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1.0 INTRODUCTION

Cross-correlation calculations of signals received by two different sensors can be
employed for estimation of position and velocity parameters of the transmit ting source.
These same calculations can be employed as a normalized detection statistic through the
use of coherence or regression of one sensor’s output with respect to the other. Independent
of whether the calculat ions are primarily for estimation or detection purposes , fi ltering of
the received signals should be conducted in a fashion to optimize perfo rmance . If full
knowledge of the noise statistics exists for each sensor as well as the statistics of the received
signals , then the procedure for optimizin g * the filtering can be found in Refs. I through 4.
For detection purposes , the processor is based upon the likelihood ratio , which declares
a signal present if

S P (X l signal plus noise) 
> T I )

P(Xl noise) 
‘ ‘

where X denotes the data of observation , P(X l Z) denotes the probability of the input data
occurring under hypothesis Z , and T denotes a threshold corresponding to a particular
probability of false alarm. t For parameter estimat ion , the processor is based upon the
maximum likelihood solution

P(X signal plus noise) = 0 (2 )

where 0 is the unknown paramete r. In situations where little a p riori knowledge ex ists
about the noise and signal statistics , optimization of the processing is not as straightforward.
The concept of a likelihood ratio processor is still advantageous, but now sampled or
approximated values have to be utilized in the likelihood ratio instead of true values. The
use of sampled values in the likelihood ratio to describe unknown values can be thought of
as single-iteration adaptiv e filtering of the cross-correlation calculation. With two sensors
being involved in the calculations, the adaptation need not be constrained to the individual

signals at each sensor but can occur on the cross-correlation or equivalently, the cross-spectrum

calculated between the sensors. As will be shown in this report, adaptation on the cross-
spectrum by means of a likelihood expression provides a fo rmalism for matching the process-
ing bandpass to the bandwidth of the signal and for compensating for colored noise or
interference within the processing band pass. One of the major advantage s of the adaptat ion

°Optimizatio n here refers to maximi zing the probability of detection for a given probabilit y of false alann
(i.e., the Neyman -Pearson criteria ) and providi ng minimum variance parameter estimates (the asympt oti c
property of maximum likelihood estimators ) .

1WJ. Bangs. “A rray Processing With Generalired Beam-Formers ,” Ph. D. Dissertation . Yal e University. New
Have n , Connecticut . Septe mber 1971.

Heistrom . Statistical Theory of Signal Detection . Permagon Press , 1968.
3H .L. Van Trees . Detection , t flimation . D? d Modulation Theoy. Part I . Joh n Wiley and Sons , 1968.
4D. M id d leton , An Introduction to Statistical Communication Theory . McGraw-Hill. 1960.

bar notation is used to den ote vectors.
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is that noa priori assumptions about the nature of the signals (broadband or narrowband)
or the interference has to be made.

The purpose of the work presented in this report is to present the statistics for
algorithms based on likelihood criteria (likelihood ratio or maximum likelihood ) that adapt
on the cross-spectrum in order to jointly detect and estimate signal parameters. Section 2
of the report will discuss the algorithms examined while Section 3 wil l describe their
statistical properties. Finally, Section 4 presents the conclusion.

2.0 LIKELIHOOD EXPRESSIONS FOR CROSS-CORRELATION PROCESSING

Two likelihood-based algorithms for joint detection and estima tion of signal
parameters from data at the output of two sensors will be considered in this report. The
first is a generalized likelihood ratio test statistic, wh ile the other is an approximate formr of a maximum likelihood parameter estimator. Selection of these two algorithms is based
on their being likelihood processors and on their being normalized test statistics. A normal-
ized test statistic does not depend upon absolute power levels received at the sensors. For
low-frequency acoustic signals, where the noise background has been shown to be stationary
for only short time periods , this property takes on added importance (Ref. 5).

GENERALIZED LIKELIHOOD EXPRESSION

A generalized likelihood ratio test statistic is the classical approach (Refs . 2 , 3,6)
for detecting a signal when full knowledge about the signal or noise properties is not

S 

available. For cross-correlation processing, these properties are the signal time-difference
between the sensors , the signal-frequency difference between the sensors, the spectra l level
of the signal as a function of frequency, and the spectral level of the noise as a function of
frequency. The test statistic has the form

— 
p(il~~1)~max. over~~1}AGLR

_
p(!I~

.
){max over r} 

(3)

where p(ii~) represents the conditional density of the input data on the parameter set ~~~.

O
~ 
denotes the parameter set under condition of signal plus noise being present, and 00

denotes the parameter set under the condition of noise only being present. The above test
statistic forms maximum likelihood estimates for both 

~ 
and 00 and substitutes these

into the likelihood ratio as if they were the true values. The above test statistic has been
S - 

derived for the case where the signal and noise are assumed to be Gaussian distributed , hut
their respective spectral levels as a function of frequency are unknown. Also , the signal’s
time difference and frequency difference between the sensors is assumed unknown. The

1. Arase and E. Arase, “Deep Sea Ambient Noise Statistics,” J. ,4coust. Soc. Am., Vol. 44, pp. t6 79 .Ib M ,
April 1968.
6D. Becker, “Investigate the Use of Alternate Sample Statis t ics,” ORINCON Company Report, prepared
under Contract N 000123-76-C.0505 , December 1976.

.
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derivation of the test stastic under these conditions is discussed in Ref’s. 6 and 7. A con-
densed form of the derivation is presented in Appendix A and leads to*

AGLR (T) ~~~ ~ 
-42 (w~ ) cos2 1wk r~~~~(w k )l}. (4)

keK

Here . 42 (wk) is the sampled magnitude squared coherence (MSC) between the two sensors
at radian freqt~ ncy w~ , ~(wk ) . is the sampled cross-spectral phase between the two sensors
at radian frequency wk . r is the search parameter over the time diffe rence between the
sensors, and K is the set of frequencies over which filterin g is to he per fo rmed .t Equation
(4) shows that  a sum of information across frequency is t aken . but the summation posses-
ses a complicated dependence on the sampled cross-spectral and auto-spectral paramete rs.
Use of Eq. (4) does not necessarily guarantee that the two-sensor probability of detection
will be maximized or that minimu m variance parameter estimates will occur. The use of

Eq. (4) can only be expected to provide nearl y optimum detection pe rformance because
the general concept of a likelihood ratio processor has been retained. Also , since the
parameter estimates are maximum likelihood estimates , they approach m in imum variance
estimates asymptoticall y as a function of observation time (Re f.  9).

MAXIMUM LIKELLHO OD ESTIMATOR (APPROXIMATE )

Since a generalized likelihood ratio processor does not necessarily guarantee opt imum
processing performance , it is reasonable to consider other likelihood -based processing tech-
niques. This consideration can be based upon ease of implementat ion among other factors.
The maximum likelihood estimate for the set of signal parameters 0 is given by the
solution of

p(fl~~1~~max.over~~1 ). 
(5 )

In Eqs. ( 3 )  and (4) . it was assumed that ~~ 
included the noise spectral levels as a functi on

of frequency and the signal spectral levels as a function of frequency. If the signal and
noise spectral levels as a function of frequency are known. Eq. (5)  leads to (Refs . 10, 11)

1 A

~~~~
“ -yi w~ ) G ~( w . l f

A ML (r) 2_~ C 
k cos l w k r +  lP (w k )

~ 
(6)

keK I .~y’i w~ )

The maximization of AGLR over the frequency difference between the sensors is implicit in equation 4.
It is further assumed that a narrowhand Dopp ler correction is sufficient such that the maximizations over
the Doppler and time-diffe rence parameters are asymptotically independent of each other (Ref. 8).

~The A notation is used to denote sampled parameters as opposed to true parameters.
7Reference availabl e to qualified requester s.
8P.M . Schultheiss . “Estimat ion of Doppler Shift and Differentia l Doppler Shift .” Yale University.
Technical Report , prepared under Contrac t N66O0l-76-C~lO82 . June 1977 .

9H. (‘ramer . Mathematical Methods of Statistics. Princeton I. niver sity Press , 1 946.

‘°G. ( s ites . “Time Delay Estimation .” NUSC TR 5335 . #~pril 1976 .
I ‘F. Hannan aid J . Thompson . “E sl imat in g Group Delay .” Riomettika. Vol. 60. pp. 24 1-2 53 . 1973.
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where 72(wk) represents the true value of MSC , G 1 2(wk) represents the true cross-spectral
power , G 12(wk) represents the sampled cross-spectral power , and r , ,~l(wk), and K are as
defined earlier. If sampled spectral properties are subst ituted for true spectra l properties
in Eq. (6), the resulting processor is given by

S 

AAML ( r )  = 
~~~ r(Wk ) 

cos L Wk T + ~ (w k ) ] .  (7)
keK 1 — 7  (w k)

This relationship represents an inverse transfo rm of the cross-spectral phase with a weighting
at each frequency dependent upon the sampled MSC. Equation (7) possesses the following

S properties: it represents a normalized detection statistic , it is a zero mean test statisticp with noise only present [as opposed to Eq. (4)], and it can be implemented using FFT
processing techniques. It should be stated that use of Eq. (7) as a detection statistic was
not rigorously derived.

LOW COHERENCE PROPERTIES OF THE LIKELiHOO D EXPRESSIONS

The form of the generalized likelihood ratio test stastic and the approximate maxi-
mum likelihood estimator can be examined for the case of low input coherence levels. This
assumption simplifies the form of each algorithm such that the difference between them
becomes more apparent. Assuming low input coherence levels , the first-order terms
describing Eqs. (4) and (7) are

AGLR~~ ~~~ ~
2 (w k ) cos2 Iw r +~~( w ) ] (8)

keK

A AML ~~~ cos [w kr + jJ (Wk ) I .  (9)
keK

These expressions differ only in the manner in which the cross-spectral phase is combined
across frequency. The weighting applied to each cross-spectral phase measurement is identi-
cal. If the cosine squared term of Eq. (8) is written in terms of the twice-angle formula.

AGLR~~+ E ~
2(w k ) + ~4_~~~ ~

2(wk ) cos 1 2w k r + 2 ~4w k ) l ,  ( 10)
keK keK

the difference between the two algorithms can also be interpreted in the following sense :
the generalized likelihood test statistic uses both a coherent and incoherent summation o1
informati on across frequency , and for wideband signals the generalized likelihood expres-
sion requires a higher degree of consistency in the cross-spectral phase measurements across
frequency.

Equations (8) and (9) allow a simple interpretation of the manner in which both
algorithms act as adaptive filters on the cross spectrum. The contribution from each
frequency region does not depend on absolute spectral levels but only upon the measured

• coherence between the sensors at each frequency. If low coherence is detected in particular
frequency regions, those regions are weighted less than other frequency regions.

S
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ENVELOPE FORM OF THE ALGORITHMS

The two sensor test statistics defined by Eqs. (4) and (7) are basically wideband
processing algorithms. Equivalent performance on a narrowband signal can be obtained ,
with a large reduction in processing load , by using envelope versions of these algorithms.
The envelope expressions are straightforward for the low-coherence form of both algorithms

‘~GLR =~ T ~~~~~~ 
42(w~ ) +  ~~

-
~
- 
~~ ~~~~~~~~~~~~~~~~~~~~ 

(II ) 

S

- keK 
- keK

A l

‘~AML=~ 
L_~ ‘y ’-( wk ) eh I~ ’kT W~wk ,J ( 12 )
keK

but are more di fficult  to write for the exact expressions. That is . an explicit form for the
envelope of AAML can be writ ten as

A AML ~~~~ ~
2(wk )  

~~~~~~~~~~~~~ ( 13)
keK I — ‘y~ (wk )

but no explicit form for the envelope of AGLR is known. In order to realize the envelope
S properties of AGLR, Eq. (4) was sampled densely over one cycle of the bandpass center

frequency and the maximum value selected. This procedure was repeated at r intervals
corresponding to the reciprocal of twice the processing bandwidth.

3.0 STATISTICS FOR THE TWO-SENSO R LIKELIHOOD EXPR ESSIONS

In order to effectively evaluate the performance of the likelihood expressions, the

statistics for each expression must be determined . The number of summation term s across

5 
frequency in these expressions in general will not be large enough to justify central l imit
theorem approximations. For general use. the sta~ stics of AGLR and AAML need to be

5 derived from the joint probability distribution of ‘y~ and ,t’. Due to the nonlinear depen-
dence of Eqs. (4) and (7) with respect to ~~ and ~~~, exact determination of the statistics
for AGLR and AAML is difficult.  The low level coherence forms of both algorithms are
considerably simpler though and it is generally the low signal-to-noise ratio properties of
algorithms that are of the most interest. That is, the probability of false alarm (

~ FA) is
controlled by the zero-coherence level properties and the probability of detection (

~ D~
is controlled by low-level coherence except in the region where detection probabilit ies are
approaching unity.

In this section, the statistics for the low-level coherence forms of AGLR au AAML
will be developed. These statistics are governed by the probability distribution of 72(wk)
and ,

~(w k ) where these random variables are defined by

S

6
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N 2
~~ F(w~ , n) H*(wk, n)

~
2(w k) n 1  

N 
(14)

~~ F(w~, n) F*(w k, ‘~) 
~~ 

H(w~ , ~ FI*(wk, n)
n 1  n 1

C IN 1
I I m a g I~~ F(w k, n) H*(w k, n )I

J Ln=I J
~(w k ) = arctan~) r~ 1 ( 15)

RI 
~~ 

F(w k, n) H*(w k, n)I

~ L’~~ j
Here , F(wk, n) denotes the Fourier transform at the n th time interval taken from sensor
one at radian frequency w~ , and H(wk, n) denotes the Fourier transform at the n th time
interval taken from sensor two at radian frequency wk . if the noise at each sensor is con-
strained to be jointly Gaussian and independent , the signal is a Gaussian random variable,
and the transforms in Eqs. (14) and (1 5) are not overlapped in time , then the joint proba-
bility density function for ~2 and ~ can be obtained from Ref. 1 2

2irr (N) r(N- I )  ( I  _~~2 ) N_2 2k

(~ 2~~ cos (~~_ p )  ( 16)

where F’ denotes a gamma function , 72 and ~t’ are the true values of MSC and cross-spectral
phase, and N is the number of transforms used in estimating these parameters. It can also
be shown that

P[~
2(wk ), ~(wk ),~

2(w~), ~(w Q)] P[~’2(w k ), ~(w k )] P[~’2(wQ ). ~ (w Q)] ( 17)

for any value of k not equal to £. This follows from the fact that both [F(wk, n) , F(w 2, nfl
and [H(wk , n), H(wQ, n) ] are asymptotically independent (Refs. 13 , 14, 15) for k ~ Q.
Equations (16) and (17) provide the foundation for determining the statistics of the low-
coherence form s of AGLR and AAML. However , even with this foundation , develop ment

5 .

. of analytical expre ssions for ~FA and 
~D which are algebraically tractable (i.e., in a con-

venient form to use and numerically well-conditioned) is difficult. Consequently, asy mptotic

12N. Goodmw , “On the Joint Estimation of the Spectra , Cospectru m , and Quadrature Spectru m of a
Two-Dimensional Stationary Gaussian Process,” Scientific Pape r No. 10, Engineering Statistics Laboratory.
New York University , Marc h 1957.

13V. MacDonal d and P. Schultheiss , “Optimu m Passive Bearing Estimation in a Spatially Incoherent Noise
Envlronment ,”J. Acoust. Soc. Am., vol. 37 , pp. 3743. December 1968.

S l4~~, Hod gkiss and 1. Nolte , “Covariance Between Fourier Coefficie nts Represent ing the Time Wave forms
S Observed From an Array of Senso r s.”J. Acoust. Soc. Am., vol . 59 , pp. 582-590 , March 1976.

15 M.  Rosenbla tt , Random Processes, Springer-Verlag , 1962 .
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series solutions for both ~FA and 
~D will be developed. The asymptotic series provide

accurate expressions for ~FA and ~~~ 
provided the parameter “N” in Eqs. ( 14 ) and ( 15)

is large. Details of the derivation of the series are left for the appendices. Here , the general
technique employed , the resulting expression , and limitations upon use of the expression
will be discussed.

PROBABILITY OF FALSE ALARM

The probabili ty of false alarm expression is derived under condition of noise only
present. Under this condition . Eq. ( 16 )  reduces to

A i A  1 N-I A 1 N 1
P( 7- ,~~ l 7- 0,~~. N) --~— ( 1  -y -) , ( 1 8 )

which shows that the sampled values of MSC and the cross-spectral phase are statist ically
independent. The density function of Eq. ( 18)  can be used to derive the characteristic

5 
function of~~~cos~ and ~~cos~~ by one of several techni ques (Ref. 16) . Denoting these
characteristic function s as g~~~~ (U )  and g~~~~( U) . respectively, the probability density
of AGLR and ‘~ AM L can be evaluated as

P(A AML 1 72 = 0, N , M) (
~ AML (

~~) 1 ’11 e’°’~AM L du ( 19)

P(A GLR 1 72 = 0. N , M ) = 

~~

— J~ 
[g~~~~( u ) I ’11 e~UA GL R du (20 )

where M is the number of frequency regions or summation terms in the likelih ood expres-
sions. Integrating the densit y functions between a specified threshold. 1. and infini ty
provides 

~FA as a function of T. The details of these ca lculations are contained in
Appendix B and lead to the asymptotic series solutions *

=~~
d

Ratio~~ PFA (~~~= [~~~~~~~
1:

l
.
, 

~~ (N -  1 5) 2 (~~ I) !]

~2 ’  
_ l.. T) _

( N _ 1 5 ) ( M + 2)

1(~~ + 2 . NT -1 .5T ) + . . .  ( 2 1 )

16A Papoulis. Pr obability. Random Variables , and Stochastic Processes . McGraw -Hill . 1965.

1’he expressions presented here are app licable only when M is an even integer. Expressions for cases of
M ~ an odd integer can he obtained from Appendix 8.
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55 

i~.~v i j — ~~— ’  ‘— — I +k 1 1
Approximated =~ PE~A (T)  = ( N —  l )1v1 I v~’ 

2 / •

Maximum Likelihood ~~~~ -
~ M I 

~~
-‘ IM

k=0 k!~~~~_ l _ k
,
) ’

S M
,—( k - t - 1 / 2 )  /~~, 

M/2 (-~.+ k ) !
— Pt 1, XIT _ ’Ti + ~~~

‘
— l~~~~~ M/ - k=0 k!(-~~— k ) !

( N - 2 )  - -

,- . (k + l / 2 )  1- 

M + 3  F’~~~ - k + l . NT - 2T~ - . . .  1 ( 2 2)

( N - 2 )  2 J

where I’(,) denotes an incomplete gamma function and ta ~h :c) denotes ata + h ) ( a  + 2h )
( a  + cb — b). No simulations have been conducted to verify the range of parameters over
which the asymptotic  series results are valid . It will  be stated only that  the series exp r e~~ioIi ~
increas e in accuracy as N increases and that breakdown of the series can be expected when
the higher order correction terms become as large as the leading order term s in an absolute
value sense.

Plots of 
~FA as a function of the specified threshold are presented in Fig. I for

M=4 and N=64. Similarly , in Fig. plots of ~FA versus threshold are presented for M 4
and N l  28. The low-coherence form of AGLR requires a slightly larger threshold than
A AML . This is reasonable in that  both a lgorithms have very similar forms for low inpu t
coherence except for the non-zero mean of AGLR . Both ~FA expressions are also near l y
exponential in nature for N large.

PROBABILITY OF DETECTION

Probabilities of detection for the two likelihood-based algorithms can he evalu ated
using the same techniques as for ~FA~ 

except start ing with Eq. ( 16 )  instead of Eq. ( 1 8 ) .
The same degree of accuracy in the resulting expressions need not be required thou gh . The

~FA expression depends upon the extreme tail of the densi ty funct ions such that  very
carefu l approximations are required. ~D depends upon the bulk of the densit y funct ion

~~ ~~~ 
in the range of 0.1 to 0.9 are primari ly of interest)  such that  coarser approximation s

can be made. The fact that  a coarser approximat ion can be made and the fact that the
signal-plus-noise density functions are more difficult  to handle analyt ical ly  moti vates use
of a classical approximation technique such as an Edgeworth series (Ref.  (fl55 An Edg cworth
series is an asymptotic series based upon a normal distr ibut ion and its deri v at i v t ~.s. Funct ion-
ally, the series provides the probabili ty density function for a sum of independent random
variables in terms of the moments of the indi vidual random variables. Therefore , knowledge
of the moments of 7 cos~’k and ‘y—cos —~’k can be used to directly determine the pr obabi l i ty
density function of AGLR and A AML with signal plus noise being present. In tegra t ing  the
resulting density functions between a specified threshold , T. and provides the probabil i ty
of detection as a function of T.

9
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Details on the derivation and convergence properties of an Edgeworth series can be
found in Refs. 2 and 9. Here , only the resulting expression for 

~D will he presented

S C 1 ., C-, Ct S)
PD(T) erfc ( z )  + -~~- Ø(~ ) (z )  — ~~~~~~~~~~~~~~~ (~ ) .-7

~ 
Ø~ ( 1)  + .

( 2 3 )

where ~(n) denotes the n ttl derivati ve of a normal density function , T denotes the selected
S

5 threshold. Cn denotes the n th cumulan t , p the mean , and a the standard deviation , each ot’
which are for the M summed random variables defined in Eqs. ( )an d (9) .  Specification
of C~ , p . and a in terms of’ the moments of the input  random variables can he found in
Chapter 26 of Ret ’. 1 7. Similarly, specification of 0(’

~
) in terms of I-lermite polynomials

can be found in Chapter 12 of Ref. 9. The only quantit ies necessary to implement Eq. ( 2 3 )
are the moments of 42 cos ~ and ~

2 cos 2 
~~~ . These moments can be computed directly

fro m Eq. ( 16 ) a s

Generalized Likelihood Ratio I xpr e ssion :

~“m ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (24 )

- 
( l ~~ 2 ) 0o ~k-I I’ ( N  + k / 2 )  I (~ + m +~

) 2 k / 2

k=0 I(k+I)F’(-~-+m +l ) 
(~~‘ 

)

r(N_ I ) [ l  +( l ) k+2m] 
( 25 )

(m +-~~~+ 1: 1: N_ I )

Approximated Maximum Likelihood Expression:

~‘~
‘m = 

~~ ~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= 
(1... 72 ) N_ 2  00 ~k- l r 2 (N+ .~)r(~~÷ !~~+4) 

2 k / 2
E’( N ) l ’ ( N - l )  r (k + l ) r (4 + !~~+ l )  

(7

(m+~~+ l ; l : N — l )

• 17 M . Abramowitz and I. Stegu n . “Handbook of Mathematical Functions .” National Bureau of Standards . S

A pplied Math emati c Serie s 55 . June 1964.
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where 
~

‘m denotes the m th moment centere d about the origin.
Equations (23) through (27) can be utilized to determine the detect ion performance

of the low-coherence forms of AGLR and AAML . Use of Eqs. ( 2 1 )  and ( 2 2 )  allow the ’
detection performances to be evaluated on the basis of a specified ~FA- As a first illus t ra- S

tion , the probability of detections for AGLR. A AML . and a normalized cross-correlation

S 
will be compare d for the situation of tiat signal and noise spectral pr operties across the input
handpass. The probabilities of detection and false alarm for a normalized cross-correlation
can be calculated from Eqs. (29 .7 . 1) throu gh (29 .7 .5) of Ref. 9. The parameters selected
for the comparison are N=64 , M=4 , and PFA 10 3 for the likelihood express ions, which
represents an equivalent number of degrees of freedom for the normalized cross-correlation
processor of ’ 512.  In Fig. 3. the probabilities of detection as a function of input signal-to-
noise ratio are presented for all three algorithms. The normalized cross correlation processor
shows an improvement of 0.2 and 1.0 dB , respectively, over ‘~AM L and AGLR. This result
is not surprising, the likelihood expressions are formulated for cases where the spectral
properties vary across the input  bandp ass and should not he expected to provide processing
gain over a normalized cross-correlation processor whose processing bandwidth is matche d
to the signal bandwidth. *

1.0

.A GLR - —

2 AAML 
~~~~~2 .75 -

N O R M A L I Z E D  /
CROSS
WR R E L A T I ON

/

/~
‘ /

/

2~~~~ -

/

—~ —.--- -.
I I

-11 .10 -9 8 -7 ‘6 -5

SIGNAL TO NOISE RATIO . dB

S Figure 3. Probability of detection as a function of input signal to noise rat ip :  
~FA =

l0~~, flat input signal and noise spectra. 512 degrees of freedom .

For flat spectral characterist ics , the likelihood expressions can be expected to  provide degraded per fonliance
relative to a normalized cross-correlation processor as the value M is increased. A simp le proof of this is
presented in A ppendix C .
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The primary benefi t from the likelihood expressions will occur when the signal or
noise spectral levels vary as a function of frequency across the input bandpass. Under this
conditio n , the coherence weights estimated in each frequency interval will adapt to the
varying spectral properties. Improvement over a normalized cross-correlation can be illus-
trated for the case of the processing bandwidth being wider than the signal bandwidth. A
mismatched processing bandwidth is depicted in Fig . 4. The noise spectral density is N
over the inp ut processing bandw id th , B~. The signal spectral density is S over the region
B5, where B5 is less than B~ . For comparison purposes between AAML and a normalized
cross-correlation, let 

~FA for each algorithm be set at l0—~, let AAML estimate coherence
S weights in frequency regions of width B 5, and let the coherence weights be estimated with

64 transform values (i.e., the time-bandwidth product for both processors is 64 Bp/Bs).
In Fig. 5 , the ratio of S/N necessary to achieve a 

~D of 0.5 is plotted as a function of the
bandwidth mismatch , Bp/B~. Both processors require nearly the same ratio of S/N with no
mismatch. But as the mismatch increases , the normalized cross-correlation requires vaues S

of S/ N  that grow at a faster rate. The normalized cross-correlation requires a value of S/N
that increases by approximately 1.5 dB every time the value of B~ IB S doubles. The likelihood
expression requires a value of S/N that increased by approximately .75 dB every time the S

value of B~ /B 5 doubles. That is , the likelihood expression is less subject to performance
degradation due to processing mismatch than a normalized cross-correlation. This same
conclusion can be drawn fro m examining the deflection ratios of each algorithm (ratio of
mean output with signal present to the standard deviation with noise only present) as is
shown in Appendix C.

Additional examples of processing gain for the likelihood expressions can be ~llus-
trated for the case of colored noise or interference across the input processing bandpass.
Processing gain in these situations can easily be expected because the likelihood expressions
do not depend upon absolute spectral levels as a function of frequency but only upon the
measured coherence as a function of frequency. Here , an example involving colored noise
will be demonstrated through the use of an ambiguity surface calculation. The expectation
values of the cross-spectral properties selected for the example are presented in Fig. 6. The
noise power falls linearly over the input processing bandpass. A narrowband signal is situated
in the center of the bandpass and possesses a level corresponding to a — 14-d B signal-to-noise
ratio relative to the 1 2-Hz processing bandpass . A single realization of these cross-spectral
properties was created and processed through the AAML algorithm and a normalized cross-
corr elation . * The AAML al gorithm estimated coherence weights in 1 -Hz regions across the
1 2-Hz processing bandpass. In Figs. 7 and 8, ambiguity surfaces resulting from each algorithm
are presented. Height of the data in the ambiguity surface is color encoded , with the highest
data point in each sur face represented by the color red. The dimensions of the ambiguity
surface are time-difference and Doppler diffe rence between the two input time series. The
position of these parameters for the synthetic signal is denoted by the black arrows in S

• Fig. 7. The ambiguity surface created with the A AML algorithm shows the highest peak
in the surface located at the synthetic signal’s time and frequency difference parameters.
For the normalized cross-correlation calculation , the peak corresponding to the signal ’s

Envelope versions of each of these algorithms were utilized. The envelope of A AM L is defined by Eq. ( 13) —

• and t he envelope of a normalized cross-correlation corresponds to estimates of magnitude squared
coherence.

J 13

(i i .  
_ _   

S.
,

-— ~~~~~~~~~ 
- -



--—-- — 5 - - - - — -55- - -- — - — 5 - - .  5-.’

5+N— i~~~~~~~~~~ i
-J I I

I I
rn B~ .1

N’- 

B~

F R E Q U EN CY

Figure 4. Depiction of processing mismatch to the signal bandwidth. Signal
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a function of the mismatch of processing bandpa ss to signal bandpa ss : ~FA =

_ _ _  - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ‘--S —~~~~~~~~~~



55 S S S 5 5 55-s S S S S - S - -_

SIGNAL—Q—
ILl

10 - 

,o——o _•_ •

~~

••-
~~~—— ~~~~~

°

: 12

FR EQUENCY . Hz

Figure 6. Signal and noise cross spectral properties for the synthetic data.

parameters is smaller than two noise spikes on the surface. The data in 1:1g. 7 was created
with a total time-bandwidth product into each algorithm of 1 800. It  the time -bandwidth
product is decre ased to 1200 . the ambiguity surfaces presented in Fig. 8 result. The signal
peak has now essentially disappeared from the surface resulting from the normalized e’ross-
correlation. For the surfac e generated with AAML , the largest peak on the surface still
corresponds to the time and frequency difference of the synthetic signal.

4.0 CONCLUSION

In this report , we have demonstrated that likelihood-based filtering of the cross-
spectrum can provide improved detection and parameter estimation performance over that
of a normalized cross-correlation processor. The improvement will occur when the signal
and noise spectral properties vary over the input bandpass. Such a situation can he expected
when little a priori information exists about the signal properties or if the noise background
is highly variable, conditions which do occur in low-frequency acoustic processing. There-
fore , the likelihood expressions represent a viable technique for conducting joint detection
and parameter estimation on the output of two sensors.

Demonstrations of processing performance with the two likelihood expression s
S examine d were presented analytically in the form of Receiver Operating Characteristics

and graphically with processing results on synthetic data. No major differences in the pe r-
formance between the two algorithms were observed. It is felt that major differences between
the generalized likelihood ratio expression and the constrained maximum likelihood expre s-
sion will only occur in the parameter estimation capability for wideband signals. Analytical

• determination of these differences may be quite difficult  such that the performance com-
parison should be conducted empirically.
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Finally , improvements upon the cross-spectral filtering approaches presented in this
report may be easily rea lized. The adaptations analyzed here were single-step in nature . If
the signal and noise characteristics remain stationary over time periods longer than a single
observation, the coherence estimates as a function of frequency can be smoothed recursively
in time. The performance of the likelihood expressions can also be improved by a judicious
choice of the number of frequency regions that coherence weights are estimated in across
the processing bandpass. This selection will be dependent upon coarse information concern-
ing signal and noise properties for the case of interest.
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APPENDIX A
GENERALIZED LIKELIHOOD RATIO TEST STATISTIC

The generalized likelihood ratio test statistic has the form (Re t s .  3. 4 . 6)

p(~ I O )~~ {rnax. over~~1}
A,-’T O i - (A - I )

~~~~~~~ p(! 10 0) tmax. over O0}

where ’~ is the vector of observation data from two sensors. p(il~~) represents the conditional
density of the input data on the parameter set 0 , and 0 1 and 0~ denote , respectively, the
parameter sets under condition of signal plus noise and noise only being present. W ithout
loss of generality , the vector of observation data can be comp rised of the Fourier transfo rm
of the time series data from each sensor. Letting idenote the observation vector of complex
Fourier components and constraining both the signal and noise to be realiz~d from a Gaus-
sian process , the probability density functions can be writ ten as

pUI 4~~~ ,r_2m kI~ 
I - I  

~~~ {~~~~ t _ l ~~ } (A-2 )

where m is the size of the vector of observation and 4 denotes the correlation matri x under
the two di ffe rent hypotheses. Provided the input spectra is well behaved , the above density
function can be partitioned as (Refs. 10, 13, 14)

m

p(~ l4~~~ ,r~2m 
IPI I~~k I l  exp {-i~~4~~ Z k } (A-3)

whereik denotes the complex Fourier components for the k th frequency region and 4 k
is the correlation matr ix for the k th frequency region (

~~k is a two-by-two dimension).
Under condition of signal plus noise being present , the partitioned correlation matrices
have the form

ra 11 (k)
L0 l2 0c)~

wkT o22~ ,

where a~ 1(k), o22( k) ,  and a12(k) are the unknown auto and absolute cross-spectral levels
for the ktn frequency region , and r is the signal travel time difference between the sensors.
Under condition of noise only bein g present , the partitioned correlation matrices have
the form

IS 1o11 (k)  0 1 5

5 

‘~k = 

[o o22 (k)j 
( A- 5)

Equation (A-3 ) can also be expressed in the form 5

• ~(~ I~~)~~~ _2m 

~~ l 
I k I _ 1  exP [_ Tr ( xk ~~~l) ]  (A-6)

L ~~~~~~ J ~~~~1~~~li~~~L ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _
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where Xk is defined as

X k Z k Z k
’4’ (A -7)

and represents the sampled correlation matrix for the k th frequency region. If mul t ip le
observations in time are taken , the only change in form for Eq. (A-b ) is t ha t  the samp led
correlation matr ix is now represented by the smoothed matr ix

L
Xk ~~ Zk( . z k(Q)

~ 
(A-8 )

2=1

where zk(Q) denotes the Fourier components for the kth t’requ ency region and the QtIl

time period , and 7~ 2m in equation (A-6) is rep laced by ~~~~~~ In order to generate
AGLR, Eq. (A-6 ) needs to be maxim ized for 4 k of the form of Eq. (A-4 ) and then for Fk
of the form of Eq. (A-5) .

SIGNAL PLU S NOIS E PRESENT

The numerator of Eq. ( A - I )  is obtained by solving the set of simultaneous equations

ao l I ( k )  p(iI~~) a ~~~~~~~~~~~~~~~~~~~~~~~~~~ (A-9 )

for all values of k where the partitioned correlation matr ices are of the form of Eq. (A-4) .
Differentiating Eq. (A-6 ) wi th  respect to 0 1 1(k ) ,  012(k) . and 0 1 i (k )  leads to the three
simultaneous equations

r 1 aa l l (k ) Tr (xk~~k) x-, ’,(k)
5 Tr I xk 4~k ’ l = 1  + — = l + - ~~~ . 

(A- I 0 )
L J ° k 1 1  o~,(k)

~o 11 (k ) k

ao, 1(k) Tr ( Xk~~ k) x 11 ( k )
I + 

‘

~~~ ~~~ 

— I 
~~a 1 1 ( k )  

( A - I l )

aaI,(k)
Tr (Xk~~k) R2 [X ,,(k)e_iwkr]

Ir [xk 4~~] 
= I + 1 + (k )  

- ( A - l 2 )

k

where A denotes adjoint and the x terms are elements of xk . The simultaneous solutions
for °l 1(k ) .  0 , 1(k) .  and a 12(k )  defined by the above thre e equations are found through

• manipu lation to he
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a 11 ( k ) = x 11 (k) (A - I 3 )

o, , ( k )  = x , , (k )  (A - I 4 )

RQ [x l2 ( k )  e_ iw
ki . ( A - I S )

Substi tut ing these solutions back into the numerator ot ’ Eq. ( A - I )  provides

m

p (210 i )(max.over O i) = ~~2fl1 L e x p ( _ 2L) ~~~~{x i I k x 2 k _ R ~2

{x l 1 k  e
_
~~ k T]  }_ l  ( m a x .  over ( A - I 6 )

Although the maximizat ion with respect to r is easy to derive ana ly t i ca l l y ,  the for in of
Eq. ( A - I 6 )  turns out to be more convenient for our l)UrPoSeS.

NOISE-ONLY PRESENT

The denominator  of Eq. ( A — I )  is obtained by solving the set of s imultaneous
equations

aa 1 1 ( k)  ~~~~~ 
= ao ,,( k ) ’

for all values of k where the partitioned correlation matrices are of the form of Eq. t A-~ I .

The form of these solutions is the same as Eqs. ( A - I  0) and ( A - I l )  hut  wi th  
~ k deflned by

Eq. ( A-5) . The solution to these simultaneous equations is simply given by

o 1 1 ( k ) = x 1 1 (k) (A- l8)

o 2 2 ( k )  x ,,(k) ( A- l9 )

Subst i tut ing these solutions back into the denominator  of Eq. ( A - l )  provides
m

p( ~~lO 0) (max over~~ø) 
= ~~2in L exp (_2L) 

T 
[~1 1 ( k )  x 2 2 ( k ) ] _ I  . (A -20)

GENERALIZED LIKELIHOOD RATIO

E qua t ions ( A- I6 )  and (A-2 0) can he combined to form the likelihood ratio test
statistic

- 

-

~~~~ 
[ x l l (k)xll (k) 1 (A - 2 l )

• AGLR - U 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~— (max.  over r ) .
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Expressing x l l ( k )  explicitly in terms of its real and imaginary components ,

x l 2(k) ) X I 2 ( k ) l e’~~ (A -22 )  S

allows the likelihood ratio to he expressed as
m

= 
~~~~ 

~ 
U~ 

X~~ 2(~~~) 
cos2(:k_ w kr)l

l 

( max. OV C E T)  

(A - 2 3 )

= ~~ ~l 
~~~~ 

cos- 
(~ k 

- W k T) ] (m ax .  over T)

where 
~~k) 

is the sampled magnitude squared coherence between t he  two ~cnsoT~ at radian
frequency wk. The log likelihood ratio is monot onic  with respect to the above expression
such that an equivalent  test s ta t i s t ic  is given h~

AGLR = - Qn 
[I 

- 

~
(wk) 

cos~ (~~k - W k T)] (w ax .  over r ) .  
(A - ~~ )
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APPENDIX B
PROBABILITY OF FALSE ALARM EXPRESSIONS

Derivation of the probabilit y of false alarm for the low level coherence forms of
A~;LR and AAML mainly involves evaluating integrals and Fourier transforms. These

5 operations can be found for the most part in standard references. Here , steps av.idah le
from standard references will he denoted by the re ference number and the correspond ing
equation , both in square brackets.

APPROXIMATE MAXIMUM LIK ELIHOOD

The noise-only density funct ion t’or

Al  A A A Al A 5

~ AML ~I Yj ~ cos O k ” ~~ 
5k zk = ’yk coso k ( B - I )

k= I  k = I

can be obtain ed by calculatin g the characteristi c function of ’
~k , raising the characteristic

function to the M th powe r , and then invert ing it .  The characteristic functi on of ’zk is

defined by

g( u) f  e~~~k p (z k ) d~
’k 

( 8-2)

where P(~
’k) denotes the probabil i t y density funç~ion of ~~~~~. The characteristic fu n c t i o n  can

also be evaluated as (remembering that 
~

2k and 0 k are stat is t ical ly i ndependent  t’or n oise

only present )

g(u )  = f f ~~~~ 
COS 0k p(~~~) p(cos 0 k~ 

d~~ d cos 0 k 
( B-3 )

= f  J eU~~Y p ( x )  p(y) dx dy ; x=~~~and y cos~~k. (B-4 )

The density functions for x and y are available fro m ( I  6; 4.5 1 and 118: 5-151  such tha t

g( u) 1! f  ~~~~
‘ 

~i uxy ( l - x ) ~~
2 ( l - y ) ~

2
d x d y

where N is the numb er  of transforms util ized in est imat ing ~~ and 0 k’ The term ( I — x )~~~
can he wri t ten  as

l~ G Carter , “Esttmatton of the Magnitude -Squared Coherence Function ,” N USC TR 4343 , May l°7
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(l_x)N 2  = exp [_ ( N _ 2  
~~l 

—~] (B-b)

Substituting this series expression in Eq. (B-5) and making the change of variables
B=N—2 — iu y and r x B  leads to

g( u) = i~~~-~ N!~~~u 
exp ~-r-(N-2) L~ ~~~ [~: +(B_N+2)-]

S 

+dr dB (B-7 )

- N—I ~~—2 — iu 1B 
— I I (N —2 ) r  (N —2 ) r 3

= i—  I J C — -

~ N~-2+iu 0 L B 2B 3 3B4

+ (B_N+2)2] 
- 

dr dB. (B-8)

In going from Eq. ( B-TI to (B-8) . the exponent terms for t~~2 have been rewri t ten in
individual Tay lor series expansions . The approximation that  will he employed for g(u) is
to change the upper limit on the integration wit h respect to r such that

g( u)~~~i~~~-~ N~~+iu 
f ’ ~_

r [i~- 
(N— 2 )r 

- 
(N -2)r 3

[~: + (B_N+2)2] 
- 

dr dB . ( B-9 )

This approximatio n has been discussed in ( 19:16  I and has been shown to he very accurate
for N large. Carrying out the integration with respect to r provides

g( u)~~ i 
~~~~~~~ 

~/ ~~~ 
- + ...] [~: + ( B _ N + 2 ) 2] dB. ~B - l 0 )

where terms in the first bracket are ordered by the it significance (remembering that N is
restricted to be large and that  I B I> N— 2 ) . The integration with respect to B can he carried
out through the use of 120 : 2.261 , 2.266. 2.2 69 1 and ( 2 1 ;  23 I . 9a 1 to provide

‘9 R. Merk and S. McCarth y, “Statistics of Averaged Magnitude Squared Coherence .” (‘MAP Research S

Report No. 77-0 14 , Naval Ocean Systems Center , Apri l IQ7R .
20j Gradshteyn and I Ryzh ik , Tables of Integra l Series and Products . Academic Press. I%5.
21 w’, Grobner and N. Hofreiter , integraltafel Erster Tell Unbestimmie Integrale. In tegra ltaf el Zweiter Tell

Besr iinmte Integr ale, Spri nger-Verlag. 1966 .
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N.-! I (N—I)(N—2) 3 (N—1)(N—2)3

~(U)~~
[u

2 +(N_2)21 
1/2 

~~~~~~ ~u 2 4 ( N_2) 2I 31
~
2 2  

~u 2 + (N_ 2 ) 2I 5uI2 + “

~~ 

( B - I l )

Raising g(u) to the M th power and ordering terms by their  signilIcance leads to

g(,~) 
(N - l)~ 

M/ 2 I + ~~(N-2) U + (N-TI 
-l 

-~ -M (N-2 )

[u _ + ( N _ 2 Y.]

+ 
. . .}  - (B- 12 )

The above characteristic function can be inverted throug h the use of 122: 1.3( 7)J to provide
the noise only density function for A ALR of

p ( A I M . N ,7 0) 
( N .- )

M { 

M l ) S
~~~~~ M I )/ :~~~~~~ _ 2 I~~~ 

+~~ (N 2)

~1 (M+l )/2 K(M+I ) 2  (NI~~I- IA I) 1___________________________ — ... (B -I3)
( N_4 ) (M~’ l ) _  l’(~~ + I) J

where K denotes a rnodit’ied Bessel function of the second kind and r denotes a gamma
function. Integrating Eq. (B- 13) between a specified threshold , 1, and infinity provides
the probability of false alarm for A AML as a function of T. The integration can he per-
formed in general by expressing the Bessel functions in an inf in i te  series expansion. However ,
for the case of M being an even integer, the modified Bessel function can be written in terms
of a finite series expansion as shown in (20 : 8.4681. Restricting M to be an even integer
and performing the integration provides

22 A. Erdely, Tables oJ ’ Integral Transforms, Volume I , McGraw-Hill, 1954 .
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M M
S (N_I)M 

-~-- l (-~
._l÷k )! ~,_ k.~i/2 MPFA (T) 

~ M- l / M M+ I I ’(-~--
_ k , NT_2T)( \— ~-— M k— 0 k . , - ~- — 1 — k 1 .  /

~2N—4) 
- r(— ~ -) - / k N—2 / -

-

~~~~

- 

(~~~~~

-+

~~~~~
‘)

~~ 
-,— k—½ M

k’=O k’!(~~
_ k ’)! 

M÷3 (~ 
÷ 1 ,NT _ 2T)

_ ... . (B-l4)

where r(,) denotes an incomplete gamma tunction and where for brevity only the fi rst two
terms in the asymptotic series are presented. For 1’ small , the tirst term is larger than the
second term by approximately a factor of N, and higher order terms in the series fall off in
significance in terms of increasing powers of N. In general. the first term in Eq. (B - 14 )  will
be the dominant term provided N is large and T is not allowed to become too large.

S 

GENERAL IZED LIKELIHOOD

The noise only density function for

M 
A~ , A M A A Al 1A

AGLR ~~ ‘y~~cos O k = h~ : h k ’y~~cos~~O k ( B - I S )

could be obtained by following the same techniques as for A AML . Here though , the proha-
bi l ity de~ sity fu nXtion of~~k will first be evaluated directly. The probab ility density funct ion
for cos 0k with 0k uniformly distributed between —ir and ir can he evaluated through the
use of 116:5 -6, 5 - 7 1,  [ 23: p. 232 1,  and the twice angle formula as

p (y ) = .~~(y y -)  : y = c o s - 0~~. O < y < l .  (B- lô )

The probability density function for can he obtained frorn 118:  5 - 15 1 as

p(x) = ( N _ 1) ( l _ x ) N.-2 :x ~~~~ , O < x < I .  ( B - I 7 )  
S

The probabi lity density function for h k can he evaluated fro m Eq. (B- I 6). Eq. (B-I 7).
( 16 :  7-46 1 - and ( 2 1 ;  2 12-7a 1 as

N—” l—h k r ~N (N—I )’ 1
p (hk)= (I_h k) 

— 

i~~~~~~~~~ [~~~~~~;2 : N L 1j  
. O<h~~< 1 . (B- l 8)

where (a ;b ;c) denotes a(a+h) (a+2b ) ... (a+cb—b ) . The characteristic function of h k is then
defined by

23S Shelby, “Stan dard Mathem atical Tables , ” The Chemical Rubber Company, 1964.
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-- 
T . —— -:.~-

g( u ) 
~~l 

eiUhk ( l h k )
~~

2 

~~ 
( i ; 2 ;N _ 1) ]  d h k .  (B-I9)

Making the change of variable h k = r 2 leads to

[

~N 

(l;2 ;N_I)1[ 
2(I_r2)

N 2 e~~
2
dr. (B-20)

Utilizing the same expansion as listed in Eq. (B-b ) leads to

g(u) 2[2
N ] I exp [_ (N_ I .5_ iu)r 2 _ ( N _ l . 5 )  ~~~

_
~~~]dr. (B-2 l )

Making the change of variable S = r %rN — 1.5 — iti in Eq. ( B - 2 I ) a n d  then expanding the
higher order exponent terms in separate Taylor series expansions leads to

[1N (N-I)! 1 2 ~ N - 1.5 - iu .~2 [ (N - I
~(u)~~~

_ 
l:2:N-nj~~N l .5 iu .~

(N - l.5)S6 
+ ...1 dS. ( 13-22 )

3(N—l .5 — iu)6 J
where terms inside the brackets have been ordered according to their significance. The
approximation to be employed on the characteristic function is to change the upper l imi t
on the integral to infinity.  This is essentially the same approximation as employed for
AAML and require s N to be large for a high degre e of accuracy to occur. Carrying out the
integration provides the solution

~~~~~~~~ 
(N-U !] 

( N -  1.5 - i u l  Y2 
[

I 8 (N - L5 - iu)

-T i + ... . (B-23)
(N — l . 5 — iu)” j

7 

‘ The characteristic function can now be raised to the M t~ power and inverted through the
use of (22; 3.2.3 1 in order to obtain the noise only density function for AGLR. To simplify

5 the form of the solution , M will once again be restricted to be an even integer. The resulting
solution for the density function is
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M

p( A lM , N , y 2 O)J~~~ 
N f l

! ]  ~-( N-1.5)A

~~~~~~ ~~~~~~~~~~~~~~ A 2 - (M+2 (M~~
) A~ + ...]. ( 13-24)

Integrating the density function provides the probability of t’alse alarm express ion

S 
PFA (T)~~’~j~ ] [ _ ~ .s~~~ fN_u!] 

-l 

[r~~
-.NT_l.5T)_

(N - l . 5 ) ( M + 2 )  i’(-~ -+ , NT_l.ST) + ..] . (B-25)

Equation (B-25) possesses the same properties as Eq. (B - I 4 ) ;  the first term in the series is
the dominan t term , provided N is large and T is not allowed to become too large .

I
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APPEND IX C
DEFLECTION RATIOS

A simple technique for examining the detection capability of an algorithm is to
calculate its deflection ratio: the mean output with signal present divided by the output
standard deviation with noise only present. This ratio is a measure of the signal-to-noise
ratio at the output of the processor. For a Gaussian sample statistic at the output of the
processor , the deflection ratio determines the Receiver Operating Characteristics of the
processor. For a non-Gaussian sample statistic at the output of the processor , the deflec-
tion ratio can only be used as a measure of e ffectiveness without relating it directly to the
probability of detection . Here , the deflection ratio for the low coherence form of AAML
and a normalized cross-correlation will be examined. The standard deviation of A AML
with noise only present can be calculated through the use of Eq. (27 )  as

CN ( - I )

where M and N represent the number of frequency intervals and the number of transform s
in each frequency region, respective ly. The mean level with signal present can also he
determined from Eq. (27) but the re sulting series expression prevents simple analysis.
The mean level is approximately given by

M

~~ ‘y~~, (C-2)
k=1

where the ‘y~ ’s are the true coherence levels in each frequency region. This expression will
sl~~ht Iy,~inder e stimate the true mean by ignoring the bias present on the sampled values of

cos O~ , but is sufficient for the purpose at hand. The deflection ratio for A AML is
then given by

H M

((‘-3)

The deflection ratio for a normalized cross-correlation processor needs to be calculated with
an input of N X M transforms, the same number as input to AAML . The deflection ratio

5 - 
for a squared , normalized cross-correlation processor* can be obtained from Ref. 18 as

5 
d.r. ( p )  NM p 2 (~ -4)

where p represents the magnitude squared coherence across the entire input bandpass.
Once again, the bias on the mean of p 2 is being ignored. If both low input signal-to-noise

Although a squared cross-correlation is being utilized here , the comparison results are essentially indepen-
5 

‘ dent of whethe i a cross-correlatio n or a squared cross-correlation is used. A squared cross-correlation is S

being used because its deflection ratio has the same dimensiona lity with respect to the input signal.to-noise
• ratio as AAML .
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ratio and equal signal-to-noise ratio at each sensor are assumed , Eqs. (C-3) and (C-4 ) can be

written as

N M Sk 2

d.r. (AAML) ~ l~~I ~ 
(C-5)

d.r. (p2) NM (~~-). 
(C-6) 

S

where ST/fT represents the input signal-to-noise ratio across the en ti re bandpass and

Sk/flk represents the input signal-to-noise ratio in each of the M frequency regions. 
Two

scenarios will be examined with the deflection ratios , flat signal spectral levels across the

bandpass and the signal occupying only I /M th of the input bandpass. For the case of flat

spectra l propert ies across the input bandpass and of signal-to-noise ratio S/u , the deflect ion

ratios are given by

d.r. (AAML) ~~~~ N(~
) 

(C-7)

d.r. (p2) MN~~
) 

. ((‘-8)

For the case of the signal occupying only I /M th of the input bandpass and with a signal-to-
S noise ratio within that region of S/ui, the deflection ratios are

d.r. (AAML) -v~
;i (5)2

S d.r. (p 2 ) NM(~l 
~~

-)

~

= .~~~ (s) 2 ((‘-10)

Equations (C-7) through (C-b ) show when processing gain can be expected from the

likelihood expression. For the case of flat signal spectral properties across the input hand-

pass, the deflection ratio of the likelihood expression is lower by a factor of’~J~i. For the

case of the signal occupying only I /M th of the input bandpass , the deflection ratio of the

likelihood expression is greater by a factor ofS~~i.
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