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Stability properties of an intense proton layer (P—layer) immersed

o in a background plasma are investigated within the framework of a hybrid

model in which the layer ions are described by the Vlasov equation , and

the background plasma electrons and ions are described as macroscopic ,

cold fluids. Moreover, the stability analysis is carried out for

frequencies near multiples of the mean rotational frequency of the layer.

It is assumed that the layer is thin, with radial thickness (2a) much

smaller than the mean radius CR0
). Electromagnetic stability properties

are calculated for flute perturbations (~ /~z~O) about a P—layer with

rectangular density profile, described by the rigid—rotor equilibrium

distribution function f
~
=(mjnb

/21T)tS(U_T)G(v
Z
), where rib and T are

cons tants, m . is the mass of the layer ions, G(v
~
) is the parallel

velocity distribution, and U is an effective perpendicular energy

variable. Stability properties are investigated including the effec ts

of (a) the equilibrium magnetic field depression produced by the P—layer,

(b) transverse magnetic perturbations (~~~0) , (a) small (but finite)

transverse temperature of the layer ions , and (d) the dielectric

H properties of the background plasma. All of these effects are shown to

have an important influence on stability behavior. For example,

for a dense background plasma , the system can be easily stabilized by

a sufficiently large transverse temperature of the layer ions.
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I. INTRODUCTION

Field—reversed ion layers and rings have received considerable

recent attention as magnetic confinement configurations for fusion

plasmas .1 8  Such layers and rings are likely subj ect to various

9— 13macro— and microlnstabilities . For example, recent theoretical

studies of the negative—mass stability properties of a weakly

diamagnetic ion layer embedded in a background plasma predict instability13

for perturbations with frequency near harmonics of the layer rotational

frequency . These studies13 have been carried out for a low—intensity

ion layer characterized by v<< l , where v=Nbe2 /ml c2 is Budker ’s parameter

for the layer ions, and Nb~
2TT ( a dr r n~ (r) is the number of ions

J 0  I)

per unit axial lnegth. A more general stability analysis is required

to investigate stability properties for an intense field—reversed

ion layer characterized by v>>l.

This paper develops a hybrid theory of the negative—mass instability

for intense ion layers with arbitrary degree of field reversal. The

present work extends the previous self—consistent theory
13 of the

negative—mass instability developed for v<<l . The analysis is carried

out within the framework of a hybrid (Vlasov—fluid) model in which

the layer electrons and background plasma electrons arid ions are
• described as macroscopic, cold fluids immersed in an axial magnetic

field B
~
(r)

~~~
, and the layer ions are described by the Vlasov equation.

We assume that the layer is thin [Eq. (1)1, i.e., the radial thickness

(2a) of the layer is small in comparison with the mean radius R0.

Equilibrium and stability properties are calculated for the specific

choice of ion layer distribution function [Eq. (2) 1

f
~

(H.L—wOPe, 
v )  = ~~~~~ 

~
(U_T)G(v

~
) ,

______________________________ 

4~iLi~~---~- ~~
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where n~ , w0, T are constants, G(v ) is the parallel velocity

• distribution, H~ is the perpendicular energy, 
~e is the canonical

angular momentum , and U is the effective energy variable defined in

Eq. (3).

• One of the important features of the equilibrium analysis

(Sec. II) is that the equilibrium distribution function in Eq. (2)

corresponds to a sharp—boundary density profile [Eq . (9 )] ,  with uniform

angular velocity profile over the layer cross section [Eq. (12)1,

and nonzero transverse temperature [Eq. (13)). Moreover,

defining the magnetic compression ratio ii by n=B
0(r=R

1
)/B

0 [Eq. (16)],

• where B0(r=R
1
) and B

0 are the axial magnetic fields at the inner and

outer surfaces of the layer, we find [Eq. (26)]

for a thin layer with a<<R0. Because v>O , it is important to note from

• Eq. (26) that the allowable range of compression ratio is given by —l<n<l .

Moreover , in order to produce a sizeable field depression, a relatively

large value of Budker ’s parameter (v~l) is required. We also emphasize

that the rigid—rotor distribution function in Eq. (2) has an associated

spread in canonical angular momentum (Li) [Eq. (32)), which plays an

important role in determining stability behavior.~~

The electromagnetic stability analysis in Secs. Ill—V includes the

effec ts of (a) the equilibrium magnetic field depression produced

by the P—layer, (b) transverse magnetic perturbations ~~~~~~ (c) small

(but finite) transverse temperature of the layer ions, and (d) the

dielectric properties of the background plasma. The analysis is carried

-

• 
out within the framework of the linearized Vlasov—fluid and Maxwell

equations, assuming that all perturbed quantities are independent of

H 
_ _ _ _ _ _ _ _ _ _ _ _

_________ _ _ _ _  ~~~~~~~~~~~
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axial coordinate (~ /~z—O). Moreover, the stability properties are

investigated for eigenfrequency near multiples of the mean P—layer

rotational frequency, i.e., w_Lw8 k<wr~ where t~ is the complex elgen—

frequency, 2. is the azimuthal harmonic number , we is the mean rotational

frequency of the P—layer, and W
r 
is the radial betatron frequency of the

layer ions. It is also assumed that the background plasma has a step—

function density profile (Fig. 5).

The formal stability analysis for perturbations with ~/ 3z”0

is carried out in Secs. III and IV. The perturbed charge density

of the layer ions is calculated in Sec. III, including kinetic ion

orbit effects. A fully electromagnetic eigenvalue equation is obtained

in Sec. IV, including the dielectric properties of the background

plasma. Equation (69), when combined with Eq. (68), constitute one of the

main results of this paper and can be used to investigate stability proper-

ties for a broad range of system parameters. In this regard, we emphasize

that Eq. (69) has been derived with no a priori restriction on the back—

• ground plasma density.

In Sec. V. a detailed analytic and numerical investigation of

electromagnetic stability properties is carried out for a

dense plasma background. For certain ranges of system parameters,

it is found that the system is unstable. Moreover, the instability

mechanism is similar to that for the negative—mass instability,
1
~~

13

including the effects of transverse temperature of the layer ions,

and the dielectric properties of the background plasma. For

example, in the case where the plasma density outside the layer is equal

to zero (ci’ O), the approximate dispersion relation is given by [Eq . (90)]

I

___________________  _ _  ~~ j



- -  •

~~~~~~

-•

~~~~~~~~~~~~

• - - • -

~~~~~~~

5

fcz
3 + G 2 _

2.Af~~~+2A (~(~~~) 
_
~ .)=o

where (~ is the normalized Doppler—shifted eigenfrequency defined in Eq.

(88) , and the parameters ~ and A are defined in Eqs. (87) and (91) ,

respectively. In Eq. (90), r ’ [Eq. (87)] is an oscillatory function

of plasma density. However, the value of ~~
‘, averaged over each period,

• is an increasing function of plasma density. We therefore conclude

from Eq. (90) that the system is completely stabilized if the plasma density

is sufficiently high. The terms proportional to 2.A in Eq. (90) also have

a stabilizing influence, thereby quenching the growth rate for sufficiently

high £ values. This effect is most pronounced when the magnetic

compression ratio i~ is close to zero. A similar stabilization for high 9..

values has also been demonstrated for intense relativistic E—layers.~~

• A numerical investigation of stability properties is carried out

in Sec. V.C for general values of an~ (the plasma density outside the

• layer). Several points are noteworthy in this regard. First, the

instability growth rate is greatly reduced as n90. This feature is evident

from Eq. (90) for ct— O. Second, stability properties are almost independent

of ci, provided ci is sufficiently small (a~O.5, say). Finally, in

parameter regimes where instability does exist, the maximum growth

rate can be a substantial fraction of ion cyclotron frequency 
~ci~

~ 
____________ 

~~ ~j i_~~~~~ ~~ - -~ - 
_ _ _ _ _ _ _ _ _ _
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II. EQUILIBRIUM THEORY

A. General Equilibrium Properties

The equilibrium configuration is illustrated in Fig. 1. It

consists of a space—charge neutralized P—layer (proton layer) that is

inf inite in axial extent and immersed in a cold, dense, background

plasma . The plasma ions are assumed to be singly charged , and the

mean radius and radial thickness of the P—layer are denoted by R0

and 2a , respectively. The radius of the cylindrical conducting wall

is denoted by Rc~ 
The mean motion of the P—layer is in the

azimuthal direction , arid the applied and self magnetic field provides

radial confinement of the layer ions. As shown in Fig. 1, we introduce

• a cylindrical polar coordinate system (r,8,z) with z—axis coinciding

with the axis of symmetry; r is the radial distance from the z—axis,

and 0 is the polar angle in a plane perpendicular to the z—axis.

The following are the main assumptions pertaining to the equilibrium

configuration:

(a) Equilibrium properties are azimuthally symmetric (~/~ e—0)

and independent of z.

(b) The radial thickness of the P—layer is much smaller than its

major radius. i.e.,

a<<R0 . (1)

(c) The background plasma electrons (j—e) and ions (j i), and

the layer electrons (j e’) are treated as macroscopic cold fluids (T~_O).

In equilibrium, these fluids are assumed to be stationary with zero net

axial motion [V°~(r)iuiO] and zero net azimuthal motion [V~~(r)u11w~ (r)r1’1O]

for j—e,i,e’.

_ _  __________________________ 

- —  

_ _ _ _ _ _ _  

L i
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •i: ~~~
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(d) The background plasma equilibrium is assumed to be electrically

neutral with n~(r)=n°(r). In addition, the equilibrium charge density

of the layer ions (j b) is neutralized by the layer electrons (j=e ’)

with n~(r)—n~ ,(r), and the equilibrium radial electric field is

equal to zero , Er
(r) O.

For the layer ions, any distribution function ~~~~~~~ that is a

function of the single—particle constants of the motion in the

equilibrium fields is a solution to the steady—state (a/at=0) Vlasov

equation. For present purposes, we consider the class of rigid—rotor

Vlasov equilibria described by4

v )  = 
~ 

6(U_ T)G (v z) , (2)

where n.~,, w 0 , and are constants, G(v ) is the parallel velocity

distribution with normalization 
J 

dv G(v )—l , and the effective energy

variable U is def ined by

U.1H~._w0
P
0+miR~w~I2+(e/c)R0w0A~ (R

0
) . (3)

In Eq. (3), H, is the perpendicular energy

Hf (m
1
/2) (v2+v~) , (4)

and P
0 
is the canonieal.angular momentum

P
8
=r[mjv~

+(e/c)4(r)] . (5)

Here e and mi are the proton charge and mass, respectively, c is the

speed of light in vacuo, and V and ye are the radial and axial velocities

of a layer ion. The e—component of the equilibrium vector potential ,

4(r). is to be calculated self—consistently from the steady—state

• • • . •  _e__ -- — --a- -

_
r~~~~~ V~ ~~~~~__  .~ ~~~~~~~~~~~~~ ~~~~~~~~•~~~~~~-~•- .~~~~~~~~~~~ —.- --- • •-



8

Maxwell equation,

3 1 3  0 4ire 0 0
.

~~

— — -

~~

-— rA~ (r) — — n.b
(r)V

O
(r) 

~ (6)

where n~(r) is the local ion layer density,

4(r)=iJd
3v f~ (H~_w8P0, v )  , (7)

and V~(r) is the mean azimuthal velocity of an ion layer fluid

element,

V~ (r )_ (Jd 3v v0 f~ ) / ( f d
3v f~ ) . (8)

Substituting Eq. (2) into Eq. (7) , we find that the ion layer

density is given by (Fig . 2)

0 
, R

1
<r<R

2
n,~(r) (9)

0 , otherwise

where R
1 

and R
2 

are the extremes of the interval on which the inequality

(10)

is satisfied. [That is, R
1 

and R
2 

are determined from (R
1
)*(R2)’O.]

• In Eq. (10), the envelope function q,(r) is defined by

~
(r) (m

iw~
/2) (r2_R

~
)+(e/c)w0[r4(r)_RO4(RO)]+T . (11)

From Eqs. (2) and (11), ~~r )( m
1
/2) [v~+(v

9—rw9)
2
] is the (r—0) $

kinetic energy of a layer ion in a frame of reference rotating with

angular velocity w0. In a similar manner, the azimuthal velocity

profile associated with the equilibrium distribution function in Eq.

(2) can be expressed as
4 

.

-. — .- -—— - - • 
~~~~~~~~~~~~~~~~~~~~~~ ..• I • .-•~•~~~•• •- ~p... - •--

-~~~~~~ ~~~~~~~~ ~~~~~~~~~~~ ::~ ~~~~~~ _ _ _ _
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r

V~ (r)—rw 0 , R(r<R2 . (12)

Equation (12) corresponds to a rigid—rotor angular velocity profile

over the layer cross section. Defining the effective temperature

T?(r) for the transverse motion of the layer ions by

(r)T9(r)=Jd
3v[v~+(v0_rw0)

2]f~

we find from Eqs. (2) and (11) that the transverse temperature profile

can be expressed as

R
1
<r<R

2 
. (13)

Evidently, the envelope function Ip(r)>O defined in Eq. (11) is

identical to the transverse temperature profile.

We note from Eq. (9) that the density profile has sharp radial

boundaries at R
1 
and B

2
. Substituting Eq. (12) into Eq. (6). we

find that the equilibrium axial magnetic field within the P—layer

(R
1
.cr<R

2) can be expressed as

B
0(r) B

0
+(21re/c)w

0%
(R~—r2) , (14)

where B0 is the axial magnetic field at r’R2. The corresponding

equilibrium vector potential 4(r) is given by

• r4(r)=R04(R0)+(B0/2)(r 2—R~)

(15)

+(7re/2c)w
0%

(r2—R~) [2R~_ (r
2
+Rg)]

For notational convenience in the subsequent analysis, we Introduce

the magnetic compression ratio n defined by

_ _ _  _ _ _ _  Il -
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(16)

which characterizes the change in axial magnetic field. We further

introduce Budker ’s parameter for the ayer ions

R

\ I 2 ~r (e 2 /m jc)f dr r 4(r) . (17)

Substituting Eq. (14) into Eq. (16) and making use of Eq. (17)

• gives

• 1  w~ /~ cj (f l_ l )/ 2v  , (18)

where w
1
=eB

0
/m

2.
c is the ion cyclotron frequency at r=R2.

The axial magnetic field profile is illustrated in Fig. 3.

Equations (11) and (15) completely determine the functional form

of the envelope function ~P(r). We note from Eq. (15) that equilibrium

layer density (the term proportional to ri
b
) can generally have a large

nonlinear influence on the location of the radial boundaries B1 
and

R2. A sketch of ~p(r) versus r is illustrated in Fig. 4. Thus far ,

R
0 
has been introduced in the analysis as an unspecified constant

parameter in Eq. (3). Without loss of generality , we choose R0

to correspond to that rad ius where ~ (r) passes through a max imum

in the interval R1<r<R2 (Fig. 4),

1~— ~(r)1 —0 . (19)
~3r 

~r—R 0

Substituting Eq. (11) into Eq. (19) we find

w 0+(e/m~ c)B°(R 0) ..O , (20)

where use has been made of Eqs. (14) and (15).

L
~~~~• _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j  

- 

~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~- • •• •- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - ••~ L- ~-L~~~~

’ • - .w-~- .~~~ ..:
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Equation (20) is simply a statement of radial force balance on an

ion layer fluid element at r R 0. Further general equilibrium properties

associated with the distribution function in Eq. (2) are discussed in

Ref. 4.

B. Thin—Layer Approximation with a/R
0

<l

We now specialize to the case of a thin layer with (R
2—R1

)/ R
0
<<l ,

and Taylor—expand Eq. (11) about r=R0,

— 
~~ ~~~~~~~~~~ + ... (21)

where
2 

= — 

~r=R0 

= — R0 (F B°(r)) = . - (22)

Here, w can be identified with the betatron frequency for radial

oscillations about the equilibrium rad ius R0 . In Eq. (22) , w~~
41re2nb /m i

is the plasma frequency—squared for the layer ions , and R~w~ f a
2 .

• Defining the half—thickness of the layer by

a ( 2 ~ /in i) h 1’2 /w , (23)

we readily determine R1 R0—a and R2=R 0+a from *(r)=O and Eq. (21) .

It is also noteworthy from Eq. (22) that the betatron frequency

- 

• 

w is directly proportional to for the rigid—rotor equilibrium

described by Eq. (2). This is considerably different  from the

result obtained in Ref . 12 for the choice of distribution function

in which all of the layer ions have the same values of canonical

angular momentum and the same value of energy .

For a thin P—layer , it is straightforward to show

• [}— *(r)J — [}_ iP(r)) (24)
r R 1 r R 2

~~
.- ~~~~~~~~~~~~~

-t- -,-•--- • •- -
~~~~~~ • —~~~~- .- •.- - - • •  -

— ~~~
•_;~_ ~~~- —•-. 

__I_ 
-• --

~~~ !_. ~ ~~~~~~~~~~~ ~—~~~~~~~ —--- J
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I

from Eq. (21) . Substituting Eq. (11) into Eq. (24) and making use

of definition in Eq. (16) gives

(25)

which determines the rotational frequency w0 in terms of the compression

ratio r~. Moreover , substituting Eq. (25) into Eq. (18) , we find

(26)

Equation (26) is one of the mos t important equilibrium results

pertaining to the choice of distribution function in Eq. (2) , and

several points are not eworthy . First , Budker ’s parameter V for the

layer ions can be expressed exclusively in terms of the magnetic

field compression ratio r~. Second , since ~,>O , the allowed range of

r~ is given by

-l<~<l . (27)

Moreover , Budker ’s parameter rapidly increases to infinity as the

compression ratio approaches minus unity (n~ —l ) . In this regard ,

• strictly speaking , it is not possible to achieve complete field

reversal (r~~—l) for the choice of dis tribution function in Eq. (2) .

We note that v—i corresponds to zero compression ratio (n 0) . Therefore,

in order to produce a signif icant f ield depress ion, we conclude

that a layer with a reasonably high value of Budker’s parameter (v~ l)

is necessary .

Of considerable interest for experimental application is the

relationship between the applied axial magnetic field B before injection

of the layer , and the external magnetic field B0 a f te r  injection. In

this regard, we assume that the magnetic flux inside the cylindrical

-~~ I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~ - - .-

~~~~~‘ •~~~~~ - - - - •~~~~~~
- - -

~~~~~~~
- — • • - • . 

-
. 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
:~~~ •d~~~.~~ -J~• 

• - - __. __•_ •__ _~~ 1~ •__••. - ~~~~~~~~~~~~~~ I~ _ . . I — ~~ --- ~~~~~~ - ~~~~~~~~~ 
_ __. .._~~ _ r. _& 

~~~~~~~~~~ •
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conductor is conserved, I.e.,
B

0 2~2ir l rdr B (r)=irR B . (28)z c

For a thin layer, the axial magnetic field profile can be approximated

by

O<r<R
0

B0(r) = B
0

1 , R~<r<R ,

H and it is straightforward to show from Eq. (28) that

B/B0 l—(l—n)(R0
/ R ) 2 . (29)

For B/B 0>0, we conclude from Eq. (29) that the magnetic compression ratio

is restricted to

~
<(R IR0) 2

—1 . (30)

Finally , we conclude this section by noting that the choice of

equilibrium distribution function in Eq. (2) yields a spread in

canonical angular momentum P0 . Defining the average canonical

angular momentum P0 as

P0am
1R~w0+(e/c)R 04(R0)

it is straightforward to show from Eqs. (2) and (11) that

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (31)

where v ( R
0
) is the radial velocity of a layer ion at r R 0. For a

given transverse temperature T, those particles with vr
(R
0
)
~

O have

the maximum deviation in canonical angular momentum from the mean value

P0. Therefore, the maximum canonical angular momentum spread Li can be

• • 1~ • :; •• - - - — ,- • -  •-- -•
-

-—- - •- -

~~~~~~~~~~~~
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expressed as

~~
l1)e~~ol — R0 (2m jT) l/’2 

. (32)

The parameter Li defined in Eq. (32) plays an important role in

determining the stability properties1° discussed in Secs. III and IV. 

I~ Ii

~

•

~

•• •.  ~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ __ _ _ _
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III. PERTURBED CHARGE DENSITY FOR A THIN ION LAYER

In the present article, we consider perturbations with very long

axial wavelength (k2R~<<l), and approximate

k— O (33)

in the subsequent analysis. (Here k
~ 
is the axial wavenumber.) It

is assumed that all perturbed quantities Sip(~ ,t) can be Fourier—

decomposed according to

~
P(
~
,t)4t

(r)exp{i(L0—wt)}, Imi~>0 (34)

where w is the complex eigenfrequency, and 2. is the azimuthal harmonic

number. Moreover , the stability analysis is carried out for eigen—

frequency near multiples of the mean P—layer rotational frequency , i.e.,

The Maxwell equations for the perturbed fields become

1
Within the context of Eq. (33), the perturbed electromagnetic fields

can be expressed as

(35)
B
2. 

(r)~ .

I’

• Fourier decomposing the perturbed fields according to Eqs. (34) and

(35) , the and Maxwell equations can be expressed as

~~~~~ _ _



-

~~ I
16I I

E
2.r 2.

2 2
r
2/c 2_L2) ( 3/ 3r)

~
2 2 2  2 2 — l ~—4rd.r ui(w r —9. a )

(36)

where the function 3(r) is defined by

•(r)=ir
~ 9.0 ( r )/ i  , (37)

and J
9.~

(r) is the perturbed radial current density .

After some straightforward algebra, the perturbed ion layer

distribution function can be expressed as~~

-. 3f° O
f
b2.

(r,
~
)=e 

~~~~~ J 

dT expC.-i[wt—L (O ’-e)]}

(38)

x1(~
?_w0) (i9.6 + r 

- 
(~2.r 

+ ~~ B2. )vtJ

where v t’—t . In obtaining Eq. (38) , use has been made of 3U/3~=

where 
~r 

and are unit vectors in the r and 8

directions, respectively. In Eq. (38), the trajectories, ~~‘(t ’)

and ~~‘(t ’) satisfy

d , , d e. -
~~ v~~~0(

~~
)

where ~ ‘(t’—t)—~ , and ~ ‘(t ’— t ) — v . The term E 2.r+V&B9. Ic in Eq. (38)

can be further simplified . Makin g use of Eq. (36) we obtain

+ .
~~~~~ 

B9. (r) —f- 3 . (39)

Since the eigenfrequency of the perturbation is given approximately

• by w~ 2.w8, Eq. (39) can be approximated by

• - —~~~~~~~~~ • • __________________

• 
• T •~~~~~

_ _ _ _ _ _  _ _ _ _  •— - .~~~-~ -- - .-•-—
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(40)

The evaluation of the orbit integral in Eq. (38) is generally

very complicated. However, for present purposes, we assume low—

frequency , long—wavelength perturbations charac terized by

2 2I w—iw 8 I <<U

(41)

where a is the half—thickness of the layer defined in Eq. (23).

Within the context of Eq. (41), it is valid for a thin layer to

approximate

(r ’)=j(R
0
) ,

(42)
e ’=e+[w

0
+(v~ /R0)cosci]t

where v~ is the perpendicular speed in a frame of reference rotating

with angular velocity w
0. Moreover, v1 is related to the effective

• energy variable U by

U=(mi/2) [v
~+w~

(r_R
0

) 2 ] , (43)

with v0—rw8—v~cosa [see Eqs. (3), (11), and (21)]. Furthermore,

the perturbed ion layer distribution function can be simplified as

0evJ
cosci 

~j y— 
J 

dtq exp {—i[ wi— 2.(0’— e ) ] }  . (44) $
0 —

~~~

Substituting Eq. (42) into Eq. (44) gives

2.(v~ /R0)cosa

~
j — 4 ( R 0) w—2.w 8 ) — (zv ~IR0)c osa . (45)

~•
~~~~-~~

-- -- --  —
•
~~

L - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
: ~~~~~~~~~~~~~~~
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E .1
The perturbed surface charge density ab9. for a very thin ion

layer (a<<R
0
) is defined by

B 2,r

— 

~ 

2 
dr 

f 
dci J’ dv~ f 

d v f b9.(r ,
~

) . (46)
R1 0 0 -=

Substituting Eq. (45) into Eq. (46), and making use of vx41re2
%
R
Oa/m

i
c,

it is straightforward to show that

vR.
2
c
2
$(R )/ R3

— —  (47)b& 2w 
(w—&w

9)
2—9.2w

2(a/R
0
)
2

where use has been made of Eq. (23). Equation (47) is valid for

perturbations about a very thin layer (a<<R
0
).

1~~~~~

- a - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



IV. ELECTROMAGNETIC STABILITY PROPERTIE S

A. General Eigenvalue Equation

As discussed at the beginning of Sec. II, the background plasma

components (j~’e,i) and layer electrons (j”e ’) are treated as cold (Tj~O) ,

macroscopic fluids immersed in an axial magnetic field B°(r)~~~,

where B~(r) is approximated by

, O<r<R~ ~
0
B (r)—B

0 (48)
1 , R <r<R ,• 0 a

for a thin layer. The momentum transfer equation and the continuity

equation for each cold—fluid component can be expressed as

(L. + .~~)v = ~!i. (
~ 

+

(49)

where n~(~~t) is the density , V~(~~t) is the mean velocity, and e
j

and m
j 

are charge and mass , respectively, of a particle of species j.

As illustrated in Fig. 5, the stability properties of the layer—

plasma system are investigated for perturbations about the step—function

plasma density prof iles specified by

1 , 0cr<R ,

n
j
(r)=n (50)

a , R0<r<R

for j—e,i. Here ci is an arbitrary constant. To make the stability

• analysis tractable, the following simplifying assumptions are also made.

-~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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(a) The P—layer is immersed in a dense plasma background , i.e.,

(51)

which is easily attainable in the parameter regimes of experimental

interest.

• (b) The perturbed charge density of the layer ions can be represented

by the surface charge contribution given in Eq. (47), which is

valid for a sufficiently thin layer (a<<R
0
) and dense background

plasma (n,~,<n).

• (c) The influence of current and charge perturbations associated

with the layer electrons are neglected in the stability analysis.

Although this is a good approximation for an infinitesimally thin layer

with a/R0+O, we expect some modifications to the stability behavior

associated with finite layer thickness.

For perturbation with k 0 , Eq. (49) can be linearized to give

_iwn
~
(r) 

~~~~~~ 
[rn

~
(r) V

jr
(r)] _i

~~~
n
~

(r)V
j8

(r) L
_iU

~j r
(r)_ c

j wcj (r)
~ j &

(r) = 
~~ ~~

(r) (52)

_ iwV
j0

(r)+
~j wcj (r)V jr (r) _i ;i~~ ~(r)

wh ere 9. is the azimuthal harmonic number, j—e,i denotes plasma species ,

and use has been made of V~~(r)_V~~(r)=O for j—e,i. In Eq. (52),

cf’sgn e
j~

TI , O<rcR
0

w~j
(r)_ w

~j (_eBø/mj
c)x (53)

H 1 , R0<r<R
~ ,

is the cyclotron frequency , Z~
(r) and n

j
(r) are the perturbed fluid

~. .i~~~ ~~~~
•
~~~~~~~~

— 
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velocity and density, and the abbreviated notation ~,(r)s’~4,9.(r) has been

introduced for the perturbation amplitudes. The perturbed radial

electric field Er(r) in Eq. (36) is calculated self—consistently

from Eq. (52) and the definition of radial current density

r 0 ”

~~~~~~ 
L ej nj

(r)V j r (r)
j=e,i

Defining

(54)

we obtain
22 w (r)

l+~ (~~~~ ) ~ 
~
“
~2 ~~~~~ ‘v
i

2

— —
~~ 

— 
~~~~~~ w~~(r) cj

wcj
(r) 

~ 
...

— “3r “ ‘Zc 1~~ 2 w r 4’ ’
I Vj

where v
~
=w —w

~1 
(r) and (r) is the plasma frequency—squared defined

by

1 , O<r<R
2 “2 2 0

w
1
(r)=w

1
(—4lT e n/m

1
)x (56)

ci , R <r<R .
0 a

4.

• Poisson’s equation for the perturbed electric field can be

expressed as

~f- [r~~(r) ] + 
~~~~ ~

(r)=4w
~b~

(r_R
O
)+41r

~
e
I
n
j
(r) 

‘
r

where the surface charge density °b is defined in Eq. (47).

Eliminating Vjr(r) and V
10
(r) from Eq. (52) in favor of n~ (r)~

and substituting n
j
(r) into Eq. (57) gives

~ 
- ~~)

j Er(~~~ +4(1~~ 
w~~ (r)) 

~(r)

— 
~~ 

(r)~ 
~~~~~~~ ~~ ic

j
w
cj

r
~~}

______________________ ~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~ VJ
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(r)
+- &  [if + E ( r

J~ 1{ 
T~ [ c .w j(r)]}

22. a
+ 2 2 2 2 d (r—R0) , (58)

(w—9.U
0
) —t U (a/R

0
)

where v
~
4ne

2
%ROa/ mi

c is Budker ’s parameter for the layer ions. It is

useful to introduce the abbreviated notation

2

S (i- ~=V ~J —l‘ ‘~~~~~ 2 ‘j ‘vi
w
2 (r)  C U  (r )

S2
(r ,w)=~ ~~~ 

, (5 9)
i

22 w ( r )
~ p1

2 .

I

Eliminating 
~r
(r) from Eqs. (55) and (58), and making use of the definitions

in Eq. (59) gives the eigenvalue equation

r -~-~-~~ ! (l~~2) 2~~jr 3r \ S3 3r1 r S
3 3r

— 4 :i 
[

~~~~~~
)

2 s
2 

— +

= -
~~ 
; 

~

_- {

~~~ 

[l+~(~~ )J}+47
ra
b
S(r_R

O
) , (60)

where ab is defined in Eq. (47).

The eigenvalue equation (60) is fully electromagnetic and has

been derived with no a priori assumption on the relative strengths of $

the transverse magnetic and electric perturbations. If we formally

take the electrostatic limit in Eq. (60) with r
2
w
2
/9.
2
c2-’O, then ~÷1

[Eq .  ( 5 4 ) ] ,  S
3
+l [Eq. (59) 1 , E ’+•••34~I 3r  [Eq. (55)], and Eq. (60)

13s implif ies to give the f a miliar f o r m
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.
~~— - ~~-- 

(s ~~~~~~~~~~~r3r~~~l 3r/ 2 l~r
(61)

4~ ; 
-
~~ 

S
2+4trab~

S(r_R
O
)

Of course , str ictly speaking, the electrostatic eigenvalue equation in

• Eq. (61) is valid only for a low—beta layer—plasma system with negligible

magnetic field depression.

B. Approximate Eigenvalue Equation

For a layer—plasma system with arbitrary degree of field reversal,

the electrostatic eigenvalue equation (61) is not valid and it is

necessary to make use of Eq. (60). For the low—frequency (U1~4w
0
)

perturbat ions considered here , it follows that
2 2• 

~~~~ R~w8 
<< 1 , (62)

• and hence that ~ can be approximated by

~=1 (63)

in Eq. (60). On the other hand, for arbitrary degree of field

reversal, it is necessary to retain terms proportional to (wr I9.c) 2
~w 2

1Iv~ .

We therefore approximate Eq. (60) by

r~~~)~~4~~~~[l~~ (~~~~~~
(

~~~~~~~
s
~~)}

(64) 
$

= 
~~~~ (~~~)-f~~~ b~~~

1—R
o ,

wher e S1 and S
2 
are defined in Eq. (59), and

22 w ( r )
s3 = i. + (~~~

-) 
~ 

• ~12 . (65)
I

L~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _____
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1
The eigenvalue equation (64) is generally difficult to solve

analytically. However, a formal dispersion relation that determines

the complex eigenfrequency w can be obtained in a relatively

straightforward manner. Since the perturbed azimuthal electric

f ield 
~9.e

(r) is continuous across the layer (rR
0
) ,  the function

t(r) is also continuous at r R
0
. A further boundary condition on

3(r) in Eq. (65) is determined from the discontinuity of (3+/3r) at

r R 0. For convenience of the subsequent analysis, we def ine the wave

admittance b~ as

b_
~

(r 3c t / 3 r ) r, i ~
_ IZ 6 (R0)

(66)

• 
b+ — (r3

~ / 3r)
~~ R+/2.4 (RO) ,

where R~ denotes lim~~~~(R
0
±~S). Multiplying Eq. (64) by r and

integrating with respect to r from R
0—S to R0+S (with 69.0

+
) gives

22.c2v/R ~ —i
2 2 2 2 —D (w) , (67)

(w—tw
0
) —t w (aIR 0)

• where D( w) is def ined by

— 
b S (R+,w)+S (g+,~)+ 1 0  

+ 
2 0

S3
(R 0, w)

(68)
b S 1(R~ ,w )—S 2 (R~ ,w)

+
S3

(R0,U)

and use has been made of the def inition of 
~b 

[Eq. (47)].

- 
• 

Equation (67) constitutes the desired dispersion relation

for the complex elgenfrequency w. In order to evaluate closed

express ions for b±, however , we emphasize that it is necessary to

solve Eq. (64) for the eigenfunction •(r). Although this generally

requires a numerical analysis of Eq. (64), in Sec. V analytic

- 

T 
_ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _

- --- ~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -——- - --• -—~~~~~~~~~~~ •——~~~~~~~~~~~~~~~~~ 
-
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solutions for 4 (r) are obtained in two limiting regimes of experimental

interest.

In concluding this section, it is instructive to solve Eq. (67)

iteratively for eigenfrequency U in the vicinity of 9.w
0
. If it is valid

to approx imate w 9 . U 0 on the right—hand side of Eq. (67) ,  we obtain

2 2
(w—tw

0
)

2
=L

2
w~ 

-
~~

-
~~

- — 29. -
~

-
~
-- D(Lw

0
) . (69)

R
0 

R0

Making use of U2 v
1
/a 2TIm

i
a [Eq. (23)], it follows from Eq. (69)

that

2t’vD(tw
0
)>v~ / c 2 (70)

is a necessary and sufficient condition for instability.

Equation (69) constitutes one of the main results of this paper

and can be used to investigate stability properties for a broad range

• of system parameters. In this regard , we emphasize that Eq. (69)

has been derived with no a priori assumption regarding the size of the

electromagnetic coupling parameter

2 2
w . (r)

K= (1 2.)~~ ~J . (71)
i

For general value of K , the eigenvalue equation (64) must be solved

numerically to determine the wave admittances b~ [Eq. (66)]. However,

J in the limiting regimes where IKI<<l or KI>>1 , clos ed analytic express ions

for 3(r) (and hence b±) can be obtained in a straightforward mariner.

For a low—density background plasma consistent with I K I < < l , the

electrostatic approximation is valid and the corresponding stability

properties
13 have been investigated previously by the authors for a

weakly diamagnetic configuration . In the subsequent analysis, we therefore
I

1
— -‘~~--.----- ~~~~ —.

-
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investigate stability properties for a high—density background plasma

with KI>>1 for 0<r<R0, and arbitrary degree of field reversal.

IL 
_ _ _  _ _ _ _ _ _ _ _ _  

Ii
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V. STABILITY ANALYSIS FOR A HIGH-DENSITY BACKGROUND PLASMA

A. Eigenvalue Equation

In this section, we obtain closed expressions for the wave admittance

b~ [Eq. (66)], and the results are used to investigate the dispersion

relation in Eq. (67). Making use of ~~l and Eqs. (53) and (56), it is

straightforward to show from Eq. (64) that the eigenfunction 4(r)

satisfies

(72)

- • at all radial points except r R 0 . In the limiting regimes where

Kk<l or f KI>>l , the eigenvalue equation (72) can be simplified to give

-i (~~ h r ~~~~ _ 4 ) ; r = 0  , IKI<<i

2 ( 73)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , j K j > > l

wher e use has been made of S
3 1 for Kl< cl , and Sf>l for KI>>l .

For w 
~/ ~~

2
~

>>
~

- and m~/m >>l, the quantities S~ and S
2 in Eq. (73)

can be approximated by

2U) ( r )
U s =  ~ pi (74)2 w

~j
(r )  1 w

i
(r )  

v~ (r )

provided (l_v)
2
>>(tm

e/ mj)
2
. [This is a very weak limitation on the

range of v for which the subsequent stability analysis is valid .

It essentially allows for all values in the range 0<v< o~, except

v—i. ] Substituting Eq. (74) into Eq. (73), we obtain

L 

-—

~~~~ 

- _ •
~~~~~~~~~~~~~ • . :~~~~~~~~~~~~~~~~~~ •

• • • • •— --.~~~~-~~~~~- ~ —~~~~ ---~-
_____________ __________ —

-
~• ~~~~~. — —. —~~ ---. ~~
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2

[rh~~~~~~
_
~~~ (i t~~~(r)) 

~~~~~~~~ ~~r~—0 , (75)
r ci a

for KI>>l .

From Eq. (37), it is straightforward to express Eq. (75) as

(!- ~ r f — + p~) ~~( r )~ O , ( 76)

where
f.”.I 

i
(r )

“

(77)
( ~ 1/2

2~ 2w
q =  1+9. 1 —

~
‘ 

tw
~i

(r)

In obtaining Eq. (76), use has been made of the property that

• and U i
(r) are uniform except at r=R

0 
[see Eqs. (53) and (56)]. The

solution to Eq. (76) is a linear combination of J
q(~

r) and

Nq (Pr)~ where J
q(~

r) and N
q(Pr) are the Bessel functions of the

first and second kind, respectively. In the subsequent analysis, it is

convenient to express Budker’s parameter (v) and the angular velocity

(w
0
) in terms of the compression ratio TI [see Eqs. (25) and (26)]

v=(l-n)/(l+TI)

(7 8)

B. Rectangular Plasma Density Profile (cz 0)

— As a simple limiting case, we examine stability properties in

circumstances where the plasma density outside the layer is identically

zero , i.e.,

_ _ _ _  ~~ _ _ _  _ _



.
~

• ••
~ 

• - - -

29

Li
a = 0 .  (79)

In the vacuum region (R
0
<r<R), it follows that )KI<<l and the solution

for 4(r) has the simple form [Eq. (73)]

(R
0/ r ) 9

~—(R r/R
2
)
2.

4(r)=3(R0
) , R

0
<r<R . (80)

l—(R
0

/ R )  C

The wave admittance b+ can be determined by substituting Eq. (80)

into Eq. (66) which gives

~~~~~~~~~~~~~~~~~~~~ . (81)

For a dense background plasma core with KJ>> 1 in the range O<r<R0,

the wave admittance b_ is determined by solving Eq. (76) for 3(r).

Approximating wLw
0 in Eq. (77) and making use of Eqs. (53) and (78),

we find that the index q can be expressed as (for O<r<R
0
)

~~~~~~~~~~~~~~~~~~~

For analytic simplicity, q is assumed to be real in the subsequent

analysis, which restricts 11 to the range

0<~<l , for n>0

(82)

• l<TI< 9.2/(l+29.2) ,  for ~<0

Within the context of Eq. (82), the physically acceptable solution to

Eq. (76) can be expressed as

I8
( r )~ AJ

q
(~r). 0<r<R

0 
(83)

where A is an arbitrary constant, P _ (w/c)(w
~i

/ I n h i
~~i
)
~ 

and

(41rn
~
e2/ mi)

”2 is the ion plasma frequency. Substituting Eqs. (37)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and (83) into Eq. (66) yields

1 ( pR
0J ’ ( pR

0) 1
b (w) — — I] . + 1 , (84)

— 
~ I T

q~1PR0~ J

where the prime (‘) denotes (l/p)d/dr .

After some straightforward algebraic manipulation of Eqs. (59),

(68) , (81) , and (84) , the dispersion relation is given by

2tc2v/R 2 
R
22.+R2~0 _ C 0

2 2 2  2 29. 22 .
(
~~

—
~~w A ) —t w (a/Rn) R —R,,r v C V (85)

+ f t c  \
2 

~ ____ ~ 
pR
0J’ (PR0)

~wR0) 
~~~~~ 

2. tJ
q (PR~ )

wher e v and w
0 can be eliminated in favor of the reversal parameter TI

by Eq. (78).

• For a dense background plasma with IKI r R
_ 

~p
2R~~>>l , it is

0
evident that the term proportional to J~ / J q dominates on the right—

hand side of Eq. (85). In this regard , we approximate Eq. (85) by

2tvc/R 2w0 
=~~~ pi ( _ g~~ (86)

(w— 2.w9)
2
—9.2w~ (a/ R

0
)
2 fl(l+TI)

~
)
~j \•Jqj

- 2 1/2 ”where w ~=(4wn e  /m1) , U) . e B
0
/m~c. and use has been made of Eqs.

(53) , (56) , (77) , and (78) , and w~9.w0.

For convenience of notation in the subsequent analysis, we

introduce the dimensionless quantities

aw
pi (~~~
c \J q w~~w0 (87)

a~ w
p2. ci
c dU)\J

q 
~~~~~ 

,

and the normalized Doppler—shifted complex eigenfrequency

(88)

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _
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The quantity w
2
a
2/R

~
a12T/m

i
R
~ 
occurring in Eq. (87) can be expressed in

terms of the reversal parameter n by making use of Eqs. (22), (23),

and (78). After some straightforward algebra, we obtain

w 2a2IR~~w 2
~ (a/ R 0) ( l — ~

2
)I4  . (89)

Substituting Eqs. (87)—(89) into Eq. (86), and Taylor—expanding

(J~j/Jq) in Eq. (86) about w 2 . w 0 ,  we obtain the dispersion relation

+ ~
2 

— U -
~ -— ~2 + 2A

~C~~~~ 
— — 0 , (90)

— where
2

~~~~ &.~~
l T I  

• (91)

The parameter C in Eq. (90) is an oscillatory function of plasma

density. It is evident from Eq. (90) that the parameter C plays a

decisive role in determining stability behavior. Moreover,

• the system can be stabilized by increasing the azimuthal harmonic

-~~ ¶ number 2., since the terms proportional to 2. in Eq. (90) have a stabilizing

influence. The stabilization associated with sufficiently large 2. is

provided by the effective transverse temperature (T) of the layer ions,

and hence is associated with the finite layer thickness a
~

(2T/ m
iw~
)
~~

2

[Eq. (23)]. Moreover, shown in Eq. (32), the quantity T is directly

related to the canonical angular momentum spread (t~) for the class

of rigid—rotor Vlasov equilibria described by Eq. (2). Therefore, the

stabilization provided by the transverse temperature T is also assoc iated

with the finite spread in canonical angular momentum.~~ This effec t

is most pronounced when the reversal parameter r~ is close to zero [Eq. (90)].

Specif ic stability properties , determined numerically from Eq. (90),

will be discussed in Sec. V.C.

I 
_ _ _ _ _ _ _ _ _ _ _  ______________________ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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C. Stability Analysis for Arbitrary ci

In this section, we investigate stability properties for the case

where the plasma density outside the ion layer (R
0
<r<R ) is sufficiently

high that

2 2 -2w R  w0
2 2  -2 ~

IC  U) 0ci 
(92)

=J KJ R+ >> 1
0

Here ~ ~~eB0/m~c is the ion cyclotron frequency, cm is the plasma

density outside the layer, and cz
~

2

i
=4wcin e

2/m
~ 

is the associated

ion plasma frequency—squared. The required solution to Eq. (76) in

the range R
0
<r<R is given by

E
e
(r)_B[J

q (Pr)N
q
(pR

c
)_J

q
pRc Nq prfl (93)

where B is a constant and use has been made of the boundary condition

E
e
(raR

c
)_o. Substituting Eqs. (37) and (93) into Eq. (66) yields 

-

1 pR0 J (pR
~

)N ’ (pR o
)_J ’ (pR 0)N (pR o)b~~(w) = — + —i— Jq (PR0)N q (PR )_J (PR )N (PR 1 5 

. (94)

The dispersion relation can be derived by substituting Eqs. (84)

and (94) into Eq. (68). After some straightforward algebraic manipulation,

we obtain the approximate dispersion relation

2 
•

2w V 
—2.(b +b ) , (95)

(w—9.w8
) ~~

• where the sum of the wave adinittances, (b_+b+), can be approximated by
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p R
0J

’ (p R
0
)

b (w)+b~ (w) = 2.j (pR )
q— — 0

(96)
(P+

R
O\~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L 
~ 
J
q+ +

R
o q + + Rc

)_3
q + + Rc~~ q+~~+~o)

In Eq. (96), P_~
_ (U/c)(w

~i
/I TI IU )

~i
)I p+

=_ (w/c)(ci
u/2

~pi/~ci)_ fTIk
1
~
l2
p_ ,

and q~~ (1+t2 (2+n)] .  In deriving Eq. (95), use

has been made of Eqs. (65), (74), and (92). Moreover, in obtaining

the expressions for q~, use has been made of Eq. (77), and w L w 8—

_2.(l+n)
~~ i

/2. Since the eigenfrequency w is very close to Lw0, we

Taylor—expand the right—hand side of Eq. (95) about w—t~ 8,  retaining

terms to f irst order in (w— Lw 8) .  After some straightforward algebra ,

Eq. (98) can be approximated by

-
• 22~ w v0 ~

, 
~
, ., — [b (w)+b (U))]

‘. S. — + U ) t U )(w—Lw 8) —2. w (aIR0) 0r (97)

-
• — {-I; (b +b÷) )  (w-tw

~
) ,

‘4 where w
0 
and w2 (a/R0) 2 are defined in Eqs. (78) and (89) , respectively.

The growth rate ~=Imw and real oscillation frequency Rew have

been obtained numerically from the cubic dispersion relation (97)

for a broad range of system parameters TI , ~~ iRo/c~ 
cx , t,~ind RO/RC

. In

the remainder of this section, we summarize several features of the

stability properties determined from Eq. (97). From Eqs. (41) and (78),

the real frequency Rew can be approximated by

Rew 2.w9~~ t(l+TI) & i/2 . (98)

The real frequency Rew determined numerically from Eq. (97) is

very close to the value in Eq. (98). In this context, we only

present numerical results for the instability growth rate y .

11 
_ _

- — - ‘  — — - - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In order to illustrate the dependence of stability properties on

the degree of field reversal , we calculate the wave adinittances and

the instability growth rate. Shown in Fig. 6(a) is a plot of

(b +b+) 9. versus n, for £ 2 , ~~2.R0
/cI’4 and cx—O . [In the limiting

case of no plasma outside the ion layer (cv”O) , the dispersion relation

(97) reduces identically to the dispersion relation (90) obtained in

Sec. V.B.] It is evident from Fig. 6(a) that the curves representing

(b +b+)~ _9. become more vertical and the distance between curveswe
decreases rapidly as n decreases (or, equivalently, as Budker’s

parameter v increases). For TI<O.3, it is readily shown that (b_+b+) =~~U) U)
0

can be approximated by

• 
(b +b~) 2. -(b ) 9.~~~ 

— (2~i 
tan ~~

l-TI) 
~ (1 + 4/~ )~~ 2 

-

(99)

for the parameters in Fig. 6(a). In obtaining Eq. (99), use has been

made of Eq. (77) and J~(x) (2/irx)hI’2cos(x_nIr/2_ir/4) for large x.

Equation (99) provides a good description of the behavior in Fig. 6(a).

In this regard, we do not plot (b_+b+) for TI<O .2- Figure 6(b)

shows a plot of the normalized growtn rate versus n obtained from

Eq. (97) for cg—0 , R0/R —0.5, a/R
0
=O.05, and parameters otherwise

identical to Fig. 6(a). Several points are noteworthy in Fig. 6(b).

First, the system is stabilized when the reversal parameter TI approaches

zero. This feature has been predicted analytically in Sec. V.3.

Second, the growth rate curve exhibits a repetitive behavior, with the

max imum growth rate for each unstable zone decreasing as TI decreases.

Third, the maximum growth rate for each zone occurs at a value of n

• corresponding to (b +b+)9. 
0 [Figs. 6(a) and (b)]. Finally, whenwe

instabili ty does exist, the maximum growth rate can be a substantial

• fraction of ion cyclotron frequency &ci•

- 1 - -  
~~ 

-
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Shown in Fig. 7(a) for L’2 and in Fig. 7(b) for L 4  are plots of

normalized growth rate y/w~~ versus the reversal parameter TI [Eq. (97)]

forct—O.2 and parameters otherwise identical to Fig. 6(b). Comparing

Figs. 7(a) and 6(b), we note that the stability properties are almost

identical for c z O  and ci~0.2, although the maximum growth rate does

decrease slowly as ci increases. We therefore conclude that the

influence of plasma outside the layer on stability behavior

is weak, at least when a is sufficiently small (ci~O.5, say).

Moreover, we also note from Fig. 7 that the width of

the instability zones is reduced for increasing values of azimuthal

harmonic number 2.. Furthermore, high—harmonic perturbations are easily

stabilized as TI approaches zero.

• The dependence of stability properties on plasma density is

illustrated in Fig. 8(a) for L—2 and in Fig. 8(b) for 9.4, where the

normalized growth rate 
~
‘
~ci 

is plotted versus 
~~i

R0/c for n’0.82

and parameters otherwise identical to Fig. 7. Note that the growth

rate is a decreasing function of 
~~ iR01~~ This feature is also evident

from Eqs . (87) and (90) for ct O. We further note from Fig. 8(b)

-
• 

that the system is completely stabilized above some critical value of

w 2.R0/c. For example, from Fig. 8(b) , the Z.4 perturbation is stable

• • for ~~1R0/c~7. In this regard, we conclude that the layer—plasma

configuration can be completely stabilized provided the plasma density

is suff iciently high.

Of considerable interest for experimental application i~ the stability

behavior for a field—reversed configuration with TI<O. Figure 9 shows

a plot of normalized growth rate versus n obtained from Eq. (97) for

L. 

L—2 [Fig. 9(a)] and L—4 [Fig. 9(b)], and equilibrium parameters

w~1R0/c~’l01 ci—O.2, R0/R
~
=O.5, and a/R0—0.05. As discussed in Sec. V.3,

- - - • n - ., ~~~~~~~ -~~~ -.-. •
‘~~ • -~

--
~~..~~ tr
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for n<0, Eq. (97) is valid only when —l<~<— 2.
2/(l+2&2) [Eq. (82)],

and IK I r=R_>>l~ 
Moreover , the electromagnetic coupling parameter

0
IKI r_R•_ decreases to zero when n approaches minus unity. In this regard ,

0
the plots in Fig. 9 are presented only for the range —O.85<~<—O.5.

We note from Figs. 9(a) and 9(b) that the instability growth rate

decreases considerably as m l  approaches 0.5. The stabilization H

for low value of Ii i is associated with finite beta electromagnetic

effects. Moreover, this stabilization is most pronounced for high

azimuthal harmonic numbers [compare Figs. 9(a) and (b)]. We conclude

from Figs. 7 and 9 that the system is most stable when the magnetic

compression ratio TI approaches zero.

Finally , we conclude this section by pointing out two areas

in which the present analysis can be extended in a relatively

straightforward manner. First, the analysis can be generalized

to allow for a—dependent perturbations. Second, stability properties

can also be investigated for arbitrary plasma density [i.e., arbitrary

value of jK~ defined in Eq. (71)] by solving the eigenvalue equation

‘I (64) numerically in parameter regimes where the solution is not accessible

analytically. These two generalizations are currently under investigation

by the authors.

• • 
_ _
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VI. CONCLUSIONS

In this paper , we have investigated the electromagnetic stability

properties of an intense P—layer Immersed in a dense plasma background .

The equilibrium and stability analysis was carried out within the

framework of a hybrid Vlasov—fluid model in which the background plasma

electrons and ions are described as macroscopic , cold fluids conf ined

by the axial magnetic f ield B
~
(r)

~~~
, and the layer ions are descr ibed

by the Vlasov equation. Moreover, the equilibrium and stability properties

were calculated for the case in which the background plasma has a

step—function density profile and the layer ions are described by the

rigid—rotor distribution function in Eq. (2). Various equilibrium

properties were calculated in Sec. II. One of the most important

features in the equilibrium analysis for a thin layer is that

Budker’s parameter v for the layer ions is directly related to the magnetic

compression ratio n by v.’(l—TI)/(l+fl). Electromagnetic stability

- • properties were investigated in Secs. III—V , assuming that all

perturbed quantities are independent of axial coordinate (~ /az=0).

A formal stability analysis was carried out in Sec. IV. Equation (69),

when combined with Eq. (68), constitute one of the main results of

this paper and can be used to investigate stability properties for

a broad range of system parameters. A detailed analytic and numerical

investigation of electromagnetic stability properties was carried out

in Sec. V for a dense background plasma. It was found that the

effects of (a) the equilibrium magnetic field depression produced by

the P—layer, (b) transverse magnetic perturbations (~~~0), (c) small

(but finite) transverse temperature of the layer ions, and (d) the

dielectric properties of the background plasma , all have an important

influence on stability behavior. For example, for a dense background

-
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plasma , the system can be easily stabilized by a sufficiently large

transverse temperature of the layer ions.
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FIGURE CAPTIONS

Fig . 1 Equilibrium configuration and coordinate system.

Fig. 2 Density profile (Eq. (9)1 for the layer ions.

Fig. 3 Axial magnetic field profile [Eq. (14)].

Fig. 4 Sketch of the envelope function ~(r) versus r [Eq. (11)]

with ~j,(R1
)=O=~ (R

2) and [aip/ar] R 0
0

Fig. 5 Electron and ion d~.tisity profiles [Eq. (44)] for the background

plasma.

Fig. 6 
- 

(a) Plot of sum of wave a~dmittances (b +b
+
)

9. 
[Eq. (96) ]we

• versus TI ,  for Z=2 , w~ 2.R0/ c 4  and ci=O. (b) Plot of normalized

growth rate versus ri [Eq. (97) ] for R
0
/R =O.5, a/R~ç0.05,

and parameters otherwise identical to Fig . 6(a) .

Fig. 7 (a) Plot of normalized growth rate versus Ti [Eq. (97) ]

for L 2 , ci=0.2 , and parameters otherwise identical to Fig . 6(b) .

(b) Plot of normalized growth rate Y/ W ci versus Ti [Eq. (97) ]

for L=4 and parameters otherwise identical to Fig . 7(a) .

Fig. 8 Plots of normalized growth rate versus w~~ R0/c [Eq. (97) ]

for (a) Lt ,2 and (b) L 4 , with TI=O.82 and parameters otherwise

identical to Fig. 7.

Fig. 9 Plots of normalized growth rate 
~
‘
~ci 

versus TI [Eq. (97) ]

for (a) L—2, and (b) L—4, with 
~~i

R
0/c 1O, ct O.2, R

0
/R O.5

and a/R0”O.OS.
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