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INFLUENCE OF FINITE ION LARMOR RADIUS EFFECTS ON THE ION
RESONANCE INSTABILITY IN A NONNEUTRAL PLASMA COLUMN
Ronald C. Davidson®
Division of Magnetic Fusion Energy
Energy Research and Development Administration
Washington, D. C. 20545

and

Faculty of Science
Hiroshima University, Hiroshima, Japan

Hwan-sup Uhm
Department of Physics and Astronomy
University of Maryland, College Park, Md. 20742 USA

This paper investigates the influence of finite ion Larmor radius
effects on the ion resonance instability in a nonneutral plasma column
aligned parallel to a uniform axial magnetic field BOéz' The analysis is
carried out within the framework of a hybrid Vlasov-fluid model in which
the ions are described by the Vlasov equation and the electrons are
described as a macroscopic, cold fluid. Electrostatic stability properties
are calculated for the case in which the equilibrium electron and ion
density profiles are rectangular and the ion distribution function is
specified by f?-const.xs(Hl—wiPa-fi)G(vz). The resulting eigenvalue
equation for the perturbed electrostatic potential &Q(r) is solved
exactly to give a closed algebraic dispersion relation for the complex
eigenfrequency w. This dispersion relation is solved numerically,
and it is shown that the growth rate of the ion resonance instability
exhibits a sensitive dependence on plasma parameters. For example,
finite ion Larmor radius effects can have a strong stabilizing influence
for azimuthal mode numbers 2>2, particularly when the equilibrium self
electric field is sufficiently weak. For the fundamental mode (¢=1),
however, stability properties are identical to those calculated from a
macroscopic two-fluid model, and the growth rate is unaffected by the value

of ion Larmor radius.

ﬁn1 leave of absence from the University of Marvland, College Park, Md.
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1. INTRODUCTION

One of the most basic instabilities that characterizes a nonneutral
plasma1 with both ion and electron components is the ion resonance
instability.z-s In cylindrical geometry (Fig. 1), the ion resonance
instability can be described as a two-rotating-stream instability2
in which the relative rotation between electrons and ions is produced
by the equilibrium self-electric field Eg(r)ér. Previous analyses of
this instability have been based on macroscopic cold-fluid modelsz—
in which the ion and electron motion is assumed to be laminar.

Although this is a reasonable approximation when

~

rLi«Rp 2

we expect significant modifications to the stability behavior when

¥ MR . (Here T is the characteristic thermal ion Larmor radius,

Liv'p

and Rp is the radius of the plasma column.) In this paper, we

Li

investigate the influence of finite ion Larmor radius effects on the

ion resonance instability in a nonneutral plasma column with rectangular

electron and ion density prqf}lfs.(Fig. 2). The analysis is carried
out within the framework of a hybrid Vliasov-fluid model. The electrons
are described as a macroscopic, cold (Te+0) fluid immersed in a

uniform axial magnetic field BOéz’ On the other hand, to allow for

the possibility of large ion orbits with thermal Larmor radius
comparable to the radius of the plasma column, we adopt a fully kinetic
model for the ions in which the ions are described by the Vlasov

equation. Such hybrid models have also proven quite tractable in

theta—pinch6’7 and ion—layer8 applications.




The stability studies presented here assume electrostatic per-
turbations with infinitely long axial wavelengths (3/9z=0). Moreover,
the analysis is carried out for arbitrary values of the dimensionless
parameter

L1

x’

P

For a nonneutral plasma column with uniform density, it is also

useful to introduce the dimensionless parameter

which is a measure of the characteristic relative strengths of the
equilibrium self-electric force and the magnetic force on an electron
fluid element. Here &pe is the electron plasma frequency, Wie is

the electron cyclotron frequency, and f=ng/n2 is the fractional
charge neutralization provided by the positive ions. 1In the present
analysis, the parameter § and the fractional charge neutralization

are allowed to span the range of values

0<8<1 ,
and

0<f<1 ,

where §=1 corresponds to the maximum allowed charge density for
radial confinement of the equilibrium configuration.

The outline of this paper is the following. In Sec. 2, we
describe the hybrid Vlasov-fluid model (Sec. 2.A) and summarize
the equilibrium formalism (Sec. 2.B) for general electron density

9
profile ng(r) and equilibrium ion distribution function of the form

n n




Here, L/ is the axial velocity, H, 1s the perpendicular energy

[Eq. (D], P

is the canonical angular momentum [Eq. (10)], and w, =

const. TIn Sec. 2.C, equilibrium properties are calculated for the

0

case where the electron and fon density profiles are rectangular
(Fig. 2) and the ion distribution function is specified by
(Eq. (18)]

fn)m1

f (*‘,x - _“‘"“"‘ G(Hl w P ‘T )(r(V ) ’

i

where f, n, and T, are constants. Electrostatic stability properties

i
are discussed in Secs. 3 and 4. In Sec. 3.A, the general eigenvalue
equation [Eq. (49)] is formulated for arbitrary ng(r) and
f?(Hl—wiPe. vz). In circumstances where the perturbed ion density
corresponds to a surface-charge perturbation (at r=Rp), the eigenvalue
equation (49) is then solved in Secs. 3.B and 3.C for the case where
f? is specified by Eq. (18) and the electron and ion density profiles
are rectangular. A striking feature of this analysis is the fact that
the required orbit integral i [Eq. (50)] can be evaluated in closed form
[Eqs. (59) and (62)] for general values of the parameters r /R .
and (2m /m )(1 f). Moreover, the resulting eigenvalue equation
(61) for the perturbed electrostatic potential @Q(r) can be solved
exactly to give a closed algebraic dispersion relatfon [Eq. (66)] for
the complex eigenfrequency w. As expected, in the limit where “-;Li/Rb*b‘
Eq. (66) reduces to the familiar cold-fluid dispersion relation [Eq. (70)]
previously discussed in the litemture.z'3

The general dispersion relation (66) is an algebraic equation of

order +3, where ¢ is the azimuthal mode number. In Sec. 4, a

detailed numerical analysis of Eq. (66) is presented and stability

properties are investigated for a broad range of plasma parameters.




It is found that the growth rate of the ion resonance instability

exhibits a very sensitive dependence on ;Li/Rp’ &ie/wie and f.

For example, finite ion Larmor radius effects can have a strong
stabilizing influence for mode numbers 132 (see, for example,

Figs. 10 and 14), particularly when the equilibrium self-electric
field is weak (&ge/w2e<<l or f close to unity). For the fundamental
mode (2=1), however, stability properties are identical to those
calculated from a macroscopic two-fluid model, and the growth rate is
unaffected by the value of ;Li/Rp'

As a final note, we emphasize that the present stability studies
are based on a fully nonlocal analysis of the linearized ion Vlasov
equation. The fact that the dispersion relation can be obtained
in closed form is a somewhat fortuitous manifestation of the sharp-
boundary feature of the equilibrium configuration (Fig. 2) and the

choice of equilibrium ion distribution function in Eq. (18).

rsensmpt

N g
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2. THEORETICAL MODEL AND EQUILIBRIUM PROPERTIES
2.A Theoretical Model
In the present analysis, the electrons are treated as a cold
(Te+0) fluid immersed in a uniform axial magnetic field Boéz.
Within the context of the electrostatic approximation (E:BOéz and
VXE=0), the equation of motion and the continuity equation for the
electron fluid can be expressed as
3 = XexBOéz
<sf+¥e°">¥e='i("7¢+—z—) ’ s
~a---n +Ve(nV) =0 (2)
3t e eve ’

where E(é,t)=-V¢(§,t) is the electric field, ne(g,t) is the electron
F density, Xe({,t) is the mean electron velocity, and -e and m,
are the electron charge and mass, respectively. In Eq. (1), the

spatial variation in BO is neglected (low-beta approximation).

To allow for the possibility of large ion orbits with thermal
E - L4
Larmor radius comparable with thq.sadius of the plasma column, we
L J

adopt a fully kinetic model in which the lon distribution function

fi(ﬁ’X’t) evolves according to the Vlasov equation

N ol Y
1

on

vxB e
) .8 e (_ v sz) 3 "
{_at + v = + % Vo + ———= _"W} fi(x,\{,t) 0 (3)

where +e and m, are the ion charge and mass, respectively. 1In Egs.

(1)-(3), the electrostatic potential ¢(¥,t) is determined self-consistently

from Poisson's equation

V2¢ = —Ane(szvfi—ne) ‘ €]




Equations (1) = (4) constitute a closed description of the equilibrium
and electrostatic stability properties of the nonneutral plasma column,

and torm the theoretical basis tor the subsequent analvsis,

2.8 CGeneral Equilibrium Properties

An equilibrium analysis ot Eqs. (D)=(4) tor general steady-

state (3/3t=0) profiles proceeds in the tollowing manner. As

A R

{llustrated in Fig. 1, we.introduce cyvlindrical polar coordinates

(ry0,2) with z-axis corresponding with the axis of symmetry;

A W M

g
»

r is the radfal distance from the z axis, and © {s the polar

™

angle in a plane perpendicular to the z axis. For azimuthally

e s

symmetric electron equilibria (2/20=0 and 3/02=0) characterized

o

0 Q 0 .
by n (r) and V (xX)=V (e, it is straighttorward to show trom
© e A ey Yo

Eq. () that the tunctional form ol electron density protile

Q ! ,

n (r) can be specified arbitvarily. Moreover, the deviation trom
(& - =

equilibrium charge neutrality produces a radial electric tield

0 U, :

E (r)=-3¢ /3r that influences the azimuthal motion ot the electron
-

| tluid. 1t follows trom Fq. (1) that equilibrium force balance in the

02 0 0
t radtal direction can be expressed as -m V " (v) /r=-cb (v)-eV (0B /¢,
| ¢ ot v e Q0

or equivalent ly

- 0 , ()]

W =W @ M
. @

\
W
e Cé¢ E ce

b N )
where w =eB /m ¢ {s the electron cvelotron frequency, o (O)=V  (r)/v
} e 0 e ¢ o

is the :ll\xll‘tl v velocity of an electron tluid element N and u‘}‘.( r) is
the angular .U\e tr ney detined by
o ) quency M ined 4

I\ t 0 equen e ¢ "

Al
cE REY
4 > O ) |
“ ", "8, r ° ve
B, 0
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We note from Eq. (5) that there are two allowed equilibrium
values of we(r). Solving Eq. (9 for w (r) gives
t‘
4 1/2
s n\“ “\OF
Wom @ E e [1 + (1 - »~—‘-) ) . (N
(8 (3 - w
oo

" + .
where the upper sign (w -“‘e) corresponds to a "tast" rotational
P
equilibrium, and the lower sign (w =w ) corresponds to a "slow"
- S -

rotational equilibrium. Evidently, in the limit of weak radial

electric field with {.urls‘_sm , it follows from Eq. (7) that o
) Lo e S
and w *w..
Yo YE

: . . (0 . ;
For the {ons, anyv distribution tunction ti(:\\',@ that is a function

of the single-particle constants of the motion in the equilibrium fields
is a solution to the steadv-state (3/2t=0) ion Vlasov equation.

For present purposes, we consider the class of rigid-rotor ion Vlasov

equilibria described by

0.0
f “‘(:\“1“\-“»- v

.

8
i 2 (8)

where w mconst., vois the axtal velocity, N,

is the perpendicular

. B

energy
i
{ - :
| H, = E. \\"‘*\"\ + \*O(r\ (9
«. L 2 U 2] o *
I‘0 is the canonical angular momentum
P, = mir(\-unuo\i i Q)
s <
and @ ,=eR /m.¢ is the fon cvelotron frequency.  Once the tunctional
5 ci i
I 0 ; -
I form ot ti(lll—mll 4y V) oas apecitied, the equilibrium electrostatic
| ¢
| 0 . ; :
L potential ¢ (r) can be determined self-consistently from the
' ®
steadv=-state Poisson equation
|



Q

1 3 3¢ { 30 0
— - 4dne , -ty P » -
S e r e ine | |d \fi(Hl “iko'\z) ne(r)] - 4

]
where fd vfo

Q
1-n((r\ is the equilibrium ion density.

An important feature of equilibrium distribution tunctions that

depend on H, and Pﬁ exclusively through the linear combination H,-w Po

i

is that the mean azimuthal motion corresponds to a rigid rotation ]

with angular velocity o, ,=const. Detining the mean azimuthal velocity

i
) ) 3 )
of the {ons by V:O(r\-(fd‘vvofi)/([d vfz\, {t is straighttorward to

- 0 3 "
show from Eqs. (8)-(10) that \ko(r)-mlr tor the class of ion equilibria
described by Eq. (8). In the equilibrium and stability analvsis that

follows, {t i{s useful to introduce perpendicular velocity variables

appropriate to the rotating trame of the fons. Defining

Vv = v tu,¥ .
X o
(12)

\y = Vy-mix 5

(or equivalently Vr-vr and Yn-vo~m‘r\. it is straightforwvard to show

trom Eqs. (9) and O that

LI
- " = Y (v 1)
", \\\{Po 3 vy + (), &
Y Al Al Y )
where Vi=VT4V 7=V 4V [ and y(r) is defined by
L Ty oy e 8
\) m Al Al 1
v(r) = ed (1) - 5 (et Ot (14)

Al
Note in Eq. (13) that miVI/i is the perpendicular kinetic energy in
a frame of reference rvotating with angular velocity Wi and Y(r) is

the effective potential in the rotating frame. Substituting Eq. (13

. Q j.3 0
into Eq. (8), the equilibrium ifon density protile nl(r\u d vt‘ can be

expressed as
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0 g e Bl B ,
ni(r) = 27 f deVL f—w dvzfi (TT-VL + y(r), vz) . (15)

0

Moreover, it can also be shown that the equilibrium pressure tensor

in the plane perpendicular to éz is isotropic with perpendicular
0
pressure Pi'(r)=n2(r)T?'(r) given by

x @® s s m =
ng(r)T?'(r) = 27 [ deVL j dv2 — VZf. (vi-Vz + y(r), v?).
g 0 =, :
(16)

Equation (16), in effect, determines the perpendicular ion temperature

profile TO

i'(r) in terms of the equilibrium distribution function f?.

2.C Sharp-Boundary Equilibrium

The formalism outlined in Sec. 2.B can be used to investigate
equilibrium properties for a broad class of electron density profiles
0 - : : - : 0 . . y
ne(r) and ion distribution functions ti(Hl_ui}G‘vz)' For purposes of
analytic simplification in the stability analysis in Sec. 3.B, we
specialize to the case of a sharp-boundary equilibrium (Fig. 2) in
which the electrons have a rectangular density profile, i.e.,

R

n.=ceénst., % O<r<R_,
0 P

nO(r) = we a7)
0 s R _<r<R
p c
In Eq. (17), Rp denotes the radius of the plasma column, and r=R,
is the radial location of a grounded conducting wall. For the ion
e g
equilibrium, we make that particular choice of ti that also gives

a rectangular density profile, i.e.,

fn . m

0 0i A )
- - ol 3 8

{ £ e O(Hy-w Py T)G(v,) (18)

where f and fi are positive constants, and G(vz) is the parallel

velocity distribution with normalization J dsz(vz)=l. Substituting
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Eq. (18) into Eq. (15), it is straightforward to skow that the ion

density profile can be expressed as

fn0=const. . lb(r)<T1 -

ng(r) = (19)
0 b ‘1’(1’) >'f‘i *

In the region where the electron and ion densities are constant [Eqs.
(17) and (19)], the solution to the equilibrium Poisson equation (]1)_

corresponds to the parabolic potential

m
0 =i 2 g
¢ (r) = 7o wEwCir 5 (20)
where ¢0(r=0)=0 has been assumed, and
2Tn _ec 0
ST gy IR - A
we Bo (1-f) Bor e const. (21)

0
is the E *QO rotation frequency. Substituting Eq. (20) into Eq. (14),

the effective potential Y(r) can be expressed within the plasma column as

miﬂzrz . (22)

N =

Y(r) =

where Qz is defined by
=8 2 & ity o= o
9) _mEmvi_wi_miwci—(mi ml)(wi wi) (23)
and wi is efined in Eq. (31). We note from Eqs. (17), (19) and

(22) that the electron and ion density profiles precisely overlap with

a common radive Rp (Fig. 2) provided w(Rp)=Tj, i.e., provided ?

T =

1 2.0
i 2

R, (24) }‘

which relates %i and the radius Rp of the plasma column. Making use of

Eqs. (22) and (24), the ion density profile in Eq. (19) becomes
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fn n O<r<R ,
0 p
ni(r) = (25)
0 sy R €r<R .
p

~

Comparing Eqs. (17) and (25), it is evident that n?(r)=fn2(r). where
f=const.=fractional charge neutralization.

We make use of Eqs. (16), (18), (22) and (24) to evaluate the
perpendicular fon temperature profile T?'(r). Some straightforward

algebra gives
w0 e 2 2 b
l[l(t) = lill-r /Rp] (26)

) 0 -
for 0«r<Rp. Note that Til(r) is a maximum (Ti)for r=0, and decreases
to zero at the edge of the plasma column (r=Rp). For future reference,

it is useful to introduce the ion diamagnetic frequency defined by

wdl=(v/e80n2r)(ﬁ/ﬁr)(n?T?l). Making use of Eqs. (25) and (26), we
find <
y,, = 11C 2 - onst (27)
[N laer e e st. 4
di (BO RZ
p

Substituting Eqs. (23) and (24) into Eq. (27) readily gives

2 - 28
m1+mimci mvi(uh+wdi) s (28

which relates the (constant) frequenciles Wis Wy W and Wyi* Equation
(28) 1s simply a statement of radial force balance (of centrifugal,
magnetic, electric and pressure gradient forces) on an ion fluid

element for the choice of equilibrium distribution function in Eq. (18).
Equation (28) is a useful relation since it indicates that the

angular rotation velocity w, cannot be specified independently of

i

i Vg and e For example, zero mean rotation of the ions (mi=0)
(& V] <

is consistent only if W= =040 which corresponds to an exact balance

w

N

o  EESIERTT ISR ARPEY S, TSR g R

P

T ey

. g -




of electric and pressure gradient forces on an ion fluid element.

On the other hand, for complete charge neutralfzation with f=1 and

It (tor example)

Ly ]
MR’O' it follows from Eq. (28) that m;+mimvi.mclwdl' |

<<w . 1Is also satisfied, then the two solutions tor |

2
the inequality “aq i

w, can be approximated by w, =0

and WTTwL g which correspond to
o

{ dd

"slow" and "fast" rotational equilibria, respectively. Finally, for
the rectangular density protiles prescribed by Eqs. (17) and (29),
it should be noted from Egs. (7) and (21) that the mean azimuthal
motion of the electron fluid corresponds to a rigid rotation with

t

w =W =const.
e e

2.D lon Trajectories for Sharp-Boundary Equilibrium

Of particular interest in the stability analysis in Sec. 3.8

are the ion orbits in the equilibrium fiecld configuration [see Eq. (20|

0 .
'\‘ ()\() i3 “U(\.x ¥
( 29)
m
0 0 . 2. %
o = F ) @ - - m x¢ tve &
EN(x) = E (v I )‘\.v)

In Eq. (29, we have introduced the electrostatic bounce frequency Wy

detined by

2nn e
) ()
W W ) (-1 . (GRIL)]
E ci m
i
2 2
I1f electric forces dominate magnetic forces (“h\\mrl" then the

perpendicular fon motion is simple harmonic at trequency Wy e In
general, however, the electric and magnetic forces may be comparable,

and the subsequent analysis fndicates that the perpendicular ion
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+ =
motion is biharmonic at frequencies wy and Wis where
Wy Qwi 142
E - + + —
wy 2 1 1 wz
ci
1/2

w 4w
. iw S [1 + (1 +-——l§> ),
2 wci

The ion trajectories required in the stability analysis satisfy

-

i+

(31)

d*'
— = '
dt' ,\\" ’ (32)
' ' 2
d"\', S 0( |) +¥ XBOEZ
tr 5 m, k& c &
where {'(t'=t)=¥ and X'(t'=t)=¥' Substituting Eq. (29) into Eq. (32),
we find
z! = z+vz(t'—t) (33)
and
d* 2 d
Ve = = V(g O
5 x (t*) Wy X (") + Wy ger Y -
dt
(34)
d2 2 d
L N = o ' 5 . IR | '
i y'(t") Wy (t") Wy e’ X (")

Equation (34) can be solved exactly to give the particle orbits in

the plane perpendicular to BO%z° In this regard, it is useful to make

use of the velocity variables (Vx,Vy) in the rotating frame defined in

Eq. (12). Moreover, we introduce the polar velocity variables (Vy59)

in the rotating frame defined by
vx+mjy = Vx = V,cos¢ ,
(35)

vV -w,x =V
y

y = V,sin¢ .

= e




In solving Eq. (34), we also make use of the fact that the Cartesian
coordinates (x,y) are related to the polar coordinates (r,6) by
x=rcosf and y=rsinf. Integrating Eq. (34) with respecr to t', and
expressing the resulting solutions for x'(t') and y'(t') in terms of

(V,,¢) and (r,6), we find

x'(1) = +1 o {VL[sin(¢+mIT)—sin(¢+w;T)]
w0y ; i
+ i 0w e (64w, 1)}
r(wi-wi)cos( iT)—r(wi wi)cos Wy T -
and
y'(1) = e {Vl[cos(¢+w;1)—cos(¢+w:T)]
wi—w, ey

2 + SR <
+ r(wi-mi)sin(6+wir) - r(wi-wi)31n(e+m11)} -

*

i is defined in Eq. (31). It is evident from

where T=t'-t, and w
Eqs. (%) and (37) that the perpendicular ion motion is biharmonic

1 + = + -
at frequencies w, and w, . Shown in Fig. 3 are plots of wi/mCi and wi/mCi

At = 2 2
er .o No v -
versus mb/wCl Note that w; asymptotes at Fu mci/Z for w >0

b b
In this 1imit, the ions are effectively unmagnetized and exhibit simple

harmonic motion at frequency w, in the electrostatic potential ¢O(r)=

b
z .2
(miIZe)mbr =

A |




16

3. ELECTROSTATIC STABILITY PROPERTIES

3.A General Efgenavlue Equation

In this section, we linearfze Eqs. (1)-(4) assuming electrostatic
perturbations about the general class of axisymmetric equilibria

described by t'O-f(:(H_l—m

g Po.vy) [Eq. (6)] and arbitrary electron

i
density profile ng(r) (see Sec. 3.B). As indicated in the introduction,

the present analysis assumes flute perturbations with 3/3z=0, so that

all perturbations have spatial dependence only on &(_l-(x.\'). or equiv-

|
|
V

alently ¥ =(r,0) . In the electrostatic approximation, the perturbed
electric field is 3E(§J,t)-—vlﬁ¢(§l.t). and Eqs. (1)-(4) can be

linearized to give

) ¢ )
o =V ~(~w_ *20 ISV = — S¢ o 18)
(\\t " “v .\U)\\vr ( Yee ‘v)‘ el mp ar Ay (
) ) 1 3 ) e |
= )8V .+ |- — (rfo ) sV = S 84, (39)
3t * Y% 357 %Ves l Wee * T or U “v))‘\v m v o el
v 5
‘0
1
3 J | Q0 (S "
. { ) § i~ § — = = () ° 40)
(.\t + Ve .\0) n, + : (rnv VN_) + = 56 ‘\vl\ (4
B e
) ) e [.0 X"PoNz )
A e - et S 1 v,t)
{.\t X Xy 2 lk () * C av (- g R
(41)
e ) 3 ()
- “‘j “1‘\‘“,’\‘1'”] aw '((R‘J‘\’.) ¥
and
)
13 J 1 3° . . T . L5
- . e )8 = ~4ne(|d VEEf . =6n ) . (4N
(r ar T3¢ T ¥ \(,3 ¢ sk ¥l s
r «

In Eqs. (38)=(42), ‘\\"‘(,‘\\"l,() is the perturbed olectron tlafd velocity, ‘\l“(\"§.l't)
is the perturbed electron density, ‘”‘(‘{‘,1',‘(}” is the perturbed ion

. )
distribution function, k‘ (&(‘1)"(~‘®0/.\\'\\-r {s the equitibrium radial

v e
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electric field, oo(r) satisfies the steady-state Poisson equation (11),

and mc(r) i{s the equilibrium angular velocity defined in Eq. (7).

To simplify the right-hand side of Eq. (41), use is made of JHllﬂy-
m Yy [Eq. (91, ﬁPg/ax-miréﬂ [Eq. (10)], where go fs a unit vector in

the 8-direction, and ng/SPg--m 3(?/3H1 [Eq. (8)]. The linearized

i

Vlasov equation (41) becomes

g 2

3 3 e (.0 YPofz) o .,

{ at . X 3§J > m § ( 4) * c v ’Gti(kl'X'()
i / v

- : a0 1
- e(xl—mirgo) . \16@(§4.t) AT ‘l(Hl-miiﬂ'vz)

We substitute

Se(xyat) = Se(xexp(-fwt), Tmo>0

in the right-hand side of Eq. (4 ) andintegrate trom t'=-a to t'=t

using the method of characteristics. Neglecting initial perturbations
0 e

and noting that b and 3t i/AHl are constant (independent ot t')

along a particle trajectory in the equilibrium tield configuration,

we tind

.3f0

t
‘\fl(Q_‘_o\’cl) = e J\‘ dt'(‘xp(—imt')

oM,
(44)

. R W
3 {Yi(t')'¥18¢l§i(t')]'m( A A¢l§i“')l} .

where §j(t') and Yi(t'\ are the perpendicular particle trajectories
. 0 .. PU
in the equilibrium fields “Oxz and B (xy)==(3¢ /Jt)ﬁr [Eq. (32)],
0
and ¢ (r) satisfies the general equilibrium Poisson equation (11).
Making use of Xi'V15$(§i)-(d/dt')5$(§1\ to integrate by parts with

respect to t', and changing variables to t=t'-t, Eq. (4%) can also

be expressed as

6f1(§l'¥‘() = Sf‘(§4.y)vxp(—imt) '




where 18
: My
8 (x,,v) = L | [3¢( )
XX m Vg v, Xa
(45)
ﬂ) ‘ -
+ J ; dlexp(—imr)(im - mt~;6.) 5&(§1‘)
In writing Eq. (45), we have made use of Eq. (13) to express
0 ‘ o 7% 2 ) ,
fi(H-‘. wip()'vz) fi ("2- Vl > “’(r)b vz ) (qt‘)

and hence Qf(i)/SHL = (mivl)_laf?/avl. where leI/Z is the perpendicular

kinetic energy in the rotating trame, and ¥(r) is defined in ¥Eq. (14).
We now assume perturbations of the form 6$(§1)-$c(r)cxp(i(0\.

569(§1)-ﬁee(r)oxp(ifﬁ), ete., where U is the azimuthal harmonic number.

Some straightforward algebra that makes use of BEqs. (38)-(40)

readily gives

Al 3

2 D)

\ P

. | “he 3 - I\ e °
2 ¥ 2 d 3 ' .
Yran_ Vx3 = - T or | 3 ar P (T + 3 5 ALY
v r v
. , . %))
W
| ) | R] l\l\
=4, (r) —=—e S L B8, 42y )
r VQ( w=-Lw (r) Jr 2 ( ‘ee e o
(8 \!
o
2 Q 2 2
where mp‘(r) drn (e /m o, v(r) is defined by
€ ¢ o ¢
2 | ! : 2
\“‘r) = (W “2«|\ \) W - t 5t (r w ) .- (u“\‘u“‘ . ("OS)
-] ce [} oo A e 3

and mc(r) is determined trom Eqs. (7) and (11). Morcover, substituting

Egs. (45) and (47) into Eq. (42), the lincarized Poisson equation can be

expressed as & 5
i : u“
12 “pe) O pels
0 ol R o b~ R S PR R ) T
\ r \
¢ L )
a (49)

-
W e
‘,1" ( T\ +.‘u\ )
ol (>

v
‘\
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2 of 0
- ﬁ%?‘ J a3y éa'svf [&(r)+i(w-1wi)J-m dr¢(r')exp[1z(6'—e)-1MT]) g

where the abbreviated notation ;(r)=$2(r) has been introduced in Eq.
(49), and r'(t=0)=r and 6'(t=0)=6. Equation (49) is the eigenvalue
equation that determines a(r) and the complex eigenfrequency w for the
| class of ion equilibria described by Eq. (46) and general electron

density profile ng(r) and angular velocity profile me(r) consistent

with Eqs. (7) and (11). In this regard, we note that the polar velocity
variables (V,,¢) defined in Eq. (35) are natural variables for the
integrand in Eq. (49). Therefore, in the subsequent analysis of Eq.

(49), we make use of

3 e of
f Jd y f de rdvlvl J dv_ .
0 0 —e

# Moreover, it is convenient to introduce the phase-averaged (over ¢)

orbit integral I defined by

g LI &
T = 4 J E__JO dté(r')exp[if(8'-8)-iwT] . (50)
0 e

3.B Eigenvalue Equation for Sharp-Boundary Equilibrium

We now specialize to the case where the equilibrium electron
and ion density profiles are rectangular (Fig. 2), as discussed in
Secs. 2.C and 2.D. The corresponding equilibrium ion distribution
function is given by Eq. (18), which can be expressed in the equivalent

form

2,
0 i W P R r
fi'f_zT‘s_z'Vl‘T1<l'R2) Glvy) » k2
p

where use has been made of Eqs. (13), (14), (22) and (24).
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= : )
Moreover, making use of Eq. (50) and Anl(r)/ﬁrs-nuﬁ(r—Rp) [Eq. (17)],

the eigenvalue equation (49) can be expressed as

- ) 3
1 “ ‘P( “ P \,.. W e
r or TR ;,> ar ¢(r)| - 2 L 4 g” ¢(r)
v r v
e e
2
‘\ B m. [
Lo(r) gﬁ ¢ pe §(x-R ) (52)
r w=w 2 p
e X
e
_‘ "_ 8] o ‘fo
5 ‘"f dv, v f dv. o ok [atryblo~tu, 1]
- vy — 1V v = v ? ¥ W=xw, >
“H 0 e z Vl A\l i
where
2 2 2
v (r)=(w_ -2 ) -(u- ) =const., (53
o ce e e
)
4dun e’
and i 0
3 w W e ® CONSE.., O<r<R
P pe mv p
w- (r) = (54)
pe

0 i R <r<R
‘W C

Evidently, the angular frequencies «. [Eq. (2], w [Eq. (30 ],

E b

m; [Eq. (31)] and m; [Eq. (7)] are constant (independent of r) for
the case where the equilibrium electron and ion density profiles
are rectangular (Fig. 2).

It is evident that the perturbed clectron contribution to the
right-hand side of Eq. (52) [the term proportional to 3n2/®r=—n06(r—Rp)
in Eq. (45)] is equal to zero except at the surface of the plasma
column (r=Rp). Moreover, it can be shown that Eq. (52) supports a
class of solutions in which the perturbed ion density [the term
proportional to Jd‘v V;‘Jf?/JYl... in Eq. (52)] is also equal to
Zero except at rer. In this case, it follows trom the lincavized

Poisson equation (52) that the electrostatic potential ¢(r) has

the simple form ]
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A '3
¢(r) = Ar (55)
inside the plasma column (0;r<Rp). In Eq. (55), A is a constant.
The required orbit integral 1 [Eq. (50)] becomes
= 0 27 d 1y
I = 1A J drepriVQ—iwr]] 5%[r'exp(ie')] > (56)
-0 0
where we have interchanged the order of the T and ¢ integrations.
From Eqs. (36) and (37), we express
1 L} 9’ e ] L} p‘
[r'exp(i8') ] = [x'(1)+iy'(1)]
(57)
3 2
s :;;—[iul(T)Vlexp(i¢)+ra2(r)exp(ie)] s
(oo,
where
a (1) = (iw;T)-exp(iw' 1)
1 (T exp (1w, 7)-exp(ivw, 2
(58)
a,(t) = (w -m—)exp(im+r)—(w —m+)exp(iw—1)
2 > S G 1 p (B i ¢
and mi is defined in Eq. (31). Substituting Eqs. (57) and (58)
into Eq. (56), it is readily shown that
A A(r) 0 - +
I =1 e SNEY dtexp(-iwt) [(w,-w,)exp(iw, 1)
+ -2 3 i
(wi-w{) ~
(59)

= (mi—wz)exp(imgr)]z

where ?(r)tArz. An important feature of Eq. (59) is that the orbit
integral i is independent of perpendicular energy miVE/Z. This is
a2 consrquence of the prarticularly simple form of &(r) within the
plasma column [Eq. (55)].

Finally, after some straightforward algebra that utilizes Eq.

(51), =he ion velocit: integral required in Eq. (52) can be evaluated
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to give
. : nf(: R it
2n I dv,Vv I\ dv — —— m ——f—— = n(y)
gt 5

0 2o z V, v, (‘li/m') or 1

(o0)
R
S TP SRS e
tn0 = S(r Rp)
(-1i/mi)

Substituting Eqs. (59 and (00) into Eq. (52), the linearized Poisson
equation for the sharp-boundary equilibrium discussed in Secs. 2.C

and 2.D can be expressed as

-9 <9 (61)
: Qv w =2 By
e ce e p i ;
= o) |- 222 PR (w|se-R) ,
r 2 w-to ~2 p P
A e v
e 1

2

5 <9 9 R
where vi

N 5 A
27 = Gt a < - / AT ) N <
“Ii/mi' wog qntnoz /mi‘ NPO 4 ¢ /mo. o ;Bn/mcu.
OCC/BO)(1—1)=

Q-‘ 2

v [ 2u -f Bq. (2 T i »fined i Xo [ 3 ¢ b is
(“pv/"“co)(l £) (Bq. €21)]; Ve is defined in Eq. (53), and lc(\) is
defined bv

+

w =w_ 1is defined in Eq. (7) with we (2mn

e L

i(m—\'mi) 0 o e
o [ dloxp(—iwl)[(mi—mi)exp(iwil)

r (u‘)’-]—' B & g
(u‘.‘u‘.)
1 1

{

- (mi-m:)oxp(iwzl)]\ (62)
) \+ . ¢ V= Lw Y. =t L
AT e e Rl S et SRR B A
- ‘+ LO m!(f—m)! ; Q\‘ m(‘+ —) : ‘+
U e . =X =~ = Ny =l
{ ( { m= ¢ { i “i i ( { i

3.C Dispersion Relation for Sharp-Boundary

Equilibrium

The right-hand side ot the eigenvalue equation (61) is equal to

zero except at the surface of the plasma column (r=Rp). Moreover,




the cipgentupction H(r) satisties the vacuum Poisson equation,
-1 0 TR : .
r (670 [t/ |={0% /v ) ¢=0, except at l'=l\‘ .« Therefore, the
)
solution to k. (6l can be ¢ }.}‘I't‘:;ﬁx‘tl as
5 ¢
g ledmke , 0 <¥< Rp : (63)

inside the column, and

S0 LY
‘ [1-R""/r" ")
& (1) = Ar" —F—— (R <r <R, (64)
() L D L
[-RZY/RE")
& p

in the vacuum region between the surrace of the plasma column and

the conducting wall. Note that $(r) is continuous at r=Rp. and

that é\(r~Rv)-0. The dispersion relation that determines the complex
cigenfrequercy w 1s Jetermined by multiplying Eq. (61) by r and

integrating from Rp(l—(\ to Rp(l+») with r‘0+. This gives

~ S g N
h@ ) (A‘h\ [3¢ J
R\i'\r\\1 b (l = J“_‘ ?w’-ﬂl
l\‘ fr=R P N S P
P e P
S a0 (65)
ws w =2 w-,R”
- Q ._P‘_‘_‘_ ,U‘-,_%' . - G _\k:_.... P I‘\‘ (@) @(I‘:R‘ T
A Vg L9y

Substifuting Eqs. (b3) and (64} intc Eq. (65) and rearranging terms

pives the dispersion relation

~2 D
1 W . w 1R:
—— '—i—g PPN | S— e P ‘,J‘ FQ(“\\ 5 (66)
1-(R /R ) ] X X 2
pc 2(w-0 ) (-0 Y~(w =20 )] i
e e ce e

here .c(u\ is defined in Eq. (02), wp-m; is defined in Eq. (7) and use
lias been made of Eq. (53).

Equation (56) c-n be used to investigate the stability properties

of « partially neutralized electron beam for a broad range of dimensionless

~2 2
parameters /m‘e. f, etc. An important parameter that chuaracterizes

pr e

the strength of ion kinetic effects is the ratio of characteristic ion

e il ednin




Larmor radius (r'u=vi/\u‘_l

ro
o

) to radius of the plasma column (Rp)'

Making use of Egs. (23) and (24), it is straightforward to show that

D 9 s -
r - 2 w0 ) (&, -w,)
L *i Q Ke=u, )i =ty

e il . gkiiile | ElRENCNERIY T
RP Rl‘ Pel Yei m\‘ i

(67)

where w; {s defined in Eq. (31). Evidently, the cold-ion limit

(4 ]

Li

2
(where the ion motion is laminar with r".<<R;) corresponds to ion

; S = c
rotat ion velocities that satisfy w *mi OT W, ~w,. A caretul

i

of the expression for I' (w) [Eq. (62)] shows that

x
) ) )
[ R ) w
lim |»qul-1‘mn! SARSSUN, S —————
».,—‘ Yoo N - - =
NI N AR 22w ) [lo=ta. 4 lu . +20.) ]
i 1 o | 1

o - 4+ , -
where use has been made of Eq. (67) and mi—mi=m_i+lmi [Eq.

S

; ; = 2
Similarly, in the limit where Milwi‘ we obtain

) ) il

..n_{}{— W,
s DT D « p1
lim *l'ql o)) & —————m el e s 5
e \ " - L g 5
0, W, 2%y, | 2(w0-w,) [(w=f0 )+ (w +2w.)]
1 1 1 €1 1

examination

(68)

CBRN

+ + ) :
where W =W =0 ,+Jmi. Therefore, making use of Eqs. (68) and (69),

1 {8 §

we find that the dispersion relation (66) in the limit of

2D )
Larmor radius (r;i/R *0) reduces to
M p

Al

w
1 ; D

[\

where mi‘Ji [Eq. (31)]. Equation (70) is identical to the

zero ion

pi

familiar

- , A . £ i : :
dispersion relation™ obtained within the framework ot a cold two-

fluid model. Throughout the remainder of this paper, Eq.

referred to as the "reference dispersion relation'” (RDR).

to assess the influence of finite ion gvroradius on stability behavior,

(70) is

In order

(69)

- e —ee e —————————— + e e e 5
2(w=-w ) [(w=Rw )=(w =20 )] 2(w=-Ww, ) [(w=-w, )+ (0w _,+2w,) ]
e e ce L0 1 1 Lod | 1

(70)

it will be useful to compare the stability information obtained from

Eq. (66) with that obtained from Eq. (70).
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4 4. STABILITY ANALYSIS

In this section, the linear dispersion relation (66) is solved
numerically for the complex eigenfrequency w=wr+iY. In this regard,
we assume throughout this section that the electron fluid is rotating

in the slow equilibrium mode with
1/2

5kl el

w 2&2 .
—fv_g[l“<1‘—zp£(1-f> ) ’

w
ce

€
n
£
]
=
o [ F
o |

(71)

where use has been made of Eqs. (7) and ¢21). It is also assumed
that the mean equilibrium motion of an ion fluid element corresponds

to the slow rotation velocity defined by

1/2
R Yei 4(O\’E'mdi)
Sy My s 1 - (1+ e e
ci (72)
A2 ~2 1/2
w ., m, 2w r
i i 1_J_+._i.__.P_9.(1_f)_4ii.
2 m 2 2
e w R
ce P

In obtaining Eq. (72), use has been made of Eqs. (27) and (28) to

i i i’

where w; is the laminar rotation velocity defined in Eq. (31).

Substituting Eqs. (71) and (72) into Eq. (66), the linear dispersion

‘solve for w =w;. For %Ei/R§<<1, we note from Eq. (72) that o =w

relation can be expressed as

SN2 A2 2
w w_.R
1 29’ = _ Pe s & + szp Fg(w) !
l-(Rp/RC) 2(w-2we)[(m-lwe)—(wce-Zwe)] 22vi
(73)
where Fl(m) is defined by [Eq. (62)] f.
m
- + 2, A A |
Py e B % 21 i ! ;
» W m=0 WEREST m-lw—-m(m+-w-) o -0t
S i i 1 i i
(74)
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S Py =
Moreover, in the laminar cold-fluid limit where r;'/Rﬁso, ml=ml
and wv-m;, the reterence dispersion relation (70) can be expressed

as

o
<

] W
\
= e e IR

B L ')A’ Zigi _- X —
1-(R /R )L\ 2(w=w ) [ (w=w )=(w
p e e e ce .
o (75)
ul‘-
+ g N pi

3ké-9mt’|(m—i;-)+(m-l;éu&)d
i i (sdi i

where m} and m; are defined in Egs. (31 and (71), respectively.
For the fundamental mode (f=1), we reiterate that the linear dispersion
relation (73) is identical to the reterence dispersion relation (75).
Therefore, the Viasov-tluid stability properties tor =1 ave identical
to those calculated from a macroscopic two-fluid model, and the growth
rate is unaffected by the value of © /R .

Betore proceeding with a detailed analvsis of the dispersion
velation (73) and comparison with the reference dispersion relation
(75), it {s useful to summarize the limitation on plasma parameters
necessary for existence of the noenneuatral equilibrium contiguration.

From Eqs. (71) and (72), we requive

2L a-n <1, (76)
and ﬁv .

l", m .‘u\‘

< |14 e aen (7

}‘P e u'\ &

tor radial continement of the equilibrium. The inequality in Eq. (76)
assures that the (repulsive) space-charge torce onan electron fluid
element {s weaker than the magnetic restoring torce. Moreover,

Eq. (77) is ecquivalent to the requirement that the pressure gradient

. . (UL iy
torce on an fon fluid element (in the outward divection, since A1l1/3r\0)

is weaker than the contining electric and magnetic forces. In Fig. 4,
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we make use of Eqs. (76) and (77) to {llustrate the region of parameter
space (f-@ie/wie) corresponding to existence of allowed equilibria

for ml/me-183b and several values of a-;Ll/Rp. Note that the
equilibrium electron density can exceed the Brillouin flow limit
(Qie/wie-o.ﬁ) provided there is sufficient charge neutralization that
f:I‘O-S(mie/dse). The uppermost curves in Fig. 4 are calculated from

the inequalfity

R B (78)

which 18 equivalent to Eq. (77).
The growth rate y=Imo and real oscillation frequency mr-Rvm have
been obtained numerically from Eq. (73) for a broad range of plasma
% T ;
parameters f, mp /@  and rII/Rp° We now summarize the essential
(& ¢e '
features of these stability studies. The analysis {s restricted
to nonneutral proton-clectron plasmas (mi/mv-lﬂlb). and the prowth

rate and real frequency are measured in units of the lower hybrid

frequency

- \ \ l/:
“Lr™ et

Moreover, throughout the remainder of this section, it is assumed that

R
P w5
R

o
A detailed study of the influence ot the conducting wall location on

stability behavior {s summarfzed in Ret. 3 for ¢ 1/Rp-0'

Y
1
2 2
Stability boundarfes {n the parameter space (f‘mp(/m .) are
o c\

{llustrated in Figs. 5-8 for several values of l:l‘/Rp ranging trom 0

to 2.5, In Fig. 5, the solid curves correspond to the stability
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boundaries (y=0) obtained from Eq. (73) [or Eq. (75)] for }Li/Rp=0,
and several values of azimuthal harmonic number ¢. For a given
. "2 2

value of ¢, the region of (fﬁﬂpe/m:u) parameter space above the curve
@ corresponds to instability (y>0), whereas the region of parameter
[ space below the curve corresponds to stability (y=0). For moderate
plasma densities (Qiu/mie‘0.0I, say), we note th§t the number of
unstable modes increases rapidly as the fractional charge neutraliza-
tion f is increased to values comparable with unity. In Fig. 6, the

solid curves correspond to the stability boundaries obtained from

Eq. (73) for EL[/Rpso.S, and =2, 4and 10. It is important to
note that the system is stable in the region of parameter space
where the equilibrium space-charge field is weak [see the upper left-
hand corner of Figs. 6(a)-6(c)]. Also note that the stable region
of parameter space increases in area as the azimuthal mode number ¢
is increased [compare Figs. 6(a) and 6(c¢)]. In Figs. 7 and 8,
the stability boundaries are illustrated for fLi/RP=I and le/Rp=2.S.
Evidently, tor such large values of le/RP, the region of (f,&so/mfv)
parameter space corresponding to allowed equilibria becomes increasingly
limited by the constraint in Eq. (78) [see also Fig. 4]. However,
the qualitative features of the stability boundaries, and their dependence
on mode number ¢, are otherwise similar to Figs. 5 and 6.

The dependence of stability properties on fractional charge
neutralization f is further illustrated in Figs. 9-11, where the

normalized growth rate y/mI and oscillation trequency mr/ml are

H H

1

"2 y 2 2
plotted versus f for w” /mz =0.002 (Figs. 9 and 10) and w~ /w0 =0.

pe’ ce pe’ ce
(Fig. 11), and several values of mode number 0. We also assume
f”/Rp-o in Fig. 9, and ﬁl l/Rp=().a in Figs. 10 and 11. In Figs.

9(b), 10(b) and 11(H), mr/m1 is plotted only for the ranges of f

H
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corresponding to instability (v>0). Several features are noteworthy

in Figs. 9 and 10. First, the number of unstable modes increases
rapidly as f {s increased. Second, for ¢>2, the instability growth
rate is significantly reduced by finite ion Larmor radius eftects,
particularly when the equilibrium self electric fleld is sufficiently
weak. [For example, compare Figs. 10(a) and 9(a) with f approaching
unity]. Third, for low beam densities, we note that the real frequency
W, exhibits a nearly linear dependence on the fractional charge
neutralization f [Figs. 9(b) and 10(b)].

The dependence of stability properties on beam density is illus-
trated in Fig. 12 where y/w , and mr/wL are plotted versus m /mfv
for £=0.5, rLilRp-0°5 and several values of ¢. As shown in Fig. 12(a),
the absolute maximum growth rate (yM“O.Sh mLH) for this choice of
parameters occurs for ¢=2 and m /m, =(0,38. The abscissa in Fig. 12
extends to Qpe/mce-l.o since physically allowed equilibria exist for
&ie/wge:O.S/(l—O.S)-l (Bq. (76) and Fig. 4].

Of counsiderable interest for experimental npplicntinn is the
stability behavior for specified values of f, m /m;j and r /R ;
Typical results are summarized in Figs. 13-15, where y/mL" and mr/wL“
are plotted versus mode number ¢ for m /mr =0.01 (Figs. 13 and 14),
&pe/wce-o.s (Fig. 15), f'u/Rp-O (Fig. n). r /R =1.0 (Figs. 14 and 15),
and several values of fractional charge neutralization f. The graphical
results are presented only for unstable modes with y>0. For sufficiently
low beam densities and large fractional charge neutralization (@ﬁo/mﬁv-
0.01 and f=0.8 in Figs. 13 and 14), we note that finite fon Larmor
radius effects reduces the instability growth rate and the number of

unstable modes. For example, for r]i/R =0 and f=0.8, the absolute

maximum growth rate (y =0.07 W ) occurs for =12, and the system {is
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unstable for ¢ in the range 1<2<18 [Fig. 13(a)]. On the other hand,
for ;Lilkp-l'o and f=0.8, the absolute maximum growth rate (yM-

0.055 wL“) occurs for 2=9, and the system is unstable for 1<t<14
[Fig. 14(a)] . For high beam densities (Fig. 15), finite ion Larmor
radius effects have a negligible influence on stability behavior (see
also Fig. 11), although there is a substantial reduction in the
number of unstable modes relative to the low-density case (Figs. 13

and 14).
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5. CONCLUSIONS

In this paper, we have investigated the influence of finite ion
Larmor radius effects on the ion resonance instability in a nonneutral
plasma column. The equilibrium and stability analysis (Secs. 2-4)
was carried out within the framework of a hybrid Vlasov-fluid model
in which the ifons are described by the Vlasov equation and the electrons

are described as a macroscopic, cold fluid immersed in a uniform

oRz*

were calculated for the case in which the equilibrium electron and ion

axial magnetic field B Moreover, electrostatic stability properties
density profiles are rectangular (Fig. 2) and the equilibrium ion
distribution function is specified by Eq. (18). In circumstances

where the perturbed ion density corresponds to a surface-charge
perturbation (at r-Rp). a striking feature of the stability analysis

is the fact that the required orbit integral I [Eq. (50)] can be
evaluated in closed form [Eqs. (59) and (62)] for general values of

the parameters éht/Rp and (2&§e/mﬁe)(l—f). In addition, the resulting
eligenvalue equation (61) can be solved exactly to give the closed
dispersion relation (66). A detailed numerical analysis of Eq. (66)

was presented in Sec. 4, and it was shown that the growth rate of the

fon resonance instability exhibits a very sensitive dependence on
r
Li

can have a strong stab{lizing influence for mode numbers >2 (see,

9
‘e and f. For example, finite ion Larmor radius effects
¢

)
IR , v Jw
P pe

for example, Figs. 10 and 14), particularly when the equilibrium

y )
-

5
self-electric field is weak (w;e/m e<\l or f close to unity). For the

0

fundamental mode (8=1), however, stability properties are identical

to those calculated from a macroscopic two-fluid model, and the growth

rate {s unaffected by the value of éli/Rp’

e

s AR o
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