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This paper examines the negative—mass stability properties of an

E—layer for transverse electric (TE) and transverse magnetic (TM)

waveguide modes in a conducting cylinder. The analysis is carried out

for a relativistic nonneutral E—layer aligned parallel to a uniform

axial magnetic field 
~~~~ 

within the context of the assumptions that

the electron motion is ultrarelativistic and that

where v is Budker a parameter and T0mc is the electron energy. One of

the most important features of the analysis is that the axial energy spread

can have a large influence of stability behavior for both the TE and

TM waveguide modes. By appropriate choice of system parameters, it is

shown that the spectrum of microwave radiation generated by the

negative—mass instability can be very narrow—band.
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I. INTRODUCTION

The major recent experimental interest in relativistic

electron beams originates from several diverse research areas . These

include: research on plasma confinement schemes such as Astron1,

high—power microwave generation
2_&

, and electron ring accelerators7 9 .

One of the most basic instabilities that characterizes a relativistic

10—13
E—layer is the negative—mass instability . The azimuthal bunching of

the beam electrons associated with this instability may provide the mecha—

nism for intense microwave generation recent ly observed in several

experiments6 9 . In this regard , the resonant interaction of transversr

electric (TE) or transverse magnetic (TM) waveguide modes (inside a

conducting cylinder) with beam—cyclotron modes has also

been studied as a mechanism for intense microwave

generation’4. Moreover , the influence of an energy spread on the

negative—mass instability has been Investigated in the literature9
~~

2 .

The present paper examines the negative—mass stability properties of

an intense relativistic E—layer for both the TE and TM waveguide modes ,

making use of the dispersion relation already developed in Ref. 12. One

of the most important features of the analysis is that the axial enerl-y

spread can have a large Influence on stability behavior. By appropriate

choice of system parameters , it is also shown that the spectrum of micro—

wave radiation generated by the ne~~tive-~mass instability can be very

narrow—band .

The present analysis is carried out for an infinitely long E—layer

aligned parallel to a uniform magnetic field B0~~ 
(Fig. 1), assuming

that the azimuthal electron motion is ultrarelativistic (i~)>l) and that

- ‘ii
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where v
~
Ne
e
2/mc2 is Budker ’s parameter, N is the number

of electrons per unit axial length of the E—layer , and y
0
uic
2 
is the

• characteristic electron energy. A brief description of the theoretical

model and equilibrium configuration is given in Sec. II. For an ultra—

relativistic, infinitesimally thin E—layer, the dispersion relation12

for the negative—mass instability simplifies considerably (Eq. (3)].

A detailed analytic investigation of the negative—mass Instability

for TE and TM vaveguide modes is carried out in Sec. III. Introducing

the dimensionless parameter [Eq. (12)]

A = (AE/y 0mc ) (y e/v)

which is a measure of the characteristic relative strength of the axial

energy spread (AE) and the number of electrons per unit axial length

(~*~N e
2/mc2), we find that [Eqs. (17) and (22)]

) I (2A( 9.  _~ &nR 01’Rc) iF3] , TE mode ,

> L 2
[2A (L 2_~~~ R~ /R 2)/3 ] 3 

, TM mode ,

are necessary and sufficient conditions for instability. Here ~~~ and

are the geometric factors [Eqs. (9) and (11) ] for the TE and TM

modes , I is the azimuthal harmonic number , R0 and Rc are the radii

of the E—layer and the conducting wall , and and are

zeros of the Bessel function, J1(y), and its first derivative,

respectively. Evidently the axial energy spread (A) has a very important

influence on stability behavior (Secs. III and IV). A detailed numerical

analysis of the dispersion relation is presented in Sec. IV, where

stability properties are investigated for a broad range of system

parameters.
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Finally, we note that the stability criterion in Eq. (17) can be

used to control the frequency of the microwave radiation generated by

the azimuthal electron bunching associated with the negative—mass

instability. Since the stabilization produced by the axial energy

spread (A) is effective only for perturbations with sufficiently large

axial wavenumber12 ( k R ~—I 2—a~~R~ /R~~~ l), we conclude that selecting

the value of R0/Rc very close to and introducing a modest amount of

axial energy spread (A ~ 1) can stabilize all modes except those with

real frequency w ~Lw ~ [a 
R~/R ]w . The present analysis also showsr C In ”  c c

that the preferential excitation of a single unstable mode is more

straightforward for TE than for TM modes (Secs. III and IV).

I

-
—

~~~~~~~~ -—.
~
-

~~~~
-- -

~~~
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II. THEORETICAL MODEL AND EQUILIBRIUM CONFIGURATION

As illustrated in Fig. 1, the equilibrium configuration consists

of a relativistic nonneutral E—layer that is infinite in axial extent

and aligned parallel to a uniform applied magnetic field 
~~~~~ 

The

radii of the E—layer and the cylindrical conducting wall are denoted

by Ld and 
~~~ respectively. The mean motion of the E—layer is in the

azimuthal direction with average velocity V~~0, which produces an axie l

self—magnetic field 
~~~~~ 

The applied magnetic field provides radial

confinement of the electrons. As shown in Fig. 1, we introduce a

cylindrical polar coordinate system (r, 0, z) with the z—axis coinciding

with the axis of symmetry; r is the radial distance from the z—axis, end

0 is the polar angle in a plane perpendicular to the z—axis.

The following are the main assumptions pertaining to the present

analysis:

(a) The E—layer is infinitesimally thin (a/R0-iO , where a is the

half—thickness of E—layer) and completely unneutralized ( f 0 , where f is

the fractional charge neutralization).

(b) The electron motion is ultrarelativistic (y0>>l) , and the mean

equilibrium motion of the E—layer is in the azimuthal direction (V°=O, -
~~~~

where V~ is the mean axial velocity of an electron fluid element)

(c) It is further assumed that

(v/y 0)~~
’3 << 1 , (1)

where v~ Nee2/mc2 is Budker ’s parameter , Ne is the number of electrons

per unit axial length of the E—layer, c is the speed of light in vacuo,

is the characteristic energy of an electron in the E—layer , and

—e and m are the charge and rest mass , respectively , of the electron.

L ~~~~~~
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The inequality in Eq. (1) indicates that the B—layer is very

tenuous.

The .  equilibrium and negative—mass stability properties have

been investigated in Ref. 12 for the choice of electron distribution

function in which all electrons have the same value of canonical

angular momentum and a step—function distribution in axial momentum

The resulting dispersion relation for the negative—mass instability is

12
given by

(W_Zw c) 2 ~
2 

[v~~~~c ( i 2 k2R2) ...2k2R2 AE 
21 

(2)
R0 U Y0m c J

where oi is the complex elgenfrequency, wc
IIeB

0/Y0mc is the electron

cyclotron frequency, I is the azimuthal harmonic number , k is the

axial wavenumber, AE is the axial energy spread, and the factors g

and ~ are defined in Eqs. (44) and (51) of Ref. 12. (For a detailed

derivation of Eq. (2), see Ref. 12.]

Making use of Assumptions (a) — (c) [which imply that V~/c =

(i~_l) h/ 2 /Yo~l and p~ l),  and approximat ing W
~

IW
c~ 

Eq. (2) can be further

simplified to give

= - 
2 2 

[f-. c~P)~ - £2R~ 
rn:2] 

‘

where the geometric factor G(p) is defined by

G(p) — £
2/(b_+b÷

) — k2R
~
I(d_+d+),

with

2 2  2 1/2p (w /c — k ) . (5)

In Eq. (4), the sums of the wave admittances12 are def ined by
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2&J~ (pR )/ irp 2R~
b + b+~~~

—
— 

J~ (pR~) [J
~

(p Ro)N i(p R
~

)_Ji(p R
~

)N .(p Ro) ]

(6)

2J1(pR )/Iir
d + d + — 

PRO) (Ji (PRO)N L (PR c
)_ J

& (PR c)N t (PR O) 1

where the prime (‘) denotes (l/p)(d/dr), and J1(y) and N1(y) are Bessel

functions of the first and second kind, respectively. The resonant

interaction of the negative—mass instability with the normal modes of

the grounded conducting cylinder (radius = R
~
) is investigated in Sec.

III. The analysis makes use of the vacuum transverse electric (TE) and

transverse magnetic (TM) waveguide modes, which form a convenient basis

to express a general electromagnetic field configuration within a

cylindrical vaveguide.

1 ,
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III. EXCITATION OF ELECTROMAGNETIC WAVEGUIDE MODES

F In this section, we investigate the negative—mass stability

properties for the TE and TM waveguide modes. In the absence of the

B—layer, the vacuum dispersion relation for the waveguide modes is

given by 2a , TE mode ,In
(w /c — k )  R =  (7)

TM mode,

where aln and 8i are the nth roots of J~(a1 ) = 0 and 
~&~~tn~ 

= O~

respectively. Taylor expanding Eq. (6) about w=iw , it is straightforward

to show for the TE mode that sum of the magnetic wave admittances

(b +b+)TE can be expressed as

(b +b+)TE = — ( ~ 
E
) (W_Iw

c
)/
~c ‘ 

(8)

where the geometric factor g~ is def ined by

g
~~

(Ro/R~
) R

~
ct
~~

[J
~
(cti R

0/R )]2/ [R4J
~

(u 1n)J
1
(ct
1n

) ]  . (9)

In obtaining Eq. (9) , use has been made of Wronskian ,

J1(y)N~ (y) —J~ (y)N 1(y)=(2/ ~ry ) ,  and J~ (cz1~ )=O . Similarly, for the TM

mode, the sum of the electric wave admittanees (d_+d+
)
~~ 

can be expressed

as

(d +d
+
)m 

_ [(I2 _ $~n R~/R~)/  g~~ ] (W_IW
c)/ W c (10)

where the geometric factor g~ is def ined by

g~~ (R0/ R )  = R~ (L 2_8
~nR

~
/R

~
) [J 1(81~R0/R ) ]2

/ [RcJj (81 ~ 
~~ (11)

For the TE mode , the contribution of (d +d
+) to the geometric

factor G(p) in Eq. (4) has been neglected in comparison with the

contribution from (b +b
+
)TE, since I w_IUicI c V

~~~
)”

~
<<1• On the 

~~~~~~~~~~~~~ : - ‘~~~~~~~~~~~~~~ ~~~~~~ 
_- - _- —____ __-.

~ ~~~~~~~~ ~ 
.
~~~~~ ~~~ ~ 

-.—
~~~~~ - ~~~~~~~~ 

n-.—-
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other hand, the main contribution to the geometric factor G(p) for the

TM mode is determined by (d_+d+)m. For convenience in the subsequent

analysis, we define the no rmalized energy spread

A = (AE/y 0mc2) (y 0/v) 2”3 (12)

and introduce the frequency

1/3W g = W
c
(V1(Y0

) • (13)

A. TE Mode Ilispersion Relation

Substituting Eqs. (4) and (8) into Eq. (3) and making use of the

definitions in Eqs. (12) and (13), we obtain the approximate dispersion

relation,

x
3 

— 2A ( 12— ct~ R~/R2) x - 2g~~/I = 0 , (14)

for the TE mode. In Eq. (14), the normalized eigenfrequency x is

def ined by

x = 
~~~~~~~~ 

(15)

Defining W=Wr+iWi~ 
it follows from Eq. (15) that the real frequency

can be approximated by Wr
=LWc~ 

since W_IW
c I/~c~~

Wg/Wc
<<l

~ 
The -~~~~~~~~~~

discriminant D~ for the third—order polynominal in Eq. (14) is given by

D~ = (g~~ /1) 2 
- [2A (12_ a~~ R~ /R~)/3 ] 3 . (1G)

Therefore, the necessary and sufficient condition for the negative—mass

instability (TE mode) can be expressed as D~>0, or equivalently ,

~ ~
2 [2~(I

2-a~~ R~IR~) / 3 1 3 
. (17)

Moreover , the growth rate for the unstable branch can be expressed ~‘s

I — - — - - - — ~~~~~~~~~~~~~~~~ ~~~
. . -

—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— .

~~~~~~~~
-
~~~~~

‘-——•~
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- ( 3/4) 1/2 j ( Jg
E / &+D E ) h/3 

- ( I  
~~~ 

/1 _D
E)~~~ 

IW g (18)

for the TE mode .

As a check on the growth rate given in Eq. ( 18) , it is instructive

to consider the E—layer with negligibly small axial energy spread

(A O) . In this case , Eq. (18) can be expressed as

- (3/4) 1/2 (2jg~~ J /1)~~~ 
~g

which is identical to the result obtained by Sprangle’4 within the

framework of the macroscopic sheet model (assuming V~~O and considering

¶ the TE—synchronous mode) .

It is evident from Eq. (17) that perturbations with sufficiently

large axial vavenumber [kR0=(12— u~ R~ /R 2 ) 1/ ’2k~l] can be effectively

stabilized by the axial energy spread12 . In this context , it is possible

to stabilize all of the harmonic perturbations by a modest axial energy

spread (A~1), except for one select perturbation corresponding to

£
~
ct
1~
R
0/R

~
. Evidently, by appropriate choice of beam radius (R0

/R) and

the axial energy spread (A) , a narrow spectrum of microwave radiation can
be produced by the negative—mass instability. However, a small but

nonzero axial wavenumber is necessary for this particular perturbation

(2.~ c&1 R0/R ) ,  in order for the radiation energy to propagate axially out of the

system. From Eqs. (9), (16) and (18), and the relation

the corresponding maximum growth rate can be expressed as

= (3/4) 1/2 {2t 3EJ~ (Ifl
2
/a nJ~ (ain

)J
l(~in

) ) l/3 (19)

for the TB mode.

L. - . — . 
- 

. ~~~~~~~~~~~~~ - -
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B. TM Mode i)1~pecsion Relation

Substituting Eqs. (4) and (10) into Eq. (3) gives the dispersion

relation

- 2A (12- 8~~R~/R~) x - 2g~~ /1 = 0 (20)

for the TM mode. In obtaining Eq. (20), use has been made of Eqs. (12),

(13) and (15) . The discriminant D~ for Eq. (20) is given by

D~ - (g~~/ £)
2 

- (2A ( 12- 8~~R~/R~)/3] 3 (21)

and the necessary and sufficient condition for instability can be

expressed as

I 2 [ 2 t~( I 2_
~~n R~/ R~) / 31 3 

. (22)

•1 From Eq. (20), the growth rate for the unstable branch (TM mode) is

given by

w = (3/4)1/2 1 ( Ig
~~fl

h/ 1+ D
M
)

~~~~~~~
_ ~~~~~~~~~~~~~~~~~~ (2 3)

Unlike the TE mode , it is not possible to make one select TM mode

unst~’le , since g~ = 0 when kR0 
= (12_ nR~

/R
~
)112 = 0 [see also

the discussion following Eq. (18)].

We conclude this section by noting that the present analysis can

be generalized to the case of an intense E—layer with finite thickness.

although the corresponding analytic treatment is more complicated .
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IV. STABILITY ANALYSIS

The growth rate w~ —Iuxu has been calculated numerically from

Eqs. (18) and (23) for a broad range of the parameters RO/RC, I, ~,

kR~, and A— (AE/ y 0mc2) (y 0/v) 2
~~. In this section, we summarize the

essential features of these stability studies. The growth rate is

measured in units of the frequency wg_w~(v/y0)
1~3.

Figure 2 shows a plot of the normalized growth rate Wi/Wg 
versus

obtained from (a) Eq. (14) (TE mode) and (b) Eq. (20) (TM mode) , for A 3 ,

n—I. and several values of I. Several points are noteworthy in Fig. 2. First,

the maximum growth rate and the range of R0/R corresponding to instability

increase rapdlly as the harmonic number I is increased . This feature 4 s also

evident from Eq. (19) for the TE mode . Second , the maximum growth rate for

the TE mode occurs when R0/R 1/a1 
, whereas the growth rate for the TM mode

vanishes abruptly at the cut—off value R0/R &/81 (see also Sec. III) . Third ,

the range of R0/R corresponding to instability approaches unity as the har-

monic number 2. is increased. For example, the (2. ,n) (1,1) TM mode is unstable

over the range 0<R0/R <0 .25 , whereas the (2. ,n)=~(i5 ,i) TM mode is unstable over

the range 0.3<R
0/R <0 .8 - [see Fig. 2 (b) ] .  Fourth , for the same values of

(L , n ) ,  the TE mode is more unstable than the TM mode . For example , for

(2. ,n)=(9 , l).  the maximum growth rate of the TE mode is 1.3 w~ , whereas

the maximum growth rate is w~~~O.76 w~ for the TM mode (see Fig. 2).

Shown in Fig. 3 are plots of the normalized growth rate Wj/Wg versus

R0/R obtained from (a) Eq. (14) (TE mode) , and (b) Eq. (20) (TM mode) ,

for A—O , 1—8 and several values of n. The maximum growth rate in Figs .

3(a) and 3(b) is reduced by increasing the value of n. Since is an

increasing function of a , this feature is also evident from Eq. (19)

(TE mode) . Finally, we note from Fig. 3 that the range of R0/R

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~
-
~~~~~~

-
- —

~~
.
~~~~~~

— --=== =-
~
- ~~~~~~ _ -~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~-—~ ~— - ---- j 

~--- 
. - - -.
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— corresponding to instability decreases to zero as the mode number n

is increased.

An example is now investigated to illustrate the influence of

axial energy spread (A) on stability behavior. Figure 4 shows a plot

of the normalized growth rate Wi/~g 
versus A for 1—6 , n—i , and normalized

axial wavenumber kR0—2. The growth rates are obtained from Eq. (14) (TB

mode) and Eq. (20) (TM mode) . To maintain the same value of kRt)(=2)

for both modes , we choose Ro/R~~
O.754 for the TE mode and Ro/R~~

O.E 69

for the TN mode. As shown in Fig. 4, A— 0.13 is suff icient energy

spread to stabilize the TM mode, whereas A—0 .35 is required for

stabilization of the TE mode. We conclude that an axial energy spr~ad

is an effective means for stabilizing perturbations with sufficiently

short axial wavelength (k~lIR0, 
say))2  l’ioreover, a smaller energy

spread Is required to stabilize the TM mode than the TE mode (Fig. 4).

Of considerable interest for experimental applications is the

stability behavior for specified (2. ,n) and several values of A. Typ ical

results are shown in Figs . 5 and 6 where Wj /wg is plotted versus R0/R

for 12  (Fig. 5) and £ 7  (Fig. 6) .  Also , n=l is assumed in Figs . 5 and

6. For the TB mode [Figs . 5(a) and 6 ( a )] ,  we note that maximum growth

occurs for R0/R =O.654 when 1=2 and for R0/R =0 .815 when 1=7. Evident l y ,

when R0/R~ 
is varied , the axial energy spread (A) does not influence the

value of the maximum growth rate for the TE mode. On the other hand , for

the TN mode [Figs . 5(b) and 6 (b ) ] ,  the value of R0/R corresponding to

maximum growth depends on the axial energy spread. Moreover , the max 1tr~un

growth rate for the TN mode is considerably reduced by increasing the

axial energy spread. We therefore conclude that the TE mode is a more

effective means for exciting radiation with a narrow power spectrum [see

_ _  



t 
14

the discussion following Eq. (18)]. In this regard, it is also necessary

to select pertrubations with small but nonzero axial vavenumbers , in order

for the readiation energy to propagate axially out of the system.

For R0/Rc~O•633~ 
which corresponds to kR0 0.5 for the TE mode with

(&,n)”(2 ,l), we find numerically that an axial energy spread with A — 0.3

is sufficient to stabilize the instability for all harmonic perturbations

except (L ,n) ’(2 ,l). For the present configuration, the next most

diff icult perturbation to suppress, corresponds to (L,n) (3,l). Therefore,

exciting microwave radiation with two frequencies, 2w
~ 
and substan—

tially reduces the axial energy spread required to iuertch the instability

for all harmonic modes except 12  and 13. It should also be noted from

Figs. 5 and 6 that the stabilization produced by the axial energy spread

is more effective for high—harmonic perturbations than for low harmonics .

This feature is also evident from Eqs. (17) and (22) .

Finally, it should be pointed out that the present scheme for

producing microwave radiation with a narrow power spectrum (by selecting

the value of R
0/R

~ 
close to £/ct1~, 

and by keeping a reasonable amount of

axial energy spread) may be most effective for low—harmonic perturbations,

since high—harmonic perturbations can be stabilized by a rather small

amount of azimuthal energy spread11.

i;j 
- 

.
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V. CONCLUSIONS

In this paper, we have examined the excitation of electromagnetic

waveguide modes by the negative—mass instability in a relativistic

B—layer. The analysis was carried out for an infinitely long E—layer

aligned parallel to a uniform magnetic field, within the context of

the assumptions that the B—layer is very tenuous (Eq. (1)] and that

the electron motion is ultrarelativistic (y o>>l). A brief description

of the theoretical model and the equilibrium configuration was given

in Sec. II. Detailed analytic and numerical results were presented in

Secs. LII and IV , where the negative—mass stability properties for the

TB and TM waveguide modes were investigated for a broad range of system

parameters. One of the important conclusions of this study is that the

axial energy spread (A) has a very important influence on the negative—

mass stability behavior for both the TE and TM waveguide modes. Moreover,

in the special limiting case when A— 0 , the stability properties for TE

mode are consistent with the results previously obtained by Sprangle ’4 . , -

Finally , we emphasize that the stability criterion in Eq. (17)

suggests a method for controlling the frequency of the TE mode microwave

radiation generated by the negative—mass instability. In particular ,

for perturbations with sufficiently large axial wavenumber (k ~

we conclude that selecting the value of Ro
/R
~ 
close to L/a

2.~~ 
and

introducing a modest axial energy spread (A ~ 1) can effectively stabilize

all modes except (L ,n) .  Moreover , this is more effect ive for the TE mode

than for the TM mode (Sees. III and IV).
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system.

Fig. 2 Plots of normalized growth rate versus R
O/Re obtained

from : (a) Eq. (14) (TE mode) , and (b) Eq. (20) (TM mode) ,

for A—O , n—i and several values of 1.

Pig. 3 Plots of versus RO/Rc obtained from: (a) Eq. (14)

(TE mode) , and (b) Eq. (20) (TM mode) , for A—0 , 1—8 and

several values of n.

Fig. 4 Plots of W
i/Wg versus A”(AE/y0

mc2)(y
0
/v)2~

’3 obtained from

Eqs. (14) and (20) for £ ‘6, n—i and normalized axial wave—

number kR~”2.

Pig. 5 Plots of versus R
ø/R

~ 
obtained from: (a) Eq. (14)

(TB mode) , and (b) Eq. (20) (TM mode), for £ 2 , n l  and

several values of A.

Pig. 6 Plots of Wj/Wg versus Ri~
/R
~ 
obtained from: (a) Eq. (14)

(TE mode) , and (b) Eq. (20) (TM mode), for 1—7, n—i and

several values of A.
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