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ABSTRACT

For plasmas in the collisionless regime, the absence of

bulk viscosity permits multistreaming ; if this occurs, f luid

codes, which by definition prohibit multistreaming, give

unphysical results. We show that a fluid code, using an

energy propagation equation, will conserve energy but never-

theLess can give totally incorrect results if multistreaming

occurs. If a temperature propagation equation is used

instead, the system continuously loses energy when multi—

streaming occurs. This energy nonconservation, which is

completely independent of cell size and time step, can be

used as an internal test for multistreaming, requiring no

data outside the fluid code itself.



—“.‘~~.‘,-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ——— ‘—

- 
~~~~~~~~~~~~~~~~~

2

I. INTRODUCTION

Fluid codes, wherein each particle species is fully descr ibed by

a single density , velocity and temperature at each position, have been

widely used to calculate the flow of nearly collisionless plasmas.

A few examples are electron beam — plasma interactions,
1 theta pinch

implosions,
2’3 and the underdense re4me of laser fusion pellets.4’5

But a collisionless fluid has no bulk viscosity , and therefore it is

possible for a single fluid species to counterstream against itself;
p

indeed there is a natural tendency fur counterstreaming to arise,

particularly in high Mach number flows, even if the initial conditions

are quite smooth and regular. When e~ounterstreaniing occurs, the sub-

sequent fluid code solution becomes unphysical. Obviously the code ‘will

conceal the counterstreaming of the plasma, since each species is

characterized by a single velocity at each location. Furthermore, the

code will, in general, inccrrectly predict even the evolution of

average quantities, e g , the mean flow velocity of the various

streams.

It might be argued that counterstreaming is prevented by plasma

instabilities. This is true in certain limited cases, but certainly

not in general. For example, the electron—electron two stream instability6 ‘

will thermalize the counterstreaming of electrons virtually instantaneously
•

(on a fluid time scale), if the streaming velocity exceeds the thermal

velocity and the densities of the two streams are comparable. Ion—ion

instabilities7’8 and modified two stream instabilities
9’10 

act similarly

(but more slowly) on ion coun ters treaming , but only over a very limited

range of parameters. For example, there appears to be no instability
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that can prevent ion counterstreaming along the magnetic field , if the

ion counterstreaining energy well exceeds the electron thermal energy .1~

Thus, although plasma instabilities may provide anomalous resistivity)2
14

thermal conductivity)5 and shear viscosity,
16 

there is no quantitative

theory indicating whether, when and how instabilities can provide

anomalous bulk viscosity ; there are surely many cases when no such

effect exists.

In some cases where it is easy to distinguish between streams,

e.g., plasma slugs flowing toward each other, or initial conditions

involving multistreaming plasmas, the problem of counterstreaming

has been handled by treating each stream as a distinct fluid species.17

In general, however, one cannot predict when and where, in a fluid

simulation, counterstreaming will occur within a given species.

Multistreaming of a collisionless fluid arises from the natural

tendency of velocity gradients to steepen as the flow evolves)8 In

traditional fluid codes)9’~
° this steepening causes numerical

instabilities when the velocity gradient gets too large. Two techniques

can be used to suppress these instabilities and induce well—defined ,

noninultistreaming evolution of the numerical model : either introduction

of an artificial (Von Neumann) viscosity of sufficient magnitude , or

use of flux corrected transport21 (FCT) , a recent improvement in fluid

codes. However, either techn ique terminates steepening of the flow by

forming a strong shock (across only a few grid cells in the FCT case)

rather than by multistreaming. The subsequent evolution can be quite

unphysical. Thus, if we can argue that a fluid is subject to a small

but nonvanishing bulk viscosity, either classical or anomalous, which

prevents multistreaming, then proper use of FCT will provide a treat—

ment that is physically reasonable. If , on the other hand , we have
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decided tha t the bulk viscosity is absent, there is a clear need for a

test to decide whether multistreaming occurs; if it does, the fluid code

Is simply not a viable tool. The main purpose of this paper is to give

a simple internal test, applicable to nearly any fluid code and requiring

no data except for the code runs themselves, to determine whether

counterstreaming of bulk—viscosity--free fluids has occurred .

The structure of the paper is as follows. In Sec. II we use a

simple analytic model of a cold fluid to review the origin of multi—

streaming and the difficulties it presents. In Sec. III we show that

the energy which should go into multistreaming in a numerical code

is lost from the system, in a way that is completely independent of the

grid size and time step, if energy is propagated in the code by means

of a temperature transport equation. If an energy transport equation is

used instead , the multistreaming energy is not lost, but rather is

thermalized; nevertheless, the solution is, in general, erroneous

if there is no bulk viscosity. We show that these phenomena can be

used as a test to indicate that the actual physical system multistreams,

and thus, that the fluid code model has broken down.

In Sec. IV we present three examples, drawn from subjects of current

research interest, of the breakdown of fluid code runs due to the onset

of multistreaming. The application of the energy conservation test

demonstrates multistreaming in all cases. Analytic solutions, test

particles, and parallel use of a hybrid Vlasov—fluid code are used to

demonstrate counterstreaming in the three cases, and prove the validity

of the energy conservation test for these examples. The examples are

the interpenetration of two counteratreaming plasma slugs, steepening of

a theta—pinch implosion, and expansion of a heated plasma column into a

surrounding cool p]:isina.

A brisf su ary is pr,sentsd th S.c. V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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II. THE PROBLEM OF MULTISTREAMING

To demonstrate the way in which multistreaming of a collisionless

plasma can arise out of seemingly Innocent conditions, we consider the

simplified version of the Euler equation for the one—dimensional flow

of a force—free, cold (i.e., pressure—free) fluid with velocity u,

(1)

It is well known that this equation produces a singularity ~u/~x
—l

after a time t = Max ~u(t
O) 

. For longer times, the solution
s

becomes multiple—valued . To see this , note that any function of x—ut

is a solution to Eq. (1); thus u(x,t) is determined by the functional

equation

u(x,t) = u[x — u(x,t)tl . (2)

For instance, assume that (x ,t=O) = u0
coskx. Then u(x,t>0) is found

by solving

u(x,t) u0
cos{k[x—u(x,t)t11 . (3)

Equation (3) is amenable to graphical solution at any given values of

x and t , as shown in Fig. 1 at x 0 , and for a succession of different

times: at the initial time to, at an early time t1 when the solution is

single—valued at x=0, at a later time t2 when it first becomes singular

at x~0, and at a still later time t3, when it is multiple—valued . Figure

2 shows plots of u(x) at times t0, t1, t2, t3.

One might be tempted to argue that the solutions shown in Figs. 1

and 2 cannot be the real physical solutions, because they are multiple—

valued. A little thought reveals that this is not so: if the particles 
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are genuinely non—interacting (and therefore there is no bulk viscosity),

as assumed in Eq. (1), the faster fluid elements will overtake and

stream through the slower ones. For example , a Vlasov or particle

code solution of the cold noninteracting particle problem would clearly

show the phase space distribution evolving exactly as in Fig. 2. In

fact a series of recent simulation and theoretical papers
22 27 

have

shown the evolution of multistreaming in collisionless plasmas, and

have shown that it can play a key role in shock formation, i.e., fluid

4 flow can steepen to form a shock, even in the absence of any true

dissipation mechanism; multistreaming plays the role of a dissipation

mechanism in such a laminar collisionless shock.

Let us now consider the solution of Eq. (1) by means of a finite

difference scheme code, as shown in Fig. 3. The original cosine disturbance

evolves as in Fig. 2 until the derivative )u/ax becomes singular

at x = n/2k x
0
. In finite difference form, Eq. (1) says that the

change of u in a grid cell is the total velocity flux into that cell,

multiplied by the time step. By symmetry , the net flux into the cell

centered on x0 is always zero, and thus u(x0) 
= 0 at all times, i.e.,

positive u flows in from the left and negative u from the right.

These two contributions add up to zero, so u(x0) does not change.

Thus a discontinuity , i.e., a shock, appears at x0, as the velocity

profile steepens to a sawtooth (time t
2
). Subsequently (time t

3
),

the slope of the continuous portions of the u(x) curve decreases, as

momentum flows into the discontinuity at x0 
from both sides, i.e., the

shock position is stationary , but the shock amplitude slowly decreases

in time.

The essential difference between the analytic solution and the

finite difference (fluid code—like) solution is that the forward

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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and backward flux conttnue onward across the singularity in the former ,

but they mix in the central grid cell in the latter. This yields the

single—valued solution that is imposed by the code formulation . The

code thus introduces something like an artific ial viscosity wh ich

prohibits multistreaming across discontinuities. Clear ly Eq. (1) is

a simplified model, but we shall see that it exhibits the essential H
phenomena that arise in a complete set of fluid equa tions that propagate

density, velocity and temperature . Tn particular , we note that the

total energy in the system steadily decreases after the singularity is

formed .

Clearly the a tual analytic solution to Eq. (1) and its solution by

a fluid code become completely different after the actual solution

becomes multiple—valued . Figure 3 does not even give a correct represen-

tation of the mean velocity obtained by averaging the various streams

in Fig. 2, as is clear from the fact that the discontinuities in Fig. 3

are always located at the fixed points x I n/2k, 3n/2k , etc., while

the discontinuities in Fig. 2 (the leading edges of the various streams)

H move along in time. This difference cannot be resolved by using a finer

spatia l or temporal grid , but rather is inherent in the assumed single—

valued representation. Thus in any attempt to apply fluid codes to collision—

less, unmagnetized ions , where multi.streaming is permitted by the physics,

it is essential to devise some test to see whether the fluid does multi—

stream . It is apparent that any solution by a fluid code in the

multistreaming regime must be regarded with the utmost skepticism .

I
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III. A GENERAL TEST FOR MULTISTREMIING

In this section we show how to test the viability of a fluid

code using only the code itself without recourse to any analytic

solution. We shall see that the existence of inultistreaming is implied

if, independent of grid size and time step , energy is lost from the

system when one uses a temperature propagation formulation , rather

than an energy propagation formulation. Comparing the solutions of

Eq. (1) shown in Figs. 2 and 3, this seems to be a reasonable result;

all of the multistreaining energy shown in Fig. 2 is lost in Fig. 3.

We begin by considering the problem of energy conservation in a viscous

fluid , where multistreaming is forbidden , and then consider what

happens when viscosity is absent.

The main point is that the fluid equation which propagates energy

may be written in several different ways. For instance if there is no

interaction between an ion species and any other species and there are

no external fields, the energy equation for this species may be written

in one of two forms; as an energy transport equation

(4)

where I Is the total ion energy density and P is the total energy flux for

this ion species, including contributions of all hulk and shear

viscosity terms to the energy flux ; or as a temperature transpor equation

(5)

4 where is the thermal energy density , P
1 

is the therma l energy flux

and Q denotes all source terms, including viscous heating v(-~—) , and also

nT -
~~~~~ terms .
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If periodic boundary conditions are imposed on the system , and —

the equation is in conservative form [as is Eq. (4)], then standard

numer ical algorithms should conserve c whether or not viscosity is

present. (Note that the numerical solution of Eq. (1), which is in
L

conservative form, does conserve f udx, where L is the periodicity length ,
• 0

even though the computed solution is not at all accurate.) Steep

gradients across a single cell can cause severe numerical difficulties

• in conventional codes, but can be managed by using flux corrected

transport (FCT)
21 

techniques.

If we maintain the ccii size as a constant , but let the

viscosity approach zero, the gradients across a shocked region become

steeper and steeper. However , the gradient is bounded by the finite
2

grid size, so the viscous heating rate in Eq. (5), Q .  = v(~j-~l)

approaches zero. Therefore , when using a temperature equation formula-

tion , energy is lost as the viscosity approaches zero. Let us note however ,

tha t if the viscosity is held fixed at any nonzero value , so that

multistreaming is forbidden , one can always choose a grid spacing

sufficiently small so that Eq. (5) will conserve energy .

It is clear then, that if the bulk viscosity is rigorously zero ,

the temperature equation formulation of the fluid code cannot conserve

energy across a sharp flow discontinuity , no matter how small the

grid spacing and time step. Since multistreaming of the analytic

solution is characterized by -
~~

--- = “‘ , the unavoidable nonconservation of

energy when using a temperature equation formulation is a sign that

the plasma is multistreaming. This non—conservation can be used as a

test for multistreaming ; it indicates that a fluid code treatment is

no longer physical. Of course energy conservation is never perfect in a

code , due to numerical errors , but it is not difficult in practice

~
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to distinguish energy nonconservation due to multistreaming , which has

the following properties: (1) Energy only decreases , whereas numerical

fluctuations in a code are typically random . (2) The rate of energy

loss is insensitive to changes in cell size or time step , unlike

numerical fluctuations or code breakdowns due to numerical instabilities .

(3) When energy nonconservation is indicated , one can use other

computer di ’gnostics to check carefully for velocity discontinuities

(wt ich are sometimes small) that reveal the presence , location , and

often the nature of the counterstreaming . (4) Use of an energy

transport equation instead of a temperature transport equation, in an

• otherwise identical code, will eliminate the energy nonconservation.

The two formulations should give identical results until the onset of

multistreaming, but may diverge greatly thereafter .

Since temperature—propagating fluid codes fail to conserve

• energy in multistreaming situations, they are obviously unphysical there,

and no one would propose using them.28 But substituting an energy

propagation equation is not , in general , a solution to the problem ,

even though energy conservation is then assured . Such a code is never

quantitatively correct in the presence of multistreaming , and in many

cases it i. totally wrong and misleading . We shall see in the next

section that even the simple case of two interpenetrating noninteracting

plasma slugs cannot be correctly treated with energy propagating fluid

equations. Another vivid example is a collisionless shock. If a

piston pushes into an unmagnetized plasma , the energy—propagating

• fluid equations will predict that a standard hydrodynamic shock, obeying

the usual Rankine—Hugoniot jump conditions , runs ahead of the piston.

Thus there is dissipation in the shock front (associated with the

effective bulk viscosity introduced by the code), leading to greater
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than adiabatic heating downstream . However it has been shown27 
that

in an unmagnetized collisionless plasma, a shock exists only in a

limited range of piston Mach numbers, and if the ~~ock does exist ,

downstream heating is strict].y adiabatic . “Dissipation” occurs

upstream , in the form of an ion component which is accelerated by

• electric fields in the shock and piston, and runs ahead of the shock,

• counterstreaming against the ambient plasma. The difference between

the actual shock and the type of shock produced by the fluid code is

illustrated in Fig. 4. The moral to be drawn from this example is

that an energy—propagating fluid code conserves total energy, but it

may well deposit the energy in the wrong place, resulting in quite

unphysical solutions. Therefore, if one is using an energy—propagating

fluid code, but suspects that counterstreaming may occur , it is wise to

test the validity of the run by switching to a temperature transport

equation and checking for energy conservation.

~~~ k. • A •~~~~~ _•~~~~~~~~~~~~~~~~~~~~~~~~ ~ •_______ 
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IV. EXAMPLES OF COUNTERSTRE AMING A1~D THE ENERGY CONSERVAT ION TEST

A. Counterstreaming Plasma Slugs

If two slugs of collisionless plasma stream toward each other, and

we assume no anomalous coupling mechanisms are operative (as is physically

reasonable in many situations), it is obvious that the slugs will meet ,

counterstream through each other and separate again with no heating of

the plasma. The density profiles for such a situation ,

at a series of times, are shown in Fig. 5 (solid curves).

We have run this situation on a standard one—dimensional two—

fluid (electrons and ions) code with FCT. Two different versions of

the code were used . In the first, the ion temperature T~ was propagated

by the equation

aT . Q
-* 1 1 ~u 2 i

— + - ---- (u.T.) - —T. — + — — —

~~t ~x i i  3 la x

where u i s  the ion fluid velocity, n~ is the ion density, and Q1 is the ion

heating rate due to anomalous resistive heating (zero in this case, but signif-

icant in examples B and C). The ion energy density is then calculated as

= ~ + 4 njm~u2 . (7)

In the second version of the code, the ion energy density was propagated

directly, with the equation

-
~~ ~~

— u1
(E-~+n1T.) = Q~ 

. (8)

In accordance with expectations , a singularity in au~/ax arises

when two slugs make contac t , and persists thereafter . In the temperature

propagation formulation , the total system energy begins to drop at

—~~~~ - - • —— ~~~
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tha t time, and continues to fall linearly with t ime until all of the

• counterstreaming energy has vanished from the  system (Fig. 6). Matter

flows into and p iles up in the grid c e ll containing the singularity ,

as shown in Fig. S (dashed cur v e s ) .  The r e s u l t s  arc obviously unphysical.

(There is some compressiona l heating lit re , and at later times , the plasma

does expand slowly).

When the same problem is run in th e energy—propagating code formula-

tion, energy is conserved , as expected , to witliln one part in JO~ (Fig. 6).

The sequence of density ~ rof l i e s  for liii s case are ph oLted as t he

• 
• 

dot—dashed curves in Fig. 5. We note that the streaming energy

that was lost in the temperature case is here converted into thermal

energy, as if by a bulk viscosity. The resulting pressure prevents

as much density buildup at the origin as occurred in the case of

the temperature—propagating code. The hot plasma then begins to

expand aga in , in a manner qii i te no] i k e  [ l i e  p i iy s  ~~~~~~ 1 solut ion .

We note that the situation discussed in this example is applicable

to a cruc ial stage of a fast theta pinch implosion . When implod ing

• fluid elements from opposite ends of the device (() different by it)

• reach the center , the fluid density and velocity along a line through

the center look approximately as shown in Fig. 5 (t 0). Thus all of the

counterstreaming ion energy will be lost if a temperature equation is used . For

strong p is  tons , t lie ion temperature computed vi iii 11 uid codes using a temperature

e q u a t i o n  is mti (- l I  less than  t h a i  measured exper i mentally. 3 In Ref. 3 the code was

never checked for conservation of tota l energy since there are many

externa l sources and sinks. However , it does seem reasonable that the

• source of the problem Is the tendency of the theta pinch to multistream .

Thus the resolution may not be the use of simple fixes, or even

necessarily in the use of an energy equation instead of a temperature

• • - •  ~— — - • - •—~~~~~ -- • — ---- —— —b—-- ~~~~~~~~~~~~~~~~~~~~~~~~ ~
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equation. Rather the problem may be in the nature of the fluid model

itself, and its resolution must come from a hybrid fluid—particle

code similar to that used in example C of this section.

B. Theta Pinch Implosion

We discuss here a much more subtle case In which counterstreaming

grows directly out of the steepening of a collisionless theta—pinch

implosion , rather than originating in the collision of oppositely

flowing plasma elemen ts. The calculations were run wit h a onv—cl imensicmal

temperature propagating two—fluid code , i.e., Eq. (6), and the energy

density 1 1(x ,t) is then given by Eq. (7). In addition , a parallel

calculation was done using the energy—propagating Eq. (8) to calculate

but using n~, v~ , B, etc. as calculated via Eq. (6). The total

ion energy calculated in the former way is designated E
T
; the ion

energy calculated in the latter way is designated 
~~ 

To check for

ion multistreaming, we can compare E
F 

to E
T
: we expect E

E
=E
T

prior to counterstreaming , but E
E
>E
T when counterstreaming has

occurred. To prove that E
E~
E
T does indeed occur when counterstreaming

occurs, a set of test particle ions moving in the electric field

generated by the temperature—propagating fluid code was used as an

additional diagnostic .

Results from one calculation are shown in Fig. 7: ion fluid

density and magnetic field profiles as functions of radius x in Fig.

la , and plots of test ion phase space density f (x ,u) at the same

time in Fig . 7b. At th i s  time E
T 

= 0.99 Since 
~T 

and E~ agree

well , the energy conservation test would predict no multistreaming.

And in fact the test ion phase space plot (Fig. 7b) bears this out ,

—
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showing no multistreaming at any value of x.

Results from a slightly different calculation (density, applied

• magnetic field, and temperature were th e same, but bias field was

in the opposite direction to the applied field) are shown in Fig. 8.

For this calculation at the time shown, E
T 

0.965 E
E. Since the code

normally conserves ion energy to within 1% (as in the run of Fig. 7),

the energy test would indicate tha t the fluid wants to multistream.

And indeed the test ion phase space at this time (Fig . 8b) verifies

that this is the case.

In Fig. 9, results are presented at a later time, from the same

• calculation as Fig. 8. At this time , ET 
= 0.8 E

B, so 20% of the ion

energy has been lost. Here the test ion phase space shows a much

larger number of counterstreaming ions, and the fluid profile shows

enormous steepening .

To further verify that the energy loss is caused by isultistreaming,

and not by e f fec ts  associated with the grid size (e.g., gradients too

large to handle within a given grid size), the case shown in Figs. 8,9

was rerun with a grid size twice as large. As might be expected , the

discrepancy between and E
T 

increased somewhat at early times,when

no counterstreaming occurs, to 2.5% as compared to 1% for the finer

grid. But at the time of Fig. 9, the coarser grid calculation showed

ET .8 E
E

as did the finer grid. Since halving the grid size more than

doubled energy nonconservation in the absence of multistreaminp, but

had no noticeable effect on the much large~ energy loss after counter—

• streaming occurred , this large loss cannot be attributed to e f f ec t s

of finite grid size.

L • _ _
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C. Expansion of a Hot Plasma Column

In many situations, one species of particles will tend to multi—

stream , while  other species wil l  not . F~or example , in the theta pinch

implosion considered above , ions counterstream whi le  electrons are expected

to act as a well—behaved fluid . One way to deal with such a situation

is to use a hybrid code with a Vlasov or part icle  treatment of the ions

and a fluid treatment of the electrons. 24 ’29 ’3° Such a code is of

course slower running than a pure f lu id  code , but typically much fas ter

than a purely Vlasov or particle code .

We illustrate this point with a numerical study of the radial

expansion of a cylinder of plasma with hot electrons and cold ions

into a surrounding cold plasma of equal density, which has been reported

in more detail elsevhere~ A uniform axial magnetic field B is

present , with 
~~ 

8flflT e/B 2 
> 1 in the hot central plasma bu: ~<<l  in

the cold outer plasma , and the outer plasma is bounded by a perfectly

conducting metallic shell. Because of the pressure difference , the hot

plasma expands into the cold plasma, converting part of the electron

therma l energy into ion streaming energy . The plasma subsequently

bounces inward after the magnetic flux is compressed against the metallic

shell , and this cycle is repeated several times.

Previous work27 has indicated tha t if a “piston” pushes into a

collisionless plasma, the flow will multistream only if the piston is

strong enough . In our case , the “piston strength” corr esponds to ~~,

the ra t io  of the hot plasma pressure to the magnetic pressure (which

confines the cold plasma) . Therefore , we have done a low—fl run A(8ii~l.3)

and a h igh— ~ run C(f ~~l3) with a f luid code (described elsewhere2’3),

using a temperature propagating equation in each case . We then did

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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two simi1ar nins B,~ =2 ar~1D ,8’~20) on a hybrid code (described elsewhere29
)

with fluid electrons and Vlasov ions (henceforth called the Vlasov code).

(Because of the numerical peculiarities of each code ,1 it was inconvenient

to run exactly the same initial conditions on each code, but the low—8

cases run on each code are qualitatively similar, as are the high—s cases.)

• ¶ . Figure 10 shows the total energy , electron thermal energy, magnetic

energy,  ion streaming energy and ion thermal energy, as functions of

t ime , for each of the four runs. We note that total energy is conserved ,

in the fluid code, to within 0.1% in the low—s case (over 4000 t ime

steps), but about 15% of the energy is lost in the high—s case (over
A 

2000 time steps). Thus the energy conservation test leads us to believe

that multistreaming should occur in the high— s case , but not in the

low—s case. This is conf irmed by the Vlasov code : the ion phase space

densities plotted in Fi,~. 11 show no multistreaining in the low—s case,

but no fewer than seven distinct streams at a late t ime in the ~~20

case . We notice also that time dependence of the various energy

components, shown in Fig. lOa ,b , is qualitatively similar in the low—s

fluid and Vlasov runs , and in both cases is smooth and physically

reasonable . This is an indication of the viability of the fluid code

in this case , where no counterstreaming occurs , even though the plasma

is collisionless. On the other hand , the time development of the fluid

j 
- 

and Vlasov high—s runs is strikingly different (Fig. lOc ,d) ,  with the

curves for the fluid run being jagged and unphysical. We note partic-

ularly that the ion “thermal” energy (in the Vlasov code, this is defined

in terms of the velocity spread at each point in space, but is really

largely counterstreaming energy rather than true thermal energy )

remains small in the fluid run, but reaches a large value in the Vlasov

run , indicating that counterstreaming energy is lost from the system in

the fluid run.
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V. CONCLUSIONS

• We have shown that the multistreaming is a natural development

in collisionless plasma f low, which should be anticipated in the

absence of evidence to the contrary . If multistreaming does occur ,

fluid codes do not, in general , correctly model the subsequent

evolution of the plasma. In the case of a fluid code with a temperature

propagation equation, this becomes quite obvious, since the energy

associated with  multistreaming vanishes from the system . For an FCT

fluid code with an energy propagatiin equation, the onset of multi—

streaming is masked , since t he code will conserve energy . Nonetheless,

the code results can become completely unphysical.

¶ When fluid codes are used to model collisionless plasmas which

are free of bulk viscosity, it is thus imperative to check for multi—

streaming , which is signaled by a monotonic decrease in total

system energy i•n the temperature propagation formulation , which is

independent of changes in cell size or time step, but which goes away

A i f an energy propagation equation is substituted. If the test indicates

mult ist reaming , then results from either formulation of the fluid code

must be regarded wi th  extreme skepticism.
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Figure Captions

Fig. 1 Graphical solution of the equation u=u0cos(kut) at four

successive times t 0 , t1, t2, t3. The solutions at a

given t ime t are the intersections of the curve f = u0cos(kut)

with the straight line fukut/kt . At t2 there are two

solutions, and at t3 
there are five.

Fig. 2 Solutions u(x,t) of Eq. (3) at the initial time and three

subsequent times t1, t2 , t
3
.

Fig. 3 Solutions u(x,t) of Eq. (1) as obtained by a finite difference

scheme , at the initial time and three subsequent times t1,

t2 , t3.

Fig. 4 (a) Phase space in the shock frame for a laminar, collision—

less electrostatic shock. (b) Phase space for a viscous

shock , e .g . ,  as produced by a f luid code in the collisionless

regime.

Fig. 5 Density profiles at four d i f f e ren t  times for counterstreaming

collisionless plasma slugs. Solid curves are the actual

analytic results, dashed curves are the results from a

• temperature—propagating fluid code, and dot—dashed curves

are the results of an energy—propagating fluid code.

Fig. 6 Time dependence of the ion energy , for counterstreaming

plasma slugs. The dashed curve is from the temperature—

propagating fluid code; the dot—dashed line (constant c .)

is from the energy—propagating fluid code. 
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22I.
Fig. 7 (a) Profiles of ion density n and magnetic field B for a

non—counterstreaming 0—pinch case. (b) Ion phase space

snapshot at the same time .

• Fig. 8 (a) Profiles of n and B, for a reversed—bias 0—p inch implosion .

(b) Ion phase space at the same time, showing the onset of

counterStreaming .

Fig. 9 (a) Profi les of n and B from the same run as Fig. 8 , but at a

later time . (b) Ion phase space at the same time , showing

strong counterstreamiflg.

Fi g. 10 Time development of total energy W, electron and ion therma l

energies We 
and W~, magnetic energy W B ~or t

~W B WB~~
4B (Of l ,

and ion streaming energy k ,, for the fluid simulations

A(~=l.3) and C(~=l3), and the Vlasov simulations B(~~’2)

and D(8’~20).

Fig. 11 Ion phase space snapshots from Vlasov—ion simulations B and D. 
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