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1.0 INTRODUCTION

Cross-correlation calculations of signals received by two different sensors can bé
employed for estimation of position and velocity parameters of the transmitting source.
These same calculations can be employed as a normalized detection statistic through the
use of coherence or regression of one sensor’s output with respect to the other. Independent
of whether the calculations are primarily for estimation or detection purposes, filtering of
the received signals should be conducted in a fashion to optimize performance. If full
knowledge of the noise statistics exists for each sensor as well as the statistics of the received
signals, then the procedure for optimizing* the filtering can be found in Refs. 1 through 4.
For detection purposes, the processor is based upon the likelihood ratio, which declares
a signal present if

P(X | signal plus noise)
P(X | noise)

where X denotes the data of observation, P(X|Z) denotes the probability of the input data
occurring under hypothesis Z, and T denotes a threshold corresponding to a particular
probability of false alarm.T For parameter estimation, the processor is based upon the
maximum likelihood solution

=T (1)

a% P(X I signal plus noise) =0 (2)

where 0 is the unknown parameter. In situations where little a priori knowledge exists

about the noise and signal statistics, optimization of the processing is not as straightforward.

The concept of a likelihood ratio processor is still advantageous, but now sampled or
approximated values have to be utilized in the likelihood ratio instead of true values. The
use of sampled values in the likelihood ratio to describe unknown values can be thought of

as single-iteration adaptive filtering of the cross-correlation calculation. With two sensors

‘ ! being involved in the calculations, the adaptation need not be constrained to the individual

‘ signals at each sensor but can occur on the cross-correlation or equivalently, the cross-spectrum
calculated between the sensors. As will be shown in this report, adaptation on the cross-

spectrum by means of a likelihood expression provides a formalism for matching the process-

ing bandpass to the bardwidth of the signal and for compensating for colored noise or

interference within the processing bandpass. One of the major advantages of the adaptation

*Optimization here refers to maximizing the probability of detection for a given probability of false alarm
(i.e., the Neyman-Pearson criteria) and providing minimum variance parameter estimates (the asymptotic
property of maximum likelihood estimators).

lw. Bangs, “‘Array Processing With Generalized Beam-Formers,” Ph.D. Dissertation, Y ale University, New
Haven, Connecticut, September 1971. A

2C W. Helstrom, Statistical Theory of Signal Detection, Permagon Press, 1968.

3H.L. Van Trees, Detection, Estimation, and Modulation Theory, Part I, John Wiley and Sons, 1968.
4p. Middleton. An Introduction to Statistical Communication Theory ,McGraw-Hill, 1960.

TA bar notation is used to denote vectors.
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is that no a priori assumptions about the nature of the signals (broadband or narrowband)
or the interference has to be made.

The purpose of the work presented in this report is to present the statistics for
algorithms based on likelihood criteria (likelihood ratio or maximum likelihood) that adapt
on the cross-spectrum in order to jointly detect and estimate signal parameters. Section 2
of the report will discuss the algorithms examined while Section 3 will describe their
statistical properties. Finally, Section 4 presents the conclusion.

2.0 LIKELIHOOD EXPRESSIONS FOR CROSS-CORRELATION PROCESSING

Two likelihood-based algorithms for joint detection and estimation of signal
parameters from data at the output of two sensors will be considered in this report. The
first is a generalized likelihood ratio test statistic, while the other is an approximate form
of a maximum likelihood parameter estimator. Selection of these two algorithms is based
on their being likelihood processors and on their being normalized test statistics. A normal-
ized test statistic does not depend upon absolute power levels received at the sensors. For
low-frequency acoustic signals, where the noise background has been shown to be stationary
for only short time periods, this property takes on added importance (Ref. 5).

GENERALIZED LIKELIHOOD EXPRESSION

A generalized likelihood ratio test statistic is the classical approach (Refs. 2, 3, 6)
for detecting a signal when full knowledge about the signal or noise properties is not
available. For cross-correlation processing, these properties are the signal time-difference
between the sensors, the signal-frequency difference between the sensors, the spectral level
of the signal as a function of frequency, and the spectral level of the noise as a function of
frequency. The test statistic has the form

_ p(z18)){max. over 8|
LR~ p(z18;) {max. over 8

(3)

where p(z|@) represents the conditional density of the input data on the parameter set 8,
51 denotes the parameter set under condition of signal plus noise being present, and 8,
denotes the parameter set under the condition of noise only being present. The above test
statistic forms maximum likelihood estimates for both 8] and 8¢ and substitutes these
into the likelihood ratio as if they were the true values. The above test statistic has been
derived for the case where the signal and noise are assumed to be Gaussian distributed, but
their respective spectral levels as a function of frequency are unknown. Also, the signal’s
time difference and frequency difference between the sensors is assumed unknown. The

51, Arase and E. Arase, “Deep Sea Ambient Noise Statistics,” J. Acoust. Soc. Am., Vol. 44, pp. 1679-1684,
April 1968.

6D. Becker, “Investigate the Use of Alternate Sample Statistics,” ORINCON Company Report, prepared
under Contract N0O00123-76-C-0505, December 1976.
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derivation of the test stastic under these conditions is discussed in Refs. 6 and 7. A con-
densed form of the derivation is presented in Appendix A and leads to*

AGLR (T = kZK Q-n{l -92(wk) cos> [wgT +$(wk)]}. “4)
€

Here, 92(wk) is the sampled magnitude squared coherence (MSC) between the two sensors
at radian frequency wi, y(wk). is the sampled cross-spectral phase between the two sensors
at radian frequency wg, 7 is the search parameter over the time difference between the
sensors. and K is the set of frequencies over which filtering is to be pcrfomwd.'r Equation
(4) shows that a sum of information across frequency is taken, but the summation posses-
ses a complicated dependence on the sampled cross-spectral and auto-spectral parameters.
Use of Eq. (4) does not necessarily guarantee that the two-sensor probability of detection
will be maximized or that minimum variance parameter estimates will occur. The use of
Eq. (4) can only be expected to provide nearly optimum detection performance because
the general concept of a likelihood ratio processor has been retained. Also, since the
parameter estimates are maximum likelihood estimates, they approach minimum variance
estimates asymptotically as a function of observation time (Ref. 9).

MAXIMUM LIKELIHOOD ESTIMATOR (APPROXIMATE)

Since a generalized likelihood ratio processor does not necessarily guarantee optimum
processing performance, it is reasonable to consider other likelihood-based processing tech-
niques. This consideration can be based upon ease of implementation among other factors.
The maximum likelihood estimate for the set of signal parameters 5| is given by the
solution of

p(t18 ) (max. over 8 ). (5)

In Eqs. (3) and (4), it was assumed that 6 included the noise spectral levels as a function
of frequency and the signal spectral levels as a function of frequency. If the signal and
noise spectral levels as a function of frequency are known, Eq. (5) leads to (Refs. 10, 11)

-~ A
Yw) |Gy awy) ;
Apmp (7)) = Z = cos [wp. T+ Y(wyp)] (6)
MLET ke 1 -v2wp) [Gratwid) : .

*The maximization of AGLR over the frequency difference between the sensors is implicit in equation 4.
it is further assumed that a narrowband Doppler correction is sufficient such that the maximizations over
the Doppler and time-difference parameters are asymptotically independent of each other (Ref. 8).

*The A notation is used to denote sampled parameters as opposed to true parameters.
TReference available to qualified requesters.
8p M. Schultheiss, “Estimation of Doppler Shift and Differential Doppler Shift.” Yale University,

Technical Report, prepared under Contract N66001-76-C-1082, June 1977.
YH. Cramer, Mathematical Methods of Statistics, Princeton University Press, 1946.

g Hannan and J. Thompson, “‘Estimating Group Delay " Biometrika. Vol. 60, pp. 241-253, 1973.
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where -yf(wk) represents the true value of MSC, G12(wy) represents the true cross-spectral
power, G12(w)) represents the sampled cross-spectral power, and 7, @(wk), and K are as
defined earlier. If sampled spectral properties are substituted for true spectral properties
in Eq. (6), the resulting processor is given by

A2
Y= (Wy) "
AamL (D = E _ K7 cos [wyr+ Ylw)l. (N

A
keK 1-72wp)

This relationship represents an inverse transform of the cross-spectral phase with a weighting
at each frequency dependent upon the sampled MSC. Equation (7) possesses the following
properties: it represents a normalized detection statistic, it is a zero mean test statistic

with noise only present [as opposed to Eq. (4)], and it can be implemented using FFT
processing techniques. It should be stated that use of Eq. (7) as a detection statistic was

not rigorously derived.

LOW COHERENCE PROPERTIES OF THE LIKELIHOOD EXPRESSIONS

The form of the generalized likelihood ratio test stastic and the approximate maxi-
mum likelihood estimator can be examined for the case of low input coherence levels. This
assumption simplifies the form of each algorithm such that the difference between them
becomes more apparent. Assuming low input coherence levels, the first-order terms
describing Eqs. (4) and (7) are

AGLR ~ gl:( Y2 (wy) cos? [wyr +P(wp)] (8)
AAML ~ g( sz(wk) cos [WkT +@(Wk)|- )

These expressions differ only in the manner in which the cross-spectral phase is combined
across frequency. The weighting applied to each cross-spectral phase measurement is identi-
cal. If the cosine squared term of Eq. (8) is written in terms of the twice-angle formula,

AGLR z% k25;( Qz(wk) +-‘l‘2— gl:( ‘I;:(wk) cos [2wyT + 20wy, (10)

the difference between the two algorithms can also be interpreted in the following sense:
the generalized likelihood test statistic uses both a coherent and incoherent summation of
information across frequency, and for wideband signals the generalized likelihood expres-
sion requires a higher degree of consistency in the cross-spectral phase measurements across
frequency.

Equations (8) and (9) allow a simple interpretation of the manner in which both
algorithms act as adaptive filters on the cross spectrum. The contribution from each
frequency region does not depend on absolute spectral levels but only upon the measured
coherence between the sensors at each frequency. If low coherence is detected in particular
frequency regions, those regions are weighted less than other frequency regions.

S
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ENVELOPE FORM OF THE ALGORITHMS

The two sensor test statistics defined by Eqs. (4) and (7) are basically wideband
processing algorithms. Equivalent performance on a narrowband signal can be obtained,
with a large reduction in processing load, by using envelope versions of these algorithms.
The envelope expressions are straightforward for the low-coherence form of both algorithms

. A
AGLR#_‘I’- ‘;z(wk)+ _-l,' Z Qz(wk) ellzwkf"":d/(wk)] (11
~ keK “ keK

€

AAML= (12)

2wy eilwir +wl
keK

but are more difficult to write for the exact expressions. That is, an explicit form for the
envelope of A\ can be written as

A
3 W) i )l (13)

keK 1 -7%(wp)

AAML = ‘

but no explicit form for the envelope of AGLR is known. In order to realize the envelope
properties of AgR. Eq. (4) was sampled densely over one cycle of the bandpass center
frequency and the maximum value selected. This procedure was repeated at 7 intervals
corresponding to the reciprocal of twice the processing bandwidth.

3.0 STATISTICS FOR THE TWO-SENSOR LIKELIHOOD EXPRESSIONS

In order to effectively evaluate the performance of the likelihood expressions, the
statistics for each expression must be determined. The number of summation terms across
frequency in these expressions in general will not be large enough to justify central limit
theorem approximations. For general use, the stas\igtics of AGLR and AAML need to be
derived from the joint probability distribution of ¥= and {y. Due to the nonlinear depen-
dence of Egs. (4) and (7) with respect to !;“ and $ exact determination of the statistics
for AGLR and AAML is difficult. The low level coherence forms of both algorithms are
considerably simpler though and it is generally the low signal-to-noise ratio properties of
algorithms that are of the most interest. That is, the probability of false alarm (PgA) is |
controlled by the zero-coherence level properties and the probability of detection (Pp) £
is controlled by low-level coherence except in the region where detection probabilities are
approaching unity.

In this section, the statistics for the low-level coherence forms of AGLR an}\i AAML
will be developed. These statistics are governed by the probability distribution of'y:(wk)
and J‘/(wk) where these random variables are defined by

o "' ¥ -t |y Mg
M P — P T —
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N
Z] F(wy, n) H¥(wy,n)
A =
YW =7 N (14)
E F(wy,n) F*(wy,n) 2 H(w, n) H*(wy,n)
n=1 n=1
' N
Imag| ) F(w), n) H*(wy, n)
n=1 ; (15)

@(wk) = arctan N
Rl
n=1

S F(wy,n) H*(wy, n)}

Here, F(wg, n) denotes the Fourier transform at the nth time interval taken from sensor
one at radian frequency wy, and H(wg, n) denotes the Fourier transform at the nth time
interval taken from sensor two at radian frequency wg. If the noise at each sensor is con-
strained to be jointly Gaussian and independent, the signal is a Gaussian random variable,
and the transforms in Eqs. (14) and (15) are not overlapped in time, then the joint proba-
bility density function for 93 and @ can be obtained from Ref. 12

)N & gk 1k g2 ,
A2 A2 . (li=y") _A2,N-2 2K |y X T=(N + k/2)
PO Y IV U N = s TNy (=79 ,?;0 Fk+1)
k
G2 cos () - v) (16)

where I" denotes a gamma function, 72 and Y are the true values of MSC and cross-spectral
phase, and N is the number of transforms used in estimating these parameters. It can also
be shown that

PIY2(wp), Dwg), Y2 wg), $wg)l =PIy 2wy, Biwp)] P13 2wg), S w1 (17)

for any value of k not equal to £. This follows from the fact that both [F(wy, n), F(wQ, njl
and [H(wg, n), H(wg, n)] are asymptotically independent (Refs. 13, 14, 15) for k # Q.
Equations (16) and (17) provide the foundation for determining the statistics of the low-
coherence forms of AGLR and ApM][. However, even with this foundation, development

of analytical expressions for PE A and Ppy which are algebraically tractable (i.e., in a con-
venient form to use and numerically well-conditioned) is difficult. Consequently, asymptotic

12N, Goodman, “On the Joint Estimation of the Spectra, Cospectrum, and Quadrature Spectrum of a
Two-Dimensional Stationary Gaussian Process,” Scientific Paper No. 10, Engineering Statistics Laboratory,
New York University, March 1957.

13y, MacDonald and P. Schultheiss, “Optimum Passive Bearing Estimation in a Spatially Incoherent Noise k
Environment,” J. Acoust. Soc. Am., vol. 37, pp. 3743, December 1968.

4y, Hodgkiss and L. Nolte, “Covariance Between Fourier Coefficients Representing the Time Waveforms
Observed From an Array of Sensors,” J. Acoust. Soc. Am., vol. 59, pp. 582-590, March 1976.

15y, Rosenblatt, Random Processes, Springer-Verlag, 1962.
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series solutions for both PE and Pp will be developed. The asymptotic series provide
accurate expressions for P A and Pp, provided the parameter “N” in Egs. (14) and (15)

is large. Details of the derivation of the series are left for the appendices. Here, the general
technique employed, the resulting expression, and limitations upon use of the expression
will be discussed.

PROBABILITY OF FALSE ALARM

The probability of false alarm expression is derived under condition of noise only
present. Under this condition, Eq. (16) reduces to

P2, 8142 O\LN)—N‘ _A2N-2. (18)

which shows that the sampled values of MSC and the cross-spectral phase are statistically
mdependentA TheAdensﬁ\y’ fumnon of Eq. (18) can be used to derive the characteristic
function of y=cosy and y-cos- @by one of several techniques (Ref. 16). Denoting these
characteristic functions as gAmM(U) and gGLR(U). respectively, the probability density
of AGLR and AAML can be evaluated as

oo

P(AAML 17° =0~N-M>=vl_1r [eaML(W1™ UAAML gy (19)
) i o .
P(AGLR |77 = 0. N. M) =3~ f leg L RWI™ SUAGLR gy (20)
- 0o

where M is the number of frequency regions or summation terms in the likelihood expres-
sions. Integrating the density functions between a specified threshold, T, and infinity
provides PEA as a function of T. The details of these calculations are contained in
Appendix B and lead to the asymptotic series solutions*

| Z

Generalized 1N(N 1M ¥
' T —-——— e N-1.5)2 (-1
Likelihood Ratic™  FAC " : ])ﬁ (N5 5=~1

M ok S s
P NT - LS - 5+ D)

F(¥—+2.NT—L5T)+..Z| Q2N

164, Papoulis, Probability, Random Variables, and Stochastic Processes., McGraw-Hill, 1965.

*The expressions presented here are applicable only when M is an even integer. Expressions for cases of
M as an odd integer can be obtained from Appendix B.

|
|
g
§




M
M/2)y-1{= -
Approximated —a Po o (T) = (N_”M (M/2)-1 5 1+k)!
Maximum Likelihood A M= 12 ( m
(2N-4)M- )-F(j) k=0 = -1-k)!
M
k+1/2) (M2 Gk
_h—‘—rl I’—,——k‘NT—ZT>+2 —'—M——“
s ¢ k=0 k!5 -k)!
(N-2) - =
Hk+ 1D g
T F(—.,-—k+|.NT—2T)-... (22)
(N-2) 2

where I'(.) denotes an incomplete gamma function and (a:b:c) denotes a(a +b) (a+ 2b) . ..
(a+cb - b). No simulations have been conducted to verify the range of parameters over
which the asymptotic series results are valid. It will be stated only that the series expressions
increase in accuracy as N increases and that breakdown of the series can be expected when
the higher order correction terms become as large as the leading order terms in an absolute
value sense.

Plots of PE A as a function of the specified threshold are presented in Fig. 1 for
M=4 and N=64. Similarly, in Fig. 2 plots of PE versus threshold are presented for M=4
and N=128. The low-coherence form of AG R requires a slightly larger threshold than
AAML- This is reasonable in that both algorithms have very similar forms for low input
coherence except for the non-zero mean of AGLR. Both PEA expressions are also nearly
exponential in nature for N large.

PROBABILITY OF DETECTION

Probabilities of detection for the two likelihood-based algorithms can be evaluated
using the same techniques as for PE A, except starting with Eq. (16) instead of Eq. (18).
The same degree of accuracy in the resulting expressions need not be required though. The
PEA expression depends upon the extreme tail of the density functions such that very
careful approximations are required. Pp depends upon the bulk of the density function
(if Pp’s in the range of 0.1 to 0.9 are primarily of interest) such that coarser approximations
can be made. The fact that a coarser approximation can be made and the fact that the
signal-plus-noise density functions are more difficult to handle analytically motivates use
of a classical approximation technique such as an Edgeworth series (Ref. 9). An Edgeworth
series is an asymptotic series based upon a normal distribution and its derivatives. Function-
ally, the series provides the probability density function for a sum of independent random
variables in terms of ghe moments of the individual random variables. Therefore, knowledge
of the moments of y~cosy and 73cosztllk can be used to directly determine the probability
density function of AGLR and ApAML With signal plus noise being present. Integrating the
resulting density functions between a specified threshold, T, and e provides the probability
of detection as a function of T.
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Details on the derivation and convergence properties of an Edgeworth series can be
found in Refs. 2 and 9. Here, only the resulting expression for Ppy will be presented

C C, o
Pp(T) ~ erfc (2) + _6_! ¢(2)(z) ol _2_‘:4-_¢(3)(Z) -5 ¢(5) (2)+...,

T
7= “‘
0

where ¢(") denotes the nth derivative of a normal density function, T denotes the selected
threshold, C;, denotes the nth cumulant, u the mean, and o the standard deviation, each of
which are for the M summed random variables defined in Eqs. (8) and (9). Specification

of Cyp,. u, and ¢ in terms of the moments of the input random variables can be found in
Chapter 26 of Ref. 17. Similarly, specification of (M) in terms of Hermite polynomials
can be found in Chapter 12 of Ref. 9. The only quantities necessary to implement Eq. (23)
are the moments of '?rzcos @ and chos-’- @ These moments can be computed directly

trom Eq. (16) as

Generalized Likelihood Ratio Expression:

® = A YA A A bl
,-'1'm= ff[‘7';‘05-41]’";»(7',\(le‘.w.N)d'?d\?/ (24)
- 00 - OO

k 1
ey 2 Zk'll‘~(N+k/2)I"(T+m+—2_)(73)k/2

FNTN-D ¢ ™ rk+ 1) l‘(§+ m + 1)

[(N-1) l:x +(-|)k+2m]

| (25)
(m+—§-+l;|:N-l)
Approximated Maximum Likelihood Expression:
o0 o0 m
; AY A A b Ad
W = 'y"cosw] p(y-.%-.w.N)d—,-d& (26)
[ Il
k-1 2N+ K)ok ymy 1
caappr @ PG g)
(N Ve k+m]
I'(N l)[l+( 1) | (27)

(m:§+l:I:N—|)

17M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions,” National Bureau of Standards,
Applied Mathematic Series 55, June 1964.




T =S

where u'|, denotes the mth moment centered about the origin.

Equations (23) through (27) can be utilized to determine the detection performance
of the low-coherence forms of AGLR and AAML. Use of Egs. (21) and (22) allow the
detection performances to be evaluated on the basis of a specified PEA. As a first illustra-
tion, the probability of detections for AGLR, AAML. and a normalized cross-correlation
will be compared for the situation of flat signal and noise spectral properties across the input
bandpass. The probabilities of detection and false alarm for a normalized cross-correlation
can be calculated from Eqs. (29.7.1) through (29.7.5) of Ref. 9. The parameters selected
for the comparison are N=64, M=4, and PEA=10"3 for the likelihood expressions, which
represents an equivalent number of degrees of freedom for the normalized cross-correlation
processor of 512. In Fig. 3, the probabilities of detection as a function of input signal-to-
noise ratio are presented for all three algorithms. The normalized cross correlation processor
shows an improvement of 0.2 and 1.0 dB, respectively, over AAML and AGLR. This result
is not surprising, the likelihood expressions are formulated for cases where the spectral
properties vary across the input bandpass and should not be expected to provide processing
gain over a normalized cross-correlation processor whose processing bandwidth is matched
to the signal bandwidth.*
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Figure 3. Probability of detection as a function of input signal to noise ratip; Pg A =
10-3, flat input signal and noise spectra, S12 degrees of freedom.

*For flat spectral characteristics, the likelihood expressions can be expected to provide degraded performance
relative to a normalized cross-correlation processor as the value M is increased. A simple proof of this is
presented in Appendix C.
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The primary benefit from the likelihood expressions will occur when the signal or
noise spectral levels vary as a function of frequency across the input bandpass. Under this
condition, the coherence weights estimated in each frequency interval will adapt to the
varying spectral properties. Improvement over a normalized cross-correlation can be illus-
trated for the case of the processing bandwidth being wider than the signal bandwidth. A
mismatched processing bandwidth is depicted in Fig. 4. The noise spectral density is N
over the input processing bandwidth, Bp. The signal spectral density is S over the region
Bg, where By is less than Bp. For comparison purposes between ApML and a normalized
cross-correlation, let PR A for each algorithm be set at 10-3, let Ao\ estimate coherence
weights in frequency regions of width B, and let the coherence weights be estimated with
64 transform values (i.e., the time-bandwidth product for both processors is 64 Bp/BS).

In Fig. 5, the ratio of S/N necessary to achieve a Pp of 0.5 is plotted as a function of the
bandwidth mismatch, Bp/Bs. Both processors require nearly the same ratio of S/N with no
mismatch. But as the mismatch increases, the normalized cross-correlation requires vaues
of S/N that grow at a faster rate. The normalized cross-correlation requires a value of S/N
that increases by approximately 1.5 dB every time the value of Bp/BS doubles. The likelihood
expression requires a value of S/N that increased by approximately .75 dB every time the
value of Bp/B5 doubles. That is, the likelihood expression is less subject to performance
degradation due to processing mismatch than a normalized cross-correlation. This same
conclusion can be drawn from examining the deflection ratios of each algorithm (ratio of
mean output with signal present to the standard deviation with noise only present) as is
shown in Appendix C.

Additional examples of processing gain for the likelihood expressions can be illus-
trated for the case of colored noise or interference across the input processing bandpass.
Processing gain in these situations can easily be expected because the likelihood expressions
do not depend upon absolute spectral levels as a function of frequency but only upon the
measured coherence as a function of frequency. Here, an example involving colored noise
will be demonstrated through the use of an ambiguity surface calculation. The expectation
values of the cross-spectral properties selected for the example are presented in Fig. 6. The
noise power falls linearly over the input processing bandpass. A narrowband signal is situated
in the center of the bandpass and possesses a level corresponding to a - 14-dB signal-to-noise
ratio relative to the 12-Hz processing bandpass. A single realization of these cross-spectral
properties was created and processed through the ApM algorithm and a normalized cross-
correlation.* The ApML algorithm estimated coherence weights in 1-Hz regions across the
12-Hz processing bandpass. In Figs. 7 and 8, ambiguity surfaces resulting from each algorithm
are presented. Height of the data in the ambiguity surface is color encoded. with the highest
data point in each surface represented by the color red. The dimensions of the ambiguity
surface are time-difference and Doppler difference between the two input time series. The
position of these parameters for the synthetic signal is denoted by the black arrows in
Fig. 7. The ambiguity surface created with the AppM algorithm shows the highest peak
in the surface located at the synthetic signal’s time and frequency difference parameters.

For the normalized cross-correlation calculation, the peak corresponding to the signal’s

*Envelope versions of each of these algorithms were utilized. The envelope of A\ is defined by Eq. (13)
and the envelope of a normalized cross-correlation corresponds to estimates of magnitude squared
coherence.
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parameters is smaller than two noise spikes on the surface. The data in Fig. 7 was created
with a total time-bandwidth product into each algorithm of 1800. If the time-bandwidth
product is decreased to 1200, the ambiguity surfaces presented in Fig. 8 result. The signal
peak has now essentially disappeared from the surface resulting from the normalized cross-
correlation. For the surface generated with ApML, the largest peak on the surface still
corresponds to the time and frequency difference of the synthetic signal.

4.0 CONCLUSION

In this report, we have demonstrated that likelihood-based filtering of the cross-
spectrum can provide improved detection and parameter estimation performance over that
of a normalized cross-correlation processor. The improvement will occur when the signal
and noise spectral properties vary over the input bandpass. Such a situation can be expected
when little a priori information exists about the signal properties or if the noise background
is highly variable, conditions which do occur in low-frequency acoustic processing. There-
fore, the likelihood expressions represent a viable technique for conducting joint detection
and parameter estimation on the output of two sensors.

Demonstrations of processing performance with the two likelihood expressions
examined were presented analytically in the form of Receiver Operating Characteristics
and graphically with processing results on synthetic data. No major differences in the per-
formance between the two algorithms were observed. It is felt that major differences between
the generalized likelihood ratio expression and the constrained maximum likelihood expres-
sion will only occur in the parameter estimation capability for wideband signals. Analytical
determination of these differences may be quite difficult such that the performance com-
parison should be conducted empirically.
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Finally, improvements upon the cross-spectral filtering approaches presented in this

report may be easily realized. The adaptations analyzed here were single-step in nature. If
the signal and noise characteristics remain stationary over time periods longer than a single
observation, the coherence estimates as a function of frequency can be smoothed recursively
in time. The performance of the likelihood expressions can also be improved by a judicious
choice of the number of frequency regions that coherence weights are estimated in across
the processing bandpass. This selection will be dependent upon coarse information concern-
ing signal and noise properties for the case of interest.

o
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APPENDIX A
GENERALIZED LIKELIHOOD RATIO TEST STATISTIC

The generalized likelihood ratio test statistic has the form (Refs. 3, 4, 6)

p(Z 18 ) {max. over@ll
AGLR = p(Z 16 {max. over?o_}

(A-1)

where Z is the vector of observation data from two sensors, p(Z|8) represents the conditional
density of the input data on the parameter set 8, and 8 and 8¢ denote, respectively, the
parameter sets under condition of signal plus noise and noise only being present. Without
loss of generality, the vector of observation data can be comprised of the Fourier transform
of the time series data from each sensor. Letting Z denote the observation vector of complex
Fourier components and constraining both the signal and noise to be realized from a Gaus-
sian process, the probability density functions can be written as

p(i|¢)=1r'2m b 1=!exp {-"i+<b'|—z} (A-2)

where m is the size of the vector of observation and & denotes the correlation matrix under
the two different hypotheses. Provided the input spectra is well behaved, the above density
function can be partitioned as (Refs. 10, 13, 14)

m
3
pEl®) =2 [ || exp{-7} o' 7] (A-3)
k=1
where Zy denotes the complex Fourier components for the kth frequency region and ®y
is the correlation matrix for the kth frequency region (®y is a two-by-two dimension).

Under condition of signal plus noise being present, the partitioned correlation matrices
have the form

ay1(k) a19(k) e TIWKT i
= olz(k)ei“’kT 099(k) i

where 0 L(k), 022(k), and 012(k) are the unknown auto and absolute cross-spectral levels
for the kth frequency region, and 7 is the signal travel time difference between the sensors.
Under condition of noise only being present, the partitioned correlation matrices have

the form

B e
by = [0 095(k) G

Equation (A-3) can also be expressed in the form

2
p(z|®) = 772M k[jl |#| ! exp [—Tr(xk d»,;')] (A-6)

23




B S

where xk is defined as

-= =+
Xk = Zg 2k (A-7)

and represents the sampled correlation matrix for the kth frequency region. If multiple
observations in time are taken, the only change in form for Eq. (A-6) is that the sampled
correlation matrix is now represented by the smoothed matrix

L
Xk = L Ik 7 (A-8)
¢=1

where Zi(Q) denotes the Fourier components for the kth frequency region and the eth
time period, and 7~2M in equation (A-6) is replaced by 7=2ML_ n order to generate
AGLR. Ea. (A-6) needs to be maximized for i of the form of Eq. (A-4) and then for g
of the form of Eq. (A-5).

SIGNAL PLUS NOISE PRESENT

The numerator of Eq. (A-1) is obtained by solving the set of simultaneous equations

z d A N AR
p(zl¢)—w)p(zl¢)-mp(21¢)—arp(zl(b)-O (A-9)

et

90 (k)
for all values of k where the partitioned correlation matrices are of the form of Eq. (A4).
Differentiating Eq. (A-6) with respect to a(k), 022(k). and o 2(k) leads to the three
simultaneous equations

9
3 T (% ) x17(K)
Tr [X (b"] =1 + i =] e (A-10)
ao”(k) k
3 Tr(x P )
T 1 5022“() k Tk XH(k)
r(qu)k )" 1+ 3 - -I+EW (A-11)
3022“()
d )
1 30,00 1" (X ) RC [xlw(k)c"wk"]
. = — = = = K ]
Tr [xkcbk] I+ e i oy (A-12)

whereA denotes adjoint and the x terms are elements of xi. The simultaneous solutions
for ay1(k), a73(k), and 012(k) defined by the above three equations are found through
manipulation to be
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072(k) = x57(k) (A-14)
a12(k) = R [x,3<k) c-iwkf] : (A-15)

Substituting these solutions back into the numerator of Eq. (A-1) provides
m
_;’—

p(ilb-l)(mux.over't;') = p2mL oxp (-21) D {xll(k)xzztk)—RQ2

=]

Y e-IWKT [{~1 o
I:XDH\) e IWK :|} (guax.over‘r)' (A-16)
Although the maximization with respect to 7 is easy to derive analytically, the form of
Eq. (A-16) turns out to be more convenient for our purposes.
NOISE-ONLY PRESENT
The denominator of Eq. (A-1) is obtained by solving the set of simultancous

equations

Spaitiies plzld) =

= o= 7
30 (0 plz!9)=0 (A-17)

el e
ao::(k)

for all values of k where the partitioned correlation matrices are of the form of Eq. (A-5).
The form of these solutions is the same as Eqs. (A-10) and (A-11) but with & defined by
Eq. (A-5). The solution to these simultaneous equations is simply given by

011 (k) =x) (k) (A-18)
072(K) = x35(k) (A-19)

Substituting these solutions back into the denominator of Eq. (A-1) provides

E

=¥

P(?lao) (max over 60) = ﬂ—sz exp (—21.,) [XI I(k) X::“\):l—‘ . (A-20)
1

GENERALIZED LIKELIHOOD RATIO
Equations (A-16) and (A-20) can be combined to form the likelihood ratio test

statistic

Xl ‘(k) X::(k)

(A-21)
. .
~ T K) c-IWKT
Xp (k) x35(k) - R ("IZ( be ) (max.overr).

m
"y
AGLR = kEln [
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Expressing x| 2k) explicitly in terms of its real and imaginary components
o i
X120k = X120k €YK

E

allows the likelihood ratio to be expressed as

(A-22)
X]) 2 -1
s e
1 X11(k) X”(k)

e

]
|3 ,IT:N

(A-23)
(max. over T)

o
l:l ¥ '/7\(?‘() cos? (wk i WkT) (max over r)

’j;:x

(A-24)
where '7(k is the sampled magnitude squared coherence between the two sensors at radian

frequency wy. The log likelihood ratio is monotonic with respect to the above expression
such that an equivalent test statistic is given by

AGLR"Z s [ 7<w it (\"l\'wkf) (

(A-25)
max. over T).




APPENDIX B
PROBABILITY OF FALSE ALARM EXPRESSIONS

Derivation of the probability of false alarm for the low level coherznce forms of
AGLR and ApM] mainly involves evaluating integrals and Fourier transforms. These
operations can be found for the most part in standard references. Here, steps available
from standard references will be denoted by the reference number and the corresponding
equation, both in square brackets.

APPROXIMATE MAXIMUM LIKELIHOOD

The noise-only density function for

M M
A A A :
{\AML= Z ‘Yﬁ C050k= Z Qk 5 {L\k=QﬁCOSOk (B-1)
k=1 k=1
can be obtained by calculating the characteristic function of/z\k, raising the characteristic

function to the Mth power, and then inverting it. The characteristic function of '21( is
defined by

o LA
g(u) = f e'uZk p(’z\k) dz’r.\k (B-2)
- OO0

where p(zy) denotes the probability dansny function of /I\k The characteristic function can
also be evaluated as (remembering that 'yzk and 6 are statistically independent for noise
only present)

Fa e ‘IAZ -0 /0\ A2 A A A
g(u) = 1 __[o iUy cos Uk p(vi ) plcos By) dyi d cos ) (B-3)
7 ra i A A
= VXY p(x) p(y) dx dy : x=7j and y=cos fy. (B4)
- 00 - 00

The density functions for x and y are available from [16:4.5] and [18: 5-15] such that
N-1 ! : N-2 2.~
g(u)=—f { eluxy (1-x)N=2(1-y%) “dxdy (B-5)
.

; . e - : i 0¥ A -
where N is the number of transforms utilized in estimating 'yi and 0. The term (l—x)N 2
can be written as

186 . Carter, “Estimation of the Magnitude-Squared Coherence Function,” NUSC TR 4343, May 1972.




o9 ¢
(l-x)N'2 = exp [- (N-2) le _xr] ; (B-6)

Substituting this series expression in Eq. (B-5) and making the change of variables
B=N-2-iuy and r=xB leads to

N-2-iu B o s
g(u) = 1N——l / exp ‘ -r-(N-2) 3. Y [u: : (B-N+2)2] &
T ON22+u O #52
—+dr dB (B-7)
N-1 2 B I (N-2r2  (N-2)F3
= i— [ eTm-— - LA
T N-2+iu 0 S 3%
2) 7| Y2
[u- + (B—N+2)-} dr dB. (B-8)

In going from Eq. (B-7) to (B-8), the exponent terms for =2 have been rewritten in
individual Taylor series expansions. The approximation that will be employed for g(u) is
to change the upper limit on the integration with respect to r such that

N-2-iu oo _)\2 93
g(u) = |—N—I- f e T -é— e "): o l)r + ...
T N=2+iu 0 2B 3B
) o s
[u" + (B—N+2)'] dr dB. (B-9)

This approximation has been discussed in [19;16] and has been shown to be very accurate
for N large. Carrying out the integration with respect to r provides
1/

4

-2-iu A AT &% Ei
gw ~i =1 N[ [B NB3" J A2 w2+ B-N+2)2 | 4B, (B-10)
2 tiuh i

where terms in the first bracket are ordered by their significance (remembering that N is
restricted to be large and that | B 1> N-2). The integration with respect to B can be carried
out through the use of [20;2.261, 2.266, 2.269] and [21:231.9a] to provide

19R  Merk and S. McCarthy, “Statistics of Averaged Magnitude Squared Coherence,” CMAP Research
Report No. 77-014, Naval Ocean Systems Center, April 1978.

20y, Gradshteyn and 1. Ryzhik, Tables of Integral Series and Products, Academic Press, 1965.

21w. Grobner and N. Hofreiter, Integraltafel Erster Teil Unbestimmte Integrale, Integraltafel Zweiter Teil
Bestimmte Integrale, Springer-Verlag, 1966.
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(N-D(N-2) 3 _(N-1)(N-2)?
"

s (BRT)
32 2
[uzuN—2)2‘J ! [u2+(N-2)3]5/

N-1 1
g(u) ~ +—7'

AR T
[u2+(N-2)2] :

Raising g(u) to the mth power and ordering terms by their significance leads to

M, (N-1)M
" M/2
@) [u2 + (N—2)2] /

[u3 +(N_3)3] R (B-12)

The above characteristic function can be inverted through the use of [22:1.3(7)] to provide
the noise only density function for Ay g of

-
LeMNey W2en2? T imne)

M DIAIM=DIZ K s (NIAIR2IAD
o(AIM, N, y2=0) ~ B=1) (M 'M: = +M N
v (N-ayM-D/2 (M) §
IAIM¥D)/2 g (NIAI-2IA])
+1)/2
QLY (B-13)

(2N-4)(M*1)/2 l‘(hf-+ )

where K denotes a modified Bessel function of the second kind and I' denotes a gamma
function. Integrating Eq. (B-13) between a specified threshold, T, and infinity provides

the probability of false alarm for ApML as a function of T. The integration can be per-
formed in general by expressing the Bessel functions in an infinite series expansion. However,
for the case of M being an even integer, the modified Bessel function can be written in terms
of a finite series expansion as shown in [20; 8.468]. Restricting M to be an even integer

and performing the integration provides

227 Erdely, Tables of Integral Transforms, Volume I, McGraw-Hill, 1954
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LB (M " A
PEA(T N-DM ; ke (M kNt 1)
FA(D = M=1 IR e T T e
5 M \Lk=0 k.(T-l-k)!( )=
N4) 2 1 (T) 2 N-2) 2
M
— (M )
2 e )t -k =%
1 2 2 JM
i Bade = 53 NGk +LNT-21) - | B-19)
K=0 K't(F-K)! ( G o
Z N-2 Z
; where ['(,) denotes an incomplete gamma function and where for brevity only the first two
| terms in the asymptotic series are presented. For T small, the first term is larger than the
second term by approximately a factor of N, and higher order terms in the series fall off in

significance in terms of increasing powers of N. In general, the first term in Eq. (B-14) will
be the dominant term provided N is large and T is not allowed to become too large.

GENERALIZED LIKELIHOOD

The noise only density function for

M
A A A A
i AGLR = 9& cos? O = 3 Mg ; hk=$|:( coszok (B-15)
k=1 k=1

could be obtained by following the same techniques as for AApM. Here though, the proba-
bility der}\sity function ofﬂk will first be evaluated directly. The probability density function
for cos> Ok with 8 uniformly distributed between ~m and 7 can be evaluated through the
use of [16:5-6, 5-7], [23; p. 232], and the twice angle formula as

12

| v, - rA
p(y)=7(y-y-) Ly =cos= 0, 0<y<I. (B-16) ]

S

The probability density function for Qﬁ can be obtained from [18; 5-15] as

p(x) = (N-1) (1-)N-2 (x =52 o <x < 1. (B-17)

A
The probability density function for hy can be evaluated from Eq. (B-16), Eq. (B-17), .
[16;746], and [21;212-7a] as

N-2[ I-hg [ ON  (Nopy
p(hk)—(l—hk) —h-;—l Tm) 3 0<hk<l. (B-18)
[
| where (a;b;c) denotes a(a+b) (a+2b) ... (atcb=b). The characteristic function of hy is then
I

defined by

238. Shelby, “Standard Mathematical Tables,” The Chemical Rubber Company, 1964,
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| T [LN (N-1)!
. 7 k[2N (-1
8‘“’=0f etk (1-N-2 —*T[T a; ;N-I)J ool R

Making the change of variable hy = r2 leads to

3
N (N-1) ' N-5 . 2
g(u)=[—”- i Eeh Of 2(1-r2) 2 eiur gr, (B-20)

Utilizing the same expansion as listed in Eq. (B-6) leads to
2N (N1 . S “ o
g(u)=2 l:_” m _0[ exp | «(N-1.5-iu)r= - (N-1.5) k2=:" K dr. (B-21)

Making the change of variable S = rVN - 1.5 -iu in Eq. (B-21) and then expanding the
higher order exponent terms in separate Taylor series expansions leads to

g(u){’N (N-D! ] 2 gshoa ’[l (N-1.58%

-~

T (I:Z:N—l)\,N-I.S-iué : —Z(N—I.S—iu)l-
- 1.5)s°

(N-1.5S =+ ds. (B-22)

3I(IN-1.5-iw)°

where terms inside the brackets have been ordered according to their significance. The
approximation to be employed on the characteristic function is to change the upper limit
on the integral to infinity. This is essentially the same approximation as employed for
AAML and requires N to be large for a high degree of accuracy to occur. Carrying out the
integration provides the solution

N (N-1! L 3  N-13
g(u)~[7 mj)] [N-1.5-iu] l-8 (N-I_S—iu)?- -

5  N-i3
o (B-23)
8 (N=1.5~iu)’ :I

The characteristic function can now be raised to the Mth power and inverted through the
use of [22; 3.2.3] in order to obtain the noise only density function for AGLR. To simplify
the form of the solution, M will once again be restricted to be an even integer. The resulting
solution for the density function is
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Integrating the density function provides the probability of false alarm expression

My M AL
~ = e ————— - “« = — = -
PEAD ~z= Ny | (N-1-9)° N-D)! P(F: NT-1.5T)

.5 M
(N—lSl) (M"’:) l‘(—:-+ 2.NT-|5T)+] (B-29)

Equation (B-25) possesses the same properties as Eq. (B-14); the first term in the series is
the dominant term, provided N is large and T is not allowed to become too large.
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APPENDIX C
DEFLECTION RATIOS

A simple technique for examining the detection capability of an algorithm is to
calculate its deflection ratio: the mean output with signal present divided by the output
standard deviation with noise only present. This ratio is a measure of the signal-to-noise
ratio at the output of the processor. For a Gaussian sample statistic at the output of the
processor, the deflection ratio determines the Receiver Operating Characteristics of the
processor. For a non-Gaussian sample statistic at the output of the processor, the deflec-
tion ratio can only be used as a measure of effectiveness without relating it directly to the
probability of detection. Here, the deflection ratio for the low coherence form of ApAML
and a normalized cross-correlation will be examined. The standard deviation of AAML
with noise only present can be calculated through the use of Eq. (27) as

0= V— ~ V— (C-1)
\,N(N+ 1) N

where M and N represent the number of frequency intervals and the number of transforms
in each frequency region, respectively. The mean level with signal present can also be
determined from Eq. (27) but the resulting series expression prevents simple analysis.

The mean level is approximately given by

‘Z’: 5
Yk » (C-2)
=K

where the 7&‘9 are the true coherence levels in each frequency region. This expression will
shﬂgh(lyAundercstmmte the true mean by ignoring the bias present on the sampled values of i
7; cos 0, but is sufficient for the purpose at hand. The deflection ratio for AAML s i
then given by

M 9
N g Tk
dr.(AaML) = \/".M_; (C-3)

The deflection ratio for a normalized cross-correlation processor needs to be calculated with
an input of N X M transforms, the same number as input to AAML. The deflection ratio
for a squared, normalized cross-correlation processor* can be obtained from Ref. 18 as

d.r. (p2) ~ NM p2 (C4)

where p— represents the magnitude squared coherence across the entire input bandpass.
Once again, the bias on the mean ofp- is being ignored. If both low input signal-to-noise

*Although a squared cross-correlation is being utilized here, the comparison results are essentially indepen-
dent of whether a cross-correlation or a squared cross-correlation is used. A squared cross-correlation is
being used because its deflection ratio has the same dimensionality with respect to the input signal-to-noise
ratio as A ypp- 1
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ratio and equal signal-to-noise ratio at each sensor are assumed, Eqgs. (C-3) and (C4) can be
written as

N M s\
d.r. (AAML) "'V-ﬁ Z (——) (C-S)

k=l nk

e N2
d.r. (pz)zNM<1—rrT—> : (C-6)

where ST/nT represents the input signal-to-noise ratio across the entire bandpass and
Sk/nk represents the input signal-to-noise ratio in each of the M frequency regions. Two
scenarios will be examined with the deflection ratios, flat signal spectral levels across the
bandpass and the signal occupying only l/Mth of the input bandpass. For the case of flat
spectral properties across the input bandpass and of signal-to-noise ratio S/n, the deflection

ratios are given by

3
dr. (AgmL) ~VM N(%) (C-7)

o\ 2
d.r.(pz)%MN<T)-> . (C-8)

For the case of the signal occupying only l/Mth of the input bandpass and with a signal-to-
noise ratio within that region of S/n, the deflection ratios are

N /s\?
d.r. = {— 9
r. (AaMmL) W <77> (C-9)

2 2
dr. (p2) = NMG—q %>= % (-i—) (C-10)

Equations (C-7) through (C-10) show when processing gain can be expected from the
likelihood expression. For the case of flat signal spectral properties across the input band-
pass, the deflection ratio of the likelihood expression is lower by a factor othTi. For the
case of the signal occupying only I/Mth of the input bandpass, the deflection ratio of the
likelihood expression is greater by a factor ofV!\-‘l :
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