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ABSTRACT

Axially—dependent Vlasov—Poisson equilibria are studied

for monoenergetic unneutralized electron beams inj ected

along magnetic field lines into a vacuum half—space and

partially or totally reflected by the beam space charge.

For simplicity, the entering beam electrons are assumed

to be nonrelativistic and to have a rectangular distribution

in momentum pitch angles with respect to the magnetic

field. Electron density at any point along a field line

is first expressed in terms of a potential for parallel

motion (assuming conservation of magnetic moment) , and this is

then substituted into Poisson ’s equation to obtain a nonlinear

partial differential equation for the space charge potential.

The one—dimensional problem, in which only axial electric

fields are considered , is reduced to quadrature and an exact

solution is obtained in the singular case where the beam

has no spread in pitch angles . The two—dimensional problem,

in which radial electric fields transfer energy from the

axial streaming motion to azimuthal ExB rotation to assist

the axial reflection, has been reduced to a nonlinear

partial differential suitable for computational solution.
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I. INTRODUCTION

Virtual cathode Lrmation in vacuum—propagating beams’ may be

more widespread than previously recognized. The “spin death” of

parallel beam energy by E
r
XB
z 
rotation in front of a density pileup,

may assist or steepen the axial density gradient, since the rotation

speed tends toward Brillouin flow , ~~w /2 . It may be that the

propagation limit (on the beam density) is not in the applied

or total magnetic field, but rather (in the presence of self—
p max

field pileup) small enough that CE
r
/B
z
<V

O 
(v
0
beam electron speed),

with Er g.ven self—consistently from the charge distribution.

In what follows, self—consistent BGK—like axially dependent

equilibria
2 will be described , in which the space charge effects

determine the axial extent and profile of the beam. Generalization

to axially nonuniform magnetic fields is relatively straightforward.

Sections III and IV treat the problem in a purely one—dimensional

way, keeping the electrostatic effects of E
~ 
electric fields but not

the effects of beam rotation caused by Er• Section V generalizes

these results to include E . Section VI summarizes the conclusions
r

of this introductory work.

II. APPROXIMATIONS AND ASSUMPTIONS

To calculate the electron density n(s) at a point s along

magnetic field lines in terms of an effective potential U(s) for the

parallel motion, it is assumed that all changes of U(s) and n(s) with

time occur much slower than the time required for a typical particle

transit from s”O to the end of the system and back, and that the beam

is on, supplying electrons at a constant rate, for a time much longer than
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the transit time. It is also assumed that the beam source absorbs all

reflected electrons , that is , ref lexing is neglected . This “fast bounce

approximation” then allows use of the steady state Vlasov equation, in

its integrated form, to calculate n(s) in terms of the momentum

distribution f ( , s~O) at s0 and the generalized potential U(s).
3

The potential for electron parallel motion is taken to have the

form U(s)=pE(s)—e$(s), where ~ is the magnetic moment invariant ,

B(s) is the magnetic field strength, and ‘p(s) includes all effects due

to the electric field. ~(s) may or may not be approximated as a

purely electrostatic potential. The electrostatic potential •(s)

defined by E~1 —~~ /as enters into us) , but e’~(s) in general also

contains the energy in ExB drift motion (taken out of parallel motion.)

(In general the variables U, B, n, •, etc., may also have variation

with coordinates normal to field lines, provided the scale lengths

H 
- 

for such dependence are larger than a gyroradius.)

It will be assumed that there is some point, s=M, such that for s>M,

no particles are reflected at s. This point may be at infinity, but

it is convenient to keep it in the analysis.

For simplicity in evaluating the integrals involving f(,s”O),

the electron beam distribution in momentum will be assumed monoenergetic

with a rectangular distribution in pitch angles. (More general angle

distributions are also tractable.) Also for simplicity, we take the

case where 3B/~s O , i.e., where the reflection of beam electrons is

entirely due to electric field effects and not to magnetic mirroring.

(This is easily generalized for nonrelativistic motion , and changes

only the boundary of integration of the integral expression for n(s).)

Finally , since we want only to show the basic physics of beam

self—reflection, we consider nonrelativistic beam momenta. Generalization
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to relativistic motion is straightforward but mixes p 11 
and p~ through

the factor

J 2 2 2 2
‘1 + (p11 + pj)/m0c

which occurs in the n(s) integrals.

The collisionless, magnetic—moment—preserving behavior assumed here

implies that instabilities do not disrupt the electron motion. This

requirement may be satisfied since the virtual cathode formation will

cause inhomogeneity of the density on the scale of one beam Debye length.

Thus, even though reflection of a beam with small parallel momentum

spread generally allows counterstreaming instability in homogeneous

plasmas, this instability may not be able to grow to significant

amplitude in the space provided , all the more because density

gradients absorb the unstable waves. Radial motion due to ExB
8

is neglected. This additional self—pinching due to E
~ 
must be offset

by centrifugal e f fec ts  arising from the curvature of the helical magnetic

field lines .

III.  DENSITY IN TERMS OF POTENTIAL

The density at s is comprised of forward—go ing and reflected

electrons:

n(s) — n~ (s)+n (s) . (1)

The velocity distribution of the forward—going portion Is specified

at s—O :

c(v,,, v1,s~ 0)~~ N~S ( v — v 0)H (v )H (y 0—v1) (2)

where H(x) is the Heaviside function : H(x) 1 for x>O , 0 for x<0 , and
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y
0 
is a maximum value of v L. This distribution is nonzero on an arc

of a circle In v—space at s=O. See Fig. 1.

The velocity distribution of th~ reflected electrons, f ( v 11 ,v~,O)

follows from reflection conditions and so is not specified a priori.

One can now use the integrated moment form4 
of the one—dimensional

steady state Vlasov equation to express n(s) in terms of f4(~ ,O) and

•(s) :

n(s) = 2r[B(s)/B(O)] J ydy~ xdx(x2-x2)~~~
2f(x ,y,s=O) (3)

0 Lx V
11 
, y E v ,

where

y
2 

~ 
— iJ + [~ (O)—’~(s) ] (4)

is the square of the ‘escape’ velocity required to reach point s if x~ is

monotonically increasing in s,and the integration region ~ in x will be

discussed presently. Let

~~ESup x , (5)
S

5~~ (5 S

be the maximum value taken on by x , at points between s’ O  and s’=s, i.e.,

the “escape” velocity required to reach point s even if x5 is not monotonie in s.

Particles with parallel velocity x>~ at s0 contribute

to the density at s; those with O<x<x9 
have been reflected

at some s’<s and do not appear at s. Because of the beamlike nature

of f
+6~

,O), there are no electrons with positive x less than some x0 
(i.e.,

with y greater than some y
0
); thus for s less than some s0 there are

no turning points. For s>s0 there are turning points until s>M. The

point a,., is specified by its potential, i.e.,
‘1

2 2x = x 0

with x2 
given by Eq. (4) with a replaced by 

~~~~~~ 

The minimum parallel

velocity, x0, at the s—0 reference plane, is a parameter of the distribution
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function. There are no turning points at points 8<so.

For points s>s0, the lower boundary of the x—integration in

Eq. (3) Is as given in Eq. (5). For s<5
~
, the minimum is simply

x
0. In both cases the maximum can be taken as v0, as is clear from

Fig. 1. Thus, when B(s)~ B(O) , one has for the forward—going electrons

M1n~r2 ,y~) v2 
___

n (a) = N J d(y 2) 
~ 

0 d(x 2) 6(/x2+y2 v ) (6)+ 
0 ~2 2/2 2 0

x orx x — x
S 0 S

/2 2
= 2ii~p

0
N v

0—x~ for s>s
0 

, (7)

/2 2 /2  2 2
= 27Tv

0
N[ vv

0—x 
— vv

0—y0
— x }  for s<s

0 
(8)

where y2Ev~—x
2
. In Fig. 2, the forward—going density n

+
(s) is shown

vs. x2, i.e., vs. the normalized potential difference

lPE(2e/nw~)[~ (O)—4 (s)] . (9)

The maximum value of n~ in Fig. 2 occurs at *0=x~Iv~.

The density of reflected particles is calculated similarly.

One assumes there is an sM  such that no reflections occur beyond M.

Then n (s) is comprised of particles that go past s but not past M:
2 2  2Min y  ,y x 

_ _ _

n (s) = N J d(y 2) 
~ 

h2÷~
2
~0) (10)

= 2vv
0
NVQ_x2 f or s

0
<s<M (11)

— 2vv
0
N[/x2_x2_/~~~x

2
] for . (12)

Note that

= (2e/m) [~ (M)—~ (s) ]  . (13)m S

I
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2 2  _ 2 2  .. 2 2For convenience, let ~~x / v 0, ~0=x0/v0, ~m=Xm/~O The physical

range of the “independent variable” 
~j’ 
is then from zero (~p(O) O) to

*14 (*(M)=*m)~ 
The density at s is then

n(s)=n~(s)+n (s)=2itNv~ [ I 1~~.-/~j i0-~p + 
~~m ’~ 0 *~ 

(14) - -

with any radical dropped once it becomes imaginary. The density n(s)

is shown vs. ~ji in Fig. 3.

IV. SELF CONSISTENT SOLUTION FOR 1~B=O

The equation for n(s) in terms of b(s) is now coupled to a

Poisson—like equation for ~(s) whose right—hand side Is n(s).

The ~ sulting equation has the form

= w
2
(~~ 3~/~r) (15)

where Is a functional of 
~ 
(and in general, its derivatives)

and/is the Laplacian operator. The simplest model is a purely

one—dimensional one with ~(s)=~(s) (i.e., purely electrostatic potential)

and ~=d
2
/ds

2
. In terms of the scaled distance zEs.(2~~

2w~0/vØ) the

equation is

d
2 [?i ~~7—2I~p —4r4- / * —* 1m , ~~~~ (16)

dz (1—2v’~~+,/~T] 
m

where ~,0
Ex~/v~ and where the normalization N has been evaluated in terms of

the density n
0 

aiz s=O and subsumed into the definition of z via u~0
E4wn

0
e2/m.

It is not known whether this nonlinear equation always has unique

solutions. When the spread in parallel velocities of the beam is small

we can cast this equation in a soluble form if all electrons are reflected

somewhere: then * l , i.e., e[~ (O)— ~’(M)]=f mv~, and - the right—hand side of

(16) is
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l-4~

For small angle spread we may write ~~~~~ (see Fig. 1) where

in terms of the pitch angle spread O~ , ~=0~/2. Expanding in e,

the right—hand side becomes approximately

a

f or 1—14)>>E, where ci-*l as c-’O.

The resulting equation,

— 
a (for 1—~>>e) (17)

dz
2 VT~~

is a turning point problem and can be solved by quadrature:

z = -
~~~
- [(1_Ii~~)(l+2J~~~)~~

’2
3 (18)

giving ~p(z) implicitly as z(~p). In particular, the condition that

no particles are reflected beyond some point s=M (and that all are

reflected somewhere) gives ‘P or M, subject to ‘P El:

M = ~~~~~ [(l_Il_’P )(l+211_* )
1/2

1 . (19)

See Fig. 4, for which the limiting value c~=1 has been used. In this

case, the infinite charge density at s=M leads to the discontinuity

in the slope of ‘P at M in Fig. 4. When c~O this discontinuity disappears

and ~p has a simple maximum In s.

In the limit of no angle spread, all the electrons are reflected

at this same point. One can then use Eqs. (14) and (18) to obtain n(s):

n(s) 1/u(s) u(s) = (20)

u3 -~~~u
2 
+~~ (l-9z

2) 0 (21)

_
— —.~~~ — — -

~
— ——---—— — ---- -—rn— -_.- --
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with z=s.2
h/2

~~0/v0 as before.

In the case that not all electrons are reflected (i.e., U( s) has

a maximum less than mv~/2) the 
one—dimensional electrostatic problem

can be similarly reduced to numerical quadrature:

= 
~~~~~~~~~~~~~~~~~~~ 

(22)

with

a=[1-2~~~+~~~]~~ . (23)

The solution is obtained by numerically integrating

dz — d’P 
1/2 

(24 )
2[W~~~_W(1~))l

where

W(’P) = afd’P’[Vi fV~~~ i-2V’Po-~
uJ

= -
~~~~~ [1+’P

3”2— 2’P 
2
—(1—p )

312
— (~p —’P)

3”2+2(’P0—’P)
3”2 ] . (25)

:~ Here, as before~ *0=xgiv~ — cos
2O0, 00 

being the beam angle spread; and

Wma is the maximum value of W in the range of integration over 4.

.4 

-~~~~~~~~ 



- -

11

V. EFFECT OF RADIAL ELECTROSTATIC FIELD

Although the treatment in Eqs. (16)—(25) is strictly one—dimensional,

i.e., involves only electric fields along a, a formal generalization

is also possible when electron parallel streaming energy is converted

to azimuthal rotation due to the radial electrostatic self—field ,

E0(r,s). Since any increase in the energy of this azimuthal motion,

~~m (cE
0/B) 2

m~’st come from the initial streaming energy, it can be treated as

part of the effective potential for parallel motion, U(s) ,  which now
becomes

U(r ,s) =~~~ y~B0
1B(r,s)—e4(r,s) +~~ c

2[E0(r,s)/B(r,s)] 2 . (26)

As mentioned in Sec. I, this can be written

U(r,s) ~ y~B~~B(r,s)—e~(r,s) (27)

where ~ now includes all effects due to the electric field, includingJ the radial field, and where the magnetic moment,

m 2—1
,

is assumed conserved.

For arbitrarily large beam density, azimuthal current now makes

B(r ,s) nonuniform :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (28)

and the natural coordinates ( I I  L .~ ~) become noncylindrical, complicating
the V 2 operator . However , to d emonstrate the physics of the electrostatic
effects alone, we may now restrict the remaining discussion in this

section to the case of small beam radius , low density, or strong 1~.
Writing Eq. (28) in dimensional form with ~ (r , s).il

0+~~ (r ,s) ,  one can
show that

2 — l
feB 5\ rb 4 feB0\

2 W pO~~m c )  (29)

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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with r
b 
the beam radius and the plasma frequency based on the beam

density at s0. Thus in Eqs. (30)—(35), we shall require
2

1 ( 30)

so that the magnetic self—fields are weak, while the electrostatic

self—f ields are still strong enough to be important. In this case,

because of the electrostatic nature of the problem, one has

E0
(r ,s)=—~~-—-4 (r,s) (31)

and straight magnetic field lines . Thus we can write

c~(r ,s)=~ (r ,s)-(mc 2 /2eB~ )(~~~) (32)

for the case B(r ,s)=const. 80.
Because reflection of electrons depends only on the potential for

parallel motion , an azimuthally symmetric nonneutral distribution of

electrons will have its density , n(r ,s) given by Eq. (3) , as before ,

except for the modification in the definition of ~~~. For the

distribution function of Eq. (2) , the results of Eqs . (6)— (l4)

remain valid. A self—consistent equilibrium for straight magnetic field

lines can now be obtained in the form of Eq. (15) ; letting

(33)
mv

~
be the scaled electrostatic potential, and defining

[v0/(2eB 0/mc) ] 2
~ b , ( 34)

we may simply replace ‘P by ‘y+b (~ ’P/~ r) 2 in the right—hand side of Eq.
(16) . Note that b is jus t  1/4 of the (gyroradius) 2 , so that the

natural radius scaling is of the order of the gyroradius. Eq. (16)

then becomes , for the 2—dimensional electrostatic problem ,

(
~~~I~~

)-

~~ 

}— (r ~
) + - _ {/l_4r.b(a*/~~r)

—2/cos e0—~p—b(~*/ar)
_____________________________ (35)

+,4fax [*+b(a’P/ar)
2]_ [’P+b(~*/ar)~~]

)

x ~~~~ _2/cos
2
OO

_g +~~~~~(4+b(a’P/3r)
2]_g
} 

-l
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where 0o is the Initial spread in pitch angles of beam electrons , gEb ( a4/ ar ) ~~ 0
and where the operation 14ax

~ 
is taken at fixed r. The nonlinear partial

differential equation (35) appears suitable for moderately simple
computer solution by overrelaxation methods.

The condition (30), together with the requirement that the electron

gyroradius be small compared with the beam size rb, give the requirement

r c ~2 b c
V

o
/C <<(w

clu
p

) 
~ 

-
~~

where w E ~ B0/mC~

_________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- — -

~~
- —
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VI. CONCLUSIONS

In the one—dimensional case of purely electrostatic repulsion

(E> 0 , Er=O)
~ 

self reflection of the entire electron population occurs

in a finite distance even if there is no pitch angle spread. For

small or zero spread, this virtual cathode occurs at a distance L~ v0/6w
0
,

i.e., at less than one beam Debye length based on the initial kinetic

energy per particle. For a cold beam, all the beam electrons are

reflected at the same poin t , namely at this distance L. The density

profile is then given by n(s)=l/u with u the solution of the cubic

equation (21). The purely electrostatic one—dimensional problem with

angle spread has been reduced to quadrature, as given by Eqs. (24) and

(25).

For the case with E~~ O , the scaled electrostatic potential

-J ‘P 2e4/mv~ is given by the parabolic equation (35). This equation is

suitable for moderately simple computer solution by the method of

overrelaxation.

-

-

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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FIGURE CAPTIONS 
-

PIg. 1 
-_
Reference—plane velocity space, x v ~ Y~Vj , at spatial point s—O.

Beam input velocity distribution is nonzero on the spherical

cap with x >x0. Beam electrons with x
0
<x<x

5 are reflec ted 
- 

H
somewhere in the interva l (O,s) and do not contribute to n(s).

Reflected particles ~x<O) also contribute to n(s). There may

be an x14cv0 such that electrons with x~<x<v0 are never reflected .

In this case, 
~
v
O
<x<

~
xN does not contribute to r~~~~•

P 1

Fig. 2 Forward—going electron density n~ (s) at s [Eqs. (7) and (8)),

vs. the potential difference [Eq. (9)1 between point s and

.0; shown for beam pitch ang le spread 00 at-s-O given by

stn2
O0~y~/v~~’O, 0.1, 0.3, 0.5.

Fig. 3 Total electron density n(s) at s, vs. the normalized potential

difference ‘P between point s and s—O [Eq . (14)1. Shown for

‘
~~

— °.
~~ ~~~

0 9 5
~ 

Th~ lower , dashed curve describes the

never—reflected electrons at s~ M , i.e., beyond the potential

maximum.

Fig. 4 4(z) for z’M , from Eq. (18) .

I
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