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I. INTRODUCTION

. Virtual cathode formation in vacuum-propagating beams may be
more widespread than previously recognized. The "%pin death™ of

parallel beam energy by ErXBz rotation in front of a density pileup,

may assit or steepen the axial density gradient, since the rotation

speed tends toward Brillouin flow, w=wc/2. It may be that the

propagation limit (on the beam density) is not miﬂwi in the applied
max

or total magnetic field, but rather mi (in the presence of self-

field pileup) small enough that CEr/Bz<v0 (v,=beam electron speed),

0
with Er given self-consistently from the charge distribution.

In what follows, self-consistent BGK-like axially dependent
equilibria will be described, in which the space charge effects
determine the axial extent and profile of the beam. Generalization
to axially nonuniform magnetic fields is relatively straightforward.

‘ Sections III and IV treat the problem in a purely one-dimensional

way, keeping the electrostatic effects of Ez electric fields but not

the effects of beam rotation caused by E.. Section V generalizes

| these results to include Er' Section VI summarizes the conclusions

of this introductory work.
I1. APPROXIMATIONS AND ASSUMPTIONS

i To calculate the electron density n(s) at a point s along
magnetic field lines in terms of an effective potential U(s) for the

| parallel motion, it is assumed that all changes of U(s) and n(s) with
time occur much slower than the time required for a typical particle

i transit from s=0 to the end of the system and back, and that the beam

? is on, supplying electrons at a constant rate, for a time much longer than




the transit time. It is also assumed that the beam source absorbs all
reflected electrons, that is, reflexing is neglected. This "fast bounce
approximation' then allows use of the steady state Vlasov equation, in
its integrated form, to calculate n(s) in terms of the momentum
distribution fo(p) at s=0 and the generalized potential U(s).
The potential for electron parallel motion is taken to have the
form U(s)=uB(s)-ed(s), where p is the magnetic moment invariant,
B(s) is the magnetic field strength, and ¢(s) includes all effects due
to the electric field. ¢(s) may or may not be approximated as a
purely electrostatic potential. The electrostatic potential ¢(s)
defined by E"=-3¢/Bs enters into ¢(s), but ed(s) in general also
contains the energy in ExB drift motion (taken out of parallel motion.)
It will be assumed that there is some point, s=M, such that for s>M,
no particles are reflected at s. This point may be at infinity, but
it is convenient to keep it in the analysis.
For simplicity in evaluating the integrals involving f(;.s=0),
the electron beam distribution in momentum will be assumed monoenergetic
with a rectangular distribution in pitch angles. (More general angle
distributions are also tractable.) Also for simplicity, we take the
case where 3B/3s=0, i.e., where the reflection of beam electrons is
entirely due to electric field effects and not to magnetic mirroring.
(This is easily generalized for nonrelativistic motion, and changes
only the boundary of integration of the integral expression for n(s).)
Finally, since we want only to show the basic physics of beam
self-reflection, we consider nonrelativistic beam momenta. Generalization

to relativistic motion is straightforward but mixes Py and p, through
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the factor

1/ 2 2 2 2
= FL % (p_ Pl)/moc

which occurs in the n(s) integrals.

The collisionless, magnetic-moment-preserving behavior assumed here
implies that instabilities do not disrupt the electron motion. This
requirement may be satisfied since the virtual cathode formation will
cause inhomogeneity of the density on the scale of one beam Debye length.
Thus, even though reflection of a beam with small parallel momentum
spread generally allows counterstreaming instability in homogeneous
plasmas, this instability may not be able to grow to significant
amplitude in the space provided, all the more because density
gradients absorb the unstable waves. Radial motion due to EZXBe
is neglected. This additional self-pinching due to Ez must be offset
by centrifugal effects arising from the curvature of the helical magnetic

field lines.
ITI. DENSITY IN TERMS OF POTENTIAL

The density at s is comprised of forward-going and reflected

electrons:
n(s) = n+(s)+n_(s) . (L)

The velocity distribution of the forward-going portion is specified

at s=0:
f+(v1,vl,s=0)=N6(!VI-VO)H(V)H(lyo'Vl’) (2)

where H(x) is the Heaviside function: H(x)=1 for x>0, =0 for x<0, and
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Yo is a maximum value of v,. This distribution is nonzero on an arc
of a circle in v space at s=0. See Fig. 1.

The velocity distribution of the reflected electrons, f_(v“ ,vL,O)
follows from reflection conditions and so is not specified a priori.

One can now use the integrated moment form of the one-dimensional

PN
steady state Vlasov equation to express n(s) in terms of f+(v,0) and

d(s)
n(s) = 2n(B(s)/B(0)] f ydyfzxdx(xz—xﬁ)’1’2f<x,y,0) (3
0
X = V” y ¥ = Vl ’
where
! : 2 2 (B(s) 2e ’

is the square of the 'escape' velocity required to reach point s,
and

z = Sup xs,(y) (5)

s'<s
is the maximum‘value taken on by X at points between s'=0 and
i ' s'=gs.
‘ Particles with midplane parallel velocity XX contribute

to the density at s; those with x<x_ or ) have been reflected

at some s'<s and do not appear at s. Because of the beamlike nature

' of f+(3,0), there are no electrons with x less than some X G T
with y greater than some yo); thus for s less than some o) there are
no turning points. For $>s( there are turning points until s>M. The

f ! point s, is specified by its potential, i.e.,

with xz given by Eq. (4) with s replaced by Sy The minimum parallel
0

velocity at the reference plane, Xy is a parameter of the distribution
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function.

For points s>so, the lower boundary of the x-integration in

Eq. (3) is Z, as given in Eq. (4). Eor S<s s the minimum is simply

. Xy In both cases the maximum can be taken as vo, as is clear from
]

Fig. 1. Thus, one has when B(s)=B(0)

y2 VZ
s 0
n (s) = 3N J.d(yz) f

2
d(x) 6(¢x2+y2-v0) (6)
0

22 or x2 /;z—xz
0 s

2mV Nv'vz—x2 for s>s

= 2nVglvvgex, 0 N
a2 2.2 D
= ZWVON[/QO-XS - VQO—yO-xs] for s<s0 g (8)

In Fig. 2, the forward-going density n+(s) is shown vs xz, i.e., V8.

the potential difference

AY = (2e/m) [¢(0)-0(s)] . 9)

The density of reflected particles is calculated similarly.
One assumes there is an s=M such that no reflections occur beyond M.

Then n_(s) is comprised of particles that go past s but not past M:

]
| | Min 2, k x2
! Ys*¥0 m 2
| n_(s) = 3N J dy) J ) 5 hPry?ov) (10)
2 2 2 2
y x_ Vx -x
m s )
= 21V_N xz—x2 for s <s<M (11)
0 m s =0
EWE I
= ZWVON[/km—xS-/go-xs] for s<s, . (12)
|
1 Note that
Bl
Ty T (2e/m) [¢#(M)-d(s)] . (13)

The density at s is then
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n(s) = n+(s)+n~(s) = 2anO[/cg—A? - /ég—A¢

(14)

+ /N(m—mf’ - x—g—-A—‘l’]

with any radical dropped once it becomes imaginary. For convenience,
let w=ATva. The physical range of the "independent variable'" ¢
is then from zero (¢(0)=0) to wM (w(M)=wm). The density n(s) is

shown vs. ¢y in Fig. 3.
IV. SELF CONSISTENT SOLUTION FOR AB=0

The equation for n(s) in terms of y(s) is now coupled to a
Poisson-like equation for y(s) whose right-hand side is n(s).

The ®esulting equation has the form

L = wf,w.awar) (15)

where mé is a functional of ¢y (and in general, its derivatives)

and;t:is the Laplacian operator. The simplest model is a purely

one-dimensional one with ¢(s)=¢(s) (i.e., purely electrostatic potential)
2 2

and;t%d /ds®. In terms of the scaled distance zZs-(Zmpolvo) the

equation is

2 (VI=p-2Vy —y+Vy —y]
4 2.8 ., O<p<y (16)
dz [1-2/%#@;] -

where wofxglvg and where the normalization N has been evaluated in terms of
the density at s=0 and subsumed into the definition of z via w§054ﬂ0032/ﬂo
It is not known whether this nonlinear equation always has unique
solutions. When the spread in parallel velocities of the beam is small

we can cast this equation in a soluble form if all electrons are reflected

somewhere: then wm-l, 1 e[O(O)—‘b(M)]-%mv2

0’ and the right-hand side of

(16) is

<L TR e B O @, W 3
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NA=p-Vp -y
——— .___._0._. -
v
1 wo
For small angle spread we may write w0=l-c (see Fig. 1) where
in terms of the pitch angle spread 00, r=eg/2. Expanding in ¢,

the right-hand side becomes

a
-y
where a»1 as e-0.
The resulting equation,
2
§~% e (17)
dz vV1-y
is a turning point problem and can be solved by quadrature:
i =— 1/2
i~ [(1=-V1-y) 1+2V1-9) " 7] (18)
giving ¢(z) implicitly as z(y). In particular, the condition that
no particles are reflected beyond some point s=M (and that all are
reflected someﬁhere) gives wm or M, subject to wm<1:
M= [ iy )2y (19)
3a m m *

See Fig. 4.

In the limit of no angle spread, all the electrons are reflected

at this same point. One can then use Eqs. (14) and (18) to obtain n(s):

n(s) = 1/u(s) u(s) = v1-y (20)

3

o3
u 2U

A % (1-92%) = 0 (21)

with z-s'ZwPO/vo as before.
In the case that not all electrons are reflected (i.e., U(s) has

a maximum less than mvg/Z) the one-dimensional electrostatic problem




can be similarly reduced to numerical quadrature:

? -
S a2/ (22)
dz”
with
a=[1-2/ 017t (23)

The solution is obtained by numerically integrating

dy

dz = (24)
2w w12
where " g
W(y) = aJdvl/l—w»’wm—w-mo—vl
e B R M O RS YO Ry (25)
m m

Here, as before, w0=xglvg is the cos2 of the beam angle spread; and

wmax is the maximum value of W in the range of integration over y.
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V. EFFECT OF RADIAL ELECTROSTATIC FIELD

Although the treatment in Eqs. (16)-(25) is strictly one-dimensional,
i.e., involves only electric fields along s, a formal generalization
is also possible when electron parallel streaming energy is converted
to azimuthal onﬁ rotation due to the radial electrostatic self-field,

Eo(r.s). Since any increase in the energy of this azimuthal motion,
¥ 2
3 m(CEO/B)

must come from the initial streaming energy, it can be treated as
part of the effective potential for parallel motion, U(s), which now
becomes

U(r,s) =%

y2BglB(s)-et(s) + 2 2 (E (r,9) /B() 17 . (26)

As mentioned in Sec. I, this can be written

U(r, s)-~§ " B(a) ed(r,s) L2T)

0

where ¢ now includes all effects due to the electric field, including

the radial field, and where the magnetic moment,

2.~1
yOBO s

3

u=

is assumed conserved.
For arbitrarily large beam density, azimuthal current now makes
B(s) nonuniform:

cE(r,s
VX§(r s) --—-* )[_ET;JES] (28)

and the natural coordinates (llﬁ, 1 ﬁ) become noncylindrical, complicating
the V2 operator. However, to demonstrate the physics of the electrostatic
effects alone, we may now restrict the remaining discussion in this
section to the case of small beam radius, low density, or strong ﬁO'
Writing Eq. (28) in dimensional form with §(r,s)-§o+ﬁs(r,s), one can

show that

=1

2
eB ) eB
).k & (,_o)
( mc ) = c2 pr me (29)

W o




with rbthe beam radius and U0 the plasma frequency based on the beam
density at s=0. Thus in Egs. (30)-(35), we shall require

ry wz

—:——P-<< 1 (30)

W
C

so that the magnetic self-fields are weak, while the electrostatic
self-fields are still strong enough to be important. In this case,

because of the electrostatic nature of the problem, one has
E.(r,s) =~ 2 (r,s) (31)
“0 S ar ¢ 38
and straight magnetic field lines. Thus we can write
2 2 2
. = 3¢
2(r,8)=¢(r,8)=(mc*/2e)(32) (32)

for the case B(s)=const.=BO.

Because reflection of electrons depends only on the potential for
parallel motion, an azimuthally symmetric nonneutral distribution of
electrons will have its density, n(r,s) given by Eq. (3), as before,
except for the modification in the definition of ¢. For the
distribution function of Eq. (2), the results of Eqs. (6)-(14)
remain valid. A self-consistent equilibrium for straight magnetic field

lines can now be obtained in the form of Eq. (15), letting

=_gg§ $(r,s) (33)
mv 0

be the scaled electrostatic potential, and defining
[v,/ (2B /mc) 1%=b (34)
0 0 ’

we may simply replace y by W+b(aw/3r)2 in the right-hand side of Eq.
(16). Note that b is just 1/4 of the (gyroradius)z, so that the
natural radius scaling is of the order of the gyroradius. Eq. (16)
then becomes, for the 2-dimensional electrostatic problem,

"l ———
% %? (' %%) +'QJ% = -{fl—w—b(aw/ar)z

9z

—2/€oszeo—w—b(aw/ar;7
(35)

+/§;xz[w+b(3wlar)21-[w+b(3w/3r)2]}

- -1
x{1-2c0590+/ﬁaxz[w+b(aw/af;z]}




where 00 is the initial spread in pitch angles of beam electrons, and
where the operation Maxz is taken at fixed r. The nonlinear partial
differential equation (35) appears suitable for moderately simple
computer solution by overrelaxation methods.

The condition (30), together with the requirement that the electron
gyroradius be small compared with the beam size Ty give the requirement
r, w

DaC
(s

vo/c<<(wclmp)2 :

where o =eB, /mc.
c 0

PSS




VI. CONCLUSIONS

In the one-dimensional case of purely electrostatic repulsion
(Ez>0, Er=0)’ self reflection of the entire electron population occurs
in a finite distance even if there is no pitch angle spread. For
small or zero spread, this virtual cathode occurs at a distance Lx\b/6wp0,
i.e., at less than one beam Debye length based on the initial kinetic
energy per particle. For a cold beam, all the beam electrons are
reflected at the same point, namely at this distance L. The density
profile is then given by n(s)=1/u with u the solution of the cubic
equation (21); this profile is shown in Fig. 5. The purely electrostatic
one-dimensional problem with angle spread has been reduced to quadrature,
as given by Eqs. (24) and (25).

For the case with Er#O, the scaled electrostatic potential
w=2e¢/mvg is given by the parabolic equation (35). This equation is

suitable for moderately simple computer solution by the method of

overrelaxation.
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FIGURE CAPTLONS

Referencs -
Médplane velocity space, X=v  , y=v,, at spatial point s=0.

Beam input velocity distribution is nonzero on the spherical
cap with x>xo. Beam electrons with X <x<x, are reflected
somewhere in the interval (0,s) and do not contribute to n(s).
Reflected particles (x<0, also contribute to n(s). There may

be an xH<v0 such that electrons with XySX<v, are never reflected.

In this case, -v X=Xy does not contribute to n(s).

0 »

Forward-going electron density n+(s) at 8 [Eqs. (7) and (8)],
vs. the potential difference [Fq. (9)] between point s and
s=0; shown for beam pitch angle spread ©

1. Sac i
sin eozyo/vo 05 0.2, 0.3, 0.5

0 at.s=0 given by

Total electron density n(s) at s, vs. the normalized potential ‘
difference ¥V between point s and s=0 [Eq. (14)]. Shown for

=0.7, ¢,=0.95. The lower, dashed curve describes the |

Yo M
never-reflected electrons at s>M, i.e., beyond the potential

maximum. |

v(z) for z<M, from Eq. (18).
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