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ABSTRACT

The transient behavior of the LMS adaptive filter is studied when configured as a
canceller operating in the presence of a fixed or variable complex frequency sine-wave
signal buried in white noise. For a fixed frequency signal, the mean weights are
shown to respond to signal more rapidly than to noise alone. For a chirped signal, a
fixed parameter matrix first-order difference equation is derived for the mean weights
and a closed-form steady-state solution obtained. The transient response is obtained
as a function of the eigenvectors and eigenvalues of the input covariance matrix. Suf-
ficient conditions for the stability of the transient response are derived and an upper
bound on the eigenvalues obtained. Finally, the mean-square error is evaluated when
responding to a chirped signal. The gain coefficient of the LMS algorithm is determined
that minimizes the mean-square error for chirped signals as a function of chirp rate
and signal and noise powers.
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I INTRODUCTION

The LMS adaptive filter has been proposed and used in situations where the statistics
(1-3], The structure of the LMS
algorithm for adjusting the weights of the adaptive filter requires quadratic operations

of the input processes are unknown or partially known

on stochastic input data which, in general, are difficult to analyze. Under the
assumption of statistically independent data samples, the mean weight vector and the
covariance of the weight fluctuations have been obtained for a variety of stationary input
data statistics (1™11],

cancelling (4] line enhancing
(7-10]

Special configurations of the LMS algorithm, such as noise

(4,6,8,9,11] (5,12]

, spectral analysis, and single fre-

quency line detection , have been studied in considerable detail. The special
characteristics of the LMS filter configuration have been used to aid in the analysis

of the behavior of the algorithm.

The purpose of this paper is to present some exact analytical results for the LMS
algorithm configured as an adaptive noise canceller when the input process consists of
a chirped sine wave in additive stationary white noise. Although some previous work

; o ok a 0 : a : 3-
on LMS algorithm behavior in a non-stationary environment has been published Las=L81,

[16]

in white noise. The analysis is performed by assuming the chirping is slow enough

only one has investigated the response of the LMS algorithm to chirped sinusoids
so that a quasi-stationary model for the mean weights can be used. In this paper,
exact analytical results are obtained for the chirped sinusoidal signal with arbitrary
chirp rate. Since the adaptive cancelling of dynamic signals is a key element in
cancelling, line enhancing and frequency tracking, the analyvtical results for the above

model have wide applicability.

Two principal results of this paper are
1. A closed form analytical expression for the LMS mean weights in a dynamic
signal environment.
2. Explicit trade-off results between filter parameters, weight variances,

mean-square-error, and input signal dynamics.

The latter result is of special interest since it shows explicitly the compromise
between fast adaptation in order to respond to variations in the input statistics and
slow adaptation to reduce the fluctuations in the adaptation process itself.
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For the narrowband signal in white-noise case, the configuration shown in Figure 1
can be used to model the above LMS algorithm functions.

With reference to Figure 1,

j(w_ nat +O(mat)2/2 +0)
d(n) = ase b +n1(nAt)

A is chosen so that nl(nAt) and nl(nAt -4) are un-correlated. On the other hand,
because the desired signal is a chirped sine-wave, it decorrelates more slowly than
the noise.




[I. DYNAMIC MODEL FOR THE INPUTS

- CHI A ekl 7
The algorithm for changing the complex weights of the adaptive filter is given by (1 ].

W(n+l) = Wn) +u [d(n) - XT(m W\n\] X*(n)
= W/ . n »L )
= Wn) +pn [d(n) X*n) - X*m) X' (n) W (m] )

where W(n) = filter weight vector at time n, d(n) = desired signal, X(n) = observed
data vector at time n, and where * and T denote complex conjugate and vector

transpose respectively.

Averaging equation (1) and assuming 1) the data sequence X(n) is statistically inde-

(1-4]

pendent over time and 2) the present weight vector and the present data vector are

statistically independent““. vields

E(W@+l] = ElW(m) + p[Rdx\h\ - R E (W \mi] 2

where R (M = E [d@X*m], R o = E[x*@x’ m].

In practice the algorithm sampling interval (At) is usually chosen to correspond to
the delay § between the taps of the adaptive filter. Furthermore (At) is usually
chosen to correspond to independent samples of the noisy data. Hence the delay A
is chosen to be integer multiples of (At) in order for the noises in the two inputs
to be un-correlated. Ou the other hand, the longer that A is chosen, the less
correlated is the signal component. Thus choice of A = § is the best that can be
accomplished. *

When the input consists of a complex sine-wave with linearly-varving frequency in

additive noise,

v B
Jlw t +wt™/2 +0)

di) = Us e + n(t) (3)

*Other integer values of O for the bulk delay A can be studied using the subse-
quent analysis and the resulis show that A = § vields the best filter performance.
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where "32 = signal power, iy signal frequency, @ = rate of change of signal
frequency, © = random phase of signal and the noise is independent of the signal
with noise power anz and normalized covariance matrix G, then

= 3 2 o T +4)
Rx_*cm‘ P Gro D(n) D*(n) (

o
- 5
7 " D ()

i

R dx(m

where

W mé - 2 SRR
b JomSn gmsT2 .

jw MS a0 2 R en B 7 )
. 2 e) Ms™n é.JI\[ 6 w/2 )
with M = number of complex weights.
Using Eqs. (4) and (5) in Eq. (2) yvields
2 2 T 2
E(Wn+))=([-u o G I DmD*mn) ") | E(W(n)] +}.LLTS-D(B) p)
For white noise, G = [, Define
a9
Js- B
M(n) = [ + —5 D(n)D*(n) (8)
J -~
n

For any n, the eigenvectors of M(n) are the vector D(n) and any set of (M=1) vectors
orthogonal to D(n). The associated eigenvalues are

2
o
A\ = 1+M 2

)
> o
n

<.




A=A =, . =A_=1]1 9)

Note that the eigenvalues are independent of time. All the time variations in M(n)
are contained in the eigenvectors. This special property of M(n) is exploited to
obtain closed form solutions for Eq. (7).




III. SOLUTION OF EQ (7) FOR THE MEAN WEIGHT BEHAVIOR

Since M(n) is Hermitian, there exists a unitary transformation P(n) which diagonalizes

M(n) for each n,

P(n) M(n) p'l(n) = X = Diag (A, Ay +--A ) (10)

The A; are not functions of n. Due to the special form of D(n),

Dl = v dT(o) (11)

where
T 2 I\ '62
V = Diag(a, 2, ..., a [), a = e

Also P(n) can be written in terms of the eigenvectors of M(n),
P*(n) N[D(n), Ry, ... Rm__l(n)] (12)

where' = conjugate transpose and Rl' R2 e R\I— | are M-1 mutually ortho-normal

vectors, also orthogonal to D(n) for each n. Using Eq. (11),
P(m) = P(o) (VH" (13)

Using Eqgs. (8), (11) and (13) and defining Z(n) = P(n) E(w()], Eq. (7) can be written

in terms of Z only as

Z@+1) = PO) V* P 10) [I—p.o'nz)\] Z(n) + p.O'sz P(0) V* D(0) (14)

PRI . lm'". e
ol 3 ) i e L e L i




Since Eq. (14) is a constant coefficient linear difference equation, with P(0) = P o’ it
follows that

n
& ' Z(n) = ‘Po V* PQ-1 [I - p.onzl]s Z(0)

n m-1
+ug 2 {5 vep 1 [ino 22 ) P_V* D(0) (15)
L S (o] o T n (o]

l

m=1

Before investigating the general case of Eq. (15), consider the fixed frequency

sinusoid signal case when V =1 and Eq. (15) simplifies to

n :
. 2)\ n 2 2 m-1 :
Zm) = |I[-pn0 Z(0) +po ) TV SN S (16)
n ] n
m=1
T _ . : : .
where S™ = (VM, 0, 0, ... 0). Expressing the matrix sum in closed form
2 g% il 2
Zm) = [I-p.O' 'x] ZO) +—=" g [1 - (I-po “A )“] 17)
n o 2 n
n

Thus, using Eq. (9), the components of Z(n) are given by

n 2/ 2 i
Zl(n) = [1 - p.(o' 2 + MO'SZ)] zl(o) +M sll = [1 L P'(Unz"'Molsz)] 1

n
1+M0's/an

9 n
zj(n) = [1 - p.O’n ] zj(O) (18)

e e T T T R T T T R T T I e T T T




Hence, for p.(on2+M 082) < 1, the response of the weights to the signal frequency is

more rapid than to any other frequency. If zj(O) =0,j=1,2,...M, then zl(n) is the
only response,

1 + Mo

: z,(n) = %l [ ( +\1g52)]n€ (19)

Transforming back to the original coordinate system,

2 / 2 ‘ n?
E(W@) = po‘l Zm) = § = [1 - (o'ng + Mdsz)] ’-D(O) (20)

1+ Mo fo? |
/

Hence, the mean weights are scaled versions of the desired signal response. From
Eq. (18), note that the time it takes the filter to adapt from zero initial conditions and
learn the signal is less than the time required to forget the signal if it disappears.
That is, from Eq (19), Lf z 0)=0, j=1,2, ... M, signal response time is propor-
tional to 1 - (o, +-Mo:$ ) If the signal suddenly disappears so that 2,00 #0, then

from Eq. (17) with gL 0, the decay time towards z ) = 0, is proportional to

1 2
- Ho’n




IV. STEADY-STATE WEIGHT BEHAVIOR

The explicit solution of Eq. (14) requires evaluation of the eigenvalues and eigenvectors
of the matrix operator in brackets in Eq. (15) (see Appendix ). However, the steady-
state solution to Eq. (14) is obtainable without knowledge of the eigenvalues. In Eq. (15),
set Z(0) = 0 (zero initial conditions) without loss of generality. Let Q be the matrix of

1)

3 y *_ - 2 L
eigenvectors of the matrix POV Po lI—pan A$ and A = Diag (A 1’ A2 S rn) be

the matrix of eigenvalues. Thus

2 = -1 m-1
B Og Z [Q AQ ] POV*D(o)

Z(n) =
m=1
n-1
= }.Lcrsz Q z gt P_ V* Do) . (21)
m=0
But
n-1 1- 1\1n 1- 1\2n = s
z A™ = Diag : ot (22)
1-A 1-1\2 1-A
m=0 1 =
for |Ai|<1 for all i, and
n-1
lim -1
fhomitt A® = (- 7) (23)
m=0
11




In Appendix I, it is shown that “\il<1' foralliif0< p (an2+M 052) <2, Let Zss =

gf”Z(n). Then, using Eq. (23), Eq. (21) becomes

e P S | "
Z = po QU-NT QT P V*D(o)

-1
we 2P [V-a-po? 1] Do

= (24)
2+ 2. -1
1+uo” D [V - (-po %) I] D(0)

The steady-state weights are the quantities of interest. Note that they will be time
varying, even though the adaptive filter is in steady-state. Here, steady-state implies
that the adaptive filter has converged, interpreted as the convergence of the trans-
formed weight vector Z(n). However, the filter has converged to a time-varying

solution to follow the time-varying, non-stationary input signal. Thus, when Z - is
inverse transformed back to the mean value of the weights, the transform is via the
eigenvectors of the input covariance matrix, which are time-varying. Let E(Wss(n)]
denote the mean value of the steady-state weights at time n,

I |
E[Wss(n)] “«Fme,
-1 ;
. 2
\J.O'Sz [V-(l-pdn )1] D
= 25)
M (
1l+uo, - 1
S it 9
n b
"
As a check, Eq. (25) can be compared with the steady-state value of the weights in ‘b
the stationary case, i.e., with @ = 0. For that case V =1, D(n) = D(0) and f
I
2 N
: o/ % |
E(W, s(n)] A D(o) : (26) :
R R V- T
o4

n ;
!

which agrees with Eq. (20) when n -« ,

12
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Computer evaluation of the steady-state mean weights in Eq. (25) is presented in

. D ] . v
Figures 2-5 for{ = 5 Hz/sec” and in Figure 6-9 for f = 1,25 Hz/sec','. In all cases,

the filter has 128 taps withp = .1 . The signal-to-noise ratios are varied from

1

10 to 107", The figures display the magnitude and phase of the weights across the
filter. Three interesting phenomena are displayed in these figures:

1. As the signal-to-noise ratio decreases, the adaptive filter uses more
of the taps but at lower amplitudes,

2. The tap phases follow the movement of the linearly varying frequency
input,

3. Asf increases, the taps at the far end of the line contribute relatively
less to the filter output than those taps at the beginning of the line.

These phenomena can be explained as follows:

1. The two sources of randomness that contribute to the filter output mean=
square-error, are input noise and algorithm noise (weight misadjustment). The
contribution of the input noise to the mean square error decreases linearly
with the number of taps whereas the algorithm noise increases linearly

with the number of taps. Thus, at high input signal-to-noise ratios, the
algorithm noise is the limiting factor and few taps are needed. At low

input signal-to-noise ratios, input noise is the limiting factor and a

large number of taps are needed in order to reject the input noise.
Eventually algorithm noise becomes the significant factor.

The figures show only the mean values of the steady-state weights at a
particular instant of time after the filter has converged. Hence, there
should be a quadratic phase shift with the tap number in accordance with

D(n) in Eq. (6). Comparison of Figure 3-5 with Figure 2 and Figure 7-9
with Figure 6 shows that the steady-state weights do display this behavior.
The filter trades off coherent integration (proportional to the number of
significantly non-zero weights) against the phase changes required at each
tap to follow the chirped signal. Since the phase change required at each
iteration for each tap grows linearly with tap number (entries in V),

weights at the far end of the line must make large phase changes in com-
parison to those at the beginning of the line. Note that the quadratic

phase correction along the line, D(o), is independent of time. Hence,

13




once the filter estimates f = and f, it knows D(o) and can introduce these
? phase corrections statically., On the other hand, the filter must change
| phase by the entries in V at each iteration. Large phase changes are
most easily made when the magnitude of the weights are small. In Fig-
ure 3-5, A0 = 0% = 27/10M radians and in Figure 7-9, 8¢ =271/40 M
radians. Hence the Mt weight has to change by /5 and r/20 radians,
respectively. In order to accommodate these large phase changes for the
same algorithm step size, the weights of the far end of the line must be
smaller than those at the beginning of the line. As f decreases, the dif-
ference in phase changes at the two ends of the line decreases and the filter
can make use of significant values for the weights at the far end of the line.




V. THE MEAN SQUARE ERROR IN STEADY-STATE

The error, € (n), is the difference between d(n) and the filter output, WT(n) X(n). Its
mean square value is given by

E ﬂe(nﬂ 2] = E: [d@ - wTm) xm)] [d*m - W@ X*m] {
= Efdm dm*]- BT xo a* @] - Efam wHm xem]
+ EEVT(n) X W@ X*@ ]
Using the assumptions preceding Eq. (2),

l

The middle term in brackets in Eq. (28) can be evaluated using Eq. (25) and is given
by

E[Ie(n)]z] - ("sz + anz) - 922 Re e Wt D(n)i +E[wTm) xm wm x*m] @8

M

R 7 anend -1
E[Wss(n)] D(n) = = : o (29)
1+p Usz Z(eJ wké—(l-p nz))

k=1

The last term in Eq. (28) can be evaluated as follows. Let the weight vector be
written as a mean value plus a zero-mean fluctuation process.

W(n) = E[W(n)] + 4(n) (30)

15




Then
E[WT(m Xm wm) X‘(n)] = E[W+(m] E[X‘(n) XT(n)] E[W(n)]
+ E[(,+(n) X*m XT @ g(m] (31)

The first term in Eq. (31) is known. The second term in Eq. (31) is

E[g*m) X*(n) XT(n) ;(n)] = E[; +m) E [x*(m XT(n)] ' (n)]

= (o‘sz s o, )E [C+(m < (n)]

= (02+0 o 2, (32)

s

assuming the weight fluctuations are stationary, uncorrelated from tap-to-tap, and
have the same variance a%v for each individual weight. Thus, using Eqs. (31) and
(32) in Eq. (28) vields

2 f |+ l )
+0 1 +E{W@m| EW(n|

o
1-E[wm| D *

E [lt’(n)i2 082

9
-

Mo,
+M (osz +0 2) - = (33)
2 = (M+1) p.dn“

where o« wz has been approximated by the weight fluctuations under noise alone
The first term in Eq. (33) represents the error in estimating the chirped complex
exponential signal. The second term is the sum of the noise power in the reference
channel and the noise power passed by the mean weights of the adaptive filter. The
last term represents the weight misadjustment variance multiplied by the total input
power,

9
Eq. (33),normalized by the total input power, has been evaluated as a f\mctmn of KO, -
for M = 16, 32, 64, signal-to-noise ratios of 0 and +10 dB and various »\i In
Figure 10-15, the trade-off can be seen between static and dynamic contributions to

16
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total mean-square error. In each case, there is an optimum selection of pdnz

which minimizes the deleterious effects of signal errors, input noise and weight
misadjustment noise. Comparison of the filter performance for increasing input
signal-t.o-nolse ratiog) verifies improved system performance. On the other hand, for
sufficiently large 56~ and SNR = 10 dB, it is seen that the normalized man square
error increases as M increases. This effect is due to the weight mis-adjustment
noise exceeding the longer coherent integration gain obtained with larger filters. AS

&)52 decreases, a point is reached where sufficient smoothing time is available
(small p O nz) to reduce the weight misadjustment noise to a level so that improved

performance is obtained for longer filters (€.8. w8 =4x 10'5).

It can be seen from Figure 10-15 that the optimum selection of p.O'nZ, for a given filter
length M and signal-w—noise ratio, varies in the same manner asw 62. As W 62
increases, 2 larger value of pa‘nz is required to achieve the minimum mean-square
error. However this minimum mean-square error increases as w8 . The filter

has less time to learn the statistics of the signal and hence must make a larger

mean-square-error as the price for responding to 2 faster moving signal.

17
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CONCLUSIONS

A mathematical model of the mean weight behavior for the LMS adaptive filter has
been presented when the filter is operating as a single frequency line enhancer and
line follower. For a fixed frequency complex sine wave input, the LMS filter weights
have been shown to respond to signal and noise more rapidly than to noise alone. This
implies that the filter learns more quickly that a line has appeared than it is able to
forget that the line is turned off.

When the signal frequency is changing linearly with time, the mathematical model
predicts a time-varying behavior of the filter mean weights necessary to respond to
the changing signal frequency. As the chirp rate increases, the filter reduces the
relative amplitudes of the weights so as to adjust the effective filter length to optimally
match the properties of the signal. That is, for example, suppose the filter designer
selects a filter of length M = My. However, the chirp rate is sufficieatly large so that
the change iu signal frequency, between algorithm iterations, is greater than the band-
width of the filter. Then, the LMS algorithm will automatically scale the amplitude of
its weights to have an effective length ‘\[2’ M2 < Ml' such that the signal remains
inside the adaptive filter between iterations. As long as the signal frequency lies
within the LMS filter bandwidth, the LMS filter algorithm can track the changing fre-
quency since there is sufficient correlation between the two inputs to drive the LMS
algorithm in the correct direction.

The mathematical model of the mean weight behavior has been used for selecting u,

the adaptation coefficient of the algorithm, for a wide variety of signal and noise
parameters. The criteria of optimality was that of minimizing the filter output mean Y
square error, since the error is the driving term in the weight adjustment algorithm, ‘
(An alternate criteria, based on a signal detection model using the filter output, could
also be a candidate for optimization.) A set of curves of normalized mean-square
error as a function of signal-to-noise ratio and chirp rate were obtained. From these
curves, the following observations can be made:
1. For a given signal-to-noise ratio and chirp rate ,'.6:. there exists an
optimum selection of U that minimizes the overall mean square error.
2. For slowly changing signal frequency, the mean square ervor exhibits a
relatively broad minimum. This is because a large range of u \Yn: will
follow the slowly changing signal frequency vet allow sufficient smoothing
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so as to keep the weight misadjustment noise below a certain minimum.

On the other hand, for a rapidly moving signal frequency, mismatch in

selection of panz can cause a significant increase in mean-square error as

t)

compared to the optimum selection of pon“.
9

As a system designer, one would choose a pcn" that would be optimum for

the fastest chirp rate expected. The mean square error would always be

upperbounded by the mean square error for the fastest chirp rate.
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APPENDIX I. EIGENVALUES OF TRANSFORMATION MATRIX

In order to easily evaluate the mth power of a matrix, the eigenvalues of the matrix
are needed. The matrix in brackets in Eq. (15) is

3 -1 2 -1 25 =1 ]
V* s = V * -
PO PO [I p'o'n A] PO [ PO Ho.n PO A

% 2. ol
=P, V* [[ - o, M(O)] B (I-1)

Since P0 premultiplies and P(;l post-multiplies R=V * [I—po-nz M(O)], it is only neces-
sary to find the eigenvalues, \, of R, The eigenvalues of R satisfy:

4 2 2 e
—(l-p.crn)f AV-pO’S DODO =0

2 B
v+ [1 S 0.2 DD, )] =
(I-2)

where
D0 = D(0) andl l denotes the determinant,

Because of the simple structure to R, an expression for the eigenvalues can be found.
Given a matrix of the form B= A + a1b1+ where al.and hlare column vectors,

- S
|B| = IAI[I +by A al] (I-3)

o
[3V]




0
i = - - - ' 4 = =
Thus, with A = (1 po ) L AV, a, Do bl’

| ]
2

2), s g o 2 l‘ 2 _ +
(1mo ®) 1t AV -ue® b, LOI = I(L-,mn )[- .\Vll-pds D,

. 2 M
Di¢ :1. ; a_ e 1 a' —-—)D 1
ldg((l"pdn:) a-.\ (l'p.dn:) :1:-.\ \l-p.d’nz) aM- A 0‘
M
M| ? -
:[1-pdn3]‘ 'l———V—-‘J‘l-pU’q x5 “nl‘i - I:O
! 1 - pa“"'[l ot AR ) B4 ‘

The term in brackets yields an M'th order polynomial in \ for which there is no
general analytic solution. Eq. (I-4) must be programmed on a digital computer for

0 2]
various p, us". Ty and a.

Although explicit values of \ are not obtainable, a simple upper bound on the eigen-
values of A\ and hence on the transient behavior ot Eq. (21) are obtainable. This
upper bound on the eigenvalues is useful since it is an indication of the slowest possible

response of the system.,

Let u be an eigenvector of the matrix in Eq. (I-1) with associated eigenvalue, \ |,

Then, with utu =1, and ur = [ulu,, ot ]
- = - 2 m

-1 2
= * - N
A iﬂ PO \% po ([ p,t)’n \) u (I-5)
Now,
® . | 1% = wfgne ®n* p _J*V‘* “povep -1 (I-uo :\)
A i u u .\i = l.\ il = W L= n o Pn ! o p ¢ o u
(I=6)
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Using Po'1 =P Tandv'=v!

M
. 2 a2
|Ai| = z luu, |1- ho, le
=1
2 M
ST 2 2 NE 2 2
"y lull - -“(Gn *Me, ) +{1 Koy ‘ z ‘ui’ (=t}
j=2
M
Letq = z uilz €landp =1-Q = uy 0 <1. Then
i=2
2 2
2. 2 2 2
l‘\i| = (1-q)’1-p(o'n +MO'S )l +q 1-;10‘“'
2 2 2
e 2 2 2 - SRS
= [l-p.(on +1\Io'S )’ +q<1-pon ‘ - ll-p (on +Mcrs )’ )
| 2 2
‘) -
< | 1- p.O’n"' for tl-po'nz‘Z' 1- p(on2+l\los j (I-8)
Similarly
2 2 2
- S 2 k8 W S 3 2 2
l‘\, = p,l B (O'n +Mo’s ) + (1 p))l p.O'n <H|L p,(o'n +NIGS ) ;
|
T A !
for ll-p (Un +I\Ios )2 1- B, l (I-9) )
i
!
§
Egs. (I-8) and (I-9) lead to the following bounds: {’
g |
@ 1u (anz + Masz) <1, assuming o 70 ;
2 2 .
,.\i' 5' 1-pg?l <1 (I-10) ‘
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2 2) 2 2
@ pr(o'n +Mc73 >1butp.<7n <1, t.henforcrn #0

2

. 2 2
A, sll-pon’ | forp.Mcrs

2(1 2
S-( ‘p(fn )

and

2

D)

2
2 2 2 2
A - 5 ) =
, 5,1 p(on +MUS ), for p.M(rs >2 (1 wop (I-11)

i
In the latter case, 'Ai|2< 1 i p.(crn2+Masz) < 2

D)
@ pran“> 1 then

2
(I-12)

I 1\J2 < '1- p(onz + Mosz)
and
2 " 2 2
“\i’ <1 lfp.(Gn Mo )<2

Combining these, it can be seen that il\i‘ <lifp (onz +Mc752> < 2 S';nce i‘\i, <lis
the condition for existence of a steady state mean weight vector, u (an +Mas?‘) <2is
a sufficient condition for a steady state solution. It is interesting to note that the bound
on ,“1;2 in each case isojust ;he magnitude of the largest eigenvalue in the stationary
frequency case, with o’n“, Tg s ¥ and M unchanged. Further
2 9

p.(o’n +Mos“)< 2
is the condition for the convergence of the adaptive canceller in the fixed sinusoid
case. This leads to the surprising conclusion that if the mean weight vector achieves
a steady state value in the stationary case for given 052, onz, M and p, then a steady
state solution will exist for those parameter values regardless of the rate of change

of frequency.




R e

A more direct result for convergence can be obtained as shown below. This latter
approach does not bound the eigenvalues however.

From the discussion following Eq. (I-1) it is seen that R is similar to Q and therefore

has the same eigenvalues. From [18],
n
lim S a®l=qr-agt (1-13)
nN=-ow
m=1

if the L2 norm of A is less than unity, i.e., ”A” <1. In our case, R = A and

IRl = ”v* [1-p0n2 (A)] ” 5,

V|| ”I-wnzk f (I-14)

But “V*” =1 and “I—p.anlelcan be evaluated explicitly as the square root of the
: ' 2.1* 2
largest eigenvalue of the matrix [I - ko, x] [I - WO, 7\].

But [I - p.0n2 7\] is self-adjoint and has only two distinct eigenvalues.

R 2 2)
Ay =1 p.(crn + M,

-
]
-
I
>
[
]
+
Q

(I-15)
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which implies ,,\ (l <1lif
0< p(o‘nz . Mosz) <2 (I-16)

in agreement with the discussion following Eq. (I-12).
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