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Summary. Discrete-Time Spectral Estimation of Continuous-Time Processes -

The Orthogonal Series Method.

Let {X(t),-¢<t<w} be a stationary time series with spectral density func-
tion ¢(1). Let {tn} be a stationary Poisson point process on the real line.
The existence of consistent estimates of ¢()\) based on the discrete-time obser-
vations {X(tn)}ﬁ=], when the actual sampling times are not known, has been an
open question (Beutler (1970)). Using an orthogonal series method, a class of
spectra{ estimates is considered and its uniform and integratedly uniform con-
sistency in quadratic mean is established. Rates of convergence are estab-
lished and are compared with the optimal rates of the available (Brillinger -~ -
(1972), Masry (1978)) kernel-type estimates based on the observations
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1. Introduction. There is an extensive literature on the subject of
spectral estimation of continuous and discrete parameters time series. Here
we are concerned with the estimation of the spectral density function ¢()) of
a time series X = {X(t),-o<t<»} based on the discrete-time observations
{X(tn),tn}. where the sampling process {tn} constitutes a stationary point
process on the real line. Brillinger (1972), in his fundamental work on the
spectral analysis of stationary interval functions, discussed the consistency
and asymptotic normality as T+« of kernel-type spectral estimates ¢T(A) based

on the modified periodogram

(1.1) 10 = 2o le ey’ - [T x(t)aN(t)}

where N(t) = N((0,t]) is the counting process associated with {t }. Considering
¢T(A) as an estimate based on discrete-time observations, it clearly

employs a random sample size N(T). Assuming a deterministic sample size N,
kernel-type spectral estimates wN(A) based on the observations {X(t )s tn}=_].
where N is a positive integer and {tn} is a stationary Poisson point process,
have been considered by Masry (1978) where their pointwise consistency in qua-

dratic mean as N+« is derived; @N(A) is based on the modified periodogram

N N
(1.2) ) = {| I e Tyt )| on x(t,)} -
n=

For a Poisson sampling process {tn}’ the second order statistics of JN(A) and
IT(A) are distinct but the second order statistics of the corresponding kernel-

type estimates @N(A) and ¢T(A) are virtually identical, as shown in [5].

The above estimates require the knowledge of the actual values of the

sampling instants {t } ] (to evaluate e‘t“A) in addition to the data sequence

- —
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{x(t")}:EI. This paper investigates the estimation of ¢(A) on the basis of
N

the data sequence {x(tn)}"=,

are not known. (Such a situation may arise in randomly-sampled data systems

alone, i.e., when the actual sampling instants

where the actual sampling times are not transmitted. See also Gaster and Roberts
(1975) for examples in fluid mechanics.) Clearly, the periodogram approach (1.1)-
(1.2) is no longer applicable. In fact, the existence of consistent estimates of
¢(1) under these circumstances has been an open question as noted in Beutler
(1970). This paper resolves this question when the sampling process {tJ is Poisson:
By employing an orthogonal series method, a class of spectral estimates SN(A) is
introduced and its uniform consistency and integrated uniform consistency in
quadratic mean is established. The approach is similar to the one used by Cencov
(1962), Schwartz (1967), Watson (1969) and Rosenblatt (1971) for probability
density estimation. However, unlike these works, the complete orthogonal set

in L2 used for the representation of ¢(A), cannot be arbitrary and is, in fact,

generated by the statistics of the sampling process {tn}.

In Section 2, the series representation for ¢(A) is introduced and some
preliminary results are given. Conditions for the consistency of ;N(A) and
bounds on the two types of errors are established in Section 3. These results
are compared in Section 4 with the optimal convergence properties of the estimates
based on the periodogram (1.1) or (1.2). The comparison indicates that the ortho-
gonal series estimate ;N(A) has appreciably slower rates of convergence. The
proofs are collected in Section 5. The question of whether these rates are the

best possible remains open.

2. Preliminaries. Throughout this paper, X = {X(t),-e<t<=} is a real

stationary measurable fourth order process with mean zero, continuous covariance

function C(t)€ Ly spectral density ¢(A) = (Zn)']f°° C(t) exp[-itA]dt and fourth

order cumulant function Q<"1’“2’"3')' The sampling process {tn} is assumed to




be a stationary Poisson point process on [0,»), independent of X, with known
mean intensity g, i.e., t; =0 a.s., t =t ,
are independent identically distributed random variables with exponential dis-

tribution F(x) = [1 - exp(-8x)].

+ Tn. n=1,2,..., where the Tn's

The basic idea of the paper is to employ an appropriate orthogonal series

representation for ¢(A) whose coefficients can be estimated from the data se-
quence {X(tn)}:=] alone. Note that if (U (J\)}°° is an arbitrary complete
orthonormal set in L,(-=,=), then ¢(1) = X b, U (1) in Ly, b, fab(k) U (A)dx
and, as in probability density estimation by orthogona] series [3][9][12], one
could estimate b by b (N) = (1/8) f"JN(x) u (A)dx, where JIy(X) is given in (1.2).
Then

by () :

j#k

N & :
(1/2ngN) ] E x(tj)x(tk) un(tj-tk

f” exp[ita] U, (A)dx.  Thus, Bn(N) requires the know-

where u_ (t)

ledge of the sampling instants {tn}"=

{X(tk)}k=]. Hence, the basis {U (1)} cannot be arbitrary for our purposes.

1 in addition to the data sequence

Next we note (Shapiro and Silverman (1960))that the discrete-parameter process

{X(t, )} has mean zero and covariance sequence {ca}

1) ey = EX( X)) = [T (t)de, 0 =12,

where f (t) = B[(Bt)"']/(n-l)!] exp(-t), n.=1,2,... . The set {f,(t)} is

complete in Lz(o,w) and its orthonormalization yields

(2.2) g,(t) = )%E'Ln_](ZBt) e Bt ][O.w)(t)’ n=1,2,...,

n
where L (t) is the nh Laguerre polynomial. Note that [10] g,(t) = kf1 ®n,k i (t)
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where

(2.3) o, , =278 (-2 (&)

Since C(t)€ LZ(-w.w). we have the L, expansion C(t) = J a gn(|t|) where
n=1

n
(2.4) a, = g"C(t)gn(t)dt = {] On.k %k -

k=
Hence

(2.5) () = n:f] a6 (1)

in L,(-=,=) where, by direct Fourier transform of (2.2),

(26) 6,0\ = o [T g (jt])ae - - 2B cos[(2n-1)tan ' (/B)) - g5, .
" ViZi?

{Gn“)}:-l is complete and orthogonal in L,(-=,») with respect to

even functions on (-=,»). The series expansion (2.5) has been considered by

Shapiro and Silverman (1960) in connection with a concept of "alias-free" samp-

ling.

The approach: Given the data sequence {X(tn)}:=] estimate Ch by

1 N-n
N kzl x(tk+n)x(tk)' 1<n<N

(2.7) ¢ (N) =
0 s N=n

Then, via (2.4), estimate the expansion coefficient a, by

S n -
(2.8) an(N) t kz] el’l,k ck(N) ’

and finally, estimate ¢()\) by ;

2:9) B2 = T 10 3,8 6,0)
n’

where {yn(N)}is an appropriate averaging sequence to be specified below.




SRR

A bound on the rate of decay of {aJ is needed and is given below;

AC"[0,») denotes the set of functions which are r-times absolutely continuous

on [0,=).

LEMMA 2.1.  For t = 0, let C(t) € AC""'[0,) such that

(2100 "2 cK)(t) € 1,(0,0) for k = 0,1,...,r.

Then for n = 1,2,...

la,| < Ay(r) 0”772

where

1 r/2 t/2 d" -t/2 .
Ai(r) = — ||t/ %e™® = [C(t/2B)e”'“] o) *
v 4 dt" HLZ(O’ )

REMARK.  The hypothesis of Lemma 2.1 does not require the differentiability
of C(t) at the origin. Thus, the spectral moments of ¢(A) need not exist. For
example, C(t) = e'Itl satisfies the hypothesis of Lemma 2.1 for every integer r = 1.
Similarly, if ¢(A) is a rational function in A, then Lemma 2.1 holds for every

integer r 2 1.

In investigating the convergence in quadratic mean of the estimate (2.9 )

for a fixed A, the pointwise convergence of the L2 expansion (2.5) is needed.

We have

LEMMA 2.2. Assume C(t) satisfies the hypothesis of Lemma 2.1 for some
r>2. Then

(2.11)  ¢(r) = nzl anGn(A)

uniformly on (-w,»),.
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3. Consistency and rates of convergence. We first consider the consistency

of the estimates En(N) and 3n(N). The following assumption is needed.
ASSUMPTION 3.1. The process X satisfies
(i) tc(t) € LZ(-O.Q)
(i) IQ(u],uZ.ua)l s h(u].uz.u3)

where h is even and nonincreasing on [0,») in each variable such that

[° h(0,u,0)du < .

THEOREM 3.1. Under Assumption 3.1, the estimate En(N) is consistent in

quadratic mean with
* = n
() Elc, (M1 = (1 - Pe,
(ii) Var[cn(N)]s A2/N
where A2 is a constant independent of n and N.

Before considering the consistency of the estimate ;n(N). we note that the
mapping (2.4) of {c .} to {a } is unbounded in g since £:=] Ok = /278(-1)"!
n-1 : %
but z:=1|en,k| = /2/8 3 '. Thus, since Var[an(N)] = Z:,2=] o0,k On.2
cov[ck(N),cz(N)]. a small variability in the estimate qn(N) is likely to pro-
duce a large variability in the estimate sn(N) for large n. A simulation study

in [4] appears to confirm this observation. We have

THEOREM 3.2.  Under Assumption 3.1 the estimate ;"(N) is consistent in

quadratic mean with
(1) E[ay(N)] =a - (1/N)n a -(n-T)a, ;]

A 32n
(i) Var[an(N)] < A3 w

where A3 = 2A2/9B v
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Consider now the class of spectral estimates aN(A) defined by (2.9 ), where

the averaging sequence {Yn(N)} is of the form

(3.1) vo(N) = h(e®"/N®) , o>n 3, 0<b<yyms

and h(u) is a real even function on the real line satisfying

(i) |n(u)] = h(0) =1 for all u,
(3.2) (i1) |uh(u)| = K] for |u| 21,
(iii) 1-h(u; = Kzlul for all u .

The kernel {Yn(N)} is then of the exponential type as defined by Parzen (1958).
The choice of exponential-type kernel (rather than algebraic) and the conditions

on the parameters a and b are necessitated by the variance expression of ;n(N).

THEOREM 3.3. Assume X satisfies Assumption 3.1 and the hypothesis of

Lemmi 2.1 for some r>1. Then the estimate (2.9 ) is integratedly uniformly

consistent in quadratic mean with

E ["loy() - o) 1% < 8,[1/2n NI™T(140(2))

where
B, = 4 A3(r)(2a/6)""/(r-1) .
Next we havc
THEOREM 3.4.  Assume X satisfies Assumption 3.1 and the hypothesis of

Lemma 2.1 for some r >2. Then the estimate (2.9 ) is uniformly consistent in

quadratic mean with
Eloy() - o(0)[% = B,[1/2n NI™2(140(1))

uniformly in A, where

B, = (32/28)A3(r) (2a/b)"2(r-2)"2

—




4. Discussion. We first establish the optimal convergence properties
of the kernel-type estimate @N(A) based on the periodogram (1.2). GN(A) is
of the form [2][5]

(8.1) G0 = (178) [ WyOow) 9y Ga)d

where NN(A) = My K(MNA), My>= and M,/N~>0 as N+« and the kernel K(A) is a

real even continuously differentiable function on (-«,~) satisfying

i K © '
(i) -wiiﬂw [K(A)]< (i1) _nggm IK'(A)] < =
(4.2) o
(iii) [ |K(A)|dr < = (iv) [ K(\)dr=1 .

Aside from the conditions on the fourth order cumulant Q(u].uz.u3) we have by

(5], Theorems 1 and 3 (or [2], Theorem 4.3), that if tC(t) € L; (-=,) then

ELoy ()] = [ Wy(ewo(u)du + 0(1/N)

~ 2 o
Varyy(A)1 = 2n8(M/N) To(2) + SO (1+sy ) I K1 + o) .

To find the optimal convergence properties of QN(A) we proceed as in Wahba

(1975). Assume that for some integer r=1, K()) satisfies in addition

(v) | KO =0, §=1,...,r0

(4.2)

() | DI o <
and that
(4.3) tC(t) € L (o) .

ool s e e e i e Es' T, oy ;:::; z ;;:;
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Expanding ¢(A+u) in a Taylor series, and using (4.2)(iv)-(vi) in

[ K(-u)o(r+u/My)du, we Find 2[4y (1)] < By M2 (1 + o(1)

where

® 2 o i
et r t|"|c(t)|dt

Thus, ignoring a factor (1 + o(MN/N)) in the variance and (1 + o(1)) in the bias,

we have
(4.4)  Eloy() - 602 5 By M + B, (My/N)

where e
B, = 41r8[£° |C(t)dt + %‘r%)-] /- K2 (u)du .

Then choosing "N = [2rB3/B4]]/(2'+]) N]/(2'+‘) , Which minimizes the right-hand

side of (4.4), we have finally

(4.5)  Elyy(0) - 9(0)|% < B N2/ (@), (g

where

w0 —t2rel ] 2rq1/(2r+1
B = e 27Ty (B 1/ (2

The parameter r of (4.3) and Lemma_2.1 represents a degree of smoothness
of ¢(1). For the same value of r, the hypothesis of Lemma 2.1 is generally
more restrictive then (4.3), even though (4.3) implies (2.10) with k = 0.

For the same value of r, the mean square error of the estimate JN(A) is
o(I/Nzr/(2r+])) whereas‘for the series estimate aN(A) it is
o(1/[2an Nf;z] by Theorem 3.4. Thus, JN(A) has an appreciably higher rate of

convergence--this ‘at the expense of requiring a record of the sampling instants.




Comparison or. the basis of mean integrated square error cannot be made
since the kernel-type estimate (4.1) has not so far been shown to be consis-

tent in this sense (see [2][5]).

The proofs of Theorems 3.3 and 3.4 indicate that the logarithmic conver-
gence rates of the series estimates $N(x) are duc to the exponential growth in
n of var[;n(N)] as given by the bound in Theorem 3.2. The discussion pre-
ceding Theorem 3.2 provides evidence for such a rapid growth. It remains an
open question whether the convergence rates of the series estimate obtained

here are the best possibie.

Finally, we note that when the sampling process {tn} is not necessarily
Poisson but "alias-free" in the sense of [1][10], an orthogonal series estimate
of ¢(1) of the form (2.9 ) can be considered in a similar fashion. However,
the analysis becomes more complex since the basis {gn(t)}:=] is generated by
the statistics of the point process {tn}. (In the Poisson case, we have the

Laguerre functions (2.2), whose properties are well known.)

5. Proofs.

Proof of Lemma 2.1. The following relationship for generalized Laguerre

functions is easily verified.

(5.1) i) = L b V()]
v n-1 dt Y(n+v-T) “n-1 i
By repeated substitution of (5.1) and integration by parts in the integral below,

we have

| A
(5.2) cf)“ clt/28) by (000720t = T etk & [c(t,m)e-t/z]]0+

r A v
b n(nq%ﬂznﬂ-n {) { d:" [c(t/2)e™t/ zl}t"l.,'; a(t)dt.

-y T‘""‘*‘v*‘w T —

Y R ¥ {ix o
AT AR oy RO 3 8
5 2 AL TBh, T S n, .
P 5B b S e S N B TN e M N i B T ey



Each term in the sum vanishes at infinity by the hypothesis of Lemma 2.1.

Finally, by

- 1/2
1E72 100e) 7201 g,y = HORFET

the dominated convergence theorem and the Cauchy-Schwarz inequality

5 1/2 A (r)
la | < Ay(r) [y s n%,— :

Proof of Lemma 2.2, By (2.6) and Lemma 2.1,

|a ||G (A)| = (2/m 8)1/2 |a | < =, Since Gn(x) is continuous, the series
in (2.11) converges uniformly to an even continuous function, say, ¢(A). Since

Z;;]lanlz <o, P(Ar) € Lz(-w,w) by the Riesz-Fischer theorem and hence

[ZLe()-p(0)16 (M)dr = 0, n = 1,2,... . Finally, since {6, ()} _; is com-
plete in L2(-w,w) with respect to even functions, we have ¢(A) = ¥(A) a.e.

and the result follows by the continuity of ¢(A) and y(A).

Proof of Theorem 3.1. (i) is clear. For (ii), we have

~ 4 2 A
Varle, (0] = £ T 500 - E°0c, (0]
where

Tpa(N) = '?'k %_ ELC(tpnti)Clt g -ty )]

=N

Tn.Z(N) & ﬁ? k’EalE[C(tz'tk)c(tz+n'tk+n)]’

N-n
Sk

Tn,aN) = N Z E[Q(tk+n teoty-tioton-t )]

By a bounding argument similar to the one employed in [5]. it can be shown that

PETT T W A bt T e
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W tC(t) € Ly(-=,) then [T, 1(N) - Ez[cn(N)]l s Gl 11 C(t) € L)(-==) then
: A, g iy
ITp, 30| = _le » J= 2 3, and if Q(u].uz.u3) satisfles Asswmption 3.1,

S TP A A

then lT,, 4N = Ay oI\, where m2 o 3 = a3, 4 are constants independent of

n and N. The result (ii) follows.

Proof of Theorem 3.2. (i) By (2.8), Theorem 3.1 and (2.4),
E[a,(N)] = a -(1/N) £k 6, ¢, . Thus the bias b[a (N)] is

(5.3) blap(N)] = ~(1/N) [c(t),()at

where

g, (t) = z k 8, Fi(t) = V2B z L) (ne1)(2pt)k 7B

Using the properties of the Laguerre functions [7,p.299] it can be shown that

qn(t) =n gn(t) - (n-l)gn_](t) and the result follows by (5.3).

/2.2 /2.7

(ii) We have var [a (N)] = Zk 1Ien k|Var

by Theorem 3.1 and z:=llen,k| = /278 3" 1

[ck(N)] and the result follows

,é Proof of Theorem 3.3. We have

B ES” loy() - 6(0) % = [° b2[g (\)1en + [° Var[6, (A)1dr

| : where by Theorem 3.2

* w (N)
(5.4) [: bzH’N(U]‘”‘ %n§1 {ap[1-v, (N)] + - N [n an'("")"’n-l]}2

and

,3. 5.5) [“Var[oy(x)1dr :
i e n
|

2=

YZ(N) var[a_(N)].

[ ]

The truncated sum in (5.5) at M, the integer part of (b/a) %n N, is o(NP),
= 1-(2b/a) 2n 3, by Theorem 3.2 and (3.2i); and by Theorem 3.2 and (3.2i1)

-
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the tail sum is also 0(N'p). In fact,

- Ak 9A
(5.6) rb Var[¢N(A)]d)\ < D]N-p; D] = T%Il_'m + F3 .
«00 mi=-e

Next (5.4) is bounded by (1/t)(S, + S, + s3)2 where

2 < g 2 1 ®
g S alll-y, 3%, $5- E]anl ny2Nya? , S5 = 7 L n%y2, (N)a2 .

n=
S] is the dominant term in the integrated bias, for with M as before, we have
by (3.2i) and (3.2i1) and an argument similar to the one above that

Sﬁ < (1/2)(b/a)2|lCIIL (2n N/N)2(1+o(1)), k = 2,3. Now for any integer m>1, we
have by (3.21),(3.211i§ and Lemma 2.1 that

2
4AZ (r)
2 2 2 2om ,-2b 1 1
S] < (1/2) KZ ||C||L2 e N e . bl -

The optimal m which minimizes the right-hand side is then the solution of a trans-
cendental equation and cannot be found explicitly. However, m is essentially
logarithmic in N and upon choosing m-1 to be the integer part of (b/2a)2n N, we

have

D r-1
2r2 2 2 2a/b
(5.7) [6°[oy(1)]ax < PR (1+0(1)), D, = 4AT(r) 159/

The result follows by (5.6) and (5.7).

Proof of Theorem 3.4 . By Lemma 2.2 and Theorem 3.2, the bias of aN(A) is ;

blay(A)] = - n:f] a,[1-v,, ()16, () -nm)ng] Yo (NIn a -(n-1)a, 116, (2)

and by (2.6) bloy(A)] = (2/1°8)'/2 (2, + Z,) uniformly in A, where 1

2= T lagl-r, W1, g

n=1

Z, =(1/N)n§] nJa [Llv,(N)] + [y, (NID .




R o

Z] is the dominant term in the bias, for with M the integer part of (b/a)n N,
the truncated series at M in Z, is o(2n N/N) by (3.2i) and Lemma 2.1, and the
tail sum is O(N(2&n N)]'r/z) by (3.2iii). Next, for any integer m>1, we have
by (3.2i)(3.2iii) and Lemma 2.1 that

A
Z] 2 Kztl(f‘)r ) N_beum 3 4 l-(-r) 3 m]_('./z) :

and, by an argument similar to the one employed for S% of Theorem 3.3, we find

(5.8) blay(0)] = Dy(en M) BT (140(1)); Dy = 4R, (r) (/) (72D (r-2).

For the variance we have by the Cauchy-Schwarz inequality and (2.6) that
Var[ay()] = (2/%8) [ T v, (W] var'/2[a, 021% .

Again, with M the integer part of (b/a)%n N, the truncated sum at M is

O(N'plz). p=1- %? 2n 3, by Theorem 3.2 and (3.2i); whereas the tail sum is

0(/N) by Theorem 3.2 and (3.2ii). Hence uniformly in A,

(5.9) Var[4,(\)] = o(NP), p = 1 - (2b/a)en 3.

The result follows by (5.8) and (5.9).
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