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INTRODUCTION 

Magnetic circuits are currently used in projectile fuzing circuits. 
Specifically, magnetic setback generators are used to power fuzing cir- 
cuits.   Computer analysis, using magnetic field vector quantities, can be 
a valuable tool in the optimization of such systems.   A theoretical basis of 
the finite difference method used to calculate the magnetic vector potential 
in a nonlinear magnetic circuit is presented herein. 

A typical magnetic setback generator is shown in figure 1.   This 
configuration will be used to derive results that will be generally appli- 
cable . 

The determination of the magnetic field distribution of a circuit 
containing iron, current densities, and permanent magnets is not amen- 
able to linear analysis.   The nonlinear, partial differential equations and 
boundary conditions for the cross-sectional region of a machine can be 
defined, but analytical solutions to the defined problem are only possible 
for the most simple cases.   The difficulty is due to: 

Material inhomogeneity - There are large differences in the 
reluctivities of the magnetic material (iron) and nonmagnetic materials 
(air, copper) . 

Geometrically complex media interfaces 

Material nonlinearity - The reluctivity is a function of the 
flux density in the magnetic material. 

The approach presented here is to transform the system equations 
into a finite difference formulation, defined at a finite number of discrete 
points within the circuit.   The resulting set of simultaneous equations 
can then be solved by an iterative procedure, while taking into account 
the material's nonlinearity. 

The following assumptions are made: 

- The field distribution is two-dimensional. 

- The field is static (stationary) . 

- The machine is infinitely long (in the Z direction) and end 
effects can be neglected. 
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Figure 1. Magnetic setback generator 



- The magnetization characteristic of the materials is 
represented by a single valued function, i.e. hysteresis is neglected. 

- The material is isotropic. 

- The eddy current losses may be neglected (see appendix A) . 

The assumptions allow the performance of a two-dimensional analysis, 
Of course, a three-dimensional model would be more representative of 
the physical problem (at the cost of increased model complexity and com- 
putation time) .   Nevertheless, the model presented should yield some 
useful results. 

The following notations will be used throughout this report. 
mi 

A      -  Magnetic vector potential 
-A 

B       -  Magnetic flux density (magnetic induction) 

H      -  Magnetic field intensity 

I - Current 

J - Current density 

L - Path segment 

M - Magnetization vector 

S - Surface area 

ax - Unit vector in the X direction 

h - Mesh cell dimension 

\J. - Permeability 

v - Reluctivity 

p - Charge density 

J 



V       -  The vector operator (7 = —  a    + —  a 
^ dX    X     dY    Y 

+ ^ az) 

THE NONLINEAR VECTOR POTENTIAL FORMULATION 

The Basic Equation 

Electromagnetic field problems can be solved through solution of 
Maxwell's equations with appropriate boundary conditions.   Unfortunately, 
in many cases the mathematics become difficult when using Maxwell's 
equations directly.   The magnetic vector potential (A) is used in this 
formulation to simplify the mathematics. 

The partial differential equation describing the vector potential 
for steady magnetic fields in two dimensions using rectangular coordinates 
is: 

d    .    dA   .       9   ,    BA, 
a3c  (v aF ) + av (v ^ = -J ^ 

where v, A, and J are the reluctivity (see appendix B), the Z component 
of the vector potential, and the Z component of the current density, respec- 
tively . 

^       Equation (1) will now be derived.   The magnetic field intensity 
(H) is defined to be 

H =   i   B=vB (2) 

where [i is the permeability 

v is reluctivity 

B is the magnetic flux density 

The point form of the Maxwell-Ampere CURL equation may be stated: 

CURL H =   V x H =   J (3) 



The magnetic vector potential (A) is defined by: 

CURL A = V x A = B (4) 

and from Coulomb's convention 

DIV A = V • A  = 0 (5) 

Since we are only considering direct currents, for which the 
charge density (p) is constant, the continuity equation for the current 
density vector (J) is expressed as: 

DIVJ=V.J=-^=0 (6) 

That is, the current or charge per second, diverging from a small volume, 
per unit volume is equal to the time rate of decrease of charge per unit 
volume, 

Substitution of (2) and (4) into (3) results in: 

CURL H = CURL (vB) = CURL (v CURL A) 

therefore, CURL (v CURL A) = J (7) 

It is now assumed that the system under study possesses axial 
symmetry, thereby allowing a description of the magnetic field in two 
dimensions, i.e. a cross section of the system (appendix C) .   It is also 
assumed that there is no magnetic flux in the Z direction, i.e. 

Z-0,  dZ  ~ 0'   In addition' ^ is assumed that current will only flow 

perpendicularly through the cross section; i.e.   J=0,J   =0,J   =J. 
X Y Z 

Since the vector potential is in the same direction as the current density, 

Aj^ = Ay = 0 and A= ^.   Equation 7 can be written in its explicit form by 

definition of CURL 

B = CURL (A) 

'^Z ^YL        [^X      9AZU        (aAY     aAxU 
.8Y     "az]ax+\9z    ~ dx~l aY + [vT - W~l az 

(8) 



where ax, aY   az are unit vectors in the X, Y, Z directions, 

Therefore, = E 

aA 
az 

az 

x    ^z 
ax 

x 

= B, 

'8Ax  ffi, 
iax      av   I     z 

Therefore      J    = CURL (v B ) = CURL (v CURL A ) 

9(V Bz)      a (v BY) 

av az ax + 

'9_ 
lav 

aA 

a(v BX)    a(v BZ) 

az ax 
a(v BY)   a(v BX) 

ax 

'5-   A ax   Y   av 

(aAz    dA, 

X 

az[v(aY      az 

9 
ax 

'aAx    aAzn 

az ax 

a_ 
" az 

a_ 
ax 

_ a_ 
av 

av 

idAx    9Az 
az ax i a 

X 

/ aAY    aAx 

ax      W 

aAz    aAY i 

>aY 

av     az 0} 
(9) 

yields 
Substituting the values Ax = AY   = 0 and A = Az into equation (9) 

r 
az 

,   aA^ 

ax 
r 

ax 
aV 
ax 

J] 
ax+llz 

aA, 

av" 

a_ 
az 

aA 
ax] az 

a_ 
av 

a_ 
av 

aA 
av I 

/3V 
av 
r 

ax v   - aA 
ax i. 

(10) 



It is  assumed that J = J- and Jy = JY =0, 

Fherefore.   Jz .^ - 3Az 1 
v 'ax ]\ 

d 
" dY 

J    =9_ 
x    dz 

■ idAz 1 
.    ax  )J = 0 

J   =
3 

Y     az 
(>Az) 

= 0 

dAr 

BY 
IJ 

Therefore,    |-   y |#    + 5-     v^ ax      ax       dY      dY = - J (1) 

where 
Z    Z 

A = Az az 

Equation (1) is the nonlinear equivalent of Poisson's equation. 

For air regions which do not have current density, equation (1) 
reduces to Laplace's equation. 

a2 A    a2 A 
ax T-+QY*- = 0 (11) 

For air regions which include the current density fields, 
equation (1) reduces to the linear Poisson equation: 

a2A      a2A 
ax2     av5" 

- J 
v„ (12) 

where v0 is the reluctivity of free space, 

For the iron regions of the magnetic circuit, it will be assumed 
that the current density is zero. i.e., no eddy currents.   This is realistic 
if we consider the iron to be made of thin insulated laminations lying 



normal to the current density vector (J  ) .   In these regions, the reluc- 
tivity is a function of magnetic induction (B) so that equation (1) be- 
comes: 

sx  (vax-)+a^(vaY-)=0 W 

Permanent Magnet Sources 

In order to include permanet magnets in the vector potential form- 

ulation, the concept of a magnetization vector (M) is used.     Briefly,  a mag- 
netized body behaves as though there were an internal current with density 

(CURL Ml analagous to J (see appendix D) ,   Under the previously stated 

assumptions, M   is in the X-Y plane and perpendicular to J^ 

For a system including permanent magnet sources, the magnetic 

flux density (B) is defined to be 

B=n(H+M) (14) 

Rearranging this equation produces: 

H= (-) B- M= vB- M (15) 

where    H is the magnetic field intensity 

B is the magnetic flux density 

Mis the magnetization. 

Restating the point form of the Maxwell Ampere CURL equation 
(3) shows: 

CURL H = V x H= J 

Substituting equation (15) into equation (3) results in: 

CURL [vB- M] = J (16) 

8 



Since   Vx (A + B) =VxA+VxB, equation (16) can be arranged: 

CURL (vB) = J + CURL (M) (17) 

By substituting equation (4) into equation (17) : 

CURL (v CURL A) = J+ (CURL M) (18) 

Previously it was found that, under our assumptions 

CURLCVCURLA)^   (v |f , + f^ (v |f ) 

Therefore, by substitution: 

ax (v ax ) + av (v av ) = "[J + (CURL M) ] (19) 

Next, CURL Mis explicitly expressed as: 

^   / aM_   aMv \ / aMv    aM, \ v     / aM_    an. \ 
CURL M = x\t + z^.Z^ ; + r~Y   -x 

9Y \az      ax   ^ aY   \dx      av az 

(20) 

For the circuit under consideration 

aM aM 
Mz = 0anda^=0'a5r=0 

Also, considering only the X-Y plane 

aMY aM 
a" = 0 •   aT" = 0 

therefore, by substitution 

^      , aM aMY \ 
CURL M - 

ax       av 
I 

9 

az (21) 



the total expression becomes: 

9      ,   BA ,     9 9A aMx     aMY 

For air regions not having current density, equation (22) reduces 
to Laplace's  equation: 

a2A    a2A    „ 

For air regions, including current density, equation (22) reduces 
to the linear Poisson equation 

a2A      a2A      - J 
ax5" +aYr ^CT" 

0 

For the iron regions, it is assumed that the current density and the mag- 
netization vector are both zero.   Therefore, equation (22) reduces to 

a     .   aA.    a    ,   aA,    „ 
ax (v^)+aY  (V^Y) = 0 

For the permanent magnet regions assume that the current density vector 
is zero, and therefore, equation 22 reduces to 

3-   fv M. + 9_   f    aA ,        aMX      aMY 
ax  (vax) + ^Y  (va7)=   aT" " ajT (23) 

10 



DISCRETIZATION 

Grid System 

In order to use numerical solution methods, the nonlinear partial 
differential equation is transformed into a difference equation.   In order 
to do this, the magnetic circuit cross section is subdivided by horizontal 
and vertical gridlines.   The vector potential is then evaluated at the inter- 
sections of the gridlines, yielding an array of discrete point values.   The 
rectangular area, formed by two adjacent horizontal gridlines and two 
adjacent vertical gridlines, forms a mesh.   Nonuniformly sized meshes 
are used to account for irregular boundaries,   That is, a fine mesh is 
used where accuracy is needed, such as boundaries.   Conversely, a 
coarse mesh is used where reluctivity variations are small, thereby min- 
imizing the number of gridpoints and resultant computations. 

The grid system is constructed so that each row is cut by the same 
columns and each column is cut by the same rows.   All nonorthogonal 
boundaries are approximated by stair-type contours.   A basic mesh, 
formed by the grid system, is shown in figure 2. 

Reluctivity 

The vector potential is defined at the grid points of figure 2, and 
the reluctivities are defined to be constant over the area of each of the 
four meshes meeting at a typical mesh point   (0) . 

In order to determine the reluctivity of the rectangles, 0184, 0251, 

0362, 0473, the average flux density (magnetic induction) at the center 
of each rectangle is calculated.   The X 5 Y components of the flux density 

at the center of rectangle 0184 are calculated as 

'Ai   - A8  + A0  - A4 

lAi   - A0   + A8   - A4 

Bx = 1/2   ^ I (24) 

B
v = 1/2    Z.  (25) Y I 

(see appendix E)  where 114 is the distance between meshpoints 0 and 4, 
and hi is the distance between meshpoints 0 and 1.   The vector potentials 

11 



Figure 2. The basic mesh 
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at points 0, 1, 8, 4 are denoted as A0, Ai, A8, A4, respectively.   The 
absolute value of the flux density will be 

- A8  + A0  - A4 

■ : —15; ' 
Ai   - A0   + Aa 

2 

2^ 

(26) 

This value of | B |  is used to calculate the reluctivity by using an approx- 
imation to the nonlinear magnetization characteristic (see appendix B) . 

The reluctivities in the other three rectangles having gridpoint 0 
as a joint corner are determined similarly. 

FINITE DIFFERENCE FORM OF THE VECTOR POTENTIAL 

In this section, the finite difference form of the vector potential 
will be derived using two approaches , the point form and the integral 
form of the Maxwell-Ampere circuital law.   Although different forms are 
obtained in each case, the results will be shown to be equivalent. 

Point Form 

In order to obtain the finite difference form of equation (1) 

9      f    aA ,     9     f   dA . 
a5£ (va5r)+a^ (vaY)=-J 

In terms of the basic mesh, the differentials will be replaced with differ- 
ences (refer to figure 3) . 

Let ^   =—hT" (27) 

Ac  - A3 .aA 
■■O-S "3 

(axL = —hT- (28^ 

13 



aA 
A2   - A0 

(—)   =  9Y2 0 h2 )29) 

A0  - A4 

(30) 

Also let 

vab be the weighted average of v and v    along a-b 

vbc be the weighted average of v and v     along b-c 

vcd be the weighted average of v     and v     along c-d 
vda be the weighted average of v     and v  along d-a 

Therefore, 

ax  lvax ' ' 

vab [axjx., " vcd lax/o.j 
hi + hj 

2 

f Ai - A0 A, - A, 

_ ab' - v 
cd 

hj H-hj 

(31) 

—   f   ^-i av  lv av ' 

dA 
bclav /2-0 da 

aA 
av 0-4 

h2 + h4 

/A,  - An 
2 v 

be ii     / 

(A, -A«\] 
vdal-hr-)j 

h2 + h4 

(32) 

14 
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By substitution equation (1) becomes: 

(2) Vab (Al -A^- (2) v
cd ^o - As) + (2) vbc CA, - A0) 

hi (hi + h3) h3 (hi + h3) h2 (h2 + h4) 

(2) vda (A, -A4) 

h4 (h2 +h4) 
UT = - JT (33) 

Let 

(34) 

(35) 

h! (hj + ha) 

2 

hj (h2 +h4) 

2 

hs (^ +h3) 

2 

(36) 

h4  (h2 + h^ (37) 

'ubstituting into equation (33): 

Vab ai  (Al " Ao) + Vbc a2  (A2 " Ao) + Vcd a3  (A3 " Ao) 

+ V'daa4  (A4 " A'>) = "JT (38) 

Solving for A0: 

JT + Al^Vab + A'a'Vbc + A3a»Vcd + A^Vda 
Ao = aiv ^ + a2V,    + a3v   , + a4v , 1   ab      ^  be      ^   cd      4   da 

(39) 

16 



The average reluctivities can be written as: 

h4 

vab= vi (hrrh7) + V
II 

(hrn^) (4(» 

h, h, 
vbc = vii(hrTT7) +vra{hrThr) ^ 

vcd = V
III 

(hTThT5 + viv (h7Tli:) (42) 

vda=viv(hrTh7^ +vi(hrTh7^ c«) 

where v  is the reluctivity in region I (a constant) 

VJJ is the reluctivity in region II (a constant) 

VJJJ is the reluctivity in region III (a constant) 

v^ is the reluctivity in region IV (a constant) 

Let p, = ;—^ (44) 

h 2 
P2 = hT^n^r (45) 

h 3 

Ps = hT^hT (46) 

h4 
p4 = Hrni: ^7) 

17 



The expression for A0 becomes 

JT + Ala1 (yfii + Vjjpj) + A2a2 (.v^ + v^) 

+ A3a3(vIIIP2 ^v^ ) + A4a4 (y^p, + v^ ) 
Lo _ 

a, (VjP, + VjjP.) + a2 (VjjPi + vmp,) + 03 ^p, + v^) 
'III^2 T vIVf 

+ a4(vn,p3 +V.P!) 

(48) 

If the constant current density in the mesh cells is J , J   , j    , j 
then J     ma v hp written • I       H,     III'    IV' then J    may be written: 

hi h4 1^ h2 
J^ =   JT rz ^TTT ^^   + J 

T        I (hi  + hj) (h2 + h4)        II (hi  + hs) (h2 + h4) 

h2 ha h3 h4 
+ J     +  T 

III th,  + ha) (h2 h4)       ""IV (^  + ha) (h2  + h4) 

= JIPlp4+JnPlP8+JmP,P, +1^    P3p4 (4g) 

Next, permanent magnets are included in the formulation. To do this, the 
concept of the magnetization vector (M), which is explained in appendix D 
is used.   Figure 4 represents the basic mesh and includes the magnetization 

vector (M) for each cell.   The magnetization vector is assumed to be a 
constant value throughout the mesh cell and, for the given assumptions, 
it has only X and Y components. 

In the previously derived expression (equation (22)) which included 
permanent magnets,: 

<L  (vMj^^aA^ J+ 
9Mx    9M

Y 

18 



Figure 4. Mesh cell with magnetization vector (tf) 
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The only term not evaluated was: 

9MX     dMY 

av      ax" 

Let 
Y 

(M) ab be the weighted average of the Y component along ab 

Y 
(M)cd be the weighted average of the Y component along cd 

(M) bc be the weighted average of the X component along be 

(M) da be the weighted average of the X component along da 

Therefore at point 0 

d3k\ (M)bc -   Ke. 
9X    /o h4 + h2 (50) 

!^Y] (M)ab -   (M^d 
ax    0 ^ + h3 (51) 

By definition 

(M)x    . Mn ^ + Mni ^ 
1   }bc   "        hTTht  (52) 

(M) 
X     _Mfv h3   +M^h1 

da hj + h3 
(53^ 

20 



(M) 
Y        Mj h4   + M^ h2 

ab hj + h4 
(54) 

(M) 
Y    _ Mni h' + MW h* 
cd h2 + h4 

(55) 

Therefore by substitution 

aM 
X      L 

MII   ^   + MIII ^ 1 
hi + ha 

MIV h3  + MI hl 

h! + ha 

av h4  + hj 

= iK - x    „x ,x     „x M"i)P^ MMni-V)P3j 
h2 + h4 

" Y Y 
Mj h4  + MJJ h2 

aM^ 

ax" 
h2 + h4 

Mm h2   + Mm ^4 III IV 
h2 + h4 

hi  + h3 

_2[KY-M^)P^(^Mm|P«] 
(hi +ha) 

(56) 

(57) 

21 



Therefore, the complete expression is: 

AiO, (VJP4 + v^) + A2a2 (VjjPi + VJJJP,) + A8a3 (v^j + vivp4) 

+ A4a4 (v^ps + Vjpx) + JT + MT 
Ao = ' 

where, 

ai (VJP4 + vnpa) + a2 (VjjPi + Vjjjp,) + 03 (v^ + vIvp4) 

(58) 

+ a4(vivp3 +VJP!) 

a, = 1 '     hjOii  + 113) 

as = 
h2(h2 + h4) 

2 
h3(h1 + h3) 

2 
h4(h2 + h4) 

hi 

a4 

Pl=    h1+h3 

h2 

P2 = 

Ps = 

h2 + h4 

hi + hs 

^   =      ho   *   hi 

22 



JT = J, r>iP4 + ^n PiP2 
+ JJU P2P3 + JJV P3P4 

M   =2,[
(<-M^P^ + (Mn-Mni^] 

T       {^ h, +h3 

- [(MJJ - MpPa   +   (MJJJ - MIV)P3] 

(h2 + h4) 

Integral Form 

Ampere's circuital law may be used to derive the finite difference 
form of the vector potential.   Ampere's circuital law may be stated:   The 
line integral of the magnetic field intensity (H) about any closed path is 
exactly equal to the current enclosed by that path i.e. 

Jr       H H   •   dL = I (59) 

Positive current is defined as following in the direction of advance of a 
right-handed screw turned in the direction in which the closed path is 
traversed. 

Since 

B   E CURL A (60) 

and  H   E vB (61) 

^        ^ ^ (62) 
Therefore,    H  = v B = v CURL A 

23 



Substituting into equation (59): 

I = jf v CURL A • dL (63) 

Next, apply Ampere's law along the path a-b-c-d-a as shown in figure 3, 

Therefore, 

$>   v CURL A • dL = /    v ,   CURL A • dL +   /   v^    CURL A  • dL 
a        ab b      bC 

d ^       ^        a ^       ^ 
+  /    v^CURLA-dL +  /   v^CURLA-dL (64) 

c d 

The weighted average reluctance along each of the path segments is: 

V4  + VIIh2 

ab        hj + h4 

VTThi  + vTTTh3 

(65) 

II1 III 
(66) be hi + hj 

Vjjjh,   + v^h, 

Vcd h, + h. (67) 
12   T 114 

VIVh3    +   VIhl 
Vda hj  + hs (68J 

Since the dot product between two orthogonal unit vectors is zero, the 
following products are zero: 

*X ' ^ab = ^Y   ' Sc = ^X * ^cd = ^Y * ^da = 0 
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Therefore, after replacing the differentials with differences, the path 
segments become: 

ht  + h4 

A L 

A L 

2 

hi + hs 

be 

A L 

2 

ha + hif 

cd 2 

hi  + ha 
AL 

da 

and 

CURL A = 
aA*, 

a,, + 
-aA, h 

av / "Y   \ ax j 

(See appendix E.) 

Therefore, 

/ v ,  CURL A  • dL     = 
ab ab 

aA, 

/  VabL   a5r aYJ-dLab 

=  v 
ab AX AL 

ab 

K11*+ viih2 
L   h2 + h4 

(Ai-A,) V4      viih2 

h2 +h4 

25 
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/ v.     CURL A  • d L     =    / v,. 
.      be DC      ,      be 
b b av   ax dLK      =VK oe      be AY 

AL 
be 

VIIhl  + VIIIh3 
hi +h3 

Aj   - A0 hi  + h, 

(A2 - A0) VIIhl       VIIIh3 

(70) 

/ v , CURL A •dL ^ = / v J ed ed     ed 
e e 

9X  aY ed  ed AX AL 
Cd 

VIIIh' + Vivh^ 
h2 + h4 

Ao - A3 

3     J 

(h, +h4) 

(A0 - A3) v„,h2 
III ^ IV 

v„Th4 
(71) 
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a 

/   vJ    CURL A 
d      da da       ,      da 

a 

9Az  - 1      - I AAz I 
i7-ax! ,dLda=    Vda, ZY" AL 

da i 
j 

hi + h3     J 

A0 - A4 

AQ - A4 

U       J 

^ + ha 

v^h,     vIh1 

(72) 

Assuming that the current density (J) in each region of the mesh 
is constant, the total current enclosed by rectangle a-b-c-d-a in figure 3 is 

In   =  // J   • dS = J, (AS) = 
Jjhi*^       Jjjhih-s       Jjjjhjjhj      J^-ha^ 

-   (Jjh^ + Jjjhxh, +1^2 ha +JIvh3h4) (73) 

Combining previous results 

(Ax-Ao) 
In =/H. dL = - 

(A0 -A3) 

vIh4      Vjjhj 
—r—  + —:  

(A2 - A0) Vjjhx     Vjjjha 
._— +  

vIIIh2     V^h, (A0 - A4)    v^hs      Vjhi j 

(74) 

Solving for the vector potential at point 0: 

An = 

To+2  A. a! 
i=l    1   1 

I a! 
i=l   1 

(75) 
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where 

lo    = 4 (Jjhih* + Jjjhihj + JUIh2h3 + J^hs^) 

vIh4 + Vgh; 
ai   =  — 

2^ 

v„hi + vTTTh3 
IF '       III 

"2    = 2h, 

VTTTh2  + v,,,^ mn     iv 
a3    = 2h^ 

ai   = 2h. 

To include permanent magnets in the formulation, the concept of 
the magnetization vector is used. 

The magnetic induction (B) in a system including air, iron, currents, 
and permanent magnets is described by 

B = ^ (H+M) (76) 

which, rearranged is 

-^       1      -^       _i.        _*._». 
H=-     (B)-M=vB-M (77) 

Substituting equation (77) into equation (59) 

Jp CvB - M  ) • dL = I (78) 
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or 
f    ±        jk.       f ^*        -^ 

(79) O   vB   • dL  -   *  M   • dL  = I 

Rearranged   /     ^        ^ £ ^        * 
O   vB   'dL =  1+  Q  M   • dL (80) 

Since 
B   E CURL A (81) 

therefore,    JD   (v CURL A)  • dL =1+ ffl  M   • dL (82) 

The only term not previously evaluated isj) M   • dL .   Using 
figure 4 as a basis, 

OM.dL=/M'dL,  +   /M. dL,,    +    /  M • dL 
ab be cd 

a b c 

+    /   M • dL, (83) 
d da 

Note, that M  in the two-dimensional case is located in the X-Y plane, i.e., 

Since the dot product between two orthogonal unit vectors is zero; 
the following products are zero: 

—a-X -^ -^V ■*' -^X-^ —^ -> 

ab       ab be       DC        cd      cd       da      da 

(84) 
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The weighted average of M along each path segment is; 

rfY     MI V MII h2 
Mab YT-Th  

2 h 

(85) 

-X      MII  hl + MIII  h3 
Mbc " iT-TT  

1 3 

(86) 

MY        h    + M Y h 
^ Y III      2        IV    it 
M cd h2  +  h. 

(87) 

M^ h3 . M^ h, 

Mda = ^ h3 
(88) 

Therefore, 

b   . , 

a      ab ab 

Y Y , 
M    h    + M      h 

I     h II     2 
h2  +  h^ 

2 it 
(89) 

/    M       •  dL 
v       DC be 

MX    h    + M    X h 
II     1 HI     3 

V^ 
(h1 + h3) 

(90) 

/    M       •  dL   , 
cd cd 

Y Y 
M        h + M1     h 

III     2       iv    't 
h    + h 

2 it 

"    (h0   +   hJ 2 h 
(91) 
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•^ 

a-x 
d   da 

dLda = 

MiJ h3 + MX h1 

h1  +  113 

hi + h3~ 

2 
(92) 

and. 

/ 
M • dL = 1/2 Mj - Mj* 

Y     Y i 
h + MTT - M  |ho 

1    II   III! 2 

+ (M 
X - M Xlho ♦ (M! - M^Jh. 1 

| IV   III) 3    I    IVJ M 
(93) 

Substituting this result into equation (75), the final expression 
for the vector potential becomes 

A      - i=1 

E ^ o£ + I0 + M0 

4 
E    a: 

i-1    1 

(94) 

where 
2h. ,     a2 = 

vIIhl +  vIIIh3 
2h 

a3 = 

Vjjjh;,        +        VIV\ 

 2K;  

vIVh3 +  vIhl 
OLu   = 2h, 

IQ = 1/4  (Jjhjh^ + JIIh1h2 + JIIIh2h3 + Jjyhgh^) 

Nn-I/JIIMJ-^K*   M^-M^X 

,MIV -  "ill K +    MI  " "iV \ 
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The formulation derived using the point form of the .Maxwell Ampere 
law is equivalent to the equation just derived. 

From previously defined variables, 

ai CvjBi, + vIIe2) = 
ho       ! 2 j     |     H      \ + 

2(vi\ +V
IIV 

h1(h1+h3)(h2+hH) 

(h^hgKh^) 2h1 

 2      /•  ^-v 
(hj+hgHh^) "l (95) 

Similarly, 

a2  Cv    6    *  v      61- 
11  1 +    III  3J  - 

(hj+hg)   (h^h^ 
ia2) (96) 

a,   (vXXT60 + V^J.J   = (a:) 3   ^IIIP2      VIVP^   "   Chj+hg)^^^)   vw3 
(97) 

% ^ivh + viei5 - (h^hpcw Coi;) (98) 
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Substituting into equation C58), 

An = 

E k^l  + I0 + j 
i=l L 

j (h1+h3)Ch2+hlt); 
Ma 

4 

Z of 
i=l 1 

(99) 

Next,  the magnetization term is evaluated. 

(hi+h3) O^+IV) rChi+h3)Ch2+hif)"|j   2[JM| - Mivjgu +  [MJI - Minjea 
■jMr = 

r 
I 
L (hj+hg) 

-2[KT-»<K*Kn-<vle3] 
x U 1 1 

(h^h^) J 
/ 

(l/2)[Ch1+h3)(h2+h1+)] 
I I Y        Y 

M    - M 6.MMn"Min|6JCW 

4lMi-Miil6i+(Miii""iv)83l|hifh3M 
Ch^h^ch^h^) 

=  Cl/2) h - M 
IV 

ht> /   y Y    \     h2       1 

2     h' 

X h3 [K - "nfe + I"-" ^njcwjcS-P 
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= 1/2 
LI I 
MX - MX ih + I MY - MY  ih + I MX - MX 

11/ 1  \ II   III/ 2  i iv   ml 3 

* (MI - vKJ 
M, (100) 

Therefore, equations (58) and (94) are equivalent i.e. 

4 
E A.o^ + IQ + MQ 

i=l  
A0=   4 

Z    a' 
i-1  i 

Alal   (VjB^VjjBa)  + A2a2  CvjjSi+Vjjjeg)  + A3a3  (vjjjgg+VjyB,,) 

+ W   tvIV63+vI6l5 + JT + Mj. 

al   (viVVIlM   +  «2   CvIIBl+VIIIB3)  +  a3   CviIIB2+VlA) 

+    O^     (VjyBg+VjB!) 
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BOUNDARY CONDITIONS 

In order to solve the vector potential equations, it is necessary 
to determine boundary conditions. 

Using figure 5 boundary conditions that are consistant with the 
assumptions can be determined. The various boundary types can be 
described as: 

Type A - Line A-B is an axis of symmetry, and, in this case, 
it is also a center line of the magnetic circuit. Therefore, A-B 
represents a line of flux, i.e. an equipotential where 

A-B = constant potential (A) 

Type B - The equi-potential A-B has its return path B-C, 
C-D, D-E, E-F, F-A 

Type C - It is assumed that the magnetic induction outside 
the contours of the machine is negligible. 

Type D - This type of boundary exists at air-iron interfaces. 
At these^boundaries, the tangential component of the magnet intensity 
vector (H) and the normal component of the magnetic vector (ft)  must 
be continuous. For a boundary that is parallel to the X direction, 
these conditions are satisfied when: 

V(# iron - ^iW)   air 

and 

8X iron " ^X air 

At air-iron boundaries parallel to the Y-axis, these conditions will 
be satisfied when: 

fZk^ ,3A, 
v%:) iron = v0 W air 

and 

8Y iron    BY air 
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Boundaries a-I  and b-c are of this type. 

Type E - At air-iron interface corners, such as point l 
and point c in figure 5, all four conditions of Type D must be satis- 
fied simultaneously. 

Type F - This type boundary is at the air-current field 
region interface, such as SL-c.    It is assumed that the current 
carrying material has the same permeability as air. At the boundary, 
the tangential component of H and the normal component of B must be 
continuous. Therefore, at the boundary 

A = clfc 
^9XJ current  w3X^air 

region 

^ZY'  current  ^BY-"air 
region 

Type G - This type of boundary is at the iron-current field 
region, such as c-d, d-e, h-k, or k-J,. Since the reluctance of the 
current carrying region is the same as in air, the boundaries are 
the same as Type D boundaries. 

Type H - This boundary is at the permanent magnet-current 
carrying region interface, represented by line e-h. Since, in 
figure 5, this boundary is parallel to the Y axis, the following 
conditions must be true at the boundary: 

^9Y magnet   8Y current 
region 

KdX}  magnet     V9X'' current 
region 
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Figure 5. Magnetic circuit with boundaries noted 
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Type K - This boundary is at the permanent magnet-iron 
interface, i.e. lines e-f and g-h. Since the boundaries are parallel 
to the X-axis, the following conditions must hold: 

l8YJ iron ' VL3YJ magnet 

3X^ iron   ^ax^ magnet 

SOLUTION PROCEDURES 

The vector potential (AQ) at a grid point not on an outer 
boundary is given by equation (94), evaluated after the appropriate 
reluctivities and a and (3 constants have been substituted. Thus, N 
simultaneous equations are obtained for the potentials at N internal 
grid points. The solution of the set of N simultaneous equations 
yields the numerical value of the vector potential at the N grid 
points. 

The solution of the N simultaneous equations can be obtained by 
an iterative procedure via computer. This is necessary, because the 
coefficients in equation (94) are functions of the reluctivities that 
are in turn functions of the CURL of the vector potential calculated 
by equation (94). Using the relaxation method requires a two-step 
iterative process.  In the first step, the coefficients in equation 
(94) are assumed to be constant and the vector potential is calculated. 
In the second step, the coefficients, which are functions of the re- 
luctivity, are recalculated from the numerical values of the vector 
potential of step one. The new values are then used to calculate the 
vector potential. This process is repeated until the vector potentials 
have converged to values that are considered close enough to final 
values. 
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In general, the solution procedures may be summarized 

1. Input of the permanent magnet data, the gridsystem, 
and the nonlinear relationships v (reluctivity^ £(B) and 
M (magnetization) = f(B). 

2. Calculation of the coefficients of the difference 
equations (initially, coefficients are assigned constant values). 

3. Solution of the difference equations with point intera- 
tion, line iteration, elimination (if v and M are constant) or with 
the Newton-Raphson method (if v and M depend on B). 

4. Acceleration of convergence if the difference equations 
are solved by iteration. 

5. Check of convergence: Steps 2-5 are repeated until a 
specified convergence criterion is met. 

6. Calculation of characteristic values of the magnetic 
field, such as the magnetic induction, the vector equi-potential 
lines (lines of flux), etc. 

CONCLUSIONS AND RECOMMENDATIONS 

The finite difference approach to analysis of nonlinear electro 
magnetic circuits is a viable technique. One possible formulation 
and its theoretical basis are presented in this report.  In addition, 
system equations corresponding to those utilized in the existing 
CLYDE computer program (appendix F) are shown. 

It is recommended that the investigation be continued. Speci- 
fically, it should be determined if the CLYDE program can be modified 
to solve nonlinear electromagnetic circuit problems, or if a new 
computer program must be developed. 
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APPENDIX A 

EDDY CURRENT LOSSES 

In the two-dimensional model, infinite length in the Z direction is 
assumed as well as homogeneity in the Z direction.   If no additional 
assumptions are made a loss of energy in the iron regions due to eddy 
currents (circulating in the X-Z plane) must be taken into account.   The 
introduction of laminations reduces this energy loss, but also reduces 
the effective cross-sectional area of the magnetic material. 

EDDY 
CURRENT LAMINATIONS 

Therefore, the insulation thickness between laminations is assumed 
to be zero.   Then, the only effect will be to eliminate eddy currents. 
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APPENDIX B 

APPROXIMATION FOR RELUCTIVITY (v) 

In order to utilize the finite difference method for calculating the 
vector potential, the nonlinear magnetization curves of the materials 
under consideration must be represented. 

The magnetization curve is the well-known hysteresis loop shown 
in figure B-1.   This curve is nonlinear and multivalued.   Since, for most 
materials, this hysteresis loop is rather thin, it is assumed that the mag- 
netization curve is monotonic and single valued.   By using average 
values of H for each value of B (or average values of B for each value of 
H), average curves that closely follow the so-called virgin magnetization 
characteristic can be obtained.   In addition, it is assumed that the mag- 
netization curves pass through the origin. 

Therefore, 
H    +H0                                B    + B0 

u _     u £_ _   _u £ 
HAVE   " 2 0r    BAVE   " 2 

A plot of the average magnetization curve is shown in figure B-2. 

In order to minimize the calculation time for the vector potential, 
a piecewise  linear approximation is used for the average 
magnetization curve.     As shown in a figure B-3, it is assumed that 
beyond a saturation magnetic induction (Bs), the permeability is that of 
free space.   The distance between Bs and the origin is subdivided into 
n equal parts, denoted as AB.   Next, all Hj's are read and stored.   The 
slope between all Pi's are read and stored.   The slope between all Pi's 
and P.  ,'5 is calculated as: 

H.  , - H. 
m    = —' L 

j AB 
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In order to calculate the reluctivity for a flux density less than B   and 
in the interval j to j+1, the following expression is used. 

v   -H        'B-Bi)VH. 

B B 

To calculate reluctivity at a point B > B   : 

Hs+(B-Bs)vo 
V   =  B  

where v   is the reluctivity of free space. 
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(FLUX DENSITY) 

(FIELD INTENSITY) 

Figure B-1.     Magnetization curve (hysteresis). 

H (FIELD INTENSITY) 

Figure B-2.     Average magnetization curve. 
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Figure B-3.    Piecewise linear approximation of the magnetization curve. 
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APPENDIX C 

THE LAPLACIAN OPERATOR 

In Cartesian coordinates 

V2A = ifA +  32A + t^k    = 

9X2   9Y2    3Z2 

In two dimensions this reduces to 

/(X, Y, Z) 

V2A + if* ? /CX) Y) ^X7 9Y' 
In cylindrical coordinates 

V2A = _! J-IRM' 
R 3R\  9R, R2 I 9.J.2 

By expanding the first term: 

92Al   ^A 
+  9Z2 

1 JL 
R 9R \ 9R j  R 

_ 92A  9A 
R —7T   + 

9R' 9R 
92A 
9R2 

1       3A 
R  9R 

Therefore, V2A = ifA + ifA +  1 9A + 1 / 92A \ _ f,_ _  .. 
9Z2   9R2   R 3R  R2!^!" /(R' Z' ^ 

In two dimensions this is: 

V2A = ifA+ 2^+ i iA =/(;R,Z) 
R,Z 9Z 9R^ R 9R 
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The relationship between coordinate systems is defined by the 
following representation: 

R=YX2 + Y2 

z=z 

</> = Tan~1   x 

X=R Cos </> 

Y = R Sin </> 

Z = Z 
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Therefore, in general, 

3X2       9Y2       9Z2 3R2      R 3R      R2     3<t)2       3Z2 

Note: 
32A 32A 

If Z = 0,     V2A = 
3X2 3Y'' 

* ifA + i_3A + j_     ^A 
3R2      R 3R      R2    H2 

If ()> = 0,  then Y = 0 

v2A=3fA+    ifA 
3X2 3Z2 

= 1^. 1   iA H     ^fA 
3R2 R     3R         3Z2 

If ({. = 90°,  then X = 0 

V2A=   1^ +i^ 
3Y2 3Z2 

32A +    1   ^A + ifA 

3R2        R    3R       3Z2 
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APPENDIX D 

THE MAGNETIZATION VECTOR 

The basic source of a magnetic field is electrical current. The 
magnetic field, due to electrical current flowing in a loop and 
observed at large distances compared with the dimensions of the loop, 
is called a dipole field. The small current loop is referred to as 
a magnetic dipole. The magnetic dipole moment (ffl) is defined as: 

m = I S n 

where: 
I is the loop current 

S is the area of the loop 

n is a unit vector in the direction 
determined by the right hand rule. 

Electrons surrounding the nuclei of atoms in matter have spin 
and orbital motion.  In effect, the electrons form current loops. 
When viewed macroscopically, these current loops appear to be a 
continuum of magnetic dipoles. 

When the individual dipole moments in a material are randomly 
oriented, their net effect is zero. However, if there is a coherence 
to the orientation there will be a net effect, and the material is 
said to be magnetized. 

The magnetization vector (M) can be conceived as the net magnetic 
dipole moment per unit volume, i.e., 

M =  lim     
AV-K)  AV 

The unit for magnetization is amperes per meter and is the same 
dimensionally as the magnetic field intensity (H). The vector Tf 
will be zero if the dipole moments are random and nonzero if there 
is some coherence of the dipole moments. 
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A magnetized body _behaves as though there were an internal current 
density equal to CURL M and analagous to a current density vector (J). 
CURL 1? is usually referred to as the atomic or molecular current density. 
That is because the field contributions of CURL M" result from spin or 
orbital motions that are localized on the atomic scale. 

The general definition for B in terms of its current sources is: 

"B = y(ff + ^) . 
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APPENDIX E 

X AND Y COMPONENTS OF THE MAGNETIC INDUCTION 

B = CURL A = VXA 

/ 
3A7  3A, Z_^ra„+  ^21 . Z2Z 3AV   9A_\-^  ( 3AV   3A, 

3Y   3Z ^ 3Z    3X / '  \ 3X    3Y 

Since it was assumed that Ay = A^ = 0 

B = CURL A 
3A, 

3Y 

-3A. 
ax +| . aY 

3X '    Y 

Therefore, 

3A7 3A 

— and BY = - - 
3Y 3X 

As an approximation the average magnetic induction in the center 
of the mesh cell can he calculated: 

3AZ  AAz  [AQ ♦ Aij jAij + Ae] 

X    3X   AY 

3AZ  -AAZ 

Y 3X AX 

Therefore, 

i^i 4 AQ + A4 

Ai -   A8 + AQ  -  Ait 

2hi 

1 Ai  - A0  + As -  Ak] 

2h1 

|B ■Vv7^^ 
e+VM Ai-A0+A8-A^ 

2h1 
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APPENDIX F 

CLYDE SYSTEM EQUATIONS 

Consideration is being given to adapting the computer program 
CLYDE1 to handle nonlinear electromagnetic circuits. 

The formulation of the Harmonic operator for an irregular grid in 
the CLYDE program is: 

h^ = 
2A 

bjCbj+bs) { 
2B 

b2Cb24blt* 
2A 

bsCbi+bs) 

2B 

b^O^+biJ i 

2A        +       2B 

bib 1D3 bob if 
J6 = h2D 

A corresponding equation can be obtained by rearranging 

A=E  Aa'+I+M 
0  1=1 i i   0   0 

I      a' 
i=l    i 

and then multiplying by h2: 
r                 *                 r                 ^                  r                 '}                  \                     1 

h2V2A0 =      h2at    Ai + h2a2 A2 + h2a3 A3 * h2ai; A 

h2 Z    a   / A   = h2 lO  + Mo 
L I i = ] li'J J L J 

^se Bibliography No. 19 
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