying that while each pin assumes
a one and a zero state, all of the other pins - either individu-
ally or collectively - are in the complement state. The states
of the input pin have to be monitored unless they are sensi-
tized to the outputs.

4.7.2 Testing of Control

Such a testing should verify:
(1) Each control line performs the intended function.
This is achieved by activating each control line and verifying
whether address, data and status lines assume the correct states.
(2) Each control line will perform independently of the

previous instruction. This is achieved by activating the con-

trol lines in a gallop type test and checking the response.

(3) The proper priority is maintained when. two or more
control lines are activated at the same time. { 4

(4) Some of the control lines will have high impedance
capability (Tri-State lines). [For example, some of the tri- 'g
state control lines in Mc6800 are Data Bus Enable, Bus 'F
Available and valid Memory Address (VMA).] These lines and
their associated circuitry should be activated and checked for
proper operation.

Tri-state lines are checked by placing them in a high
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impedance state and measuring the leakage current. This
should be tested with the input of the tri-state buffer acti-
vated to both a one and a zero.
4.7.3 Data Lines

(1) These are tri-state lines and they should be subjected
to the same test as in step 4.7.2-4.

(2) Line independence - This is accomplished by checking

that while each line assumes a one and a zero state, the rest
of the lines - either individually or collectively - are in the
complement state.

4.7.4 Testing of Multiplexers

Test if a multiplexer can pass both a one and a zero in

each selection position.

4.7.5 Testing of Arithmetic Logic Unit (ALU)

(1) Testing of serial adders/subtractors:

(I) With carry = 1, apply all possible inputs, i.e.
0 and 0, 0 and 1, 1 and 0 and 1 and 1 to each input pair.
(II) Repeat (I) with carry = 0.
Steps I and II should be carried out for both the add and
subtract modes.
Typically, for the 8 bit microprocessors the subtractor
is a one's or two's complement subtractor.
Two's complement subtraction is performed by complementing
the subtrahend and:
(I) For single precision arithmetic, adding with

carry-in equal to "one."
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(II) For multiple precision arithmetic, adding with
carry-in equal to borrow from preceding bytes.

Hence, a test for subtraction requires verification of the
addition function and then verification of the complementing
circuitry. This requires the following tests:

(I) Verify the eight possible inputs to each bit of
the adder.

(II) Verify that the complementing circuitry will
complement both a one and a zero for each bit.

(III) Verify decimal adjust circuitry.

(2) Testing ALU for logic operations:

(I) For each input pair of the ALU, apply the following
input conditions:
(a) 0 and 0, 0 and 1, 1 and 0 and 1 and 1 during
Exclusive OR operations
(b) 0 and 0, 0 and 1, and 1 and 0 during logical OR
operations
(c) 0 and 1, 1 and 0 and 1 anéd 1 during AND operations.
(I1) Verify that for shift left and for shift right
operations, both a "0" and a "1" are shifted from each bit
into a "1" and a "0" respectively, in each adjoining bit.
This requires four shift left and four shift right combinations,
i.e. this would verify 0 to 0, 0 to 1, 1 to 0 and 1 to 1
transitions.
(3) Testing of Flip Flops. Check flip flops for 0 to 0,

0 tol, 1 to 0 and 1 to 1 transitions.
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(4) Verify that the carry-in has no effect on the ALU
during logic functions.

4.7.6 Checking of ALU Flag Signals

Check that special outputs such as carry, carry generate,
carry propagate and overflow from an ALU operate properly, i.e.
assume both a one and a zero state and that they occur at the pro-
per time. If Boolean equations are provided for their generation,
verify that each of the terms in the equations affects the outputs.

4.7.7 Verification of Instruction Set

Execute each instruction or op code at least once to verify
the instruction set. Checking that only the intended instruction
is performed verifies that the decode circuitry is functioning
properly.

4.7.8 Testing of Processor Registers

This includes the following:
(1) Verify register independence. This is achieved by writing
into one of the registers and checking that others are unaffected.
(2) Verify bit independence. This is achieved by checking
each bit for the zero and one state with respect to all other

bits which are in a complement state.

(3) Verify integrity of_unique registers. (Here, by
unique, we mean registers such as accumulators, stack pointers,
index registers, storage registers, etc.).

This is achieved by ensuting that transitions from 0 to 0,
0 to 1, 1 to 0 and 1 to 1 are possible for each bit of each

static register.
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If the device under test contains a RAM or if the unique
registers can be configured as a RAM, the following items should
be checked.

4.7.9 Testing of Processors Containing RAM

(1) Address Uniqueness. If a memory has n words, verify that

there are n independent word locations or verify that unique reg-
isters are independent. This is achieved by writing into an ad-
dress or register and verifying that it was the only address or
register affected. The standard RAM tests used for this are walking-
one, walking-zero, galloping-one, galloping-zero, or write recovery.

(2) Bit Independence. This is achieved by verifying each

bit for a zero and a one state with respect to all other bits
which are in the complement state. This is accomplished by a
walking-one, walking-zero type of test.

(3) Cell Integrity. Check that transitions from 0 to O,

0 tol, 1 to 0 and 1 to 1 are possible for all bits. For
multiple bit RAM's, this can be achieved by walking-one,
walking-zero test. For single-bit RAM's, separate tests have
to be performed for the 0 to 0 and 1 to 1 transitions.

(4) Cell Independence. For dynamic RAMs check for inter-

cell disturbance. Maximize the number of internal transitions
to test for cell to cell interaction. This can be achieved by
a galloping-one, galloping-zero type of test.

(5) Data Retention for Dynamic RAMs. This is the same as

the test number 4.7.10 [for certain devices, it may be necessary

to check the following items:
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(6) Write Recovery. Verify that transitions from write to

read do not cause access time failures. This is verified by
checking all possible transitions from write to read.

(7) Read Modify Write Recovery for Dynamic RAMs. Check

that transitions from a read to a write do not cause incorrect
information to be written into the device. This is achieved by
checking all possible transitions from read to write.

(8) Sense Amplifier Recovery for Dynamic RAMs. Test for

sense amplifier frequency response by repeatedly reading 1-0
data patterns at minimum read cycle time.

4.7.10 Verification of Dynamic Registers and Busses.

This test should check that enough charge is transferred in
a minimum transfer time and that sufficient charge is available
after the maximum storage time. This is achieved by varying the
power supply voltages and clock amplitudes, periods, widths, and
delays to set up the worst case condition mentioned above.

4.8 Available Test Methods for LSI Testing

4.8.1 Signature Analysis [29]

This technique utilizes a portable tester which essentially
compresses a multiple-bit burst into a form that can be easily
handled, without an undue amount of software. One method used
in large systems'is transition counting [described in section
(6)]. The signature analysis method is based on the data com-
pression technique called cyclic redundancy check codes (CRC)
borrowed from the telecommunications field. 2 cyclic redundancy

check code is a form of a check sum produced by a pseudorandom
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binary sequence (PRBS) generator.

4.8.1.1 Pseudo Random Binary Sequences (PRBS)

A pseudorandom binary sequence is a pattern of binary
ones and zeros. The pseudorandom binary sequence has a property
that it starts repeating after some sequence length. Due to its
randomness, the sequence provides ideal statistical characteris-
tics, yet the sequence is usable due to its predictability.

An n-bit PRBS generator can generate a sequence of any
length up to 2P-1 before it starts repeating. The maximal length
generator is the one that repeats exactly after 2"-1 bits. Such
a generator will generate all possible n-bit sequences except
a string of n zeros. For example, consider a fifteen bit
sequence 1000111101011001. This bit pattern is produced by a
four bit maximal length PRBS generator (since 15 = 24—1). In
this sequence, a.l possible bit patterns occur only once and
then the sequence starts repeating.

The construction of a PRBS generator is based on Galois
field arithmetic. The Galois field of two elements has an
alphabet of two symbols, 0 and 1, together with modulo-2
addition [i.e. 0+ 0 =0, 0 +1 =1, 1+0=1, and 1 + 1 = 0]
and multiplication [i.e. 00 =0, 01 =0, 10 =0, 1-1 = 1].
For this reason, in a PRBS generator there exists only two
types of operating elements. The first is a modulo-2 adder
[also known as exclusive OR gate] and the other is a simple
flip flop (say D-type) which acts as a time delay of one clock

period. A shift register can be constructed by connecting
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CLOCK PULSES @
Output =1000111101011001

Cycle Q, Q, Q, 0, D=0, @q,

Initial State 0 0 0 0 1l 1

1 3 0 0 0 1

2 1 1 0 0 1

3 1 1 1 0 1

4 1 1 1 1 0

5 0 1 3 1 1
6 1 0 1 1 0 1

7 0 1 0 1 1

8 1 0 1 0 1

9 1 1 0 1 0

10 0 1 1 0 0
| 11 0 0 1 1 1 ;
; 32 1 0 0 1 0 ?
E 13 0 1 0 0 0 ]
14 0 0 1 0 0 :
Begin to Repeat: 15 0 0 0 1 1 1

Fig. 4.8.1.1-1

these flip flops in series, as shown in Fig. 4.8.1.1-1. By taking

the outputs of various flip-flops, exclusive ORing them and

feeding the result back into the register input, a feedback
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shift register is obtained that will produce a pseudo random

sequence. With the proper choice of feedback, the sequence will
be maximal length. The fifteen bit sequence considered earlier
was produced by the PRBS generator of Fig. 4.8.1.1-1, with tbhe
flip flops initially in the 1000 state. [Note, the all-zero
state is not allowed.] The table in Fig. 4.8.1.1-1 shows the
pseudo random sequence. This list contains each of the sixteen
ways of arranging four bits except four zeros.

Figure 4.8.1.1-2 shows the same feedback shift register
with an external input. 1In this case one can superimpose input
data onto the pseudc random sequence. The superimposed data

changes the sequence generated by the generator.

® T g 3 > 4

Input

SS9

)
Fig. 4.8.1.1-2 it

4.8.1.2 Shift Register Arithmetic

Let x(t) denote an input sequence; let D be a transform
operator such that x(t) = Dx(t-i). Multiplying by D is equiva-

lent to delaying data by a unit of time. 1In Fig. 4.8.1-2, the
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data entering the register is the sum of samples taken after one
clock period and four clock periods, alohg with the input data
itself. Hence, the feedback equation can be written as

4 + x + 1. The characteristic

D4x(t) + Dx(t) + x(t) or simply x
polynomial for the feedback shift register is the inverse of the
feedback equation. Let the feedback polynomial for the n stage
(n £flip flops) register be denoted by f(x). The characteristic
polynomial is given by x"f(x-1) . Hence, the characteristic poly-
nomial for the shift register in Fig. 4.8.1.1-1 is x4 + x3 + 1
which is the inverse of the feedback equation.

Feeding data into a PRBS generator is equivalent to dividing
the data stream by the characteristic polynomial of the generator.

Since the PRBS generator is constructed from the Galois field
elements [Modulo-2 adder], it is a linear sequential circuit. This
generator gives the same weight to each input. A nonlinear cir-
cuit on the other hand would contain combinatorial devices such
as AND gates, which are not modulo-2 operators and which would
cancel some inputs based upon prior bits. Hence, a linear poly-
nomial is one for which P[X+Y] = P[X] + P[Y]. 1In Fig. 4.8.1.3-1
three different bit streams X, Y and X+Y are fed to the same PRBS
generator. Note that the output sequence follows the above rela-
tionship, i.e. Q(X+Y) = Q(X) = Q(Y). Y is a single impulse bit
delayed in time with respect to the other sequences and it may be
noticed that X and X+Y differ in only bit, viz. 4th bit from the
left. However, Q(X+Y) looks nothing like Q(X). Let R(X), R(Y) and

R(X+Y) be the remainders in the registers generating X, Y and

X+Y sequences respectively.
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; X=101 010 101 010 101 010 10 Q(x)=000 011 000 100 101 111 10
: —> —>
& . R(x) = 0111
]
¥Y=000 100 000 000 000 000 00 Q(y)=000 000 011 110 101 100 10
> e
' R(Y) = 0011
X+¥=101 110 101 010 1G1 010 10! Q(X+Y)=000 011 011 010 000 011 00
>
>l R(X+Y) = 0100

Note: (1) Contents of the above registers are initialized to 0000

(2) Principle of superposition holds, Q(X+Y) = Q(X)+Q(Y)
(3) Here, "+" means exclusive OR operation

Fig. 4.8.1.3-1

If we stop after entering only twenty bits of the sequence and
é compare the remainders, they would be R(X+Y) = 0100 and
R(X) =.0111.

4.8.1.3 Error Detection Using PRBS Generator

In Fig. 4.8.1.3-1 the x input can be taken to represent an

input data stream; X+Y can be considered as representing an

erroneous input with Y an error sequence. Since by stopping the

T —————————————————

PRBS at any time and comparing the remainder in the register
with the expected bit pattern, single bit errors will always be

detected. This error detection capability does not depend on

the length of the input sequence. In Fig. 4.8.3-1 R(X+Y) is

different from the correct R(X) and the effect of the error
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é‘ | persists even though the error has disappeared many clock

%‘ | periods ago.

: If the synchronous sequential circuit is supplied with the
clock and gate signals necessary to produce a repeatable cycle
for the testing, then the PRBS generator can be used [as a
passive device] to accumulate data from a node in the device
under test (DUT). By carrying out this procedure for a known

good device, one can associate with each test point the contents

of the shift register. This information can be used to test the

failing device. Since the PRBS remainder depends on every pre-
vious bit that has entered the generator, this is an identifying
characteristic of the data stream; hence, this labeling of the
node is termed as signature and the technique is termed as

"signature analysis."

In conclusion, a feedback shift register with n stages will
detect all errors in a data stream of n or fewer bits since the
entire sequence will remain in the register. (For mathematical
proof, see Ref. [29].) For data streams of greater than n bits
in length, the chance of detecting an error using a PRBS is

very high for generators of reasonable length. The undetected

errors are predictable and, furthermore, such an error detec-
ting method will always detect a single-bit error regardless

of the length of the data stream.

4.8.2 Transition Counting [1]

Consider a digital circuit, which under fault-free condi-

tions produces an output sequence Z in response to an input
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sequence X. When testing a circuit, assume the output response

3 observed was 2' to an input sequence X. If Z # Z', then the

T

fault is said to be detected. There are two problems asso-
ciated with this testing: (1) the entire fault free response

: 2 has to be stored for comparison with 2', and (2) 2' must be
compared with Z bit by bit. This requires a sizeable amount of

hardware, especially if this comparison is to be made at the

DUT's clock rate.

In order to circumvent these problems, one can apply a

function f to the output response of the DUT and compare f(Z)
é with £(2'). Several different choices for the function f exists, 3
| namely, "the number of 1's in the sequence," or "the number of

0 to 1l and 1 to 0 transitions in the sequence." The latter is

called the transition count (TC) and is employed in some popular
commercial testers.

Properties of Transition Count Testing.

Let 2 = 2(1)2(2)...2(n) be any n-bit binary sequence [for ! 4
simplicity assume that the circuit has only one output). Then

the transition count C(Z) of Z is given by the equation

PSP,

n-1
C(2) = [ 2(i) ® 2(i+l) | 4

=1

|
|
where ] denotes an arithmetic summation and (® denotes an | 4

exclusive OR operation. For example, consider the circuit in

————— e
-

: Fig. 4.8.2-1. The input sequence and the transition count for

‘each signal are as shown. The output sequence is Z = 1001 and
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Cc(2) = 2. If the output of G, is s-a-1, we obtain 2' = 0001
% | and C(2') = 1. Hence, this fault changes the transition count

from 2 to 1 and therefore the fault is detected.

1001 (2)

| 1011(2)
! X
? 1101 (2) | 1001(2)

2

}  cw@
1001

Yy 1011(2)
1111(0) ] 2 1011(2)

1011(2) | .
¥3 nmo Fig. 4.8.2-1

Since actual responses need not be stored, the testing is
quite simple. The transition count for the DUT can be deter-
mined by feeding outputs of the DUT into counters. Hence, very
simple Automatic Test Equipment can be used. For an n-bit
output sequence, an m bit counter is required, where m is
proportional to Log,n .

Typicélly, a circuit is tested using this method by first
applying a long test sequence to a fault free circuit and
recording the transition counts at each of the circuit outputs.
This information is used in determining the location of a
fault. The input sequence is generated by a hardware pseudo-
random number generator.

3 This method does not require any modeling and associated

computer test generation and/or simulation. Automatic Test
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Equipment (ATE) used in this technique is very simple compared
to the equipment which must process test programs and fault
dictionaries. This ATE can therefore operate at much higher
test rates.

One of the problems associated with this method is that it
may not yield a high test confidence level (TCL) since only
some function of the output sequence is verified and not the
entire sequence. For example, if a number of ones in a sequence
is a test criterion, then it could happen that the segquence may
have the desired number of ones, but, however, they may not be
located in the proper positions in the sequence.

Since the device under test is tested at a very high rate
on input patterns which are not necessarily functional, there
is a chance that races or hazards may occur in the DUT. In
this case, it is possible that the DUT will be classified as
faulty when, in fact, it is not. Careful programming of the
input specification will tend to minimize this problem.

4.8.3 Signature Analysis Versus Transition Counting

Plots of probability of error using a transition counter and
PRBS generator (Fig. 4.8.3-1) show that the transition count
method appears worst on single bit error which is where the
PRBS generator never fails. Overall, the transition counter
seems to detect at least half of all the errors; however,
even a single bit shift register could do this. The four-

bit PRBS generator will always detect better than 93 percent
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4.8.4 Comparison Testing

This technique is typically used in device testing. A
vector test applies a set of test patterns (usually supplied by
the designer of the microprocessor) to both the MPU under test
and a known good MPU. Outputs from both devices are compared
against one another to determine the functionality of the
device under test. This approach results in considerable
savings in buffer memory size as it is not necessary to provide

an expected output pattern. Partial diagnosis information is

available since the designer usually derives the test pattern
by aiming at a specific block of logic inside the MPU or at a
specific sequence of instruction. However, the technique
suffers from some drawbacks. For example, the dependence on a ;
designer to specify the test pattern tends to limit the flexi- :
bility to change or modify the input test pattern, and also
makes the degree of testing somewhat questionable. In addition
it is questionable as to whether the known good device is
functionally good. Another question which needs ;o be

answered is the following: Is a comparison test showing "pass"
results necessary because both the known good device and DUT are
equally unable to meet the test conditions? This problem can | L
be handled by operating the known good device in a totally
separate "benign" environment in which all timing relationships

(except period), and all biases are at the most favorable values.

Worst case or stress conditions are seen only by the DUT.
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Another criticism regarding this method is that the DUT
cannot be tested at speeds faster than the known good device's
speed. As a practical matter, by selecting premium reference
parts for a known good device, a comparison system can be
operated at speeds considerably above the specification values
for incoming inspection. Thus, for both production tests and
incoming inspection, this peculiariﬁy of comparison testing is
of little practical importance. However, the engineering user,
concerned with modifying or advancing device technology,
may encounter another problem, in that it is clearly not
possible to test the very first part of a new design using any
comparison technique, unless an alternative technology or a
simulated device is available.

4.8.5 Algorithmic Pattern Generation

In this method, the defined sequence of patterns can be
created using a high speed pattern generator under microprogram
control. The input and output patterns are then generated
during the functional test and compared with those from the
device under test. The method may be very complex, as in the
case of full hardware simulation, or relatively simple, as in
the case of partial or sectional simulation.

Due to the modular structure inherent in the microprocessor,
the algorithmic pattern generation method lends itself
to the modular sensitization technique. Each module is sensi-

tized by a sequence of generated stimuli which simulates the

96




i
"

actual microprocessor instruction and the devices true output
response is controlled by the pattern generator.

This method allows users to generate their own patterns
and modify them at ease. The algorithmic pattern technigue
can also solve the problem of the overhead data transfer time.
Algorithmic generation of patterns occurs at a speed comparable
to the device speed, thus a substantial amount cf overhead time,
experienced by the storage pattern method, is eliminated.

Some of the commerical test systems (e.g. Macrodata
MD-501) are specifically designed for algorithmic pattern
generation as well as pattern storage testing.

4.8.5.1 Stored Response Method

This method can be subdivided into two classes: (1) learned
pattern response, and (2) predicted pattern response. In either
technique, the DUT is tested with a complex test pattern (on a
cycle by cycle basis) stored in the bulk memory. In the learned
response technique coded instructions are executed on a known-good
device to learn the fault free output response. Both input and

output responses are saved in the bulk memory and are used later
on the test device.

The predicted response technique, on the other hand, does
not require a "known good device" for generation of the test
patterns. Such methods as logical or functional simulation are
used to predict the input and output responses required for
assembling the test pattexn. The predicted response technique

was used by the Hughes Aircraft Co. to characterize the 8080
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microprocessor. The key technigque of this method is the
development of a software test pattern generator which includes
a detailed functional simulator. This simulator compiles a
series of microprocessor mnemonic commands into complete

test patterns which includes both input ani output responses
from the DUT.

4.8.6 Computer Simulation

In this method a computer with an appropriate software simula-
tion program is used as a model for the DUT. The output patterns
from this model are then compared with those generated by the DUT.

This scheme requires minimum device programming effort
and allows full detection and possible isolation of any
catastrophic fault of the stuck-at-l or stuck-at-0 type.

The method is well suited if one assumes that faults in
MPU are only of s-a-1l and s-a-0 type. However, in reality, the
situation might be very different since MPU can have functional
faults, instruction pattern sensitivity type of faults, etc.,

which may not be discovered by the software simulation. For

this reason a computer simulation may not be able to yield a

high test confidence. 1If, however, one decides to consider

an MPU model with stuck at (SA) faults and also some of the

N T e N ——

above mentioned faults, then the simulation task will be
enormous. Some unpredicted faults like instruction pattern
sensitivity may be very difficult to model in software. This
method also lacks the flexibility to change or modify the

input/output (I/0) patterns due to the fixed sequence of the
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i pattern provided by the simulation program. The test system

based on this method will tend to be expensive as simulation

programs are difficult and time-consuming to write and require
a powerful computer to execute the sim lation program at a
b reasonable speed. Also, excessive buffer memory may be _;

} required to store all simulated I/O patterns.
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CHAPTER 5

LSI TEST SYSTEMS

5.1 Introduction

There are two major categories of automatic test equip-
ment (ATE) called Stored Program ATE and Random Comparison
ATE. The stored program tester typically contains a mini-
computer and bulk storage such as a disc. The test sequence
is stored on a vector by vector basis or as a high level program,
interpreted by the computers stored program ATE, which [typi-
cally] also stores the expected response and a fault dictionary.
The actual test sequence can be obtained by using an algorithm
procedure [e.g. D-Algorithm, ATVG program, etc.].

Since the test vectors must be processed in a minicomputer,
the average rate of applying test vectors to the device under
test varies from about 200 K-Hz to 20 K-Hz, although in the
burst mode [i.e. for short sequences] higher rates are possible.
Due to a number of factors, such as the effectiveness of the
stored programs, the need for simulation processing and a slow
rate of test application, stored program test sequences are
typically not of great length.

Random Comparison Type ATE use pseudo random test
patterns as test vectors. These patterns can be generated in
many ways and are sometimes not totally random. The vectors
are not stored in a minicomputer, but are generated at very

high test rates (1-40 MHz). Errors on the output of the DUT
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can be detected using a comparison scheme as shown in Fig. 5.1-1.

PATTERN
GENERATOR

)LAL 1

KNOWN GOOD
DEVICE

DUT

ISCREPANCY
DETECTOR

Fig. 5.1-1

Here the DUT and a known good copy of the DUT are inserted
into the ATE. The pattern generator then applies several pseudo
random patterns to both the devices and the outputs are com-
pared by the discrepancy detector. A mismatch would indicate
a fault in the DUT.

From an applications viewpoint the ATE can be subclassified
into two categories - the dedicated tester and the general
purpose tester. The dedicated tester is an off-the-shelf test
system. It often includes software testing and diagnostic
packages for specific tasks. For the general purpose system,
the user selects the sources of stimuli, such as the function
generator, etc., and measurement devices, such asAvoltmeters

and digital analyzers. The maker of the test equipment then
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assembles these subsystems and provides the required program
control, interconnections and interfaces for the units, and
perhaps will generate and debug the software.

Systems with dedicated controllers are becoming more
popular compared to general purpose test systems. This is due
to the fact that dedicated equipment optimizes testing, since
their controllers are designed for a specific task. 1In
practice; many of the dedicated systems are programmed simply
by read-only memories. The minicomputer, however, may have to

waste time in executing programs through software, and memory

space could also be wasted. Where software is needed, it is
the major cost in testing.

5.2 Evolution of Test Systems

5.2.1 First Generation Test System [Data Shuffling Test Systems]

Figure 5.2.1-1 shows a block diagram of a first generation
test system. It contains 1) a CPU, 2) a main memory, 3) an
interim buffer memory, and 4) test execution electronics. The
interim buffer memory stores the test pattern and executes the
test in a burst mode; the memory can be loaded from either
CPU, main memory or a disc.

This system was adequate in testing random logic devices
in the early 1970's, since at that time LSI devices were simple

and took about 500 machine cycles to carry out the tests at a

high confidence level. However, the system could not be used
to test a complex LSI device due to the fact that the system

did not have any intelligence in the interim buffer memory.
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Fig. 5.2.1-1. First Generation Test System [Ref. 36] £

It also required more than one information transfer from the

disc to the interim buffer memory, and this increased the i

overhead time considerably. The interim buffer memory also
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supplies a test pattern on a device clock basis, with no
provision to separate the device clock from the truly varied
pattern. This results in long test patterns, excessive disc
storage capacity and excessive overall test time.

5.2.2 Second Generation Test System (Fig. 5.2.2-1)

In the second generation test system the interim buffer

memory is replaced by a multiprocessor which can algorithmically

generate millions of non-repeated test patterns under micro-

program control. Fig. 5.2.2-1 shows a block diagram of such

! a system. 1In this system, all information on the programmable

§ power supply, programmable clock generator; automatic parameter

’ tester, and the multiprocessor is supplied from the minicomputer.
The multiprocessor enables one to algorithmically generate test
patterns under the microprogram control and directly apply

; these to the device under test without any linkage to the CPU.
The second generation test system partially eliminates the over-
head time of transferring data from the main memory to‘the
interim buffer memory.

5.2.3 Third Generation Test System

This system provides a data compression technique which

is a desirable feature in the testing of highly complex random

logic devices such as communication chips. For example,
millions of clock cycles are required to test communication

chips of which only a few thousand cycles would have different

input or output patterns. 1In this case it is advar ageous to

store a few thousand active test patterns and not millions of
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repetitive patterns. This requires a capability to separate

the clock from the active test pattern which resulted in the
development of third generation test system as shown in
Pig. 5.2:.3=1,

Data compression is achieved by a macro controller multi-
processor. This scheme enables data buffer operation under
multiprocessor control, and creates intelligence in the RAM
data buffer memory. Hence, overhead time in shuffling data

between the main memory and the interim memory can be totally

,eliminated.

It should be noted that the third generation test system
can do all the work carried out by any second generation system,
such as RAM characterization and smooth plotting. From a
generation viewpoint, the functionality of the system is upward
compatible.

5.2.4 Fourth Generation Test System

Fourtl generation test systems are developed for testing
VLSI circuits. For VLSI, finding the test that exercises the
device in a worst case condition is always a difficult task.
Microprocessors are very complex devices compared to other VLSI
circuits (like RAM's) and require more effort to develop
sufficient diagnostic tests. It is almost impossible to develop
a test progtam by straightforward techniques.

5.2.4.1 LEAD [Learn Execute And Diagnose] Philosophy

This philosophy is developed by Fairchild Systems Technology

for microprocessor testing. A major complication to testing
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microprocessors is versatility. It is almost impossible to
test a microprocessor for all potential applications and for
this reason a comprehensive diagnostic test must be developed,
or the MPU must be tested in a variety of different ways
depending on the applications. The LEAD philosophy incorporates
both the search for comprehensive diagnostics and the testing
of an MPU for the particular application under consideration.

This philosophy [which is followed by most of the LSI
testers] can be considered as a 3-stage approach to the develop-
ment of an MPU test program, i.e. Learn, Execute and Diagnose.

In the learn stage a standard microprocessor is placed
in the test socket of an automatic tester, and the MPU executes
a diagnostic program in its own language; the tester does the
following:

(1) It learns all the correct responses and stimuli of

the MPU.

(2) It stores the learned functional test sequence in the

tester's mass memory.

(3) It prints a program map.

In the execute stage the previously learned functional
test sequence is used to test the device under consideration
and the characterization data is collected.

Test programs used for (1) engineering evaluation, (2)
production tests, or (3) diagnostic purposes can apply the

same functional sequence to the MPU.




In the diagnose stage the characterization data is
processed and compared with the expected data. Failed data
can be traced to the actual instruction sequence with the help
of the program map printed during stage 1.

5.2.4.1 Tester Regquirements

The LEAD strategy requires a tester that completely
simulates the natural environment of the MPU. This environment
consists of (1) a total computing system, (2) peripheral
devices, and (3) peripheral interfaces. Communication between
the MPU and a tester is bidirectional for both data control
functions. The tester should be capable of (1) changing tester
pins from input to output and vice versa, (2) be able to
simulate the microprocessor's memory and peripheral devices,
and (3) be able to store all the activity of each pin of the

microprocessor.
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