
	0F A070608		1						20 ²⁷⁴				E dist
				· ormanistic 2022/2008 2020/2022 2020/2022 2020/2022	NUTRICIAL CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR			Annual Contractor			10000		
		in <u>1</u>							-				
			-		 International control of the second se		A second design of the second			ADD- The Address of the Address of t	A Contraction of the second seco		THE CONTRACT
Service and	an a	1111111	anna ann ann ann ann ann ann ann ann an		. Manager		A A A A A A A A A A A A A A A A A A A	THE THE PARTY		-	A CARACTER STATE		**************************************
ALLER ARGA	A STATE STAT	CONCERNENT OF THE OWNER				1000 1000 1000 1000 1000 1000 1000 100	888		•			个	N.
			Water -					END DATE FILMED 8-79					

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature: It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I REPORT NATIONAL DAM INSPECTION REPORT

Accession For NTIS GRA&I DDC TAB

Unannounced

By_

Dist

Justification

Distribution/

Aveilahi ity Codes

A.ailand/or

special

NAME OF DAM: Cabin Creek Dam STATE LOCATED: Pennsylvania COUNTY LOCATED: York STREAM: Cabin Creek DATE OF INSPECTION: October 31, 1978

ASSESSMENT

The assessment of Cabin Creek Dam is based upon visual observations made at the time of inspection, review of available records and data, hydrologic and hydraulic computations, and past operational performance.

The dam is considered to be in fair condition because of the seepage and wet zones, erosion, and large trees at the toe. The existing spillway and reservoir are capable of controlling approximately 18% of the PMF. Based upon criteria established by the Corps of Engineers, the spillway is termed seriously inadequate. If Cabin Creek Dam should fail due to overtopping, the hazard to loss of life and property downstream from the dam would be significantly increased from that which would exist just prior to overtopping. As a result of the seriously inadequate spillway the dam is considered to be an unsafe non-emergency dam.

Studies and remedial modifications should be conducted immediately to increase the ability of the spillway and reservoir to safely control the PMF.

The absence of design data, the 2:1 downstream slopes and the seepage noted 8 feet above the toe make the long range stability of the embankment uncertain. An evaluation of the embankment stability using current criteria should be performed in the near future to substantiate embankment stability. Future studies should be directed at locating and monitoring the seepage in the embankment with the installation of piezometers.

In addition to the above, the following recommendations should be instituted immediately:

1. The owner should monitor the wet areas and seeps and take necessary remedial measures if the seeps are found to be increasing.

2. All low areas on the crest should be filled.

3. A detailed geologic study should be made to determine if a seismic stability analysis is needed.

4. All erosion gullies should be filled.

5. The debris in the emergency spillway exit channel should be removed. Trees on the highwall should be removed.

6. Silt from the lower intake tower gate should be removed so that the intake can act as an emergency drawdown.

7. Institute a formal inspection program to be conducted at regular intervals with the borough's engineer.

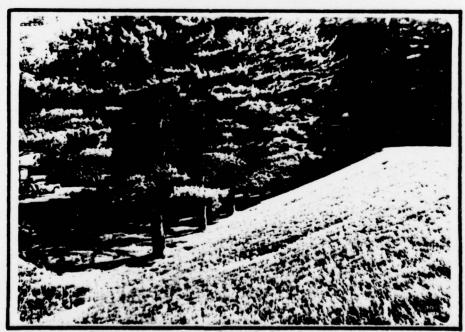
8. A warning system should be instituted to warn downstream residents of high spillway discharges or failure of the dam.

111

SUBMITTED BY: L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS AND ARCHITECTS

RJetty Kimbell, P.E.

K. Chuang


Kuang-hwei Chuang, P.E.

10 Apr 79 Date

K. WITHERS Colonel, Corps of Engineers District Engineer

Overview of crest from right abutment.

Downstream slope from left abutment.

TABLE OF CONTENTS

D	A	C	F
г	A	G	L

SECTION 1 - PROJECT INFORMATION	1
<pre>1.1 General 1.2 Description of Project 1.3 Pertinent Data</pre>	1 1 2
SECTION 2 - ENGINEERING DATA	5
<pre>2.1 Design 2.2 Construction 2.3 Operation 2.4 Evaluation</pre>	5 5 5 5
SECTION 3 - VISUAL INSPECTION	6
<pre>3.1 Findings 3.2 Evaluation</pre>	6 9
SECTION 4 - OPERATIONAL FEATURES	10
 4.1 Procedures 4.2 Maintenance of the Dam 4.3 Maintenance of Operating Facilities 4.4 Warning System in Effect 4.5 Evaluation 	10 10 10 10 10
SECTION 5 - HYDRAULICS AND HYDROLOGY	11
 5.1 Evaluation of Features 5.2 Evaluation Assumptions 5.3 Summary of Overtopping Analysis 5.4 Summary of Dam Breach Analysis 	11 12 12 12
SECTION 6 - STRUCTURAL STABILITY	14
6.1 Evaluation of Structural Stability	14
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS/REMEDIAL MEASURES	15
7.1 Dam Assessment 7.2 Recommendations/Remedial Measures	15 15

v

APPENDICES

APPENDIX A - CHECKLIST, VISUAL INSPECTION, PHASE I
 APPENDIX B - CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION, PHASE I
 APPENDIX C - PHOTOGRAPHS
 APPENDIX D - HYDROLOGY AND HYDRAULICS
 APPENDIX E - DRAWINGS
 APPENDIX F - GEOLOGY

PHASE I NATIONAL DAM INSPECTION PROGRAM CABIN CREEK DAM NDI I.D. NO. PA 336 DER I.D. NO. 67-459

SECTION 1 PROJECT INFORMATION

1.1 General.

a. <u>Authority</u>. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspecting dams throughout the United States.

b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

LasmAci

1.2 Description of Project.

a. Dam and Appurtenances. Cabin Creek Dam is an earthfill dam with a concrete core wall. The embankment is 207 feet long and 23.2 feet high at the maximum section. The upstream slope is 2.25H:1V and covered with riprap. The downstream slope is 2H:1V and grass covered with large trees growing near the toe. The 18 inch wide core wall extends 2 feet into rock and projects 5 feet above rock. The foundation was grouted during construction. The spillway is located on the left abutment. The spillway consists of a 30 feet long concrete weir with a hydraulically operated Bascule crest gate. The spillway exit channel is cut into rock with a dry rubble, earth and rock dike keeping flow in a confined channel. The intake tower is located near the maximum section about 40 feet from the crest. A bridge serves as access from the embankment crest to the intake tower. A 12 inch cast iron pipe serves as the emergency blow off line and water intake line. The intake tower has two intakes at different elevations. ABSTRACT

b. Location. The dam is located on Cabin Creek, approximately 3.1 miles northeast of Red Lion, Pennsylvania. Cabin Creek Dam can be located on the Red Lion, U.S.G.S. 7.5 minute quadrangle in York County.

c. <u>Size Classification</u>. Cabin Creek Dam is a small size structure (23.2 feet high, 180 acre-feet).

d. <u>Hazard Classification</u>. Cabin Creek Dam is a high hazard dam. Downstream conditions indicate that loss of life is probable should the structure fail. See section 3.1e for downstream exposure.

e. <u>Ownership</u>. Cabin Creek Dam is owned by the Red Lion Municipal Authority. Correspondence should be addressed to:

> Carl E. Seitz, Manager Red Lion Municipal Authority Center Square Red Lion, PA 17356 (717) 244-3475

f. Purpose of Dam. Water supply for the Borough of Red Lion.

g. Design and Construction History. The dam was designed by Gannett, Seelye and Fleming Engineers, Inc. and construction completed in 1925. In June 1972, the dam was overtopped causing erosion on the downstream slope. In July 1972, the erosion was repaired and a porous tile drain installed near the toe. In 1973 a hydraulically operated Bascule crest gate was installed and the flashboard system removed.

1. <u>Normal Operating Procedure</u>. The reservoir is maintained at the spillway crest elevation with the excess inflow discharging over the spillway crest. Water for the municipal water system enters the intake tower and 12 inch CI pipe. The flow in the pipe is regulated by valves in the filtration plant near the toe. An average of 1.7 million gallons per day of water is used. In addition to the normal inflow, approximately 1 million gallons per day is pumped into the reservoir from an adjacent watershed.

1.3 Pertinent Data.

a. Drainage Area.

b. Discharge at Dam Site (cfs).

2.63 sq.mi.

Unknown Maximum known flood at dam site (Dam overtopped in 1972) spillway at that time had smaller capacity than at the present time Warm water outlet at pool elevation N/A Drainage facilities low pool outlet at pool elevation - Inlet silted shut None Gated spillway capacity at pool elevation N/A Gated spillway capacity at maximum pool 2055 elevation Total spillway capacity at maximum pool elevation 2055

c. Elevation(U.S.G.S. Datum) (Feet).

2

Top of dam

595.0

	Maximum pool - design surcha Full flood control pool Normal pool Spillway crest	rge 596.0 N/A 594.0 (normal) 589.0 Open full 594.0 Gate closed
	Upstream portal invert drain Downstream portal invert dra Streambed at centerline of d Maximum tailwater	inage facilities Unknown
d.	Reservoir (feet).	
	Length of maximum pool Length of normal pool Length of flood control pool	2,500 1,700 N/A
e.	Storage (acre-feet).	
	Normal pool Flood control pool Design surcharge 208 a	178 N/A t elevation 596.0 - Top of dam
f.	Reservoir Surface (acres).	
	Top of dam Maximum pool Flood control pool Normal pool Spillway crest 10	17 17 N/A 13 gate open - elevation 589.0
g.	Dam.	
	Type Length Height Top width Side slopes Note: Construction drawings	Earthfill 207 feet 23.2 feet 15 feet Upstream 2.5H:1V Downstream 2H:1V show below elevation
	585 slope changes to 2.5H to during field inspection.	1V. Not observable
	Zoning Impervious core	None None es-concrete core wall at foundation Yes
h.	Diversion and Regulating Tun	nel - Drainage Facilities.
	Access	12 inch cast iron pipe Unknown lve in intake tower in reservoir None Valves in treatment facility

3

ľ

i. Spillway.

1

Type Length Crest Elevation

Gates Upstream channel

4

Bascule gate controlled-open channel 30 feet 589.0 open 594.0 closed Yes - 1 Bascule gate Lake - entrance formed by hillside & wingwall Downstream channel Rock cut channel to natural stream

SECTION 2 ENGINEERING DATA

2.1 <u>Design</u>. Review of information in the files of the Commonwealth of Pennsylvania, Department of Environmental Resources (Penn DER) and Red Lion Municipal Authority files, showed that very little engineering data is available for review of the structure's original design. The information available consisted of several original construction drawings. One drawing is available on the Bascule gate. No calculations or summaries are available on the stability or hydrology and hydraulics. The original specifications and specifications on the Bascule gate are in the Penn DER files. Penn DER files contained considerable correspondence particularly on permits, repairs made to the spillway, and in regard to the 1972 overtopping.

2.2 <u>Construction</u>. Construction data of the original dam is limited to several photographs taken during the construction and a memorandum discussing the grouting. Construction specifications are available on the original dam and Bascule gate. This information is located in Penn DER files.

2.3 Operation. There are no formal operating records.

2.4 Evaluation.

0

0

a. <u>Availability</u>. Engineering data was provided by the Division of Dam and Encroachments, Bureau of Water Quality Management, Department of Environmental Resources, Commonwealth of Pennsylvania and by the owner, Red Lion Municipal Authority. The owner made available the manager, his assistant, a caretaker, and the Authority's engineer.

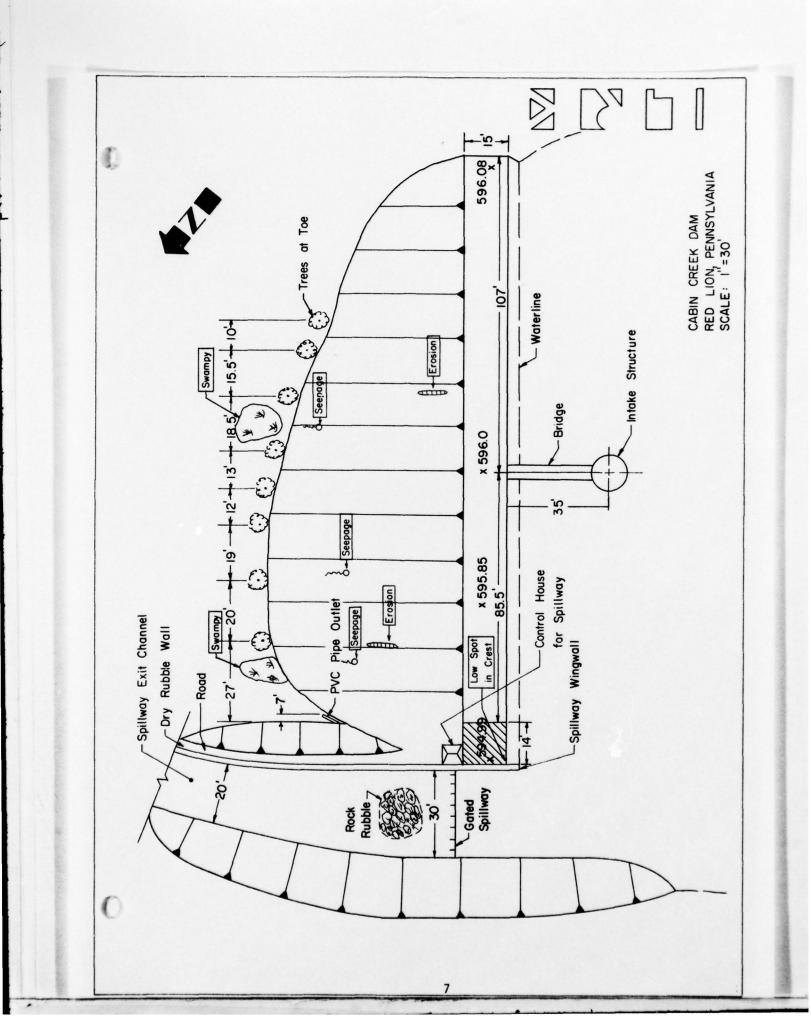
b. <u>Adequacy</u>. The type and amount of design data and other engineering information is limited, and the assessment must be based upon the available data, visual inspection, history, and hydrologic analysis.

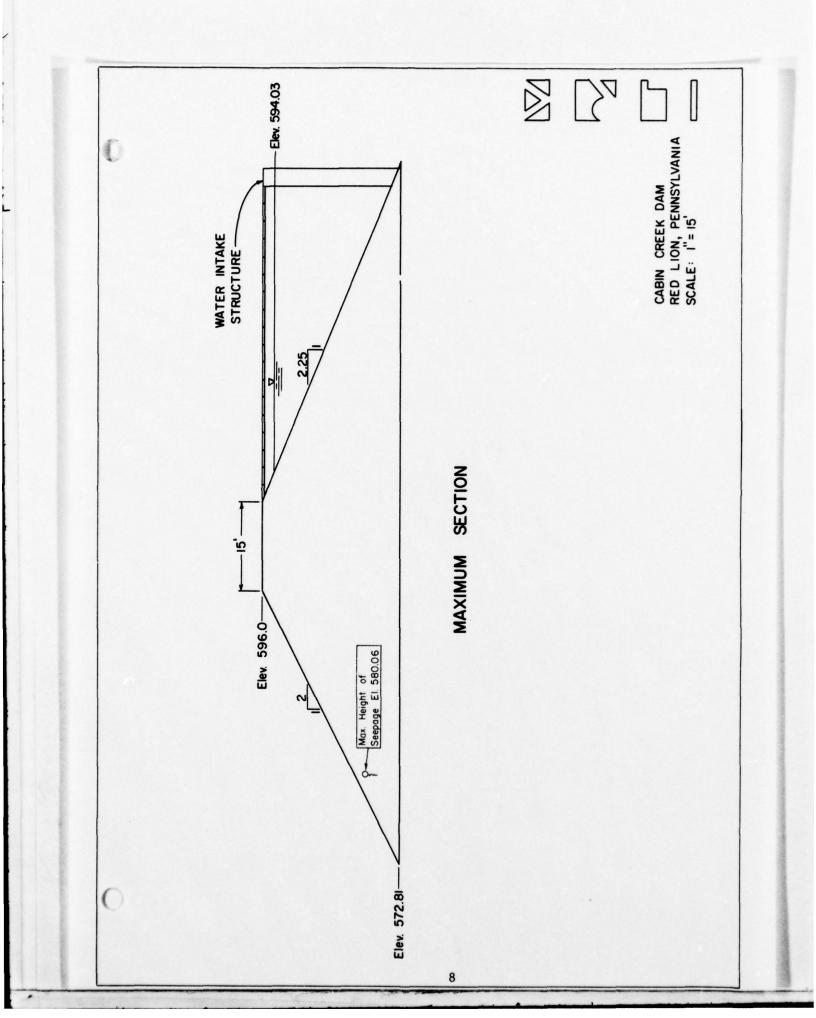
SECTION 3 VISUAL INSPECTION

3.1 Findings.

a. <u>General</u>. The onsite inspection of Cabin Creek Dam was conducted by personnel of L. Robert Kimball and Associates accompanied by borough staff and their engineer on October 21, 1978. The inspection consisted of:

- Visual inspection of the retaining structure, abutments and toe.
- Examination of the spillway facilities, exposed portions of any outlet works, and other appurtenant works.
- 3. Observations affecting the runoff potential of the drainage basin.
- 4. Evaluation of the downstream area hazard potential.


b. Dam. The dam appears to conform closely to the construction drawings. From a brief survey conducted during the inspection it was determined that several low spots are present on the crest toward the left abutment. One area adjacent to the emergency spillway wingwall is approximately one (1) foot low. Several erosion gullies were noted on the downstream slope. These gullies may have resulted from the 1972 overtopping. Several seepage zones were noted on the downstream slope. The seepage zones were small (2' x 2') and minimal flow was noted. Two (2) wet areas (6' x 6') were noted at the toe of the embankment. Approximately seven (7) large trees are growing at the toe of the embankment. See drawing on pages 7 and 8 for location of seepage and wet areas.


The upstream slope is covered with hand placed riprap. The downstream slope and crest are grassed which has been mowed.

c. Appurtenant Structures. The Bascule gate was operated manually by the caretaker during the inspection. The gate is designed to operate automatically with 6 inches of water over the top of the gate. When the water level reaches 12" over the gate the gate shall be fully open. For water levels between 6-12" the gate shall be positioned so as to maintain a constant water level. The gate is hydraulically operated. There is a standby generator at the dam for use during power failures. In addition, the gate can be opened manually.

The exit channel is cut in rock with a dry rubble rock embankment acting as a dike to confine flow to the channel. A recent rock fall has created a partial obstruction to flow. Trees are growing on the exit channel highwall.

The intake tower appeared to be in good condition. The intake gates and 12 inch cast iron supply line were not observed. The 12 inch pipe runs directly into the filtration plant. It is reported by the caretaker that the bottom intake gate is silted shut.

d. <u>Reservoir Area</u>. The watershed is predominantly covered with woodland and farmland. The reservoir slopes are not considered to be susceptible to massive landslides which would affect storage volume of the reservoir or overtopping of the dam by displacing water.

e. <u>Downstream Channel</u>. Immediately below the dam is the filtration plant in which there is a man constantly on duty. Cabin Creek downstream of the dam has a very narrow, confined channel which makes at least eight (8) very sharp turns. The second structure downstream is a hunting and fishing club located .75 miles downstream. Between 1 mile and 2.6 miles downstream are several homes located near the stream. Approximately 3.4 miles downstream of the dam is a newly constructed trailer court.

3.2 Evaluation. Visual inspection did not reveal any serious signs of instability. The embankment is in need of minor maintenance particularly repairing the erosion on the downstream slope. Several seeps and wet areas were noted on the downstream slope and at the toe. No evaluation has been conducted on these areas and their effect on the stability of the embankment. Since no stability analysis has been conducted to date, it is recommended that it be conducted under conditions observed in the field.

The rock debris in the spillway exit channel has some restricting effect on the capacity of the channel. The trees growing on the exit channel highwall may cause landsliding. Visual observations indicate that the Bascule gate is in good condition. The condition of the water supply line is unknown.

SECTION 4 OPERATIONAL PROCEDURES

4.1 <u>Procedures</u>. The reservoir is maintained at as high a level as possible (elevation 594.0). Water is pumped into the reservoir (1 million gal/day) from an adjacent drainage area. Water is drawn out of Cabin Creek Dam on an as-needed basis (average 1.7 million gal/day). Regulation is performed with valves in the filtration plant located at the dam.

A caretaker is on duty 24 hours per day in the filtration plant. The Bascule gate is operated manually once every week.

4.2 <u>Maintenance of the Dam</u>. No planned maintenance schedule is utilized. All maintenance is performed on an as-needed basis. Minor work such as mowing grass is performed by borough staff. Major work is contracted. Maintenance of the dam is considered to be fair.

4.3 <u>Maintenance of Operating Facilities</u>. Maintenance of the operating facilities is performed by borough staff. The Bascule gate is operated on a weekly basis. The intake structure's lower gate is reportedly silted shut. Maintenance of the operating facilities is considered fair.

4.4 <u>Warning System in Effect</u>. There is no formal warning system in effect. The dam is maintained by borough staff stationed at the filtration plant near the dam 24 hours each day.

4.5 <u>Evaluation</u>. The operational procedures for the dam and appurtenant structures are considered to be fair. The dam is accessible from a country road under all weather conditions for inspection and emergency action purposes. There is no warning system to warn downstream residents of high discharges or failure of the dam.

SECTION 5 HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features.

a. <u>Design Data</u>. No calculations or design data pertaining to hydrology were available. Construction drawings and specifications of the existing Bascule gate were available.

b. Experience Data. The existing Bascule gate was installed in 1973. Prior to that time flashboards were installed in the spillway to maintain a maximum storage capacity in the reservoir. No reservoir level, rainfall, or runoff data are available. The dam was overtopped in 1972 causing some erosion to the embankment. The amount or depth of water going over the embankment at that time is unknown.

c. <u>Visual Observations</u>. The Bascule gate which controls the spillway discharge is in good condition. The gate was operated by the owner's personnel during our inspection.

Some debris was noted in the spillway exit channel. The debris was apparently from a small slide in the left slope of the channel. Maintenance should be performed on the channel slope to prevent future slides.

A low spot was noted on the dam embankment adjacent: to the spillway approach wingwall. This area could easily be filled to the top of dam elevation.

d. Overtopping Potential. Overtopping potential was investigated through the development of the probable maximum flood (PMF) for the watershed and the subsequent routing of the PMF and fractions of the PMF through the reservoir and spillway. The PMF is that hypothetical flow induced by the most severe combination of precipitation, infiltration losses, and concentration of runoff at a specific location that is considered reasonably possible for a particular drainage area.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. Flood routing performed for this study is intended to provide a measure of relative spillway capacity.

To assist the engineer, and provide a standard for hydrologic analyses, the Corps of Engineers, Baltimore District, has directed that the HEC-1 Dam Safety Version systemized computer program be utilized. The program was prepared by the Hydrologic Engineering Center (HEC) U.S. Army Corps of Engineers, Davis, California, July, 1978. The major methodologies or key input data for this program are discussed briefly in Appendix D. A copy of the Users Manual should be obtained by engineers who need more precise definitions of the computer program requirements and methodology.

5.2 <u>Evaluation Assumptions</u>. To enable us to complete the hydraulic and hydrologic analyses for this structure, it was necessary to make the following assumptions.

1

C

1. The Bascule gate would function properly and continue to open to a full open position in a short time period.

2. For the dam breach analysis it was assumed that dam failure would begin when the water level in the reservoir reached elevation 597.5 or 2.5 feet over the top of the dam.

3. For the overtopping analysis a top of dam elevation of 596.0 was assumed for the entire length of the crest of 220 feet. Field survey measurements taken during the inspection indicate that the top of dam elevation varies from 595.0 feet to 596.1 feet.

5.3 <u>Summary of Overtopping Analysis</u>. Complete summary sheets from the computer output are presented in the hydrologic appendix.

a. <u>Spillway Adequacy Rating</u>. The spillway design flood (SDF) for Cabin Creek Dam is the PMF. The SDF is based on the size and hazard classification of the dam. Based on the following definition provided by the Corps of Engineers, the spillway for this dam is rated as seriously inadequate.

Seriously Inadequate - High hazard classification dams (all sizes) not capable of passing 50% of the PMF without failure where there is a significant increase in the hazard potential for loss of life downstream due to overtopping failure.

The spillway and reservoir are capable of controlling approximately 18% of the PMF without overtopping the embankment (elevation 595.0).

5.4 <u>Summary of Dam Breach Analysis</u>. As the subject dam cannot satisfactorily pass 50% of the PMF (based on our analysis) it was necessary to perform a breach analysis and downstream routing of the flood wave. This analysis determines the degree of increased flooding due to dam failure.

Results of the Dam Breach analysis indicate that downstream flooding is significantly increased. Therefore this spillway is rated as seriously inadequate.

The water level in the reservoir at the time of dam failure was assumed to be at 597.5' (2.5' over the top of dam) based on the evaluating engineers judgement. The 50% PMF was routed through the reservoir and downstream.

Results of routing the flood wave downstream with and without

failure are indicated in Appendix D.

The results of the floodwave routing indicate that failure due to overtopping will significantly increase downstream potential for loss of life.

Note: Future development within the watershed, at the dam, or downstream may change the characteristics and assumptions made for this study and different results are likely. Future development downstream may also greatly increase the potential for loss of life due to failure of the structure.

O

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. <u>Visual Observations</u>. Visual inspection did not reveal any signs of immediate instability. However, the erosion gullies, wet areas, and seeps, if untreated, may become more serious with time. The dam appears to conform to the constrution drawings.

b. <u>Design and Construction Data</u>. No record of design data or stability analysis for the original structure was available for review. There is no data on the construction of the dam.

c. <u>Operating Records</u>. There are no operating records. PennDER correspondence files contain considerable information on repair to the severe erosion of the downstream slope which resulted from overtopping during Tropical Storm Agnes in 1972.

d. <u>Post-Construction Changes</u>. There have been no postconstruction changes besides installing the Bascule gate which would influence the structural stability.

e. <u>Seismic Stability</u>. The dam is located in seismic zone 1. No seismic stability analysis has been performed. Normally, it can be considered that if a dam in this zone is stable under static loading conditions, it can be assumed safe for any expected earthquake loading. However, the areal geology (See appendix F) indicates faulting in the area of the dam. Therefore, a more detailed geologic investigation is necessary to determine the need for seismic stability analyses.

SECTION 7 ASSESSMENT AND RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment.

a. <u>Safety</u>. The visual observations, review of available information, hydrologic calculations, and past operational performance indicate that Cabin Creek Dam's spillway is seriously inadequate. The spillway is only capable of handling approximately 18% of the PMF without overtopping. No stability analysis has been performed. The long term stability of the dam is uncertain due to the seeps. Because of the seriously inadequate spillway, the dam is classified as an unsafe non-emergency dam.

b. <u>Adequacy of Information</u>. Assessment of the structural stability of the structure cannot be made because of the limited design data and no record of stability analyses.

c. <u>Urgency</u>. The recommendations suggested below should be implemented immediately.

d. <u>Necessity for Further Investigations</u>. In order to accomplish some of the recommendations/remedial measures outlined below, further investigations will be required.

7.2 Recommendations/Remedial Measures.

1. The owner should monitor the wet areas and seeps and take necessary remedial measures if the seeps are found to be increasing.

2. Perform additional studies by a registered professional engineer knowledgeable in dam design for modification of the spillway and/or embankment to increase spillway capacity. This study should begin immediately and remedial modifications begun immediately after the study is complete.

3. All low areas on the crest should be filled.

4. The cause of the seeps should be investigated. Piezometers should be installed to record the phreatic surface in the embankment.

5. A stability analysis of the embankment should be conducted.

6. A detailed geologic study should be made to determine if a seismic stability analysis is needed.

7. All erosion gullies should be filled.

8. The debris in the emergency spillway exit channel should be removed. Trees on the highwall should be removed.

9. Silt from the lower intake tower gate should be removed so that the intake can act as an emergency drawdown.

8

4

0

.

10. Institute a formal inspection program to be conducted at regular intervals with the borough's engineer.

11. A warning system should be instituted to warn downstream residents of high spillway discharges or failure of the dam.

and the

M.S.L. PA 336 TAILWATER AT TIME OF INSPECTION None David Davidson - C.S. Davidson Inc. - Engineers High ID# 60's HAZARD CATEGORY PA TEMPERATURE STATE ____ James T. Hockensmith - L. Robert Kimball and Associates R. Jeffrey Kimball - L. Robert Kimball and Associates VISUAL INSPECTION Kuang hwei Chuang - L. Robert Kimball and Associates DATE(s) INSPECTION October 31, 1978WEATHER Sunny, mild CHECK LIST M.S.L. PHASE I Carl Seitz - Manager - Red Lion Water Authority York POOL ELEVATION AT TIME OF INSPECTION 594.03 Ray Arnold - Red Lion Water Authority COUNTY NAME OF DAM Cabin Creek Dam TYPE OF DAM Earthfill INSPECTION PERSONNEL:

James T. Hockensmith RECORDER

APPENDIX A

CHECKLIST, VISUAL INSPECTION, PHASE I

A-1

EMBANKMENT

C

0

.___

EMBANKMENT

0

0

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
VEGETATION	Mowed grass on crest and downstream slope.	
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	No deficiencies noted except for low spot at spillway wingwall.	
ANY NOTICEABLE SEEPAGE	Reepage at several locations on downstream slope. Minimal flow noted.	
STAFF GAUGE AND RECORDER	lione .	
DRAINS	End of pvc pipe noted at toe near junction of embankment and dry rubble wall. No flow noted. (near left abutment)	

A-3

CONCRETE/MASONRY DAMS

/

....

0

0

.

ANY NOTICEABLE SEEPAGE N/A STRUCTURE TO N/A JUNCTIONS N/A JUNCTIONS N/A ABUTHENT/EMBANCHENT N/A JUNCTIONS N/A ABUTHENT/EMBANCHENT N/A ABUTHENT/EMBANCHENT N/A JUNCTIONS N/A ABUTHENT/EMBANCHENT N/A	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
URE TO NT/EMBANKMENT DNS PASSAGES FION	ANY NOTICEABLE SEEPAGE	N/A	
PASSAGES	STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	N/A	
	DRAINS	N/A ,	
	WATER PASSAGES	N/A	
	FOUNDATION	N/A	

CONCRETE/MASONRY DAMS

0

0

-

VISUAL EXAMINATION OF	ORSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	N/A	
STRUCTURAL CRACKING	N/A	
VERTICAL AND HORIZONTAL ALIGNMENT	N/A	
STNIOL HTILONOM	N/A	
CONSTRUCTION JOINTS	N/A	
STAFF GAUGE OR RECORDER		

OUTLET WORKS

1

0

.

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Outlet works consists of 12" CI pipe. Unobserved.	
INTAKE STRUCTURE	Structure above water appears to be in very good condition.	
OUTLET STRUCTURE	None. 12" pipe goes in water system.	
OUTLET CHANNEL	None.	
EMERGENCY GATE	None.	

A-6

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	N/A	
APPROACH CHANNEL	N/A	
DISCHARGE CHANNEL	N/A	
BRIDGE AND PIERS	N/A	

A-7

1

GATED SPILLWAY

1

0

.

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	Appears to be in good condition.	
APPROACH CHANNEL	Appears to be in good condition.	
DISCHARGE CHANNEL	Rock cut. Rock debris in channel. Trees growing on highwall.	
BRIDGE AND FIERS	None.	
GATES AND OPERATION EQUIPMENT	Bascule gate. Appears to be in good condition and well maintained.	

A-8

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	Steep confined channel with sharp turns.	
SLOPES	Steep to moderate.	
APPROXIMATE NO. OF HOMES AND POPULATION	40 homes - 160 people for first 3.5 miles downstream.	

1

0

.

A-9

RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Moderate.	
SEDIMENTATION	Sedimentation has reportedly blocked lower gate on intake tower.	

A-10

1

•

0

.

INSTRUMENTATION

0

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None.	
OBSERVATION WELLS	None.	
WEIRS	None.	
PIEZOMETERS	None.	
OTHER		

A-11

APPENDIX B

0

0

.

CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION, PHASE I

0 NAME OF DAM Cabin Creek Dam PA 336 Several photos in DER file. 101 DESIGN, CONSTRUCTION, OPERATION PHASE I U.S.G.S. Quadrangle - Red Lion, PA. Construction Drawings - DER files. Construction Drawings - DER file. ENGINEERING DATA CHECK LIST REMARKS No history available. None. None. None. - DISCHARGE RATINGS RAINFALL/RESERVOIR RECORDS TYPICAL SECTIONS OF DAM - CONSTRAINTS REGIONAL VICINITY MAP CONSTRUCTION HISTORY AS-BUILT DRAWINGS - DETAILS OUTLETS - PLAN 0 . . ITEM

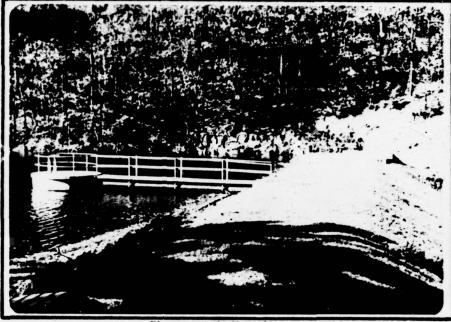
B-1

0	0	
ITBM	REMARKS	Г
DESIGN REPORTS	None Available.	
GEOLOGY REPORTS	None available.	
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None available.	
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	None available.	
POST-CONSTRUCTION SURVEYS OF DAM	None.	
BORROW SOURCES	Unknown.	
		,

B-2

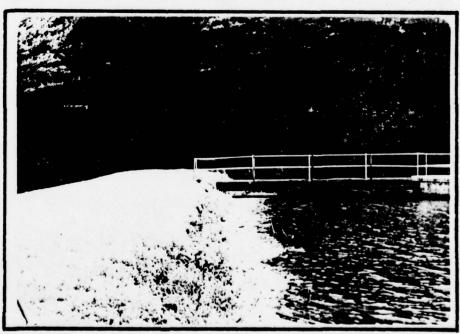
	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	Bascule gate installed 1973.
HIGH POOL RECORDS	None.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Dam overtopped June 1972 - Correspondence in DER files.
MAINTENANCE OPERATION RECORDS	None availble.

0


	Construction Drawings - DER files.	Bascule gate drawing - DER files.	
0	ITEM SPILLMAY PLAN SECTIONS DETAILS DETAILS	A OPERATING EQUIPMENT Bascule ga	

APPENDIX C

PHOTOGRAPHS


0

0

Photograph No. 1

Intake structure and spillway gate control building.

Photograph No. 2

View of upstream slope.

0

Photograph No. 3

Spillway exit channel, debris in channel and hydraulically controlled spillway.

Photograph No. 4

Looking down spillway exit channel.

0

Photograph No. 5

Gun Club - First downstream building.

Photograph No. 6

Mobil home park at Margaretta Furnace.

APPENDIX D

HYDROLOGY AND HYDRAULICS

APPENDIX D HYDROLOGY AND HYDRAULICS

<u>Methodology</u>. The dam overtopping and breach analyses were accomplished using the systemized computer program HEC-1 (Dam Safety Version), July 1978, prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California. A brief description of the methodology used in the analyses is presented below.

1. <u>Precipitation</u>. The Probable Maximum Precipitation (PMP) is derived and determined from regional charts prepared from past rainfall records including "Hydrometeorological Report No. 33 prepared by the National Weather Service.

The index rainfall is reduced from 10% to 20% depending on watershed size by utilization of what is termed the HOP Brook adjustment factor. Distribution of the total rainfall is made by the computer program using distribution methods developed by the Corps.

2. <u>Inflow Hydrograph</u>. The hydrologic analysis used in development of the overtopping potential is based on applying a hypothetical storm to a unit hydrograph to obtain the inflow hydrograph for reservoir routing.

The unit hydrograph is developed using the Snyder method. This method requires calculation of several key parameters. The following list gives these parameters their definition and how they were obtained for these analysis.

Parameter	Definition	Where Obtained
Ct	Coefficient representing variations of watershed slope and storage	From Corps of Engineers*
L .	Length of main stream channel miles	From U.S.G.S. 7.5 minute topographic
L _{ca}	Length on main stream to centroid of watershed	From U.S.G.S. 7.5 minute topographic
С _р	Peaking coefficient	From Corps of Engineers*
A	Watershed size	From U.S.G.S. 7.5 minute topographic

*Developed by the Corps of Engineers on a regional basis for Pennsylvania.

3. <u>Routing</u>. Reservoir routing is accomplished by using Modified Plus routing techniques where the flood hydrograph is routed through reservoir storage. Hydraulic capacities of the outlet works, spillways and the crest of the dam are used as outlet controls in the routing.

The hydraulic capacity of the outlet works can either be calculated and input or sufficient dimensions input and the program will calculate an elevation discharge relationship.

Storage in the pool area is defined by an area - elevation relationship from which the computer calculates storage. Surface areas are either planimetered from available mapping or U.S.G.S. 7.5 minute series topographic maps or taken from reasonably accurate design data.

4. <u>Dam Overtopping</u>. Using given percentages of the PMF the computer program will calculate the percentage of the PMF which can be controlled by the reservoir and spillway without the dam overtopping.

5. Dam Breach and Downstream Routing. The computer program is equipped to determine the increase in downstream flooding due to failure of the dam caused by overtopping. This is accomplished by routing both the pre failure peak flow and the peak flow through the breach (calculated by the computer with given input assumptions) at a given point in time and determining the water depth in the downstream channel. Channel cross-sections taken from U.S.G.S. 7.5 minute topographic maps were used in the downstream flood wave routing. Pre and post failure water depths are calculated at locations where cross-sections are input.

DAM NAME Cabin Creek Dam N I.D. NUMBER PA. 67-459 L. ROBERT KIMBALL & ASSOCIATES SHEET NO. / OF 4 CONSULTING ENGINEERS CHITECTS BY KHC DATE 1-29-19 - EBENSBURG PENNSYLVANIA Cabin Creek Dam Drainage Area, A = 2.63 Sq. mi. (from U.S.G.S. Map) Unit Hydrograph Parameters : Damsite ; 15A , Susguchanna River Basin L= 1.7 mi., Lca = 0.8 mi. (from USAS Map) Cz = 1.15 , Cp = 0.54 (Rec. by COE) $t_p = C_4 (L \cdot Lea)^{0.3}$ = 1.15 (1.7 × 0.8) 0.3 tp= 1.26 (hr.) Loss Rate & Base Flow Parameters: (Recommended by COE Baltimore Dist.) Initial lass, STRTL = 1 in. Constant loss , CNSTL = 0.05 Mhr. Inital Flow, STRTQ = 1.5 cts/mi2 QRCSN = 0.05 (5% of Poat Flow) RTIOR = 2.0 Probable Maximum Storm : PMP Index Rainfall - 23.5" from H.R. #33 R6 = 113%, R12 = 123%, R24 = 132%. R 48 = 142%

Cabin Creek Dam M DAM NAME _ I.D. NUMBER PA. 67-459 L. ROBERT KIMBALL & ASSOCIATES SHEET NO. 2 OF 4 CONSULTING ENGINEERS & ARCHITECTS BY KHC DATE 1-29-79 - EBENSBURG PENNSYLVANIA Elevation - Area - Capacity Relationships : Initial storage (a) El. 594) = 58 MG = 178 AF Surface Area = 13 Acres 2 El. 594 28 Acres 2 El. 600 $V = \frac{1}{3}AH$, $H = \frac{3V}{A} = \frac{3(178)}{13} = 41.08'$ Elev. of zero Capacity = 594 - 41.08 = 552.92 Elev. (ft) 552.92 594 596 598 600 602 604 606 614 Area 0 13 17 22 28 31 33 36 (Acres) 0 13 17 22 28 31 33 36 49 Spillway Capacity From specifications for Bascule Gate, " The gate control shall start to lower the gate when the water level exceeds 6" over the top of the gate. When the water level reaches 1-0", the gate shall be fully open. For the water levels between 6"\$ 12", the gate shall be positioned between open and closed so as to keep the upstream water level constant." Assuming the gate will be operated properly Q=CLH'.5 for sharp-crested weir, use C= 3.3. (from Chow)

D-4

()

	ROBERT KIMI NSULTING ENG NSBURG	BALL &	ASSOC ARCHII PENNSYI	ECT	S	DAM NAME I.D. NUMBE	R <u>PA.</u> Sheet		459 of 4	79
<i>El.</i> 5	574.4		<u>3°</u>		*	E	. 594 . 589 –	-7-	т. А-А	
	Reservoir El. (ft)	594.0	594.4	599	4.5	594.75	595.0	597.0	599.0	600.0
	L, Weir Length (ft)	15	15	15	15	30	30	30	30	30
	H (ft)	0	0.4	0.1	0.5	3	6.0	8.0	10.0	11.0
	Q (cfs)	0	12.5	19	20	514	1,455	2240	3/30	3610

Discharge through Dam Crest Q=CLH¹⁵ Use C = 3.05 (from chow) Crest Length, L = 220' Discharge - was determined with HEC-1 Top of dam Elevation = 596.0 was used in analysis.

Cabin Creek Dam PA. 67-459 DAM NAME_ I.D. NUMBER _ SHEET NO. 4 OF 4 NZ BY KHC DATE 1-29-79 L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & PENNSYLVANIA EBENSBURG Dam Breach Parameters : - Failure begins, El. 597.5' - Top of Dam El. 596.0 -El. 573.0 70' Ratio of PMF, RTIO = 0.5 Breach width, BRWID = 70' Side slope of breach, Z = 0.5 TFAIL = 0.5 hr. Failure time, Elevation, failure begins, FAILEL = 597.5' Channel Routing Channel cross sections obtained from U.S.G.S. Quad Channel Manning's n, QN(2) = .05 Overbonk Manning's n, QN(1) = QN(2) = .06 0 D-6

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

DRAINAGE	AREA CHARACTER	ISTICS:Moderate slopes, wooded and farmland
ELEVATIO	N TOP NORMAL PO	OOL (STORAGE CAPACITY):594.0
ELEVATIO	N TOP FLOOD CON	TROL POOL (STORAGE CAPACITY):N/A
ELEVATIO	N MAXIMUM DESIG	N POOL:595.0 top of dam
ELEVATIO	N TOP DAM:	595.0
SPILLWAY	CREST:	
a.	Elevation	589.0 (concrete sill) 594.0 (top of gate closed)
ь.	Туре	Broad crested weir and Bascule gate
с.	Width	-
d.	Length	30'
е.	Location Spill	over Left abutment
		e of Gates One - Bascule

OUTLET WORKS:

Gz

a.	Type	12" CI Pipe

- a. Type ______ I2 of Fipe b. Location _____ Through center of dam c. Entrance inverts _580.0 and 562.0 d. Exit inverts __In plant

 - e. Emergency draindown facilities ______ silted shut

HYDROMETEOROLOGICAL GAUGES:

None a. Type ___ b. Location ____ c. Records

Unknown MAXIMUM NON-DAMAGING DISCHARGE : ____

D-7

3													
		0		1			602 604	4640 5750	49 614				
		TEEK DAM			0.05		79		606		SN		
		AMALYSIS OF DAM OVERTOPPING USING RATIOS OF PHF AMALYSIS OF DAM OVERTOPPING USING RATIOS OF PHF AMALYSIS OF PHF ROUTED THROUGH THE RESERVOIR PA. 67-459 RATIOS OF PHF ROUTED THROUGH THE RESERVOIR PA. 67-459 2 0 0 0 0 0 0 0 0			1.0	-	1005-	3130	109		PREVIEM OF SEQUENCE OF SIREAM NETWORK CALCULATIONS		
		RATIOS O AFETY OF ESERVOIR		142			165	2240	602		ETMORK C		
		IG USING	-	2.63		-	\$45	1455	009		STREAM N	PH AT	
		FER TOPPIN	5.0	01R 123		VOIR	51.462	514 12375	865	220	IENCE OF	F HYDROGRAPH AT HYDROGRAPH IO DF METWORK	
		OF DAM OF C-HYDRAUI PHF ROU		RESERV 2.63	0.0	RESER	1 - 1- 2 10 m	19	396	1.5	L OF SEOL	RUNOFF ROUTE H	1. See 2.
	811-6 11-6	NALYSIS		INFLOW TO	10.0	ROUTE THRU	1.468	12.5	165	50.6	PREVIE		
	HECE CHECK	A1 A		-	1 1.26	KI I	145	Y5 6940	\$E552.92	80 596 K 99	A Contraction		
	RAPH PAC												
0	EREARMANE EREARMANE EREARE ERECTION AND A CRACK THE C-11 DAM SAFETY VERSION JULY 1970			9 10	223	9 9 2	328	221		27		1	
	159.					D-8							

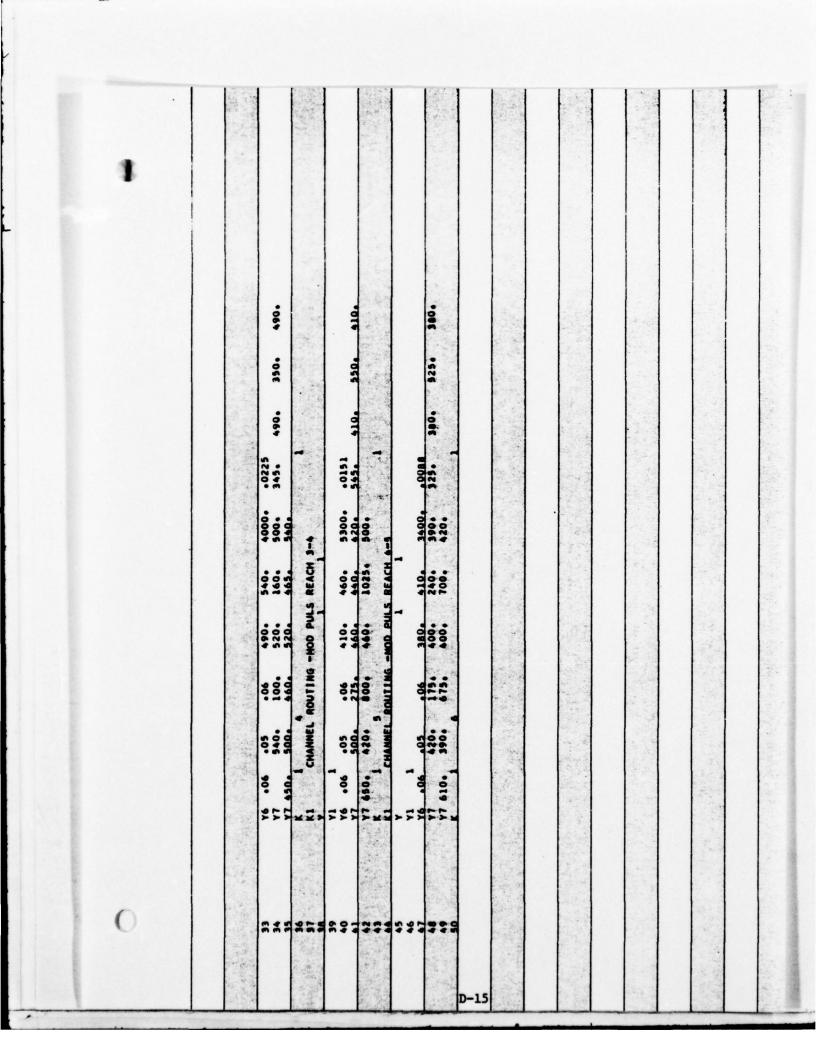
*		A CREEK DAN 61-459 1PL IPRT NSTAN	ED	JPRT INAME ISTAGE LAUTO	
0	FLOOD HYDROGRAPH PACKAGE (MEC-1) DAN SAFETY VERSION JULY 1970 LAST WODIEICATION 23 SEP 78 LAST WODIEICATION 23 SEP 78 HAMILLING 19:49:33.	AMALYSIS OF DAM OVERTOPPING USING RATIOS OF PMF AVARALYSIS OF DAM OVERTOPPING USING RATIOS OF PMF NYDROLOGIC-HYDRAUR IC AMALYSIS OF SAFETY OF CARIN RATIOS OF PMF ROUTED THROUGH THE RESERVOIR PA. 6 LOB SPECIFICATION 192 0 15 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN- 1 NRTIO- 3 LATIO- 1 NPLAN- 20 490 400 1400 1400	SUB-AREA RUNOFF COMPUTATION INFLOW TO RESERVOIR ISTAQ ICOMP IECON ITAPE JPLT J HYDROGRAPH DATA HYDROGRAPH DATA	

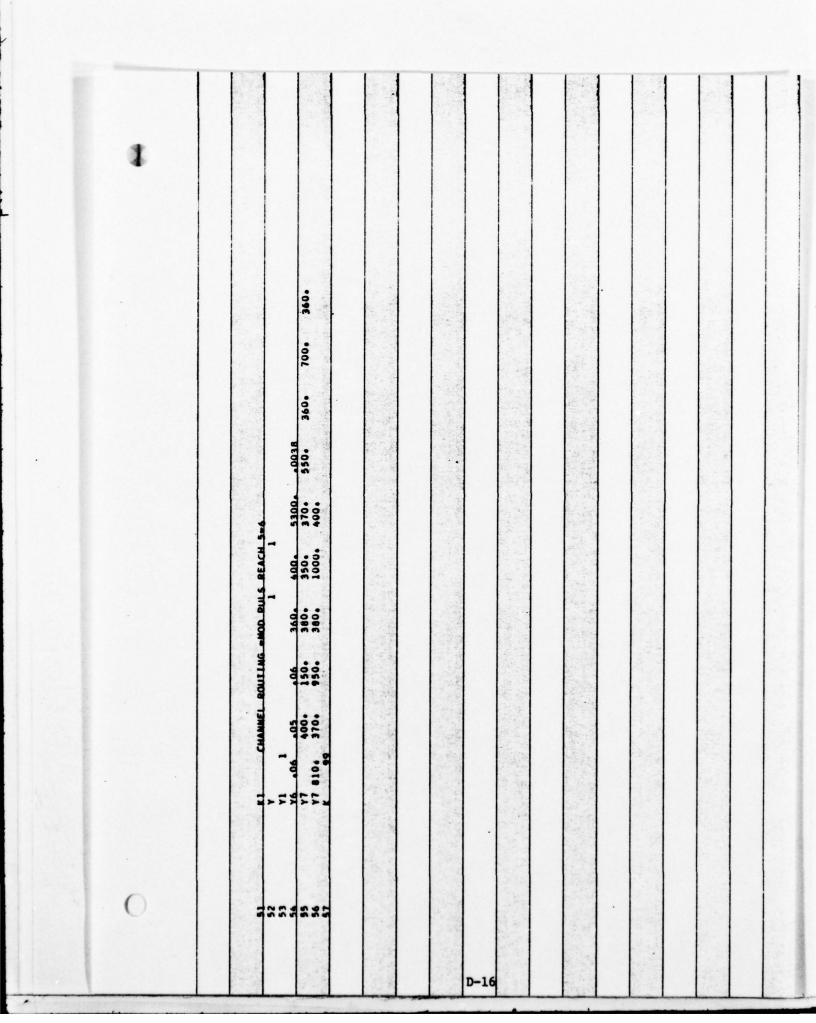
1	RATIO ISNOM ISAME LOCAL 0.000 0 1 0	48 R72 R96 00 0+00 0+00	STRTL CNSTL ALSMX RTIMP 1.00 .05 0.00 0.00	0	RTIOR= 2.00 AND R= 5.40 INTERVALS	1.26 HOURS: CP= .54 VOL= 1.00 646: 544: 457: 385. 115: 96: 01: 68: 20: 17: 14: 12:	HR#MN PERIOD RAIN EXCS LOSS COMP U Sun 26470 24430 2440 1623114	
0	20	PRECIP DATA SPFE PMS R6 R12 R24 R48 0.00 23.50 113.00 123.00 132.00 142.00 TRSPC COMPUTED BY THE PROGRAM 15 .800	LROPT STRKR DLTKR RTIOL ERAIN STRKS RTIOK 0 0.00 0.00 1.00 0.00 0.00 1.00	UNIT HYDROGRAPH DATA TP= 1.26 CP= .54 NTA=	RECESSION DATA STRTG= -1.50 ORCSN=05 RTIOR= DPROXIMATE CLARK COFFFICIENTS FROM GIVEN SNYDER CP AND TP ARE TC= 3.70 AND R=	UNIT HYDROGRAPH 34 END-OF-PERIOD ORDINATES, LAG- 1. 56. 205. 407. 599. 719. 729. 729. 594. 729. 729. 194. 594. 594. 544. 572. 229. 193. 162. 136. 244. 510. 91. 72. 54. 54. 54. 54. 54. 54. 54. 54. 54. 54	O END-OF-PERIOD FLOW MO+DA HR+MN PERIOD RAIN EXCS LOSS COMP 9 MO+DA	

*

0

.

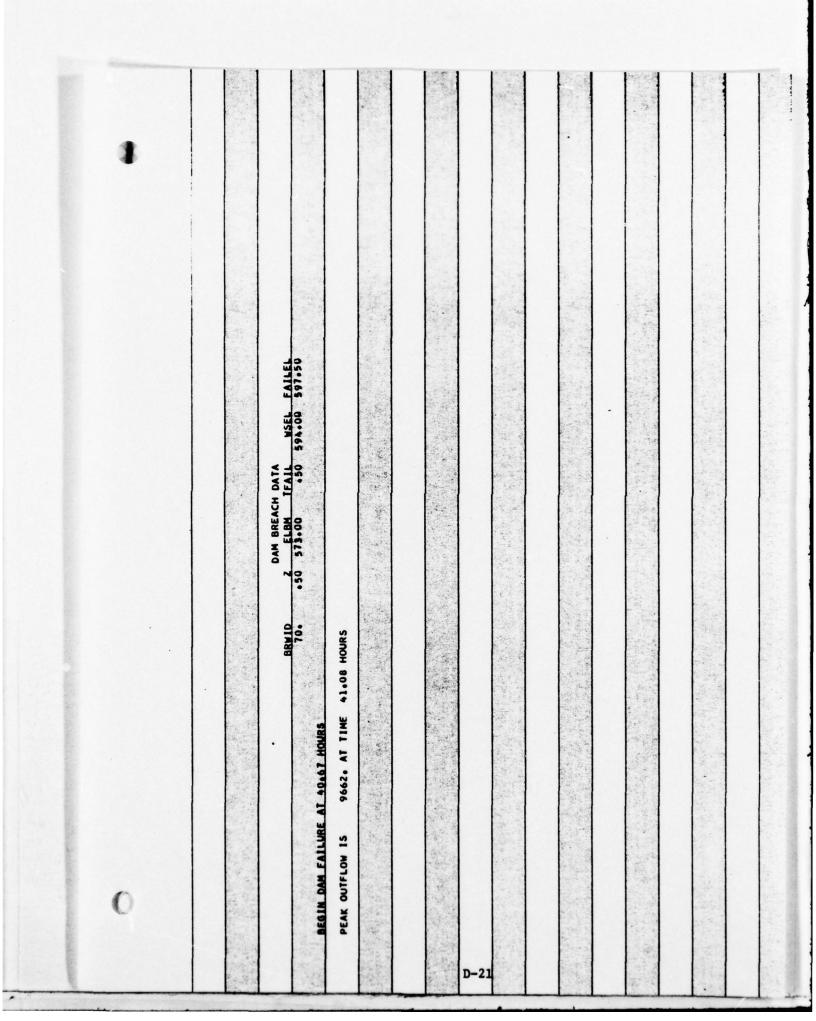

602.00 4640.00 • 6 4 600.00 827. 614. 3610.00 1AUTO 0 15IR 15K \$10KA 15PRAT 0.000 -594. -1 UPRT INAME ISTAGE 36. 489. .909 599.00 3130.00 EXPL 0.0 33. 420. • * 0 9 CAREA 0.0 597.00 2240.00 OMAT DAM DATA COOD EXPD DAMWID Cool 0.0 •1E 356. 602. 0000 · 0 1401 TECON ITAPE JPLT 0 595.00 1455.00 HYDROGRAPH ROUTING EXPW ELEVL 28. •009 ROUTING DATA 297. LAG AMSKK 0 0.000 • 00**19 514.00 594.75 12375.00 • 22. 247. 10PEL .865 0.0 00°0 NSTPS NSTOL ISTAU ICOMP 594.50 610.00 19.00 9530+00 17. 208. ROUTE THRU RESERVOIR 596. 0+0 01.055 CL055 ~ 13. . +65 CREL 594.0 178. 00.004 594.40 12.50 8200.00 . : : .553. 606.00 0.00 594.00 6940.00 SURFACE AREA. CAPACITY-ELEVATION-FL 2W STAGE 604.00 1 Alera D-11


		11									2	1
1				der en en				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
				a contraction								
							ALLONS	•				
							COMPUT				5 2 19	
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		13. 19. 19.	DI SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FEET PER SECOND (CUBIC METERS PER SECONDI Souare Milles (Souare Killometers)	1.00	8271. 234.2211	232.8611		
							ER SEC	FLOWS	1 234			
		12.2			1.		TERS P	RALIED TO	+136.	4103.		
				1		100	LIPLE P	RATIOS APPLIED Ratio 3 Ratio	_	Med and		
		2.46			6 . 89		OR MUL	RATIO	3308.	3273.		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
							MARY F	10 2	2481.	2422.		
		100					PL SUM FEET P SOUARE	L BATIO	-	$\frac{1}{2} \frac{d^2 + 2}{d^2 + 2} = \frac{1}{2} \frac{1}{2} \frac{d^2 + 2}{d^2 + 2} $		
	HOURS	HOURS	TOURS	HOURS	1		CUBIC FI	ATL0 1	1654.	1589.		
	41.25 HOURS 41.25 HOURS	3273+ AT LIME 41+00 HOUR	41.00 HOURS	41.00 HOURS			FLOWS IN CUB	PLAN RATI		1		
		TIME					ORAGE	AREA	2.63	511		
	1589. AT TIME 2422. AT TIME	IA AI	4103. AT TIME	5224. AT TIME			AND STORAGE		2.63	2.63		100 State
	15	32	4	82	,		PEAK FLOW	STATION		1		15TEC
	OW IS	ON 15	S 10	SI NO			PEA	15	I			1
0	PEAK OUTFLOW IS	PEAK JUTELON 15	PEAK OUTFLOW 15	PEAK OUTFLOW 15				OPERAL LOW	HYDROGRAPH AT	ROUTED TO		- Andrew
	PEAK	PEAK	PEAK	PEAK				DPER	HYDR	ROUT		State of the second
		a series					D-12	No. of			A A A	124

Ł

1								
1			IIME OF FAILURE HOURS	00.0	00.00			
		0F DAM 596.00 208.	TIME OF MAX OUTFLOW HOURS	11.25 11.25 11.00	41.00			
	5157.1	I	DURATION OVER TOP HOURS	0.00 1.75 2.00	•••			
	SUMMARY DE DAM SAFETY AMALYSIS	SPILLWAY CREST 594.00 170.	MAXINUM OUTFLOW CFS	1589. 2422. 3273.	4103.	• • •		
	MARY DE DAN		MAXIMUM STORAGE AC-FT	197. 219. 231.	241.			
		INITIAL VALUE 594.00 178.	MAKIMIM DEPTH OVER DAM	0.00	3.69			
		ELEVATION STORAGE DUITELOW	MAXIMMM RESERVOIR W.S.ELEV	595.34 596.62 596.62	599.49	1		
			RA110 OF PMF	2.00	.50		-	
		PLAN 1					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
		ā						

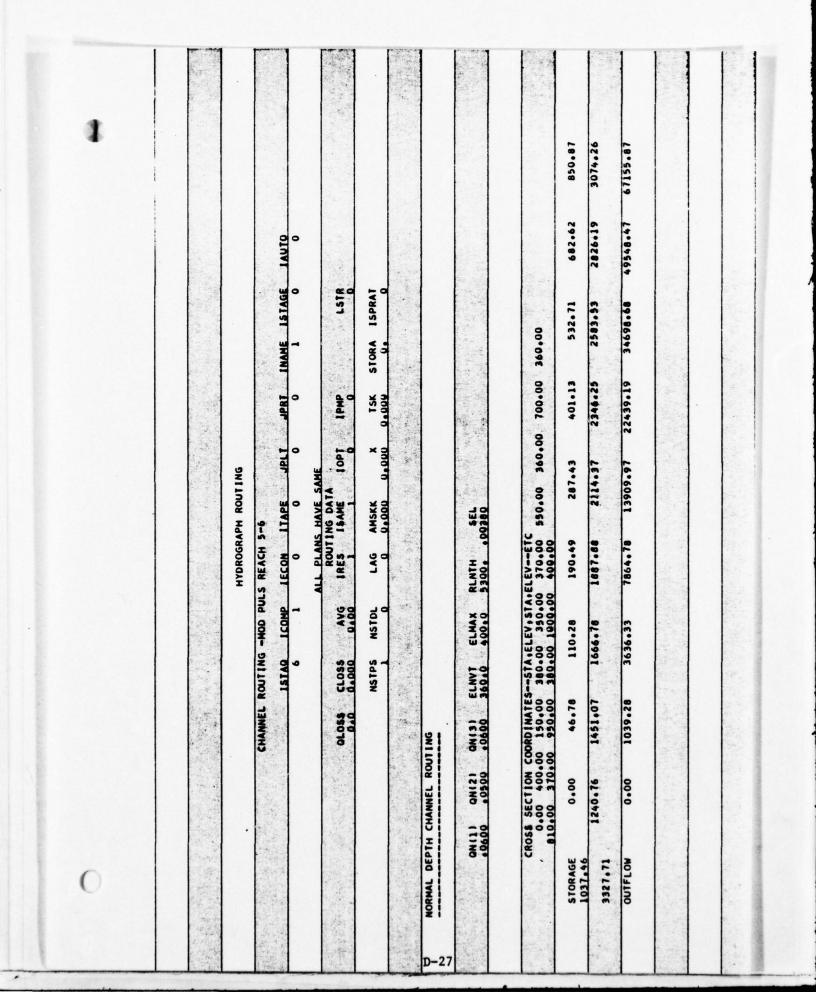
8													
			0					604	5750				
			1		-			602	0494	119			
		HEAN	•			\$0.05		1009	3610	36			
		DOWNS	ACH 0			1.0	1	+65-	9130	109			
		RVOIR AN	S NO BRE		1			165	2240	31	597.5		
		THE RESE	2 ASSUMES NO BREACH		2.63		-	595		009	594. 59	ACH 2-3	
		THROUGH	H. PLAN		1		-	51.46	514 12375	598	•5 59 •5 59	PULS RE	
		F ROUTED	PLAN 1 ASSUMES BREACH. PLAN 0 10 0	1	TO RESERVOIR	9.6	RESERVOIR	594.5 59			573. 573.	ROUTING -MOD PULS REACH 2-3 1 1	
		IO OF PHI	1 ASSU			10.0	2 ROUTE THRU RESERVOL	2.		165		CHANNEL ROUT	
	E (HEC-1 JULY 1970	TAN TAN	200 PLA	~	INFLOW 1 23.	1.26	ROUT	- 165	0469	\$6552492 \$6 \$94		CHAN	
	 H PACKAG	23	2	-7,	210	- 2 -	×2>	555	22	53	322,	2-2	
	 FLOOD HYDROGRAPH PACKAGE (HEC-1) Dam Safety Version July 1978 Last modification 25 SEP 78									No. 11			
0	FLOOD H DAM SAF			• • •	• 9 3	222	222	228	22	222	25.28	828	
							D-14						



4	-		30			IAUTO 0	
		JOWNSTREAM Ek dam át-459 4	NHIN IDAY IHR ININ METRC IPLT IPRT NSTAN 10 0 0 0 0 0 0 0 0 0 04 0 5 0 0 0 0 0	MULTI-PLAN ANALYSES TO BE PERFORMED MPLAN= 2 NRTIO= 1 LRTIO= 1 A50	######################################	ISTAO ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0	
0	REALIZED AT THE PACKAGE LINEC-1) FLOOD HYDROGRAPH PACKAGE LINEC-1) DAM SAFETY VERSION JULY 1978 LAST MODIFICATION 25 SEP 78 RUN DATE 79/01/12. TIME 12.30.35.	RATIO OF DOWNSTREI PLAN 1 A	88 N 88 N	R1103-	**************************************		

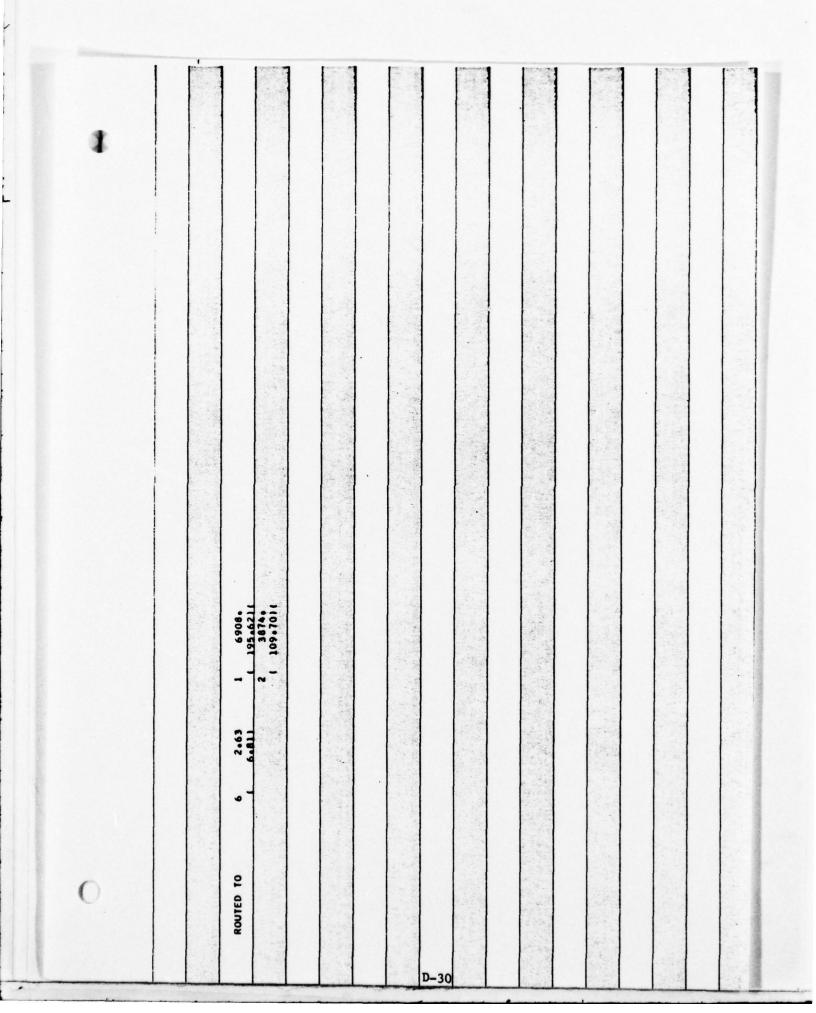
	IHYDG IUHG TAREA SNAP TRSDA TRSPC RAIIO ISNOM ISAME LOCAL 1 1 2:63 0:00 0:000 0 1 0	PRECIP DATA SPFE PMS RECIP DATA 6PFE PMS RSPC COMPUTED BY THE PROGRAM IS -800 TRSPC COMPUTED BY THE PROGRAM IS -800	LROPT STRKE DLTKR RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSMX RTIMP 0 0,000 0,000 1,000 0,000 1,000 1,000 0,000 0,000 UNIT HYDROGRAPH DATA TP= 1,26 CP=-54 MTA= 0	RECESSION DATA •90 QRCSN= -+05 RT	H UNIT HYDROGRAPH 53 END-OF-PERIOD ORDINATES. LAG= 1.27 HOURS. CP= 54 VOL- 1.00 1 31. 117. 236. 374. 510. 737. 54 VOL- 1.00 1 31. 117. 236. 374. 510. 737. 707. 638. 1 572. 512. 459. 411. 368. 330. 796. 737. 707. 638. 1 502. 170. 538. 330. 276. 737. 712. 212. 1 50. 57. 51. 46. 41. 37. 37. 29. 24. 21. 19. 17. 15. 14. 12. 11. 10. 9. 24. 7. 6. 6. 6. 12. 11. 10. 9. 24.	EXCS LOSS	1 678-11 617-11 61.11 6880-991		
--	---	---	--	--------------------------------------	--	-----------	--------------------------------	--	--

•				602.00	4640.00					
		IAUTO 0		00.009	3610.00	49. 827. 614.				
		INAME LATAGE	LSTR LSTR RA ISPRAT	00-665	3130-00	36. 489. 606.	EXPL 0.0			
		MAI 189	ТРИР 0 15K 510RA 594.0	2	2240.00	· 33.	L CAREA 0 0.0	DAMVID 220.	Part - State -	
	SWITT		Fa ×8	00* 56	1452-00	28. 31. 297. 356. 600. 602.	0.0 0.0 ELEVL COOL	DAM DATA COOD EXPD D 3.1 1.5		
	SWITTING HOLADOOUVU	IECON IIAPE	LL PLANS HAVE SAME ROUTING DATA IRES 15AME 10 L A AMSKK D D.DDD D.D	. 0	514.00 12375.00	22. 22. 24. 24. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	EXP 0.0	10PEL 000		
		g -	AVG AVG 0.00 NSTDL NSTDL		19+00 9530+00 12	17. 208. 996.	0.00			
		ROUTE THRU RESERVOIR 15140 100	0L055 CL055 0.000 0.000 NSTP5	594.40 608.00	12.50 8200.00 9:	13. 178. 9 94.	5			
		NOU	5	\$94+00 \$ 606+00 6	0+00 6940+00 82	0.				
0				\$146E \$9		SURFACE AREA- CAPACITY- ELEVATION-				
					-20	Š .		The second		

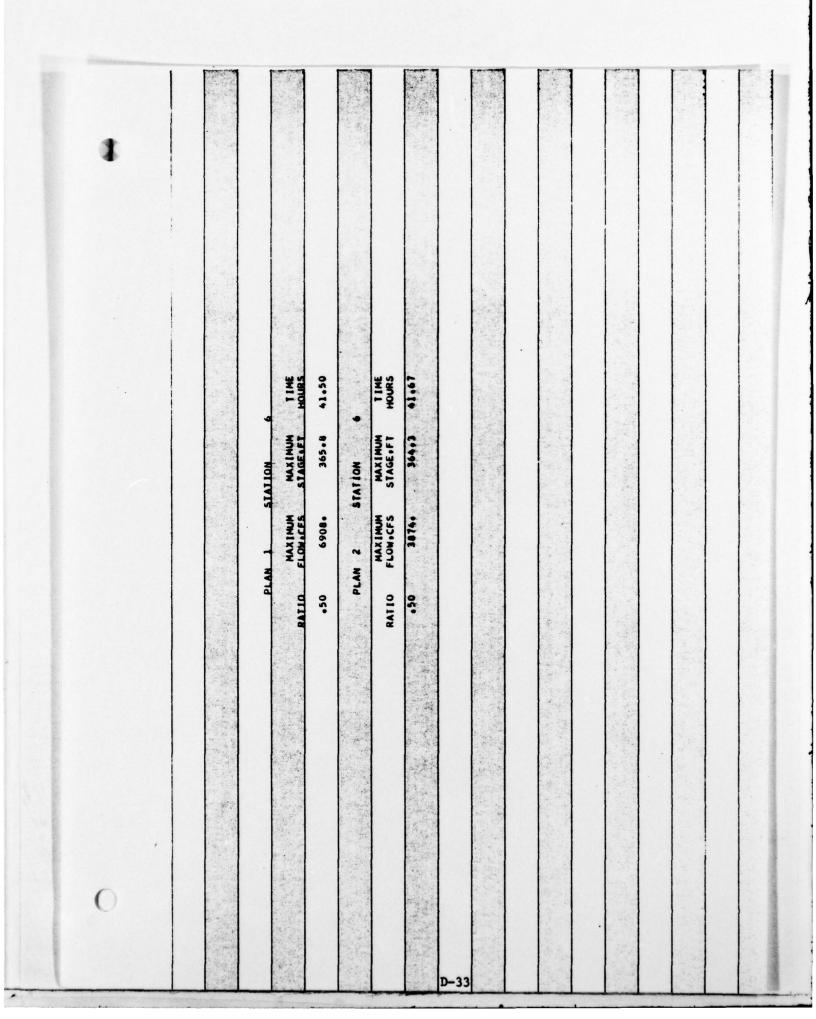

1						
		ISTAGE LAUTO	LSTR LSTR 0 1SPRAT			
	894.00 599.00	JPRT INAME	and the state of the second			
	CH DATA	Tude 1	TE SAME SAME SAME SAME SAME SAME SAME SAM	Take 1		
	DAM BREA	+++ ++++++++++++++++++++++++++++++++++	E		4000. 402250 6LEVETC	
	BRMID 70.		AVG 0.000 NSTDL	LANK CONTRACTOR	\$4040	
	40654 AT TIME 41	CHANNEL ROUTING	4 0.00 0.000 0.00 0.000 NSTPS		490.00 490.00 0000 0000 0000 00000000000	
				HANNEL ROLL	. 0500	
0	ADVING PEAK OUTFLOW 15			MORMAL DEPTH CHANNEL ROUTING	•0600 CR055	
			D-22			

	371.09	1167.62 1271.84 1379.20	69486•58 100231•10 135638•28	575270.90 649996.38 729274.78	508•42	532.11 534.74 537.37	100231.10	<u>575270+90 649996+38 729274+78</u>				1	ISTAGE LAUTO
350-00 490-00		1047.14 110	+3615-91 6941	505059.17 5752		529.47 53		505059+17 5752		********		INAME	JPRT INAME
345.00 490.00	149-51	969479	22937.63	+39326.33 5	500.53	526.04		439326.33 5		********	HYDROGRAPH ROUTING	APE	ITAPE JPLT
160.00 500.00 465.00 540.00	85-18	813479	10487.82	378043.87	497.89	524.21	10487.82	378043+87			HYDROGRA	PULS REACH 3	IECON
520.00	38.66	182.12	3657.85	321193.66	495•26	521+56	3657.85	321193.66		********		1	ISTAG ICOMP
540.00 100.00 500.00 460.00	10.27	697.10	624.01	268540.37	492.63	518.95	624.01	268548.27	495.4			CHANNEL F	
0*00 240	00•0	612.471	0.•0	219889.93	490.00	516.32	00*0	82.23					
	510RAGE 529.95	1489.90	OUTFLON	20.00cc11	STAGE 513.68	540.00	FLOW 175560.24	613146.35	MAXIMUM STAGE 15 MAXIMUM STAGE 15				

1						61.11+	1754.58	63775.63 512301.12	431.05
	0					379.94	1596.44	61144•50 451738•58	428.42
	1 0	STURA ISPRAT			410.00	294.78	1444.93	41934.48	425.79
	0 444				550.00	216.26	\$0*00ET	26122•88 342997•02	
	0 0 AVE SAME DATA LOPT	1 0 AMSKK X 0.000 0.000		E E	545.00 410.00	144.38	1161.82	13722.92	
	0 0 ALL PLANS HAVE SAME ROUTING DATA IRES ISAME 10	T 997		RLNTH 5EL 5300. 01510		82.53	1030-21	6308.10 250206.38	
		0 0400 S NSTOL		T ELMAX	A.ELEV.STA. 0.00 440.00	37.75	+2.508	2222+26 209585+66 2	
		0.00 NSTPS	91	04(3) ELNVT 40600 \$1040	CROSS SECTION COORDINATESSTA, ELEV.STA, ELEVETC 0.00 \$00.00 275.00 460.00 440.00 420.00 650.00 420.00 800.00 460.00 1925.00 500.00	10+24	786-91	389.48 172707.34 20	
			HANNEL ROUT	01(2) 0	SECTION COC •00 \$00.000	00.0	675-21	0.00	
0			NORMAL DEPTH CHANNEL ROUTING	QN(1)	CROSS 0 690	570AGE	1919.36		577104.43 \$1AGE
				D-24	ないの				


				And And A					
1	451.31	83775.63 512301.12							
	454.14	61144.50			IAUTO 0				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	452.11	41934.40 395332.04			INAME ISTAGE	LSTR 0 510RA ISPRAT 0.0			
	14.644	26122.88 342997.02			JPRT IN	IPMP 0 15K 51 0.000			
	40.84	1 C 2 2 m		**** ROUTING	ITAPE JPLT	ING DATA ISAME IOPT 1 0 AMSKK X 0.000 0.000			
	446.21	6308+10 250206+38		**************************************	IECON IT	ROUTING DATA ROUTING DATA IRES ISAME 1 1 1 1 LAG AMSKK 0 0.000			
	441.58	41		444944444 444444 444444 Hydrograph Channel Routing -mod Duls reach 4-5	ISTAG ICOMP	CLOSS AVG 0.000 0.00 NSIPS NSIDL 1 0			
	438.95			A COLORADOR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.055 CL	SMIT	a North States	
	436.32		15 419+7 15 416+7				CHANNEL ROU		
	433.68	460.00 FLOW 109872.467 1	MAXIMUM STAGE IS MAXIMUM STAGE IS	$\label{eq:states} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $			NORMAL DEPTH CHANNEL ROUTING		
	144 - 144 -			D-3	:5				

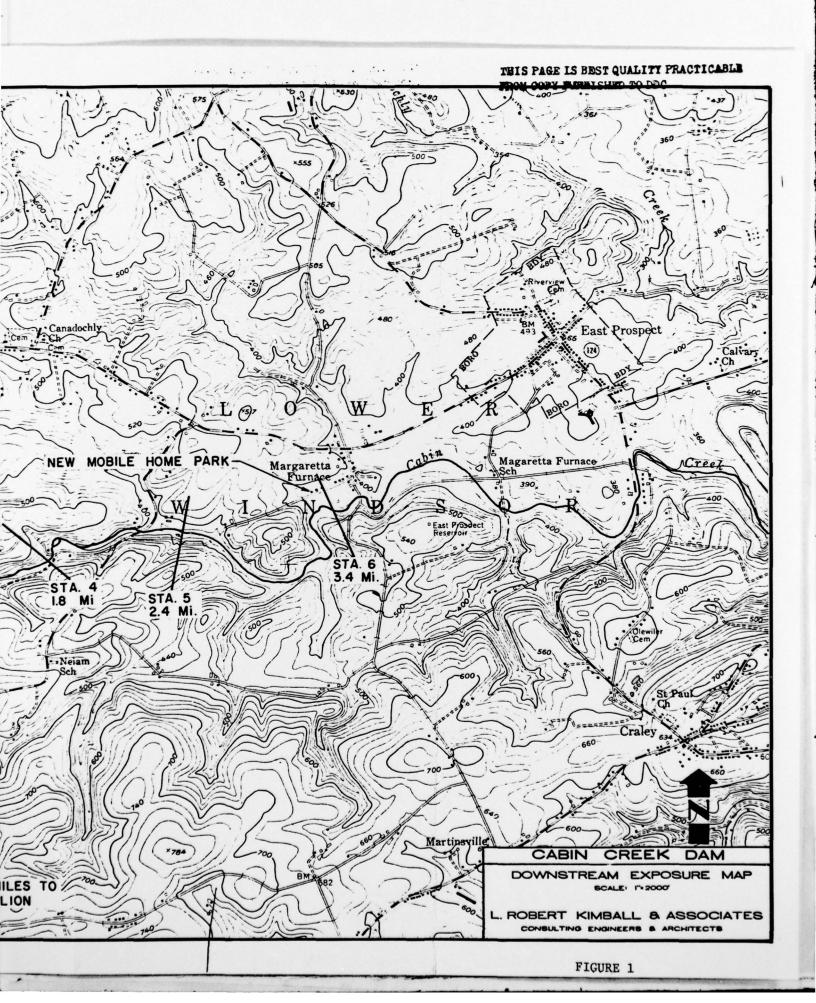
1			391.96	916.30	66.16105	1.42	392.63	408.42	50731.93	2.42					and the second		
			30	16	\$073	259747.42	39	40	5073	259747.42							
			253.41	847.28	90-66686	231719.79	391.05	406.84	38399•06	231719.79			a transferrance	* * * * * * * * * * * * * * * * * * * *			
		389.400	207.44	178.20	28054.90	205273.13	389.47	403.26	28054+90	205273.13			and the second second	•			
		525.00	164.59	711.06	20091.40	180403-03	387.69	403.68	20091.40	180403-03		and the second second	and the state of		and the second second		
	900	325,00 380,00	125.06	645.87	10.64461	157108-00	386.32	402.11	13443.84	157108.00			Tradition Contract				
	RLNIH SEL 340000860	EV+STA+ELEVETC 240.00 390.00 3 700.00 420.00	89.83	582.63	8082+20	135390.91	384.74	400153	8082+20	18-066561					18.20 - 18 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	ELNVT ELMAX 380.0 410.0	-STA.ELEV.ST	55.21	521.46	3996.76	115322.10	383+16	398 e 95	3996+76	115322.10		and the second second			Contraction of the second	•	
	ON(3) EL	CROSS SECTION COORDINATESSTA.ELE 0.00 420.00 175.00 400.00 610.00 390.00 675.00 400.00	24+30	\$62 .8 0	1225.76	96857.50	301.50	16.196	1225+78	96857.50	384.7	1.205		and the second second	Section Contraction		a strategie in the second s
	00500 .0500	055 SECTION 0 0.00 520-0	0.00	406.66	00+0	19947.65	380.00	395.79	0+00	79947.65		100 A	「「「「「「「「」」」」				
0	NO.	S.	STORAGE	80°ESE	OUTFLOW	289362.56	51AGE 394.21	410.00	FLOW	289362.36	MAXIMUM STAGE IS	MAXIMUM STAGE 15	and the second se		1		

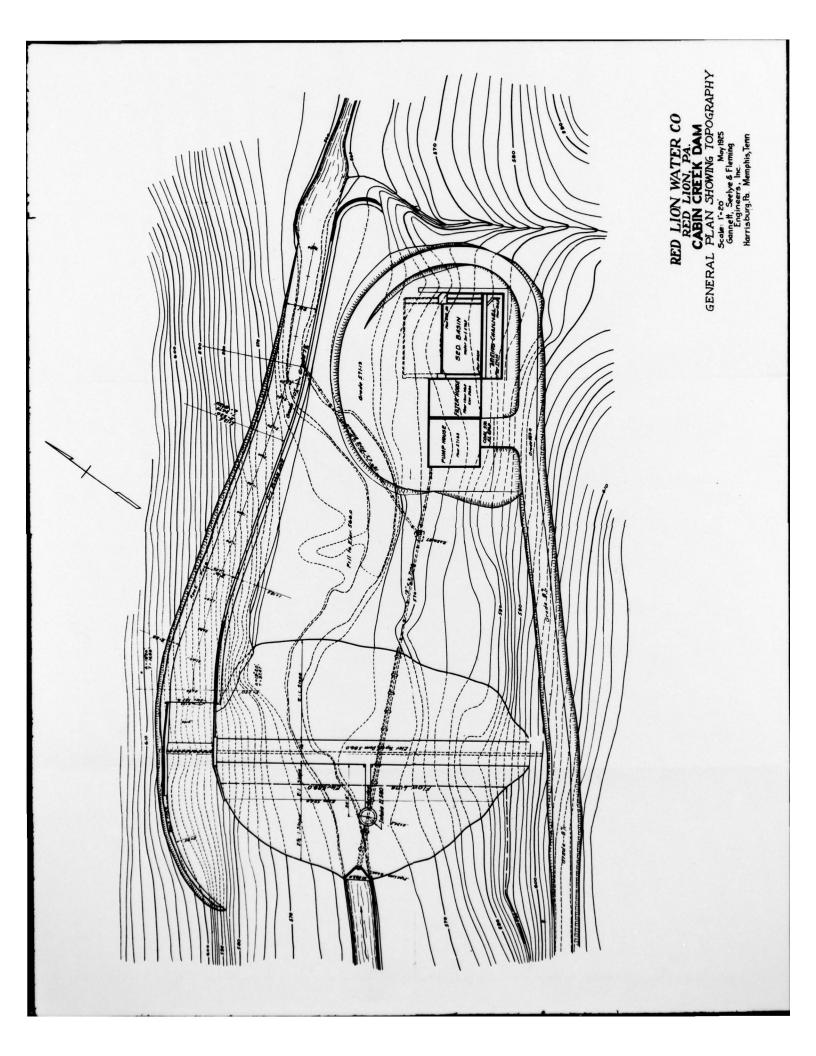

	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
1	407488.90	376.84	67155.87 407488490				
	361010-98	374.74 395.79	49548.47 361010498				
	317208.69	372.63 393.68	34698.68 317208.68				
	276090.44	370.53 391.58	22439419 276090444	and the second			
	237670-52	368.42 389.47	13909.97				
	201970.95	366.32 387.37	7864.78				
	169024+15	364.21 385.26	3636.33 169026415				
	130077.23	362.11 383.16	82.960 E4.116				
	111599.32	361.05	0.00	3E 15 364•3 3E 15 364•3			
0	07672.30	STAGE 378.95	FLON 87672.38 456638.65	MAXIMUN STAGE IS MAXIMUN STAGE IS			
		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A LANGE	No.	D-28		11.20

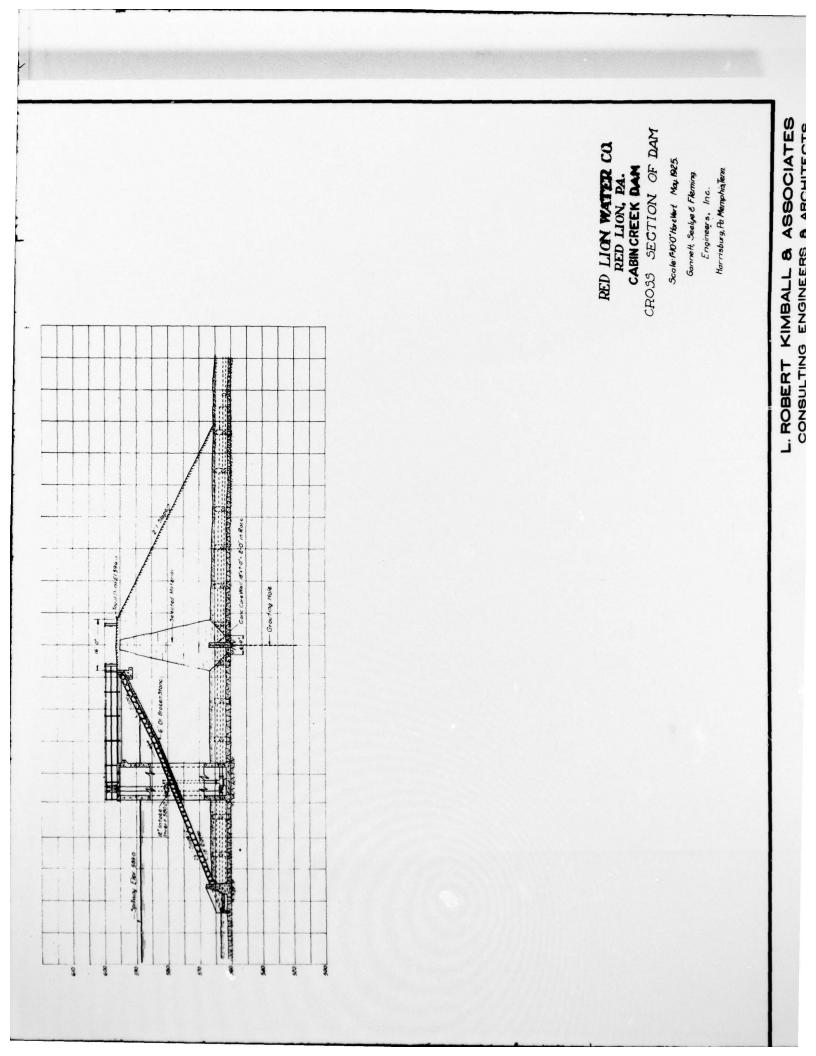
1											
		FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS) RATIOS APPLIED TO FLOWS									
		LONS IN CUBIC FEET PE AREA IN SQUARE	PLAN RATIO 1 •50	1 4115. (116.53)(2 4115.	1 114.53)(1 9185.	12	1 9148. 1 259.0511 2 4038. 1 114.3511	4 8461. (239460)(2 4007. (113.47)(1 8061. (228.25)(2 3981. (112.72)(
			AREA	2.63 6.811	2163		2.63	2.63	2.63		
			STATION	-				•-	-		
0			OPERATION S	HYDROGRAPH AT	ROUTED TO		ROUTED TO	ROUTED TO	ROUTED TO		
	and the second s	He and			D	-29	5 m			1	

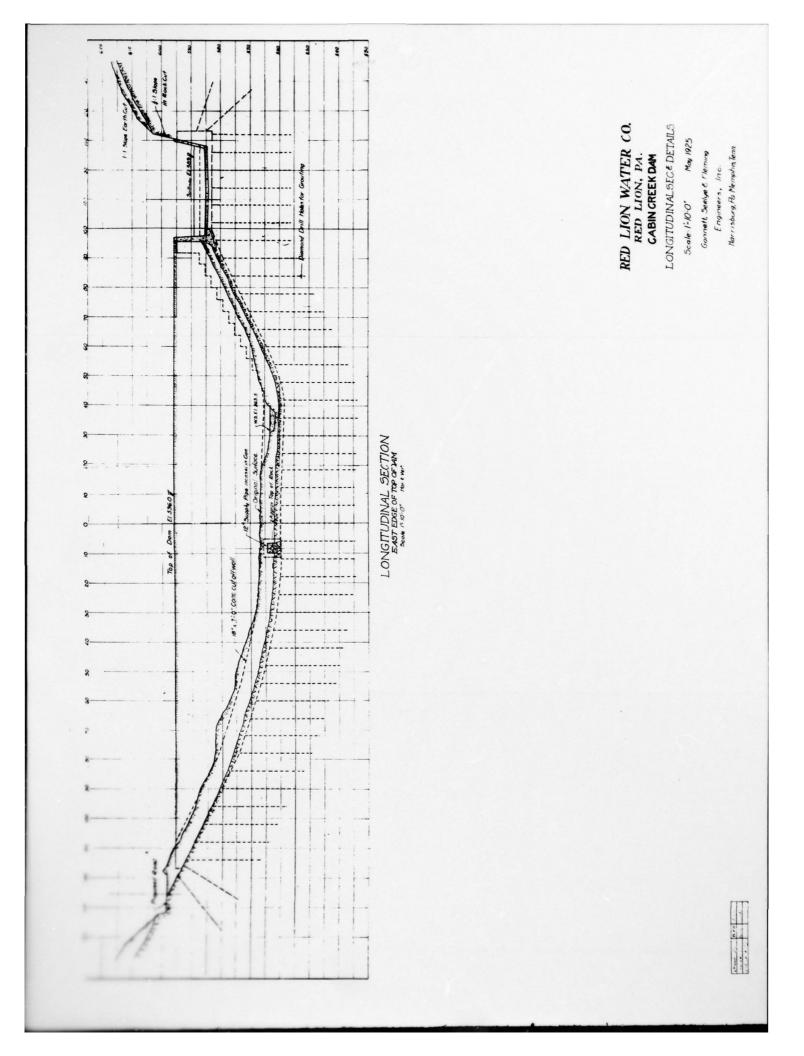
1													
			I I ME OF FAILURE HOURS	40.67		TIME OF FAILURE HOURS	00						
		TOP OF DAM 596.00 208.	I LIME OF MAX OUTFLOW HOURS	41.08	TOP OF DAM 994.00 2011	TIME OF MAX OUTFLOW HOURS	00*1*						
	1915	1.1	DURAT LON OVER TOP HOURS	1.35		DURAT ION OVER TOP HOURS	4.00	ſ	T IME HOURS	11.17	3		
	SUMMARY OF DAM SAFETY ANALYSIS	SPILLWAY CREST 994.00 178. 0.	MAX I MUM OUT FLOW CFS	9662.	SPILLWAY CREST 994.00 1784	MAXIMUM OUTFLOW CFS	4065.	STATION	MAXIMUM STAGE . FT	497.4	STATION		
	MARY OF DAM		MAX1MUM STORAGE AC-FT	238.		MAX1MUM STORAGE AG-FT	241.	1.	MAX IMUM FLOW.CFS	9140.	2		
		INITIAL VALUE 594.00 178.	MAXIMUM DEPTH OVER DAM	1.58	INITIAL VALUE 94.00 178.	MAX IMUN DEPTH OVER DAM	1.72	PLAN	RATIO	•50	PLAN		
		ELEVATION STORAGE OUTFLOW	MAXIMM RESERVOIR W.S.ELEV	597.58	ELEVATION STORAGE OUTFLOW	MAX IMUM RESERVOIR NoSoelev	597.72			A Contraction		s s	
			RATIO OF	•50		RATIO OF PMF	•\$0					# 63	
0		PLAN 1			PLAN 2								
					D-3	1							1

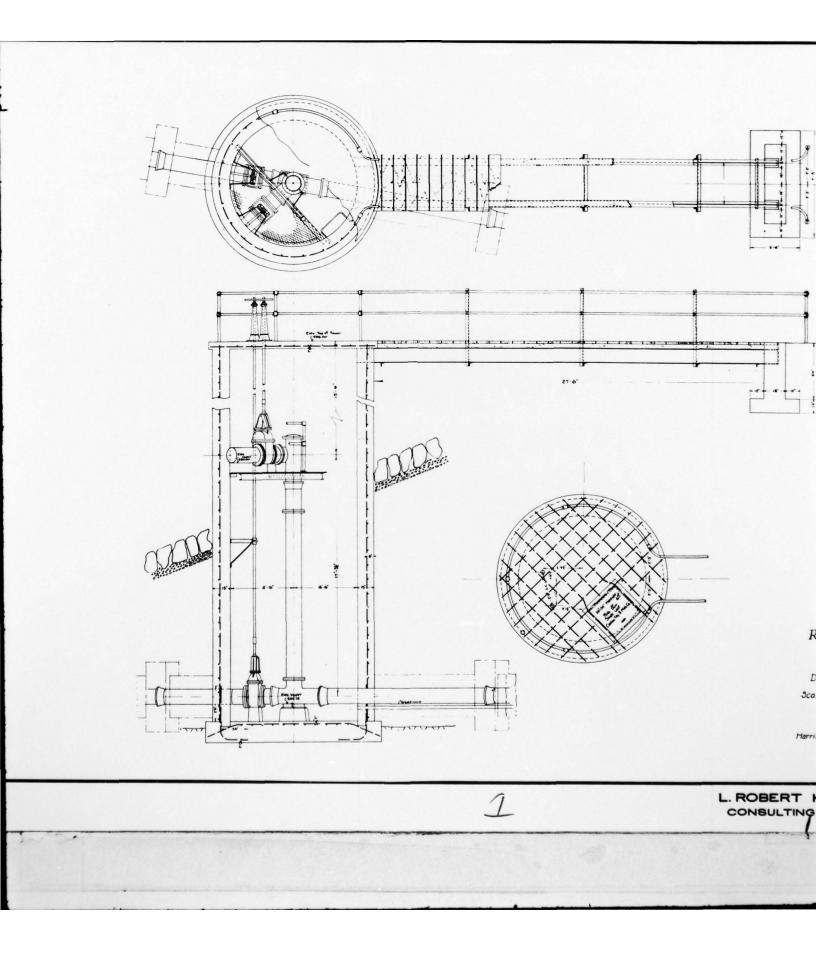
					Add and a set of the s									
			10°											
	1 IME HOURS 41.17	*	1 IME HOURS	41.17		1 IME HOURS	51.17	1	T IME HOURS	£6.14	5	I IME HOURS	41.33	
	MAXIMUM SIAGE .ET 495.4	STATION 4	MAX IMUM STAGE . FT	418.7		NAXIMUM STAGE . FT	41644	STATION 5	MAXIMUM	384.7		MAXIMUM STAGE . FT	383•1	
	MAX INUM FLOWACES 4030.	-	HAXIMUN FLOW.CFS	8461.	2	MAX IMUM FLOW •CFS	4007.	1. 1. V.	MAXIMUM FLOM.CFS	8061.	2	MAX IMUM FLOW CFS	3981.	
	8A110 .50	PLAN	2	•50	PLAN	RATIO	• 50	PLAN	BALLG	•50	PLAN	RATIO	•50	
					A State of the second	1. M. W.								
0			A CARA			100 100 100 C		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				and the second		
0					States and	A NAMES OF AND				And Alberta Construction				
	1949 1949					D-	.32							

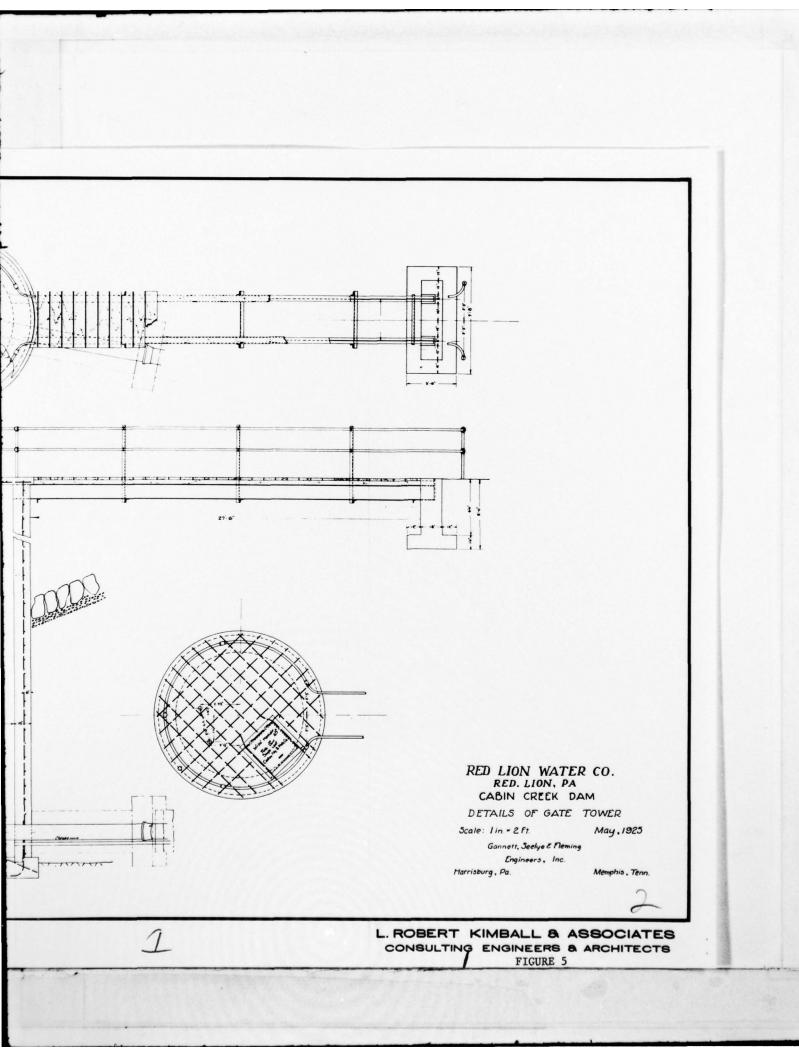

APPENDIX E DRAWINGS

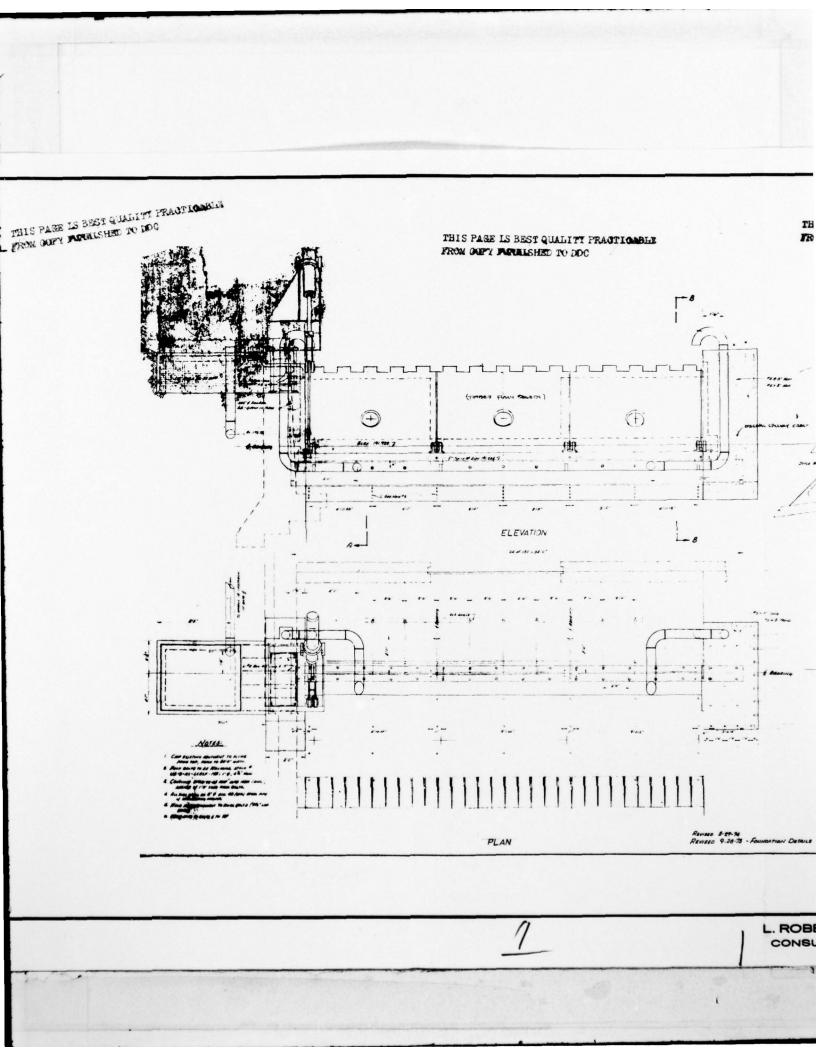

0

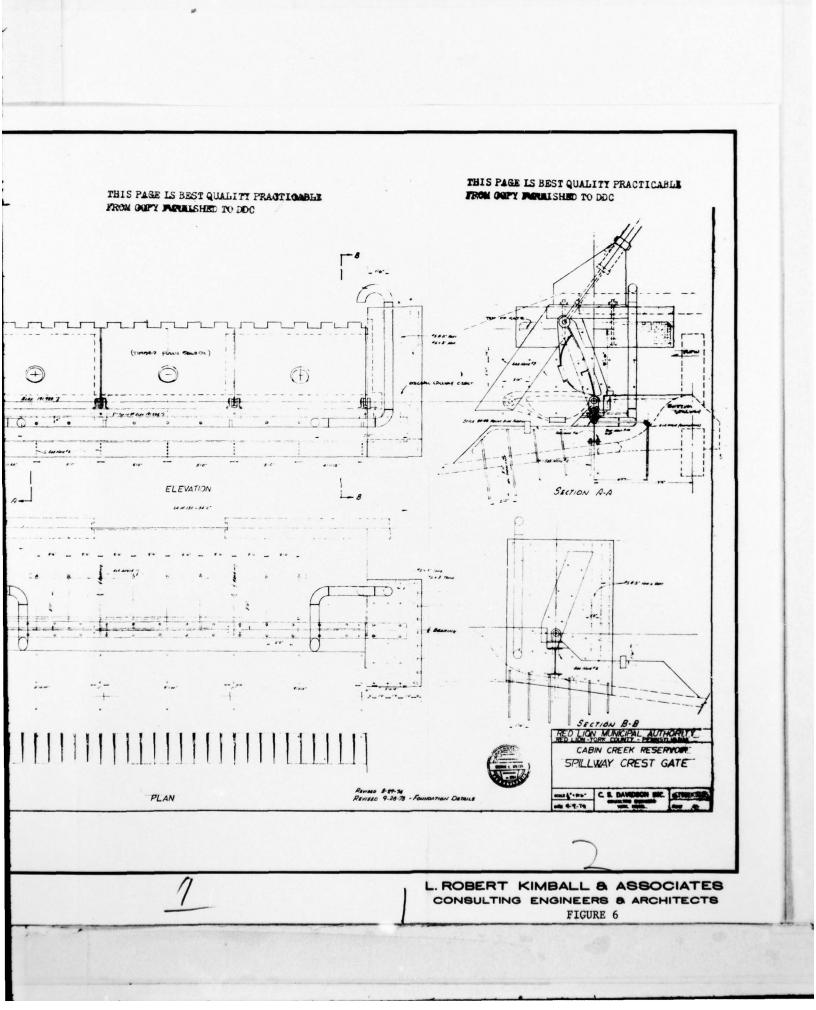

.




.







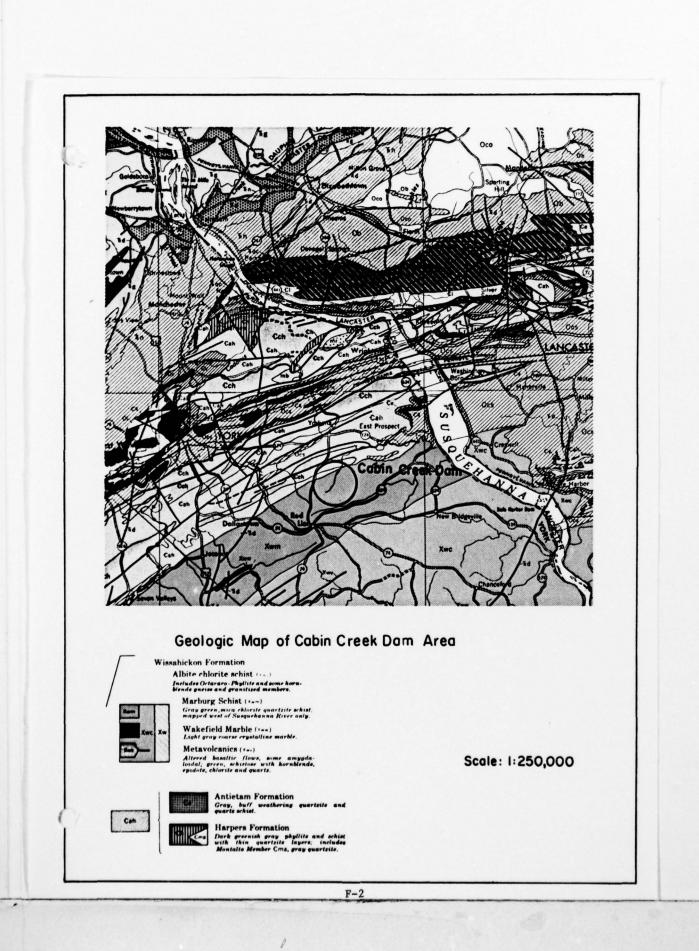
APPENDIX F GEOLOGY

0

0

.

2


General Geology.

The Red Lion Reservoir and Cabin Creek Dam lie within the Triassic Lowland Section of the Piedmont Physiographic Province. This area is structurally complex with a great deal of faulting and folding. The Red Lion Reservoir and dam straddle three different rock types. The bedrock consists primarily of the lower Paleozoic Marburg Schist (Xwm) with an east-west trending lens of quartzite. This gray-green schist is composed of mostly chlorite, quartzite and mica. It is fissile, thin and has a well developed platy cleavage. Joints are present, but are usually irregular and poorly formed. The schist is moderately resistant to weathering, but may be highly weathered in some localities. This material has formed a good foundation for heavy structures if excavated beyond the weathered zone. It has good surface drainage and a low secondary porosity from the joints and cleavage.

The Cambrian aged Harper's Phyllite (Ch) is the other rock type and is present under the northern portion of the reservoir. It is a dark greenish-gray, fissile, and moderately well bedded with joint and cleavage planes showing a seamy pattern. They are abundant and closely spaced, but irregularly distributed. The phyllite may be highly and deeply weathered and should be excavated to sound material if it is to serve as a foundation for heavy structures. It has a low secondary porosity from the joints and cleavage planes.

The phyllite and schist are separated by the Martic Overthrust Fault which appears to pass directly under the dam. This is an ancient fault and should no longer have any potential for movement. Another smaller fault passes within a half mile of the northeastern edge of the reservoir, but nothing is known of its displacement or activity.

F-1

