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I .  INTRODUCTION

Virtual cathode formation in vacuum-propagating beams may be

more widespread than previously recognized . The •‘~~pin death” of

pa ra l l e l  beam energy by E
r
XB
z 

rotation in front of a density pileup,

may assit or steepen the axial density gradient , since the rotation

speed tends toward Brillouin flow , w=u /2. It may be that the

propagat ion limit (on the beam density) is not ~~~~~ in the applied

or total magnetic field , but rather (in the presence of self—p ma x

f ield p ileup) small enough that cE lB <V
0 

(v
0~
beam electron speed),

wi th E
r given self— consistentl y 

from the ch arge dis tribu t ion .

In what follows , self—consistent BGK—like axially dependent

equ il ibr ia  will be descr ibed , in which the space charge e f f e c ts

determ ine the axial extent and profile of the beam. Generalization

to axially nonuniform magnetic fields is relatively straightforward.

Sections ill and IV treat the problem in a purely one—dimens ional

way , keeping the &ectrostatic effects of E electric fields but not

the effects of beam rotation caused by Er • Section V generalizes

these results to includ e E . Section VI  summarizes the conclusions
r

of this introductory work.

I I .  APPROXIMATIONS AND ASSUMPTIONS

To calculate the electron density n(s) at a point s along

magne tic field lines in terms of an effective potential U(s) for the

parallel motion , it is assumed that all changes of U(s) and n(s) with

t ime occur much slower than the t ime required for a typ ical par ticle

transit from s=0 to the end of the system and back , and that the beam

is on , supplying electrons at a constant rate , for a time much longer than

L ~~



the transit time . It Is also assumed that the beam source absorbs all

reflected elec t rons , that is , reflexing is neglected . This “fast bounce

• approximation” then aflows use of the stead y state V lasov equa t ion, in

its integrated form , to calculate n(s) in terms of the momentum

distribution f
0
(p) at s 0  and the generalized potential U(s).

The potential for electron parallel motion is taken to have the

form t (s)~~iB(s)—e~ (s), where L~ is the magnetic moment invariant ,

B(s) is the magnetic field strength , and ~~s) includes all ef fec ts due

to the electric field. ~(s) may or may not be approximated as a

purely electro static potential. The electrostatic potential ~(s)

def ined by E~ —~ 4~/~ s enters Into ~(s), but e~ (s) in general also

contains the energy In i”~ B drift motion (taken out of parallel motion.)

It will he assumed that there is some point , s~ M, such that for s>M ,

no particles are reflected at s. This point may be at infinity, but

~t is convenient to keep it in the analysis.

For simp licit y in eva l uating the Integrals involving f(j~,s~ O),

t h e  electron beam distribution in momentum will be assumed monoenergetic

¶ wit h ~t rectangular distribut ion in pit ch ang l es. (More general angle

dis tributions are also tractable.) Also for simplicity, we take the

case where ~B/~ s~ O , i.e., where the reflection of beam electrons is

entirel y due to electric field effects and not to magnetic mirroring.

(This is easily generalized for nonrelativistic motion , and changes

only the boundary of integration of the integral expression for n(s).)

Finally, since we want only to show the basic physics of beam

self—reflec tion , we consider nonrelativistic beam momenta. Generalization

to relativistic motion Is strai ght forward but mixes p 11 and p1 through
I
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the fac tor

~y = I + (p71 + p~ )/ m~c

which occurs in the n(s) integrals.

The collisionless , magnetic—moment --preserving behavior assumed here

implies that instabilities do not disrupt the electron motion . This

requirement may be satisfied since the virtual cathode formation will

cause inh omogeneity  of the density on the scale of one beam Debye length .

Thus , even though reflection of a beam vith small parallel momentum

spr ead generally allows counterst reaming instability in homogeneous

plasmas, this instability may not be able t o  grow to significant

amp litude in the space provided , all the more because densi ty

gradients absorb the unstable waves. Radial motion due to E X B
Ø

is neglected . This additional self—pinching due to E must be offset

by centrifug al effects arising from the curvature of the helical magnetic

field l ines .

III. DENSITY IN TERMS OF POTENTIAL

The density at s is comprised of forward—going and reflected

electrons:

n( s) = n~ (s)+n (s) . ( 1)

The velocity distribution of the forward—going portion is specified

at s0 :

f
~

(v1,v,,s=O)=N~ (Jv I—v 0
)H(v)H (Iy

0
—v.j) (2)

I

where H(x) Is the Heaviside function : H (x) 1 for x>0, =0 for x<O , and
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is a maximum value of v ,. This distribution is nonzero on an arc

of a circle In v space at s0. See FIg. 1.

The velocity distribution of the reflected electrons , f ( v 11 ,v1,0)

foll ows from retlection conditions and so is not specified a priori.

One can now use the integrated moment form of the one—dimensional

steady state Vlasov equation to express n(s) In terms of f
÷
(
~~
,O) and

~~s)

n(s) = 2B(B(s)/B(O)1 f~ 
ydyJ xdx(x

2_x~)~~~~
2f (x ,y,O) (3)

x v , 1 , y v , ,

where

x
2 

y~ {}M-~- 
— + LD (O)—~ (s)J (4)

is the square of the ‘escape ’ velo cit y requ ired to reach point s,

and

Sup x ,(y) (5)

is the maximum value taken on by x , at points between s ’ O  and

s’=s.

Particles with midplane parallel velocity x>x contribute

to the density at 5; those with x<x or ~ have been reflec ted

at some s’ <s and do not appear at s. Because of the beamlike nature

of f
+
(
~~
,0), there are no elec trons wi th x less than some x

0 
(i.e.,

with y greater than some y
0
); thus for s less than some s

0 
there are

no turning points. For s>s0 there are turning points until s>!1. The

point s~ is specif ied by its po tent ial, i.e.,

2 2
x ~~xsO 0

w i t h  x 2 given by Eq.  (4)  w i t h  s rep laced  by 
~~~~~~ 

The minimum parallel

1 vel ocity at the reference plane , x0, is a parame ter of the distribution
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funct ion.

For points s>s0, the lower boundary of the x—integration in

Eq. (3) is ~~~, as given in Eq. (4). For s<s
~~
, the minimum is simp ly

x
0
. in both cases the maximum can be taken as v0, as is clear from

Fig. 1. Thus , one has when B( s) B(O)

2 2

n~ (s) = N 
J

~

•

S~~
(y
2
) 
j

V
: 

2 

d(x 2) ~(/~~~2 ) (6)

X or x x —x0 s

= 2iiV
0
N/v~—x for s>s0 , (7)

/
‘
~~~~~~~~ / 2  2 2

= 21TV
0
N [Yv

0
—x
5 

— ~v0
—y
0
— x ]  for s<s

0 
. (8)

In Fig. 2 , the forward—going density n+(s) is shown vs x
2
, i.e., vs.

the potential difference

(2elm) [~~(O)—l~(s)1 . ( 9 )

The dens i.ty  of r e f l e c t e d  p a r t i c l e s  is calculated s imi lar ly .

One assumes there is an s=M such that no reflections occur beyond M.

Then n (s) is comprised of particles that go past s but not past M:
• 2 2  2Mln y ,y x 

_ _ _

n ( s) = -~ - N 

2 : 

d( y2) ~(/x
2+y2_v

0
) (10)

= 2~ V N x —x for s <s< N (11)O m s  0

~ 2 2 / 2  2
= 2nV N[~ x —x — ‘x —x ~ 

for s<s . (12)
0 m s O s  0

Note that

X — x  = ( 2 e / m ) k ( M) — 4 1 ( s f l  . (13)

The density at s is then

1 ~~~~ ~~~~
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n(s) = n~ (s)+n (s) 27TNv
0
(/v~—Af —

(14)

+ /A~( -i ~~ -

w i t h  any radica l  dropped once i t  becomes imaginary .  For convenience ,

le t  ~~~~~~~~ The phys ical range of the “independent variable” i4

is then  f rom zero (~p(0) =O) to hi
M 

( M h
~m~~ 

The density n(s) is

shown vs. 
~ 

in Fig. 3.

IV. SELF CONSISTENT SOLUTION FOR L~B=O

The equat ion  for  n ( s )  in terms of ~~ s) is now coup led to a

P o i s s o n — l i k e  equa t ion  for  h ( s )  whose right—hand side is n(s).

The E s u l t i n g  equa t ion  has the fo rm

(15)

where is a f u n c t i o n a l  of i~ (and in general , its der iva tives)

andLis the Laplaclan operator . The simplest model is a purely

one—dimensional one with ii (s)=~~(s) (i.e. , purely electrostatic potential)

and~~~=d /ds
2 . In terms of the  scaled d i s t a n c e  z :s .( 2w

0/v0
) the

equation is

d
2 [ 4~~~~~

— 2 /,~, — ~j i+ 

~

‘

~~

j J0 m 
, O<4~<4~ (16)

dz 2 [ l — 2 v i~~+v”~T1 m

where ~0 x~ /v~ and where the  n o r m al i z a t i o n  N has been eva l uated in terms of

the dens i ty  at s~ 0 and subsumed in to  the  d e f i n i t i o n  of z via w 2
0~ 4wn

0
e2/m.

• 
It is not known whether this nonlinear equation always has unique

solutions . When the spread in parallel velocities of the beam is small

we can cast this equation in a soluble form if all electrons are reflected

somewhere: then p i , I.e., e [t(O)—~(M) ~~
- mv~~, and the r i gh t —hand side of

a (16) is

14 —- -- —___ - T-~~
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For small ang le spread we may write ~j~~~l—c (see Fig. 1) where

in terms of the pitch ang le spread 0
~~
, O~l2 .  Expanding  in c ,

the right—hand side becomes

-c ,

where  a-~1 as

T h e  r e s u l t i n g  equa t ion ,

P 2
(17)

dz~

is a tu rning point problem and can be so lved by q u a d r a t u r e :

z = -j~
— [( l — / — h ) ( l + 2 V1—h J) ’” 2 ] (18)

g iv ing ~(z) implicitl y as z(~J). In par ticular , the condition that

no particles are reflected beyond some point s=M (and that all are

reflected somewhere) gives 
~ 

or N, subject to ~p < l :

M = —k-- 1 (i~/ ip)(l+2/i~~T)
h1F 2

] . (19)
3n m m

See Fig. 4.

In the limit of no angle spread , all the elec trons are reflec ted

at t h i s  same point. One can then use Eqs. (14) and (18) to obtain n(s):

n(s) = 1/u(s) u(s) = (20)

u
3 

- 
~~~ u

2 
- u + ~~ (l - 9 z 2 ) = 0 (21)

w i t h  z~~s~~2~i /v as b e f o r e .
p0 0

In the case that not all electrons are reflected (i.e., U(s) has

a maximum less than mv~/2) the one—d imensional electrostatic problem 

II1iJ~
-
~~±I1~~~ ._
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can be similarly reduced to numerical quadra t ure:

= 
~~~~~~~~~~~~~~~~~~~~~ 

(22)

wi th

(23)

The solut ion is ob t a ined  b y mimer i c a l l  v In t eg r a t i n g

dz = -- -——-
~~~~~

----- -—— -- -- (24)
2 [U —W ( ) 1 /

maxwhere

W (~~) = aJd4?[VT fvTT~~L2V~~~ h1

= ~~ El+~
312

-2~
312

-(i-~~
312

-(h’ _~P)
3/2 +2(~ _~)

3/2 ) (25)

Here , as befor: , c 0=:~/v~ is the cos2 of :he beam an:le spread;  and

U is the maximum value of U in the range of i n t egrat ion  over ji .
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V. EFFECT OF RADIAL ELECTROSTATIC FIELD

Although the t rea tment  in Eqs. ( 1 6) — ( 2 5 )  is s t r ic t ly one—dimensional ,

i . e . ,  involves only e lec t r ic  f i e l d s  along s , a formal genera l i za tion

is also possible when electron para l le l  s t reaming energy is converted

to azimuthal  ~~~~ ro t a t i on  due to the  r a d i a l  e l e c t r o s t a t i c  s e l f — f i e l d ,

E0 (r , s ) .  Since any increase in the  energy of t h i s  az imuthal  motion ,

-~ m( cE
0

/B) 2 ,

must come from the initial streaming energy , it can be t reated as

par t  of t he  e f fe ct i v e  p o t e n t ia l  fo r  p a r a l l e l  motion , U ( s ) ,  which now

becomes

i’(r ,s) =~~~ y~ B0
1B(s)-e~ (s) +~~ c 2 (E 0(r , s )/ B ( s ) 1

2 
. (26)

As mentioned In Sec. I , thi s can Lw written

‘) — lU ( r , s) —. y~ B0 B ( s ) — e $ ( r , s) (27)

where ‘ now includes all effects due to the electric field , including

the radial fiel J , and where the magnetic moment ,

m 2 - 1
~~

= -
~~ ‘~~B0

Is assumed conserved.

For a r b i t r a r i ly large beam d e n si t y ,  a z i m u t h a l  c u r r e n t  now makes
B ( s )  n o n u n i f o r m :

V c~~(r ,s) =~~~~ -~ -~~ n ( r , s) ~~~~~~~~~~ (28)

and the na tu ra l  coord ina tes  ( i i  ~~~, .1. 
~~
) become noncy lindrical , complicating

the V 2 operator . However , to demons t r a t e  the  physics of the e lec t ros ta t ic

e f f e c t s  alone , we may now r e s t r i c t  the  r ema in ing  d i scuss ion  in this

sec t i on  to the case of small beam r .~dius , low density , or strong

W r i t i n g  Eq. (28) in d imensional  fo rm w i t h  ~ (r , s)~’A 0+1 (r ,s ) ,  one can

show t h a t
2 — l,eB ‘~ r i e B

I S I  b 4 1 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i— - - 
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w i t h  r
b 

t he  beam rad ius  and a 0 the plasma f requency  based on the beam

d e n s i t y  at s 0 .  Thus in Eqs. ( 3 0 ) — ( 3 5 ) ,  we shall require
2

—
~~

- —
~~~

- < <  1 ( 30)

so that the magnetic self—f ields are weak , wh ile the e l e c t r o s t a t i c

self—fields are still strong enough to he important. In this case ,

because of the electrostatic nature of the problem , one has

E
0
(r ,s) = - 

~~
--  

~(r,s) (31)

and straight magnetic field lines . Thus we can write

~(r,s)=+(r,s)-(mc
2/2eB~)(~-~) (32)

for the case B (s)=const.=B
0
.

Because reflec tion of electrons depends only on the po tential f or
parallel motion, an azimuthally symmetric nonneutral distribution of
electrons will have its density, n(r ,s) g iven by Eq. (3), as before ,
except for the modification in the definition of •. For the

distribut ion function of Eq. (2), the results of Eqs. (6)—(l4)

remain valid. A self—consistent equilibrium for straight magnetic field

lines can now be obtained in the form of Eq. (15) , letting

4~(r ,s) (33)
my
0

be the scaled electrostatic potential , and defining

[v
0

/ (2 e80/mc) ]
2

h , (34)

we may simply replace 4~ by ‘V+h (a~j~/ 3 r) 2 in the right—hand side of Eq.
(16). Note that b Is just 1/4 of the (gyroradius) 2

, so that the

nat ura l rad ius scaling Is of the order of the gyroradius. Eq. (16)

then becomes , for the 2—dimensional electrostatic problem ,

~~ 
(r ~

) + ~
_ 2p~~os 2e0_4’

_h(~~ji/~ r) 2

____ ______________________ 1 (35)

+hax [h+h (~ q)/~ r)
2
1_ [4’+b(34’/~ r) 2J f

a

- — --5 5-S

- ~~ : 
-

~~~~~— - .
- -~~~
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where is the  i n i t i a l  spread in p i t c h  angles  of beam e lec t rons , and

where the operation Max
~ 

Is taken at fixed r. The nonlinear partial

d i f f e r e n t i a l  equation (35) appears suitable for moderately simp le
computer solution by overrelaxation methods .

The condition (30), together with the requirement that the elec’ron

gyroradius be small compared with the beam size rbl give the requirement

r u2 b c

where w ~eB /nc .
C 0

I

1

L ~~



---—— — -5  5—— ~~ .

V I .  CONCI PSU1NS

in t h e one—dimensional case oh purely electrostatic repulsion

(E -U , E = O ) ,  se l f  r e f l e c t i o n  of  the entire electron population occurs

in a finite distance even if there is no p itch angle spread. For

small or zero spread , this virtual cathode occurs at a distance L~~v0
/6w 0,

i .e  • , at less than one beam Debve 1 en~ t based on the  i n i t i a l  k i ne t i c

energy per particle. For a co l d beam , a l l  the  beam e lec t  rons are

reflected at the same p o i n t , name l y at  this distance L. The density

p r o f i l e  is  then g iven by n ( s ) 1/ u  w it h u the s o l u t i o n  of the  cubic

equation (21); this profile Is shown in F i g .  5. The pure l y e l e c t r o s t a t i c

o n e— d i m e n s i o n a l  p r o b l e m  w i t h  ang le spread has been reduced to q u a d r a t u r e ,

as g iven  by Eqs .  ( 2 4 )  and ( 2 5 ) .

For the case with E
r~
0
~ 

the scaled electrostatic potential

is given by the parabolic equation (35). This equation is

suitable for moderately simp le computer solution by th e method of

ov er r e  I Ixi t ion.

I
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FIGURE CAPTIONS

-

FIg. 1 ~~~p1ane velocit y sp ice , x~ v 1 . v=v 1, at spatial point s=0.

Beam input velocity Jist r ihut Ion is nonzero on t h e  s phe r i ca l

cap with x>x 0 . Ream electron s with x
0

-x- x are reflected

somewhere in the interv a l (O ,s) and do not contrib ute to n(s).

R e f l e c t e d  particles (x~O .- 
also c o n t r i b u t e  to  n ( s ) .  There  may

be an such t h at  e l e c t r o n s  w i t h  X
M X V O ar e  never  r e f l e c t e d .

In this case, _v O~
x _ x

M does not c o n t r i b u t e  to  n ( s ) .

FIg. 2 Forward—going electron density n
+(s) ~it  s (E;s . (7) and ( 8 ) 1,

vs. the potential di fference [ t ~1. (9) 1 b etw e en  point s and

s0; ahown for beam pitch angle spread P~ at -~~—0 given by

sin260:y~ /v~—0, 0.1 , 0. 3 , 0.S.

Fig. 3 Total electron density n(s) at s, vs. the n o r m a l i z e d  p o t e n t i a l

d i f f e r e n c e  4’ between p o i n t  s and s 0  lEq . (l!~)]. Shown for

4’o.0.7 , 
~M~

0•95• The lowe r , dashed cu rve  desc r ibes  the

never—reflected electrons at s - H , i . e . ,  beyond the  p o t e n t i a l

maximu m.

Fig. 4 ji(z) for z<M , from Eq. (18).

I

- 5 - -  5 -  -~~~~~~~~~ -- --—-.---- _ _

- ~~~~~~~- - - -- TJ—~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -— .------ —
~—--—- -- —- —5-— ,-- -—-—5-..- —— _ _ _ _ S _

n5- _ _•_
~

••_ _• 5_5=
~~~ 

-



- -  — - ~~~~~~~~~~~

Reference Plane (s~ o) Velocity Space

y (J~)

N. — y 0
, I

A’
/ Reflected I

7
j contribute 

.4/ 
I

I to n(s) if 7 I
x ( l l )ref lected, I

\ Contribute

\ I to n(s)

\ Reflected
\ before s I /

_ _ _  
I ,

• I I ,
x — x 5 x=x 5 (indep. of y )

I Ix:~x0 x :x 0
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