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I 1 CHAPTER I

INTRODUCTION

Testing is an important activity in the design, acceptance,

and maintenance of large systems. In many areas of engineering

testing is an art requiring experience and judgement. Digital

circuit testing has been elevated beyond the artistic stage.

Techniques have been developed which can be applied to any

digital circuit given sufficient storage and time for analysis.

These techniques generate sets of inputs (test vectors) to be

applied to the circuit. Observation of the outputs produced in

response to the test vectors can be used to determine whether

the device is functioning properly.

Digital circuit testing is used to ensure that a system

operates as specified. Testing in the design phase of system

development serves as a tool for determining the correctness of

an id~plementation. Errors may be introduced during the fabri-

cation of a device. Thus, even after the design of a device has

been verified, a purchaser should test the circuits he buys to

establish that they are free of such errors. Finally,, as a

result of age or misuse, a device may cease to function properly.

Thus, periodic maintenance should include device testing to

establish that the device is still functioning properly. This

report is concerned with acceptance testing. The test methods

considered could , however , be used for design verification or

maintenance testing. The criteria for selecting a test method

1
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depends on the purpose of the tests.

Classical methods of testing digital systems were

developed during the era of small scale integration (SSI). A

system was composed of many packages, each containing a few

logic gates. The packages were interconnected on circuit

boards. The connection between the packages were accessible

for observation. Thus, tests could be performed by applying

inputs to the circuit and observing the response within the

circuit at various test points using scopes or meters. Even

though the structure within a package was not accessible, it

was sufficiently simple that a complete set of tests could be

developed.

With the advent of medium scale integration (MSI), func-

tional units such as registers or adders were included in a

single package. Methods which were developed for SSI devices

were still applicable although the number of test points within

a circuit had been reduced. More care had to be taken in the

design of a set of tests for a device. Exhaustive testing was

becoming infeasible.

We are now in the age of large scale integration (LSI) and

very large scale integration (VLSI). Entire systems are con-

tam ed in a single package. The problems of testing a single

package have become the same as the problems of testing an

entire system with the added constraint that the only test

points available are the system inputs and outputs. In order

to test one part of a package, the stimulus (inputs) and the

2

______________ - —
- ::: z . . . _



S-S

~~~~~~~~~ ~~~~~~~ ~
. ‘~ r

—- .5  — h.-. • ~~~~

~

“1

responses (results) may have to pass through many other parts.

In some cases, the desired outputs may not be directly observable

as in the case of testing whether an arithmetic logic unit (ALU )

within a microprocessor properly hardles a flag. In such cases

tests can only be performed indirectly by observing other out-

puts such as the program counter. Another cause of difficulty

in testing VLSI packages is their generality . Microprocessors

are nqt designed for specific applications. They are general -

purpose devices. They are programmable and contain many internal

states. Thus , a test consists of getting the processor into a

particular state, giving it the appropriate instruction and

supplying it with the appropriate input data .

Classical methods of digital circuit testing may be

theoretically applicable to VLSI testing but storage and time

requirements make them impractical. Since microprocessors are

used in applications where malfunction would involve the loss of

life and/or property damage, new and accurate techniques must be

developed for acceptance and maintenance testing. The non—

observability of some outputs and the structural comp 1ex~ity of

the devices make this goal seem distant. In some cases a

reduced confidence in device integrity is accepted in order to

make test generation feasible.

Many test schemes have been proposed in the literature. 
—

This report attempts to identity the fundamental differences

between the test schemes and consider their various merits and

demerits. In doing so, we limit our study to two basic areas of

3
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basic test philosophy; test generation , and test application.

Under test generation we will consider three basic approaches to

generating test inputs. We consider the difficulty of generating

the inputs in terms of hardware and software requirements as well

as the limitations on test confidence imposed by each method.

Under test application we will consider the hardware and soft-

ware requirements for conducting a test. The essential features 
- 

-.

of various test methods are abstracted in an attempt to develop

a system for classifying test application methods.

Chapter two defines the basic terminology that will be

used in the report and also discusses fault models and device

— 
models that are currently in use. Chapter three presents a

discussion of test generation techniques for logic circuits,

which is centered around combinational and sequential circuits.

Chapter four presents test generation philosophy for LSI and

VLSI circuits. Also, it presents a taxonomy for test applica-

tion techniques. This discussion is based on structural,

functional and random testing. Chapter five considers some of

the currently available systems for testing VLSI devices. - :

1 -
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CHAPTER II

DEFINITIONS

2.1 Introduction

In.this chapter we will discuss d i f ferent  concepts relevant

to faults and tests and describe some types of faults which occur

in different technologies such as LSI and VLSI circuits.

A fault can be considered to be a defect in design or an

aberration introduced in the manufacturing process which causes

a device behavior to deviate from what is specified.

In a general sense, testing consists of applying a sequence

of inputs to a circuit, observing the output sequence and com-

paring it with a precomputed expected output sequence. Any dis-

crepancy is said to constitute an error and the cause of this

error is said to be a physical fault.

2.2 Classification of Faults El]

Faults can be broadly classified as logical, parametric or

pattern sensitive.

2.2.1 Logical Faults

A logical fault is one which causes a device to appear to

implement a different logic function than the one specified. A

typical logical fault which is frequently considered is stuck

at (SA) fault. In this class of faults circuit signals become

fixed at some constant value, say logical one, in which case the

sign-al is said to be stuck-at-one (s-a-i), or logical zero, in

- ~~- . which case the signal is said to be stuck-at-zero (s-a-0). For

5 ‘ : 1  
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example, for a two input OR gate with inputs “a” and “b” , a

s-a-0 fault on the “a” input causes the logic function of the

OR gate to change from a + b to b. Many faults such as short

circuits and open circuits can be modeled as logical faults.

Here one should note that under the SA model, failures

cause fixed signals to appear at leads - i.e. leads get

clamped. Thus, tests based on SA model deal with static faults. ‘ -

Parameters that affect dynamic behavior, such as switching speed,

are verified by other tests. -

The stuck at (SA) fault niodel was first proposed for

dealing with early logic circuit families [such as Diode

Transistor Logic (DTL) and Resistor Transistor Logic (RTL)] when

discrete components were used. Just how well it fits large

scale integration (LSI) and very large scale integration (VLSI)

is not clear and perhaps the use of a SA model only to test LSI

and VLSI may not be justified.

Prominent among faults that are not adequately covered by

the SA model is shorting between adjacent conducting lines. In

technologies such as RTL, DTL and ECL (Emitter Coupled Logic), this

failure can I~e modeled as the insertion of an AND or OR function

between the shortened leads. Even when this model is adequate -

in consideration of shorted lines - it introduces great com-

plexity into the testing process, due to the large number of

pair of lines on a chip. Therefore, it is necessary to eliminate

all lead pairs that are at a sufficient distance from each .5

other.

6
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The SA model also falls  down in dealing with intermittent

faults. Tests under the SA model can be easily described by the

conventional analytical tools for logic circuits such as Boolean

algebra. Hence, the SA model offers analytical convenience as

well as good representation of most of the (but not all) failure

mechanisms.

2.2.2 Parametric Faults

A parametric fault alters the magnitude of the circuit

parameter, thereby resulting in a change in some factor or

factors such as circuit speed, current or voltage. Parametric

faults may occur during storage due to factors such as tempera-

ture, humidity , leakage of sealed elements and aging. An

example of parametric faults would be a change in the clock

speed due to improper functioning of clock circuitry inside the

microprocessor .

Periodic testing should be carried out throughout the life-

time of a device since faults may occur or get introduced into a

logic circuit during manufacturing assembly, storage and while

the device is in service. During each of these periods, the

nature of the faults introduced and, hence, the type of testing

that must be performed will be different. At the time of manu-

facturing typical faults that may be introduced are (1) open

bonds, (2) open interconnections, (3) bulk shorts, (4) shorts due

to scratches, (5) shorts through the dielectric, (6) pin shorts,

(7) cracks, etc. Due to these factors, a manufactured circuit

may contain multiple faults, some permanent [this is a fault - 
-

7
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that permanently changes the character of a device] and some

intermittent [this is a fault that is discontinuous, appearing

randomly over a period of time, an example of this would be the

shorting of two leads due to mechanical or voltage stressing].

Some of these faults can be modeled as logical faults while

others cannot. Faults may also be introduced during assembly

and testing. It is possible that faulty elements may not be

discovered until after assembly. Also, during storage, circuits

might develop certain parametric faults. Finally, when the

device is in service, these same factors occur as well as others

caused by heat, dissipation, vibration, voltage and current

stresses. It is an established fact that as a circuit ages, the

occurrence of intermittent faults increases. A probable cause

of this problem is in the deterioration of contacts with time.

Failures are frequently not random but the result of an

imperfect manufacturing process. Hence, the accurate determina-

tion of the location and cause of such failures is important so

that the manufacturing processes can be improved.

2.2.3 Pattern Sensitive Faults

These faults occur in situations brought about by worst

case switching of addresses, topologically “next neighbor ”

metalization runs which are too close, bad poly insulators, etc.

Such a fault results in a failure of the LSI device under cer-

tam combinations of addressing, writing and reading. The

failure occurs in the form of loss of stored information in one

or more memory cell locations. For example, in the case of

8
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random access memory (RAM), the result of reading or writing in

some register R is affected by the contents of the other

registers of the RAM. A frequently used approach for testing

such faults is functional in nature and is based upon treating

the RAM as a “black box” [this makes very little use of circuit

information), and applying test patterns which tend to “exercise”

the functional model.

2.3 Fault Distribution and Location

Irrespective of how the effect of a failure is modeled , one

should decide whether or not the assumption can be made that

faults only occur one at a time, or in combinations. Tests

based on single fault assumptions are simpler arid shorter

than the ones that would consider all possible failure combina-

tions. However, sufficiency of single fault tests needs careful

evaluation. In production testing for high density LSI and VLSI

[even for MSI (Medium Scale Integration)] the single fault

assumption may not be valid. However, for equipment that has

been operational, the single fault assumption may be justified . It

is also true that a complete test for all single faults will

also detect the bulk of simultaneous faults. But this requires

careful study of the test results due to the fact that multiple

faults can produce misleading results.

Redundancy in tests can be used for fault location. As an

example, assume that there exists a fault in one of the four

units A , B, C or D. Suppose that test 1 in a sequence can

- 

- 
- reveal tha t only unit A or B is faulty , test 2 detects faults

9
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in either C or D units only, and test 3 detects faults in A or

C. Hence, tests 1 and 2 together are sufficient for fault

detection but all the three tests are required for fault loca-

tion. The condition for complete fault location is that if a

fault exists, it can be traced to a single unit, if for every

pair of units U~ and U~ Ci $ j) there exists a test for which

the response in the presence of a fault in U~ is different from

the response in the presence of a fault in U~.

2.4 Device Models

Various device models are used for fault detection purposes,

namely (1) a Black Box Approach, (2) Functional Diagram, and (3)

Gate Level Description.

2.4.1 A Black Box Approach

In this approach, it is assumed that the test equipment has

access to device inputs and outputs. Testing would consist of

applying a test sequence to the device under consideration and

observing the corresponding outputs and comparing it with the

expected outputs or the output of a known good device (KGD).

This model seems to be a reasonable model for microprocessors

since we do not have access to the nodes internal to the VLSI

chip. Hence, the testing of the internal nodes can be carried

out only by inference. For this reason, a black box model is well (
suited for fault detection and can be used for acceptance

testing at the manufacturing level. However, this model for

VLSI will serve little purpose if fault location is the criterion

for testing.

10 
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Typically, the testing consists of applying a test sequence

to the input of the device under test (DUT). The corre—

sponding output sequence can be compared with a precomputed

expected output sequence to check whether the DUT is functioning

- I properly. Another way of verifying this would be to compare

the output sequence of the DUT with the output sequence of a so-

called “known good device” (also referred to as gold standard de-

vice in literature). Here, the concept of a known good device is

questionable since for a device to be fault free it has to be

completely tested and this is rather difficult because prevalent

test methods do not guarantee 100 percent test confidence.

Also, synchronization of a known good device with the DUT might

be very difficult. -

2.4.2 Functional Diagram

In the functional diagram approach , one tries to partition a

given VLSI chip into different subblocks according to the function

performed by each subblock. After functional division each sub-

block is tested for proper functioning. In doing so, there may

be some overlapping tests between the subblocks. Currently,

this approach of testing seems to be the most popular one.

2.4.3 Gate Level Description

In this approach, subdivision of a VLSI chip down to the gate

level is considered. Proper functioning of the DUT is ensured

by testing each gate in the circuit. Problems with this

approach are: Cl) Gate level description of the circuit may not

be available; (2) It is very difficult to test all -gates and

11

.III_.1 ~~ —~~~~~-— - — -- —5- - - s-—



~~~~~~~~~~~~~~~~~~ — - - - ~~~
— - i-. --  

5-
. 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
-S

.. ” ,

some gates can only be tested by inference since the gate output

may not be directly observable at the device output; (3) Some of

the gates cannot be directly stimulated since gate inputs may not

be available at the device inputs. In this type of model, to

achieve high test confidence, one may require very long test

sequences , thereby making testing lengthy and time consuming.

However, the advantage of this approach is that if complete

testing is carried out one may accomplish a very high level of

test confidence relative to the test confidence achieved by

any other approach.

2.5 Test Generation Philosophies [5]

There are three basic approaches to testing digital

systems: (1) Functional Testing, (2) Structural Testing, and

(3) Random Testing.

2.5.1 Functional Testini

In this type of testing, the goal is to verify that the

device under test (DUT) behaves as required. This is done by

determining whether it performs its task properly. For example,

in the case of microprocessors functional testing would typically

verify that a program counter increments and decrements

correctly, that all ALU functions are performed properly, that

registers can be read from and written into, that transfer of

control occurs under proper conditions, etc.

Tests that verify functions (functional tests) are

suitable for central processing units or memory systems and

these tests find wide application in final assembly and

12
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field maintenance.

Typically , functional tests would start by verifying that a

small portion -of the system [called the hardcore] is functioning

properly and then progress outward through the circuits that

perform the remaining repertoire of operations. The drawback

— 
with these tests is that they are, in general, written without

close examination of the hardware details, since the programmer

usually cannot be burdened with circuit details. Therefore, it

is likely that these tests may turn out to be somewhat incom-

plete. In fact, it is not unusual for functional tests to be =

limited in their fault detecting capabilities to only half of the

possible faults in a digital- unit. But tests derived solely on

the basis of functional considerations need not necessarily be

so limited in coverage; microprogrammed machine organizations in

particular are amenable to fairly complete functionally derived

tests.

2.5.2 Structural Testing [5,6] 
—

Tests based on structural criterion assure that individual

circuit elements of the unit under test are operating correctly.

Thus, a structural test assures that every gate on the DUT is

functioning correctly, that every flip flop goes through all its

states (namely set, reset or toggled as appropriate], that clock

signals occur at designed frequency and that parity checks are

correct and so on.

Designing functional tests calls for familiarity of the

device under test. For this reason, these tests can best be

L 
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designed by the person or group of people who designed the

device under test. Typically, functional tests do not take into

consideration the fine structural details. When the tests are -

designed from the structural viewpoint, one starts with the gate

level description. For this reason, these tests are more

suitable at the manufacturing level. This type of testing can

also be used for off-line repair. When strict dependability

requirements exist [i.e. failure of the device results in cata-

strophic damage] Structural testing can be used for periodic

checking of real time systems, since structural testing yields

a high level of test confidence.

If the assumptions made regarding the effects of failure

are appropriate and if the correct network structure is known

at the time of developing structural tests, then structural

testing can furnish proper diagnostics through the use of the

algorithms developed for this purpose.

If no assumptions are made regarding the device ’s failure

modes , then the test will have to contain all possible input

sequences.

The key features of structural and functional testing are

summarized below.

(1) The level of confidence offered by the structural

testing depends on the accuracy of the fault model. If the

fault model is reasonably accurate, then these tests can yield a

very high level of test confidence.

(2) If the system under test is large [as in the case of

14
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microprocessors], then the structural testing may require very

long test sequences, thereby making testing very time consuming.

However , these tests can be developed by means of an algorithm

and they can be optimized as far as the sequence length is con-

cerned.

Functional tests on the other hand are very useful for large

systems but they are not complete in the sense that they cannot

yield a very high level of test confidence. The effectiveness

of functional testing depends on who designs these tests since

it requires a good knowledge of the system under test. [For

this rea~~n, these tests will yield best results if they are

designed by the same person (or group of people) who designed

the device under test.]

2.5.3 Random Testing (8]

In this type of testing, input patterns are fed to a pro-

totype of a circuit to be tested and are analyzed for their

ability to detect failures. The disadvantage of this method is

that it produces a very large test set.

Very frequently, testing can be economically done by

comparing the outputs of the circuit under test with the outputs

of the known good unit, while both units are fed by the same

sequence of random inputs. However, a good unit may be

impractical to obtain and its reliability is not ensured. Also, 
-

synchronization of both units may pose a difficult problem.

- 
- - 

- -• 
- 

A new test method consists of feeding a long sequence of
- 

-

random or pseudo random inputs , and computing some statistics

15

- ~~~~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -— - -- -- 
~~~~~~~

- - -
~
--



., ~
. ~~~~~~~~~~~rr~~~SS5- ~— . - -S. _~~~~~~ -5-- 

—__________________________

of outputs Lfor example, the frequency of logic ones in the

output sequence]. If the output statistics are satis-

factory then the unit passes the test. However, due to the

probabilistic nature of testing, it may be impossible to

achieve a high level of test confidence.

(Note: For discussion of Signature Analysis, refer to

Section 4.8.1.]

L -- 
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CHAPTER III

TEST GENERATION PHILOSOPHIES FOR LOGIC CIRCUITS

3.1 Introduction

This chapter discusses d i f fe ren t  test generation philoso—

- - phies [structural, functional and random] for digital [both

combinational and sequential] circuits and test methods based

on these philosophies are also discussed .

A combinational circuit is one whose present output

value depends only on the present input value and is independent

of the past input values.

A sequential circuit is the one whose output depends on

two parameters: 1) present inputs , and 2) past inputs . Again ,

sequential circuits can be divided into two sub-classes,

a) synchronous sequential circuits and b) asynchronous sequential

circuits. In synchronous sequential circuits, the inputs

are synchronized with some timing sequence t1, t2, ... , t~. At

every occurrence of the timing sequence , the circuit samples

the input, the next state is entered and the next output is

produced . Typically, the circuitry that generates this timing

sequence is referred to as the clock circuitry and the timing

sequence as a clock signal.
- 

- On the other hand, the asynchronous sequential circuit is

the one that operates without a clocking signal.

3.2 Test Methods for Combinational Circuits (1,5]

A structural testing approach is very commonly used to

17 - 4
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test this type of circuit. It means that typically, testing

would consist of verifying whether individual hardware components

of the circuit under test are functioning properly or not. Since

the structural approach is used, most of the test methods can be

developed with the aid of algorithms. 
. 

—

Prominent test methods for testing combinational circuits =
are a) Boolean Difference, b) Path Sensitization and C) the

D-Algorithm .

3.2.1 Boolean Difference

Let + , 
~
, ® denote logical OR, logical AND and Exclusive

OR functions respectively . If x is a boolean variable, then ~
- 

- 
represents its complement. Consider a combinational circuit

whose output z is the function of a set of inputs, say, x1, x2,

... , x~~1, x~ , ... , x~. Mathematically, this can be represented

as

z = 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

Xn) =

where x represents a vector (x1,x2,...,x. ..i,xj,...,xn).

If one of the inputs x1 is, say, stuck-at-l (s-a-l) then this

can be represented as

z~ = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 

~~
(& (I)

- 
- 

Here, the notation f~ means that the ith input is s-a-l.

Similarly, if one of the inputs x1 is stuck—at— 0 (s—a-0), it

• can be represented by

4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = f~ (x) (II)

-
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In general notation conditions I and II can be written

as = f
~
(xi,x2~

...,x1_i,J ,x~+1,...,
x
~
) = 4(x) where J =

for s—a-i type of fault and J = 0 for s-a-0 type of fault.

The set of tests tha t will detect the fault J [i.e. one

of the inputs i either stuck-at-i ( s—a- i)  or stuck—at-0 ( s - a — 0 ) ]

corresponds to the function

= f .f J + ~~~~—i

consider only the stuck-at-0 type of fault (i.e. J=0). Applying

Shannon ’s expansion formula: f(x11x2,. .. ,x~) = x1f(l,x2,. .. ,x~)
+ ~~~~~~~~~~~~~~~ to Y yields: [Refer to Section 3.2.2]

For s-a-0 test, x1 = 1

Y(x1) = (x~~f~ + ~~~f
0) ~~

- (after due expansion and
= ~~~~~~~~ + x~~f

1.f0 simplification)

= x
~
.(f

~~~~
f
~
)

The term 
4 

® f~ is referred to as the “Boolean difference”

of the combinational function f with respect to the input x1.

If we denote 
4 

® f~ by ~~~~~~
—
, it represents all the conditions for

which the value of f is sensitive to the input x1 alone .

X
1 

= 1 would represent the set of tests for the input x1 to

be s-a-0 while a similar 
~~ 

1 would represent the set of 
-

tests for the input x1 to be stuck-at-i.

(Note: Here x1 represents a specific binary value of the vector x.]

- - 19 
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Example

Consider the combinational circuit given by the Boolean

expression z = f(x) = (x1 + x2)~ x3 + x3 x4. The diagramatic

representation of the same is as shown in Fig. 3.2.1—1.

X
l

x

L6

f

x4 
-

L3

Fig. 3.2.1—i

The set of tests which will detect the fault x3 s-a-U is defined

by the Boolean expression x3 ~-?L~ wherex3

= f(x1,x2,0,x4) ® f(x11x2,l,x4)

= ® (x 1 + x2 ) [After due simplification]

=~~l~2~4 + x lx4 + x 2x4

- 
- Hence, the set of all tests which detect this fault is defined

- 

- by the solutions to the Boolean expression

20
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Y = x3 (~ 1~2~4 + x1x4 + x2x~). An input combination

detects this fault if and only if Y(x~) = 1.

3.2.2 Path Sensitization 11,5)

The basic principle involved in path sensitization can be

described as follows. Let k be the node in the circuit under

test which is to be tested for, say, a s—a-0 type of fault. To

achieve this, the input signals x must cause the signal at k in

the normal fault-free circuit to take the value 1. Similarly,

if the node k is to be tested for s-a-i type of fault, then the

input signal must cause the signal at k to take the value 0.

In the logic diagram of Fig. 3.2.2-1, each gate output is

labeled. Suppose we want to detect the fault L2 s-a-0. An input

must be such that L2(x1) = 1. For this circuit it would

X
l

S

X
3 L

3 
- 

L f
x2 — --—-

L4
-~~~~~ L1

Fig. 3.2.2—i -
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require that x1 = x4 = 1, denoted by x1x4 = 1. This condition

is necessary but not sufficient since gate output L2 is not

available at the device output.

This requires that a signal from L2 should propagate along

some path to the output (i.e. L5). For this circuit, there

exists only one path and that is through the OR gate to the output

L5. In order to propagate the fault through L5, both the inputs

x3 and x2 should be 0 so that L5 is 1 only if L2 is 1.

Thus, the path sensitizing procedure can be described as

follows. In order to detect a fault in a combinational circuit:

(1) Determine input values required to generate the appro-

priate signal value at the point of the fault (0 for

s—a—i and 1 for s—a—0 faults).

(2) Choose a path from the point of the fault to the cir- —

cuit output. Determine additional signal values to

propagate the fault signal along this path to the

device output (Error Propagation).

(3) Choose input signals so as to produce the signal values

specified in step 2.

3.2.3 D-Algorithm Method (1]

D-Algorithm gives an algorithmic path sensitization proce-

dure in terms of cubical algebra. It enables automatic test

generation and the algorithm is also useful in generating tests

for complex logic elements.

To describe D-Algorithxn, it is required to define certain

terms. Let U represent a signal whose value is 1 for the normal 
- 

-

22
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operation and 0 in the case of a fault. ~3 can be defined vice

versa.

Prime Implicant: If the Boolean expression representing the

digital circuit is expressed in the sum of products (minterms)

form then a prime implicant is a product term that cannot be

combined with others to yield a term with fewer literals.

We define three types of cubes [these terms are taken from

cubical algebra] .

3 .2 .3. 1  Primitive Cube (PC)

Consider the combinational circuit element that generates

a Boolean function f. Prime implicants of f and f can be

represented with the aid of primitive cubes. These cubes

properly represent the logical behavior of the combinational

circuit under consideration.

Consider the combinational circuit shown in Fig. 3 .2 .3.1- 1(a) .

Assume that this circuit realizes a function represented by the

Karnaugh map in Fig. 3.2.3.1-1 (b). The prime implicants of f

are 
~l 

and x3x2 and the prime implicants of ~ are x3x1 and x2x1.
Labeling in Fig. 3.2.3.1—1 (a) indicates that x1 (i=l ,...,3) is

associated with each position i of the cube and the output

function is associated with position 4.

In Fig. 3.2.3.1-1(c) the first cube of 
~l 

OXX1 represents

the prime implicant 
~~ 

of f .  Here , 0 in a position implies the

complement of the variable, 1 represents the variable itself and

X indicates a don ’t care condition. The intersection of ?wo

cubes (a~ and ii~~) is defined as the value of the two cube~ in

23 
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COMBINATIONAL 4 f

x2 CIRCUIT
X

3 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fig. 3.2.3.1—1(a)

xlx2
X2

_ _ _ _  _ _ _ _  

I 
_ _ _ _  _ _ _ _  

I

1 1 1

1 1 
1x3

Fig. 3.2.3.1—1(b)

1 2 3 4

1 
0 x x 1 1

~- Prime Implicants of f
x 1 0 1

Ii x 1 0 
-1
~ Prime Implicants of !1 1 x 0

Fig. 3.2.3.1—1(c)
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each position where they have identical values. If a position

in one of the cubes is a don’t care, then the intersection has

the value of the corresponding position in the other cube. If

two cubes have specified unequal values in the same position

-

~ 

- 
then the intersection does not exist, i.e. (a~ 

(1 = •).

For example, if a = OXX1 and ô = XlOl and y = lXlO , then =

6 =  0101 and a f l y =

The intersection of two cubes (a1 
(1 p

~) is said to be

inconsistent if the intersection of a~ and does not exist;

this means two conditions (belonging to two cubes respectively)

assign different values to the same line on the circuit.

3.2.3.2 A Primitive D-Cube of a Logical Fault (pdcf)

Let p denote the minimal input conditions that must be

applied to the logic device to produce an error signal (U or U)

at the output. These input conditions can be determined from

the following two factors:

(1) primitive cubes of logical function f performed by

the circuit under the fault-free- or normal conditions; 
-

(2) ~~ where f~ represents the function performed by the

faulty circuit.

By knowing these two factors, the input conditions can be found

out as described below.

A faulty output U (or U) is produced by an input if it is

contained in the prime implicants of f (or f) and also in the

prime imp].icants of f~ (or f~). Let a1 (or c*0) denote prime I -

implicants of f (or f) and (or denote the prime

25
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implicants of f~ (or f~). Primitive D cubes of the fault that

result in output U can be obtained by intersecting inputs of each
cube in p1 with that of each cube in a0. Similarly, primitive D-

cubes of a fault resulting in output U can be obtained by inter-

secting cubes in p0 and a1.

EX for a combinational circuit of Fig. 3.2.3.1-1(a), let the

faulty function f~ be defined as in the Fig. 3.2.3.2-1(a) and

3 .2 .3 .2— 1(b ) .

x1x2 
x2

1 2 3 4

1 1 X 1 1
x3 

~1 X 0 0 1 )

1 1 (x 3 X 0 1 0
_ _  _ _ _  _ _ _  _ _ _  ~-.J x ~~. 0 o J °

Fig. 3.2.3.2—1 (b)X
l

Fig. 3.2.3.2—1(a)

1 2 3 4
0 0 1 U 

~~ a1 (~~p00 1 0 U J [Primitive D cubes of the fault]
1 1 1- 13 )a 0 fl~~~1 =

Fig. 3.2.3.2-1(c)

Fig. 3.2.3.2—1(c) shows primitive D—cubes of the fault. The first

CUbe in a1 ~ is obtained by taking the intersection of the

first cube of a1 and the first cube of the second cube in

~i 
(1 p

0 
is obtained by taking the intersection of the first cube

of a0 with the second cube of p0. The cube in a0 (“I p1 is obtained
by taking the intersection of the second cube in a0 with the

26
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first cube in [here, other intersections do not exist (4))).

Consider the first row in a1 A p0; it specifies that if the

first and second inputs are set to 0 and if the third input is

set to 1, then the combinational gate output has the value U.

Here, the first cube specifies that if the first and

second inputs are set to 1 and if the third input is set to 0,

then the combinational gate output will have the value U.

Primitive D cubes for the stuck-at faults can be easily

constructed as follows. If the output of the combinational

= circuit is s—a-l then the output coordinate of every cube in a0

is changed to U and , if the output is s-a-0, then the output

- 
- coordinate of every cube in a1 is changed to U.

3 .2 .3 .3  The Propagation D-Cubes of a Logic Element

This specifies minimal input conditions to the logic

element required to propagate an error signal between the input

and output of that element. Let the logical behavior of the

circuit under consideration be denoted by two sets of primitive

cubes a0 and a1 that result in 0 and 1 outputs (from the logical

circuit) respectively. If “e” denotes an error signal, then in

order to propagate an error on the input line , the other inputs

should be defined in such a way that for e = 1 the resulting

cube is in 
~l 

and for e = 0 the resulting cu~~ is in ~~~
. These

cubes ca-n be derived by taking intersection of e = 0 with

and e = 1 with 81 resulting in ~ or u or both e and output.

Consider the propagation of an error on line 1 through the

logic element defined in Fig. 3.2.3.1-1 (a). The propagation

27
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D-cubes can be derived from the primitive cubes of Fig.

3.2.3.1—1(c) by intersecting cubes in a0 for which the line 1

has the value 1; with those cubes in a1 for which the line 1 has

the value 0, this results in the propagation D cubes as shown

in Fig. 3.2.3.3—1.

1 2 3 4

U 1 X U

13 1 X U

Fig. 3.2.3.3—1

There are no cubes in a0 for which line 1 has the value 0.

3.2.3 Test Generation Procedure Using D-Algorithrn [1]

(1) Choose a primitive D-cube of the fault under considera-

tion. This results in producing an error signal u or ~ at the

site of the fault. Initially a choice of D-cube will b~

arbitrary, but as the algorithm proceeds, it may be necessary to

return and consider other choices. This process is called

backtracking.

(2) Implication - During the execution of Step 1 some

gate inputs or outputs may be specified . This requires speci-

fying values of the other signals. The implication procedure

determines these signals in both the forward and backward direc- 
-

tions. During this step, if an inconsistency occurs (i.e. a

value of 0(1) is implied on some line which has been previously

specified to be the complementary value 1(0)], backtracking is
V

28
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effected to the point where the choice existed , all the lines

are reset to their value at this point and the procedure

resumes with the new choice.

(3) D-Drive - Let D-frontier denote a set of all elements

whose output values are unspecified but whose input has some sig—

nal u or u. The D—drive selects an element in the D-frontier and

tries to propagate u or ii at the input of the element under

consideration to the output. This is achieved by intersecting

the current circuit test cube [this cube specifies all pre-

viously determined signal values of the circuit] with a propa—

gation D—cube of the selected element. This results in a new

test cube for the element. If this intersection does not exist

then a new element is selected from the D-frontier. However,

if the intersection is undefined for all the elements of the D-

frontier, backtracking to the last point at which the choice

existed is required. This backtracing results in resetting all

lines to their values at that point and beginning with the

next choice.

(4) Implication of D-drive - Carry out Step 2

(Implication) for the test cube derived in Step 3.

(5) Repeat Steps 3 and 4 until the faulty signal has

been propagated to an output.

(6) Line Justification - Execution of Steps lt o  s may

result in specifying the output value of an element but leaving

the inputs to the element unspecified. The inputs to such

elements are now specified to produce specified output values.
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This is done by taking the intersection of the test cube with

the primitive cubes of the element. Implication is then per-

formed on the new test cube and the process is repeated ~nti1 all

the specified element outputs have been just i f ied . Here again ,

backtracking may be required .

3.3 Test Methods for Sequential Circuits [1]

Test generation for sequential circuits is a lot more

difficult than for combinational circuits. This is due to the

fact that the present output is determined by the present and

past input values. Usually, a test sequence is required to

test these circuits rather than a single input vector as in the -

case of combinational circuits.

Primarily , there are three different ways of testing

sequential circuits:

(1) verify whether the sequential circuit under considera-

tion is functioning properly or not [Functional Testing];

(2)  convert the given sequential circuits into a set of com-

binational circuits and test the resulting circuits with

the test methods used for testing combinational circuits;

(3) verify if the sequential circuit under consideration

behaves according to the truth table specified. 
—

3.3.1 Functional Testing

In general, a sequential circuit consists of a combination

of the following sequential circuit elements: (1) flip flops,

(2) counters, (3) registers , (4 )  timing (clock) circuitry. Func—

tional testing would mean verification of the functionality of

30
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these elements.

For f l ip  flops such a testing wOuld mean verif ying that it

can change states as specified; for registers, that  it can be

loaded and cleared and that all shi f t ing operations are carried

out properly. It would test that  counters increment and

decrement as required , that clock circuitry generates clock
- 

- signals at desired rates , etc . The effectiveness of such a

test is judged with the aid of simulation techniques. This

method can be e f fec t ive  if the test engineer is fami l ia r  with

the details of the sequential circuit under consideration. At

the stage of designing tests for sequential circuits, it

requires repeated simulation runs in order to improve test

effectiveness. For this reason, the method is time and resource

consuming.

3 .3 .2  Testing by Treating a Sequential Circuit as an Iterative
Array of Combinational Circuits

Consider the block diagram representation of sequential

circuits, as shown in Fig. 3.3.2-1. Here, the vector notation

X , Y and Z are used to represent the input vector (x0~x11...,x~)~

the feedback vector 
~~~~~~~~~~~~~~~~ 

and the output vector

(z0~ z11 ...1 z~ )1 respectively. Since we are considering

synchronous sequential c~.rcuits, the memory function is assumed

to be clocked , i.e. updating of the memory only occurs when

specified by th~ update (clock) signal.

The circuit in Fig. 3.3.2-1 works as follows. The

contents of the memory along with the input determine the

31
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Fig. 3.3.2—1

current output . When the update signal [initiated by the clock

circuitry) occurs , the contents of the memory are revised on the

basis of the inputs at that time and the contents of the memory

just prior to the update signal from the clock memory . The state

of the sequential circuit is left unchanged until the nex t update

signal from the clock.

Fig. 3.3.2-2 shows an equivalent combinational iterative

array for the synchronous sequential circuit of Fig. 3.3.2-1

This iterative array would generate the output z~ from cell i in

response to the input xi; 1 < i < n. Here, y0 (i.e. the feed-

back at t = 0) is assumed to be known and its effect is treated

as an input to the iterative array. In this transformation

the clocked memory is modeled as a set of combinational elements

referred to as pseudo memory functions.

Since the memory is modeled as a combinational element,

the circuit in Fig. 3.3.2-2 can be tested by most of the

32
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techniques related to combinational circuits discussed earlier

in this chapter (Ref. Section 3.2).

Here, in effect, the time domain response of the sequential

circuit is mapped into the space domain response of the combina-

tional iterative model. A single fault in the sequential cir-

cuit corresponds to the multiple fault consisting of the same

fault in every cell of the iterative array. Since the size of

the iterative network is n times that of the original sequential

network , it is important to have an efficient algorithm for

fault detection in large combinational networks with multiple

faults.

For asynchronous sequential circuits, the iterative model is

incapable of handling two major problems: namely , 1) that of

races (coincidence timing) and 2) hazards (false outputs).

3.3.3 State Table Approach [5]

This test method verifies that the sequential network under

test does operate according to its state table. The state table

helps represent two operations: i.e. 1) state updating , and 2)

output generation in tabular form. The state table uses a mealy

model for the synchronous sequential network .

= Mealy model. - This model is also called the transition

triggered circuit since the circuit output is associated with

the state transition. Such a state table for the mod (4)

counter [counts up on an input of 0 and down on an input of 1]

is given in table 3.3.3—1.
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Input x

0 (Up) 1 (Down)
Present NEXT STATE/ NEXT STATE !
State OUTPUT OUTPUT

A 8/0 D/Borrow

B C/0 A/O

S 
C D/0 B/0

D A/Carry d O

Table 3.3.3—1

- 
- 

Mealy Machine Representation for the Mod of 4 Counter

NOTATION: A, B, C and D represent the states of the counter.

I/J : Next state/output where I = A or B or

Cor D J = O o r l

Inputs : 0, 1

States : A, B, C, D

Output : 0, CARRY , or BORROW.

The tests based on the verification of the truth table of the

sequential network are based on the following assumptions :

(1) In the presence of a fault, the network under considera-

tion has no more states than those which are listed in

its truth table.

(2) For a normal (fault-free) network, there exists an input

sequence which can cause the machine to transfer from

each state to every other state.
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— Since this method uses an abstract state table approach,

it is independent of the hardware- fault model.

This approach can also be extended to test asynchronous

sequential circuits. However, it is not very practical since

the number of entries in the state table depend on the number 
- 

-

S of states in the network [if N = number of states in the network

then 2N = number of entries in the table]. Hence, for a network

with a large number of states, the number of entries in the

state table will be very large. This makes the construction of

the state table very tedious.

3.3.4 The ATVG Program: A Test Vector Generator For Sequential
Networks [7]

This technique is a practical computer algorithm for the

generation of test procedures for sequential networks.

Before describing the ATVG algorithm, it is required to

define certain terms.

A network is constructed from

(1) A finite number of logic elements which are either

combinatorial or memory (sequential) elements. Each

logic element in a sequential network is assumed to have

a finite number of input pins and an output pin. The 
- 

-

input pins are electrical loads and the output pin is a

source.

(2) Connector input terminals: These are the circuit ele-

ments to which the components of the test vector are - 
-

• applied; hence, each is an electrical source.
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(3) Connector output terminals: The binary value at these

terminals constitutes the components of the network

output vector. Hence, each of these terminals is an

electrical load.

Logic elements and the entities mentioned above are con-

nected by electrical connections called leads to form a network.

-
; ~; - - Each lead is assumed to be a directed connection from a source

S to a load. A network will have many paths of leads starting

at some - source, traversing from lead to lead through the logic

elements and terminating on a load. The number of leads

traversed in a path is called its length.

A network can be considered as an interconnection of the
— above entities as follows:

(1) There is at least one connector input terminal and one

connector output terminal.

(2) All sources are connected to at least one lead .

(3)  All connector input terminals are connected to logic

element leads. - 
S

(4) All loads are connected from exactly one source.

(5) All paths are of finite length.

This algorithm is developed for synchronous sequential circuits;

it also requires that a network does not have pseudo elements

constructed from combinatorial elements as feedback. This,

however, does not mean that the actual circuit cannot have such

pseudo memory elements. It simply means that such elements

should be treated as combinational elements.
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Each logic element and each connector input terminal are

associated with one of the two binary values (0 or 1], or else

[except for memory elements] they may be unassigned . During the

test vector generation process, the values of each of the

entities will become assigned [i.e. it will have a value of 0 or

13 if it had not been initially. At the completion of this

process, all entities will be assigned. This (final) state of

the network will be the same as the actual circuit, given the

same memory element values and the same test vector applied to

the input terminals.

3.3.4.1 Failure Conditions

The algorithm considers only the following types of

failures:

(1) a lead s-a-O or s-a—i

(2) only one failure condition exists in a network

(3) if there is any open circuit then the corresponding load

is assumed to be s-a—0.

Hence, to test a network consisting of logic elements, it

is sufficient to verify that none of the leads connected to its

loads are open and each lead connected from its source is not

fixed.

A logic element test (or tests) is a vector of binary

- 

- 
- 

values which when applied to the loads of a logic element

causes the value of the logic element to react to a particular - 

-

failure condition(s), i.e. a logic function performed by the

circuit will differ from the function performed under normal

38
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(fault—free) conditions. - - 
-

-

A test T for - a logic elem ent L is said to be immediately

• completed if the test vector T is applied to L and a sensitive

path from L to an output terminal exists (for definition of

sensitive path, refer to page 21]. In case T is

applied to L , but it is not immediately completed , then one of

the two possibilities exists, either:

( 1) there is at least one sensitive path from L to a memory

element; or,

(2) there is no sensitive path from L terminating on either

a memory element or an output terminal.

In the second case, T must be reapplied to L by some other test

vector in order for it to be complete.

In case 1 it is possible that T can be complete but not

during the application of the current test vector.

Let M denote a memory element on which a sensitive path

from L terminates. If the next state of N under a failure

condition differs from that which exists under normal condi-

tions, then N is said to be sensitive to the failure condition

of L, and the test is said to be stored in M. If in such a

— case the next state vector is such that there is at least one

sensitive path from M to an output terminal, then T is complete.

If T is stored in M but not complete, then one of the two cases

listed above exists. If there is a sensitive path to memory

element M- and it is sensitive to N, then T is stored in M..1. 1

By this process a test may be stored in many memory elements

39
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during a sequence of test vectors until it is either completed

or fails to be stored in any memory element. In conclusion ,

a sensitive path in a synchronous network differs from that in

a combinational network in the sense that the last element of

the path may be a memory element . Hence , the memory element out-

put pins are a special form of the network ’s output terminals.

Additional requirements for generating test vectors for

synchronous networks over a combinational network are:

(1) Determine if a memory element is sensitive to a failure

condition when it is the last element in a sensitive

— path.

(2)  Creating sensitive paths from a set of elements (i.e.

a test is stored in a memory element) such that the

terminal element will react to the simultaneous choice

of these elements.

The ATVG algorithm generates a sequence of test vectors.

Each test vector does the following:

(1) applies tests [that are not completed and not stored in

memory elements] to some of the logic elements

(2) for these logic elements at least one sensitive path

exists to an output terminal or to a memory element

(3) if the test is stored in a memory element [as a result

of a previous test vector] at least one sensitive path

exists, preferably to an output terminal, but otherwise

to another memory element.

40 
- -

_ _ _ _ _ _ _ _  
- 5



— —5-- —-— 5- - -  
~~~~~ 

-5- 
~

5-
~~~1~~

5-

.5- r i

4 Test vector generation process.

Assumptions : (1) Initially binary values for each of the -

combinational elements and the connector input terminals are

unassigned .

(2) Each memory element is assigned one of the

~
- 

- binary values and some of the memory elements may be storing

tests. -

(Step 1) For a set of memory elements storing the same

test vector , assign the minimum number of input terminals which

will create at least a sensitive path from the memory element

to an output terminal. If this is not possible, then assign the

minimum number of input terminals which will create at least one

sensitive path to a memory element. If no such assignment is

possible, then no input terminals are assigned.

(Step 2) If for a logic element a test remains to be

completed and is not currently stored in memory elements, assign 
- 

-

the minimum number of input terminals which will apply a test

vector to its loads. If no such assignment is possible, use

the same logic element for other tests if possible or consider

another logic element. If such a test is applied and if the

element under consideration is not a memory element, assign a

I —  minimum number of input terminals so that a sensitive path(s)
F. 

would be created as in Step 1. If the test was applied to a

memory element, no sensitive path is created [this is due to

the fact that memory does not change state until the next

update signal). Hence, a memory element does not react to a

- 
41

-

~~~~~~~~ ,~~~~~~~~
-- 

~~ - —~~~~~~~ - -  -~~~~~- - - --5— -~~~~~~~
- -~~~~— — --~~— —



— ---~~~ —— —-~~- v--- —~— ‘~~r—---- 
~~~~~~~~~~ 

‘~~~~~
- “r~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~~

— 

~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ••~5- ~~~~~~~~~~

-

5- - .5- - --- -

failure condition until the next test vector is applied . For

the same reason, sensitive paths for memory elements which are

created in Step 1 have tests applied by the last test vector.

(Step 3) For every memory element, decide the next (after

the update signal) source value. If possible, assign the

minimum number of input terminals which will  apply a Vector to

- 
- 

its loads and will produce the above value .

(Step 4) Assign values to unassigned input terminals

at random. 
-

The third step in the procedure above drives memory

elements in order to produce the desired next state of the net-

work. In most of the networks, the memory elements are inter-

connected in such a way that the next state of one may depend S

on the present state of many other elements. If Step 3 is

executed after the first two steps, it may happen that the

network has been assigned to such an extent that the desired

control over the network state is not possible. For this

reason, Step 3 is sometimes performed before Step 2 or Step 1.

In order to produce a near minimum number of test vectors in a

test procedure, the state changes of each memory element must

be “ t ~ fu1ly controlled.

3.3.4-2 The ATVG Program

The input data for this program is 1) a description of the —1
circuit set, i.e., the allowable logic elements of the network,

2) a description of a specific network. Using this data, it

generates a test procedure and a fault dictionary . A test
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vector generation algorithm uses the procedure described above

(for details refer to reference 71.

The most difficult part of the procedure is Step 3 since

it is not at all clear as to what strategies should be used to

drive the memory elements into “desirable” next states. One

cannot even define “desirable.” However, in spite of this

problem, the program is very successful in practice. It is

observed that for the “average” network , the initial test proce-

dure can test a network for about 85 percent of the failure

conditions. However, this program allows the logic designer

to modify Step 3. This provision typically allows the completed

test procedure to be at least 95 percent effective.

—1
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CHAPTER 4

TEST GENERATION PHILOSOPHIES FOR LSI AND VLSI CIRCUITS

4.1 Problems of Testing LSI/VLSI Circuits

The test methods discussed earlier for combinational and

sequential circuits are based on structural considerations.

However, techniques based on structural considerations cannot - 
-

be applied with the same ease for LSI and VLSI circuits due to

the following reasons.

Any method based on structural considerations requires

either a gate level description or a state table of the digital

circuit under consideration . Due to the secrecy in design and

the number of gates on VLSI circuits being extremely large , it

may be very difficult to obtain a gate level description of the

S VLSI circuit under consideration. On the other hand , if one

decides to construct a state table, due to the complexity of the

device, the state table will have a very large number of entries

thereby making this approach almost impossible to use. -

Even if the gate level description is available, some of

the gates on the chip cannot be directly stimulated from the

device input pins; also, some of the gate outputs may not be

available at the device output pins, i.e. some gates may not be

observable from the device input and/or output pins thereby

making testing very complicated .

Due to device complexity , to test VLSI circuits from the

structural viewpoint, one may have to generate excessively long

44
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test sequences. This would require storage of long test

patterns by the test equipment. It may also mean that the

testing would be time consuming.

In conclusion , we can say tha t rigorous structural testing

for VLSI circuits can yield a very high level of test confi-

dence. But--the difficulties mentioned above make it almost

impossible to apply structural techniques to VLS I

circuits. 
-

Random test and functional test philosophies are also used

for testing VLSI circuits and a brief description of the same

is given below .

4.2 Random Testing [8,9]

The test techniques for logical circuits can be broadly

classified as probabilistic or deterministic. An example of

the former is the random test generation method . Methods

described in section 2 of this chapter fall under the latter

category.

Test pattern generators ( TPG) based on the deterministic

approach are not able to cope with the increasing complexity of

LSI and VLSI circuit packages and their low pin-to-circuit

ratio. Random testing is one way of getting around this problem.

In the methods based ona random approach, random input patterns

are fed to a prototype [or a simulator] of the circuit to be

tested and are analyzed for their ability to detect fai lures.

The drawback of this test method is that it produces a very - 

-

large test set. To avoid this problem, the following method is
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suggested. In this method a set of randomly generated patterns are

applied to the primary inputs (P1 ’s) [a primary input is one that

can be applied to the device ’s input terminals] of the device under

test. Since all P 1’ s do not have the same functional importance [some

being more important than others] ,  the method exercises certain P1’s

more often than others [for definit ion refer to section 4 . 2 . 2 ] .

During its development, the approach has undergone a number - -

of changes. In the beginning , the effectiveness of purely

random patterns was measured. At later stages weights were

assigned to the P1’s in proportion to their relative importance.

Finally, the dynamic adaptive technique was developed by analyzing

the rate of change of switching activity inside the logic as a

result of exercising a P1.

-; The last modification achieved higher test coverages.

A pattern reduction technique can be used to compress the

patterns generated to a manageable size without any loss of test

coverage. 
-

4.2.1 Random Patterns

In this method a purely random technique assigns the same

numerical weight to every primary input (PT) of the chip to be

tested. Thus, each P1 is exercised approximately the same

number of times and the resulting patterns have the characteris-

tic randomness. This approach is more suited to chips which

contain only combinational logic because they do not require

sequences of patterns; often, a set of equally weighted or

random patterns are all that is required. However, this method

46
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is inadequate for sequential circuits when functional packages

such as counters and shift  registers are included on the chip.

4 . 2 . 2 Weight ed Adaptive Patterns

In this method weights are assigned to the P 1’ s in propor-

tion to their relative importance . Of f - l i ne  good machine

simulation is performed by software using a set of random

- 

- patterns as input.  Each pattern from the generator activates

only one P1 at a time . It is possible to count how many gates

inside the chip change for the first time from logic 1 to 0 and

vice versa, as the result of switching one of the P1’s. The

switching activity count is then accumulated over the complete

set of patterns. By comparing the activity created by all P1’s

one can determine the relative importance of each P1 through

the use of this weight vector in generating new pattern sets of

equal length ; iteration continues until the activity count

no longer increases.

Activity can be measured by observing the state of circuit

inputs by themselves or in combination with their output state.

Test results indicate that there is no appreciable difference

in faul t  coverage between the above two measurements . This

method proved to be a defini te improvement over the equally

weighted patterns. However, the method does not give very satis-

factory resul ts because of the following two problems: 1) im-

proper handling of reset lines, and 2) the difficulty created by

not having a set of weights with the simulation process.

The problem with the reset lines is that they directly

= 
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switch a large number of gates after applying a set of

patterns, the reset lines consistently show a high activity

count. In terms of the final fault detection patterns, over-

active resets are undesirable. The second problem is that of

having the adaptive weights one step behind the simulation.

Hence, these weights correspond to a history of what happened

in the past. Hence, it is a weight which would be more eff i-

cient in changing the state of the same gate that has already

been switched. This method is not, however, predictive in the

sense that it does not assign the best possible weight to the

remaining gates which are not yet affected.

4.2.3 Dynamic Adaptive Patterns

This technique also measures activity in terms of gate

switching states. It searches for a rate of change of activity.

For example, consider two inputs to a circuit 1) clock and 2)

reset line. When the random pattern simulation is pei-tormed,

it is the reset line that initially shows the steepest incre-

ment activity. The activity count of the clock on the other

hand rises at a slower rate, and as shown in Fig. 4.2.3—1

its final value is reached at a much later stage than that of

the reset. 
- I -

-

The faster initial slope of the reset line is due to the

switching of a large number of gates which are directly driven

by that line. By the time the first few random patterns have

been exercised, most of the gates will have already changed

states. For the next few hundred patterns, a few additional
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Fig. 4.2.3—1 [Ref. 9]

new gates will be switched by it. Consequently, the activity

of the reset line decreases. In the previous techniques, the

final weight assoc4ated with the reset line was the high value

of the activity count obtained during its initial performance.

The dynamic adaptive scheme locates a point where the

reset line is about to leave the knee of the curve (point A ) .

Once this point is located, the simulation is interrupted to

continue from the pattern where the interruption occurred . At

the end, the clock weight [which was only slightly affected by

the resetting to 0 of the activity count] will have shown a

- 
- 

considerable increase in its activity, while reset can reach

only a steady-state value which is slightly more than its value

at the time of the intersection with line A. The final weight

of the clock line will therefore be high, and that of the reset

line low. This technique does not presuppose prior identifica-

tion of functional characteristics of the clock and reset lines.
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The weighted random test pattern generator (TPG) is used

to test different LSI technologies. This technique yields a

satisfactory failure coverage for simple LSI packages with pin

to circuit ratio not less than 1 to 3 and with a limited

number of logic levels between inputs and outputs.

In the case of more complex technologies wherein functional

elements were of sequential nature, weighted random TPG seems

to perform well.

Table 4.2.3-1 considers five integrated circuit packages of

varying degrees of complexity. The number of functional elements

in the circuit and the combined total of primary inputs (P 1 ’ s) and

primary outputs (P0’s) give the topological description of the

circuit. The complexity of a package is indicated by the

maximum number of logic levels that separate the P T ’ s from the

P0’s and the number of feedback cuts necessary to convert all

the sequential elements into combinational ones.

4.3 Functional Testing [5]

The conventional methods of testing cannot handle complexi-

ties of microprocessors. A microprocessor ’s logic structure is

not simply a collection of gates nor is it a well ordered

assembly as in the large scale integrated circuit memory . The

classic dc tests used to check the integrated circuits such as

measuring one and zero state output voltages, can do little to

ensure satisfactory microprocessor performance. In addition , the

commonly used computer aided simulation technique, which tests

the 
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only that the device is free of steady-state faul ts  such as

s-a—l or s-a-0.

However , functional testing can provide comprehensive tests

for microprocessors . The basic philosophy used for functional

testing is that of divide and conquer . In this approach the

problem is partitioned into smaller blocks. These sub-blocks

are tested for proper functioning and then combined. Hence, in

this approach, instead of solving a large, complicated problem

at once, one tries to solve several small nonhomogeneous

problems, generating several simpler results. This approach

often yields efficient solutions to problems in which the sub-

problems are smaller versions of the original problem.

An important step in functional testing is that of parti-

tioning the device- under test (DUT) [32]. One possible approach

for partitioning the DUT is to model it as a directed graph. [A

directed graph is the ordered pair D = <A ,R> where A is a

non-empty set of nodes (points, vertices) and R is a relation

in A, i.e., R is a set of ordered pairs which are called arcs

(lines, pointers).] The arcs of this graph represent the

direction of flow of information signals. The system is

tested by inserting various test signals at selectively located

test points and monitoring and evaluating the resulting outputs

at various output test points. Efficient fault detection and

location methods can be developed by inserting break points

within the system and priming the latter with test signals at

the entry vertices and monitoring and evaluating the resulting
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signal at the exit vertices. Here, the break point on an edge

of the system graph simply blocks or unblocks the flow of a

signal. However, it should be noted that the break points help

diagnose part of the system by reducing or severing its inter-

action with others; those severed edges must, in turn, be

tested later as a whole to verify their proper functioning.

Another way of partitioning the system would be to

represent the system as a set of interconnected elements, each

element having its own input and output pins. All inter-

connections within the system are assumed to be of one of the

three types:

(1) a primary input (an input to the element is said to be

primary if it can be applied directly to the element

from external pins on the device];

(2) an element output to a primary output [a primary output

is one that can appear on the device output pins from

the elements output directly];

(3) an element output to an element input .

It will be appropriate to assume that the entire testing

of the system must be accomplished through the primary inputs

and outputs.

Instead of considering the functional nature of each

element, one can assign a measure t which reflects the testa-

bility of the element relative to the other elements in the

system. This measure could be the number of tests required to

detect some percentage of stuck-at-faults or may be as simple

- ; 53

____ - - - --::-:i
~ - ::i~~~~~~

- -~~-~~~~



___________________________________ - - 5 - ’-
~~
’
~ ~~Ti~~~~~~~~~~~

- 
- I

as a component count. -

Another important aspect of the testing problem is the

accessibility of these elements from the primary inputs and

outputs . For example , an element with a relatively small testa-

bility measure may turn out to be quite d i f f icu l t  to test

because it is buried deep in the system. Likewise, some primary

inputs and outputs may bear a far greater share of the test load

than others .

One way to do this is to picture the testing of an element

(with a measure ti as a flow process. Initially, a set of t

input tests or excitations are introduced onto the primary inputs

of the system. These excitations then propagate through the

system to the inputs of the elements involved . Here , they pass

through the element and emerge on an output as a set of t

detections. These detections then continue on to the primary

outputs of the system , where f inally they can be examined for

indications of possible malfunction.

Hence , a testing process for an individual element can be

modeled by postulating a “test flow” through the system but

with added provision that the nature of the flow will change

( from excitations to detections) when it passes through the

element. S

4 . 4  Modeling of Functional Sub—Blocks

After considering some of the methods of partitioning

large systems, one can consider d i f ferent  techniques for

modeling the functional sub-blocks. Two techniques available
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are: 1) Binary Decision Diagrams, and 2) A Graph Theory

Approach .

4.4.1 Binary Decision Diagrams

Once the functional division of a microprocessor (or VLSI)

is carried out, a function description of the sub-blocks is

required for testing. One method of achieving this would

be to use different sophisticated design languages. A

draw-back of such a description is that it makes a

detailed logical investigation difficult. On the other hand ,

techniques such as truth tables, Boolean expressions and

Karnaugh maps can be used for extensive analysis. However,

these techniques grow exponentially with the number of variables

involved.

Binary Decision Diagrams give a concise description

regarding the logical structure and testing requirements of the

function involved . With the aid of these diagrams, one can

define a digital function diagraxnatically . This diagram is

essentially a means to compute the output value of the function

by examining the values of the inputs.

For example , consider a switching function f = A® B~C.

Given values of A , B and C one can find out the values of f

as follows :

Case 1: If A = 1, B = 1 and C = 1, then f = 0

Case 2: If A = 1, B or C = -0 , then f = 1

Case 3: I f A = 0 , B C 1 , t h e n f = l

Case 4:  If A = 0 , B or C = 0, then f = 0 .
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A Binary Decision Diagram for this function is as shown

in Fig. 4.4 .1—1 .

f = A ® B C

A -
-

0 1

~~~
‘

o ib .

1 0 0 1

1 0 1 0

Fig . 4. 4.1—1

Fig. 4.4.1-1 shows a tree structure for this procedure.

[The procedure used to reduce the above tree structure is similar

to the one used to reduce the structure in Fig. 4.4.1—2.] The tree

is entered at the node indicated by the arrow and then proceeds

downward through the diagram. The value of the variable at each

node decides the branch to be followed. When a 0 or 1 value is

reached, it gives the value of the function f and the process ends. --

The Binary Decision Diagram can also be constructed from

the truth table of the function f. This is achieved by con-

structing a tree that has a one to one correspondence between
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the 2k’. rows of the table [the truth table for the Boolean

function f with n variables will have 2~ rows] and the 2~
’ paths

to the outputs of the diagram . These outputs can be labeled

with the corresponding values of f and the required diagram

results. With n variables there will be initially nodes

but this number can be reduced by carrying out certain reduction

techniques as shown in the example below. -

Consider the logic function f of three variables

f = ~~.C + (A® B)

The corresponding truth table is:

A B 
- 

C f

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

_ _  _ _  

i
-

° 
-

-

Table 4. 4.1— 1

The corresponding binary decision diagram is as shown in —

-
- 

- 

Fig . 4.4.1—2.
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f = ~~~.C + (A ® B)

A

0 1

B B

0 1 0 1

C C C C

0 1 0 1 0 1 0 1

0 1 1 1 1 1 0  0

Fig. 4.4.1—2

In Fig. 4.4.1-2, note that the rightmost C-node is 0 regard-

less of the value of C. Hence, this node can be replaced by

a 0, as shown in Fig. 4.4.1—3.

In Fig . 4 .4 . 1—3 two rightmost C-nodes are 1 regardless

of the value of C. Hence , these nodes can be replaced by 1,

as shown in Fig. 4.4.1-4 .

Fig . 4.4.1-4 is actually a simplified Binary Decision

Diagram for the function f = ~C + ( A ® B) .

If , however , the switching function is specified by a

Boolean expression , a top down procedure can be used to derive

the diagram by repeated application of Shannon ’s expansion

formula: •

58

____________



- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f_ B .C + (A®B)

A
0 1 -;

B B

C C C

O / \l o/ \o /\

0 11 ii

Fig. 4.4.1—3

f = B-C +(A@B)

A

0 1

B B

0 1 0 1

C 1 1  0

0 1

0 1 Fig. 4. 4. 1—4
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f (A ,B ,C , . . .)  = Af ( l ,B,C,...,)+ Af(0,B,C,...)

For example , consider the function with five variables:

f = B(AC + 
~~~~~~

) + ~ (AB + ~D)

Begin by setting A = 0 in f to obtain the function f 0 which must

be realized below the A = 0 branch. This is also done for the

A = 1 branch to obtain f1 (Fig. 4.4.1-5). The process is

repeated for variable B to obtain functions in Fig. 4 .4.1-6.

Note that two of the branches lead to the same function (D~)

so these may be directed to the same node [see Fig. 4 .4 .1 -7] .

In this fashion the merging of all the identical subfunctions

results in Fig. 4.4.1—8.

f=B(RC+CE)+E(~B+BD) 
f

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f0=B(C+E)
+E(B+D) f1=BC~+~D~ B B

Fig. 4.4.1—5 0 1 0 1

DE C+~ DE

Fig. 4 . 4 . 1 — 6
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Fig. 4 . 4 . 1 — 7  
0 1

1 0

Fig. 4 . 4 . 1 — 8 .

Typically, reductions of the diagram can be carried out by

omitting redundant nodes and merging identical subfunctions,

and then expanding each about one of its remaining variables

until all paths terminate with a 0 or 1. Clearly , all paths

will terminate in n steps .

-
- - 

4.4.1.1 A Property of the Binary Decision Diagrams

Each node in the diagram has two output branches and only

one of them is activated for the given input. Hence , for any

input exactly half of the branches in the diagram are activated
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and, also each node has one and only one active path to an

output value of 0 or 1.

These diagrams can be used to determine various logical

properties of the funct ion(s)  which they represent. For a

detailed description, see Ref. [30].

4 .4 . 1 .2  Test Generation Using Binary Decision Diagrams

Since the binary decision diagram provides a functional

description of the device, it is very difficult to find a set

of tests which will automatically provide complete fault

coverage for all implementations.

If, however, one generates a set of tests which fully

exercises all of the various nodes and branches of the diagram ,

then it is possible to test a reasonable functional block with

the aid of these diagrams.

These diagrams are very useful to test stuck-at (SA)

types of faults. Since at any time exactly half of the branches

in a diagram are activated, the tracing of active paths may be

less complicated compared to other testing techniques. For

the diagram with n nodes in the worst case , the depth of the

tree would be 
~~j

1. Hence , the maximum number of different

choices for the test paths would be !~
j
1. This number seems to

be manageable compared to other methods in which the number of

test paths grows exponentially.

These diagrams will be of little use if a faul t  creates a

path between the nodes at the same level, or it creates a path

between nodes at di f ferent  levels than that which a binary
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decision d iagram allows. (The diagrams permit paths between

adjacent levels.] For such a fault, the response would be un-

predictable and the binary decision diagrams will not serve as a

correct faul t  model.

However, a more comprehensive test set can be obtained by

postulating various ‘diagram faults ” analogous to the “ stuck-at”

faults in an actual implementation and then generating a test

for discovering each of these faults . Again , such a procedure

will ensure that a functional block is put through a variety

of d i f ferent  modes of logical operations.

4.4.2 A Graph Theory Approach

This is a mathematical approach which is still in the

infantile stage. Although a lot of work has been carried out

in this area, little has been done in applying this technique

— in practice. The advantage of the technique is that it provides

a mathematical background to the modeling of functional sub-

blocks , thereby giving some mathematical insight into the

problem .

4.5 Causes of LSI Microprocessor Failure [10]

LSI devices have all the reliability problems associated

with small-scale integration (SSI) and medium scale integration

(MSI) devices plus others. Since microprocessors are chips of

larger area, devices are more prone to defects inherent in the

semiconductor material thus increasing the probability and number

of process defects such as pin holes and metalization faults.

Larger packages are required to assemble the LSI devices,
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thereby introducing more bonds and increasing the probability

of bond failure. The larger packages are more difficult to

seal theoretically, increasing their susceptibility to leaks.

Unlike the simple TTL integrated circuit, the LSI device

must be tested as a system. This makes the testing more complex

and less thorough relative to the testing of SSI and MSI corn-

ponents. Interaction between adjacent active elements of the

LSI circuit can give rise to unwanted parasitic transistor action,

coupled-capacitance effects, and under various combinations of

logic patterns, can cause an LSI device to lose stored informa-

tion--a phenomenon called pattern sensitivity.

Experience has shown that systems using LSI dev: are

more reliable than systems using discrete components. C :c con-

tributing factor is the general improvement in semiconductors

in recent years.

The results of certain failure studies for LSI show that

approximately 45 percent of MOS LSI failures were chip related

failures and only 28 percent were due to package and assembly-

related failures. Twenty percent of the remaining failures

were attributed to handling and 7 percent were due to other

causes. Of the 45 percent chip-related failures, 20 percent

were attributed to oxide faults. [Ref. 10]

The oxide in an MOS (metal oxide semiconductor) performs

a dual function. It protects the semiconductor material and

determines the operating parameters of the MOS circuit. Micro-

processors, like all components, have unique failure mechanisms,

64

--



~~~~‘~~~ w~~
5- _ _— - - -- ‘5-r 5- 

~~~~ ~~
‘5 - 5 -

’~~~~~~~~

as well as mechanisms in common with other semiconductors.

— Typical causes of microprocessor failure [package and die

related failures] may yield any failure mode depending on

when and where on the chip they occur.

The assembly and package-related failure causes include

1) open-bonded wires, 2) lifted bonds , 3) l i f ted chips , and

4) loss of hermeticity.

Potential package—related failures are important for the

following reasons. The large die size could affect the proper

bonding of the die to the package. A large number of wire

bonding pads and the number of external package pins required

increase the probability of bad wire bonds occurring , and the

large package size could present sealing problems which are

noticed only by hermeticity and temperature cycling tests. The

integrity of ~~e die and wire bonds could be ensured by centri-

fuge tests, which must be performed with extreme care so as not

to crack the package.

4.5.1 Failure Modes

Failure modes of LSI devices (memories, microprocessors

and the like) are divided into two major categories :

a) catastrophic failures, and

b) soft failures.

The catastrophic failures can be attributed to the following :

I) oxide rupture, II) interruption of lines, III) wire bond 4
failures, and IV) corrosion due to contamination.
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Soft failures, being hard to detect, can be simply out of

specification conditions at certain operating conditions. In

some instances, soft failures cannot be reproduced . For example ,

test system noise can cause failures and this noise cannot be

reproduced. For this reason, characterization testing is

important. Most soft failures are single bit failures. They

occur due to one of the following reasons : slow access , loss of

data in cells or multiple addressing. The advent of the micro-

processor has added soft failures related to software and the

interrelationship between software and hardware, such as

(1) pattern and pattern sequence sensitivity

(2) interrupt, such as trigger on wrong priorities for

multilevel interrupt

(3) failures to execute instruction and/or interrupt

(4) loss of carry and bits during circulation ~ f data

(5) instruction and instruction sequence sen~itivity.

4.5.2 Electrical Testing

One of the critical areas of microprocessor reliability is

that of electrical testing. How does one adequately test a

Microprocessor Unit (MPU ) to ensure that it has no shortcomings

for all possible conditions of use? Electrically testing a

microprocessor is very d i f f icu l t  due to the following reasons: 
- -

(1) the random logic nature of an MPU , (2 )  the bus organization ,

(3) the on-chip interrelationship between functional blocks,

(4) chip layout and (5) relationship between software and hard-

ware and the like. [The microprocessor must be considered as
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a monolithic system of untested parts, the constituent corn-
- j - ponents of which are not accessible.]

For these reasons, it is important to perform first a

characterization test program. The results of this test program

are then used to develop a complete electrical test program that

is both meaningful and viable. 
-

In electrical characterization, a sample of a given device

type is subjected to all practical combinations of supply

voltages, temperatures, timing conditions and parametric

variations.

The aim is to discover how the parts respond under these

conditions and within what limits they remain functional.

The tests include stringent functional stressing by -

means of patterns , as well as timing and parametric

variations under temperature extremes. Worst—case patterns and

instructions with supply and timing variations are applied to

the device to expose as many of its failure modes as possible

and to determine its performance under the most severe condi-

tions.

If the characterization is well planned, electrical

characterization can provide much valuable data. The resulting

volume of data must then be put into a form that is easy to

interpret so that meaningful conclusions can be reached.

4.6 Testing of LSI Random Access Memories (RAN) [11]

Typically , RAM memories are manufactured using one of two

technologies, bipolar and metal oxide semiconductor (MOS) . The
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MOS memories have a higher circuit density and, hence, have a

larger memory capacity. Unfortunately, these memories store

their data via the charge across a capacitor. Due to circuit

leakage, this charge must be re-established at fixed intervals,

otherwise the value of the bit stored will be lost. The

process of re-establishing the data in the memory is called

refreshing. Memories which require refreshing are called

dynamic. The following parameters have a significant effect on

how the memory is to be tested: 1) total capacity , 2) array

configuration, 3) addressing layout, and 4) refresh parameters.

H Faults can occur in the memory matrix, decoders, input

buffers, read/write circuitry, data input circuitry or sense

amplifiers. These faults can lead to functional failures such

as inability to read or write, erroneous data storage, d.c.

parametric failures such as unacceptable output levels, or

dynamic failures such as slow access times. Specifically, the

semiconductor RAM memories exhibit malfunctions such as:

(1) opens and shorts

(2) open decoders - the total memory cannot be truly

addressed

(3) multiple wires - in the act of writing in one cell the

chip actually writes in more than one cell

(4) pattern sensitivity - the contents of a cell get comple-

mented due to read and write operations in “electrorzi- 
- 

-

cally adjacent” cells. Such an error may be a function - 
-

of (a) the 1nforrnatxon be1n~~~~~
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cells being addressed and Cc) the sequence in which

these cells are addressed .

(5) write recovery - memory may not produce information at

the specified access time when each read cycle is pre-

ceded by a write cycle

( 6 )  sense amplifier sensitivity - memory may not respond
— 

- with the proper information after reading a long series

of similar data bits followed by a single transition of

the opposite data value

(7) poor retention - memory loses information in less

than the stated hold time [the hold time is defined as

the maximum period of time the data can be stored with-

out re-establishing its value].

The problem of pattern sensitivity arises mainly due to

high component density and related effects of unwanted inter-

acting signals. Due to this problem, the following situations

may occur: (1) store (write) a value in cell K , (2) read this

value several times to verify that it is indeed stored in cell

K, (3) read and write in cells other than cell K, and (4) read

cell K and find the value which is now wrong. This effect can

occur even though each cell is capable of being correctly

addressed and can individually store a 0 and a 1.

To prove that a read/write RAM is totally functional, the

following aspects must be verified :

(1) Every cell of the memory must be capable of storing a

O andal;
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(2) The cell addressing circuits, or decoders must

correctly address every cell;

(3) The sense amplifier must operate correctly;

( 4 )  There must be no interaction between memory cells;

(5) For dynamic MOS memories, the cells must be capable of

storing data for a specified time without being

— refreshed.

It is a difficult task to design tests to cover the five

factors given above. Tests must also take into consideration -
:

the chip configuration and electronic characteristics, since

each design exhibits its own unique failure characteristics.

It is often very difficult to determine exactly what fault modes

exist in these chips. In practice there are many different

types of test patterns available for testing these memories.

Each has its place or use along with certain trade-off s as to

the sufficiency of the test, and test time. Certain patterns

are specifically aimed at certain problem areas. The most

common of these patterns are discussed below.

4.6.1 Write and Read Ones and Zeros

This is the simplest of all memory test patterns and is

widely used throughout the industry, although it is of limited

value. An LSI memory array could possibly have totally non-

functional decoders, with one memory cell selected and connected

to the input-output lines and still appear good with this

test. With all the decoders nonfunctional, there will always

j  
be one memory cell that is permanently selected because each

4
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nonfunctional decoder must be in either a permanent one or zero

state. When a logic one or zero is written, the one or zero

will be stored in the permanently selected memory cell and upon

checking the contents of the memory array for an all ones or

zeros pattern, the contents of the one selected memory cell

will always appear on the output as all ones or all zeros,

indicating that the device is good when it is not.

The all ones and zeros pattern is, however , useful but

its application is limited due to the problems mentioned above.

4.6.2 Marching Ones and Zeros

This is a basic test to ensure that the memory is

functional ( that is , the addressing is operational and

-each cell can be written and read in the input/output state).

The memory is first written to the all-zeros state. Then

sequentially, starting at the first address, the zero is read

and a one is written. This sequence is continued to the last

location (i.e. until the memory is full of ones). Then,

starting at the last location, a one is read and a zero is

written. The address is reduced in location and the sequence

is repeated until the first location is reached. This overall

sequence is then repeated with the data reversed .

As the memory is being scanned in the ascending direction,

any effect on a location above will be detected when it is

eventually read. If the effect is on a location below, it will

not be detected until the memory is scanned in reverse. This,

by no means, tests everything or all interactions, but does

5- 
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reasonably assure that the memory is working and that no

defective elements are present.

4.6.3 Walking Ones and Zeros

The most widely used and most generally known test for

semiconductor memories is walking ones and zeros , sometimes

called ripple. This test is much more extensive than the

marching ones and zeros. Initially , all locations are written

to a “background ” pattern of all zeros. Then starting at the

f irst  location , a “test word” of one is written. All other

locations in the memory are sequentially scanned and read to

verify that they still contain the background pattern of all

zeros. The “test word” one is then read and written back to

zero. After the first iteration, it is known that writing a one 4

in the first  location does not a f fec t  any other location . This

sequence is repeated for every location in the memory . At the

completion of walking one through a field of zeros, the

patterns are reversed and the zero is walked through a field of

ones. Overall, this test sequence results in 2(n2 + 4n) tests

where n is the number of locations in the memory . This test
— pattern is useful for testing dc pattern sensitivity , func-

tionality and proper address operation . However , because of

infrequent data transitions during the read cycles, it is not

a good test for access-time determination.

4.6.4 Galloping Ones and Zeros (GALPAT)

This is one test pattern that includes testing all possible

- - address transitions. It uses the same data pattern sequence
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as walking ones and zeros. Initially, all locations are

I’ written to a background pattern of zeros. Then, starting with

— the first location , a test word of one is written followed by a

read sequence of read location two, read location one (test

word), read location three, read location one, etc., until

every pair of transitions is checked . The test word is moved
-
~

to the second location and the sequence is repeated , checking

all transitions with the second location . This is repeated for

all locations. The patterns are reversed and the overall

sequence is again repeated .

The GALPAT test provides alternating data output during

successive read cycles and overcomes the access-time limitation

of the previous pattern . Write/read operations which are per-

formed only every n basic cycles, are less than rigorous;

however, overall, the GALPAT is a very good test procedure.

Other standard test patterns used in industry for testing LSI

memories include : galloping write recovery , multiple address

exercise test (MASEST) and checkerboard . Table 4.6- 1 gives

the summary of performances of the various standard testing

patterns.

The n in the test time column of Table 4.6-1 refers to

the number of memory cells in the LSI memory array .

4.7  Functional Testing of Microprocessors (3 3

This approach involves the following procedure:

(1) Prepare a functional block diagram by partitioning the

processor into basic functional blocks. To develop a detailed
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functional diagram requires a gate level diagram , timing

diagram and a blodk diagram showing the major functional areas

of the microprocessor and intetconnecting data and control

path s. However , in many cases , microprocessor vendors supply

only a timing diagram and a block diagram . This is inadequate

to prepare a detailed functional block diagram and one has to

rely on the best available information .

For partitioning the microprocessor, the test engineer

should study the hardware architecture and software response

specifications of the microprocessor under test. Architecture

refers to the internal organization of the device: an ordered

set of modules such as a program counter, arithmetic logic

unit (ALU) , accumulator, stack pointer, etc. Software response

refers to applying a set of instructions to the microprocessor

under test in order to monitor the operation of various modules.

After famil iar izat ion with the above , an ordered set of test

sequences can be developed in the microprocessor ’ s programming

language for testing the modules.

S There is a wide variety of microprocessors available on

the market today and each has its own architecture; of all the

product types, 8 bit units like the Intel 8080 , Motorola 6800 , and

MOS 6500 series , have gained the widest market acceptance.

Block diagrams of the Intel 8080 and Motorola 6800 are as shown in

Figures 4.7-1 and 4 .7 -2  respectively.

Typically , an 8 bit microprocessor (refer  to Figs.

4.7-1 and 4 . 7 - 2 ]  ha s two internal busses , an 8—bit  bi—directional
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Fig. 4.7—2 Mc6800 Block Diagram (39]

data bus and a 16-bit unidirectional address bus. The typical

functional block diagram of such a processor would resemble

Fig . 4.7—3. The data bus carries both instruction codes and data .

The instructions are decoded and executed in connection with the

- 
- appropriate controls and the data goes to both the arithmetic

logic unit and the accumulator to be manipulated by specific

________________________ 

5-
;

This test philosophy was developed by General Electric
for RADC.

3;
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DATA BUS. Fig. 4.7-3

- FUNCTIONAL SUBDIVISION OF A
- TYPICAL 8-BIT MICROPROCESSOR

- D7
DATA BUS.

arithmetic or logic operations. The address bus links with the

main memory where both instruction codes and data are stored.

Stack pointers, program location counters and register files

also supply information to the address bus.

(2) Test each functional block using proven test

1’ patterns. [This testing should yield a high test confidence
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level.] Some of the functional blocks can be exhaustively

tested using only a few test vectors.

The following is a typical procedure to achieve this.

4 .7 . 1 Pin Independence

This is achieved by verifying that while each pin assumes

a one and a zero state , all of the other pins — either individu-

ally or collectively - are in the complement state. The states

of the input pin have to be monitored unless they are sensi—

tized to the outputs.

4 . 7 . 2  Testing of Control

Such a testing should verify:

(1) Each control line performs the intended function.

This is achieved by activating each control line and verifying

whether address, data and status lines assume the correct states.

(2) Each control line will perform independently of the

previous instruction. This is achieved by activating the con-

trol lines in a gallop type test and checking the response.

(3) The proper priority is maintained when, two or more

control lines are activated at the same time.

(4) Some of the control lines will have high impedance

capability (Tn -State lines). LFor example, some of the tn-

I 

state control lines in Mc6800 are Data Bus Enable , Bus

Available and Valid Memory Address (VMA).] These lines and

their associated circuitry should be activated and checked for

proper operation.

Tn —state lines are checked by placing them in a high

-~~~~ 
-
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S impedance state and measuring the leakage current. This

should be tested with the input of the tn -state buffer acti-

vated to both a one and a zero.

4.7.3 Data Lines

(1) These are tn -state lines and they should be subjected

to the same test as in step 4.7.2—4.

(2) Line independence - This is accomplished by checking

that while each line assumes a one and a zero state, the rest

of the lines - either individually or collectively - are in the - -
-

complement state.

4.7.4 Testing of Multiplexers

- - Test if a multiplexer can pass both a one and a zero in

each selection position.

4.7.5 Testing of Arithmetic Logic Unit (ALU)

(1) Testing of serial adders/subtractors:

(I) With carry = 1, apply all possible inputs, i.e.

O and 0, 0 and 1, 1 and 0 and 1 and 1 to each input pair.

(II) Repeat (I) with carry = 0.

Steps I and II should be carried out for both the add and

subtract modes.

Typically, for the 8 bit microprocessors the subtractor

is a one’s or two’s complement subtractor.

Two ’s complement subtraction is performed by complementing

the subtrahend and:

(I) For single precision arithmetic, adding with

carry-in equal to “one .”
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(II)  For multiple precision arithmetic , adding with
- 

~
‘ carry—in equal to borrow from preceding bytes.

Hence, a test for subtraction requires verification of the

addition function and then verification of the complementing

circuitry. This requires the following tests:

(I) Verify the eight possible inputs to each bit of

the adder.

(II) Verify that the complementing circuitry will

complement both a one and a zero for each bit.

(III) Verify decimal adjust circuitry. 
S

(2) Testing ALU for logic operations:

(I) For each input pair of the ALU, apply the following

input conditions:

(a) 0 and 0, 0 and 1, 1 and 0 and 1 and 1 during

Exclusive OR operations

(b ) 0 and 0, 0 and 1, and 1 and 0 during logical OR

operations

Cc) 0 and 1, 1 and 0 and 1 and 1 during AND operations .

(II )  Verify that for shift left and for shift  right -:

operations, both a “0” and a “1” are shifted from each bit

into a “U’ and a “0” respectively , in each adjoining bit.

This requires four shift left and four shift right combinations,

i.e. this would verify 0 to 0, 0 to 1, 1 to 0 and 1 to 1

transitions.

(3) Testing of Flip Flops . check flip flops for 0 to 0 ,

0 to 1, 1 to 0 and 1 to 1 transitions.
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(4) Verify that the carry-in has no effect on the ALU

during logic functions.

4.7.6 Checking of ALU Flag Signals -

Check that special outputs such as carry, carry generate,

carry propagate and overflow from an ALU operate properly , i.e.

assume both a one and a zero state and that they occur at the pro-

per time . If Boolean equations are provided for their generation,

verify that each of the terms in the equations affects the outputs. 
- 

-

4.7.7 Verification of Instruction Set

Execute each instruction or op code at least once to verify —

the instruction set. Checking that only the intended instruction

is performed verifies that the decode circuitry is functioning

properly.

4.7.8 Testing of Processor Registers - 

-

This Includes the following:

(1) Verify register independence. This is achieved by writing

into one of the registers and checking that others are unaffected.

(2) Verify bit independence. This is achieved by checking

each bit for the zero and one state with respect to all other

bits which are in a complement state.

(3) Verify integrity of unique registers. (Here , by

unique , we mean registers such as accumulators, stack pointers,

index registers, storage registers, etc.).

- - This is achieved by ensuring that transitions from 0 to 0 ,

0 to 1, 1 to 0 and 1 to 1 are possible for each bit of each

static register.
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If the device under test contains a RAM or if the unique

registers can be configured as a RAM , the following items should

be checked.

4.7.9 Testing of Processors Containing RAM

(1) Address Uniqueness. If a memory has n words, verify that

there are n independent word locations or verify that unique reg-

- isters are independent. This is achieved by writing into an ad-

dress or register and verifying that it was the only address or

register affected . The standard RAM tests used for this are walking—

one , walking-zero , galloping-one, galloping—zero , or write recovery .

(2 )  Bit Independence. This is achieved by verifying each

bit for a zero and a one state with respect to all other bits

which are in the complement state . This is accomplished by a

walking-one, walking-zero type of test.

(3) Cell Integrity. Check that transitions from 0 to 0 ,

o to 1, 1 to 0 and 1 to 1 are possible for all bits. For

multiple bit RAM ’s , this can be achieved by walking-one,

walking-zero test. For single-bit BAN ’s, separate tests have

to be performed for the 0 to 0 and 1 to 1 transitions.

(4) Cell Independence. For dynamic R~~1s check for inter-

cell disturbance. Maximize the number of internal transitions

to test for cell to cell interaction. This can be achieved by

a galloping-one, galloping-zero type of test.

- 
- 

(5) Data Retention for Dynamic RAMs. This is the same as

the test number 4.7.10 [for certain devices, it may be necessary

to check the following items :
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(6) Write Recovery. Verify that transitions from write to

read do not cause access time failures. This is verified by

checking all possible transitions from write to read .

(7) Read Modify Write Recovery for Dynamic RAMs. Check

that transitions from a read to a write do not cause incorrect

- 
- 

information to be written into the device. This is achieved by

checking all possible transitions from read to write.

(8) Sense Amplifier Recovery for Dynamic RAMs. Test for

sense amplifier frequency response by repeatedly reading 1—0

data patterns at minimum read cycle time .

4.7. 10 Verification of Dynamic Registers and Busses.

This test should check that enough charge is transferred in

a minimum transfer time and that sufficient charge is available

after the maximum storage time . This is achieved by varying the

power supply voltages and clock amplitudes, periods, widths, and

delays to set up the worst case condition mentioned above.

4.8 Available Test Methods for LSI Testi~~
4.8.1 Signature Analysis [29]

This technique utilizes a portable tester which essentially

compresses a multiple-bit burst into a form that can be easily

handled , without an undue amount of software. One method used

in large systems is transition counting [described in section

(6)]. The signature analysis method is based on the data com-

pression technique called cyclic redundancy check codes (CRC)

borrowed from the telecommunications field. A cyclic redundancy

check code is a form of a check sum produced by a pseudorandom
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binary sequence (PRBS) generator.

4.8.1.1 Pseudo Random Binary Sequences (PRBS)

A pseudorandom binary sequence is a pattern of binary

ones and zeros. The pseudorandom binary sequence has a property

that it starts repeating after some sequence length . Due to its

randomness, the sequence provides ideal statistical characteris-

tics , yet the sequence is usable due to its predictability .

An n—bit PRBS generator can generate a sequence of any

length up to 2n_ 1 before it starts repeating. The maximal length

generator is the one that repeats exactly after 2n_ 1 bits. Such

a generator will generate all possible n—bit sequences except

F a string of n zeros. For example, consider a fifteen bit

sequence 1000111101011001. This bit pattern is produced by a

four bit maximal length PRBS generator (since 15 = 2~ -l) . In

this sequence, a~l possible bit patterns occur only once and

then the sequence starts repeating.

The construction of a PRBS generator is based on Galois

field arithmetic. The Galois field of two elements has an

alphabet of two symbols, 0 and 1, together with modulo-2 ; 
-

addition [i.e. 0 + 0 = 0 , 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0]

and multiplication [i.e. 0 .0 = 0, O~l = 0 , 1 0  = 0 , 1-1 = 1] .

For th~s reason, in a PRBS generator there exists only two

types of operating elements . The f i rs t  i! a modulo-2 adder

[also known as exclusive OR gate] and the other is a simple S

flip flop (say D-type) which acts as a time delay of one clock

period. A shift register can be constructed by connecting
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~~~~~~~ K PULSES . /
Output = 1000111101011001

Cycle Q2 Q3 Q4 D1 Q1 ® - 
-

-

Initial State 0 0 0 0 1 1
1 1 0 0 0 1
2 1 1 0 0 1.
3 1 1 1 0 1
4 1 1 1 1 0
5 0 1 1 1 1
6 1 0 1 1 0
7 0 1 0 1 1
8 1 0 1 0 1
9 1 1 0 1 0

10 0 1 1 0 0
11 0 0 1 1 1
12 1 0 0 1 0
13 0 1 0 0 0
14 0 0 1 0 0 . 

-

Begin to Repeat: 15 0 0 0 1 1
Fig . 4.8.1.1—1

these f l ip  flops in series , as shown in Fig. 4 .8 .1 .1—1.  By taking

the outputs of various f l ip-flops , exclusive ORing them and

feeding the result back into the register input, a feedback
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shift register is obtained that will produce a pseudo random

sequence. With the proper choice of feedback, the sequence will
- $ 

be maximal length. The fifteen bit sequence considered earlier

was produced by the PRB S generator of Fig . 4.8 .1 .1—1 , wi th the

flip flops initially in the 1000 state . [Note , the all—zero

state is not allowed.] The table in Fig. 4.8.1.1-1 shows the

pseudo random sequence. This list contains each of the sixteen

ways of arranging four bits except four zeros.

— Figure 4.8.1.1—2 shows the same feedback shif t  register

with an external input. In this case one can superimpose input

data onto the pseudo random sequence. The superimposed data

changes the sequence generated by the generator.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ l H ~~~~~~~~~~~~~~~~~~~~~~~

2 

~ HH ~Input
OutputFig . 4.8.1 . 1—2

4.8.1.2 Shift Register Arithmetic

Let x(t) denote an input sequence; let D be a transform

operator such that x(t) = Dx(t-i). Multiplying by D is equiva-

lent to delaying data by a unit of time . In Fig . 4.8.1—2 . the
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data entering the register is the sum of samples taken after one

clock period and four clock periods, along with the input data

itself. Hence, the feedback equation can be written as

D4x(t) + Dx(t) + x(t) or simply + x + 1. The characteristic

polynomial for the feedback shift register is the inverse of the

feedback equation. Let the feedback polynomial for the n stage

(n flip flops) register be denoted by f(x). The characteristic

polynomial is given by x~f(x-l). Hence, the characteristic poly-

nomial for the shift register in Fig. 4.8.1.1—1 is x4 + + 1

which is the inverse of the feedback equation.

Feeding data into a PRBS generator is equivalent to dividing

the data stream by the characteristic polynomial of the generator.

Since the PRBS generator is constructed from the Galois field

elements (Modulo-2 adder], it is a linear sequential circuit. This

generator gives the same weight to each input. A nonlinear cir-

cuit on the other hand would contain combinatorial devices such

as AND gates, which are not modulo—2 operators and which would

cancel some inputs based upon prior bits. Hence, a linear poly-

nomial is one for which P[X+Y 1 = P(X] + PCY] . In Fig. 4.8.1.3-1

three different bit streams X, Y and X+Y are fed to the same PRBS

generator. Note that the output sequence follows the above rela-

tions hip, i.e. Q(X+Y) = Q(X) = Q(Y). Y is a single impulse bit

delayed in time with respect to the other sequences and it may be

noticed that X and X+Y differ in only bit, viz. 4th bit from the

left. However, Q(X+Y) looks nothing like Q(X). Let R(X), R(Y) and

R(X+Y) be the remainders in the registers generating X, Y and

X+Y sequences respectively.
88
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X 101 010 101 010 101 010 io,J 

Q(x)~~,00 011 000 100 10]. 11]. 10

0111

Y=000 100 000 000 000 000_ooj 

— 1 Q(y)=000 000 011 110 101 100 10

I J

x+~=io1 110 101 010 101 010_1~ J Q(X+Y) 000 011 011 010 000 011 00

~ J J  J R(X+Y) = 0100

Note: (1) Contents of the above registers are initialized to 0000
(2) Principle of superposition holds, Q(X+Y) = Q(X)+Q(Y)
(3) Here, “+“ means exclusive OR operation

Fig. 4.8.1.3—1

If we stop after entering only twenty bits of the sequence and

compare the remainders, they would be R(X+Y) = 0100 and

R(X) = 0111.

4.8.1.3 Error Detection Using PRBS Generator

In Fig. 4.8.1.3-1 the x input can be taken to represent an

input data stream; X+Y can be considered as representing an

erroneous input with Y an error sequence. Since by stopping the

PRBS at any time and comparing the remainder in the register

with the expected bit pattern, single bit errors will always be

detected. This error detection capability does not depend on

the length of the input sequence. In Fig. 4.8.3-1 R(X+Y) is

different from the correct R(X) and the effect of the error
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persists even though the error has disappeared many clock

periods ago.

If the synchronous sequential circuit is supplied with the

clock and gate signals necessary to produce a repeatable cycle

for the testing, then the PRBS generator can be used [as a

passive device] to accumulate data from a node in the device

under test (DUT). By carrying out this procedure for a known

good device, one can associate with each test point the contents

of the shift register. This information can be used to test the

failing device. Since the PRBS remainder depends on every pre-

vious bit that has entered the generator, this is an identifying

characteristic of the data stream; hence, this labeling of the

node is termed as signature and the technique is termed as

“signature analysis.”

In conclusion, a feedback shift register with n stages will

detect all errors in a data stream of n or fewer bits since the

entire sequence will remain in the register. (For mathematical

proof , see Ref. [29].) For data streams of greater than n bits

in length, the chance of detecting an error using a PRBS is

very high for generators of reasonable length. The undetected

errors are pred ictable and, furth ermore , such an error detec—

ting method will always detect a single-bit error regardless

of the length of the data stream.

4.8.2 Transition Counting [1]

Consi der a digital circui t, which under fault-free condi-

tions produces an output sequence Z in response to an input
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sequence X. When testing a circuit, assume the output response

observed was Z’ to an input sequence X. If Z ~ Z’ , then the

fault is said to be detected. There are two problems asso-

ciated with this testing: (1) the entire fault free response

Z has to be stored for comparison with Z’, and (2) Z’ must be

compared with Z bit by bit. This requires a sizeable amount of

hardware, especially if this comparison is to be made at the

DUT’ s clock rate.

In order to circumvent these problems, one can apply a

function f to the output response of the DUT and compare f(Z)

with f(Z’). Several different choices for the function f exists,

namely, “the number of l’s in the sequence,” or “the number of

0 to 1 and 1 to 0 transitions in the sequence.” The latter is

called the transition count (TC) and is employed in some popular

commercial testers.

Properties of Transition Count Testing.

Let Z = Z(l)Z(2)...Z(n) be any n-bit binary sequence [for

simplicity assume that the circuit has only one output). Then

the transition count C(Z) of Z is given by the equation

n—i
• C(Z) = ~ Z(i) ® Z(i+l)

1=1

where ~ denotes an arithmetic summation and ~~ denotes an

exclusive OR operation. For example, consider the circuit in

Fig. 4.8.2-1. The input sequence and the transition count for

• each signal are as shown. The output sequence is Z = 1001 and

H 
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C(Z) = 2. If the output of G2 is s—a-i, we obtain Z’ = 0001

and C(Z’) = 1. Hence, this fault changes the transition count

from 2 to 1 and therefore the fault is detected.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:

Since actual responses need not be stored, the testing is

quite simple. The transition count for the DUT can be deter-

mined by feeding outputs of the DUT into counters. Hence, very

simple Automatic Test Equipment can be used. For an n-bit

output sequence’, an in bit counter is required, where m is

proportional to Log2n

Typically, a circuit is tested using this method by first

applying a long test sequence to a fault free circuit and

recording the transition counts at each of the circuit outputs.

This information is used in determining the location of a

fault. The input sequence is generated by a hardware pseudo-

random number generator.

This method does not require any modeling and assoc iated

computer test generation and/or simulation. Automatic Test
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Equipment (ATE) used in this technique is very simple compared

to the equipment which must process test programs and fault

dictionaries. This ATE can therefore operate at much higher

test rates.

One of the problems associated with this method is that it

may not yield a high test confidence level (TCL) since only

some function of the output sequence is verified and not the

entire sequence. For example, if a number of ones in a sequence

is a test criterion, then it could happen that the sequence may

have the desired number of ones, but, however , they may not be

located in the proper positions in the sequence.

Since the device under test is tested at a very high rate

on input patterns which are not necessarily functional, there

is a chance that races or hazards may occur in the DUT. In

this case, it is possible that the DUT will be classified as

faulty when, in fact, it is not. Careful programming of the

input specification will tend to minimize this problem.

4.8.3 Signature Analysis Versus Transition Counting

Plots of probability of error using a transition counter and

PRBS generator (Fig. 4.8.3-1) show that the transition count

method appears worst on single bit error which is where the

PRBS generator never fails. Overall, the transition counter

seems to detect at least half of all the errors; however,

even a single bit shift register could do this. The four-

bit PRBS generator will always detect better than 93 percent ¶
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of all the errors. Adding one more bit to the feedback shift

register would halve the rate of misses.

• ~~~~~~~~~~~~~~~~ S~~gI~~Bft Er~~~~~” J ]
99.9999 • -

PRBS
n=15

• AU Errors -

I

~~~99. 9 ’

~~~~~~~~~~~~~~~~~~ rors

~~ Single-B it Errors
50 —

C ~ ~ ~~~ I I
1 2 5 10 20 50 100 1000 10,000

Sequence Length , Plo. O~ Bits in

Fig. 4.8.3—i [Ref. 29]
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4.8.4 Comparison Testing

This technique is typically used in device testing. A

vector test applies a set of test patterns (usually supplied by

the designer of the microprocessor) to both the MPU under test

and a known good NPU. Outputs from both devices are compared

against one another to determine the functionality of the

device under test. This approach results in considerable

savin gs in buffer memory size as it is not necessary to prov ide

an expected output pattern. Partial diagnosis information is

available since the designer usually derives the test pattern

by aiming at a specific block of logic inside the MPU or at a

specific sequence of instruction. However, the technique

suffers from some drawbacks. For example, the dependence on a

designer to specify the test pattern tends to limit the flexi-

bility to change or modify the input test pattern, and also

makes the degree of testing somewhat questionable. In addition

it is questionable as to whether the known good device is

functionally good. Another question which needs to be

answered is the following: Is a comparison test showing “pass”

results necessary because both the known good device and DUT are

equally unable to meet the test conditions? This problem can

be handled by operating the known good device in a totally

separate “be nign” environment in which all timing relationships

(except period), and all ?iases are at the most favorable values.

• Worst case or stress conditions are seen only by the DUT.
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Another criticism regarding this method is that the DUT

cannot be tested at speeds faster than the known good device ’s

speed. As a practical matter, by selecting premium reference

parts for a known good device, a comparison system can be

• operated at speeds considerably above the specification values

for incoming inspection. Thus, for both production tests and

• incoming inspection, this peculiarity of comparison testing is

of little practical importance. However, the engineering user,

concerned with modifying or advancing device technology ,

may encounter another problem, in that it is clearly not

possible to test the very first part of a new design using any

comparison technique, unless an alternative technology or a

simulated device is available.

4.8.5 Algorithmic Pattern Generation

In this method , the defined sequence of patterns can be

created using a high speed pattern generator under microprogram

control. The input and output patterns are then generated

during the functional test and compared with those from the

device under test. The method may be very complex, as in the

case of full hardware simulation, or relatively simple, as in

the case of partial or sectional simulation.

Due to the modular structure inherent in the microprocessor,

the algorithmic pattern generation method lends itself

to the modular sensitization technique. Each module is sensi-

tized by a sequence of generated stimuli which simulates the

96



• , P.! ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• 

~~~~ ~~~~~~~~~~~~~~~~~~ P’~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
•

actual microprocessor instruction and the devices true output

response is controlled by the pattern generator.

This method allows users to generate their own patterns

• and modify them at ease. The algorithmic pattern technioue

can also solve the problem of the overhead data transfer time.

• Algorithmic generation of patterns occurs at a speed comparable

to the device speed, thus a substantial amount of overhead time,

experienced by the storage pattern method, is eliminated .

Some of the cominerical test systems (e.g. Macrodata

• MD-501) are specifically designed for algorithmic pattern

generation as well as pattern storage testing.

4.8.5.1 Stored Response Method

This method can be subdivided into two classes: (1) learned

pattern response, and (2) predicted pattern response. In either

technique, the DUT is tested with a complex test pattern (on a

cycle by cycle basis) stored in the bulk memory. In the learned

response technique coded instructions are executed on a known—good

device to learn the fault free output response. Both input and

output responses are saved in the bulk memory and are used later

on the test device.

The predicted response technique, on the other hand , does

not require a “known good device” for generation of the test

patterns. Such methods as logical or functional simulation are

used to predict the input and output responses required for

assembling the test pattern. The predicted response technique

was used by the Hughes Aircraft Co. to characterize the 8080

• t
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microprocessor. The key technique of this method is the

development of a software test pattern generator which includes

a detailed functional simulator. This simulator compiles a

series of microprocessor mnemonic commands into complete

test patterns which includes both input an~L output responses

from the DUT.

4.8.6 Computer Simulation

In this method a computer with an appropriate software simula—

• tion program is used as a model for the DUT. The output patterns

• from this model are then compared with those generated by the DUT.

This scheme requires minimum device programming effort

and allows full detection and possible isolation of any

catastrophic fault of the stuck—at—i or stuck-at-0 type.

The method is well suited if one assumes that faults in

MPU are only of s-a—i and s—a-0 type. However, in reality, the

situation might be very different since MPU can have functional

faults, instruction pattern sensitivity type of faults, etc.,

which may not be discovered by the software simulation. For

this reason a computer simulation may not be able to yield a

high test confidence. If, however , one decides to consider

an MPU model with stuck at (SA) faults and also some of the

above mentioned faults, then the simulation task will be

• enormous. Some unpredicted faults like instruction pattern

sensitivity may be very difficult to model in software. This

method also lacks the flexibility to change or modify the

input/output (I/o) patterns due to the fixed sequence of the
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pattern provided by the simulation program . The test system

based on this method will tend to be expensive as simulation

programs are difficult and time-consuming to write and require

a powerful computer to execute the sim’ lation program at a

reasonable speed . Also, excessive buffer memory may be

required to store all simulated I/O patterns.
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CHAPTER 5

LSI TEST SYSTEMS

5.1 Introduction

There are two major categories of automatic test equip-

ment (ATE) called Stored Program ATE and Random Comparison

ATE. The stored program tester typically contains a mini-

computer and bulk storage such as a disc. The test sequence

• is stored on a vector by vector basis or as a high level program,

interpreted by the computers stored program ATE, which [typi-

cally) also stores the expected response and a fault dictionary.

The actual test sequence can be obtained by using an algorithm

procedure [e.g. D-Algorithm , ATVG program, etc.].

• Since the test vectors must be processed in a minicomputer ,

the average rate of applying test vectors to the device under

test varies from about 200 K-Hz to 20 K-Hz, although in the

burst mode [i.e. for short sequences] higher rates are possible.

Due to a number of factors, such as the effectiveness of the

stored programs, the need for simulation processing and a slow

rate of test application , stored program test sequences are

-
• typically not of great length.

• Random Comparison Type ATE use pseudo random test

patterns as test vectors. • These patterns can be generated in

many ways and are sometimes not totally random. The vectors

are not stored in a minicomputer, but are generated at very

high test rates (1-40 MHz). Errors on the output of the DUT
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can be detected using a comparison scheme as shown in Fig. 5.1-1.

PATTERN
GENERATOR

T KNOWN GOODDUT DEVICE

_  _

I SCREPANC~1
DETECTOR

Fig. 5.1—1

Here the DUT and a known good copy of the DUT are inserted

into the ATE. The pattern generator then applies several pseudo

random patterns to both the devices and the outputs are com-

pared by the discrepancy detector. A mismatch would indicate

a fault •in the DUT.

From an applications viewpoint the ATE can be subclassif led

into two categories - the dedicated tester and the general

* 

purpose tester. The dedicated tester is an off-the—shelf test

system. It often includes software testing and diagnostic

• packages for specific tasks. For the general purpose system,

the user selects the sources of stimuli , such as the func tion

generator, etc., and measurement devices, such as voltmeters

and digital analyzers. The maker of the test equipment then
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assembles these subsystems and provides the required program

con tro l, interconnections and interfaces for the units, and

perhaps will generate and debug the software.

Systems with dedicated controllers are becoming more

• popular compared to general purpose test systems. This is due

to the fact that dedicated equipment optimizes testing, since

their controllers are designed for a specific task. In

• practice, many of the dedicated systems are programmed simply

by read-only memories. The minicomputer, however , may have to

waste time in executing programs through software, and memory

space could also be wasted. Where software is needed, it is

the major cost in testing.

5.2 Evolution of Test System-s

5.2.1 First Generation Test System [Data Shuffling Test Systems]

Figure 5.2.1-1 shows a block diagram of a first generation

test system. It contains 1) a CPU, 2) a main memory, 3) ~n

interim buffer memory, and 4) test execution electronics. The

interim buffer memory stores the test pattern and executes the

test in a burst mode; the memory can be loaded from either

CPU, main memory or a disc.

This system was adequate in testing random logic devices

in the early 1970’s, since at that time LSI devices were simple

and took about 500 machine cycles to carry out the tests at a
• high confidence level. However, the system could not be used

to test a complex LSI device due to the fact that the system

did not have any intelligence in the interim buffer memory.
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Fig. 5.2.1—1. First Generation Test System [Ref. 36]

It also required more than one information transfer from the

disc to the interim buffer memory, and this increased the

overhead time considerably. The interim buffer memory also
F
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supplies a test pattern on a device clock basis, with no

provision to separate the device clock from the 1~ruly varied

pattern. This results in long test patterns, excessive disc

storage capacity and excessive overall test time.

• 5.2.2 Second Generation Test System (Fig. 5.2.2-1)

In the second generation test system the interim buffer

• memory is replaced by a multiprocessor which can algorithmically

generate millions of non-repeated test patterns under micro-

program control. Fig. 5.2.2-1 shows a block diagram of such

a system. In this system, all information on the programmable

power supply, programmable clock generator, automatic parameter

tester, and the multiprocessor is supplied from the minicomputer.

The multiprocessor enables one to algorithmically generate test

patterns under the microprogram control and directly apply

these to the device under test without any linkage to the CPU.

The second generation test system partially eliminates the over-

head time of transferring data from the main memory to the

• interim buffer memory.

5.2.3 Third Generation Test System

This system provides a data compression technique which

• is a desirable feature in the testing of highly complex random

logic devices such as communication chips. For example,

millions of clock cycles are requ ired to test communication

chips of which only a few thousand cycles would have different

input or output patterns. In this case it is advar~ ageous to

store a few thousand active test patterns and not millions of
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Fig. 5.2.2-1. Second Generation Test System [Ref. 36]
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repetitive patterns. This requires a capability to separate

• the clock from the active test pattern which resulted in the

development of third generation test system as shown in

Fig. 5.2.3—1.

Data compression is- achieved by a macro controller multi-

processor. This scheme enables data buffer operation under

multiprocessor control , and creates intelligence in the RAM

data buffer memory. Hence, overhead time in shuffling data

between the main memory and the interim memory can be totally

eliminated.

It should be noted that the third generation test system

can do all the work carried out by any second generation system,

such as RAN characterization and smooth plotting. From a

generation viewpoint, the functionality of the system is upward

compatible.

5. 2.4  Fourth Generation Test System

Fourt]- generation test systems are developed for testing

VLSI circuits. For VLSI, finding the test that exercises the

device in a worst case condition is always a difficult task.

Microprocessors are very complex deviàes compared to other VLSI

circuits (like RAM ’s) and require more effort to develop

sufficient diagnostic tests. It is almost impossible to develop

a test program by straightforward techniques.

5.2.4.1 LEAD [Learn Execute And Diagnose] Philosophy

This philosophy is developed by Fairchild Systems Technology

for microprocessor testing. A major complication to testing
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microprocessors is versatility. It is almost impossible to

• test a microprocessor for all potential applications and for

this reason a comprehensive diagnostic test must be developed ,

or the MPU must be tested in a variety of different ways •

depending on the applications. The LEAD philosophy incorporates

both the search for comprehensive diagnostics and the testing

of an MPU for the particular application under consideration.

This philosophy [which is followed by most of the LSI

testers] can be considered as a 3-stage approach to the develop-

ment of an MPU test program, i.e. Learn, Execute and Diagnose.

• In the learn stage a standard microprocessor is placed

in the test socket of an automatic tester, and the MPU executes

a diagnostic program in its own language; the tester does the

following:

(1) It learns all the correct responses and stimuli of

the MPU.

(2) It stores the learned functional test sequence in the

tester’s mass memory.

(3) It prints a program map.

• In the execute stage the previously learned functional

test sequence is used to test the device under consideration

and the characterization data is collected.

Test programs used for (1) engineering evaluation, (2)

production tests, or (3) diagnostic purposes can apply the

same functional sequence to the MPU .
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In the diagnose stage the characterization data is

processed and compared with the expected data . Failed data

can be traced to the actual instruction sequence with the help

of the program map pr inted dur ing stage 1.

5 .2.4 .1  Tester Requirements

* The LEAD strategy requires a tester that completely

simulates the natural environment of the MPU . This environment

consists of (1) a total computing system , (2 )  peripheral

devices , and (3) peripheral interfaces. Communication between

the MPU and a tester is bidirectional for both data control

functions. The tester should be capable of (1) changing tester

pins from inpu t to output and vice versa , (2)  be able to

simulate the-microprocessor ’s memory and peripheral devices,

and (3) be able to store all the activity of each pin of the

microprocessor.

i i

1~

109

H _ _  _ _ _ _ _ _ _ _ _ _ _



~
II

~

- _ _

REFERENCES

General References

[11 M.A. Breuer , A.D. Friedman. Diagnosis and Reliable Design
of Digital Systems , Computer Science Press, Inc.,  1976.

(2]  H. Troynagle , Jr. ,  S.D. Carroll and J.D. Irwin . An Intro-
duction to Computer Logic, Prentice—Hall , 1975.

[3] Dig ital Microcircuit Characterization and Specification,
Rome Air Development Center , Air Force Systems Command ,
Griffiss Air Force Base , New York 13441, RADC-TR-77-9l-
Final Technical Report , March 1977.. ADI A038 969.

[4] R.F. McPeak . The Development of Microprocessor Electrical
Characterization Methods, Oct . 76, Contract Number JPL-
9544 91.

Testing of Logic Circuits

[53 A .K. Susskind . Diagnostics for Logic Networks , IEEE
Spectrum , Oct. 1973.

16] W .G.W.  Kreawels. Structural Testing of Digital Circuits,
Philips Technical Review , Volume 35 , No. 10, 1975 , pp.
26 1—270.

[7] D.W.  Bray . The ATVG Program : A Test Vecotr Generator
for Sequential Networks , Workshop on Fault Detection and
Diagnosis in Digital Systems, Lehigh University , 1971.

[8) P. Agrawal and V.D. Agrawal. Probabilistic Analysis of
Random Test Generation Method for Irredundant Combina-
tional Logic Networks, IEEE Transactions on Computers,
Vol. C—24 , No. 7 , July 75 , pp. 691—695.

[93 H.D. Schnurmann , E. Lindbloom and R.G.  Carpenter . The
Weighted Random Tes t Pattern Generator , IEEE Transactions
on Computers , Vol. C—24 , No. 7 , ~1uly 1975 , pp. 695—700.

Testing of Large Scale Integrated Circuits (LSI)

(10] E .R.  Hnatek . Microprocessor Device Reliability,
Microprocessors , Vol. 1, No. 5 , June 1977 , pp. 299—303.

Ill] E .D. Colbourne , G.P.  Coverleg and S.K. Behera.
Reliability of 140S LSI Circuits, Proceedings of the IEEE ,

-
~ Vol. 62 , No. 2 , Feb . 1974 , pp. 244—259.

110 • 



l~~~ !*U 1 ~~~ w ~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
-

~~~~ 
_ _ _ _ _  

~~~~~~~~~~~~~~~~~ 

—

~~~~ 

—

~~

112] F .K.  Justice and R.H.  Lightkep . The Secret to Digital
Circuit Testing , Sperry Technology (USA) , 1974 , V. 77 ,
pp. 8—14.

[131 L.P. Henckels and R .M .  Haas . Hardware or Software
Simulation: A Comparison Between Two Techniques for
Digital Testing, IEEE Proceedings , 1975 , pp. 355-358.

[14] D. Izumi. The Challenge of Microprocessor Chip Testing,
WESCON Technical Papers, Sept. 1975, pp. 1-4.

[15] J.F. Campbell. A New Real-Time Function Test Generation
System for Complex LSI Testing , WESCON Technical Papers,
Sept . 1975 , pp. 1—4 .

[16] G. Vaughn. Functional Testing of LSI Gate Arrays, 11th
Design Automation Workshop Proceedings, 1974, pp. 258-265.

(17] J. Grason. Design Aids and Hardware Testing of Micro-
processor System Circuit Packs, pp. 95-99.

(183 W. Barraclough, A.C. -Chiang, and W. Sohi. Techniques for
Testing the Microcomputer Family, Proceedings of the IFEE ,
Vol . 64 , No. 6, June 1976.

[19] D. Hackmeister and C.L. Chiang. Microprocessor Test
Technique Reveals Instruction Pattern Sensitivity,
Computer Design , Dec. 1975, pp. 81-85.

[20] A.C.L. Chiang. Test Schemes for Microprocessor Chips,
Computer Design , April 1975 , pp. 87-92.

( 211 A .C .L .  Chiang . Two New Approaches Simplif y Testing of
Microprocessors , Electronics , Jan . 22 , 1976 , pp. 100-105.

[221 S.P. Morse. A Tutorial Paper on Software Approaches to
Testing of Microprocessor Systems , 1975 Semiconductor
Test Symposium No. 75CH1041-3C, pp. 53—58.

123) D.H . Smith . Microprocessor Testing — Method or Madness?
IEEE 1976 Semiconductor Test Symposium, No. 76111174-ic,
pp. 27—29.

(24]  R . H .  Carlstead and R.E.  Huston . Test Techniques for ECL
- 

Microprocessors, IEEE 1976 Semiconductor Test Symposium,
No. 77CH1261—7C, pp. 32—37.

125] R. Huston. Microprocessor Function Test Generation on
Sentry 600, IEEE 19-74 Semiconductor Test Symposium,r No. 74CH0909—2C, pp. 216—238.

11]~ 

I 

-

~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~-—~ ~~~~~~~~~~~~~~ -~~:~~::r~~
-- -

- 
- •  

- •• .~~~~~~. -



-~ —~~~~~ - 
~~~ ~~

—
~~~~~~~~~~ , _,_; ;~

_

~

__ - — 
~~~-:: ~~ 

-
~~iIa~~ I ~~~~~~~~~~~~~~~~~ 

—- 
— .- 

~~~~~~~~~~~~~~ ~~JJ~

(26] M.R. Barber and A. Zacharias . Integrated Circuit Testing ,
Bell Laboratories Record , May 1977 , pp. 124-134.

[27] L. Badagliacca , and R. Catterton . Combining Diagnosis
and Emulation Yields Fast Fault Finding, Electronics,
Nov . 10, 1977 , pp. 107—110.

[28] B. Schusheim. A Flexible Approach to Microprocessor
Testing, Computer Design, March 19 76 , pp. 67-72.

[29] R .A. Frohwerk . Signature Analysis: A New Digita l Field
Service Method, Hewlett-Packard Journal, Nay 1977,
pp. 2—8.

[30] S.B. Akers. Binary Decision Diagrams, IEEE Transactions 
—

on Computers, Vol. C-27, No. 6, June 1978, pp. 509-516.

[31] J. Losq. Efficiency of Random Compact Testing, IEEE
Transactions on Computers , Vol. C-27 , No. 6 , June 1978 ,
pp. 516—525.

[32] S.B. Akers. Partitioning for Testability , Proceedings of
the IEEE , 1976 International Symposium on Fault Tolerant
Computer , pp. 121—128.

[33] S. Bisset. LSI Tester Gets Microprocessor to Generate
Their Own Test Patterns , Electronics, May 25 , 1978 ,
pp. 141— 145.

[34] B. Schusheim . LEAD : A Microprocessor Testing Tool ,
Fairchild Systems Technology, Application Note 49, Dec.,
1975.

[35] T.J. Snethen , D.C. Jessep. The Circuit Failure Modelling J
Challenge for LSI Proceedings of the 1973 IEEE Inter-
national Symposium on Circuit Theory, pp. 425-430.

[36] W .C.W.  Mow and A.C.L. Chiang . Evolution of LSI Test
Systems, Macrodata Corporation Report , pp. 3 59-362.

[37 1 R . McCaskill. Test Approaches for Four Bit Microprocessor
Slices, IEEE 1976 Semiconductor Test Symposium, pp. 22-26.

(383 Intel 8080 Microcomputer Systems User ’ s Manual.

• [39] J .L. Hilburn and P.M. Julich. Microcomputers/Microproces-
sors Hardware , Software and Applications, Prentice-Hall

• - Series in Automatic Computation , 1976.

(40 1 S.E. Grossman. Automatic Testing Pays Of f for Electronic
• System Makers , Electronics, Sept. 1974 , pp. 95—109.

friLl GOVERNKIN? PRINTING OPPIC1 1979-614-023/157

- 112

• • •• • •  • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
~~~.— .~•_=__—

~~~
_ _ _  — —



9 ’
—

I

- MISSION
• of

Rome Air Development Center
RAVC P4*6 a~id LZICLL.tt4 te.~ea/cch, deupJ~oy.ets..t, t,~t and
4 eLected acqtuhh.twn ptOgMmó 411 4qppc4t oj Conmstuid, Conttoe
COIIINILJ1Jca.t~OM and In.te2&gence (C~1) ac.c vLtLe~. Teehni.co2
and usg4*ee&-Lng 4up~ .t.t wLth.~n a)tea4 o~ ~teciut~c.aL c~ petence

- • ~~ ptov4d~d tc E$V P~togMm OWced (
~~~J and o.tke’t LW

- • t.eei~e*to. The ptLnc2 pa-t Uch*i.~caL n1Lu~on a.tea~ ate
c.otmsw.2eQtAora, eLec wm~gnet~c gu.~da*c.t and cont/i.oL, 6ut-

~~~~ o~ g~~und and ae.wapai~e objee..t, 2itteU~genee datd
* 

e.otlep..tLon and - handtLn~, ~L*jo ~ma.ti.on 4Øtefl technoLogy,
A.0n04ph1414 p top agaLLon, 60114 4ta~te 4e4 ence6, nIE c/LOtawe

• p h$~~ and eLectton~c M~UabW~y, mthsta~nabLUty and
Comp tt .b4.&ty.

- 

- 

-

!7’ - 

-

~ I
’

________

I ~~~~

-• • , 

— ~~~~~~~~

.-- -• --


