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INTRODUCTION

This report documents research in the development of a Fast
Haar Transform algorithm and its application to digital data analysis,
as performed by the author during the period June-to-October of 1976.
It is an outgrowth of previous research in the area of transform ap-
plication to image processing.

Just as the Fourier Transform represents data as a linear com-
bination of sines and cosines, the Haar Transform represents a func-
tion as a linear combination of square-wave step functions called
Haar functions. These functions are defined and grouped into matrices
from which a transform is developed. Then the fast transform algorithm
is presented with a flowchart and examples. A summary of the advan-
tages that the Fast Haar Transform (FHT) has over the Fast Fourier
Transform (FFT) is presented at the end of the report.

THEORY OF HAAR FUNCTIONS

It is instructive to examine the Haar functions, to order them
into matrices, and to formulate a fast transform algorithm that can
be computer-implemented for digital data analysis.

Around 1900, Haar defined the set of discontinuous step func-
tions which are used to obtain the transform that today bears his
name (ref 1). The Haar functions (step functions of various rates
of value change or ''sequency'") take on the values +1, 0, and -1 in
the closed interval,

[0, 1] i.e. 0 <x<1
The first and simplest Haar function is:
0
H (x) =1, x e [0, 1] (1)
0

The second Haar function is:

I 1x
H Xy = 0 x
1x

e [0, 1/2)
e (1/2, 1]




m
Finally, in general, form > 1, and 1 < k < 2

m
PP S

om  m
. 1
i . k-%, k
| e T A G
f (3)
Z =1, 't
i‘ 0 X ¢ (F -ZE)
| m

i for £ #kand 1 <2 <2

By choosing any integral value of m, one can vary k and construct
any of the 2Mm Haar functions of the mth order desired.

At points of discontinuity, let HpK (x) be the mean on either
. side of adjoining intervals, i.e., at the points 0, and 1, let Hpk (x)

! S R T
zml)md( 2T )

take on its values as in the intervals (o,
respectively,

The total collection of the Haar functions is a complete set
and an orthonormal system, that is one in which the functions are
normalized and orthogonal. Clearly, Hmk (x) is normalized. Also,
the Hok (x) functions are orthogonal to all others, that is, the in-

tegral over the domain of definition of their product vanishes.
Finally, in general, form > 1 and 1 < i, j < 2M, for i # j:

1 i j
SJH (x)H (x) dx =0 ‘ 4)
00 m m

i
«while for n > m, the interval in which H (x) does not vanish is con-

n J
tained in an interval of constant length of H (x) and therefore:
m




S j m T
Jf H (x)H (x) dx = 1./4- /S H (x) dx =0 (5)
0 n m 0 n

Thus, the existence of an orthonormal set of functions is established.

MATRICES AND BASIS OF TRANSFORM

The fact of orthogonality is important and means, therefore,
that a function can be expressed in terms of or represented by a
linear combination of Haar functions. This means that for a given
digital function, F4 (xi), for i =0, 1, 2 ..., N-1, that is, over
the range of the index i for which Fq (x3) is valid, one can write a

Haar function decomposition as follows:

m 2j K
F, (x.) = £ £ c¢., H. (x.) (6)
d i jal kel jk j i

where j represents the particular order of the given Haar function
under consideration of which 2J or k individual cases exist. The

quantity Cjk is the weighting factor, the real number designating
how much of a contribution H? (xi) is giving to the digital function
or data string series Fd (xi).

In general, for functions in the complex plane, one simply treats
the real and imaginary parts separately and writes:

Fy (x,) = Ry (x;) + ity (x) 7N

where j = Y -1 and Rd (xi) and Id (xi] are the real and imaginary
parts that are expanded in terms of Haar functions as in equation 6.

Thus, any set of digital data can be expressed in terms of Haar
function weighting coefficients, just as N data points can be ex-
pressed as a linear combination of sines and cosines in the Fourier
Transform representation.




For Haar functions, a transform is most easily motivated by
arranging the functions in order of increasing sequency, or frequency |4
of value change, into one or another of the N by N Haar matrices
with:

N =20 (8)

where n is a positive integer and where N and n are analogous to k
and m, respectively, of equation 6.

Note, in equation 3, the presence of the bothersome square roots

bl Y2™ in the Haar functions and also in the matrix elements. If the
Haar Transform is represented by an N by N matrix T and its inverse

by Tl , the following condition is desired:

Iatlras 9)

TT N

where INis the N by N identity matrix with 1's on the main diagonal

and O's everywhere else. The factors :_VEE-, from both the Haar
transform matrix and its inverse, can be grouped onto the inverse;
therefore, for a given order of Haar functions, simply divide by

N = 2" Thus modified, the Haar Transform matrix for the N = 16
case is given in figure 1. Its inverse, except for the outside
factor of 1/N, is given in figure 2, which was computer generated
by program HIMAT. (See appendix A.)

To perform actual processing, take an input data string with
elements IN:, the Haar Transform matrix with elements Tj; with
the inverse transform matrix T{i, the output data string with elements

OUT} » and a storage string with elements Xi’ where, i and j range

from 1 to N. Multiply the input data by the transform matrix, pro-
ceeding down the rows and storing the sums in X. Multiply X by the
inverse transform matrix, proceeding down the rows and storing the
results in the output data string. In equation form:

T x L '3

N
= 1

1 1 ] k

no~=

i

where in Tij
second the column position for the given matrix element.

and Tii’ the first index designates the row, and the
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During processing, the Haar Transform matrix operates on each
element of the data string, sampling at skip frequencies differing
i by powers of 2 from coarse to fine. The lowest is a DC term, the
highest being value changes between adjacent data elements, i.e., the
| bandwidth limit of the digital input. Specifically, for the 16 by 16
: transform matrix case, the DC level and spatial frequency alternations
4 of 1, 2, 4, and 8 cycles per the data field length of 16 points occur.
e | In this case, the Haar Transform represents each data string of equa-

tion 6 as equation 11:

Fg (xi) = Fg + Fy + F2 + F1 + DC term (11) |

where Fg, F,, F;, and F , are square wave spatial frequency contribu-

tions of 8, 4, 2, and 1 cycle per data field length, respectively.
(See ref 2.) These are square wave functions that take on the values 7
+a, +b, +c, +d, and e, for the DC term as shown in figure 3.

il caduninizmch i St vy

Equation 11 is a restatement of equation 6, and shows how a
data set is constructed from its individual Haar components.

A demonstration of orthogonality is instructive to show the ex-
istence of the Haar components in equation 11, by inverting it to
obtain Fg, F,, F,, and F; as functions of the input data points Fy (xi).

One therefore writes out the Haar component contributions in

equation 11 as specified in figure 3 for all 16 digital data points i
E. (x:)
d *7i

= -at+a-a+a-a+a-a+a-a+a-a+a-a+a-a+a

= -b-b+b+b-b-b+b+b-b-b+b+b-b-b+b+b

&=  ~C=C-C-C+C+C+C+C=C=C~-C=C+C+C+C+C

"

-d-d-d-d-d-d-d-d+d+d+d+d+d+d+d+d

eeeeeceeceeececeececee

1234567891011 12 13 14 15 16 ',

(12)
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where P;is the data point in question. One adds the corresponding
inputs for each of the data points P; in Fd (xi) to get:

P = -a =-b -¢c -d +e P = a ~-b ~c -d +e
1 2 ’
P = -a +b -¢ -d +e P = a +b -c -d +e
3 4
p = -a -b +c -d +e P = a -b +c -d +e
5 6
P = -a +b +c -d +e P = a +b +c -4 +te 3
, 7 8 |
'f P = -a -b -¢c +d +e P = a -b -c +d +e i
{ 9 10 |
P = -a +b -c +d +e P =a +b -c +d +e ﬂ
11 12 |
|
P = -a -b +c +d +e P = a -b +c +d +e 1
13 e !
|
P = -a +b +c +d +e P = a +b +c +d +e ‘
15 16 |
(13) ‘
Let. X = a
: |
X =5b
2
X = ¢
| 3
|
1, x =4
4 |
(14)
X =e
; 5 ‘
!
| 9 ‘
~ L
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With 5 inputs, this system of equations determines 16 outputs.
Thus, to invert it, one has the choice of which outputs to use. Try:

|
(15) k
i
The matrix for this system is: ‘
TR ;
1=3 1 & 1 ) r
Moo= et L L 4 1
1 I 1=<=F 1
1-1-111 (16)

Notice that columns 1 and 5 are identical, the determinant is 0, and
the system cannot be inverted. So let:

X =X + X

10



) ceaad

Then choose the equations for Y, through Y, and write the matrix for

the 4-by- system:

| S (R R |
W =7 1w} % 1%
I 1-) 1
11 1-1
G

As found by computer generation, the invers

=5

I 5 =
«S
.S

.
ocCowvwn
oSwvnnowm

b|c>c>2n‘

Thus, one obtains equation 20:

X = (Y +v 4 Y +Y

1 1 2 3

x 2 ~yi/2
2 i 2

x Sy -y /2
3 1 3

X Rl T
4 1 4

and therefore from equations 14, 15, and 17:

a+e = (p +p +

14 12

b = (p - ) /2
16 pu/

¢ =/ - 2
16 p12)/

da =P - )/2
16 pa

11

(18)
e of the matrix is:
(19)
)/2
4
(20)
P -p )/2
8 16
(21)
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Note that not all square wave components in equation 21 are ob-
tained as independent expressions, i.e., only the sum of a and e is
present. The reason is that the signs of a, b, ¢, and d have not
been specified. This is equivalent to not having specified the phases
of the contributing square wave oscillations. An ambiguity of a
180-degree phase angle in each one occurs because a statement has not
been made as to whether the oscillation should begin positive or nega-
tive. The Haar transform, however, does this, and, therefore, accur-
ately represents the original input data.

Comparing figure 1 with equation 10, note that for the transform

- data storage X, X, corresponds to the matrix elements in group 1 of

the figure since only these elements were used to compute it. Simi-
larly, X, corresponds to group 2, X3 and X, to group 3, X5 through

Xg to group 4, Xq through X, to group 5. The magnitude of the ele-

ments in group 1 of the Haar Transform matrix affect the strength of '

the DC term. Similarly, the magnitude of the elements in groups 2,
3, 4, and 5 affect the relative weights of the Haar contributions of
F,, F, F, and Fg respectively, of equation 11. That is, for 1 < i

< 5, multiplying the elements of group i bx an enhancement factor
m; > 1 will enhance the presence of the i'h spatial frequency component.

Conversely, incorporating factors m, < 1 will suppress the presence

of the given square wave spatial frequency pattern. This has appli-
cations to bandwidth reduction and noise-suppression capability.

THE FAST HAAR TRANSFORM
Motivation

Now that the nature and effect of the Haar Transform are under-
stood, working out the N = 16 case in detail will demonstrate the
motivation for the algorithm obtained. The author-designed and tested
Fast Haar Transform is more efficient for machine computation than
is the indexing of a computer through the numerous rows and columns
of extensive,memory-consuming N by N matrices.

The N = 16 case was found to be the optimum for illustrative
purposes because the N = 32 case is too unwieldy to be written; every
case smaller is too trivial and has too few details and operations to
clearly demonstrate all the procedures involved.

As dictated by equation 10, one writes out the 16 components of
the Haar Transform T as a function of the components of a digital in-
put vector I. This matrix multiplication of each of 16 elements in

12
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each of 16 rows requires 256 operations. By regrouping the compu-
tations into recursive patterns of accumulating sums and differences,
one will obtain the same results in 30 operations. This computational
reorganization is the Fast Haar Transform. The details follow:

T =T +F *T #1 #+% #T %
Ve AONEE. NG . e R S




e

(22)

14




Working through the input data, one groups the components into

the pattern of accumulating sums and differences into which they
naturally fall as follows:

A =1 + I
R W 5% s Teest
i S Rl % T
. ke
o Sl . e s

(23)

One continues this procedure:
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L e )

Note that equation 22 states the last N/2 Haar components directly, ﬁ
as differences between adjacent signal elements. By comparing the re-

sults of equations 23, 24, and 25, with equation 22, one finds that
the first N/2 Haar Transform components of the input signal can also
be expressed as differences. They are now generated in a reverse
order, the first Haar Transform components last as follows:

T5 =A1 -A2 T7 =A5 -AG s
Te A3 -A'-O Te = A7 ~Ae
(26)
Also:
Ty =B, -B T, =By -B, !
(27)
And finally:
Ty =C; +Cy T, =C; -C»p '3
(28)

Thus the Haar Transform has been implemented in a fast form.

Diagramatic Representation

The tree diagram of figure 4 is a computer generated signal flow
graph for the N = 16 case of the Haar Transform. (See the listing
of Program FIG4, appendix B.) It shows the flow of operations in
computing the Haar components T; through T,;¢ from the digital input

signal components I; through I . The elements are generated in re-

verse order in aggregates corresponding to the groups in figure 1.
To take the Fast Haar Transform, compute the last 8 or N/2 ele-

ments, i.e., Tq9 through T;¢, or T(N/2+1) through Ty directly by

taking adjacent input signal component differences. Then, sum ele-
ment pairs to form the A array, take differences between adjacent
elements; thus, obtaining transform components Tg through Tg or T

through T

(N/4+1) ;
Then, sum the elements of the A array to form the B's I

N/2°
and take adjacent element differences to form components T3 and Ty or
: - i i C,, and add and
(N/8+1) an TN/A Finally, sum again to form C, and 2» and a d an

add and subtract to compute elements T, and T,, respectively.

16




3sed 9| = N ‘WedbeLp wJaojsuea] J4eeq “y d4nbiyg

- & - - o] * - - T * - ¢ - ¢ - - PERRC > = > = > =
N N 7 ] T 1y 5 [ 8 Ly 9, s) vy € E T l
I
2 |
~
- - (3 + I«QQ 3
< |
1o [ "' S YETIM J & NE'lM Tl
-o:_.-m:.-.:..n:. ul® [l clestl Terl* eil* [erl® ot [s1]* Ter]* “[er]* Tar]* | u

‘v i)




In taking the Haar Transform for the N = 16 case, note that 30 |

operations, 16 subtractions and 14 additions, are required. In gen-
eral, for N = 2N elements, 2(N-1) algebraic additions are required.

Thus, the reader can see, as was previously mentioned, that to obtain
the Haar Transform this way be performing a General Fast Haar Trans-
form is much more efficient than having a computer laboriously index
through the rows and columns of cumbersome, memory-consuming, N by N
matrices.

The reader may remember that to take a Fast Fourier Transform
(FFT) requires more operations:

OP = N log, N (29)

Thus, to take the Haar Transform for 32 points requires 30 percent, E
for 128 points requires 29 percent, for 512 points requires 22 percent

of the work necessary to take the Fourier Transform. Stated another

way, the 512-point case saves 78 percent of the computer calculation

time required by the FFT. Also, the Haar Transform does not require

the time-consuming generation of trigonometric quantities as does the

FFT.

At this point in the computaticns, one is free to work in Haar
space and manipulate the Haar Transform components as desired. One
can multiply scme by factors > 1, thus enhancing the prominence of
the square-wave functions to which they correspond. One can multiply
others by factors < 1, thus suppressing the prominence of the square-
wave components to which they correspond. Lastly, as previously stated,
one can zero out some components to compress the data bandwidth.

By performing a procedure similar to that employed in equations 22
through 28, one can develop an inverse transform and return to physi-
cal space to obtain the output data values as in equations 22 and 26
through 28. By adopting the specific procedure of equation 10, cne
computes the output data components:

18
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Note that to be properly scaled, these output results must be divided
by a factor of N.

In a manner similar to equations 23 through 25, one forms groups
of partial sums as intermediate steps in the computation of the output
of equation 30 as follows:

A = T + T A = T - T
1 1 2 2 1 2
(31)
B =A + 2T B =A + 2T
1 1 3 3 2 4
B =A - 27 B =A - 2T
4 2
2 1§ 3 2
C =B + 4T C =B + 4T
1 1 5 5 3 7
C =B - 4T C =B - 4T
2 1 5 6 3 7
C =B + 4T C =B + 4T
3 2 6 7 4 8
C =B - 4T C =B - 4T
4 2 6 8 4 8
(33)

20




Finally, one can construct the output data as follows:

o = C + 8T 0 =C + 8T ,
1 1 9 . 9 5 13 :
0 =C - 8T O =C - 8T |
2 1 9 10 5 13 u
O =C + 8T O =C + 8T I
3 2 10 11 6 14
¢ =C - 8T 0O =C - 8T
4 2 10 12 6 14
O =C + 8T 0O =C + 8T
5 3 11 13 7 15
O =¢C - 8T 0O =C - 8T |
6 3 11 v 7 15
= T
0 = C - 8T o) = C :‘
= - 8T
8 4 12 16 8 16

(34)

As one can therefore see, the output components are computed
from a recursive pattern of accumulating sums and differences. Haar
components are added to the various A's, B's, and son on, according
to the groups of figure 1 to which they correspond. The signs al-
ternate in a regular fashion. As the index of the Haar components
added to the sums of equations 31 through 34 runs from 1 through N,
the factors that multiply them range from 1 through N/2.

Flowchart

This detailed analysis of the N = 16 case of the Haar Transform,
although perhaps seemingly cumbersome, suggests a generalization of
. the FHT for N = 32, 64, or greater. The FHT is conveniently repre-
3 sentable by a flowchart as in figure 5, that can be used to implement
r a computer routine for its calculation.
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Figure 5. Fast Haar Transform flow chart.
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In block 1, N is the number of points to transform, that must
equal an integer power of 2. In block 2, IP and IR are the positions
one counts from when desiring the current and soon-to-be computed
values. The variable ME indicates which group of the transform one
is currently in, to use to keep track of the E array, the enhancement
or suppression multipliers. For N = 16, it is initially 5. 1In block
3, NOJ designates which transform component one currently wishes to
compute. In the first, pass, for the N = 16 case, it ranges from 9
through 16 as in the second half of equation 22, where one computes
Tq and Qrp+1, Which represents A;. The indices L and K keep track of

which transform components enter these computations. One tests for
the end of the loop, and if it is reached, goes to block 5. If the
variable NO > 2, one goes back to block 2, where the counters are reset,
ME is decreased, and one is in the next group, i.e., 4. For the N = 16
case, one is now computing transform elements Ty through Tg and the

B array.

When the loops break, one computes T; and T, directly. All this

time, the multiplier factors are being factored into the transform
components, doing all the data filtering and manipulation. Then in
block 6, one computes Q; and Q,, the A array of equation 31. Then,

in block 7, NO is set to 4 and one computes the B array of equation 32.
Finally, on the last pass, when NO = N, the output data points are
computed as in equation 34. These values are the final answers and
need not be scaled, for that was accomplished by the variable X in
block 7. Block 11 contains 2N-2 entries, in the Q array, of which

the last N are the outputs.

Fortran Subroutine

Table 1 is a listing of a FORTRAN subroutine which will implement
the Haar Transform and return the output data of up through 64 points.
The line numbers start with No. 610, to allow room for the placement
of a main data-producing program ahead of the routine to form one
file. The user is required to furnish the Q array of 126 or 2N-2
positions, the first 64 or N of which are the input data, while the
last 62 may contain computer ''garbage', since they will be overwritten
by the partial sum arrays.

The user must also specify NU, the log to the base 2 of N, which
for 64 points is of course 6. Giving a number smaller than this will
implement the transform of correspondingly fewer points: 32, 16, etc.
Finally, the user must furnish the array E, the NU+1 multipliers or
enhancement factors that are incorporated into the transform to modify
the data under analysis.
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Table 1.  FORTRAN subroutine to implement Haar Transform

SUBROUTINE HAAR(Q,E,NU) 000610
DIMENSION T (64), Q (126), E (7) 000620
N =2%*NU 000630
NO =N 000640
ME = NU+2 000650
IP = (=2)*N 000660
IR = 0 000670
5 NO = NO/2 000680 .
IP = IP + 4*NO 000690 ‘
IR = IR + 2*NO 000700 ,
ME = ME-1 000710 {
DO 6 J =1,NO 000720
L = 2% 000730 .
K = L-1 000740 i
NOJ = NO+J 000750
T(NOJ) = E(ME)*(Q(IP+K)-Q(IP+L)) 000760 !
6 Q(IR+J) =Q(IP+K)+Q(IP+L) 000770 ]
IF (NO.GT.2) GO TO 5 000780
T(2) =E(2)*(Q(IR+1)-Q(IR+2)) 000790
T(l) =E(1)*(Q(IR+1)+Q(IR+2)) 000800
Q(l) =(T(1)+T(2))/FLOAT (N) 000810 1
Q(2) =(T(l)-T(2))/FLOAT (N) 000820 :
IP= -1 000830 !
IR = 0 000840
7 N2 = NO 000850
X = FLOAT (N2)/FLOAT (N) 000860
NO = NO*2 000870
IP = IP + NO/4 000880
IR = IR + NO/2 000890
DO 8 J =1,NO 000900 t
ND = (J+1)/2 000910 f
ID = N2 + ND 000920
Y = (=1.0)%*(J+1)*X 000930
8§ Q(IR+J) = Q(IP+ND)+Y*T(ID) 000940
IF (NO.LT.N) GO TO 7 000950
RETURN 000960

END 000970




APPLICATIONS
Signal Decomposition

The Haar Transform, besides being more efficient in terms of
computer time than the Fast Fourier Transform, does not contain its
inherent aliasing problem, which is that the last N/2 spatial frequency
elements that the Fast Fourier Transform generates are completely
superfluous data. By virtue of its construction, the highest spatial
frequency that the Haar Transform algorithm samples is N/2 complete
square-wave oscillations per N data points. For NU = log, N, just

NU+1 output weights exist, one for the DC term and one each for the
\U Haar functions of the NUth order being employed. Therefore, the
Haar transform is capable of filtering and reconstructing any set of
digital data, as has been shown, even if they are not explicitly peri-
odic or continuous. The transform is widely applicable to the analy-
sis, filtering, and bandwidth compression of any pulsed data. It can
be employed for image processing and enhancement of video data (ref 2).
Given a set of quantized video data, the Haar Transform can bring out
edge and feature detail, i.e., improve the image contrast. It can
suppress noise, i.e., increase the signal-to-noise ratio. Finally,

it can be employed to decrease the amount of video data, i.e., com-
press the TV transmission bandwidth to speed up video data transmis-
sion, or alleviate the very likely possibility of channel crowding.
Compression is done by zeroing out one or more of the highest square-
wave components of portions of an image that contain little high-fre-
quency information. Zeroing one component produces output with ad-
jacent elements doubled, as in the digital output function:

ouTp =1, 1, Zy 2, 35 B, 25 2 I, L, (35)

One then selects every second point, cutting the data volume in half.

Table 1 is constructed from the output of computer program HARTST
(app C). 1t presents an example of Haar Transform signal decomposition
and shows the spatial frequency contributions to the nonperiodic digital
ramp: 1, 2, 3, ... 16. This is the digital function:

where i = 0, 1, 2, ... 15. The table shows values ranging from the
large DC term, through the last, the highest frequency of oscillation,
i.e., 8 cycles in the data field length of 16 points.
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Waveform Synthesis

Just as in the Fourier representation where one can construct a
square-wave by the superpositioning of sine waves of designated fre-
quency and amplitude, one can perfectly construct a sine wave by the
superpositioning of its Haar Transform square-wave components.

This is demonstrated in the graphs of figures 6 through 12, where
a 128-point, 1 cycle sine wave is approximated by 2, 3, 4, 5, 6, 7,
and finally all of its Haar components as presented by Program FIG. 6,
(app D.) The figures are scaled to the same size. No DC-term is pre-
sent, because the average value of sine x is, of course, 0.

The weights of the various Haar components are:

F = .63649

1
2

s = -,27012
4

F = -.18087
8

F = -.09643
16
32
64

(37)

where the subscript on each variable is indicative of the number of
cycles of oscillation of that given Haar component per data field
length of 128 points.
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Table 2. Square wave components of a Haar Transform signal decomposition

Input DC-term F F F f

1 2 4 8

1 8.5 -4 -2 -1 -.5

2 8.5 -4 -2 -1 =5

3 8.5 -4 -2 1 =5

4 8.5 -4 -2 1 .5

5 8.5 -4 2 -1 -.5

6 8.5 -4 2 =i .5

7 8.5 -4 2 1 s 5

8 8.5 -4 2 1 «5
9 8.5 4 -2 -1 s i
10 8.5 4 -2 =1 .5 I

. 11 8.5 4 -2 1 =5
12 8.5 4 -2 1 «9 i
13 8.5 4 2 1 «5 |

14 8.5 4 2 =1 «5

15 8.5 4 2 1 “s 5

16 8.5 4 2 1 +5
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: !
1 CONCLUSIONS ;

A new powerful and versatile tool is now available for digital
data analysis. Some of the advantages that the Fast Haar Transform
has over the Fast Fourier Transform are:

1. Computations are done between 4 and S times faster in
terms of the computer time required, thereby realizing an 80 percent |
savings in computer time and cost.

2. No requirements to generate or store in memory, tables
of trigonometric values.

3. Aliasing ambiguities are eliminated.

] 4. It is optimally suited for pulsed data, and image
analysis and enhancement. q

Although available in the literature, material on the theory and
applications of the Haar Transform is not prolific. Hopefully the
presentation of this original work has provided the needed information
in a clear and logical manner, and will be of value as an aid in digital
data processing applications.
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APPENDIX A
PROGRAM HIMAT

PROGRAM HIMAT (INPUT,OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)

DIMENSION MAT(16,16)
DO 11 =1,16

DO 1J =1,16
MAT(I,J) = 0

DO 2 1 = 1,16
MAT(I,1l) =1

IF(I .LE. 8) MAT(I,2) =1
IF(I .GT. 8) MAT(I,2) = -1
DO 3J = 3,4

po 31 =1,8

K1 = (I-1) /4

K = J-3

L = 2%(-1) **Kl

I1 =1 + 8*K
MAT(I1,J) =L

DO 4 J = 5,8

DO 4 I =1,4

K1 = (I-1) /2

K = J-5

L = 4*(-1) **K1l

I1 =1 + 4*K
MAT(I1.3) = L

DO 5J = 9,16

DO 5I =1,2

Kl = I-1

K = J3-9

L = 8%(-1)**Kl

I1 =1 + 2*K
MAT(Il1,J) =L

DO 6 I = 1,16

WRITE (6,500) (MAT(I,J),J=1,16)
FORMAT (12X,1613)
READ *,DUMMY

STOP

END
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APPENDIX B

PROGRAM FIG4
PROGRAM FIG4 (INPUT,OUTPUT,TAPE61=100,TAPE62=100) 000010
DIMENSION LETTER(3),ITAB(138),XCO(46),YCO(46),MSG(42) 000020

DATA ITAB/1HI,1Hl1,1H ,1HI,1H2,1H ,1HI,1H3,1H ,1HI,1H4,1H ,1HI,1HS,000030
&l1H ,1HI,1H6,1H ,1HI,1H7,1H ,1HI,1H8,1H ,1HI,1H9,1H ,1HI,1H1,1H0, 000040

&1HI,1H1,1H1, 1HI,1H1,1H2, 1HI,1H], 1H3, 1HI,1H], 1H4, 1HI,1H1, 1HS, 000050
&1HI,1H1, 1H6,1HA,1H1,1H ,1HA,1H2,1H ,1HA,1H3,1H ,1HA,1lH4,1H , 000060
s1HA,1HS,1H ,1HA,1H6,1H ,1HA,1H7,1H ,1HA,1H8,1H ,1HB,1H1,1H , 000070
&1HB,1H2,1H ,1HB,1H3,1H ,1HB,1H4,1H ,1HC,1H1,1H ,1HC,1H2,1H , 000080
&1HT,1H1,1H ,1HT,1H2,1H ,1HT,1H3,1H ,1HT,1H4,1H ,1HT,1HS,1H , 000090
&1HT,1H6,1H ,1HT,1H7,1H ,1HT,1H8,1H ,1HT,1H9,1H ,1HT,1H], 1HO, 000100
&1HT,1H1, 1H1, 1HT,1H1, 142, 1HT,1H1, 143, 1HT, 11, 1H4, 1HT, 141, 1HS, 000110
&1HT,1H1, 1H6/ 000120
DATA MSG/70,105,103,32,52,2%32,72,2%97,114,32, 000130
«116,114,97,110,115,102,111,114,109,32,100,105,97,103,114, 000140
97,109, 44,32,78,32,61,32,49,54,32,99,97,115,101/ 000150
, CALL CONNEC (SLINPUT, 0) 000160
: CALL CONNEC (6LOUTPUT, 0) 000170
XLM = .1 000180 |
RM = .1 000190 :
™ = .1 000200
BM = .2 000210
YFIG = 250. 000220
CALL INITT(30) 000230
CALL TERM(2,4096) 000240
CALL DWINDO(0.,4096.,0.,3120.) 000250
CALL CSIZE(IXSIZ,IYSIZ) 000260
XNUMLTS=42. 000270
XFI1G=2048.-XNUMLTS/2. *IXSIZ 000280
DIM = 110. 000290
, DIM2 = DIM / 2. 000300
E | XS = 40. 000310
‘ YS = 24. 000320
§ SPACE = 31. 000330
SLOW = 10. 000340
PS = 31. 000350
HDIST = (1. - XLM - RM )*4096./15. 000360
VDIST = 3120.*(l. - TM - BM ) / 4. 000370
HMARG = XLM * 4096. 000380
VSTART = 3120. * (1. - TM ) 000390
ICO = 0 000400
JLET = -2 000410
DO 1 IROW = 1,5 000420
IF ( IROW .NE. 5 ) NCOL = 2#**(5 - IROW) 000430
IF ( IROW .EQ. 5) NCOL = 16 000440
SKIP = FLOAT(16 / NCOL ) 000450
DO 1 ICOL = 1,NCOL 000460 |
JLET = JLET + 3 000470 |
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DO 2 ILET =1,3 000480 ¢

2 LETTER ( ILET ) = ITAB(JLET + ILET - 1) 000490 |
ICO = ICO + 1 000500 '
XC = HMARG + SKIP*(HDIST/2.+HDIST* (ICOL-1)) 000510
YC = VSTART- FLOAT(IROW-1) * VDIST 000520
IF ( ICO .EQ. 19) XC = XC - .5 * DIM 000530
IF ( ICO .EQ. 20) XC = XC - DIM 000540
IF ( ICO .EQ. 22) XC = XC + .5*DIM 000550
IF( ICO .EQ. 23) XC = XC + .25 * DIM 000560
IF ( ICO .EQ. 25) XC = XC + DIM 000570
IF ( ICO .EQ. 27) XC = XC - 2. * DIM 000580
IF(ICO .EQ. 28) XC = XC -.25*DIM 000590
IF ( ICO .EQ. 29) XC = XC - .25 * DIM 000600
IF ( ICO .EQ. 30) XC = XC + .25 * DIM 000610
' XCO(ICO) = XC 000620
k| YCO(ICO) = YC 000630
1 CALL DRAW (LETTER,DIM,XC,YC,XS,YS,SPACE, SLOW,PS) 000640
NCOl = -32 000650 |
s NCO2 = 0 000660 ;
DO 3 11 =1,3 000670
NDRAW = 2%*(5-T1) 000680 [
NCOl = NCOl + 2*NDRAW 000690
NCO2 = NCO2 + NDRAW 000700
DO 3 IDRAW = 1,NDRAW 000710
JDRAW = (IDRAW+l) / 2 000720
ICO = NCOl + IDRAW 000730
JCO = NCO2 + JDRAW 000740
XL1 = XCO(ICO) - DIM2 000750
YL1 = YCO(ICO) - DIM2 000760
XL2 = XCO(JCO) 000770
YL2 = YCO(JCO) + DIM2 000780
CALL MOVEA(XL1, YL1) 000790
3 CALL DRAWA (XL2,YL2) 000800
NCOl = -32 000810
| Do 4 11 = 1,3 000820
| NDRAW = 2**(5-I1) 000830
& NCOl = NCOl + 2 * NDRAW 000840
NCO2 = NDRAW / 2 + 30 000850
DO 4 IDRAW = 1,NDRAW 000860
Q = DIM2 * FLOAT((-1)**IDRAW) 000870
JDRAW = (IDRAW + 1) / 2 000880
ICO = NCOl + IDRAW 000890
JCO = NCO2 + JDRAW 000900 ,
XL1 = XCO(ICO) + Q 000910 ;
YL1 = YCO(ICO) - DIM2 000920 ;
XL2 = XCO(JCO) 000930 |
YL2 = YCO(JCO) + DIM2 000940 |
CALL MOVEA (XL1, YL1) 000950 |
4 CALL DRAWA(XL2, YL2) 000960 ‘4
DO 5 IT = 1,2 000970 |
Do 5 IC = 1,2 000980
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ICO = 28 + IC 000990
JCO = 30 + IT 001000
K =1+ (IT+IC) / 4 001010
XL1 = XCG(ICO) + FLOAT((-1)**K) * DIM2 001020 !
YL1 = YCO({ICO) - DIM2 001030 I
XL2 = XCO(JCO) 001040 1
YL2 = YCO(JCO) + DIM2 001050 ‘
CALL MOVEA (XL1, YL1) 001060 -
5 CALL DRAWA(XL2, YL2) 001070 s
CALL CHRSIZ (1) 001080
CALL MOVEA (XFIG,YFIG) 001090
CALL ANSTR (42,MSG) 001100
CALL ANMODE 001110 ‘
P READ *,DUMMY 001120 |
L STOP 001130 1
| END 001140 |
SUBROUTINE DRAW (LETTER,DIM,XC,YC,XS,YS,SPACE,SLOW,PS) 001150
DIMENSION LETTER(3), X(4),Y(4),ISIGN(2) 001160 j
DATA ISIGN/1H+,1H-/ 001170
XMIN = XC - DIM / 2. 001180
XMAX = XC + DIM / 2. 001190
YMIN = YC - DIM / 2. 001200
YMAX = YC + DIM / 2. 001210 .
X(1) = XMIN 001220
X(2) = XMAX 001230 I
X(3) = XMAX 001240 !
X(4) = XMIN 001250
Y(1) = YMIN 001260
Y(2) = YMIN 001270 1
¥(3) = YMAX 001280 i
Y(4) = YMAX 001290
CALL CHRSIZ(3) 001300 I'f
DO1I =1,2 001310
XL = XC - XS + FLOAT(I-1) * SPACE 001320
IF (LETTER(3) .EQ." ") XL = XL + 10. 001330
YL = YC - YS - FLOAT(I-1) * SLOW 001340
CALL MOVEA (XL, YL) 001350
IF(I.EQ.2) CALL CHRSIZ (4) 001360
1 CALL AlOUT(I,LETTER(I)) 001370
CALL MOVEA (X (4), Y(4)) 001380
DO 21 =1,4 001390
2 CALL DRAWA(X(I), Y(I)) 001400
DO 3 I =1,2 001410
XL = XMIN + FLOAT(I-1)*DIM + FLOAT(I-2)*PS 001420
IF(I.EQ.2) XL = XL + 15. 001430
YL = YMIN 001440 i
CALL MOVEA (XL, YL) 001450
3 CALL AlOUT(1,ISIGN(I)) 001460 |
CALL ANMODE 001470 |
RETURN 001480
END 001490
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APPENDIX C
PROGRAM HARTST

PROGRAM HARTST (INPUT,OUTPUT)
DIMENSION X(64),Y(64),Q(126),E(7),VAL(13)
CALL CONNEC (5LINPUT,0)

CALL CONNEC (6LOUTPUT,0)

PRINT *,"ENTER THE LOG TO THE BASE 2, THE NUMBER OF POINTS. "
READ *,NU

NUl = NU + 1

N = 2**NU

NPC = 2*N

M = N-2

DO 21I =1,N

X(I1) = 0.

PRINT *,"ENTER " ,NU1l," MULTIPLIERS. "
READ *, (E(J),J=1,NU1)

PRINT *,"FOR SYNTHESIS OR ANALYSIS, TYPE 1 OR 2. "
READ *,IPICK

IF(IPICK .NE. 1) GO TO 3

PRINT *,"ENTER DC-LEVEL. "

READ *,VAL(1l)

DO 4 I = 1,NU

IC = 2**(I-1)

IL = 2*I

IH = IL + 1

PRINT *,"FOR ",IC," CY.S OF SPFQ. ",I,", ENTER LOW AND HIGH. "
READ *,VAL(IL),VAL(IH)

DO 5 I = 1,NUl

NPC = NPC /2

DO 5J = 1,N

L = 2*I-2 + MOD( (J-1) / NPC ,2)

IF(L .EQ. Q) L =1

X(J) = X(J) + VAL(L)

GO TO 6

PRINT *,"ENTER ",N," INPUTS. "

READ *, (X(J),J=1,N)

DO 71 =1,N

Q(I) = X(I)

CALL HAAR(Q,E,NU)

DO 8 I =1,N

Y(I) = Q(M+I)

PRINT *,"INPUT OUTPUT"

DO 9 I =1,N

PRINT 430,X(I),Y(I)

FORMAT (1H ,2(F8.3,2X))

READ *,DUMMY

IF(DUMMY .EQ. 1) GO TO 1

STOP

END
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SUBROUTINE HAAR(Q,E,NU)
DIMENSION T(1024),Q(2046) ,E(11)
N =2**NU

NO =N
ME = NU+2

IP = (-2)*N

IR = 0

NO = NO/2

IP = IP + 4*NO
IR = IR + 2*NO
ME = ME-1

DO 6 J =1,NO

L = 2%J

K = L-1

NOJ = NO+J

T(NOJ) = E(ME)*(Q(IP+K)-Q(IP+L))
Q(IR+J) =Q(IP+K)+Q(IP+L)

IF (NO.GT.2) GO TO 5

T(2) =E(2)*(Q(IR+1)-Q(IR+2))
T(1) =E(1)*(Q(IR+1)+Q(IR+2))
Q(l) =(T(1l)+T(2))/FLOAT (N)
Q(2) =(T(1)-T(2))/FLOAT (N)
IP= -1

IR = 0

N2 = NO

X = FLOAT (N2)/FLOAT (N)

NO = NO*2

IP = IP + NO/4

IR = IR + NO/2

DO 8 J =1,NO

ND = (J+1)/2

ID = N2 + ND

Y = (-1.0)** (J+1)*X

Q(IR+J) = Q(IP+ND)+Y*T (ID)
IF (NO.LT.N) GO TO 7

RETURN

END

44

000480
000490
000500
000510
000520
000530
000540
000550
000560
000570
000580
000590
000600
000610
000620
000630
000640
000650
000660
000670
000680
000690
000700
000710
000720
000730
000740
000750
000760
000770
000780
000790
000800
000810
000820
000830
000840

T TV e s




i -
f APPENDIX D !
| PROGRAM FIG6
4 |
'l PROGRAM FIG6 (INPUT,OQUTPUT, TAPE61=100,TAPE62=100) 000010
DIMENSION X(128),Y(128),Q(254) ,E(8),MSG(50) ,MSG8(53) 000020
DATA MSG/70,105,103,2*32,54,46,2*32,50,32,72,2*97,114,32, 000030
&99,111,109,112,111,110,101,110,116,115,32,102,111,114,32, 000040
&115,105,110,101,32,119,97,118,101, 32, 000050
&115,121,110,116,104,101,115,105,115/ 000060
DATA MSG8,/70,105,103,32,49,50,46,2*32,65,2*108,32,56,32, 000070
&72,2%*97,114,32,99,111,109,112,111,110,101,110,116,115,58,32, 000080
&115,121,110,116,104,101,115,105,122,101,100,32, 000090
&115,105,110,101,32,119,97,118,101/ 000100
CALL CONNEC (S5LINPUT,O0) 000110
CALL CONNEC (6LOUTPUT, 0) 000120 i
CALL INITT(30) 000130
CALL TERM(2,4096) 000140
XLM = .1 000150
RM = .1 000160 ‘
™ = .1 000170 {
BM = .2 000180
YFIG = 250. 000190
XNMSG = 50. 000200
CALL CSIZE(IXSIZ,IYSIZ) 000210
XFIG = 2048.-XNMSG/2.*IXSIZ 000220
PI = 4. * ATAN(l.) 000230
NU = 7 000240
NU1l = NU+1 000250
: N = 2%*NU 000260
3 M = N-2 000270
i NC =1 000280
? DX = 2. * PI * FLOAT(NC) / FLOAT(N) 000290
f DO 1 NCOMP = 2,8 000300
{ DO 2 I=1,NUl 000310
2 E(I) = 0.0 000320
DO 3 ICOMP = 1,NCOMP 000330
3 E(ICOMP) = 1.0 000340
XMIN = YMIN = YMAX = 0. 000350
DO 4I =1,N 000360
3 X(I) = DX * FLOAT(I-1) 000370
4 Q(I) = SIN(X(I)) 000380
‘ XMAX = X(N) 000390
| CALL HAAR(Q, E, NU) 000400
| COS5I =1,N 000410
Y(I) = Q(M+I) 000420
IF ( Y(I) .GT. YMAX) YMAX = Y(I) 000430
S IF ( Y(I) .LT. YMIN ) YMIN = Y(I) 000440
'Y HH = (XMAX-XMIN) / (1. - XLM - RM) 000450
| XMIN = XMIN - HH*XLM 000460

XMAX = XMAX + HH * RM 000470 | §



HV = (YMAX - YMIN ) / (1. - TM - BM) 000480
YMAX = YMAX + HV * T™ 000490
YMIN = YMIN ~ HV * BM 000500
CALL DWINDO (XMIN,XMAX, YMIN, YMAX) 000510
CALL MOVEA (X (1), ¥(1)) 000520
DO 61 = 2,N 000530
6 CALL DRAWA(X(I), Y(I)) 000540
IF (NCOMP .EQ. 8) XFIG = XFIG - 2.%IXSIZ 000550
CALL DWINDO(0.,4096.,0.,3120.) 000560
CALL MOVEA (XFIG,YFIG) 000570
IF (NCOMP .EQ. 8) GO TO 7 000580
IF (NCOMP .EQ. 6) MSG(5) = 49 000590
IF (NCOMP .EQ. 6) MSG(6) = 47 000600
IF (NCOMP .NE. 2) MSG(6) = MSG(6) +1 000610 :
IF (NCOMP .NE. 2) MSG(10) = MSG(10) + 1 000620 t
7 IF (NCOMP .NE. 8) CALL ANSTR(50,MSG) 000630
IF (NCOMP .EQ. 8) CALL ANSTR(55,MSG8) 000640
CALL ANMODE 000650
1 REAR 100, ICHAR 000660
100 FO' IAT (Al) 000670 ;
EN. 000680 {
SU,ROUTINE HAAR(Q,E,NU) 000690 |
DIMENSION T(1024),Q(2046),E(11) 000700
N =2%*NU 000710
NO =N 000720
ME = NU+2 000730
IP = (-2)*N 000740
IR = 0 000750
5 NO = NO/2 000760
IP = IP + 4*NO 000770
IR = IR + 2%NO 000780
ME = ME-1 000790
DO 6 J =1,NO 000800
L = 2%J 000810
; K = L-1 000820
NOJ = NO+J 000830
T(NOJ) = E (ME)*(Q(IP+K)=-Q(IP+L)) 000840
6 Q(IR+J) =Q(IP+K)+Q(IP+L) 000850
IF (NO.GT.2) GO TO 5 000860
T(2) =E(2)*%(Q(IR+1)-Q(IR+2)) 000870
T(1) =E(1)*(Q(IR+1)+Q(IR+2)) 000880
Q(1) =(T(1)+T(2))/FLOAT (N) 000890
Q(2) =(T(1)-T(2))/FLOAT (N) 000900
IP= -1 000910
IR = 0 000920
7 N2 = NO 000930
X = FLOAT (N2) /FLOAT (N) 000940
NO = NO*2 000950
IP = IP + NO/4 000960 '
IR = IR + NO/2 000970 '
DO 8 J =1,NO 000980
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ND = (J+1)/2 000990 ’
ID = N2 + ND 001000 |
Y = (~1.0)%* (J+1)*x 001010 |
8 Q(IR+J) = Q(IP+ND)+Y*T(ID) 001020 '
IF (NO.LT.N) GO TO 7 001030 f
RETGRN 001040 '
END 001050 I
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