GANNETT FLEMING CORDDRY AND CARPENTER INC HARRISBURG PA F/G 13/2
NATIONAL DAM INSPECTION PROGRAM. LAKE CAREY DAM (NDI-PA-00887) --ETC(U)
JAN 79
DACW31-79-C-0015 AD-A070 716 UNCLASSIFIED NL 1 OF 2 AD 4070716

SUSQUEHANNA RIVER BASIN
MILL BROOK, WYOMING COUNTY

PENNSYLVANIA

NDI ID NO. PA-00887 DER ID NO. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Distribution Unlimited Approved for Public Release Contract No. DACW31-79-C-0015

Prepared by

GANNETT FLEMING CORDDRY AND CARPENTER, INC.

Consulting Engineers

Harrisburg, Pennsylvania 17105

For
DEPARTMENT OF THE ARMY
Baltimore District, Corps of Engineers
Baltimore, Maryland 21203

JANUARY 1979

DOC FILE COPY

SUSQUEHANNA RIVER BASIN

MILL BROOK, WYOMING COUNTY

PENNSYLVANIA

National Dam Inspection Program, Lake Carey Dam (NDI-PA-00887) (DER-66-06), Susquehanna River Basin, Mill Brook, Wyoming County, Pennsylvania, Lake Carey Welfare Association, Inc.

LAKE CAREY DAM

NDI ID No. PA-00887 DER ID No. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT.

NATIONAL DAM INSPECTION PROGRAM 9-C-4015

Prepared by

GANNETT FLEMING CORDDRY AND CARPENTER, INC.
Consulting Engineers
P.O. Box 1963
Harrisburg, Pennsylvania 17105

For .

DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, Maryland 21203

411 994

Accessi			TV	
NTIS G			H	
DOC TAB			H	
Unannou	ncea			
Justifi	catio)II		
Ву				
Distri	nit 1.01	n/		
D1901 Z		0.	205	
Aveil	abili	TA CO	des	
	Avail	and/	or.	
Dist	spe	cial		
111				
AX				
IVI				

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

SUSQUEHANNA RIVER BASIN

MILL BROOK, WYOMING COUNTY

PENNSYLVANIA

LAKE CAREY DAM

NDI ID No. PA-00887 DER ID No. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM JANUARY 1979

CONTENTS

	Description	Page
and Reco Overview I SECTION 1 SECTION 2 SECTION 3 SECTION 4 SECTION 5 SECTION 6	essment of General Condition commended Action	. 1 . 8 . 10 . 13
	PLATES	
Plate	<u>Title</u>	
1 2 3	Location Map Plan and Profiles Spillway Details	

APPENDICES

Appendix	<u>Title</u>
A	Checklist - Engineering Data.
В	Checklist - Visual Inspection.
С	Hydrology and Hydraulics.
D	Photographs.
E	Geology.

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITION

AND

RECOMMENDED ACTION

Name of Dam: Lake Carey Dam

NDI ID No. PA-00887/DER ID No. 66-06

Owner: Lake Carey Welfare Association, Inc.

State Located: Pennsylvania

County Located: Wyoming

Stream: Mill Brook

Date of Inspection: 6 November 1978

Inspection Team: Gannett Fleming Corddry and

Carpenter, Inc. P.O. Box 1963

Harrisburg, Pennsylvania 17105

Based on the visual inspection, available records, calculations and past operational performance and according to criteria established for these studies, Lake Carey Dam is rated as unsafe because the spillway capacity is rated as seriously inadequate. The dam can pass only 11 percent of the probable maximum flood (PMF) without overtopping of the dam. If the dam should fail, the resulting floodflows would significantly increase tailwater and cause loss of life downstream.

The embankment cannot be considered to have more than a marginal factor of safety for structural stability due to the age of the structure and the uncertain nature and condition of its interior composition. There are also no facilities for drawing down the reservoir in the event of an emergency.

In view of the concern for the safety of Lake Carey Dam, it is recommended that the Owner immediately undertake a study to more accurately ascertain the required spillway capacity as well as the mitigation measures required to make the spillway hydraulically adequate, and that the Owner undertake another study to ascertain remedial measures to make the embankment structurally adequate, as well as a study to include provisions for an emergency drawdown pipe. It is also recommended that the Owner modify his operational and maintenance procedures to both develop a detailed emergency operation and warning system and to institute a program of detailed annual inspections. Additionally, it is recommended that the Owner provide round-the-clock surveillance of the dam during periods of heavy rain and that the Owner activate the emergency warning and operation plan if a major storm is predicted.

Furthermore, it is recommended that the Commonwealth of Pennsylvania require the owner of the peninsula between the upper and lower ponds of Lake Carey to ensure that the earthfill and bridge present no hazard to Lake Carey Dam.

Submitted by:

GANNETT FLEMING CORDDRY AND CARPENTER, INC.

Moderate

A. C. HOOKE Head, Dam Section

Date: 9 February 1979

Approved by:

DEPARTMENT OF THE ARMY
BALTIMORE DISTRICT, CORPS OF ENGINEERS

ALBERT GHARLES HID

ENGINEER

G. K. WITHERS

Colonel, Corps of Engineers District Engineer

Date: 4 Mar 79

LAKE CAREY DAM

SUSQUEHANNA RIVER BASIN

MILL BROOK, WYOMING COUNTY

PENNSYLVANIA

LAKE CAREY DAM

NDI ID No. PA-00887 DER ID No. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

SECTION 1

PROJECT INFORMATION

1.1 General.

- a. <u>Authority</u>. The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Lake Carey Dam is an earthfill embankment with a vertical, mortarless, stone masonry downstream face. The dam extends 110 feet across the valley and is 13 feet high. A concrete and stone masonry spillway chute, with a crest length of 19.3 feet, is situated on the embankment near the right abutment. The spillway crest is 3.7 feet below the top of the dam. An auxiliary spillway channel, with irregular cross section and with a crest about 0.7 foot below the top of the dam, is located at the right abutment. Before the dam was constructed, Lake Carey was a natural lake. The dam raised the level of

the natural lake by 3 feet and created a second reservoir. These two impoundments are termed the upper and lower ponds. The lower pond, which was created entirely by the dam, is immediately upstream of the dam. The upper pond, which was the natural lake, is upstream of the lower pond. The ponds are partially separated from each other by a natural peninsula, which was the previous downstream limit of the natural lake. The peninsula has been extended by earthfill and a small bridge constructed to provide access across the lake. This causeway also effectively separates the ponds. Flow from the upper pond to the lower pond is controlled by the bridge opening in the causeway. The various features of the dam are shown on the Plates at the end of the report and on the Photographs in Appendix D.

The Village of Lake Carey with a normal population of over 100 persons, mostly elderly, has been established around the lake. The normal population is augmented by visitors, tourist and vacationers during the recreation season.

- b. Location. The dam is located on Mill Brook approximately 3.2 miles northeast of Tunkhannock, Pennsylvania. Lake Carey Dam is shown on USGS Quadrangle, Tunkhannock, Pennsylvania, with coordinates N41 34' 55" W75 55' 10" in Wyoming County, Pennsylvania. Stevens Lake, termed Mud Pond on the USGS Quadrangle, is 1.7 miles northwest of Lake Carey Dam, and it discharges into the upper pond of Lake Carey Dam. The location map is shown on Plate 1.
- c. <u>Size Classification</u>. Intermediate (13 feet high, 4,810 acre-feet, of which about 3,130 acre-feet is contained in the natural lake).
- d. <u>Hazard Classification</u>. High hazard. Downstream conditions indicate that a high hazard classification is warranted for Lake Carey Dam (Paragraph 5.1c.).
- e. Ownership. Lake Carey Welfare Association, Inc., R.D. 1, Tunkhannock, Pennsylvania.
 - f. Purpose of Dam. Recreation
- g. Design and Construction History. Lake Carey Dam was built in 1876. The dam was originally used to augment flows to a mill about 0.1 mile downstream. The original dam

was apparently a stone masonry dam. The masonry was thickened and earthfill was added upstream of the masonry section at some later date. The Owner in 1919 was John Stark, whose father apparently built the dam. An inspection by the Pennsylvania Water Supply Commission in 1919 revealed that the dam had no spillway, the pool being maintained by a sluice gate and conduit. The 1919 Commission report did not mention the existence of an auxiliary spillway, however, an inspection by the Commission in 1920 noted the present auxiliary spillway.

In the 1920 inspection, the Commission recommended the construction of a main spillway. The spillway was constructed in 1921. In 1937, the deterioration of the outlet works gate was noted. In 1940, the Commission ordered the outlet works to be repaired.

The present Owner acquired the damsite in 1944. In 1945, the Owner filed an application to make the following modifications: lower the spillway crest elevation, provide stoplogs across the spillway for use during the summers, point the stone masonry downstream face, and construct a reinforced concrete conduit within the old masonry conduit near the downstream end. The spillway was re-built in 1945 by the Coon Construction Company. Owner did not have sufficient funds to complete the remaining work, and the permit was extended to 1949. 1951 the Owner informed The Pennsylvania Water Power Commission that funds were insufficient to complete the repairs. Meanwhile, during 1948, a Commission inspection report noted that the dam had been overtopped and washed out near its right end, over a length of 25 feet and to a depth of 7 feet. Apparently, this damage was repaired, but no information concerning the repairs could be found. In 1957 and 1966, at the urging of the Department of Forest and Waters, the Owners announced plans to repair the dam, especially the outlet works conduit, that had almost completely collapsed. Apparently, however, no work was ever accomplished. In 1967, the Owner began to search for a governmental agency to either finance repairs to the dam or to acquire the dam.

In June 1972, during Tropical Storm Agnes, sand-bags were placed upon the dam as an emergency measure to prevent overtopping. The auxiliary spillway was sandbagged at the same time, although the reasons for this are unclear.

Immediately after this flood, a waterways patrolman from the Pennsylvania Fish Commission wrote to The Pennsylvania Department of Environmental Resources (PennDER) to express concern for the conditions at the spillway. He reiterated his concerns in 1974. PennICR met with the Owner in 1975 and ordered that an engineer be retained to study the problems at the dam. At this point, the Owner retained an engineer and continued looking for various agencies to finance repairs. The engineer, Albert Peters Associates of Scranton, Pennsylvania, submitted a report in 1976. The report noted a bulging downstream face, "pipings in the mass of the dam", and a small spillway capacity. No definitive conclusions concerning the stability of the dam were in the report. It did note the difficulty and expense of any remedial measures. During 1977, discussions continued between the Owner, PennDER, and other interested parties. In September 1977, PennDER formally ordered the Owner to retain an engineer, make any studies necessary, and accomplish remedial work. In October 1977, the Owner paved the spillway approach channel with 12 to 18 inches of concrete. This apparently eliminated whirlpools that had been forming in the spillway approach channel as well as the seepage that had been emerging through the downstream masonry face near the spillway. PennDER pointed out to the Owner that the work that was accomplished did not satisfy their order of September 1977, and that the order still remained in force.

Various discussions continued throughout 1978. In September 1978, PennDER informed the Owner that they would take steps necessary to enforce the order, or they would breach the dam if no action was forthcoming by October 15, 1978. This date was later extended to November 15, 1978. As of this writing, the Owner was planning to request an extension until the completion of this report. Also, as of this writing, plans are in preparation by the Coon Construction Company to provide some remedial work for the dam. Details of the plans were not available for review.

h. Normal Operational Procedure. The pool is maintained at spillway crest with excess inflow discharging over the spillway.

1.3 Pertinent Data.

- a. Drainage Area. 7.0 square miles. (1)
- b. Discharge at Damsite. (cfs.)

Maximum known flood at damsite (2) - 230.

Emergency drawdown line at maximum

pool elevation - no drawdown line.

Spillway capacity (3) - 330.

Auxiliary spillway capacity (3) - 30.

Combined spillway capacity (3) - 360.

c. Elevation. (Feet Above msl.)

Top of dam (design) - Unknown. (Assumed as top of spillway walls elevation 950.7).

Top of dam (lowest elevation) - 950.5.

Maximum pool - 950.5

Normal pool (spillway crest) - 947.0

⁽¹⁾ The drainage area was reported as being 4.5 square miles by the Pennsylvania Water Supply Commission in their 1945 report. PennDER used a value of 6.33 square miles in a 1957 memorandum. Gannett Fleming Corddry and Carpenter, Inc., checked the drainage area and used 7.0 square miles. Apparently, the drainage area was never updated by the Owner after the area was re-mapped by the USGS in 1946. The drainage area that is upstream of the causeway and the upper pond, is 6.1 square miles.

⁽²⁾ Tropical Storm Agnes, June 1972. Based on information from the Owner, estimated with pool 2.4 feet above spillway crest.

⁽³⁾ Pool at elevation 950.7

Upstream invert outlet works - None.

Downstream invert outlet works - None.

Upstream invert water supply line - None.

Streambed near outlet works - 937.6 (Approximate).

d. Reservoir Length. (Miles.)

Normal pool - 2.0

Maximum pool - 2.1

e.	Storage (acre-fee	et.) <u>Upper Pond</u>	Lower Pond	Total
	Natural Lake -	3,130	0	3,130
	Normal pool -	3,634	147	3,781
	Maximum pool -	4,364	446	4,810

f.	Reservoir Surface Acres	Upper Pond	Lower Pond	Total
	Natural Lake -	171	0	171
	Normal pool -	189	73	262
	Normal pool - Maximum pool -	206	89	295

g. Dam.

Type - Earthfill with vertical, mortarless, stone masonry downstream face.

Length - 90 feet (embankment - approximate).

Height - 13 feet.

Top Width - Varies-about 24 feet, minimum.

<u>Side Slopes</u> - Upstream - 1V on 4H. (Approximate).

Downstream - Vertical

Zoning - None.

Cutoff - None.

Grout Curtain - None.

h. Diversion and Regulating Tunnel - None.

i. Spillway.

Type - Spillway - Concrete ski-jump.
Auxiliary spillway - Excavated channel.

<u>Length of Weir</u> - Spillway - 19.3 feet Auxiliary spillway - irregular.

Crest Elevation - Spillway - 947.0 Auxiliary spillway - 950.0 (Approximate).

<u>Upstream Channel</u> - Spillway - reservoir. Auxiliary spillway - reservoir.

Downstream Channel - Natural stream with near vertical sides.

j. Regulating Outlets - None.

SECTION 2

ENGINEERING DATA

2.1 Design.

- a. <u>Data Available</u>. No engineering data was available for review for the original structures. Plans for the 1945 re-building of the spillway and reports of periodic inspections by the Commonwealth were available for review.
- b. Design Features. The features of the dam are shown on Plates 2 and 3 and on the Photographs in Appendix D. Plate 2 shows the plan and profile of the embankment (Photographs E, G, and H). Plate 3 shows the spillway as it presently exists (Photographs C, D, E and G). The outlet works shown on Plates 2 and 3 was either never built or no longer exists. These plates were drawn in 1945, and cannot be considered construction drawings for the embankment. As different datums were used, approximately 848.4 feet must be added to the elevations on the plates to match the elevations used in this report, which are based on mean sea level.
- c. <u>Design Considerations</u>. Almost nothing is known about the design.

2.2 Construction.

- a. <u>Data Available</u>. No construction data for the original structure was available for review. Limited details of the re-construction of the spillway in 1945 and the paving of the spillway approach channel in 1977 are available.
- b. <u>Construction Considerations</u>. Since the available construction data is limited, construction methods cannot be assessed.
- 2.3 Operation. No formal records of operation were reviewed. The only operational feature is the stoplog slots on the spillway, which the Owner no longer uses.

2.4 Evaluation.

a. Availability. Engineering data was provided by the Division of Dams and Encroachments, Bureau of Water Quality

Management, Department of Environmental Resources, Commonwealth of Pennsylvania, and by the Owner. The Owner made the president of the Association, as well as other Association members, available for information during the visual inspection.

- b. Adequacy. The type and amount of design data and other engineering data are very limited, and the assessment must be based on the combination of available data, visual inspection, performance history, hydrologic assumptions, and hydraulic assumptions.
- c. <u>Validity</u>. There is no reason to question the validity of the available data.

SECTION 3

VISUAL INSPECTION

3.1 Findings.

a. General. The overall appearance of the dam is fair, with observations noted below:

A sketch of the dam with the location of some deficiencies is presented on Plate B-1. Survey information acquired for this inspection is summarized in Appendix B. On the day of the inspection, the pool was at spillway crest elevation.

The embankment appears in fair condition. Much low brush and some trees, which are about 3 inches in diameter, are growing on the earthfill (Photographs C and E). The sod appears to be in good condition except on the upstream slope of the embankment to the left of the spillway, where bare soil is visible (Photograph D). There is no riprap on the upstream slope. There are two depressed areas, each about 1 foot square, on the top of the embankment. An eroded surface drainage path leads down the left abutment. The courses of the stone masonry are uneven and To the left of the spillway, the stone masonry is bulged (Photograph H). The bulge is apparently a long standing condition and from its appearance could have been present since original construction. The bulge makes a 5.1V on 1H slope; the remainder of the stone masonry face is more vertical. Concrete, apparently wasted during previous construction, covers both an area to the right of the bulge and along the toe of the mortarless, stone masonry section (Photograph H). Clear seepage of about 10 gpm is flowing from beneath the wasted concrete. The Owner reports that this is the approximate location of the outfall of the old outlet works conduit. Although the lowest point on the top of the dam was at elevation 950.5 (Appendix B), the top elevation used in rating the dam was Elevation 950.7, which is the top of the spillway wall. No design information is available to ascertain the design elevation for the top of the dam.

c. Appurtenant Structures.

- (1) Spillway. The spillway appeared to be in fair condition. The left approach wall is tilted and offset by 0.5 foot from the spillway walls (Photograph D). The mortar is missing or deteriorated in the stone masonry spillway walls. The right wall has a shrinkage crack. There is a gouge in the embankment near the left spillway wall (Photograph E). Stoplog slots were constructed in the spillway walls. The Owner reports that the stoplogs are no longer in use.
- (2) Auxiliary Spillway. The auxiliary spillway is a depression in the right abutment (Photograph F). The cross section is irregular, especially at the approach area. Trees are growing in the channel, and it has not been maintained.
- (3) Outlet Works. No evidence of the outlet works was observed. The original outlet works was reported to be mortarless, stone masonry conduit extending through the dam. The top of the conduit was supported by wooden planks. Previous inspections by The Pennsylvania Water Supply Commission reported the planks to be rotten and the masonry to be falling into the conduit. The Owner did not have any information on the date or method of plugging the conduit.
- d. Reservoir Area. The slopes along the reservior are generally quite flat with many cottages built very close to the Lake Shore. The Peninsula separating the upper and lower ponds was visited during the inspection (Photographs A and B). Except along the Lake Shore, the watershed consists mostly of farm fields and woodland.
- e. Downstream Conditions. The channel immediately downstream from the Dam has vertical sides cut into the bedrock (Photograph I). Some small debris were present in the channel. The stream flows 0.1 mile to an abandoned mill dam with a silted in reservoir and another 0.1 mile to a small bridge on a secondary road. Along this reach there are two houses situated about 15 feet above the streambed. The stream then flows for 2.2 miles through a steep and narrow valley to its confluence with Tunkhannock Creek. The latter reach is uninhabited and unobstructed except for the last 0.2 mile, where the stream passes under a small bridge. About 10 houses are located near the bridge. One house is

situated about 10 feet above streambed. The others are between 15 and 30 feet above streambed. Access to the dam is by paved road to the left of the embankment.

SECTION 4

OPERATIONAL PROCEDURES

- 4.1 <u>Procedure</u>. The reservoir is maintained at spillway crest <u>Elevation</u> 947.0 with excess inflow discharging over the spillway.
- 4.2 Maintenance of Dam. Most of the members of the Lake Carey Welfare Association live adjacent to Lake Carey. Maintenance is apparently performed when deemed necessary by the officers of the Association. Formal inspections of the dam are not made. Informal inspections of the dam are apparently made by the members of the Association, but not on a regular basis.
- 4.3 <u>Maintenance of Operating Facilities</u>. There are no operating facilities currently in use.
- 4.4 Warning Systems in Effect. The Owner gave the inspection team a verbal description of the emergency warning and operation system that is applicable for Lake Carey Dam. The Owner said that emergency warning system consists of informing the Office of Civil Defense, which, in turn, would notify local authorities.
- 4.5 Evaluation of Operational Adequacy. The amount of brush observed on the embankment and in the auxiliary spillway indicates that a more frequent brush-cutting schedule is warranted. The procedures used by the Owner to inspect the dam need improvement. There is no means of drawing down the lake. The emergency warning system is good, but the assessment of conditions that would require activation of the emergency warning system could be greatly improved.

SECTION 5

HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features.

- a. Design Data. No design data was available for review. During 1919, a brief report on the dam was made by the Pennsylvania Water Supply Commission, but the hydrology and hydraulics of the dam were not addressed. In 1945, in the report upon the application of the Owner to improve the spillway, the commission estimated the combined spillway capacity of the dam at 432 cfs with stoplogs in place. This rating used an auxiliary spillway depth greater than the one currently available and did not entirely account for the existing spillway geometry.
- b. Experience Data. As was noted in Paragraph 1.2g, the dam was overtopped in 1948 and there were problems during tropical storm Agnes, although it was not overtopped then.

c. Visual Observations.

- (1) <u>General</u>. The visual inspection of Lake Carey Dam, which is described in Section 3, resulted in a number of observations relevant to hydraulics and hydrology. These observations are evaluated herein for the various features.
- (2) Embankment. The general arrangement of the embankment indicates that if it were overtopped by an amount sufficient to dislodge the upper part of the mortarless, stone masonry section, then the failure of the embankment will be almost instantaneous.
- (3) Appurtenant Structures. No conditions were observed in the spillway that would reduce its discharge capacity during a flood. The uneven approach conditions and trees in the auxiliary spillway would reduce its discharge capacity. The auxiliary spillway is sufficiently close to the right end of the embankment

that there could be an erosion hazard to the embankment from sustained flows in the auxiliary spillway. There is no emergency drawdown capability for the reservoir, which is considered to be a serious deficiency.

- (4) Reservoir Area. No conditions were observed in the reservoir that would significantly reduce the spillway capacity of Lake Carey Dam. It is apparent that many of the cottages along the Lake shore would be flooded by substantial rises in the pool. The peninsula, its earthfill extension and the bridge opening that divides the two ponds apparently will act as a dam during flood conditions. In effect, two dams must be analyzed in order to evaluate Lake Carey Dam. During the course of the inspection, a brief visit was also made to Stevens Lake, which is situated upstream from Lake Carey, to evaluate its hydraulic and hydrologic effect upon Lake Carey. Relevant data is listed in Appendix C. The assessment of Lake Carey Dam is based on existing conditions and the effects of future development were not considered.
- (5) Downstream Conditions. No conditions were observed immediately downstream of the dam that would reduce the spillway discharge capacity. Access to the dam is good. The two bridges on Mill Brook would not provide significant mitigating effects to flood flows originating upstream. These bridges would increase the water surface elevation upstream from them during a flood occurence. The conditions observed downstream indicate that a high hazard classification is warranted for Lake Carey Dam.

d. Overtopping Potential.

- (1) <u>Spillway Design Flood</u>. According to the criteria established by The Office of the Chief of Engineers (OCE) for the size (Intermediate) and Hazard potential (High) of Lake Carey Dam, the spillway design flood (SDF) is the probable maximum flood (PMF).
- (2) <u>Description of Model</u>. The watershed was modeled with the HEC-1DB computer program. The HEC-1DB computer program computes a PMF runoff hydrograph and routes the flows through both reservoirs

and stream sections. In addition, it has the capability to simulate an overtopping dam failure. component of the PMF was determined at Stevens Lake and then was routed through the dam. The outflow was routed down to Lake Carey Upper Pond and added to the PMF inflow component from the uncontrolled drainage area above the upper pond. The combined inflow was routed through the upper pond and added to the uncontrolled PMF component inflow to the lower pond. The combined inflow to the lower pond was routed through the lower pond and downstream to Tunkhannock Creek. It was assumed that no runoff occured downstream of Lake Carey Dam. Identical methods were used for various percentages of the PMF. It should be noted that the outflow from the upper pond is dependent upon the pool elevation of the lower pond. The HEC-1DB program is unable to model this condition. Therefore, certain simplifying assumptions were made, as noted in Appendix C.

(3) <u>Summary of Results</u>. The following table summarizes the results. Selected parts of the program output are in Appendix C. The total rainfall for the PMF is 24.7 inches:

	PMF	1/2 PMF
Total Runoff (inches) Inflow to upper pond (cfs) Outflow from upper pond (cfs) Depth of Overtopping	22.4 14,218 12,592	11.2 6,418 4,976
Peninsula between ponds (ft.) Inflow to lower pond (cfs) Outflow from lower pond (cfs)	5.7 13,999 11,980	3.8 5,138 4,466
Depth of overtopping at Lake Carey Dam (ft.)	9.5	4.6

As it exists, the dam can pass about 11 percent of the PMF without overtopping. If the dam were raised to its assumed design elevation, it could pass about 12 percent of the PMF without overtopping. Furthermore, many of the homes along the Lake Shore would be flooded by high pool elevations.

(4) Spillway Adequacy. The criteria used to determine the adequacy of spillways is presented in Appendix C. For the occurence of the 1/2 PMF, both the peninsula separating the ponds and Lake Carey Dam are overtopped. Lake Stevens Dam upstream of the upper pond is not overtopped by the 1/2 PMF. It was not assumed to fail. Two different methods were used to determine the spillway adequacy. In both methods it was assumed that Lake Carey Dam would develop a 25-foot wide breach 0.1 hour after being overtopped by 3 feet. For the first method, the peninsula separating the ponds was assumed not to fail. For the second method, the peninsula was assumed to develop a 50-foot wide breach 0.1 hour after being overtopped by 3.4 feet. The first method raises the water surface at the confluence of Mill Brook and Tunkhannock Creek by 0.6 foot; the second method raises the water surface by 0.9 foot. This rise in water surface does not include the effects of the narrow bridge at this point. Assuming critical depth under the bridge, the rises in water surface would be 7.4 feet and 10.4 feet for Methods 1 and 2, respectively (Appendix C). There is a significant rise in tailwater. Therefore, the spillway capacity is rated as seriously inadequate.

SECTION 6

STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. Visual Observations.

- (1) <u>General</u>. The visual inspection of Lake Carey Dam, which is <u>described</u> in Section 3, resulted in a number of observations relevant to structural stability. These observations are evaluated herein for the various features.
- (2) Embankment. Brush and trees on the embankment are undesirable because they provide potential seepage paths along the roots. There apparently has been some minor erosion, due to waves on the unprotected upstream slope. The two small depressions on the top of the embankment could indicate that some minor internal adjustments have occurred The surface drainage path indicates within the embankment. improper control of surface drainage. Because of the age of the dam and the apparent lack of control during construction, it is impossible to determine whether the bulges and irregular stone masonry are the result of poor original construction or the result of some happening during the subsequent 102 years of service. They are obviously not of recent origin. The seepage at the toe of the dam is apparently coming from the old outlet works conduit.
- approach wall has evidence of relative movement, probably caused by ice pressure or frost heave. The shrinkage crack in the right wall is probably caused by improper joint locations. The deteriorated mortar prevents the spillway walls from acting as a watertight structure and can only increase the seepage potential. The gouge to the left of the spillway is probably caused by a stone from the masonry wall being removed. The conditions at the outlet works are of concern. In view of the uncertain plugging procedures for the old conduit a potential for collapsing of the conduit and settlement of the embankment might be present.
- b. <u>Design and Construction Data</u>. No records of design data or stability computations were available for review. Furthermore, except for exterior lines and grades, almost nothing is known about the design or construction of the

dam. The available information shows that the upstream earthen slope is about 1V on 4H and that the downstream masonry face is vertical. The top of embankment has a minimum width of 24 feet. Insufficient information is available to analyze the downstream masonry section. Although there is no present evidence of distress, the dam cannot be considered to have more than a marginal factor of safety for structural stability.

The data required to analyze the dam includes the dimensions and condition of the masonry structure, condition of the plugged conduit, the level of the phreatic surface within the embankment and relevant embankment and foundation physical properties.

- c. Operating Records. There is no evidence that any stability problems, except for possible bulging of the masonry, have occurred to the dam during its operational history of 102 years. However, it should be recognized that conditions can change, particularly with respect to seepage, that might significantly affect the future performance of the dam.
- d. <u>Post-Construction Changes</u>. There have been no known modifications to Lake Carey Dam that would affect the stability of the structure.
- e. Seismic Stability. Lake Carey Dam is located in Seismic Zone 1. Normally, it can be considered that if a dam in this zone has adequate factors of safety under static loading conditions, it can be assumed safe for any expected earthquake loading. However, the theoretical static stability of Lake Carey Dam is not known.

SECTION 7

ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety.

- (1) Based on available records, visual inspection, calculations, and past operational performance, Lake Carey Dam is judged to be in poor condition. The spillway will pass only 11 percent of the PMF without overtopping of the dam. If the dam should fail, the resulting floodflows would significantly increase tailwater and cause loss of life downstream. The spillway capacity is rated as seriously inadequate. According to criteria established for these studies, the dam must be rated as unsafe because the spillway is seriously inadequate.
- (2) The embankment cannot be considered to have more than a marginal factor of safety for structural stability due to the age of the structure and the uncertain nature and condition of its interior composition.
- (3) There are no facilities for drawing down the reservoir.
- (4) A summary of the features and observed deficiencies is listed below:

Feature and Location

Observed Deficiency

Embankment:

slopes
upstream slope
top
left abutment
downstream face
downstream toe

brush and trees erosion-no riprap depressions eroded drainage path irregular and bulged seepage

Spillway:

left wall right wall embankment at left wall

movement shrinkage crack gouge

Feature and Location

Observed Deficiency (cont.)

Auxiliary Spillway:

channel

irregular, trees in channel

Outlet Works:

None; probable collapse hazard from old outlet works

Reservoir

shores

probable flooding of homes by rising pool during flood

- (5) The peninsula which separates the two ponds, although not designed as a dam, acts as a dam. This presents an additional hazard to Lake Carey Dam.
- b. Adequacy of Information. There is sufficient information to assess the safety of Lake Carey Dam.
- c. <u>Urgency</u>. The recommendations in Paragraph 7.2 should be implemented immediately.
- d. Necessity for Further Investigations. In order to accomplish some of the remedial measures outlined in Paragraph 7.2, further investigations will be required. There is insufficient data to analyze the stability of the embankment. No information is available concerning soil properties, zoning, foundation conditions, or structural dimensions of the mortarless stone masonry downstream face.

7.2 Recommendations and Remedial Measures.

- a. In view of the concern for the safety of Lake Carey Dam, the following measures are recommended to be undertaken by the owner immediately:
- (1) Perform a study to more accurately ascertain the spillway capacity required for Lake Carey Dam as well as the nature and extent of the mitigation measures required to make the spillway hydraulically adequate.

- (2) Perform a study to ascertain the mitigation measures required to make the dam structurally and operationally adequate. This study should include an exploration program to ascertain the condition and the adequacy of plugging of the existing conduit, the foundation conditions, engineering soil properties, and internal structural dimension of the dam. The study should also include an analysis of the structural factors of safety for the embankment, the adequacy of seepage control measures, and whatever measures are required to make the factors of safety adequate.
- (3) Perform a study to ascertain the facilities required to adequately drawdown the reservoir during an emergency condition. The recommendations resulting from each of the above studies should be implemented immediately after completion of the studies. An obvious option is that it may be more economical to replace the dam in an apparently ideal existing downstream location than to perform the above studies and remedial work. However, this decision is left to the Owner.
- b. In addition, the Owner should undertake the following operational and maintenance procedures:
- (1) Develop a detailed emergency operation and warning system for Lake Carey Dam. The warning system should include warnings for residents along the Lake Shore.
- (2) Institute a program of detailed annual inspections for Lake Carey Dam by a professional engineer experienced in the design and construction of dams. Use the results of the inspection to determine if remedial measures are necessary.
- (3) During periods of unusually heavy rains, provide round-the-clock surveillance of Lake Carey Dam.
- (4) When warnings of a storm of major proportions are given by the National Weather Service, the Owner should activate his emergency operation and warning system.
- c. In addition, the Commonwealth of Pennsylvania should require the owner of the peninsula between the ponds to ensure that the earthfill and bridge present no hazard to Lake Carey Dam.

SUSQUEHANNA RIVER BASIN MILL BROOK, WYOMING COUNTY PENNSYLVANIA

LAKE CAREY DAM

NDI ID No. PA-00887 DER ID No. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

JANUARY 1979

PLATES

L BOND, MAY SECTION B-B LAKE CHESY OF IS ELM Geres 0" 12" ELM. Roro PLAN OF PRESENT SPILLWAY JOINT'S TORE PAGES AND RESISTED 514 5 N

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
LAKE CAREY DAM

LAKE CAREY WELFARE ASSOCIATION

PLAN AND PROFILES

JANUARY 1979

CO. PA

PLATE 2

2

"Perpresa de la Contra

Nate

UNDER NOEMEL CONDITIONS ONE X"

SPLASH BORRD WILL BE IN PLACE

DUFING WINTER SEASON NO SPLASH

BORRDS WILL BO IN PLACE

WATER ELEVATIONS 9-25.45 M.n. Clentand 33" them 52" them
Canna aren 1" 20" "
Dans. 8" 0"

950

94.5

B. G. COON CONSTRUCTION CO.

273 UNION ST. LUTERNE, PA.

PROPOSED SPILLMAN
BLOW OFF CHAMBER
OUTLET AFT LAKE 'CARGN
YNJOMING COUNTY TO THE
STALE AS SHOWN TO THE 9-271945

DWG BY HLW ATTO MIKE
TEMARKS

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

LAKE CAREY DAM

LAKE CAREY WELFARE ASSOCIATION

SPILLWAY DETAILS

JANUARY 1979

PLATE 3

SUSQUEHANNA RIVER BASIN

MILL BROOK, WYOMING COUNTY

PENNSYLVANIA

LAKE CAREY DAM

NDI ID No. PA-00887 DER ID No. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

JANUARY 1979

APPENDIX A

CHECKLIST - ENGINEERING DATA

CHECKLIST

ENGINEERING DATA

DESIGN, CONSTRUCTION, AND OPERATION PHASE I

NAME OF DAM: LAKE CAREY DAM

NDS ID NO.: PA-00887 DER ID NO.: 66-06

Sheet 1 of 4

ITEM	REMARKS
AS-BUILT DRAWINGS	NONE
REGIONAL VICINITY MAP	SEE PLATE 1
CONSTRUCTION HISTORY	SEE SECTION 1.28
TYPICAL SECTIONS OF DAM	NONE' IN RECORDS
OUTLETS: Plan Details Constraints Discharge Ratings	7 o 2

Sheet 2 of 4

ITEM	REMARKS
RAINFALL/RESERVOIR RECORDS	None
DESIGN REPORTS	None
GEOLOGY REPORTS	None
DESIGN COMPUTATIONS: Ilydrology and Hydraulics Dam Stability Seepage Studies	NONE
MATERIALS INVESTIGATIONS: Boring Records Laboratory Field	None
POSTCONSTRUCTION SURVEYS OF DAM	FOR 1945 SPILLWAY MODIFICATIONS SEE PLATES 2#3

Sheet 3 of 4

ПЕМ	REMARKS
BORROW SOURCES	UNKNOWN
MONITORING SYSTEMS	Non 6
MODIFICATIONS	Spirrway Adder 1921 Spirrway Modified-1945
HIGH POOL RECORDS	8 inscries overs spirrwny Lip, during Tropical Stopm Agnes.
POSTCONSTRUCTION ENGINEERING STUDIES AND REPORTS	1976 - Nibert Pelens lettors
PRIOR ACCIDENTS OR FAILURE OF DAM: Description Reports	1948 - OVERT OPPED MODE CONSTILL OUT 1972 - THOPSED STOKIN MENES SANDBACS PREQUIRED

0

REMARKS	N ON F	SEE PLAIES 243	N ON E	1919 - NOTED NO SPILLWAY 1930 - NOTED AUXILIANY SPILLWAY 1930 - RECOMMENDED CONSTRUCTION OF SPILLWAY 1934 - BRUSH ON EMINICATED SPILLWAY 5LIGHT SEEPAGE RIGHT OF SPILLWAY 5LIGHT SEEPAGE RIGHT OF SPILLWAY 5MILL CANCELTE RIGHT OF SPILLWAY 5MILL CANCELTE RIGHT OF SPILLWAY 1938 - CONCELTE AT RIGHT END. 1931 - SLIGHT SEEFAGE AT RIGHT END. 1931 - SLIGHT SEEFAGE AT RIGHT END. 1934 - SOME FLOW AT TOE 1940 - VERY POOR CONDITION, LEAT BROKEN 1940 - VERY DOOR CONDITION, LEAT BROKEN	1941 - LEAKAGE AT COMER TOE, Spiremay ABUTINENTS PARTIELY REPAIRED. TOP OF DAM SETTLED, ROCK FALLEN FROM SEVICEMAY. POOR HOPENHANCE, NEEDS REPAIRS.
ITEM	MAINTENANCE AND OPERATION RECORDS	SPILLWAY: Plan Sections Details	OPERATING EQUIPMENT: Plans Details	PREVIOUS INSPECTIONS Dates Deficiencies	CONTINUED

Sheet 4a of 4

REMARKS	GOOD APPEARINGE APPEARINGE NOT GOOD, BRUSH AND TREES ON EMBRINEMENT, LEAKS AT LOWER TOE			
Nam	1965 - 1965 - 1965 -			

SUSQUEHANNA RIVER BASIN MILL BROOK, WYOMING COUNTY PENNSYLVANIA

LAKE CAREY DAM

NDI ID No. PA-00887 DER ID No. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

JANUARY 1979

APPENDIX B

CHECKLIST - VISUAL INSPECTION

CHECKLIST VISUAL INSPECTION

PHASE I

Name of Dam: LAKE CAREY DAM County: MY OMING State: PENNSYLVANIA
NDS ID No.: PA - 00887 DER ID No.: 66-06
Type of Dam: EARTHELL W DRY MASONRY Hazard Category:
Date(s) Inspection: 6 November 1978 Weather: CLEAR Temperature: 70-F
Soil: Moist
Pool Elevation at Time of Inspection: 947.0 msl/Tailwater at Time of Inspection: 937.8 msl
Inspection Personnel:

A. WHITMING (GFCC) Recorder

S. JOHNSON (LEMON TOWNSHIP)

M. BRISSOCK (LCWA)

G. SMITH (GECC)

J. CROUSE (GFCC)

L. WYBELL (LCWA)

P. YOUREN (LCWA)

R. PREGMAN (COON CONSTRUCTION)

A.H. COON (COON CONSTRUCTION)

EMBANKMENT
Sheet 1 of 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	None .	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	SEE MASONRY DAM	
SLOUGHING OR EROSION: Embankment Slopes Abutment Slopes	LEFT ABUT MENT - SURFACE RUNGEF EROSION LEFT OF SPITUMY - UPSTREHMI; RAZE ALZEA AT SPITUMY CREST LEVEL	
CREST ALIGNMENT: Vertical Horizontal	See PIMILS B-24 B-3	
RIPRAP FAILURES	NO Friprap	

EMBANKMENT
Sheet 2 of 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
JUNCTION OF EMBANKMENT WITH: Abutment Spillway Other Features	SEE "SLOUGHING & FROSION"	
ANY NOTICEABLE SEEPAGE	see mnsoupy DAMS	
STAFF GAGE AND RECORDER	None	
DRAINS	None	
Вкиѕн	MUCH LOW BRUSH ON EMBANKMENT SOME TREES (ABOUT 3" DIA.) AT TOP MISOLIPY	

GONGREPE/MASONRY DAMS

Sheet 1 of 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	10 Apm FROM 106 UNDER WASTED CONCRETE NEMA BULGE.	Owner Reports seephee is From our conduit
JUNCTION OF STRUCTURE WITH: Abutment Embankment Other Features	NO APPARENT DEFICIONEIES	
DRAINS	None	
WATER PASSAGES	None	
FOUNDATION	Outchop- Thinky Laminated	

GONGREFE/MASONRY DAMS

Sheet 2 of 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MASON RY CONCRETE SURFACES: Surface Cracks Spalling	MASONRY LAID IN UNEVEN (RANDOM) PAITERN.	
STRUCTURAL CRACKING	None	
ALIGNMENT: Vertical Horizontal	BULGE TO LEFT OF SPILLWAY 11,3 V ON 2,2 H	
MONOLITH JOINTS	None	
CONSTRUCTION JOINTS	N ONE	
STAFF GAGE OR RECORDER	None	

OUTLET WORKS
Sheet 1 of 1

REMARKS OR RECOMMENDATIONS					
OBSERVATIONS			NOT OBSERVABLE		
VISUAL EXAMINATION OF	CONCRETE SURFACES IN OUTLET CONDUIT	INTAKE STRUCTURE	OUTLET STRUCTURE	OUTLET CHANNEL	EMERGENCY GATE

UNGATED SPILLWAY
Sheet 1 of 1

REMARKS OR RECOMMENDATIONS	MASONAY SPILLMAY WALLS	GOUGE IN LEFT EMBANIAMENT BY WALL (3'x1.5'-AREA)				
OBSERVATIONS	CHUTE- APPARENTLY GOOD CONDITION	SHRINKAGE CRACK IN RIGHT WALL	PAVED IN 1977 LEFT WALL TILTED AND OFFSET TOWARD & Spirluny BY 0.5'	NATURAL STREAM	None	
VISUAL EXAMINATION OF	CONCRETE WEIR		APPROACH CHANNEL	DISCHARGE CHANNEL	BRIDGE AND PIERS	

Auxidiana Spillway Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	None	
APPROACH CHANNEL	EARTH - UNEVEN WITH TREES GROWING	
DISCHARGE CHANNEL	SOME TREES	
BRIDGE AND PIERS	None	
GATES AND OPERATION EQUIPMENT	None	

INSTRUMENTATION
Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
Monumentation/surveys	NONE	
OBSERVATION WELLS	None	
WEIRS	None	
PIEZOMETERS	None	
отнея	None	

RESERVOIR AND WATERSHED Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SIOPES	GENERALLY MILD WITH MILLY COTTAGES ALONG THE SHORE	
SEDIMENTATION	NO REPORTED OR Visible Problems	
WATERSHED DESCRIPTION	RURAL DEVELOPMENT BUT VERY SPARSE- OTHERWISE WOUDED	

DOWNSTREAM CHANNEL

Sheet 1 of 1

REMARKS OR RECOMMENDATIONS		ELEVATIONS ABOVE STREAMBED VARY 10 FEET TO 30 FEET	
OBSERVATIONS STRENM THROUGH ISEDROCK	STEEP	ABOUT 10 NEAR CONFLUENCE WITH TUNKHANNOCK CREEK	
VISUAL EXAMINATION OF CONDITION: Obstructions	SLOPES	APPROXIMATE NUMBER OF HOMES AND POPULATION	

SUBJECT LAKE CARRY DAM ANNETT FLEMING CORDDRY FILE NO. AND CARPENTER, INC. HARRISBURG, PA. SHEET NO. SHEET SURVEY DATA COMPUTED BY_ DATE CHECKED BY. DATE. FROM DATA OBTAINED CONSTRUCTION AURILIARY Spirlway 4+00 FROM 8661 NON DOWNSTREAM SECTION AT STA SPiremay 937.8 PROFILE - LOOKING TAILWATER, EL +00+ 0.086 6 NOV 1978 3833888 Door , 64 947.0 955.3. 6 7 3 9 456.95 430+ ELEVATION . 076 950 046 940 926 B-12

SUBJECT LAS.

UPAGE TO.

SURVEY GANNETT FLEMING CORDDRY
AND CARPENTER, INC.
HARRISBURG, PA. OF SHEET DATE. CHECKED BY DATE "Sephaning" LAKE CAREY BRIDGE (LOOKING DOWNSTREAM HOUSES BEYOND STA 6+15 WOULD BIRK FLOW 7100 951.13 GUALD RAIL 618V 450.72 9400 EL 947.0 = DATUM WAISE SURFACE & NOV 1978 950.60 EL 947.0 = DATUM VATURAL TOPOGRAPHY 49.056 DOWNSTREAM ROAD St 950.2 64 951.0 ALONG AT 950.03 9.446 BRIDGE PROFILE (LOOKING PROFILE 451.2 4.7 5.5 431.7 1400 4462 Topockaphy NATURAL 461.67 ELEVATION 00+00 940 9609 950 35

SUSQUEHANNA RIVER BASIN MILL BROOK, WYOMING COUNTY

PENNSYLVANIA

LAKE CAREY DAM

NDI ID No. PA-00887 DER ID No. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

JANUARY 1979

APPENDIX C

HYDROLOGY AND HYDRAULICS

APPENDIX C

HYDROLOGY AND HYDRAULICS

In the recommended Guidelines for Safety Inspection of Dams, the Department of the Army, Office of the Chief of Engineers (OCE), established criteria for rating the capacity of spillways. The recommended Spillway Design Flood (SDF) for the size (small, intermediate, or large) and hazard potential (low, significant, or high) classification of a dam is selected in accordance with the criteria. The SDF for those dams in the high hazard category varies between one-half of the Probable Maximum Flood (PMF) and the PMF. If the dam and spillway are not capable of passing the SDF without overtopping failure, the spillway capacity is rated as inadequate. If the dam and spillway are capable of passing one-half of the PMF without overtopping failure, or if the dam is not in the high hazard category, the spillway capacity is not rated as seriously inadequate. A spillway capacity is rated as seriously inadequate if all of the following conditions exist:

- (a) There is a high hazard to loss of life from large flows downstream of the dam.
- (b) Dam failure resulting from overtopping would significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure.
- (c) The dam and spillway are not capable of passing one-half of the PMF without overtopping failure.

APPENDIX C

	Susou	EHANNE	RI	ver Basin
	Name of Stream	Mill	BROOK	
	Name of Dam: _	LAKE	CAREY	
	NDS ID No.: _	PA-O	0887	
	DER ID No.:	66-06	<u> </u>	
Latitude:_	N 41° 34	'55"	Longitude:	175°55'10"
Top of Dan	n (low spot) Ele	vation:	950.5	
Streambed	Elevation: 93	7.6	Height of Dam	: <u>/3</u> ft
Reservoir	Storage at Top o	f Dam Ele	evation: 48	10 acre-ft
	ory:			
Hazard Ca	tegory: Hi	6H		(see Section 5)
Spillway D	esign Flood:			
			SEE NEXT S	SHEET
Name Stevens Lake	(miles) /.7	Height (ft) /0.3	Storage at top of Dam Elevation (acre-ft) //96	Remarks NATURAL LAKE CONTAINS ABOUT 1198 ACRE-PT. LAKE IS TERMED MUD POND ON USGS.
	<u>I</u>	OWNSTR	EAM DAMS	
NONE				

ANNETT FLEMING CORDDRY SUBJECT LAKE CAREY FILE NO. SHEET NO.____ _ OF __ AND CARPENTER, INC. FOR_ HARRISBURG, PA. ___CHECKED BY___ ____DATE___ COMPUTED BY___ Lower Pono Upper Pono TOTAL NATURAL 3130 AF 3130 AF LAKE VOLUME SURCHHECE TO Spillway CREST 147 A.F. 651 AF. 504 AF SURCHARGE FROM Spillway CREST 297 4.F. 730 AF 1029 AF TO TOP OF DAM 4810 AF 446 AF 4364 AF TOTAL 1680 AF TOTAL LESS NATURAL LAKE

CAI	NNETT FLEMING CORDDRY AND CARPENTER, INC. HARRISBURG, PA.	SUBJECT LAKE	CAREY	FILE NO SHEET NO	OF SHEET
	MARRISOGRO, I A.	COMPUTED BY	DATE	CHECKED BY	DATE
		System	SKETCH	AREA A	
	,	_	,	_	
	SUBARER	, , ,	SUBARER	+	
	1 A1	\ /	A	2	
	1 7	1'	1		
	,) 1	Canop com	}	1	
	` `	(was bound)	(,	
	`	1	(1	
	< /-	1 2			
	``_	1			
	1	/			
	· ·	1)	1	
	`				
0	`\		1	/	
		_	-74	pper pand	
		` ` ` .			
		,		\	
			}	1	
		i		BAREA 1	
		\	1 / /	A3 '	
			/ 1	0ND /	
		`-	-43	LAKE C	AREY DAM
			34		

SUSQUEHANNE	River	Basin
Name of Stream: M:	L BROOK	
Name of Dam: LAKE	CARRY AND STE	VENS LAKE
NO ID No .: PA-00	887 (LAKE CAR	esy)
DER ID No.:66-	OG (LAKE CAREY);	66-55 STEVENS LAKE
Latitude: N 41° 35'		
<u>DETERMINATIO</u>	N OF PMF RAINFALL	
For AreaA		
which consists of Subareas	91 of 1.7	sq. mile
	12 4.4	
	3 0.9	
	•	
·		
	mage Area 7.0	
PMF Rainfall Index =		
	Hydromet. 40 (Susquehanna Basin)	Hydromet. 33 (Other Basins)
Zone	N/A	N/A
Geographic Adjustment Factor	96%	1.0
Revised Index Rainfall	21.3	N/A
DAINEALL DICT	RIBUTION (percent)	
Time 6 hours	Percent //8	
12 hours	127	
24 hours	136	
48 hours	142	
72 hours	145	
96 hours	C-5	

SUSQUEHANNA River Basin	
Name of Stream: MILL BROOK	
Name of Dam: LAKE CAREY	
ND ID No.: PA- 00387	
DER ID No.: 66-06	
Latitude: N 4/° 34′ 55" Longitude: W 75° 55′ 10	"
Drainage Area: 7.0 sq. mi	le.
Data for Subarea: A1 (see Sketch on Sheet C-	T)
Name of Dam at Outlet of Subarea: LAKE STEVENS	_
Drainage Area of Subarea: /-7 sq. mi	le
Subarea Characteristics:	
Assumed Losses: 1.0-inch initial abstraction + 0.05 in/hr	
The following are measured from outlet of subarea to the point noted:	
L = Length of Main Watercourse extended to the divide = 2.00 mi	lles
LCA = Length of Main Watercourse to the centroid = 0.45 mi	lle
From NAB Data: AREA 11 PLATE E	
Cp = 0.62	
$C_{\mathrm{T}} = 1.5$	
$Tp = C_T \times (L \times L_{CA})^{0.3} = \underline{1.45}$ (hrs)	
Flow at Start of Storm = 1.5 cfs/sq. mile x Subarea D.A = 2.55 cfs/sq. mile x Subarea D.A = 2.55 cfs/sq.	fs
Computer Data:	
QRCSN = -0.05 (5% of peak flow)	
RTIOR = 2.0	
Remarks:	_

Data for Dam at Outlet of Subarea (see Sketch on Sheet C-1)	A1				
Name of Dam: LAKE STEVENS	s	_ Sheet 1 of			
Height: (ex	cisting)				
Spillway Data:	Existing Conditions	Design Conditions			
Top of Dam Elevation	1059.0	NOT DETERMINED			
Spillway Crest Elevation	1054.0				
Spillway Head Available (ft)	5.0				
Type Spillway	SHARD CRESTER	weir			
"C" Value - Spillway	3.1				
Crest Length - Spillway (ft)	31.9				
Spillway Peak Discharge (cfs) 1799 2 /800					
Auxiliary Spillway Crest Elevation	NONE				
Auxiliary Spillway Head Available (ft)	NONE				
Type Auxiliary Spillway	NONE				
"C" Value - Auxiliary Spillway	N/A				
Crest Length - Auxiliary Spillway (ft)	N/A				
Auxiliary Spillway Peak Discharge (cfs)	N/A				
Combined Spillway Discharge (cfs)	1800				
Spillway Rating Curve:					
Elevation O Spillway (cfs) O Auxili	ary Spillway (cfs)	Combined (cfs)			
NOT DETERMIN	<u> </u>				

Data for Dam at Outlet of Subarea	A1		
Name of Dam: LAKE STEVE	15	Sh	eet 2 of
Outlet Works Rating:	Outlet 1	Outlet 2	Outlet 3
Invert of Outlet No Outlet			
Invert of Inlet STOP LOGS AT RIGHT			
Type END OF			
Diameter (ft) = D Spillway			
Length (ft) = L			
Area (sq. ft) = A			
N			
K Entrance			
K Exit			
K Friction $\stackrel{*}{=} 29.1_{\text{N}}^2 \text{L/R}^{4/3}$			
Sum of K			
$(1/K)^{0.5} = C$			
Maximum Head (ft) = HM			
$Q = C A \sqrt{2g(HM)}$ (cfs)			
Q Combined (cfs)			

^{*} R = Hydraulic Radius = (Area/Wetted Perimeter) = D/4 for Circular Conduits.

Data for Dam at Ou	tlet of Subarea			
Name of Dam:	AKE STE	VENS		Sheet 3 of 4
Storage Data:	Area	million	age acre-ft	Remarks
Elevation	(acres)			ESTIMATED BOTT
/017 = ELEVO*	0	0	0	INVERT OF
1049	46.4	161	493	STREAM AT TOE DA
1054 = FLEY 1	62 = A1	249	764 = 51	SPILLWAY CREST
1059	110.6	390	1196	TOP OF DAM
1060	122			
1080 **	135.6			
		·		
* ELEVO = ELEV1 ** Planimetered of		t 10 feet	above top of	dam
Reservoir Area	at Top of Ban	ک 1s <u>ک</u>	_ percent of	watershed.
	c	-9		

Data for Dam at Outlet of S	ubarea A1	
Name of Dam: LAKE	STEVENS	_ Sheet 4 of <u>4</u>
Breach Data: Passes	50% OF PMF - NO	BREACH
Sketch of Dam Profile (not t	DATA REQU	
Sketch of Top of Dam (not t	o scale):	
Soil Type from Visual Inspe	ction:	
Maximum Permissible Veloc (from Q = $CLH^{3/2}$ = $V \cdot A$ and	city (Plate 28, EM 1110-2-1) d depth = $(2/3) \times H$)	601)fps
$HMAX = (4/9 V^2/C^2)$	ft., C =	
HMAX + Top of Dam E (Above is elevation at which	lev. = = FAIL th failure would start)	EL
Dam Breach Data:		
BRWID = ft (width of bottom of breach)	
z = (side slopes of breach)	
ELBM =(bottom of breach elevation, minimum of zero storage ele	vation)
WSEL = (normal pool elevation)	
T FAIL = min	IS	
= hrs	(time for breach to develop)	

Data for Dam at Outlet of Subarea (see Sketch on Sheet C-4)	A-2	
Name of Dam: LAKE CAREY - U	IDPER POND	_ Sheet 1 of \frac{\frac{1}{2}}{2}
Height:6.4 FT(existing)	
Spillway Data:	Existing Conditions	Design Conditions
Top of Dam Elevation	950.6	NOT designe
Spillway Crest Elevation	944.2	AS A dAM
Spillway Head Available (ft)	6.4	
Type Spillway	WATER WAY UN	INER BRIDGE
"C" Value - Spillway	NIA	
Crest Length - Spillway (ft)	15.9	
Spillway Peak Discharge (cfs)	6982700	
Auxiliary Spillway Crest Elevation	_N/A	
Auxiliary Spillway Head Available (ft		
Type Auxiliary Spillway		
"C" Value - Auxiliary Spillway	AIA	
Crest Length - Auxiliary Spillway (f	5 N/R	
Auxiliary Spillway Peak Discharge (cfs)	
Combined Spillway Discharge (cfs)	700	
Spillway Rating Curve:		
Elevation O Spillway (cfs) OAuxi	liary Spillway (cfs)	Combined (cfs)
947.0		
948.0 273		273
949.0 454		454
950.0 611		611
950.6 700		700
952.6 965		965
* USING Q = 273 h .73		VARION 9470

ANNETT FLEMING CORDDRY SUBJECT LAKE CAREY FILE NO. 1A OF

AND CARPENTER, INC.

HARRISBURG, PA.

FOR

COMPUTED BY

DATE CHECKED BY

UPPER POND OUTLET WORKS

Q' = CRITICAL des

P --

		alshe			Q' = CR	ITICAL	depth
W. S.	d	Τ	A	Q'=\1	Q = 2.70'	hv	Pool
ELEV	(FT)	(FT)	(FT2)	CFS	CFS		ELEV
944.2	0	8.2	0	0	0	0	944.2
946.2	2	15.9	25.92	187.7	164	.61	946.8
947.0	2.8	15.9	38.64	341.7	298	.92	947.9
948.0	3.8	15.9	54.54	573.0	499	1.30	949.3
949.0	4.9	15.9	70.44	841.1	733	1.33	950.7
950.0	5.8	15.9	86.34	1141.3	994	2.06	952.1
951.0	6.8	15.9	102.24	1470.1	1281	2.44	953.4
	(ABOVE	w:TH	20	TAILWATE	52)	

DATE

Data for Dam at Outlet of Subarea	A-2		
Name of Dam: LAYE CARE		Pono she	eet 2 of <u>4</u>
Outlet Works Rating: No	Outlet 1	Outlet 2	
Invert of Outlet OUTLET			
Invert of Inlet WORKS			
Туре			
Diameter (ft) = D			
Length (ft) = L			
Area (sq. ft) = A			
N			·
K Entrance			
K Exit			
K Friction = $29.1 \text{ N}^2 \text{L/R}^{4/3}$			
Sum of K			<u> </u>
$(1/K)^{0.5} = C$	*		
Maximum Head (ft) = HM			
$Q = C A \sqrt{2g(HM)} (cfs)$			
Q Combined (cfs)			

^{*} R = Hydraulic Radius = (Area/Wetted Perimeter) = D/4 for Circular Conduits.

Data for Dam at Out	tlet of Subarea	<u> </u>		
Name of Dam:	AKE CARE	y-Up	per Pano	Sheet 3 of 4
Storage Data: Elevation	Area (acres)	Stor	age acre-ft	Remarks
889.3 = ELEVO*	0	. 0	` 0	NATURAL LAILE
944.2 = BLEVE	171.2 -A1	1020	3130 = 81	NORMAL
947.0 : EN1	189 = H1	1137	3634 = 54	POOL
950.7	206	1422	4364	
960 **	251			
				
				
* ELEVO = ELEVI	- (35 ₁ /A ₁)			
** Planimetered c	ontour at leas	t 10 feet	above top of d	am
Reservoir Area			_ percent of w	eatershed.
Remarks:				

Data for Dam at Outlet of Subarea A1
Name of Dam: LAKE CARSY - Upper Pond Sheet 4 of 4
Breach Data:
Sketch of Dam Profile (not to scale):
- BALTEPILL NATURAL MATERIALS
Sketch of Top of Dam (not to scale): Top of GUARDAN - USED 2.0' 1 20'1 GUARD RAIL GLEVATION.
Soil Type from Visual Inspection: PAVED EXCEPT AT EDGES
Maximum Permissible Velocity (Plate 28, EM 1110-2-1601) 7.5 fps (from Q = CLH ^{3/2} = V·A and depth = (2/3) x H) $A = L \cdot d$
HMAX = $(4/9 \text{ V}^2/\text{C}^2) = 3.4 \text{ ft., C} = 2.7$
HMAX + Top of Dam Elev. = 954.0 = FAILEL (Above is elevation at which failure would start) USING TOP OF DAM : ROAD FLEV = 950.6
Dam Breach Data:
BRWID = ft (width of bottom of breach)
Z = 1.0 (side slopes of breach)
ELBM = 944.2 (bottom of breach elevation, minimum of zero storage elevation)
WSEL = 947 (normal pool elevation)
T FAIL = 6 mins (USING O. HES PER 25' HEIGHT).
= Oal hrs (time for breach to develop)

SUSQUE HANNA River Basin
Name of Stream: Mill BROOK
Name of Dam: LAKE CARRY
NDS ID No.: PA-00887
DER ID No.: 66-06
Latitude: N 41° 34′ 55" Longitude: W 75° 55′ 10"
Drainage Area: 7.0 sq. mile
Data for Subarea: A2 (see Sketch on Sheet C-4)
Name of Dam at Outlet of Subarea: LAKE CARRY - Upper Powo
Drainage Area of Subarea: 6.1, 4.4 is UNCONTROLLED sq. mile
Subarea Characteristics:
Assumed Losses: 1.0-inch initial abstraction + 0.05 in/hr
The following are measured from outlet of subarea to the point noted:
L = Length of Main Watercourse extended to the divide = 3.71 miles
LCA = Length of Main Watercourse to the centroid = /.73 mile
From NAB Data: AREA II PLATE E
Cp = 0.62
$C_{\mathrm{T}} = 1.5$
$Tp = C_T \times (L \times L_{CA})^{0.3} = 2.62$ (hrs)
Flow at Start of Storm = 1.5 cfs/sq. mile x Subarea D.A = 6.6 cfs
Computer Data:
QRCSN = -0.05 (5% of peak flow)
RTIOR = 2.0
Remarks:

Data for Da	m at Outlet of Sul	parea	A-3		
	etch on Sheet C-1		OWER POND	Sheet 1 of 4	
	:12.9		dsting)		
Spillway D	ata:		Existing Conditions	Design Conditions	
Top of Dam	Elevation		950.5	950.7	
	rest Elevation		947.0	947.0	
Spillway H	ead Available (ft)		3.5	3-7	
Type Spilly	vay		SEE SHEET	C-17	
"C" Value	- Spillway		2.7	2.7	
Crest Leng	th - Spillway (ft)		19.3	19.3	
Spillway Pe	eak Discharge (cf:	3)	299 2300	329≈ 330	
Auxiliary S	pillway Crest Elev	ration	950.0	NNKNOWY-E	Kisti NG
Auxiliary S	pillway Head Avai	lable (ft)	0.5	0.7	
Type Auxili	lary Spillway		SEE SH	ET C-18	
"C" Value	- Auxiliary Spillw	ay	2.7		
Crest Leng	th - Auxiliary Spil	lway (ft)	19 (Approxi M	12	
Auxiliary S	pillway Peak Discha	rge (cfs)	18220	30	
Combined :	Spillway Discharg	e (cfs)	320	366	
Spillway R	ating Curve:				
Elevation	O Spillway (cfs)	<u>O Auxilia</u>	ary Spillway (cfs)	Combined (cfs)	
947.0			0		
948.4	71		0	71	
950	228		0		
950.5	300		20	320	
950.7	330		30	360	
952.0	<u>570</u> 1956		145	3074	

SUBJECT_ GANNETT FLEMING CORDDRY SHEET NO. 1A _ OF SHEET AND CARPENTER, INC. FOR LAKE CAREY DAM HARRISBURG, PA. COMPUTED BY_ CHECKED BY DATE 950.8 Z REPORTED AGNES 3.7' 3.2' 12.4' O'= CRITICAL depTH G: VA32 depth ELEV ELEV FT B72 FT CES 9469 946.9 0 12.4 0 0 0 0 947.0 .1 . 1 947.0 -1 12.4 . 12 0 947.5 947.7 .6 12.4 7.44 32.7 28.5 . 23 943.4 948.0 13.64 70.7 1.1 81.2 .42 12.4 155.9 948.6 135.8 949.2 1.7 .64 12.4 21.08 949.0 199.6 173.8 949.6 2.1 19.3 28.8 .57 944.5 950.3 2.6 19.3 38.45 307.9 268.1 .76 950.0 3.1 430.8 .95 951.0 19.3 48.1 375.2 950.5 3.6 193 57.75 566.7 493.6 951.6 1.13 9508 3.9 19.3 63.54 654.0 569.6 1,2 952.0 4.1 1951:0 19.3 67.4 714.5 622.3 1.3 952.3 955.0 8.1 19.3 144.6 2245 2.8 957.8 1956 960.0 13.1 19.3 241.1 4834 4210 4.7 964.7 948.6 +8" -949.3 2.4 19.3 34.59 262.7 229 .68 950.0 AGNES ESTIMATED DISCHARGE

= 230 cps

AND CARPENTER, INC. HARRISBURG, PA.

SUBJECT AL	XILIARY	Spillway	FILE NO			
	,	1 /	SHEET NO. 13	OF_	4	SHEET
FOR LAKE	CAREY	Dam				
			CHECKED BY		_DATE_	

IN VIEW OF IRRECULAR GEOMETRY
USE WEIR WITH C= 2.7, BW= 19'
AT ELEVATION 950.0

H	POOL	Q = CLH 3/
	=9500+H	(crs)
Ö	950	0
.3	950.3	8.4
1:0	951.0	51.0
1.6	951.6	103.8
2.0	952.0	145.1
2.3	952.3	178.9
7.8	957.8	1117.5
14.7	964.7	2891.3

Data for Dam at Outlet of Subarea	A3		
Name of Dam: LAKE CAREY	-LOWER ?	PONO She	et 2 of <u>4</u>
Outlet Works Rating:	Outlet 1	Outlet 2	Outlet 3
Invert of Outlet No OUTLET WORKS			
Invert of Inlet			
Type			
Diameter (ft) = D			
Length (ft) = L			
Area (sq. ft) = A			
N			
K Entrance			
K Exit			
K Friction $\stackrel{*}{=} 29.1_{\text{N}}^{2}\text{L/R}^{4/3}$			
Sum of K			
$(1/K)^{0.5} = C$			
Maximum Head (ft) = HM			
$Q = C A \sqrt{2g(HM)}$ (cfs)			
Q Combined (cfs)			

^{*} R = Hydraulic Radius = (Area/Wetted Perimeter) = D/4 for Circular Conduits.

Data for Dam at Out				
Name of Dam:	AKE CAR	sex - To	WER POND	Sheet 3 of $\underline{4}$
Storage Data:		Stor	•	
Elevation	Area (acres)	million	acre-ft	Remarks
941.0 = ELEVO*	0	. 0	0	
<u>947.0</u> = ELEV1	73 = A1	48	<u>/47</u> = SI	
950.7	88.7	145	446	
960.0	135			
	—			
				
**				
* ELEVO = ELEV1	- (3s ₁ /A ₁)			
** Planimetered co	ontour at least	t 10 feet	above top of d	am
Reservoir Area		is _/3	_ percent of w	vatershed.
Remarks:				

Data for Dam at Outlet of Subarea _____ A 3 Name of Dam: LAKE CAREY (Lower Pond) Sheet 4 of 4 Breach Data: Sketch of Dam Profile (not to scale): Sketch of Top of Dam (not to scale): Soil Type from Visual Inspection: STONE FACING Maximum Permissible Velocity (Plate 28, EM 1110-2-1601) 8 fps (from Q = $CLH^{3/2} = V \cdot A$ and depth = (2/3) x H) $A = L \cdot A$ HMAX = $(4/9 \text{ V}^2/\text{C}^2) = 3.0 \text{ ft., C} = 3.1$ HMAX + Top of Dam Elev. = 953.7 = FAILEL (Above is elevation at which failure would start) Dam Breach Data: BRWID = 50 ft (width of bottom of breach) Z = 1.0 (side slopes of breach) ELBM = 937.6 (bottom of breach elevation, minimum of zero storage elevation) WSEL = 947.0

(normal pool elevation)

O. hrs (time for breach to develop)

T FAIL = 6 mins

SUSQUEHANNA River Basin
Name of Stream: Mill Brook
Name of Dam: LAKE CARRY (LOWER POND)
NDS ID No.: PA-00887
DER ID No.: 66-06
Latitude: N 41° 34' 55" Longitude: W 75° 55' 10"
Drainage Area: 7.0 sq. mile
Data for Subarea: A3 (see Sketch on Sheet C-\frac{1}{2})
Name of Dam at Outlet of Subarea: LAKE CARRY DAM
Drainage Area of Subarea: 7.0 (0.9 UNCONTROLLED) sq. mile
Subarea Characteristics:
Assumed Losses: 1.0-inch initial abstraction + 0.05 in/hr
The following are measured from outlet of subarea to the point noted:
L = Length of Main Watercourse extended to the divide = .65 mile
LCA = Length of Main Watercourse to the centroid = . 27 mile
From NAB Data: AREA 11 PLATE E
Cp = 0.62
C _T = 1.5
$Tp = C_T \times (L \times L_{CA})^{0.3} =89$ (hrs)
Flow at Start of Storm = 1.5 cfs/sq. mile x Subarea D.A = /.35 cfs
Computer Data:
QRCSN = -0.05 (5% of peak flow)
RTIOR = 2.0
Remarks:

GANNETT FLEMING CORDDRY
AND CARPENTER, INC.
HARRISBURG, PA.

BRIDGE AT CROSS SECTION 9
(DAMAGE CENTER)

APPENDIX C

	SUMMARY	
	STEVENS UPPER LAKE POND Subarea Subarea	FOND Subarea Subarea Total
Drainage Area (sq. mile)	A1 1.70	A3
PMF:		
Peak Outflow (cfs)	4495 12,592	11,980
Total Runoff (inches)	RORDWAY	
Dam at Outlet?	YES MYES	YES
Is Dam Overtopped?	YES YES	YES
Depth of Overtopping (ft)	1.11 5.74	9.53
One-Half PMF:		
Peak Outflow (cfs)	1578 4976	4446
Total Runoff (inches)		
Dam at Outlet?	YES YES	YES
Is Dam Overtopped?	NO YES	YES
Depth of Overtopping (ft)		4.62
Does Dam Fail?	NO SEE	YES
Peak Failure Outflow (cfs)		SEF
At time (hrs)		COMPUTAL
Spillway (percent of PMF)	60= 204-	PRINTOUT.
DOW	NSTREAM SUMMA	
	For 12 PM Peak Water Surface Before Failure	After Failure Remarks
Cross Section 9	639.3	639.9 DEITHOUT BRIDGE
Cross Section 9	645.4	65 2.8 Swith BRIDE
Cross Section 9	639.3	640.2) WITHOUT BRIDES
Cross Section 9	645.4	655.8 SUPPER LOWER PAIL
Cross Section		

GANNETT FLEMING	CORDDRY
AND CARPENTER	R. INC.
HARRISBURG.	PA.

SUBJECT		FILE NO	I NO				
		SHEET NO	07				
POR							

SELECTED COMPUTER PRINTOUT NOTES AND INDEX

ITEM	PAGE
Assuming NO FAILURES	
FOR VARIOUS RATIOS OF PMF:	
INPUT	C-26TO C-28
SYSTEM PEAK FLOWS	C-29 to C-30
LAKE STEVENS	C-30
LAKE CAREY UPPER	POND C-31
LAKE CAREY LOWER	POND C-31
DAMAGE CENTER	

Assuming only LAKE CAREY DAM FAILS: (NOTES: a) PLAN #1 NOT USED

b) FLOWS UPSTREAM OF LOWER POND
IDENTICAL TO NO FAILURE 50% PMF)

INPUT

C-32 TO C-34

SYSTEM PEAK FLOWS

LAKE CAREY LOWER POND

C-36

DAMAGE CENTER

C-36

Assuming BOTH LAKE CAREY DAM AND PENINSULA FAIL (SEE NOTES ABOVE)

INPUT C-37 TO C-39
SYSTEM PEAK FLOWS C-40 TO C-41
LAKE CARRY Upper POND C-42
LAKE CARRY LOWER POND C-42
DAMAGE CENTER C-42

0	FLOOD HYDROGRA	PH PACKAG	E (HE	(-1)									
	DAN SAFETY VER	The second	JULY !										
	LAST HODIFIC		AUG	_									
	1	A1	*****	••••	14	KE CARE	DAM						
		A2				MILL							
	3	A3					CC						
	4	B	300	0	15	0	0	0	0	0	-4	0	
	5	B1	5										
	6	3	1	.70	1	.35	.25	.15	.05				
		J1	1.0		.50	• • • • •		13	1				
	9	K1	•		RUNDFF	INTO STE	EVENS LAK	E-MUD PO	•				
	10	H	1	1	1.7		7.0						
	11	P		21.3	118	127	136	142	145				
	12	Ţ							1.0	.05		.057	
	13	U	1.45	.62									
	14 15	Ř	2.55	05	2.0				. 1				
•	16	K1			HROUGH L	AKE SUE	JENS						
	17												
	18	Y1	1						-1054	1			
	19	SA	.01	46.4	62	122	135.6						
	20	\$E	1017	1049	1054	1060	1080						
	21 22	55	1054	51.9	3.1	1.5							
)	23	\$R \$F		10	0	TAAR.7	51.9			1059			
	24		048.7		1068	104017	02.77			1007			
	· 25	SU	0	1	99999								
-	26	\$D	1059	7.7	1.5	148	447.44						
	27	K	1	1					1				
	28	K1		ROUTE	UTFLOW L		VENS TO U	PPER LAK	E CARETOS	EC(.1)			
	29 30	Y Y1	1			1							
		Y6	.07	.05	.07	1030	1100	2400	.02				
	31	Y7	.07	1100	370	1060	600	1040	700	1030	710	1030	-
•	32 33	Y	750	1040	850	1080	1050	1100	,,,,				
	34	K	1	1					1	_			
	35	K1	-	ROUTE OUT	FLOW TO		OND (SECT	. 2)					
	36	Y				1							
	37	Y1 Y6	.07	05	.07	768	1000	2400	.022				
	39	17	0	1000	150	980	250	973	255	. 968	265	968	
	40	¥7	270	973	600	980	1320	1000					
	41	K	0	2					1				
	42	K1				RUNOFF	INTO LAKE	GAREY	UPPER POR	(D			
	43	K	1		4.4		7.0				1		
	44 45	T		21.3	118	127	136	142	145	.05		.067	
	46	U	2.62	.62						140		1407	
-	47		6.6		2.0								
	48	K	2	2					1				
2	49	K1		COMBINE	OUTFLOW	LAKE STI	EVENS AND	INFLOW	UPPER LAN	E CAREY			
	30												

1	51	K1	1	OUTE THR	OUGH UPP	ER LAKE	CAREY					
	52	Y				1						
	53	Y1							-947			
	54	\$A		171.2	189	251						
	55		889.3	944.2	947	960						
	56		747	15.9	.001	1.5	947	1	34	.733		
	57		952.6	3.1	1.5	500						
	58	K	0						1			
	59	KI		A STATE OF THE PARTY OF THE PAR		FLOW INT		PUND				
	60	H	1		0.9	107	7.0	440			1	
	61	P		21.3	118	14/	136	192	145	05		-17
	62 63	1	.89	.62					1.0	.05		.13
	64	X	1.35	05	2.0							
	65	- k	2		2.0							
	66	K1	•		F FI NUS	TO LOWER	POND					
	67	K	1			IO COMEN	IOND		1			
	- 68				DOMICU T	OWER PON	n					
	69	Y		KOUTE I	nkuuon L	1						
	70	Y1	1			•			-947	-1		
	71		946.9	947	947.7	948.4	949.2	949.6	950	950.3	051	951.6
	72	Y4	952	952.3	957.8	964.7	747.12	777.0	730	75015	731	731.0
	73	Y5	0	.1	29	71	136	174	228	276	426	598
	74	- Y5	715	801	3074	7101	200		220	2/0	720	370
	75	SA		.02	73	88.7	135					
	76		937.6	941	947	950.7	960			•		
	77		947									
	78		950.7	2.7	1.5	90						
	79.	K	1	4					1			
	80	K1		ROUTE T	HROUGH D	OUNSTREAM	N SECTION	N ·				
	81	Y				1						
	82	Y1	1									
	83	Y6	.07	.05	07	920	960	900	•066			
	84	¥7	0	960	420	940	550	930	560	920	600	920
	85	Y7	610	930	700	940	800	960				
	- 86	K	1	3								
	87	Y				1						
	88	Y1	1									
	89	76	.09	.06	.09	840	880	600	.133			
	90	¥7	-	880	100	860	200	850	201	840	216	840
	91	Y7	217	850	280	860	1000	880				
	92	K	1	8								
	93	Y				1						
	94	Y1	1									
	95	76	.09	.05	.09	758	840	2450	.024			
	96	Y7	0	840	450	800	660	760	665	758	675	758
	97	17	720	760	850	800	950	840				
	98	K	-1	7								
	99	Y				. 1						
	100	Y1	1									

1	101	Y6	.07	.05	.07	718	800	2250	.018			
	102	Y7	0	800	280	740	420	720	430	718	450	718
	103	Y7	500	720	560	740	740	800				
	104	K	1	8								
	105	Y				1						
	106	Y1	1									
	107	Y6	.07	.05	.07	679	800	3300	•012	/70	765	679
	108	Y7	0	800	450	700	750	680	. 755	679	/03	0/7
	109	Y7	780	680	850	700	1380	800				
	110	K	1 POUTE	TO 1000	ICTOCAN M	0 /DA	MACE CEN	ITED	1			
	111	K1	KUUIE	IU DUNI	ISTREAM NO		NHUE CEN	HEN)				
	112	Y				1						
	113 114	Y1 Y6	.05	.04	.05	632	700	3150	.013			
		Y7	.03	700	450	640-	840	637	845	632	860	632
	115	'Y	865	637	1070	640	1600	700				
	117	K	99	03/	10/0	040	1000	,,,,				
•	•••			PREUTE	OF SEQUI	NCE OF	STREAM A	VETWORK !	CALCULATI	DNS		
					ROUTE H	MROGRAF	H TO		1			
<u>-</u>					ROUTE H	PDROGRAF PDROGRAF PDROGRAF PDROGRAF PDROGRAF	PH TO PH TO PH AT TOGRAPHS PH TO	AT	1 1 2 2 2 2 3			
-					ROUTE H' RUNOFF I COMBINE ROUTE H' RUNOFF	YDROGRAF YDROGRAF HYDROGRAF YDROGRAF HYDROGRAF	PH TO PH TO PH AT TOGRAPHS PH TO		1 1 2 2 2 2 3 3			
	•				ROUTE H' RUNOFF I COMBINE ROUTE H' RUNOFF	YDROGRAF YDROGRAF HYDROGRAF YDROGRAF HYDROGRAF HYDROGRAF	PH TO PH AT TOGRAPHS PH TO PH AT TOGRAPHS TOGRAPHS		1 1 2 2 2 2 2 3 3			
					ROUTE H' RUNOFF I COMBINE ROUTE H' RUNOFF COMBINE	YDROGRAF YDROGRAF YDROGRAF YDROGRAF HYDROGRAF YDROGRAF YDROGRAF	PH TO PH AT ROGRAPHS PH TO PH AT ROGRAPHS PH TO PH AT ROGRAPHS PH TO		1 1 2 2 2 2 2 3 3 3			
					ROUTE H' RUNOFF I COMBINE ROUTE H' RUNOFF COMBINE ROUTE H' ROUTE H' ROUTE H	YDROGRAF YDROGRAF YDROGRAF YDROGRAF HYDROGRAF YDROGRAF YDROGRAF YDROGRAF YDROGRAF	PH TO PH AT TOGRAPHS PH TO PH AT TOGRAPHS PH TO PH TO PH TO PH TO		1 1 2 2 2 2 3 3 3 4			
					ROUTE H' RUNOFF I COMBINE ROUTE H' RUNOFF COMBINE ROUTE H' ROUTE H'	YDROGRAF YDROGRAF YDROGRAF YDROGRAF HYDROGRAF YDROGRAF YDROGRAF YDROGRAF YDROGRAF	PH TO PH AT TOGRAPHS PH TO PH AT TOGRAPHS PH TO PH TO PH TO PH TO		1 1 2 2 2 2 3 3 3 4 5 6			
					ROUTE H' RUNOFF I COMBINE ROUTE H' RUNOFF I COMBINE ROUTE H' ROUTE H ROUTE H ROUTE H ROUTE H	TDROGRAF TDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF	PH TO PH AT ROGRAPHS PH AT ROGRAPHS PH AT ROGRAPHS PH TO		1 1 2 2 2 2 3 3 3 4 5 6			
-					ROUTE H' RUNOFF I COMBINE ROUTE H' RUNOFF I COMBINE ROUTE H' ROUTE H ROUTE H ROUTE H ROUTE H ROUTE H	TDROGRAF TDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF	PH TO PH AT ROGRAPHS PH AT ROGRAPHS PH AT ROGRAPHS PH TO		1 1 2 2 2 2 3 3 3 4 5 6 7			
	-				ROUTE H' RUNOFF I COMBINE ROUTE H' RUNOFF I COMBINE ROUTE H' ROUTE H ROUTE H ROUTE H ROUTE H	TDROGRAF TDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF TYDROGRAF	PH TO PH AT ROGRAPHS PH AT ROGRAPHS PH AT ROGRAPHS PH TO		1 1 2 2 2 2 3 3 3 4 5 6 7			

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)

								PLIED TO F			
	OPERATION	STATION	AREA	PLAN					RATIO 5		
					1.00	.70	.50	. •35	-25	.15	.05
	HYDROGRAPH AT	<u>1</u>	1.70		5113.	3579.	2557.	1790.	1278.	767.	256.
		(4.40)	(144.80)(101.36)(72.40)(50.68)(36.20)(21.72)(7.24)
	ROUTED TO		1.70		4495.	2254.		1143.		514.	176.
		(4.40)	•	127.29)(63.82)(44.69)(32.36)(23.66)(14.56)(4.99)
-	ROUTED TO	1	1.70	1	4664.	2252.	1577.	1143.	836.	514.	176.
		(4.40)	(132.07)(63.78)(44.65)(32.36)(23.66)(14.55)(4.98)
	ROUTED TO	1	1.70	1	4564.	2248.	1577.	1141.	834.	514.	
		(4.40)	(129.25)_(63.66)(44.65)(32.31)(23.63)(14.55)(4.98)
_	HYDROGRAPH AT	2	4.40	1	9784.	6849.	4892.	3424.	2446.	1468.	489.
			11.40)				138.52)(96.97)(69.26)(41.56)(13.85)
	2 COMBINED		6.10				6418.			1972.	662.
		(15.80)	(402.62)(254.34)(181.74)(128.44)(92.27)(55.83)(18.75)
	ROUTED TO		6.10	_	12592.		4976.			637.	265.
		•	15.80)	(356.56)(224.30)(140.90)(72.93)(26.75)(18.04)(7.49)
-	HYDROGRAPH AT	. 3 .	.90	-1			1716.		858.	- 515.	172.
		(2.33)	(97.21)(68.05)(48.61)(34.02)(24.30)(14.58)(4.86)
	2 COMBINED	3	7.00		13999.	8380.	5138.	2631.	1204.	748.	271.
			18.13)				145.50)(
	ROUTED TO	3					4466.			587.	160.
		•	18.13)	(339.24)(207.27)(126.46)(64.43)(26.61)(16.62)(4.52)
	ROUTED TO	4	7.00	1	11995.	7321.	7464.	7275.	- 940.	587.	160.
		(18.13)	(339.66)(207.30)(126.42)(64.43)(26.61)(16.62)(4.52)
	ROUTED TO -		7.00				4466.		740.	587.	
		•	18.13)	(339.84)(207.34)(126.47)(64.43)(26.61)(16.62)(4.52)
	ROUTED TO		7.00		11979.	7324.		2276.	940.	587.	160.
		(18.13)	(339.21)(207.40)(126.34)(64.44)(26.61)(16.62)(4.52)
-	ROUTED TO		7.00			7326.		2273.			160.
			18.13)				126.40)(

	ROUTED TO		7.00 1 .13) (11976. 339.13)(7318. 207.22)(4465. 126.42)(2271. 64.31)(939. 26.60)(587. 16.61)(160. 4.52)
	ROUTED TO		7.00 1 .13) (11961. 338.70)(7311. 207.03)(4458. 126.23)(2264. 64.12)(939. 26.60)(587. 16.61)(160.
1						DAM SAFETY	A CONTRACTOR OF THE PARTY OF TH			
	PLAN	1	ELEVATION STORAGE	INITI	N KE SL VALUE 54.00 772.	STEV SPILLWAY 1054.	CREST	TOP OF 10 1059.0 1198	0	
			OUTFLOW		0.	and the second second second	0.	1878		
		RATIO OF PHF	MAXIMUM RESERVOIR N.S.ELEV	MAXIMUM DEPTH OVER DAM	NAXINUM STORAGE AC-FT	NAXINUN OUTFLOW CFS		TOP NAX	IME OF OUTFLOW HOURS	TIME OF FAILURE HOURS
		1.00	1060.11 1059.56	1.11	1328. 1262.	4495. 2254.			41.75	0.00
		.50 .35	1058.20 1057.04	0.00	1113. 1002.	1578. 1143.	0.00)	42.75 42.75 42.75	0.00 0.00 0.00
•		•25 •15 •05	1056.23 1055.37 1054.47	0.00 0.00 0.00	932. 865. 802.	836. 514. 176.	0.00)	42.75 42.50 42.50	0.00

SUMMARY OF DAM SAFETY ANALYSIS

LAKE CAREY	UPPER	POND
------------	-------	------

PLAN 1	ELEVATION STORAGE	INITIAL VALUE 947.00 3661.	SPILLWAY CREST 947.00 3661.	70P OF DAN 952.60	
	OUTFLOW	0.	0.	964.	-

RATIO OF PHF	MAXIMUM RESERVOIR N.S.ELEV	NAXIMUN DEPTH OVER DAN	MAXIMUM STORAGE AC-FT	NAXIMUH DUTFLON CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	956.34	3.74	5626.	12592.	13.00	42.75	0.00
.70	955.24	2.64	5373.	7921.	11.25	43.50	0.00
.35	954.42 953.57	1.82	5188.	4976. 2575.	9.25 7.00	44.00 45.00	0.00
.25	952.45	0.00	4757.	945.	0.00	47.00	0.00
.15	950.18 947.96	0.00	4285.	637. 265.	0.00	46.50	0.00

SUMMARY OF DAM SAFETY ANALYSIS

LAKE CAREY LOWER POND

		THE C	nine, Lu	WEK PO	V
PLAN 1		INITIAL VALUE	SPILLWAY CREST	TOP OF DAN	
	ELEVATION	947.00	947.00	950.70	
	STORAGE	149.	149.	447.	
	OUTFLOW	0.	0.	362.	

	RATIO	HUHIXAM	HUHIXAM	HUHIXAM	MAXIMUM	DURATION	TIME OF	TIME OF
	OF PNF	RESERVOIR W.S.ELEV	DEPTH OVER DAM	STORAGE AC-FT	CFS	HOURS	HOURS	FAILURE HOURS
	1.00	960.23 957.54	7.53 6.84	1511. 1165.	11980. 7320.	36.75 35.00	43.50 44.50	0.00
	.50	955.32	4.62	907.	4466.	33.00	45.00	0.00
	.35 .25	953.34 951.80	2.64 1.10	697. 548.	2275. 940.	30.75 27.50	48.50	0.00
	.15	951.23	•53	495.	587.	15.75	50.00	0.00
	05	949.45	0.00	340.	160.	0.00	54.25	0.00

	. PL	AH 1	STATION	9 Di	AMAGE CENTER
	RATIO	HAXINUM FLOW, CFS	HAXIMUH STAGE,FT	HOURS	
	1.00	11961. 7311.	640.5 639.7	43.75 44.75	
	.50 .35 .25	4458. 2264.	637.6	45.25	
0	.15	939. 587.	636.0 635.6 633.1	49.00 50.50 54.50	

7	FLOOD HYDRO	STAPH PACKAG											
	DAM SAFETY		JULY 1										
		FICATION 21			•			-				-	
\$		*****											
	1	A1			L	KE CAREY							
	2	A2				WILL B							
	3	A3	700		45	GF						^	
		B	300	0	15	0	0	0	0	0	-4	0	
1	2	B1	5 2	1	1								
	7	J1	.50										
	8	K	0						1				-
	9	K1			RUNOFF	INTO STE	VENS LAKE	-MUD PO	D				
	10	H	1	1			7.0				1		
	11	P		21.3	118	127	136	142	145				
	12	Ţ							1.0	•05		.057	
_	13	"	1.45	.62									
	14	X	2.55	05	2.0								
	15	K	1	1		ANC OURIN	THE		1				
	16	K1	***	KUUTE	I HKUUGH L	AKE SUEV							
	17 18	Y1	1			1	1		-1054	1			
	19	\$A	.01	46.4	62	122	135.6						
	20	\$E	1017	1049	1054	1060	1080						-
	21	55	1054	51.9	3.1	1.5							
)	22	\$R	0	10	0								
	23	\$F	1	0	5	1048.7	51.9	0	1	1059			
	24		048.7	1049.0	1068								
	25	SW en	1050	3 7	99999	(10							
	26 27	\$D \$B	1059	2.7	1.5	148	1054	1070					
	28	\$B	50	i	1048.7	1.0	1054	1070					
	- 29	- K	-1						1				
	30	K1		ROUTE (OUTFLOW L	AKE STEV	ENS TO UP	PER LAKE	CAREY(S	ECT.1)			
	31	Y				1	1						
	32	Y1	1										_
	33	Y6	.07	.05	.07	1030	1100	2400	.02				
	34	¥7	0	1100	370	1060	600	1040	700	1030	710	1030	
	35	77	750	1040	850	1080	1050	1100					
	36 37	K1	1	OUTE OUT	מד עת ופו	UPPER POI	ID /CEPT	2)	1				
	38			0012 00	TEUM 10	OFFER POI	T (SECT.						
	39	Y1	1			•							
	40	Y6	.07	.05	.07	968	1000	2400	.022				
	41	- 77	0	1000	150	780	250	973	255	968	265	968	-
1	42	17	270	973	600	980	1320	1000					
	43	K	0	2					1				
	44	K1				RUNOFF		CAREY	IPPER PON	D			_
	45	H	1	1			7.0				1		
	46	P		21.3	118	127	13,6	142	145				
	47	I	2.62	.62					1.0	.05		.067	
)	49	ÿ	6.6	05									
	50	- r	2	2					1				
		N	-	-									

ALL STATE OF THE S

	<u>1</u> 51	K1		COMBINE	OUTFLOW I	LAKE STE	JENS AND	INFLOW U		E CAREY		
	52	K	1						1			
	53	K1	R	CUTE THR	JUGH UPPI		CARET 1					
	54	Y				1	•		-947			
	55	Y1	1	292 N	100	751			-74/			
	56	\$A	.01 889.3	171.2 944.2	189 947	251 960						
	57			15.9	.001	1.5	947	1	34	.733		
	58	\$5				500				.,33		
	59	\$B	752.6	3.1	1.5 944.2	.1.	947	954.5				
	60	\$B	50	i	944.2	.1	947	954.5				
	61	K	- 0	3	77712		747	70410	1			
	62 63	K1	U		NIED IN	FLOW INTO	LOWER	OND				
	64	H	1		0.9	200 200	7.0				1	
-				21.3	118	127	- 136	- 142	145			
1	65 66	T		21.3	110	121	100	-12	1.0	.05		.13
1	67	ų	.89	.62								
	68	<u> </u>	1.35	05	2.0							
	69	ĥ	2	3					1			
	70	K1			E FLOWS	TO LOWER	POND					
	71	K	1						- 1			
1	72	K1			HROUGH L	OWER PON	0					
	73	Y				1	1					
	74		1						-947	-1		
	75		946.9	947	947.7	948.4	949.2	949.6	950	950.3	951	951.6
	76	- Y4		952.3	957.8	964.7						
	77	Y5		.1	29	71	136	174	228	276	426	598
	78	Y5		801	3074	7101						
	79	\$A		.02	73	88.7	135					
	80		937.6	941	947	950.7	960					
	81	55										
	82		950.7	2.7	1.5	90						
	83	\$B		-1	937.6	.1	947	953.7				
7	84	\$B		1	937.6	.1	947	953.7				
-	85	K	1	4					1			
	86	K1		ROUTE T	HROUGH D	DUNSTREA	H SECTIO	N				
	87	Y				1	1					
	88	Y1										
	89	Y6		05	.07	720	760	900	-7066			
	90	Y7		960	420	940	550	930	560	920	600	920
	91	17		930	700	940	800	960				
	92	K	1	5								
	93	Ÿ				1	1					
	94	Y1	1									
1	95	Y6		.06	.09	840	880	600	.133			**
1	96	Y7		880	100	860	200	850	201	840	216	840
	97	Y7		850	280	860	1000	880				
	98	K	1	6								
	99	Y				1	1					
	77					•						

1 101	46	.09	.05	.09	758	840	2450	.024			
102	Y7	0	840	450	800	660	760	665	758	675	758
103	¥7	720	760	850	800	950	840				
104	K	- 1	7								
105	Y				1	1					
106	Y1	1									
107	76	.07	.05	.07	718	800	2250	.018		-	
108	Y7	0	800	280	740	420	720	430	718	450	718
109	Y7	500	720	560	740	740	800				
110	K	1	8								
111	Y				1	1					
112	Y1	1						·			
. 113 114	Y7	.07	800	.07	700	750	3300	-012	679	7/5	679
				450			680	755	0/7	765	6/4
115	Y7	780	680	850	700	1380	800				
116	K	DOUTE	TO DOUM	CTDEAN M	0 /04	MACE CEN	TED	1			
117 118	K1 Y	KUUIE	IO DOWN	STREAM NO			IEN)				
	1				1	1					
	ve										
119	Y1	1		AF	470	700	7150	A17			•
119 120	Y6	.05	.04	.05	632	700	3150	.013	/70	2/4	
119 120 121	Y6 Y7	.05	700	450	640	840	637	.013 845	632	860	632
119 120 121 122	Y6 Y7 	.05 0 865							632	860	632
119 120 121 122 123	Y6 Y7	.05	700 637	450 1070	640	840 1600	637 700	845		860	632
119 120 121 122	Y6 Y7 	.05 0 865	700 637	450	640	840 1600	637 700	845		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE	640 640 ENCE OF	840 1600 STREAM N	637 700 ETWORK C	845 ALCULATIO		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE	640 640 ENCE OF	840 1600 STREAM N	637 700 ETWORK C	845 ALCULATIO		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE RUNOFF I ROUTE HY	640 640 ENCE OF EYDROGRAP	840 1600 STREAM N PH AT H TO	637 700 ETWORK C	845 ALCULATIO		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE RUNOFF H ROUTE HY	640 640 ENCE OF HYDROGRAPI (DROGRAPI	840 1600 STREAM N PH AT H TO	637 700 ETWORK C	845 ALCULATIO		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE RUNOFF H ROUTE HY ROUTE HY	640 640 ENCE OF EYDROGRAPI (DROGRAPI (DROGRAPI (DROGRAPI	840 1600 STREAM N PH AT H TO H TO H TO	637 700 ETWORK C	845 ALCULATIO		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE RUNOFF H ROUTE HY ROUTE HY RUNOFF H	640 640 ENCE OF IYDROGRAPI IDROGRAPI IYDROGRAPI IYDROGRAPI	840 1600 STREAM N PH AT H TO H TO H TO PH AT	637 700 ETWORK C	845 CALCULATION 1 1 1 1 2		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	A50 1070 OF SEQUE RUNOFF H ROUTE HY ROUTE HY RUNOFF H COMBINE	640 640 ENCE OF HYDROGRAP (DROGRAP) (DROGRAP) HYDROGRAP 14 DROGRAP 14 DROGRAP	840 1600 STREAM N PH AT H TO H TO H TO PH AT DGRAPHS	637 700 ETWORK C	845 ALCULATIO		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE RUNOFF H ROUTE HY ROUTE HY RUNOFF H	640 640 ENCE OF STUDROGRAPI (DROGRAPI (DROGRAPI STUDROGRAPI (DROGRAPI (DROGRAPI	840 1600 STREAM N PH AT H TO H TO PH AT DGRAPHS H TO	637 700 ETWORK C	845 CALCULATION 1 1 1 1 2		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE RUNOFF H ROUTE HY ROUTE HY RUNOFF H COMBINE ROUTE HY RUNOFF H	640 640 ENCE OF EYDROGRAPI (DROGRAPI (DROGRAPI (YDROGRAPI (YDROGRAPI (YDROGRAPI	840 1600 STREAM N PH AT H TO H TO PH AT OGRAPHS H TO PH AT	637 700 ETWORK C	845 ALCULATIO 1 1 1 2 2 2 3		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE RUNOFF H ROUTE HY ROUTE HY RUNOFF H COMBINE ROUTE HY	640 640 ENCE OF ENCE OF ENCOGRAPI (DROGRAPI (D	840 1600 STREAM N PH AT H TO H TO PH AT OGRAPHS H TO PH AT OGRAPHS	637 700 ETWORK C	845 ALCULATIO 1 1 1 2 2 2		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	450 1070 OF SEQUE RUNOFF H ROUTE HY ROUTE HY RUNOFF H COMBINE ROUTE HY RUNOFF H COMBINE	640 640 640 640 6HOE OF MYDROGRAPH	840 1600 STREAM N PH AT H TO H TO PH AT OGRAPHS H TO PH AT OGRAPHS H TO	637 700 ETWORK C	845 ALCULATIO 1 1 1 2 2 2 3 3		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	A50 1070 OF SEQUE RUNOFF H ROUTE HY ROUTE HY RUNOFF H COMBINE ROUTE HY RUNOFF H COMBINE ROUTE HY RUNOFF H COMBINE ROUTE HY	640 640 640 ENCE OF ENCO OF ENCO OF ENCO OF ENCO OF EN	840 1600 STREAM N PH AT H TO H TO PH AT OGRAPHS H TO H TO H TO	637 700 ETWORK C	845 ALCULATIO 1 1 1 2 2 2 3 3		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	A50 1070 OF SEQUE RUNOFF H ROUTE HY RUNOFF H COMBINE ROUTE HY RUNOFF H COMBINE ROUTE HY ROUTE HY ROUTE HY ROUTE HY	640 640 640 640 6HOE OF HYDROGRAPHYDROG	840 1600 STREAM N PH AT H TO H TO PH AT OGRAPHS H TO PH AT OGRAPHS H TO H TO H TO H TO	637 700 ETWORK C	845 ALCULATIO		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	A50 1070 OF SEQUE RUNOFF H ROUTE HY ROUTE HY RUNOFF H COMBINE ROUTE HY RUNOFF H COMBINE ROUTE HY ROUTE HY ROUTE HY ROUTE HY ROUTE HY	640 640 640 ENCE OF EN	840 1600 STREAM N PH AT H TO H TO PH AT OGRAPHS H TO PH AT OGRAPHS H TO H TO H TO H TO H TO	637 700 ETWORK C	845 ALCULATIO		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	RUNOFF H ROUTE HY	640 640 640 6HCE OF MYDROGRAPI MY	840 1600 STREAM N PH AT H TO H TO H TO PH AT OGRAPHS H TO	637 700 ETWORK C	845 ALCULATIO 1 1 1 2 2 3 3 4 5 6		860	632
119 120 121 122 123	Y6 Y7 	.05 0 865	700 637	RUNOFF H ROUTE HY	640 640 640 640 6HCE OF MYDROGRAPI MYDROGRAP	840 1600 STREAM N PH AT H TO H TO H TO PH AT DGRAPHS H TO PH AT DGRAPHS H TO H TO H TO H TO H TO H TO	637 700 ETWORK C	845 ALCULATIO 1 1 1 2 2 3 3 4 5 6 7		860	632

GANNETT FLEMING CORDDRY AND CARPENTER INC HARRISBURG PA F/G 13/2
NATIONAL DAM INSPECTION PROGRAM. LAKE CAREY DAM (NDI-PA-00887) --ETC(U)
JAN 79
DACW31-79-C-0015 AD-A070 716 UNCLASSIFIED NL 2 OF 2 AD 4070716 END DATE 8 -- 79 DDC

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION S	TATION	AREA	PLAN	RATIO 1	RATIOS APPLIED TO FLOWS
				.50	
HYDROGRAPH AT	1	1.70	1	2557.	
	- (4.40)	(
			2	2557.	
			7	72.40)(
ROUTED TO	1	1.70	1	1578.	
		4.40)			
			2	1578.	
			' (44.69)(
ROUTED TO	1	1.70	1	1577.	
	• (4.40)	•		
				1577.	
			(
ROUTED TO	1,	1.70	1	1577.	
	(4.40)	(11.1	
			2	1577. 44.65)(
				111007	
HYDROGRAPH AT	2	4.40	1	4892.	
	- 1	11.40)		138.52)(
			2,	4892. 138.52)(
				130+32/(
2 COMBINED	2	6.10	1	6418.	
	(15.80)	(181.74)(
	•		7	6418.	
			•	181.74)(
ROUTED TO	2	6.10		4975.	
	-(15.80)		140.89)(
			2	4976.	
		·· - ··· - -	1	140.89)(· · · · · · · · · · · · · · · · · · ·
HYDROGRAPH AT	3	.90	1	1716.	•
manunnin ni		2.33)		48.61)(•
		21007	2	1716.	
			-(48.61)(
2 COMPTHED	,	7.00		F170	
2 COMBINED	3	7.00	1,	5138.	
		18.13)	(145.49)(8 (2.2)
			2	145.49)(

	ROUTED TO	3	7.00	1	12483.						
		(1	8.13)	(353.47)(
				2,	9244. 261.76)(
				(201./0/(
	ROUTED TO	4	7.00	1	11958.						
		(1	8.13)	(338.62)(
				2,	8880. 251.47)(
					23114//1						
	ROUTED TO	5	7.00	1	11473.						
		(1	8.13)		324.89)(
				2	8640. 244.65)(
	ROUTED TO	6,	7.00	1,	12322. 348.91)(
		(1	(8.13)	2	9325.						
					264.06)(
					40470						
	ROUTED TO	7,	7.00 (8.13)	` 1,	12479. 353.37)(
			10.13/	2	9343.						
				(264.57)(
	SOUTED TO		7 00		11050						
	ROUTED TO	8 (1	7.00 (8.13)	1,	11052. 312.96)(
				2	8375.						
				(237.16)(
	ROUTED TO		7.00		11085.						
	NOOTES TO		18.13)	(313.91)(
				2	8618.						
				•	244.03)(
-											
										LAK	E
	PLAN 2						SPILLWAY CRE		OF DAN	CAR	
				EVATION ORAGE		7.00 149.	947.00		950.70 447.	Low	
				TFLOW		0.	0.		362.	Por	10
		RATIO	MAY	INUH	HUHIXAN	HAXIMUH	HAXIHUH	DURATION	TIME	OF	TIME OF
		OF	RESE	RVOIR	DEPTH	STORAGE	DUTFLOW	OVER TOP	MAX OUT	FLOW	FAILURE
		PMF	W.S	ELEV	OVER DAN	AC-FT	CFS	HOURS	HOU	RS	HOURS
		.50	95	3.94	3.24	758.	10347.	5.00	43.	35	43.25
		_				PLAN 2	STATION	9,	Ω.	ams	65
									0		ER
					RATIO	HAXINUM FLOW, CFS	STAGE, F	H TIME	Ce	NT	FK
					100170	, , , , , , , , , , , ,	JIMOLII				

1		*********	and the same of th								
		GRAPH PACKAGE (HE									
	DAN SAFETY	VERSION JULY FICATION 21 AUG									

	1	A1		t	AKE CAREY	DAH			5	-	
1	2	A2			MILL E						
	3	A3				CC					
	5	8 300		15	0	0	0	0	0	-4	0
		B1 5		1							
		J150								_	
	8	K C						. 1			
*	9	K1		RUNOFF	INTO STE	VENS LAK	E-MUD PO	100 to 10			
	10	<u> </u>	1	1.7		7.0				1	
	11	P	21.3	118	127	136	142	145			
	12							1.0	.05		.057
	14	W 1.45 X 2.55									
	15	K 1						1			
	16	- Ki			AKE SUEV	ENS					
	17	Y			1	1					
	18	Y1 1						-1054	1		
	19 20	\$A01				135.6					-
	21	\$E 1017 \$\$ 1054			1060	1080					
	- 22	- 3R 0	10	3.1	1.5						
	23	\$F 1			1048.7	51.9	0	1	1059		
	24	\$T1048.7							1007		
	25	- W 0		79999							
	26	\$D 1059			148						
	27	\$8 50	MANAGE PARTY		1.0	1054	1070				
	28 29	\$B 50 K 1		1048.7	1.0	1054	1070				
	30	K1 ·		OUTFL ON !	AKE STEV	NS TO I	PPER I AKI	F CAPEY/S	ECT.11		
	31					- 10 UI	TEN EMAI	- CHILETTS			
	32	Y1 1									
	33	Y6 .07		.07	1030	1100	2400	.02			
	34 35	77 0 17 750	T100	370	1060	600	1040	700	1030	710	1030
	36	Y7 750 K 1	1040	850	1080	1050	1100				
	37				UPPER PO	in Terry	9)	1			
	38			10	1	1					
	39	Y1 1									
	40	Y6 .07		.07	968	1000	2400	.022			
	41	Y7 0		150	980	250	973	255	968	265	968
	42	Y7 270	973	600	980	1320	1000				
	44	Ř1	mico	NTROLLED	RUNOFF 1	NTO LAKE	CAREY II	PPED DOM	n		
	45	H 1	1	4.4		7.0	. VIMEI (TILK FUR		1	
	46	7	21.3	118	127	136	142	145			
	47	Ţ						1.0	.05		.067
	48	W 2.62	.62								
1	50	7 -6.6	05	2.0					***		

1 51	K1	COMBINE	OUTFLOW	LAKE STE	VENS AND	INFLOW (PPER LA	KE CAREY		
52 53	K 1	ROUTE THR	OHEN TIES	ED I AVE	CADEY		1			
54	Y Y	KUUIE INK	UUUN UPP		LAKET 1					
55	Y1 -1		_	1			-947		-	
56	\$A .01		189	251			-74/			
57	€ 889.3		947	960						
58	38 947		001	1.5	747		34	777		
59	\$D 952.6		1.5	500	74/		34	.733		
60	\$B 100		944.2	.1	947	954.0				
	- 18 50		944.2	:1-		754.0				
62	K 0		744.2	•1	74/	734.0	1			
63	K1		OLLED IN	FLOW INT	D LOWER	POND				
64	- н - 1		0.9		7.0					
65	P	21.3	118	127	136	142	145			
66	T						1.0	.05		.13
67	W89	62								-
68	X 1.35		2.0							
69	K 2						1			
70	K1		E FLOWS	TO LOWER	PUND					
71	K 1						1	•		
72	K1	ROUTE T	HROUGH L	OWER PON	D					
	y			-1			043			
74	Y1 1				-		-947	-1		
75	Y4 946.9		947.7	948.4	949.2	949.6	950	950.3	951	951.6
76 77	Y4 952 Y5 0		957.8	964.7 71	136	174	228	276	426	598
78	Y5 715				130	1/4	220	2/0	420	370
			3074	7101	135					
80	₩ .01 ₩ 937.6	941	73	950.7	960					
81	88 947		77/	75017	700					
82	\$9 950.7			- 00						
83	\$B 50		937.6	90 •1	947	953.7				
84	\$B 25		937.6	.1	947	953.7				
	K1		73/10		77/	733.7				
86	K1 1		HROUGH D	OUNSTREA	N SECTIO	u	•			
87	Ÿ	MOOIL I		1	1					
88	i n									
89	Y6 .07		.07	920	960	900	.066			
90	Y7 0		420	940	550	930	560	920	600	920
			700	940	800	750	JOV			720
92	-17 610 K 1	730	/00	740	900	700				
93	· ·			1	. 1					
94										
95	Y6 .09		.09	840	880	600	.133			
96	Y7 0		100	860	200	850	201	840	216	840
	Y7 217	850	280	860	-1000		201		- 210	640
98	K 1	A	200	300	7000	300				
99	Ÿ			1	1					
100										

-	1 101	.,	40		••	300			•••				
	1 101	Y6	.09	.05	.09	758	840	2450	.024				
_	102	¥7	0	840	450	800	660	760	665	758	675	758	
	103	- 77 K	720	760	850	800	950	840					
L	105	Ŷ		,									
_	106					1	1						
	107	Y1 Y6	.07	.05	.07	718	800	2250	.018				
	108	¥7	0	800	280	740	420		430	740	454	740	
	109		500			740	740	720	430	718	450	718	
1	110	K	1	720	560	/40	/40	600					
	111	Ŷ		•		1	1						
_	112	- Y1											_
	113	Y6	.07	.05	.07	679	800	3300	.012				
	114	17	0	800	450	700	750	680	755	679	765	679	
_		77	780	680	850	700	1380	800	733	0/1	/03	0/1	
i	116	K	1	9	650	700	1300	900	1				
	117	K1			NETDEAN	NO. 9 (BA	MAGE CEN	TED)					
_	118			10 500	MO INCIMI	1	T T	TER!					
	119	Y1	1										
	120	76	.05	.04	.05	632	700	3150	.013				
_		17		700	450	-640	840 -	637 -	845	632	860	632	
0	122	17	865	637	1070	640	1600	700	010	002	000	002	
V.	123	K	99										
-				PREVIE	UF SER	UENCE UF	STREAM R	ETWORK T	ALCULATI	ONS			
					RUNOFF	HYDROGRA	PH AT		1				
					ROUTE	HYTRUBRAP	N TO		1	· · - · · -			
					ROUTE	HYDROGRAP	H TO		1				
					ROUTE	HYDROGRAP	H TO		1				
					RUNUFF	HYDRUGRA	PH AT		2				
						E 2 HYDR		AT	2				
					ROUTE	HYDROGRAP	H TO		2				
						HYDROGRA			3				
						E 2 HYDR		AT	3				
					ROUTE	HYDROGRAP	H TO		3				
						HYDRUGRAP			4				
						HYDROGRAP			5				
						HYDROGRAP			6				
Г						HYDROGRAP			7	-			
1						HYDROGRAP			8				
						HYDROGRAP	H TO		9				
					END OF	METWORK							

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECOMOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIO 1 .50	RATIOS APPLIED TO FLOWS
HYDROGRAPH AT	1	1.70	1	2557.	
		4.40)		72.40)1	
			2	2557.	
			(72.40)(
ROUTED TO	1	1.70	1	1578.	
	(4.40)	(
			2	1578.	
			_	44.69)(
ROUTED TO		1.70	1	1577.	
	(4.40)			
			2	1577.	
				** 44.65)(
ROUTED TO	1	1.70	1	1577.	
	7	4.40)		44.65)(
			2	1577.	
				44.65)(
HYDROGRAPH AT	2	4.40	1	4892.	
	(11.40)			
			7		
				138.52)(
2 COMBINED	2	6.10	1	- 6418	····· · ·
	(15.80)		181.74)(
			2		
				181.74)(
ROUTED TO	2	6.10	i	12097	
	1	15.80)		- 342.561(······
				8707.	
				246.56)(
HYDROGRAPH AT	3	.90	1	1716.	
	(2.33)	(48.61)(
			5	-1716.	
2 COMBINED	3 -	7.00		12453.	
- COMPARED	,	7.00 18.13)			
			2	9063.	
	• • • • • • •		7	256.63)(

	ROUTED TO	3	7.00	1	15958.		
-	KOUIED IU		18.13)	,	451.88)(
			101107	2	10929.		
					309.47)(
					42200	- · · · · - · · ·	
	ROUTED TO		7.00	1	15390.		
<u> </u>		(18.13)	(435.79)(
				2,	10543.		
				• (298.54)(
	ROUTED TO		7.00	1		· · · · · · · ·	
		(18.13)	(420.93)(
				2	10657.		
					301.76)(
	ROUTED TO	6	7.00	1	16281.		
			18.13)	- 7	461.04)(
				2	11449.		
				(324.21)(
	ROUTED TO	7	7.00	1	16631.		
		(18.13)		470.93)(
- 1			-	2	11388.		
				-(322.48)(
	ROUTED TO	8	7.00	1	14651.		
	MOUTED TO	ໍ,	18.13)	1,	414.87)(
			101107	2	10361.		
					293.39)(
					2/3/0//1		
	ROUTED TO	9	7.00	1	14835.		
		7	18.13)	7	420.09)7		
				2	10568.		
				(299.25)(

	PLAN	2	ELEVATION STORAGE	INITIAL 947		947.00 3661.		952.60 4791.	LA		
			OUTFLOW		Ö.	0.		964.	UPF		
		RATIO OF PMF	NAXINUN RESERVOIR N.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXINUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME HAX DUT	DF T	TIME OF	
1		.50	954.08	1.48	5114.	9360.	3.00	HOUR		HOURS 43.00	
-	PLAN	2	ELEVATION	INITIAL 947	VALUE	SPILLWAY CRE	ST TO	P OF BAN 950.70	LAN		
			STORAGE OUTFLOW	STORAGE 149.		149.		447. LC		ONER	
		RATIO OF	NAXINUM RESERVOIR	MAXIMUM DEPTH	MAXINUM STORAGE	NAXINUH OUTFLOW	DURATION OVER TOP	TIME MAX OUT		TIME OF	
		PHF •50	954.47	OVER DAN	AC-FT 814.	CFS 11595.	HOURS -		RS -	HOURS 43.25	
						STATION	, -		nase		
				RATIO	MAXIMUM FLUNICFS		TIME HOURS		ITER		
				.50	10568.	640.2	44.00				

SUSQUEHANNA RIVER BASIN MILL BROOK, WYOMING COUNTY PENNSYLVANIA

LAKE CAREY DAM

NDI ID No. PA-00887 DER ID No. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

JANUARY 1979

APPENDIX D
PHOTOGRAPHS

A. Roadway Separating the Lake Upper Pond at Left.

B. Bridge Between Upper and Lower Pond - Looking Upstream.

C. Upstream Slope of Embankment, Spillway Approach, and Auxiliary Spillway Approach.

D. Spillway Left Approach Wall.

E. Spillway Left Wall.

F. Auxiliary Spillway Channel.

G. Downstream Face of Dam.

H. Downstream Face of Dam to Left of Spillway.

I. Channel Downstream of Dam.

J. Stevens Lake - Upstream of Lake Carey Dam.

SUSQUEHANNA RIVER BASIN

MILL BROOK, WYOMING COUNTY

PENNSYLVANIA

LAKE CAREY DAM

NDI ID No. PA-00887 DER ID No. 66-06

LAKE CAREY WELFARE ASSOCIATION, INC.

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

JANUARY 1979

APPENDIX E

GEOLOGY

Lake Carey Dam

APPENDIX E

GEOLOGY

- 1. General Geology. The damsite and reservoir are located in Wyoming County. In general, the rocks of Wyoming County are practically horizontal, as there are no major folds. There are a number of minor anticlines and synclines, most of which trend in a northeasterly direction. At the northwest corner of the county, the Wilmot anticline crosses the North Branch of Susquehanna River at Skinners Eddy, bringing up the top strata of the Chemung formation. The axis trends about N 65 E and the dips on both sides are very gentle, not exceeding 5 to 6. The adjacent axis of the Bernice syncline passes across the top of Dutch Mountain in North Branch Township, forming the Mensopany Coal Basin, and continues as a gentle fold across the county about 8 miles southeast of, and generally parallel to the Wilmot The syncine leaves the county about 2 miles east anticline. of West Nicholson in Nicholson Township. Southeast of the Bernice Sycline, the rocks are nearly horizontal, except for minor undulations, as far as the eastwood extension of the White Deer anticline beyond the southeast corner of the county. The Pottsville formation, Mauch Chunk shale and Pocono sandstone crop out only on the summits of the high mountains in the southwest corner of Wyoming County. The Pocono extends as far east as Tunkhannock. The greater part of the county is underlain by rocks belonging to the Catskill continental group.
- 2. Site Geology. Lake Carey Dam is founded in nearly horizontal, hard, "slaty", yellow sandstone and hard sandy shales of the Catskill group in an area immediately southeast of the Bernice syncline. The natural lake portion of the reservoir was apparently formed in a natural depression in the area between the Wilmot anticline and the Bernice syncline and is largely fed by springs. Apparently flow from the natural lake cut a vee gorge channel through the sandstorm strata as an outlet to Tunkhannock Creek. The dam was constructed across this channel, downstream of the natural lake, in order to raise the water level and increase the storage capacity of the lake. Some water leakage apparently occurs from the reservoir by way of the "slaty", horizontal stratifications in the sandstone and sandy shale sidewalls of the gorge.

Chemung formation, Portage group, Hamilton formation, Marcellus shale and Onondaga formation

IX Catskill continental group

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM LAKE CAREY DAM LAKE CAREY WELFARE ASSOCIATION

GEOLOGIC MAP

JANUARY 1979

PLATE E-