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Radiation Pattern Sidelobes and Null
Filling Produced by Aircraft Vibrations

2 1. INTRODUCTION

&

4 Presently there is considerable activity devoted to the development of very

"f low sidelobe antennas and antennas with movable nulls. Such systems clearly can
,5 work well if ground-based but when mounted on aircraft there must be some con-

cern about the effect of aircraft vibrations on the radiation pattern. In this report 4
we have developed a general formalism to consider this problem by considering :
the radiation pattern of an arbitrary array of radiating elements which is subjected
to vibrations. In Section 3 and Appendix A, we treat the case of small (compared
with a wavelength) amplitude harmonic vibrations, and in Section 4 we study the
situation when the vibration amplitudes are comparable with or greater than a

wavelength.

o NS A st e

2. ANALYTICAL PRELIMINARIES

The scalar field, u(r,t), produced at a point r by a source distribution (s, t)

can be wrltten‘ as

—

(Received for publication 23 January 1979)
1. Panofsky, W., and Phillips, M. (1955) Classical Electricity and Magnetism,
Addison-Wesley, Reading.
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1 fL"-'t'l———£-§|]a
“(Ert)=ﬁ |r-s|c a8 5 (1)

where c is the speed of light and the integral is over all space. We now assume
that the source is an arbitrary collection of Nl + N2 + 1 moving monochromatic

point sources. We can then write
L .
wot
| Ns,) =R, 3 a e sla-s.] , (2
= -Nl
_ where R e denotes "real part of," a, is the complex amplitude of the nth point
k] source, S n(l:) is its position and é (...) is the Dirac delta function. If we assume
that the source motion is non-relativistic, we may approximate
3 |£-ﬂ)
3 6§'§n(t’ . ~éls -s (] .
3
Then, upon inserting (2) into (1) we get
N |r -8 |
: exp iiuo (t - __—c-n )‘
| wr,th=R, ) a ' ®3) j
i n=-N 4'|£'-§n(t)| :
{ 1
4 If we now assume that the observation point is in the Fraunhofer zone of the array ]
| of sources, we can approximate (3) as
r N
2
exp [iuo (t - ?o )] ik - r (1)
u(r,t) ~ R, r (73 Z a e : (4)
. n=-N1
where s is the distance from some reference point O (chosen roughly at the cen-
ter of the non-vibrating array) to the observation point, as shown in Figure 1. !

Also r is the distance from 0 to the nth point source andl;o = uo/c k where k i
is a unit vector in the direction of the observer. We shall next decompose r,as :




POINT
SOURCES

Figure 1. Three Dimensional Array of Vibrating
Sources

£, B, +8, 0 (5)

where R is the location of the nth point source in the absence of vibration and
én(t) is the perturbation in its position caused by vibrations. We can then write

oy (c-22)]
exp [iw (t-—
ulr, b = R, = "4"0 S Y aexp {ik - [Ry+s I} . (8
n=-N
1

We can also obtain results for a continuous source distribution. For example, if
the unperturbed antenna is planar we get

ke
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[[dx dy a(x, y) exp {ik_ - [R(x,y) + &(x,y, )]} . (7
S

We will now study (6) and (7) for some special cases.

3. SMALL HARMONIC VIBRATIONS

If we agsume that (uo/c)|_§n| « 1 we can expand exp (ik - 8 in a Taylor
series, Also if _ﬁn(t) is assumed to be a harmonic (periodic) vibration we may
write

0
sa = Y 8y, exp {itwt) (8)
f==00

where @y is the lowest vibration harmonic, § n, -t = _QL because gn is real and

8 no - 0 because § " is assumed to be the displacement about the average position
R,. If we ex>»nd exp (ik, - 8.) in a Taylor series, retaining only the first two
terms, substitute (8) and then take the real part of the result we obtain from (6)

Ny

vic,t) = ) ]a“| cos [“’0 (t"?o) +l—‘o'5n+"’n]
n=-N1

(9)

N2 &
G Z Z |“‘m'“—‘o' Iénlhs.m["’o"“ml)t*'ﬁnfl :
n=-N, f=-o

where v(r, t) = 47r_ u(r,t), y  is the phase of S By 9y * R, "R+
’nl - uorO/c and onl is the phase of _gm.

S



[ We next assume that the radiation is measured by the receiver system shown
in Figure 2. For mathematical simplicity we shall assume that the filter passes
all frequencies from « - M, to o h M2u1 and completely rejects all others.

In this case the output of the filter is given by (9) except with the summation on £
running from -M, to M2 instead of from -woto . Also if the integration time T is
such that T > l/ul, and T > l/wo the output of the integrator (ignoring constants

of proportionality) when the receiver is at (6, ¢) is

N,

; T 2
3 P(p, %) =-,i.—— [vz dt =-;— z Z lan| |as| cos
: n=-N, s=-N,
Non nblg = My
['ptl-ws+l—(o°§n'l‘o'5s] +% Z Z ' Z (10)

=-N, s=-N; £=-M,

lagl lagla, - 1oy, D, - 1oy, D cos B, - B,p) -

The result in (10) is, of course, the time-averaged power pattern. This quantity

is more conveniently written as

2 2
N M N
2 ; 2 2 ;
ik -R ik ‘R
Paw «fl 2 oage® Bl +L P | D sk s )e”?
n=-N; £=-M, | n=-N,
(11)
ANTENNA
BANDPASS SQUARE
D——w — .—..p(g,¢)
FILTER LAW

Figure 2, Assumed Receiver System (Located at 6, ¢)
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The first term in (11) is the time-average power Po(e, ¢) which would be received
in the absence of vibration. Therefore, the second term in (11) represents the
correction to the received power due to the vibration of the point sources.

It is interesting to examine (11) in some special limiting cases. Let us first
assume that all the sources vibrate with the same amplitude and phase, so that

\_@ml = lgl\ and O =¥y In this case (11) becomes
P(o,¢) = P (6, D)1 + gl6,9)] (12)
where
N, L
1 ko By
P (6,0) =5 3 Ha e : (13)
n=—N1
M,
go.o =1+ Y ksl . (14)
1=-M,

The result in (12) means that the locations of the nulls in Po( 9, ¢) are not affected
by a uniform vibration in which all of the sources vibrate in phase.

A more interesting result occurs when the point sources-do not vibrate in
phase, but rather the phase of the vibration of each point source is random and
uncorrelated. If the Ith harmonic phase, @ g of the vibration of the nth source

/
is independent of the phase, L of the sth source we have that the compound

probability density is

Pol®nys @gy) = PY(@p)) Pyl G
If we further assume that the phases are uniformly distributed, so that
pl(Q) = 1/27 for 0 < & < 27, we obtain from (11) for the ensemble averaged
received power
=y
a 1 2 " 2
(P, =P o, +3 2 2 lal®lk - 5,1% . (16)

l=-M1 n==N

1
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Finally, if in addition to the random phase, the direction™ of the perturbation

is also random we must average (16) over all directions. Upon using the result

that

m m
Tl,;? dg" fsin o do' (k- 8)° - +k%6? (17)
0

0

where 0' is the angle between k and § we find

oy
(P(6,0) = P (6,¢) +—2 3 Pl e (18)
1=-M1 n:-N1

From (18) it is clear that if the peak of the radiation pattern is assumed to be
at 6 = ¢ = 0, the average sidelobe level produced by the antenna vibrations is

N2 M2
2 2
; p Rl ) i e
ko 1n=-N1 l=-M1
SL=—3— % 5 (19)
2
s gl
n=-N

1

Therefore, when the phases are random and uncorrelated, the vibrations
produce an average sidelobe level which can fill in the nulls in the radiation
pattern PO(O, ¢), and also alter the relative sidelobe level for the case of a very
low sidelobe antenna. As is clear from (19), the amount of null filling will depend
on the aperture taper (that is, the distribution of an) and the amplitude in wave-

lengths of the vibrations.

s
We assume that all the sources vibrate along the same axis, but that the align-
ment of that axis is completely random with respect to the vector ko.

11
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We can also express (19) in terms of the time averaged vibration amplitude,
provided the receiver bandwidth is large™ enough to pass all of the vibration

harmonics. Upon recalling that

0

e T
R 2 B 2
(e =T1[ 6(t) dt = 3 |6nl‘ (20)

£ ==

th

where _gn(t) is the vibration amplitude of the n radiator, we may rewrite (19) as

N i
2 2
2 8idsl
k n=-N,
SL =—¢ > . (21)
Na
=
2 sl
n=-N1

As an example of the application of (21) suppose we have a linear array with
uniform amplitude weighting, lanl = 1, and the vibration is monochromatic, so
that

"
6n(t) = (2) 6 pus €OS @ t
Then
2
(k 6 )
e | o RMS
g I P R (42

where N1 A N2 + 1 is the total number of elements in the array. For example, a
21 element array with a 1/20 wavelength rms deflection due to vibrations will have

*That is, provided

M

2 0
B S
L=-M f==0

12




a -28 dB average sidelobe leve! due to the vibrations. For a 21 element symmetric
(N1 = N2) array with taper cos? (n7/20) the average’°= sidelobe level is -26 dB.

th

The results we have obtained here assume that the vibration of the n™" radia-

th

tor is uncorrelated with that of the s* radiator. The analysis for the case when

they are correlated is given in Appendix A.

4. LARGE HARMONIC VIBRATIONS

The results in Section 3 are valid provided the deflections are very much
smaller than a wavelength. When this condition is not satistied it is not permis -
sible to expand exp (igo . _6n) in Eq. (6) in a Taylor series. In this section we
will assume that the magnitude of the deflections are arbitrary, but we will require
that the vibration be monochromatic, so that

S,() = A sin(wit+@) (23)

where A is a real quantity. In this case (6) becomes

r N2
exp [iwo (t —c—°>]
u(r,t) = R Z a  exp {i_l_co e ign sin (wlt + @n)}

4mr =
o n—-Nl

(24)

where_’g‘n = Eo . _A_n. Upon using the well known expansion of exp (ip sin ¢) in

Bessel functions, we may rewrite (19} as

[ o N2 0 .
i (t "c_) e By o e
u(r, t) = Ry I, z a e z In€) e
n=-N1 m= =00

(25)

*
This result is obtained from (19) by using the results in Jolley2 (pp 82-84) that

N N
Z cosz (2—11:1—) =N Z cos4 (3—11\’1) =§41i ‘
n==N n==N

2. Jolley, L. (1961) Summation of Series, Dover, New York.




If we again assume that the signal is passed through a filter which passes only
frequencies from @ lel to Wk Mzm1 (and rejects all others), the time aver-
aged power pattern is given by

2
e Mok Rs
P(6, ¢) = lT_ t[ w(r, t) dt =% z z a J €)exp(im¢ +ik - R)
m=-M n=-N
1 1
(26)

As was the case before, if all the sources vibrate with the same amplitude
and phase the radiation pattern is simply the product of the nonvibrating pattern,
Po, and a correction pattern. That is

¥

d 2
pe,0) - | 2 JZe|rpee . (27)
m=--l\/l1

where § =_\_{O - A is a function of 6 and ¢.

In the other limit when the phases o of the vibration of each radiator are ran-
dom, uniformly distributed and statistically independent, we obtain* for the ensem -

ble averaged power pattern

2
. ik -R
(PO,)y=3| Y a JyEre ° "
n=-N1
(28)
Do - Ny
‘g X lalfone)
m=-M1 n:-Nx

*We use the fact that forn #s

im(o,_-6_) 2 7 4 im(¢_-6¢_)
(e s)~(2iﬂ) fd¢n fd¢se il
- -

In obtaining (28), however, we have not averaged over all directions as we did in
Section 3. Therefore (28) can be compared with (16) but not (18).

14
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where the prime denotes that the m = 0 term is excluded from the summation.
When En « 1, Eq. (28) reduces to (16), provided we retain only the { = +1 terms
in (16), so that 6n has only a single vibration frequency.

If all the radiators vibrate in the same direction and with the same amplitude,
so that £ = ES =& = go + A, we can approximate (28) by

%4 "
(Po,o) = 2@ P00+ Y o | T lal?] . (29)
m=-M1 n=-Nl

Therefore in this case the primary power pattern is altered by the amplitude
factor JE(E) < 1.

By using (29) and (13) we then see that the average vibration-produced side-
lobe level relative to the peak power (at the center of the main beam) in the

absence of vibrations is

N, ;
2 sl
s 1§ < S : (30)

2 layl

L n=-N1

For (30) we see that if & El{o * A is of order unity the average sidelobe level
can be quite large. For example if £ = 1, and the array taper is uniform so that
|an| = 1 for all n we get (provided MI'MZ > 1)

0.416

SL ~ (31)
2+ 1

-N1+N

Therefore, for a 21 element array (Nl + N2 + 1 = 21) we find that the vibrations
produced an average sidelobe level of -17 dB. Consequently, any nulls in the
radiation pattern would, on the average, be filled in to a depth of -17 dB if § = 1.
For £ = 3 we find the average sidelobe level have the even larger value of -13.5 dB.

15
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S. DISCUSSION

|
{

! Which formula should be used in calculating the sidelobe levels will depend
Eil upon the physical conditions. If the vibration amplitude is small compared with

' i a wavelength (koé « 1) and we can actually estimate the lateral distance over
which the vibrations are correlated then clearly Eqs. (A6) or (A12) in Appendix A
are appropriate. However, if we are not sure what the correlation distance will
be then Eq. (21) may be most appropriate for estimating the vibration induced

i sidelobe levels. If the vibration amplitude is of order or exceeds a wavelength
then Eq. (30) is most useful.




Appendix A

Here we shall remove the restriction that the amplitude and phase of each
radiator is statistically independent of those of all other radiators. We shall
assume, however, that each radiator vibrates along the same axis in space (but
that the orientation of that axis is completely random), so that
k8, =k by cOS o, D e k0551 cos 0', etc., where 6' is the angle
between k and$ ,. In this case (11) becomes, after using (17) to average over
all vibration directions
M

N N

k2 2 2 2
= ___0 * "
(P(6,8)) = P_(6,6) +— R S W R
l=-M1 n=-N1 s=-N!

: (A1)
e'l‘-o' R,-Ry)

If the variables 6nl and 651 are assumed to be random phasors with a uniformly
distributed phase, it can be shown3 that <6nl 621) = pl("' s) where the correlation
fusaction p‘(n, s) is real. Consequently, we can rewrite (Al) as

1. Beckmann, P. (1967) Probability in Communication Engineering, Harcourt,
Brace and World, New York.

17
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(PO P09 +-2 L L L aatoms
l=-l\v1 n--N S’-N

: R
PRl e hel S (A2)

As an example of the application of (A2) consider a symmetric (N1 =N, = N)
linear array of radiators lying along the x-axis with each radiator separated
from the adjacent one by a distance d. If we further assume that the deflections
are a stationary random process, so that pl(n, s) = pl(n - s) we can show that
(A2) becomes

2 M2 N N
(P(9,4)) - P(6, ¢)+—°— SR S SERE PN
£=-M; n=-N s=-N
(A3)
- exp {ik d(n - s) sin 6 cos ¢}
we next assume that
2 (n - 3)2
oyt =) = (log, [%y exp 1- o ], (A4)
]

that the array weighting is uniform, so that a, = 1 for all n, and that the mean
square deflections (|6 | ) are the same for all radiators, so that

(Lo 12y = (18,13,
Then upon using these assumptions, substituting (A4) into (A3) and usmg
(20) we can show that if N > N the quantity ( P(6, ¢)) can be approximated as

l"rWe assume that the filter bandwidth in Figure 2 is sufficiently large that

M, -

z |6m‘2: z lbmlz.étz‘ .

l='Ml £==00

PN
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k2 6%y VINN k2 N2 a? sin® 6 cos® ¢
Lo 3 exp - )

(P(O,8)) = P (6,4) + :
(A5)
where
s 1
(6% =%fdt(62(t)) i
0

Finally, if we assume that the peak of the unperturbed radiation pattern is at
8 = ¢ = 0 we find that the average relative sidelobe is

. (A6)

K ehymt/2 o aN k2 N2 a? sin® 6 cos® ¢
L= 3 3N+ 1 ) i T

As an example of the application of (A6) suppose (62) = (2)1/2 6RMS cos wlt,
d = A/2, X = wavelength, S RMS © A/20, 2N + 1 = 21 and 2N_ = 5. Then (A6) gives
for the average sidelobe level at 6 = 450, ¢ = 0° the result SL ~ =55 dB. However,
for 0 = 45° and ¢ = 90° the sidelobe level produced by the vibrations is -22 dB.

We can also specialize (A2) to the case of a continuously distributed planar
antenna. In that case (A2) becomes

of M2
P(6, ¢) = PO(B, $) + % z ff dx dy ff dx' dy' a(x, y) a*(x', y")
xl=-'M1 A A
Aamn
c oy, yix!, y) exp lik - (2 -x)]

where r = (x,y), r' = (x',y'), A is the surface area of the antenna and a(r) is the
excitation. We can study (A7) for the case when the vibrations are a stationary
random process, so that pl(g,g’) =p,(r - r'). In particular we shall assume that

2 (r'r')z
Py = (6,7) exp ) - 8 . (A8)

If a(r) changes slowly in comparison with the variation in the correlation function
pplr) and A > 62 we may approximate (A7) by




2 My

ko 2 2
(P(6,8)) = P(6,¢) +—5- 5, #y ar® la(n)l
1_-\1
(A9)
2
ff a%¢ exp %-5_2.+ ik 5}
B

where £ = x(x - x') + y(y - y'). The assumption that A > 32 allows us to extend
the lxm_xts on the £ integration to infinity. The integral on § can be performed by
writing d £ in cylindrical coordinates as d2§ 3 dE dy and k e = k £ sin 6
cos (¢ - ). Upon performing the integration on d £ we then get

5 Mg
s 2 2 2
(PO,8) = P (0,8) +—> 2 (8, la(0)|? a?r
A

£=-M,
(A10)
202, 2
xp (KB a0l 0 )
If we assume that the filter passes nearly all the harmonics so that
M, » T i
2 (6,2): 2 (6,2> —IT f (%) at = (8% (A11)
£=-M, £=-00 0
we can use (A10) to give for the average sidelobe level
ﬁ'a‘i’lzdz‘" 2.2 .2
k_ B% sin® 6 ) (A12)

ff ‘a(r))zdzr

For a uniform excitation, a(r) = 1, and 8 =3\, A = 1007, 6= 10° and a single

, i 2 2 2 2 2 :
harmonic vibration, so that (§) = 28p,, g cos™ w,t, (6 ) = brms Ve find an

%k§<6>3 )l g <‘ 3

average sidelobe level of -29.5 dB.
20
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