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Abstract

A convection instability characteristic of plasnias

in an inhomogeneous azimuthal magnetic field is treated in

the linear stage and in nonlinear saturation. The analysis

is done in such a way that collisional and collisionless

limits can be taken, and these limits are displayed along

with the more general intermediate result. The instability,

known previously in the literature in its collision—dominated

form,1 is shown to be a “flute” instability with collisional

modifications to the growth rate. The nonlinear saturation is

analyzed by examining a finite amplitude restoring—force term

in the differential equation that describes the instability.

This term is due to the fact that the instability convects

plasma into striations of the plasma columo surface,

modifying the density gradient until the restoring forces

balance the pressure gradient driving force. The effects of

finite ion gyroradius are displayed, and applications of this

study to convection cells in a thermal plasma and to exploding

vire plasass are discussed.
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I. INTRODUCTION

The conventional approach to evaluating the stability of a

plasma configuration makes use of the so—called dispersion relation.

In this approach one starts with a number of first—order differential

equations, with time as the independent variable; these equations

are essentially conservation relations which describe the time rate—

of—change of physical quantities such as momentum, energy , density,

etc. Points of equilibrium of the system are determined by setting

the time derivatives to zero. The stability of an equilibrium is

then evaluated by applying a small perturbation to the system and

setting up “variational” equations which describe the temporal

evolution of these perturbations. Typically one linearizes these

variational equations and seeks solutions of the form f (~)exp(ic~t),

where the frequency, w, is a complex quantity. This procedure then

usually leads to the formation of a determinant which, when expanded ,

forms an algebraic equation, which is the dispersion relation. The

dispersion relation is then solved for w, with stability depending on

the imaginary parts of the various roots. While it is useful for

determining the onset of an instability and the initial growth rate,

the dispersion relation is not always convenient for analysis of the

temporal evolution of a perturbation beyond the linear stage.

The problem of evaluating the stability of a plasma configura—

tian can also be treated by what might be called the “diff erential—

—equation” approach. In this case, one again starts with the required

first—order differential equations , but now these equations are combined

to form a differential equation of higher order. In many problems of

physical interest it is found that the conservation relations can be 

--. -.~~~~~-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



4

a thermal plasma device is discussed in Sec . VI and the results

of the work are discussed in Sec. VII.

II. LINEAR STABILITY ANALYSIS

Consider a plasma—filled gap between two coaxial cylinders of

radius R and R+d , with d<<R (Fig. 1). An azimuthal magnetic field,

which falls off as L/R , exists in the gap; such a field might be

produced, e.g., by passing a current along a conductor located at the

axis of the cylinders. The surface of the inner cylinder acts as a

plasma source, for example, by thermal ionization1 while the outer

cylinder is assumed to be a sink for the plasma. It will be shown

that this system is unstable since the density gradient is parallel to

the magnetic field gradient. The general problem is treated first

and the collisional and collisionless limits are then compared with

results obtained elsewhere.

The two—fluid model is used to describe the plasma and the iso—

thermal equation of state is used to close the set of equations.

The quasineutrality approximation is also employed; the equation of

continuity is

-

~~~~~ 

+ • (ny ) • 0 (1)

where the subscript a i ,e denotes ions and electrons respectively and

the momentum equation is

(2)

where and are the collision frequencies of neutrals with the

ions and electrons respectively. Note that the convective derivative

can be ignored if the magnetic field is sufficiently large.

LI,  --_- . ~~~~~~~~ - ~~~~~-
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expressed by algebraic relations rather than differential equations,

because certain physical quantities remain constant in time. Thus the

“order” of the system, which is equal to the number of first—order

differential equations required for its description, can be reduced

significantly. In many cases the overall equation reduces to a second—

—order differential equation with time as the independent variable.

It is then possible to make use of the extensive literature that is

available on the properties of these equations and their solutions.

It is also possible to identify the terms which play the role of restoring

forces , dissipation etc. and to determine factors that enter into

linear and nonlinear behavior; these capabilities facilitate the

physical interpretation of the results. The role of different t ime

scales also becomes clear , so that standard methods of singular

perturbation theory can be used in obtaining nonlinear solutions

in which such time scales play a role. Finally, this approach makes

it easier to evaluate various different techniques that might be

employed when one is interested in stabilization of undesired

instabilities by external means.

In the present paper the differential—equation approach described

above is used to analyze an instability characteristic of a

plasma in an inhomogeneous magnetic field . We show that this

instability, which has been treated earlier ,1 3  is related to the flute

f instability in a fully ionized plasma. In Secs . II and III of this

paper the linear stability analysis is carried out and interpreted.

Finite Larmor radius corrections to the pressure tensor are discussed

in Section IV, and in Section V the nonlinear saturation of the

instability is analyzed. The possible relevance of the theory to

exploding—wire plasma experi ments and to convection—cell experiments in
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Since d<<R , a local cartesian coordinate system with origin

in the outer cylinder can be used as an approximation as shown in

Fig. 1. Considering only the dependence on the x coordinate, one

S can write the steady—state solution of Eqs. (1) and (2) as

n0 (x) •
~~~~~

-
~ (3)

E0(x) a — (
Ti(~

T)e
_Te(QT)i ‘~ x E°d ~

~x ~x e[(~h)+(c2r)~ i / x - x ‘t.x
(4)

a 

~~~~~
( T) j

)
~~~

(fl-i) T +T (fir)0 e O  C ’ i e ‘V (x) — V a— I  e (6)
~‘iz eB 

~ 
t ) + (fl-i) 1

/ x ‘~‘z

q~Bwith fi — . Here it is assumed that the change in magnetic field ,a m0c

~~~across the gap is small and that n(0)—O. The flow in the —x

direction (radially outward) across the magnetic field is due to

ambipolar diffusion, and the motion in the z direction arises from a

combination of the drift and the diamagnetic drift. Although

the gradient B drift drives the instability it is much slower than

both the and the diamagnetic drifts. The behavior near xaO in these

equations is due to the presence of a boundary layer of thickness on

the order of the ion gyroradius, and does not present any difficulties

in the analysis.

At this poin t it is normally assumed that the unstable oscillations

in the system will occur on a time scale much slower than or e ’ SO

that the inertial term in Eq. (2) is usually ignored .~~
4 However ,

that procedure reduces the resulting equation for the perturbed

density from a second—order differential equation to a first—order

differential equation , thereby losing one of the roots of the charac—
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teristic equation. More important , keeping the inertial term leads

to corrections to the growth rate of the instability and corrections

to the critical magnetic field at which the instability first appears.

The tables discussed at the end of this section show these corrections

and the ranges in which they are important.

Retaining the inertial term, we take the cross product of

Eq. (2) with k=~ /~~ and solve the resultant equation for y~~xk.

Substituting this expression into Eq. (2) yields an equation for

y~ 
(the symbol “ i” means that a component is perpendicular to

+ (~ + 
~~

)2J = - (~ + ~) [T~~~n + 
~~ (7)

q T (kxVn)c i a  “
~a em n m

If the magnetic field is sufficiently large then (l/T
~
+a/

~
t)
2 
can be

ignored compared to in Eq. (7), but all other terms are retained.

If it is assumed that a/ay’~0 (i.e., that the perturbations are azimu—

thally symmetric), V can be set equal to zero , so that

When the inertial terms are ignored at the unset of the calculations,

the time derivatives on the right hand side of Eq. (7) do not appear.

This procedure is equivalent to assuming that w<<l/t
~
, whereas Eq. (7)

extends the frequency range to w
~
1/r a. Thus we have

T V n  q
1 ‘1 ~ ‘ a’~’-~- aV ...__ (—+_1 + — V  4~2~~t a t,  m u  m
fi a a aa (8)

1 çq T (J~xZn)+ ~~~~~ 

a a + -s-- (bxv$) i a iem n  a “ “-.a a a

and this relation holds for



-w — ~ rr

- c

I. ’
(9)

If one considers electrostatic perturbations which depend only

• on x and z, then Eq. (8) can be substituted into the continuity

equation (1) , and the resulting equation can be linearized. The next

to last term in Eq. (8) is the only term which does not contribute

to the continuity equation when B
0 
is considered a constant (since

V.(~ xVn’)O). Thus the leading order contribution of this term

to the linearized continuity equation results from the presence of a

magnetic field gradient. The effect of the magnetic field gradient

is introduced through this term which Is approximated by

cT ,bxVn ’\ cT ,
_ _ _ _  — — 

a (10)
a ‘

~~ \ B 0 
/ eRB0 az

where a/ a x [ E 0 (~) 1~—lIRB 0 . Here the assumption d<<R has been used.

Again if B
0 
were truly constant then this term would vanish. Note

that a prime signifies a first—order perturbed quantity.

Following the method used by Kadomtsev and Nedospasov,
4 
and

Simon5 the x dependence of the perturbed quantities is expressed by a

Fourier sine series in which only the first term is retained ; the

linearized continuity equation is then averaged over x from 0 to d

weighted by sin(irx/d). This procedure yields two coupled first order

differential equations involving the perturbed density, n’, and

the perturbed electric potential, •‘. These equations can be

combined to obtain a single second order differential equation in

the perturbed density:

d n ’(t) + A1 
dn’(t) + A2n’(t) 

a 0 (11)

where now n ’ is only a function of t ime and where

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _--—--  .-- ~~ —— --— -
~~
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• 1 Bd 1 1 1 \ k2d (T~T~+ T T )  ( 2tc~
A1 + 8 8c 

~~~~
T)

e 
+ (fl ) )  + 8 ‘

~ i~~~~e 
~l + 

k2d 2

+ 
k2d 

(T 1
1
—T
1
1 ) 

+ 
rc 1E° ( T T )~~ 

+ 
ikdc

2
E° 

~ 
1 +8e 

~~
T)

e~~~
T)

i 
4 (f l t) (12-r )

1 ‘~ ~~~ 
~e’

1

- ~~~~~ 

(~
i - - :z~) - ~~~ - (12)

i 
k

i~~e
) / &~K

4 \ ik / d \fTi 
T
e \

A2 + 8 4eRK2 
~\ 2k

2 (fir )  
~ 

(fl-i ) 
e 

— 1
) 

— 

4 ~ — 

~1A~ (fit) 1 
— 

(fl-i) 
e 1

+ 
ikdE° 

(E2 + ) ( (fiT) 
+ (fl~~) j

)~~ 
(13)

I~~ 
+ + k~d 

~~~~ 
(i - 

____ (14)

Here k Is the axial wavenumber and K2=ir 2 /d 2+k2 is the total wavenumber .

The numerical factors and which are obtained by averaging over

the x coordinate, are given in Appendix I.

Since these are very complicated expressions, the coefficients

will be simplif ied by specializing to the case T
i
=T
e
ET and by using

the Spitzer6 result

(fit ) (T /m) ,m \
1/2 

•

= I cc  1 . (15)(fit ) (tim) \m
~ /.

• For simplicity the remainder of this sect-ion will pertain to this

special case. Under these conditions A1, A2 and 6 reduce to (r~ is

a numerical factor and is defined in Appendix I)

A —
~~
- + 

2ir~kTc (16)
1 t

~~ 
eBd

A
2 

- 

2 R K ~ 
(2k2~~~~ (fit) 

- + 4e(c2t)i (17)

A ~~~~~~~ 
‘
~~~~ 

-
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B ={8~~~~~ ~~~~~e 

(i -
~~~)}~ 8c~~ 

(18)

where the last approximate equality in Eq. (18) holds as long as K2r~<l

• (r
1 
is the ion Larmor radius) - In Section IV we will show that this

is a reasonable assumption. Also note that E°, which is related to the

ambipolar electric field through Eq. (4), reduces to T/e in this

special case. In addition the axial drift velocities given by

Eq. (6) reduce to

V. ~~O ; Vez eBx

For the ions the diamagnetic drift essentially cancels the
a ”~

• drift whereas for the electrons the two drifts add.

Since A
1 

and A
2 
are complex, the solution of Eq. (11) will

-

i 

exhibit oscillatory behavior in the laboratory frame of reference.

This oscillatory behavior results from the drift motion of the electron

and ion fluids. The complex characteristic roots of differential

equation (11) with coefficients A
1 
and A2 given by Eqs. (16) and (17)

are easily found to be

1 1 i~kTc ’\ (7 1 lrikTc \
2

(~
) = - + eBd 1 ± 

~~2T~ 
— eBd )

1/ 2 (19)
• 4k2T / dRK4• +

K dRm
1 

2k ( fl-i ) 
e’~ 

~~

• If the critical magnetic field , Bc~ 
is def ined as

~ 2 
dRK4 

, (20)
B 2k ( fh)

e~~~~~~i

then for B2/B2~l the two roots given in Eq. (19) simplify to

4t
i
k2T (1—B

2/B2)
~ 2 2 2  +1w (21)

K dRm
1 

(~~~oTi)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(2 2)

where

— 2 rjkTc (23)

From Eq. (19) it is clear that w0, the part of which determines

the oscillation frequency, is related to the average drift velocity of

the electron fluid, so that the z dependence of the perturbation may

be written as

ik(z_v
D
t)

n
1

(x ,z,t) = ri1
(x , t)e (24 )

with

(25)

The second mode, 
~2’ can be associated with the ions, which are

stationary in the laboratory frame, so that w2 
is a purely damped

mode. This result is similar to the case of the universal over—

stability of a resistive, inhomogeneous plasma where one mode is

a purely growing mode in the frame drifting with the electrons, and

the other mode drifting with the ions is damped.
7

If one transforms equation (11) into the frame drifting with the

electron f luid , coefficients A
1 

and A
2 

become

a — 2I~kTc (26)
1 -r

1 
efld

A2 — 4k2T 
(i — .

~~~~

. ) (27)
- 

•
~ m

1
dRK B

Nov if A
1 
were merely equal to 1/ti, it would represent a positive

dissipation term and could not lead to instability. On the other

hand , A2 , which represents a restoring force term, can lead to instability 

-, .. • - .-~~ -•- . .. .• .
.

..,--- - - •~~~~~~- - -- -~~~~~• . - .-~~.,- - -• -~~~ -—--
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if it becomes negative (i.e., if B>B
~
). 12’ fac” Eq. (11) with A1

real and positive and A2 real and negative will be recognized as the

equation for an inverted pendulum and it can be shown that the

• general class of “convection” instabilities such as the Benard

8,9instability can be described by an equation of this form.

This class of instabilities is characterized by purely growing “zero—

frequency” perturbations which arise from a negative restoring force.

This present problem is very similar in that the instability is

driven by a negative restoring force, but more general since A1

is complex.

For the collision dominated case, where w0
<<y~l/t~ , (y is the

growth rate) and in the collisionless limit (w 0~y >>ll T~) Eq. (11)

can take the form of the inverted pendulum equation with both A1

and A2 
real. In the laboratory frame for this collision dominated case

the coefficients become

—i-- (28)
1

2 / B2coll 4 k T  ( C

m1dRK ~‘ B

Here the drift mot l.on occurs on a time scale much slower than the

growth of the instability. For the collision free case, in a frame

drifting with velocity V~
1 the coeff icients become

A~~~~~~~O (30)

2

A~~~
E 

- 
4k2T

4 (1 
- —

~
-)+ (kV~~~~)

2 (31)
m1

dRK B

FREE ~Tc
V
D ~~~~~~~~ (32)

---~~~~~ .-- ~~~~~~~~~~-—-~~~~~ - ,.-‘
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In both cases the general results derived for the “convection” type

instability can be applied directly.8’9 From Eq. (31) it is clear

that the critical magnetic field must be redefined (see Table III)
II

for the collisionless case.

• 
Working again in the laboratory frame Table I summarizes some

of the results of Eq. (19) for the unstable mode. The osci1l~tion

frequency, w,~, and the growth rate , y, are listed for the cases with

B
~
B
~ 

and with B
~
<<B

~~
, where B must be greater than B

~ 
in order for

~ 1 
instability to occur. Note that even in the laboratory frame the

instability is essentially a purely growing mode in the very large

magnetic field limit (w
0~
0, y>0). The growth rate of the instability

• is plotted as a function of the axial wavenumber, k, in Fig. 2, for the

case where B,>B . From this plot we see that the growth rate is

largest when k~ir/d. Wavenuabers much larger than rid should be

4 stabilized by finite Larmor radius corrections to the ion pressure

tensor. This point is discussed in detail in Sec. IV.

In the low frequency collisional limit where 1/t
1>> Iw I= Iw +iyj,

the results of Eq. (19) are found in Table II. in the collisionless

limit the results of Eq. (19) are listed in Table III.

The results liRted for the low frequency collisional limit

(Table II) agree with those found by Timofeev.
1 It is not possible

to directly establish from Timofeev’s results which collisionless

instability, if any , is the analog of the collisional instability since

he assumes l/’r
1>>Iw~=Jw 0

+iyI ; however, since the expression for the

growth rate in the collisionless limit (Table III) agrees with’ the

expression for the growth of this type of flute instability foun d by

Krall ,3 it can be inferred that the instability described in Tables I

and II is the collisional analog of the collisionless flute instability.

• - • —‘-— -‘--•— -- -‘- --. ----‘•— —-
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Note that when B>> B , the growth rate , y0, fo r the collisionless case

I i (Table III) is related to the growth rate, 
~
‘ ‘ 

for the collisional

- 
• case (Table II) in the usual way:

2
• ~

‘O 2
V = — V t
‘C V ‘Oicoll

Figure 3 shows the growth rate as a function of the collision

frequency , for the case k>>it/d and B>>B .

III. INTERPRETATION OF INSTABILITY CRITERION

The interpretation of the instability criterion is not to be

found simply in collisional damping of the mode,1° as one can see

by taking the collisionless limit of Eq. (19). This gives the

condition (Table III) :
H 2

< (r2
~n

2) ~~
)

which is the condition for finite gyroradius stabilization11’ of

the interchange instability with driving acceleration

g a 
thi (34)
2n R

and typical wavenumber k’~’ir/d , as found in this paper. This is the

dominant criterion until collisions become frequent enough that
1/4

-r < ~~ 
(~ .) (35)I “ nkv~ 11 ~~~

i.e., until the mean free path becomes shorter than d. When this

occurs, the instability criterion is (Table I)

2 m 1/2
(fl-r )~ > 2 1 T R ( e )  (36) 

_ _ _  _ _ _ _ _ _ _
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for k”w/d, rather than the condition given in Eq. (33). In summary ,

one must have 2• 2 2 r
n f l  I

2 d2

d/R>Max 1/22 m2n ( e
( f l ) 2~~mi1 (37)

2 1/3,2 2  r
~r n  i
\ 2  

R
2

i.e., d/R > Max 1/2
2 ,m

2w 
(e

(fl-r)~ 
ThJ

for instability. Steeper density gradients are stabilized by

finite mean free path and/or finite gyroradius.

When the magnetic field is self—generated , as in a current—

L carrying plasma pinch , one should compare Eq. (37) with the

instability condition

—d(9
~
,nP)/d(P

~
.nr) > 2y (38)

(y”adiabatic exponent and should not be confused with the growth rate),

i.e., 

d/R < (2y) 1 (39)

obt ained from the energy princip le

~SP6U +~J~ (613)2 < 0 (40)

for instability. (Here U JdL/B and P is the plasma pressure.)

This latter condition sets a maximum value for unstable d’s, while

Eq. (37) sets a minimum value. 

- —-‘-~~~~~~~~~~——~~~~~~~~ - -——-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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IV. FLR CORRECTIONS TO THE PRESSURE TENSOR

The addition of finite Larmor radius (P11) corrections to the

• 
ion pr essure tensor renders the mathematics very cumbersome and was not

attempted. However , insight can be obtained by comparing the magnitude

- of such correction terms with the magnitude of a typical term in

the linear analysis of Section II. If the FLR correction

terms are found to be significant in this comparison , one would

expect P11 stabilization of the instability.

The magnitude of a typical FLR correction term to Eq. (2) is given

by r
~

fl
~

/4 S2V, where S2aMAX(k, w2/d 2))3  Thus in the collisional

regime FLR corrections are importattt if

( r f l S V / 4 )  S r
(
~

b;/ 1
i

) 
— 

~ 
(fit) 1 ~ 1 (41)

Similarly in the collislonless regime the condition is
2 2 2 2

(rflSV/4) s r f l

(V/JwI) 
a 4~w I (42)

In Figure 4 the critical magnetic field for instability is plotted

as a function of the axial vavenumber, k, for the collisional regime.

crit .Here (fl-i ) 1 is given by

2 a 1/2 1/2
( f l ) crit 

— 
K R  [i. (..i ) ) (43)

Th~ dashed line separates the regions where the FLR corrections are

large and small. A similar plot for the collisionless regime is

shown in Figure 5. In this case (fl u1N) Cl
~

t is given by

(fl
j

T
N

)~~~~
lt  

— (44)

where r.~ is a convenient time scale defined by
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2 1/2

• -iN ’I f l ( T ~)
Unlike the collisionless case , Collisional stabilization dominates for

k<ir/d in the collisional regime , whereas FLR stabilization dominates

for k>w/d in both the collisional and collisionless regimes.

The largest axial wavenumber , kL, which is unstable is determined

by evaluating Eq. (41) (or Eq. (42)) at the critical magnetic field 
-
•

given by Eq. (43) (or Eq. (44)) .  This marginally unstable kL value

corresponds to the point of intersection of the solid and dashed curves

in Figure 4 (or 5), and the shaded area denotes the region of

instability. The P11 corrections can actually completely quench

the instability if
2 1/2 1/6r32 r ,m . 1/6

> —i-- I ~ (46)d r ~~Rd \ m /  3 r
i e i

for the collisional case or

2 1/3(Rr

for the collisionless case. From this it is clear that Figure 2

should be modified particularly for large values of k where FLR

stabilization Is most important. In fact the curve in Figure 2

should fall off such that the value of k corresponding to the maximum

growth rate, should fall between and k
L
.

• !Hc k  < k  (48)d max L

IV. NONLINEAR SATURATION

The understanding and identification of nonlinear mechanisms

capable of limiting the growth of the instability described above

is facilitated by using the differential—equation approach . It 
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has been argued in connection with Eq. (11) that the instability

arises from a negative restoring force due to the presence of a

density gradient parallel to the gradient of the magnetic field.

This feature suggests that saturation of the instability can be

obtained from a mechanism that provides a nonlinear term corres—

ponding to a positive restoring force large enough to overcome the

negative restoring force in Eq. (11). It can be shown that the simplest

term that meets this specification leads to an equation of the form8

(49)

-

‘ where A1>O , A3
-0 and A

2
<O. Evidently this equation is satisfied

8by the saturation amplitude

y a (50)

Since the coefficients in Eq. (49) are all real this quasilinear

analysis will strictly only apply to the collision dominated case

described in Eqs. (28) and (29) , and to the collisionless case described

in Eqs. (30) and (31) ; it is expected however that the more general

problem with complex coefficients would have similar results.

In considering the physics of the problem it is noted that

the gradient of the magnetic field can not be affected by the

instability because of the electrostatic nature of the instability.

Therefore it is anticipated that the saturation effect will arise from

a modification of the density grad ient caused by the instability itself.

Once the nonlinear component of the restoring force has been identif led

the saturation amplitude can be calculated from Eq. (50) and its effect

on the linear density gradient can be determined.

——-

~

-“ ~~ - - - -—-
~~~~ • -•- -‘
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‘-~~~ • -~~ 
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In order to derive an expression for the nonlinear term in Eq. (49),

Eq. (8) is used in the continuity equation, which is not linearized

in this analysis . Again an expression similar to Eq. (10) is used

to describe the gradient in the magnetic field. If we first write

0n(x,z,t) = n
N~
(x)+n1(x

~
z,t)

(51)

$(x,z,t) =

where

0 0 0nNL (x) n (x) + 6n (x)
(52) 4

+ 64 °(x)

the continuity equations (one for each species) can be integrated over

the z coordinate.9 Here n’ and •‘ are periodic in z in the frame

drif ting with the electron fluid and represent the perturbation due

to the unstable mode. A time average is not appropriate since the pertur—

bation is purely growing in the drift frame.1 Note that 6n° and 6,0 are

the average nonlinear modif ications to the equilibrium density and

electric potential respectively.

After integration over z the steady state equations are (c&—i,e)

• 

~~~~~~~~ 
~~~~~~~~~ x ~~~~ - x’ ~~ 

+ h) z”
O 0

q n  q 6n q T  2 0
— 

a V 6A 0 
— 

a 
~~°I\ + a a a ân 

—(fl-i ) ‘
~~ “ (fit) 

~~
‘ J 1~ e(Q-r )

The only time dependence in this equation arises from the drift motion

since in steady state the amplitude has saturated; therefore

in what follows. Since 6n° and 6,
0 are assumed to be small corrections

to n° and •
O 
respectively, terms of the form 6n06~

0 are ignored.

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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Eliminating 6,0 and solving for 6n° results in the equation

T + T ~ 
• [T 1 +T1

t
1 

.
~5iP_Vn

°4e((flT)
i
+(fiT) )nhkxZ+t

(54)

+ en~ (i~ 
... )v (~L)) >

The following expressions are used for n ’ and •‘ (the subscript s

• signifies the saturated value of the amplitude)

n’(x,z,t) — n 1sin(k z—w 0t)sin(j~)

— [+~~8
sin(kz—w0

t) + +~,~
cos(kz_w

ø
t)]sin(-

~~
)

where •‘ and allow for the difference in phase between n’ and

•‘. Solving Eq. (54) for 6n° yields

0 e[(c2t) +(flt)1] kd , , 2irx6n — T +T (-~—-)n~~~~~sin(—~--)
e i

(56)
e(t —T ) w

+ T + T 1 ~~ ~~~~~ ~~~~ — 1)

where the boundary condition ón0(d)”O has been invoked.

In order to relate n ’ and •‘ , the same procedure , used toB S ,C

obtain Eq. (53), is repeated with the exception of multiplying

by n ’ before integrating over z. The resulting equation is

O a (T
5

+T
i

)n~
2sin2

(-~~) — 
(
~~
T)
e~~~

t)i) 
(!~~

)n
~~

t sin
2
(?)

(57)
e w N  t — t  ew Nr

— 

d (te
_T
j)n~~~~cxBin

2(1~
!) +( 2) ( 

d
2 ) n

~
$
~~c

sin(?)cos( ?)

As in the linear analysis of Section II , the appropriate procedure at

th i, point is to average over x since the functional dependence

on x is only approximate. Integrating Eq. (57) over x and solving for 

~~~~~~~~ ~~~~~~~~~~~~ • -~~~~~~~ •~~~~-~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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~~~~ obtainss,c

• 
______ 

d(T +T )n ’2
I ’  e i s

~
‘s
,
s,c T)

e~~~~~~~~i 
w0d(T e_-i

i
)
~ 

(58)
-

• 
- eNk 2 + 

JK

so that 6n° becomes

= 

d2n [(fit )  +(flT)~~)5 ifl()~~~~
(fit) +(fl-r ) w d

8nN
[ 1(2 + 

~~e~~ i~ )

(59)

+ 
wofl~

2d(r i
_T

e
) (cos(.a~~

)_ l)

( t ) e~~
flt ) i w0d

8kN( + —  (-i — -i .)
~ K’ 

4k e 1

If one considers the case where k= ir/d and T
e
=Ti~ 

then Eq. (59)

simplifies to - •

,r(nt)2 - •
0 s 2~rx6n = 4N sin(—~—) (60)

Here the assumption that w<<fla, used in Eq. (7), is also invoked ,

although here w~ may be shifted from the linear value. This modification

of the initial density gradient due to the presence of the instability

is shown in Fig. 6. Note that the modification is such as to decrease

the density gradient in the interior of the plasma and thus shut off

the instability.

If this nonlinear mechanism is incorporated into the previous

• analysis, the significant modification arises from the additional

nonlinear term in the restoring force, resulting in an equation of the

form of Eq. (49). Using Eqs. (13), (14), (50) and (60) , one finds that

the saturated amplitude of the density perturbation is given by 

~~~~~~~~-
-••-- •

~~~~~~ • -• -
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2 1/2
2 N /  2 w R  \a (~1 — 

d(fl-r) (61)

In the collisional limit Eq. (61) can be written as

B2 1/2
• n~~ a~~~~ (

l _ _ _ ~.) (62)

which is valid as long as B~ B .  If B becomes too large , however , the

nonlinear analysis is somewhat suspect, since n~ was assumed to be small

compared to N. In the collisionless limit Eq. (61) simply becomes

(63)
S T

Here the analysis is somewhat suspect for all B>B . However it is

clear that the amplitude can grow much larger in the collisionless

case, than in the collisional case.

It should be pointed out that there may be other important nonlinear

processes which have not been included in this model.

VI. EXPERIMENTAL APPLICATIONS

The plasma configuration used as a basis for the present instability

analysis can be realized physically in an experimental arrangement
16that exp loits the “vapor—pressure mode sometimes used in the Q—ma chine .

In this case the role of the inner cylinder in Fig. 1 is played by a

metal cylinder of a refractory metal like tungsten, which is heated to

an electron—emitting temperature (2000°K). This cylinder is used for

thermal ionization of an appropriate vapor and acts as the plasma source. •

The outer cylinder in Fig. 1 is a heat—resistant dielectric cylinder.

This cylinder actS as a plasma sink since the outwardly drifting

plasma which reaches it is lost by recombination at the surface.

The annular space is flooded with C or K vapor. An azimuthal magnetic

field which falls off as h r  can be produced in a straightforward

---— —-- —— ~~~—- — •- •------- —--
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way by passing a current through a single straight conductor along

the cylinder axis, and calculations show that the required fields

(l02—lO3g) can be produced conveniently by conventional power sources.

The time and space dependence of relevant plasma quantities such as

the density can be measured by wall probes installed so as to be flush

with the surface of the outer cylinder, thus minimizing plasma

perturbations. An experimental arrangement of this kind is of interest

in that it would be possible to observe the time—space development

and structure of the convection cells characteristic of the instability.

This arrangement would also be useful for the evaluation of various

stabilization techniques

Another possible application of the formalism for this instability

is to the plasma formed by exploding—wire discharges. In the corona

of such a plasma, one can have parallel , inwardly directed gradients

of plasma density and of the azimuthal self magnetic field. Depending

on the local temperature, the plasma at these rad ii may be collisional

or not. At typical temperatures of order 200 eV and densities of order

1019
, collisionless dynamics are appropriate. At this temperature ,

deuterium has gyroradius

• r1
(cm)’~2/B(kG) - (64)

The self f ield can be in the megagauss range , so that the condition

r 2
B ‘ Bc~ i.e., (_~t

’) << -
~~~ 

(65)

can be satisfied for low—atomic number plasma (e.g., deuterium) even

when d is quite small (e .g. ,  density fal loff  over a distance of

d”lO
2
cm.) The formation of beads, or ripples in the rad ius, of

such plasmas is a well—known phenomenon and is much more violent for
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low atomic numbers)4 If this instability is the cause, a typical

wavelength on the order k~ir/d should be expected , since finite

Larmor radius effects reduce the growth rates at higher k values.

d is estimated at 0.05 cm and k
L 
(as defined in Sec. IV) is ~25O cm ’,

so that Eq. (48) predicts that the wavenumbers corresponding to

maximum growth is in the range 60 cin~~<k...~(250 cm 1
. The observed

periodicities range from k’~60 cm~~ to k~15O cm~~. The conditions

for the ordinary sausage instability in this current carrying

plasma are probably also satisf ied in such plasmas; 15 for 200 eV

electron temperatures, B 1f’\,lO
6
gauss and n’~lO20, the sausage and

flute growth rates are comparable, the sausage growth scaling as B~~
’2

and the flute as Tl~
’2
.e

DISCUSSION

In this paper a nonlinear second—order differential  equation

has been used to analyze the linear onset and nonlinear saturation of

a convection instability characteristic of an inhomogeneous plasma in

an inhomogeneous magnetic field. This differential—equation approach

has been used to extend the frequency range of the usual dispersion—

relation analysis to the collision].ess limit and the linear stability

* analysis shows the instability to be the collisional analog of the

flute instability, bo th being driven by a density grad ient parallel

to a magnetic field gradient. A critical magnetic field,B ,is predicted .~

with the plasma becoming unstable when B>B . When B<B the plasma is

stabilized by finite gyroradius effects in the collisionless case and

by the effect of the mean—free—path in the collisional case. Finite

gyroradius corrections to the pressure tensor are also found to be

important for large values of the wave vector perpend icular to the 

-— ~_j _ - - • -~~ --• _ - • _ -_ -• ~~ -- • --
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magnetic field .

The form of the nonlinear d i f ferent ia l  equation indicates that

the present instability belongs to a class of instabilities

like the Benard instability of a thermally unstable fluid layer

and otI~ r instabilities that can be described by the equation for an

inverted pendulum . These are “symmetry—breaking ” zero—frequency

instabilities in which a medium that is spatially uniform in the

stable state exhibits a periodic spatial structure consisting of

• convection cells in the unstable state. The ultimate size of such

convection cells is determined by a spat ial average (over a cell)

of the dynamic energy balance , which yields the saturation amplitude

of the instability.

The theory of this instability has been applied as a possible

additional mechanism to the sausage instability to exp lain the “beading ”

eff ~ ct observed in exploding—wire plasmas, and a thermal—ionization

• experimental arrangement has been described for the experimental

observation of the plasma convection cells .
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APPENDIX I

In performing the average over the x dependence to arrive at

Eq. (11) a number of numerical factors are encountered. They are

def ined as:

7rX 
- J

çd sin —
~~
- cos

• c = 1  dx~~~ O.71 J O
2

~d (sjn 1)
~~~

c = I dx = 1.22 J O x

2Tc 1 —
f l = _ ( 1 _ C

2 2 ~~~)

or

:4

L~ ~~~~~~~~~~~~~~~~~~~~ -~~
- - •

~~
-- -- •---• 



INTERMEDIATE REGIME

fl~>>l/t lw !E Iu 0+iy I

4k2Tr / B
2

ill C
2 ~~ 2dRX m
1
’ B

(B>Bc) (l+w~t~)

2nkTc

(B>B ) eBd

- 1/2
_ L + !L.L + l6k 2T

(B>>B ) 2 ~~ 2 dRK 2m .

- d i

(0
0
= 

o
(B>>B c)

eB 
K2R (d )

1/2
(

m
e)

m1
c k r~ 2R mj

2v
~hi

k2T
~ 

m
1 

1/2

d
2 

cI
3RI(

4 (~~~~~~J

(for instability)

lABLE I — Growth rate, y, frequency, ØÂ and critical magnetic
f ield , 

~~ 
for instability. Ka(k2 lT’/d2)1-12 is the total

wavenumber, ri is the ton Larmor radius and vthl is the ion
thermal velocity. r~ is defined in Appendix I. 
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COLLISIONAL REGIME

F 
- 

-_______________________  ____________________________________

4k2T-r 1 / B2

(B>B ) dRK2m1 
B
2

~O 2~kTc
(B~B )  eBd

24k T-r
~

(B>>B ) dRK2m1

(0 =
0 o

(B>> B~
)

eB 
— K

2R d l/2 fm \~~
4

H ~~~~~~
) 

~~
)

2 2 2 2  1/2Zv
thi

k Tf (m i
\
~

d
2 

d
3RK4 \m e l

(for instability)

TABLE II — Growth rate , -y , frequency, W~, and critical magnetic
f ield , B~, f ç; instability in the collision dominated limit.
Ka’(k2+w2/d2)~ ’2 is the total wavenumber, r1 is the ion Larmor
radius and Vthi is the ion thermal velocity. n is defined in
Appendix I. 
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COLLISIONLESS REGiME

~ >>Iw kI  +iy I>>h/T
- - cx 0 cx

f4k 2T 2 1/2

(B~B )  ~ dRK2m
i 

-

(0 =0 TikTc
(B~B~) 

eBd

1/2
4k2T

(B> >B) dRK
2
mi

~0
= 

0
(B>>B

~
)

RT
m~~c 2 dmi

2
4

d ~
2
K
2dR

(fo r instability)

TABLE III — Growth rate, y, frequency, w0, and critical magnetic
field B~, ~or instability in the collisionless limit . K.
(k2+x~U2) uI is the total wavenu mber , r i is the ion Larmor
radius and 

~thi 
is the ion thermal velocity. n is defined

in Appendix I. 
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FIGURE CAPTIONS

Fig. 1 Plasma filled gap between two coaxial cylinders of radius

R and R+d (R>>d). The azimuthal magnetic field and a local

Cartesian coordinate system are shown.

Fig. 2 Plot of growth rate as a function of the axial wavenumber, k.

For the case shown here B>>B and T T ~T; also y —c i e MAX
— + — —+
2-i 2~~~2 dRmi •r

i i

Fig. 3 Plot of growth rate as a function of collision frequency with

k>>w/d. For the case shown here B>~B and T T ; also y

4T~~~~
2 i e

~dRm1~

Pig. 4 Plot of the critical magnetic field (solid curve) as a

fun ction of the axial wavenumber, k, in the collisional

regime. The dashed curve separates the regions where the

FLR corrections are large and small. The shaded area denotes

the region of instability (c~r) l~~N {.a~(~ )”2J”2 ~~~~)MA)c

2 2,and cx is defined in Eq. (33).
1 rr

~
Pig. 5 Plot of the critical magnetic field (solid curve) as a function

of the axial wavenumber , k, in the collisionless regime. ‘

The dashed curve separates the regions where the FLR corrections

are large and small. The shaded area denotes the region of

instability. N is defined in Eq. (32) and (~iTN)MAX

Fig. 6 Plot of the density as a function of position in the linear

stage (labeled by n0(x)) and in the nonlinear stage (labeled

by n~~(x)) .
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