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Sunina,~y.~ Discrete-Time Spectral Estimation of Continuous-Time Processes -

The Orthogonal Series Method.

Let {X(t), _oo<t<~ } be a stationary time series with spectral density func-

tion •(x). Let {t~} be a stationary Poisson point process on the real line .

The existence of consistent estimates of •(x) based on the discrete-time obser-

vations {X(t~)}~..1~ when the actual sampling times are not known, has been an

open question (Beutler (1970)). Using an orthogonal series method, a class of

spectral estimates is considered and its uniform and integratedly uniform con-

sistency in quadratic mean Is established. Rates of convergence are estab-

lished and are’ compared wi th , the optimal rates of the available (Brillinger

(1972), Masry (1978)) kernel-type estimates based on the observations

{X(tn)~
tn}~=i•
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1. Introduction. There Is an extensive literature on the subject of

spectral estimation of continuous and discrete parameters time series. Here

we are concerned with the estimation of the spectral density function •(x) of

a time series X = {X(t), -co<t< o} based on the discrete-time observations

where the sampling process {t~} constitutes a stationary point

process on the real line. BrIllinger (1972), in his fundamental work on the

spectral analysis of stationary interval functions, discussed the consistency

and asymptotic normality as T-~-co of kernel-type spectral estimates •1(x) based

on the modified periodogram

(1.1) ‘(A) = _i_ {JfTe_1t2’X(t)dN(t)~
2 

- ~T X~(t)dN(t)}

where N(t) = N((O,t]) is the counting process associated with {t~}. Considering

as an estimate based on discrete-time observations, it clearly

employs a random sample size N(T). Assuming a deterministic sample size N,

kernel-type spectral estimates *N(A) based on the observations {X(tn)~
tn}~~j~

where N is a positive integer and 
~~~ 

is a stationary Poisson point process,

have been considered by Masry (1978) where their pointwise consistency in qua-

dratic mean as N-’ is derived; 
~N
(A) is based on the modified perlodogram

(1.2) 
~N
(A) = 

~~ {I,~ ~~~~~~~~ 
- 

n~1 
X2(tn)}

For a Poisson sampling process 
~
t n

} i the second order statistics of JN(A) and

11(A) are distinct but the second order statistics of the corresponding kernel-

type estimates 
~
pN(A) and •7(A) are virtually identical , as shown in [5).

The above estimates require the knowledge of the actual values of the

sampling instants ~~~~~ (to eval uate e
lt
~~) ‘In addition to the data sequence

1
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{X(tn))~a1~ 
This paper investigates the estimation of •(x) on the basis of

the data sequence {X(t~)}~~1 alone, i.e., when the actual sampling instants

are not known. (Such a situation may arise in randomly-sampled data systems

where the actual sampling times are not transmitted. See also Gaster and Roberts

(1975) for examples in fluid mechanics.) Clearly, the periodog.ram approach (l.l)-

(1.2) is no longer appl icable. In fact, the existence of consistent estimates of

•(x) under these circumstances has been an open question as noted in Beutler

(1970). This paper resolves this question when the sampl ing process {t~ is Poisson:

By employing an orthogonal series method, a class of spectral estimates $N (A) is

introduced and its uniform consistency and integrated uniform consistency In

quadratic mean is established. The approach is similar to the one used by ~encov

(1962), Schwartz (1967), Watson (1969) and Rosenblatt (1971) for probability

density estimation. However, unlike these works, the complete orthogonal set

In ‘~2 
used for the representation of •(x), cannot be arbitrary and is, in fact,

generated by the statistics of the sampling process {t~).

In SectIon 2, the series representation for ~(x) is Introduced and some

preliminary results are given. Conditions for the consistency of •N(A) and

bounds on the two types of errors are established in Section 3. These results

are compared in Section 4 with the optimal convergence properties of the estimates

based on the periodogram (1.1) or (1.2). The comparison Indicates that the ortho-

gonal series estimate $N(A) has appreciably slower rates of convergence. The

proofs are collected in Section 5. The question of whether these rates are the

best possible remains open.

2. PrelimInaries. Throughout this paper, X = {X(t), -c~ct c.o} Is a real
stationary measurable fourth order process with mean zero, continuous covarlance

function C(t)E L1, spectral density •(A) = (2,IY
h
J
00 
C(t) exp(-itx)dt and fourth

order cumulant function Q(u1,u2,u3,). The sampling process {t~} is assumed to

2
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be a stationary Poisson point process on [O,~ ), independent of X , wi th known

mean in tensity B, i .e. ,  t0 = 0 a.s., t,,~ = t~_ 1+ T~, n = 1 ,2,..., where the Tn ’s

are independent identically distributed random variables with exponential dis-
tribution F(x) = [1 - exp(-Bx)].

The basic idea of the paper is to employ an appropriate orthogonal series

representation for ~(A ) whose coefficients can be estimated from the data se-
quence {X(t~)}~~1 alone. Note that if {U~(A)} .1 is an arbitrary complete

orthonormal set in L2
( _co,oo) , then •(A) = 

n11 
b~ U~(A) in ‘2’ bn = f°°~(x) U~(x)dA

and, as in probability density estimation by orthogonal series [3)[9][12], one

could estimate b~ by bn(N) = (1/B) 
~
JN(X) u (x)dA , where JN(A) is given in (1.2).

Then
N 

*b~(N) = (l/2irBN) 
~ 

x(t
~

)X (t k ) u
fl

(tJ-tk )
j, =1
j~k

where u~(t) 
= J°° exp[itx) U~(A)dA. Thus, b~(N) requires the know-

ledge of the sampling Instants {tn}~~l 
in addition to the data sequence

{x(tk)}~...l . Hence, the basis {lJ~(A)) cannot be arbitrary for our purposes.

Next we note (Shapiro and Silverman (1960))that the discrete-parameter process
{X(tk)} has mean zero and covariance sequence {c~}

(2.1) Cn E[X(tk+ )x(tk)) = çC(t)fn(t)dt~ fl 1 ,2,...

where f~(t) 8[(8t)’~~/(n-))!] exp(—Bt), n. 1,2,... . The set {f~(t)} Is

complete in L2(O,
oo) and its orthonormalization yields

(2.2) g~(t) =I~~ L~_1 (2Bt) e
8t 1(0,,,)(t)~ n = 1 ,2,...,

where L~(t) is the n~ - Laguerre polynomial. Note that f 10] g~(t) k~ 
0n,k ~k

(t)
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where

(2.3) 0n,k = /27~ (..2)
k1 (

~:~
).

Since C(t)E L
2
(—oo,00) , we have the L 2 expansion C(t) a 

~ ~ 
9~(ltf) where

- 
n—i

(2.4) a~ = çc(t)~n(t)dt — 

k~l 
0n,k Ck

Hence

(2.5) • (A )  = ~ a1,~ G~(A)n= 1

in L2(
_co,~) where, by direct Fourier transform of (2.2),

(2.6) G~(A) = ~ j
°° ~~~~ g (Iti)dt = - £~ cos[(2n-1)tan~~(A/8)) , ~ = 1,2

-
~~~

{Gn (A)} u,i is complete and orthogonal in L2
(_
~,co) with respect to

even functions on (_ao,co). The series expansion (2.5) has been considered by

Shapiro and Silverman (1960) In connection with a concept of “alias-free” samp-

11 ng.

The approach: Given the data sequence {X(t~)}~...1 estimate c,.~ by

N-n

A ~ k~1 
x(tk+fl)x(tk), 1 ~ n < N

(2.7) c~(N)=
0 , N’ n

Then, via (2.4), estImate the expansion coefficient a~ by

A fl A

(2.8) an(N) kL 
8n,k Ck(N) -

and finally, estimate •(x) by

A A

(2. 9) 
~~~ 

• ~ y~(N) a~(N) Gn(A)n—i

where {yn(N)} is an appropriate averaging sequence to be specified below.

4
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A bound on the rate of decay of {a,~ is needed and is given below;

~~r[0~,,) denotes the set of functions which are r-times absolutely continuous

on [O,~).

LEtIIA 2.1. For t � 0, let C(t) E ~~
r_l
[0,~,) such that

(2.10) t)’~
’2 c~~(t) E 1.2(0,00) for k = O,l ,...,r.

Then for n =  1 ,2,.

Ia nI ~ A1(r)  ~—r /2

where
A1(r) = i it r1~~ 12 i.~ [C(t /28)e_t

~
/2]I 1L 2 (O ,co) ’

REMARK. The hypothesis of Lenina 2.1 does not require the differentiability

of C(t) at the origin. Thus, the spectral moments of •(A) need not exist. For

examp,le, C(t) = e~~tI satisfies the hypothesis of Lenina 2.1 for every integer r � 1.
Similarly, if •(x) is a rational function in A , then Lenina 2.1 holds for every
integer r ~ 1.

In investigating the convergence in quadratic mean of the estimate (2. 9 )
for a fixed A , the pointwise convergence of the L2 expansion (2.5) is needed.

We have

LEMMA 2.2. Assume C(t) satisfies the hypothesis of Lenina 2.1 for some

r>2.  Then

(2.11) •(x) = ~ a~G~(x)n=l

uniformly on (_oo,co).

5
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3. Consistency and rates of convergence. We first consider the consistency

of the estimates ~n
(N) and 

~~~~ 
The following assumption is needed.

ASSUMPTION 3.1. The process X satisfies

(I) tC(t) E

(II) I Q(u1,u2,u3)I ‘ h(upupu~)

where h is even and nonincreasing on [0,00) in each variable such that

f

0~ h(0,u,O)du <

THEOREM 3.1. Under AssumptIon 3.1, the estimate c~(N) is consistent in

quadratic mean with

(i) E[c~(N)] = (1 -

(ii ) Var[cn(N)]~ 
A2/N

where A2 is a constant independent of n and N.

Before considering the consistency of the estimate a~(N)~ we note that the

mapping (2.4) of {c~} to {an} is unbounded in £
00 

since 
~~~~~~ 

0~, =

but Ek l  efl,k I = 
~~~ 3~~~’ Thus, since Var[a~(N)] = 

~~~Ll  ~~ 0n,L

I cov[ck(N),cL(N)], a small variability in the estimate c~(N) is likely to pro—

duce a large variability in the estimate ~~(N) for large n. A simulation study

in [4] appears to confirm this observation. We have

THEOREM 3.2. Under Assumption 3.1 the estimate a~(N) Is consistent in

quadratic mean with

(I) E[a~(N)] =a~-(l/N)[n a~
-(n_ l)a

~...i
)

A 2n
(ii ) Var[an(N)] � A3 —

where A3 = 2A2/98

_ _  
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Consider now the class of spectral estimates •N(A) defined by (2. 9 ), where

the averaging sequence {‘Y~(N)} Is of the form

(3.1) 
~~~ 

= h(e~~/N
b) , ct> tn 3, 0<b< 2~~3

and h(u) is a real even function on the real line satisfying

(i) Ih(u)I � h(O) = 1 for all u ,

(3.2) (ii) Iuh(u)I ‘ K1 for lul � 1 ,

(iii) l—h(uj ~ K2~u~ for all u

The kernel {Y~(N)} is then of the exponential type as defined by Parzen (1958).

The choice of exponential-type kernel (rather than algebraic) and the conditions

on the parameters ~ and b are necessitated by the variance expression of a~(N).

THEOREM 3.3. Assume X satisfies Assumption 3.1 and the hypothesis of

Lemna 2.1 for some r> l. Then the estimate (2.9 ) Is Integratedly uniformly

cbnsistent In quadratic mean with

E f°I~N(A) - •(A)12dx ‘ B1[1/&n N]
r-l (l+o(l))

where

B1 4 A~(r)(2a/b)’~~/(r—1)

• Next we have

THEOREM 3.4. Assume X satisfies AssumptIon 3.1 and the hypothesis of

Lemma 2.1 for some r >2. Then the estimate (2.9 ) -Is uniformly consistent In

quadratic mean with

EI$N(A) - ,(x)12
’ 82[1/Ln N] ’~

2 ( 1+o (l ) )

uniformly in A , where

B2 - (32/-n2B)A~(r)(2ci/b)’~
2(r-2)2 .

_ _ _ _ _  
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4. Discussion. We first establish the optimal convergence properties

of the kernel-type estimate *N(A) based on the perlodogram (1.2). *N(x) is

of the form [2][5) ‘

(4.1) *N(A) = (1/B) WN(x
~~

) 
~~~~~~

where WN(A) = MN K(MNA) ,  MN
+oo and M1~/N÷O as N -,.co and the kernel K(A) is a

real even continuously differentiable function on (_00,00) satisfying

( I )  sup IK(A )I< 00 (ii) sup K’(A )J < 00

-oo<X <oo -00<A<00
(4.2)

00 00

( i i i )  f IK(A )IdA < 00 (iv) f K(A)d~ = 1

Aside from the conditions on the fourth order cumulant Q(u11u2,u3) we have by
[5], Theorems 1 and 3 (or [2], Theorem 4.3), that if tC(t) E L

1(—co,co) then

A

= 

-CO 
W~(A_ ~J)~(P)dp + 0(1 / N)

A 2
Var[

~
pN(A)] = 2ITB(MN/N) [~(x ) + ~~~ 

~~~~~~ 
f

00 

K2(u)du(l + 0(M N / N ) )

To find the optimal convergence properties of *N(A) we proceed as in Wahba

(1975). Assume that for some integer r~ 1, K(A) satisfies in addition

(v) f A~K( A )d A = 0, j 1 ,...,r—1
(4.2)

00

(vi) f ,AI rIK (A)IdX < 00

-CO

and that

(4.3) trC(~) E L1(
_co,co) .

8
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Expanding •(A+ii ) in a Taylor series, and using (4.2)(iv)— (vi) in

L K(_u)~(A+u/MN)du, we find b2[*N(x)] ~ B3 t~
2’(l + o ( l ) )

where

B3 = 
1 

2 [1 Ju J ”IK (u)J duj [J Jtj rIc(t)IdtJ
[2-n’r!] -CO

Thus, Ignoring a factor (1 + 0(M N/ N ) )  in the variance and (1 + o(l)) in the bias,

we have

(4.4) EI*N(A) - •(A )~
2 � B~ rç

2r 
+ B4 (MN/N)

where

B4 
= 4nBIf Ic(t~dt+ ~~ )1

2 

Lo 
K2(u)du

Then choosing MN = [2rB3/B4)~
’(2
~
’+1) Nl/(2r1~

) , which minimizes the right-hand

side of (4.4), we have finally

(4.5) EJq,~(x ) - •(A)12 � B~ N-2r/ (2
~’fU (l + o ( 1) )

where

B = 
(2r+1) [B 82r,1/(2~~l)

~ (2r)2~”~
2”
~
T 3 4 J

• The parameter r of (4.3) and Lenina 2.1 represents a degree of smoothness
of q (A ) .  For the same value of r, the hypothesis of Lenina 2.1 Is generally
more restrictive then (4.3), even though (4.3) implies (2.10) wIth k = 0.
For the same value of r, the mean square error of the estimate *N(A) is
O(l,N 2r/ (2

~~
1) ) whereas for the series estimate N(x) ‘it is

o(1/[&n N]”~
2] by Theorem 3.4. Thus, *N(A) has an appreciably higher rate of

convergence--this at the expense of requiring a record of the sampling instants.

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
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Comparison ot. the basis of mean integrated square error cannot be made

since the kernel-type estimate (4.1) has not so far been shown to be consis-

tent in this sense (see [2][5)).

The proofs of Theorems 3.3 and 3.4 indicate that the logarithmic conver-

gence rates of the series estimates $N(X) are du~ to the exponential growth in

n of var[a~(N)] as given by the bound in Theorem 3.2. The discussion pre-

ceding Theorem 3.2 provides evidence for such a rapid growth. It remains an

open question whether the convergence rates of the series estimate obtained

here are the best possible.

Finally, we note that when the sampling process {t~} is not necessarily

Poisson but “alias-free” in the sense of [l]D0], an orthogonal series estimate

of •(X) of the form (2.9 ) can be considered in a similar fashion. However,

the analysis becomes more complex since the basis {g~(t)} 1 is generated by

the statistics of the point process {t~}. (In the Poisson case, we have the

Laguerre functions (2.2), whose properties are well known.)

5. Proofs.

Proof of Lenina 2.1. The following relationship for generalized Laguerre

functions is easily verified.

(5.1) t
v_l

L~:~(t) = ~ ~(n+v-f) 
L~~1(t)] -

By repeated substitution of (5.1) and integration by parts In the integral below,

we have
k k+1 k+1 A

(5.2) ~A C(t/28) L~_1(t)e
_thl2dt = 

:~ ~~~~~~~~~~~ ~~ 
[C(t/2B)e

_t
~
2
]]

+ ( 4’-l )~~~~+ 1 )  ~~~~~~~~~~~~~~~~~~~~~~~~~

10
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Each term In the sum vanishes at infinity by the hypothesis of Lemma 2.1.

— 

Finally, by

J I t r/2 L~(t) e ’ 1 1 L2 (O ,00) = _____

the dominated convergence theorem and the Cauchy-Schwarz inequality

, ,
~~~ 1/2 A (r)

� A 1 ~~ r~~~
11 1  ~ 1

n 1’ ‘ ‘(n+r—1)l~ ~r/2

proof of Lai~ma 2.2, By (2.6) and Lemma 2.1,

E 1 Ia~I I G ~(A)I 
� (2/~1

2B)1~~ E ...1 Ia n I < C O  Since G (x) ‘Is continuous, the series

in (2.11) converges uniformly to an even continuous function, say, *(A). Since
• - 

ç=1 Ia~~
2 

< 00, ~~~ 
E L

2
( . C O,00) by the Riesz—Fischer theorem and hence

= 0, n = 1 ,2 Finally, since ~~ (x)}~~ is com-

plete in L
2
(_co ,co) with respect to even functions, we have 4(X) = ‘P(A) a.e.

and the result follows by the continuity of •(x ) and ip(x).

Proof of Theorem 3.1. (i) is clear. For (ii), we have

Var[6~(N)] = 

,j~l 
T~,~(N) - E2[c~(N)]

where
N-n

• T~,1(N) = X E[C(tk+fl
_t
k)C(tL+fl

_t
L)] ‘,R.—

N-n
T~,2(N) = ;~

• 
k~~=l

E[C(tL
_t

k)C(tL+n
_t
k+n)]~

N-n
T~,3(N) = 

~~ kJ’l 
E[C(tt+n

_t
k)C(tk+n

_t
L)] ‘

Tn,4(N) = 

~ k,~_l~~~~
k + n k L k & . $n k~

By a bounding argument similar to the one meployed in [5], It can be shown that

11 
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‘if tC(t) E L
2
(_Co,Co) then ITn,i (N) - E2[c~(N)]I 

A~,1 , if C(t) E L1
(—00,uu) then

IT~,~(N)I ‘ ~~~~~~ , j a 2,3, and If Q(u 1,u2,u3) satisfies Assumption 3.’) ,

then IT (N)I ~ A IN, where A2 ., j — t,Z,3,4 are constants Independent of
n,4 , ,J

• n and N. The result (11) follows.

Proof of Theorem 3.2. (i) By (2.8), Theorem 3.1 and (2.4),

E[a~(N)] = a~_ (l/N) E~~1k 8n,k’k . Thus the bias b[~~(N)] is

(5.3) b[a1,(N)] = -(1/N) f°°C(t)q~(t)dt

where
n n-1 ,

q (t) = ~ k 0 kfk(t) = ‘ ~~, ‘ (‘~ )(—28t) e~~
t

n k—i n, k=0 -

Using the properties of the Laguerre functions [7,p.299] -it can be shown that

q~(t) = n g~(t) - (n_l )g~_1 (t) and the result follows by (5.3).

(ii) We have Var1”2[an (N)] 
~ ~~ l Io fl ,kIVar~~

2[ck(N)] and the result follows

by Theorem 3.1 and E
~~1 I0n k I = v~m

Proof of Theorem 3.3. We have

• Ef°° I$N(A) - ,(A)1
2dA = f°° b2[

~N
(A)]dA + f°° Var[

~N
(A)]dA

where by Theorem 3.2

(5.4) to b2[~N(A)]dA = 

~ n~1 
{an[

l_y
n (N)] + 

ynDl) [n an
_ (n_ 1)an..i]}

2

and

(5.5) f°Var[,N(x)]dA = 

~ n~1 
y~(N) Var [a~(N)] .

The truncated sum in (5.5) at N, the integer part of (b/a) £n N, is

p = l-(2b/a) £n 3, by Theorem 3.2 and (3.2i); and by Theorem 3.2 and (3.211)

12 
__  ‘ r.

‘5— - —-5_ 5-_ -~~~~~~~~~~-



- 

1 ~~~

the tail sum is also o(N t’ ) .  In fact,

(5.6) J

00 Var[ N(A)]dA � D~N~~; D1 = 

i e ~~~
_Ln3

~ 
+

Next (5.4) is bounded by (l/-rr)(Si + S2 + S3)~ where

s~ = 

n~ 
a~[l-~~(N)] 2 , = 

~~~

‘ 
n~i 

n~y~(N)a~ ~ 
— 

~~ nL 
~~~~ 

(N)a~

- . 

is the dominant term In the integrated bias, for with M as before, we have

by (3.2-i ) and (3.2ii) and an argument similar to the one above that

S~ � (1/2)(b/ct)2II C IJ L (&n N/N)
2(l+o(l)), k = 2,3. Now for any Integer m l , we

2
have by (3.2i),(3.2iii) and Lemma 2.1 that

A A 2I
~~ 

••) ‘y•~ ~fli1tr
~~ 

11 !.)~ I~’ g~ 
L LøJfl ~~~~~~ ~ I 

______I ‘“~~~~ “2 ‘
~ L “ r—l r-12 m

• The optimal m which minimizes the right-hand side is then the solution of a trans-

cendental equation and cannot be found explicitly. However, m is essentially

logarithmic in N and upon choosing rn-i to be the integer part of (b/2a)tn N, we

have

(5.7) tob
2[
~N

(A)]d1A ~ 
D2 

r-1 (1+0(1)), D2 = 4A~(r) (2a/b~”~
-CO (Ln N)

The result follows by (5.6) and (5.7).

Proof of Theorem 3.4 . By Lemma 2.2 and Theorem 3.2, the bias of ~~
(A ) Is

= - 

~ 
an[

l_y
n (N)] Gn(X) _ (l/N)n~i ~~~~~ 

a~— (n— l)a~_1 ]G~(A)

and by (2.6) b[$N (A )] ~ (2/w28)1”2 (Z 1 + Z2) uniformly in A , where

= 

nfl. 
Ia~I[1—~~(N)],

Z2 =(l/N) Z n Ia n I [Iyn(N)I + 
~~~~~~ 

•

—

~~~~~~~~ -

— - 
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1.. Z1 Is the dominant term In the bias, for with N the integer part of (b/ct)&n N,

the truncated series at M in is 0( Ln N/N) by (3.2i) and Lemma 2.1, and the

tail sum is 0(N(tn N)1”2) by (3.2111). Next, for any integer m>1 , we have

by (3.2i)(3.2iii) and Lemma 2.1 that

I~A1(r)r -b ~ + 

4A1(r) 1-(r/2)
1 r~-2) 

•N e (r-2J m

and, by an argument similar to the one employed for S~ of Theorem 3.3, we find

(5.8) b[
~N
(A)] � D3(Ln N)

(2_r)fl(1÷o(u); D3 = 4A1(r)(b/a)~~ ”~
’2
~/(r-2).

For the variance we have by the Cauchy-Schwarz inequality and (2.6) that
CO

Var[
~N
(A)] ~ (2/-ir~$) E ~ Iyn(N ) I var ’2[a~(N)])

2
na-I

Again, with N the integer part of (b/a)&n N, the truncated sum at M is

p — 1 - Ln 3, by Theorem 3.2 and (3.2i); whereas the ta-i l sum is

o(~fi) by Theorem 3.2 and (3.2ii). Hence uniformly in A ,

(59) Var[
~N
(A)] = o(N~~), p 1 - (2b/ct)Ln 3.

The result follows by (5.8) and (5.9).
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