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1. Introduction

Finite difference methods specify the dependent variables at

certain grid points in space and time,and the derivatives in the equations
are evaluated using Taylor series approximations. The Galerkin procedure,
which will be treated in this chapter, represents the dependent variables with
a sum of functions which have a prescribed spatial structure. The coefficient
associated with each function is normally a function of time. This procedure
transforms a partial differential equation into a set of ordinary differential
equations for the coefficients. These equations are usually solved with
finite differences in time. The two most useful Galerkin methods are the
spectral method and the finite element method. The spectral method, which
employs orthogonal functions, has been used in meteorological problems for

a number of years. The finite element method employs functions which are

zero except in a limited region where they are low order polynomials. This
method, which was developed in engineering, has only recently been introduced
into meteorology and oceanography.

The Galerkin procedure can be illustrated with the following equation:

P &L (u) = £(x) (1)

-o o
where 42? is a differential operator, u 1is the dependent variable and f(x)
is a specified forcing function. Suppose that (1) 1is to be solved in the

domain a < x < b and that appropriate boundary conditions are provided. Con-
sider a series of linearly independent functions ¢, (x) which will be called

J

basis functions. The next step is to expand u(x) 1into a series as follows:

N

u(x) -Z ujcpj(x) " (2)

j=1

3
S
'
1
%
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where u is the coefficient for jth basis function. The error in satis-

h|
fying the differential equation (1) with the N terms of the sum (2) is

T

N
ey =,L"(Z ujcpj) - f(x) . (3)
=L

|
!
y
|

The Galerkin procedure requires that the error be orthogonal to each basis
function in the following sense:

b

e.,dx =0, i=1,...,N. (4)

NPy

The final form is obtained by substituting (3) into (&)

b N b
¢'1x( Z ujcpj)dx -/ cpif(x)dx w0, el ... N . ()
j=1
a a
This reduces the problem to N algebraic equations which relate the unknown
coefficients u:l to the "transforms'" of the forcing function. This procedure
is quite general and can be applied to more dependent and independent
variables.
2 Example with Spectral and Finite Element Methods
Now the spectral method and the finite element method will be applied
to the following simple form of 1):
2

de-f), oxxsm. (6)

dx
The boundary conditions are

u(o) = u(m) =0 . (7

For the spectral method the following basis functions are appropriate:




qa = aln ¥x . I=l,....N . (8)

These functions are orthogonal on the interval 0 < x < n and they satisfy

the boundary conditions (7). With these basis functicns

N N
2
J=1 j=1
and (5) becomes
m "
N
= Z Jzu @1@de - @if(x)dx g ImloocoaN (9)
h|
31
) o

The product of the basis functions can be written
" n
sinix sinjx dx = % [cos(i-])x-cos(1+])x]dx = (ﬂ/2)6ij 5
) S (10)

where 61j is the Kronecker delta which satisfies 6ij = 1 if i =3 and

61) =0 if 1 # J . Equation (10) is merely the orthogonality condition

which arises since the integral vanishes except when { = j . With the use

f of (10), the solution to (9) becomes

m
u, = - 2. f dx 11)
i 2 & . (
LS
o

Each coefficient is proportional to the finite Fourier transform of the forc-

ing term. In this example both the error 1h the solution and the error in

-

the differential equation are orthogonal to the basis functions. This is

e - S

because of(mi) is proportional to mi so that if the error is orthogonal to

}fﬂ?i) it will also be orthogonal to @ This will also be true when certain ;
other linear equations are treated with the spectral method, but it will not :

generally be true with nonlinear equations.
10
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2 (x)
1

Now consider the same differential equation (6) with the finite ele-

ment method. Divide the interval 0 < x < 7 into N+l segments such that

:
E

1

)

(N+1) Ax = 1 . The basis functions are chosen to be tent shaped piccewise j
linear functions which are also called chapeau functions, as shown in j
L

Figure 1. As can be seen from the

4

0 (3-1)Ax jAx

X

(3+1)Ax m=(N+1)Ax

Fig. 1. Piecewise linear basis function.

Figure, “B(X) has a maximum of 1 at x = jAx , which is called the nodal

point. The basis function decreases linearly to zero at x = (j-1)Ax , and

it is zero everywhere else. Mathematically (x) 1is defined as follows:
)

0, x> (j+1)Ax or x < (j-1)Ax

¢3(x) = (x-(j-1)Ax) /Ax (3-1)Ax < x < jAx .

((3#1)Ax-x)/Ax JAx < x < (§+1)Ax

(12)

Note that the coefficient u, is actually the value of the function at

3

x = jAx since qﬁ(ij) =1 and mi(ij) =0 for i# j . These elements

are not quite orthogonal, but only adjacent elements interact. The boundary

conditions (7) are automatically satisfied although this is not necessary

in many cases with finite elements.

Equation (5) now becomes

N m dch m

E : — &
u O X - f(x)dx = 0 .
jf . dx2 i

— (o} (0

11
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This form of the equation is not appropriate because it involves a second
derivative of the basis function which is only piecewise linear. However,

this problem can be avoided by integrating the first term by parts as follows:

m i
L @4 dep
1. P St N | __.1 2 -
Zuj [dx( dx = dx  dx Jx ¢1f(x)dx g5
J=1 o [¢)

The first term vanishes because all of the ¢'s are zero at x =0, 7.

The Galerkin equation now becomes

N
dg& de
ot ___i = -
E ol & & & @, f()dx , 1=1,...,N . (13)
=1 o o

Note that differentiating  (12) gives:

0 ,» X >(j+1)Ax or x < (j-1)Ax
dep
= - 1/6x , (J-1)bx < x < 3Ax

-1/8x , jAx < x < (J+1)Ax
(14)
The left hand side of (13) is easily evaluated since only 3 terms in the

sum are different from zero:

dtp1 dep - ui_le - 2uiA.x + u1+1Ax s
dx dx sz *

j=1 o

e right hand integral in (13) may be evaluated if f(x) 1is approximated
Rl L L] .
in terms of the basis functions:

N
£(x) = Z fjcp.1 ’ (16)
i=1
so that the integral becomes
m (1+1)Ax
4, f(x)dx -Z [ cpicpjdx - fj cpicpjdx .
% =1 (g f)ax

12
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If & = x - iAx is introduced the integral can be expanded into three in-

4 tegrals:

A

™ o o Ax -
2
S E(E+AX) (E+AX) 7 4 £ (Ax-E)
@ f()dx = -f, =T RLAE 42f, | SRR dReE, | 2SERdE
Ax Ax Ax
o -Ax -Ax o

(17)

When these terms have been evaluated, (17) and (15) can be substituted

into  (13) which gives

e

u - 2ui + u g fi+1 + 4fi + fi—l
7 = 6 . (18)
Ax

i+l

SO p—

This equation apnlies for 2 < i < N-1 and the equations for 1 =1 and
i = N are cobtained by removing any terms in i =0 or i = N+1 . Equation
(18) may be solved by Gaussian elimination
Since each coefficient in this finite element expansion represents the

solution at a certain point in space, it is convenient to compare (18)

with finite difference forms of (6). The centered difference form (4)

of this equation is

u - 2ui + u

i+l

fal _ ¢

sz i

(19)

i

difference equation (19) are the same, except that the forcing term in

where u, = u(iAx) . The finite element equation (18) and the finite

(18) appears in a weighted average. When these equations are solved with
a f(x), which is sinusoidal, the finite element form is considerably more

accurate for the shorter wavelengths. R

In this example it appears that the spectral method is superior because f
|
|

the solution error is actually orthogonal to the basis functions. This is :%

= - |




not generally true with the finite element method because

u and u . Each increase 1in

L(ui) depends on Uiy o L 141

N will normally change all of the solutions u1 » whereas with the spectral
method the original N amplitudes are not changed because they are already
exact. However {f the variation of f should require fine resolution in
only a small area, the finite element method can easily be applied by letting
Ax vary. In this case the spectral method would require more elements be-
cause its spatial resolution is uniform. It is also clear that the finite
element method can be used to design better finite difference equations.
3 Time Dependence

In the previous sections the Galerkin procedure has been applied to one-~
dimensional equations which are independent of time. The treatment of time
variation is important for most meteorological prediction problems. Consider

the following simplified equation:

By Zw -0, (20)

where the operatorakonmy be nonlinear. Expand u(x,t) into a series as
follows:

N

u(x,t) = Z u

e j(t:)tp_;‘(X) , (21)

where the coefficients uj(t) are functions of time and the basis functions
qa(x) are functions of x . Usually the Galerkin procedure is not applied

to the time dependence because it is more convenient to ue finite differences
in time.
The Galerkin form of (20) is obtained by substituting (21) into

(20), multiplying by qk(x) and integrating over the domain as follows:




} :du
("J q‘qw‘«lx 0.“ L(.u q» dYAX = 0, i=1,...,N . {22)

=1

Thia process gives N coupled ordinary differential equations in the co-

effifctents u (t) . Thia set can be solved by Introducing finfte difer-

|

encen {n time,

The {mportance of energy conserving tinfte difference schemes |8 well
known, The Galerkin method leads naturally to energy conservation In equa=
tions with quadrat‘c energy varlants. To show this, multiply (20) by u
and integrate with respect to x :

b

. -

)
g-kgt“) dx = - o X (wax . (E8))

For an energy conserving system, the operator must satisfy the condition
B A }

b

u L(u)dx -0, (24)

-

a
where u  {a any function which satiasfies the boundary conditiona., In thia

case (23) becomen b

.
d
dt

a

b
/2 dx = 0, (2%

which shows the energy conservation tor the exact equation, To demonatrate

that the same rvesult holds for the finfte sum (21), multiply the ith

equat fon of (22) by u and sum from {=1 to (=N :

b
/ E AT \" Zu Q\ Ydx = j E AN \,( |§ : u‘q\ N (20)
=1 <
“a

=
~ar




The integral on the right vanishes from (24) since the function given by

21) satifies the boundary conditions. Therefore (26) can be written

b N
—a—(E : u,p)2/2 dx = 0 (27)
TS .

a
which expresses the energy conservation for the Galerkin approximation to the
spatial variation. As with finite difference equations the actual degree of
energy conservation will depend on the time differencing which is used in
(22).
4 Barotropic Vorticity Equation with Fourier Basis Functions
In this section the spectral method will be applied to the barotropic

vorticity equation on the beta plane. Fourier basis functions are appropri-

ate for the beta plane when the fields are periodic in x and y . The
development of this section closely follows Lorenz (1960). The barotropic

vorticity equation may be written:

aic v + % x W - VV3) + B Bp/ax = 0, (28)

where | 1s the streamfunction. Suppose that the fields are periodic in

both x and y so that
b(x + 2m/k,y + 21/8,t) = ¥(x,y,t) . (29)

With the beta plane geometry and the periodicity condition, the appropriate

orthogonal basis functions are of the form:

kx+nf
®_(x,y) = ollEEEFEY) (30
mn
These functions are eigensolutions of the equation:
2
Vo +bp=0 (31)

16
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where the eigenvalues are given by

2

b= (a%k? + altd) , (32)

The streamfunctfon can be expanded in terms of this basi{s functions as

follows:

V(x,y,t) -Z Z Cm(t) el(mkmzy) i

u n

In order for ¥ to be real the coefficients must satisfy the condition

&
where ( ) indicates the complex conjugation. This can be shown by con-
sidering only the m,n and -m,-n . It is convenient to introduce the wave

> > -»> > »> >
number vector M = mki + nlj and the radius vector R = x{ + y§ . The
expansion for Y can now be written

V(x,y,t) -Z c(e) e™MR (33)

»>

M

With the use of (31) and (33) the vorticity can be written

M+R
. (34)

vy z : (Me¥) Gp(t)
= - . > e
4 “
M
The quantities which are required in the nonlinear term in (28) may be

W = Z il ¢y oHHeR

written:

H
2 > > 1-’.’
v(viy) = z ((del) e it
A

17




The wavenumber vectors ﬁ and t are introduced because the sums must be

multiplied together and rearranged.

Now substitute the various sums [( 33), (34) and (35)] into ( 28)
which gives:
> i {i-i R AEE e 1(ﬁ+t) o—ﬁ
-E '(L L)dt Ct e + §+' E*I (L*L)ke*HxL CﬁLL e
L L H
’
+ msé o MR (36)
L

The Galerkin method fo: this equation is similar to the method used in

(22), except that the equation must be multiplied by the complex conjugate

of the basis function since the basis function is complex. To carry out this

-
process multiply (36) by e—m.i and integrate over the periodic domain

as follows:

n/k 2w/R

e T e T
2: 2.0y 4 o, J0-H)R z: L JL(L-M)*R
/ / , (LeL) 4 Cf e + imBk b cr e

2:2: e 1 (M) R
> - .

+ (LeL)ke*HxL CﬁC{ e dydx = 0 ,
>

for each M in the original sum (33). Each integral of the exponential

function will vanish except when the exponent is zero. This leads to the

following equation for each M L

(37




In the first two terms the contribution occurs for : = ﬁ and in the last
> >
term for L = M - ﬁ .

Equation (3) represents N ordinary differential equations, where

N is the number of terms in the sum (33). The last term in the equation

gives the interaction between different waves which comes from the nonlinear
advection term in (28). 1In particular wave ﬁ is affected by the inter-

action of waves H and M - H . When the last term is dropped, (3)

becomes a set of linear, uncoupled equations which can be solved to give

the Rossby wave solution.

In section (3) it was pointed out that the Galerkin procedure pre-
serves energy type univariants which arise from quadratic nonlinearities in
the original equations. Equation (28) conserves both kinetic energy and
mean square vorticity or enstrophy. The kinetic energy for the region can

be written:

2n/k  2w/R 2n/k 2w/R

> > >
- Vg . | E 2 2 %= i (H+M) *R
K f 3 dydx 2 e - i" H Mcﬁ e dydx ,
H M
o o o ()

where the Vy product was obtained from (35) with different summations.
The 7integral on the right is nonzero only when ﬁ = —ﬁ so that the energy
can be written

g E MeM v i z RN K
K=3 s MeMCRC 3 = 2 M MICﬁI : (38)
M

—
M

*
where the condition C_ﬁ = C i has been used in the last step.

The energy form in (38) is conserved (dK/dt = 0) by both the original

vorticity equation (28) and the spectral form (37). The conservation for

(28) is easily demonstrated, and the conservation for (38) follows

\9




from the development in section (3). An equation for the rate of change

of energy in wave i can be obtained by differentiating Cﬁc_ﬁ with respect
to t and by using (37). The resulting equation shows that the energy

in wave ﬁ changes in proportion Cﬁ times the amplitudes of pairs of
interacting waves. Thus if Ci is maintained at zero, the energy flow out of
the other waves to it must be zero. This shows in another way that energy
will be conserved in any set of waves that might be selected for sum ( 33).
Since interactions outside of this set are neglected, aliasing cannot occur

in a spectral model. This automatically eliminates the nonlinear computa-

tional instability which occurs with finite difference equations,

The set of ordinary differential equations (37) can be integrated
numerically with one of the standard schemes. In fact Baer and
Platzman (1961) noted that the linear terms in  (37) can be treated exactly
so that the only time differencing erromgcomes from the nonlinear terms.

It {s clear that the spectral method is much more accurate than most
finite difference methods for the same number of degrees of freedom. In par-
ticular, linear advection that was examined is treated exactly
by the spectral method provided that the initjial field in resolved. Finite
d(fgérence methods experience false dispersion since the short waves move
too slowly. The spectral method has no aliasing because interactions in-
volving shorter waves outside of the truncated set are excluded. On the other

hand, the finite differencing falsely reflects interactions with shorter waves

back onto longer waves. With the Arakawa Jacobian finite difference¢ forms,

this aliasing does not produce spurious energy, but it
does cause phase errors in the interacting waves. In spectral models the
most important error involves the neglect of interactions with wave components

which are outside of the original set. The neglect of these interactions

20
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causes an error in the waves which are represented by the basis functions.

pppe————

Thus although the error in the original equation is orthogonal to the basis
functions, the error in the solution will occur in the scales described by
the basis functions.
When the spectral method {s applied to a vorticity equation such as

(28), a Poisson equation for 3y/3t does not have to be solved since the
basis functions are eigensolutions of (31). The Poisson equation must be
solved at each time step with finite difference methods. The biggest draw-
back to this form of the spectral equations is in calculating the nonlinear
term which appears as the sum in (37). The coefficient preceding
Cﬁ.ﬁcﬁ is called the interaction coefficient and it is usually computed
just once and stored for use during the integration of the equation. The
problem s that {f there are N degrees of freedom the number of operations
needed to compute the nonlinear terms goes as N2 for this spectral model
as compared with N for most finite difference methods. Thus for high
resolution (large N), this form of the spectral method requires relatively
larger computer time than finite difference methods. 1In a later section a
method which avoids this problem will be presented. However the present
method is very convenient for low-order ;odels. Lorenz (1960) obtained some
very interesting nonlinear solutions with a 3-component system. It can be
seen from (37) that at least 3 waves are required for nonlinear interaction.

S Barotropic Vorticity Equation with Spherical Harmonics

In this section the spectral equations will be formulated for barotropic

motion on the sphere. The bavotropic vorticity equation in spherical co-
ordinates can be written:

3 g2y . L2 AVl 3y aviy, 203y
’é‘fv*".zliﬁ“ﬁ‘ n au]*.zax 0. (39)




where

2
v - i By e A (40)
1-u? a?

In these equations A {s the longitude and U = sing , where ¢ 1is the
latitude. The spectral method was first applied in spherical coordinates
by Silberman (1954) and the development of this section follows Platzman
(1960) .

The appropriate orthogonal basis functions are

mA

1
L G, Ay =P (W) e . (41)

»

where P = denotes associated Legendre functions of the first kind which

»

are defined by

m/2 dn+m

2n+1)(nfglj}1/2 (I-EE)
n+m

(ntm) | ™ nl dp

s (42)

« t£
Pn.n(u) {

These basis functions are spherical harmonics which satisfy the equation
vVZY +bY =0, (43)
where the eigenvalues are given by

b = n(n+l)/a2 : (44)

Here |m| {s the planetary wave number and n-{m| 1is the number of zeros
between the poles. Also n must be greater than or equal to |m| . These

basis functions are orthogonal so that

2n 1 1 for (m',n') = (m,n)
1 AT 43)
4n Ym.n m',n' i 3 b
<1 0 for (m',n'") ¢ (m,n)
22
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The streamfunction can be expanded as follows:

M |m|+J

Voure =af Y Y @y, G . Ge)

m=-M n=|m|

Since Y must be real Wm " must satisfy

m *
w n i (-1) wm n

(47)

This condition was derived with the use of the relation P-m i (-1)m Pm -
» »

The coefficients wm o can be obtained from the inverse transform:

2 1
2 \ & A 8
wn.m(:) ol VA, u,t) Yoo dHdA . (48)
o

The vorticity has the following expansion:

M [m|+J
vy o - -Z n(n+l) v (&) Y, (49)
e ‘;l m,n m,n

which follows from (43) and (44).
_The Galerkin method is applied by substituting (48) and (49) into
x
(39), multiplying by L n and integrating with respect to W and X .

’

When the conditions (45) are employed this equation reduces to:

dwm 2Qm 1 1
2 - -
dt n(n+l) l"m,n n(n+l) Fm,n 5 (50)
The nonlinear terms Fm n May be written
M |m]+s wo Imyl+d
I..m.n l E ; § ' § : E } 1wm1.nlwm2,nz L(m’n:ml‘nl;mZ'ﬂZ) ’

m, == ", mll m2=—M n,= m2|

(51)




where the interaction coefficients are given by

A e
l[n (n +1)-n,(n +1)] P (m P —~T2’ 2 \
- S R | 2 0 Y ¢ ml,nl du
dp =1
m, ,n
. . El - ———— = )
L(m,n,ml,nl.mz,nz) mszz'“z o ldu for m m1+ @, 5
= 0 for m # m1+ =, //

(52)

In obtaining this result the subscripts 1 and 2 were used for expansions
(48) and (49), respectively. This form for the interaction coefficients

comes from the fact that Fm " changes sign when wm

and wm are

A | "
interchanged.

Equation (S0) has the same form as the prediction equation (37) for
the Fourier basis function. However the spherical coordinate equation has
more complicated interaction coefficients because of the integral involving
the Legendre functions. It can be shown by the same method as before that

energy is conserved, and Platzman (1960) has also shown that mean square

vorticity is conserved. The spectral method applied to spherical (global)

prediction has the advantage that there are no singular points whereas singular

points often cause problems with finite difference models. The only major
disadvantage in solving (50) is in the large number of terms which come from

the nonlinear terms. This problem will be treated in the next section.

L)

N
N
d
§

AT

e o e———



6. Transform Method

In this section a new method for handling the nonlinear terms in (50)

will be presented which avoids the use of interaction coefficients (see (51)
and (52)). This method was formulated independently by Orszag (1970) and

Eliasen, Machenhauer and Rasmussen (1970), and it has been reviewed by Bourke,
McAvaney, Puri and Thurling (1977). The problem with the interaction coeffi-
cient method for computing nonlinear terms is that it requires multiplication
of two series (together) which is very time consuming. The transform method

sums the series at certain spatial grid points and these fields are multiplied
together at each point to form the nonlinear terms. Then the nonlinear terms
must be transformed back to spectral space. The usefulness of this process

is enhanced by the existence of efficient transform methods. In spherical co-

ordinates the fast Fourier transtorm is used in longitude and the Legendre inte-

grals in latitude are evaluated by Gaussian quadrature. This method is far
superior to the interaction coefficient method for the sphere.

The nonlinear terms which must be transformed may be rewritten as follows:

2 2
P - gt B - B L L@ v - gy viwl . ()
a a

It is now convenient to define the following quantities which are the A and

@ velocity components multiplied by cosgp:

2
_-cos Y -1 93y ;
U= ——;—m-sa oV 3" (54) X

When these velocities are introduced into (53) it can be written as follows: J

1 3 2 9 2
Fu,A) = = (= 330779 + G099 (55)

1
k=1 i




The velocity components (54) can be computed from (46) at longitude-
latitude grid points, and the vorticity can be obtained at the same points
using 49). The detafls of the process will be given later. The products
UV3y and VV?y can be calculated at each grid point and the resulting prod-
ucts can be Fourier analyzed {n )\ to give the following relations:

m=M

Uy = a E A () o A :

m=-M (56)
m=M
Wiy = a E B, (1) o

m=-M

The transform of F(u,\) 1is given by

2n 1
1 -imA
Fm,n . 4n f f e Pm'n F(u,A) dudX . (57)
o -1

The A integration in (57) can be carried out by substituting (56) into

(55) and by inserting the result in (57), which gives:

1
dB
1 im _m
Fm.n s [1—U2 Aum.n 4 du Pm,n] oY

e !

The second term can be integrated by parts which gives

1
1 im de n
W - == ——— - —__3 N1
F " 2 [ = Aum,n B & ] d% (58)

1-u°




where the condition Bm = (0 at W =% 1 was used to simplify the integral.
This condition follows since V 1is equal to the actual velocity times cosgp.
The form of Fm - given by (58) is superior to the earlier form because

only the known function Pm, is differentiated.

= The integrand in  (58) is a polynomial in u and the integral can be
evaluated following Eliasen et al. (1970) by the Gaussian quadrature formula.
If the integrand is denoted by Q(u) , the formula gives the following

expression for F <
m,n

R
s (x)
Yen ™3 E G Q) . (59)
k=1

In (59) the summation is carried over K values of uk , where the uk's
are roots of the Legendre polynomial P(%K and Géx) are the corresponding
Gauss coefficients. The formula is exact for any polynomial of degree smaller
than or equal to 2K-1 (see ). Thus apart from
roundoff errors, no approximation is introduced by computing the integral when
a sufficiently high value of K 1is used. The maximum degree of Q(u) can be
most easily obtained from (52).

Before discussing this prccess for treating the nonlinear terms in more

detail,~it is necessary to determine the relation between J and M which must

be defined in the sum (46). In rhomboidal truncation J = M , so that each
latitudinal mode has the same number of waves in longitude. With triangular
truncation J =M - |m[ so all basis functions which have the same scale
n(n+1)/a2 , are either retained or dropped. Thus the mode with the smallest
latitudinal scale has the largest longitudinal scale. Most meteorologi;al

models use the rhomboidal truncation in part because it gives better longitudinal

resolution. In the remainder of this development, the rhomboidal truncation

will be used.

27




In order to construct the fields (56) 1t is necessary to obtain U

and V from ¢ . First expand U and V {into these sums:

M [ml+Me1
U = 1 U Y A
a § / m,n m,n
m=-M n=]m’ (60)
M |m|n |
vel E v Y 5 |
a m,n m,n ‘
m= - n=]m|
The following relatigns will be useful in evaluating (54): 1
2 DYm n
L- _m,n & . Y
(w'-1) RV n Dm.n+1 Ym,n+1 (nt1) Dm,n m,n-1 "'
(61) |
avm .
LN A4 =
A in Ym,n F
; 2 2 2 Y y
where D 5y 2 [(n"=m™)/(4n"-1)]1* . The final expressions for Um ™ and

can be obtained by substituting (46) and (60) into (54), using

m,n

(61) and by applying the orthogonality condition (45) :

v ,N = (n-1) Dm,n wm,u-l = (nt2) Dm.n+l

v

m,n+l °

vm.n = {m wm.n .

Note that the expansion for U as given in (60) must extend one degree

above that defined for  , since nonzero values of Ulml

implied by nonzero values of wlml |m|+M .

The quantities U , V and 2y can now be evaluated at points

k

XJ = 2ny/N , @ " arcsin |

62)

s [m| M1 =




v e

where §J =1 ,...,N and k = 1,...,K . The qk's are called the Gaussian

latitudes. Consider for example V(A .uk) which can be written:

A
¥ lmkJ |m! 4+

V(xj,uk) - E e E {m wm'“ Pm.“(uk) : (63)
m=-M n=|m|

with the use of (41), (46) and (62). Similar expressions can be

written for U(Xj.uk) and VIy(\ .uk) . The outer summation can be carried

J

out very efficiently with the use of the fast Fourier transform method which

was developed by Cooley and Tukey (1965). The number of operations required

for the fast Fourier method applied over N points is of order N 1032 N,
while for the direct method order N2 operations are required. The fast
Fourier transform method is clearly much faster than the direct method for
larger values of N. The next step is to compute UV3p and VV?P at each
grid point. After these products have been computed, the Fourier transforms
must be calculated to give Am and Bm for use in (56). For example,

using the discrete Fourier transform:

e < RN S Wl A 5

8 -imA

MO T DL e vy (64)

k' aN Ik

=1
where -M <m <M . A similar expression is obtained for Bm(“k) . The
fast Fourier transform can also be used here to save time.

It is important to choose N large enough to avoid aliasing when the
products are transformed back to wave number space as in equation (64).
Orszag (1969), (1970) suggested that N = 4M would be needed, but later
Orszag (1971) and Machehauer and Rasmussen (1972) showed that N = 3M+1 was

adequate to provide alias-free transforms.
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Now that Am(uk) and Bm(uk) are known, Fm n can be computed exactly

’
from (59) if the degree of the polynomials 1s less than or equal to 2K-1l.
The maximum degree can be determined from (52) by noting that Pm n is a
?

polynomial of degree n and by considering these selection rules for the

interactions: m =m, + L |£1 ~ 22|<2 < |21 + 22| . The conclusion which

is given in Bourke et al. (1977) is that the maximum degree is 5M-1, so that
the number of Gaussian latitudes is K > 5 M/2 .

This method of computing Fm,n is more efficient than the interaction
coefficient method and it requires much less computer storage. The number of
calculations required for the interaction coefficient method is of order (MS)
while for the transform method it is of order (25 M3) [see Bourke et al.
(1977)]. It will be shown in the next section that the transform method 1is
more efficient for even a moderate value of M and this advantage increases

rapidly with M .

7 Spectral Model of Shallow Water Equations

In this section the spectral method will be extended to the primitive
equations and it will be demonstrated that semi-implicit differencing can be
applied with little extra effort. The shallow water equations in spherical
coordinates will be used to demonstrate the procedure following Eliasen et al.

(1970) and Bourke (1972). The equation of motion and the continuity equation

can be written:

v > o . L VeV

5—;--(;+f)kxv-V(q> +—-2), (65)
ﬁ'- - . T o

3t Ved'V - ¢S . (§6)

This form of the equation of motion will simplify the derivation of the vor-

ticity and divergence equations. Note that the geopotential has been split
- \j

into a mean ¢ , and a departure ¢ , which will facilitate the implementa-

tion of semi-implicit time differencing.
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The velocity is broken into rotational and divergent parts as follows:
Vekxw+ Ix = (U/cosq) i+ (V/cosg) g (67)

The modified components U and V will also be used here. Now form the vor-
ticity and divergence equations by taking Ve* and K-Vx of (65) which

gives:

%9 - - Ve (CHE) V , (68)
t

> >
g_‘: = KeUxkz+f) V- V(o' + Y-’i!)‘ . (69)

The vorticity and divergence become

T, §evy. (70)

In spectral models it is convenient to replace the equation of motion by

the vorticity and divergence equations because the relations (70) are sim-
plified when spherical harmonics are used as basis functions. This form of
the equations is also more convenient for application of semi-implicit dif-
ferencing. :

The vorticity equation (68) and the divergence equation (69) can

now be expanded with the use of (67) and (70) to give:

d o2 1 g .2 3 uf
¢ VY = - —— [Si (UV7Y) + cosgp 55 (VW) ]
a cos @
- 0(sing VX + V/a) , (71)
o2 1 B rent b il
il Rt ¢ ¢ (W) - coS® 3o vy ]
a cos @
2, .2
+ Mlsing? - v/a) - VL 4+ ¢ . (72)
2 cos @
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Similarly the continuity equation  (66) becomes:

T A e VO

39" 1 ;
B2 e cosq)gé vo*)] - dv . (73)

a cos @

The two components of (67) can be written:

U= - Sos@ady  13x

a dp aad’ 74
- 13 . cosgdx
¥ s T dp ° (75)

Equations (70, (72) and (73) are the predictive equations for ¥, X
and ¢' and (74) and (75) are diagnostic expressions for U and V .
The nonlinear terms in these equations are in a convenient form for the
transform method which was presented in the last section, since the multi-

plication can be performed at the grid points before differentiation.

Each of the dependent variables is expanded in terms of the spherical

harmonic basis functions (41) as follows:

M m|+M M lm|+M
2 } : 2 j :
w o' wm.n Ymgn » X - xmln Yn'n g
m=-M n=|m| m=-M n=|m|
(76)
M |m|4+M
R
¢ . ¢m,n Ym,n = (17)
m=-M
M | m|+M+1 M m | +M+1
U=a E V. _ Y , Vegq z o
m,n m,n m,n m,n
m=-M n= nl 10=-M n-|m|
( 78)
These expansions are for the rhomboidal wave number truncation. Equations

(74) and (75) are transformed in the same manner as equations (54) were




in the last section and the result is

Um.n = (n-l)Dm’n\pm.n_l _(n+2)Dm,n+1wm,n+1 + 1mxm'n t
(79)

vm n --(n-l)bm,nxm n

» ’

-1 +(n".z)Dm,n+].xm,n+1 ’ i'mwm.n §
Note that the expansions for U and V must extend one degree above the
expansions for ¢ and ¥ .

The quantities needed for the nonlinear terms are obtained by evaluat-
ing the sums in (76), (77) and (78) at equally spaced points in longi-
tude and at Gaussian latitudes. The required products are computed at each

point and the products are then Fourier transformed in longitude as follows:

M M
UVzw = a Z Am eimk . sz = a z B eim . (80)
m=-M m=-M
M M
Vo' -33 E Cm eimA , V¢! -332 Dlll eim)‘ % (81)
m=-M m=-M
M
2 2
u“ +vVv 2 imA
LV ., 2 A (82)

m=~M

The spectral equations are formed by substituting (76), (77, (78),
(80), (81) and (82) into the system (71)- (73) and multiplying each
* :
equation by Ym " and integrating over the domain. With the use of the

orthogonality condition (45) the equations finally reduce to the following

set:
-(+1)M‘3-—1— —1-[1mAp - N i‘;ﬂl]‘m
e ot 2 1_uZ m m,n m du

-1 ]

i
+ m[n(n-l)Dm’nxm.n_l + (n+1)(“+2)nm,n+lxm.n+l - vm.n] " (83) ‘
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X dp
- b S SR ) S My g .
n(n+l) i 5 l-uzllmamvm'“ . 2] du-20(n(n l)nm.nwm.n-l
o §

i + um.n] + n(nH)(Em % ),

m,n+1 ,n m,n

F 9
# + (n+l)(n+‘)Dm.n+l

(84)

3 : dp 5
s T | —S={iaC P - D 'd'u""ﬂ] d o+ Fult) x o, (89)

where

E e s du . (86)

The integrals are evaluated by the Gaussian quadrature formula as before,
but this time (5M+1)/2 Gaussian latitudes are required. As before the
required number of longitudinal grid points is 3M+1.

Bourke (1972) compared the efficiency of the transform method to the
interaction coefficient method for this model. Figure 2 shows the computer
time required per time step for the two methods as a function of the trunca-
tion number M. The figure shows clearly that even tor M = 15 the transform
method is an order of magnitude faster than the interaction coefficient method.
In fact the interaction coefficient method becomes almost intractable for M
much larger than 15. At M = 15 there are over 500,000 interaction coeffi-
cients.

The system (83)- (85) i{s very convenient for the application of semi-

implicit time differencing. All terms are evaluated explicitly except that

on.n in (84) and xm'n in (85) are treated implicitly. These two

equations are easily solved for Om “(t+At). and equations (83) and ( 84)
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Figure 2. -Computation time per time step (s) as a function of
spectral resolution. Integrations of a global spectral model
employing a transform method and employing the interaction
coefficient method are compared.

can then be solved explicitly. 1In contrast finite difference models require
the solution of a Helmholtz equation for ¢(t+At) , at every time step
Thus in spectral primitive equation models a much longer time step can be

used with almost the same computational effort per time step.

The introduction of the transform method and semi-implicit differencing
have made the spectral primitive equation models competitive with finite
difference models for global prediction. The procedures used in this section
are easily extended to baroclinic models as has been done by Bourke et al.
(1977), Machenhauer and Daley (1972) and Hoskins and Simmons (1975). Com-
parisons have shown that as good or better forecasts can be made with global
spectral models than with finite difference models which use the same amount
of computer time (Doron et al. (1974) and Daley, Girard and Simmonds (1976).

It should be pointed out that energy is not exactly conserved in this

model even with continuous time variation. This is because the kinetic energy

for the shallow water equations is proportional to ¢3-6 which is a cubic

1
energy form, and consequently the analysis of Section 3 does not apply. i
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However the nonlinear terms are computed very accurately in spectral models
and experience shows that the energy is in fact very nearly conserved.
Bourke (1972) integrated the model which was developed in the section for

116 days, and obtained an energy change of only 2 percent.

8 Advection Equation with Finite Elements
In this section the finite element method with linear elements will be

applied to the advection equation

§+cﬂ-o. (87)

ot 9x

This equation has been treated extensively with various finite differ-

ence schemes. The Galerkin equation is obtained by setting Jr = C g% in

( 22) which gives

b b -
~ duy 3 Ay

Z dt s i CE i B 5 =0, Akl

=1 a 3=1 A (88)

The linear basis functions QH(X) are defined by (12) and a typical one
is shown in Fig. 1. 1In this application u 1is periodic so that the basis
functions must satisfy P, " G and ¥ " Oy

The first term in (88) can be evaluated from (17) which is of the

same form, and the second term can be computed with the use of (14). The

resulting equation with i = m can be written:

du du du u -u

de de de (89)

The advection term is the same as is obtained from centered differencing,

but the time derivative appears as a weighted average over three points. It
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will be seen later that this greatly increases the accuracy of the solution.

Now apply leapfrog time differencing which gives the following equation:

L_ % - - ! - = -
12At(um+1,n+1 um+l,n-1+6(um,n+1 um,n-1)+um-1,n+1 um-l,n—1)+ 2Ax(um+1.n um—l,n) 0.

(90)

|
|
:
:

The stability and phase error can be investigated by substituting . A
]

A exp[i(uAxm + aAtn)] into (90). This yields
sinaAt = —(cAt/Ax)(3 sinuAx) /(2 + cosuAx) . (91)
The solution is stable (i.e. (sinaAt) < 1) if

3cAt/Ax[sinpAx/(2 + Cosqu)]max 2 1.

The bracketed term is a maximum when uAx = 120° , so that the stability con-

dition becomes
lcae/ax| < 1//3 . (92)

This criterion is considerably more restrictive than the CFL condition which
arises from the leapfrog finite difference scheme. However it will be shown
that ~ (90) gives even better phase speed than the fourth-order leapfrog
scheme for which the computational stability criterion is |cat/Ax| < 0.73
Thus it is not unreasonable that .the leapfrog finite element scheme would
have a more restrictive computational stability criteria.

The finite element formula with leapfrog time differencing is actually

implicit, since the new value u cannot be obtained explicitly from the

m,n+1

earlier time values. Thus it seems reasonable to use a fully implicit form

which does not have the timestep restriction (92). Consider the following

time difference approximation to  (89):
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This fully implicit scheme can be shown to be neutral for all timesteps,
and it should require about the same effort per time step as (90). For
this reason implicit time differencing schemes are often desirable when
finite elements are used.

The phase speed for the leapfrog scheme is given by

1
QF = - a/u = UAT: arcsin (_:_.é£ é_s_iELA.’_()

Ax 2+cosulx (94)

If At/Ax and U are fixed, this expression approaches & as At =+ 0

»
which shows that the solution converges. If At is small in comparison to
Ax/c , this formula reduces to

e R 3 sinpAx _ _c sinpdx
F HAX 2+4cosiAx  uAx [1-2/3 sinz(qu/Z)] a

(95)

Table 1 contains c/cF from ( (95) for typical values of L .

L 2Ax 3Ax 4Ax 6Ax
FEM 0 0.83 0.96 0.99
4th order 0 0.61 0.85 0.96

Table 1: c/c, for the FEM solution and for 4th order space
dif§erenced scheme for various wavelengths L.

The table also includes the ratio for the fourth order scheme from the limit

for small At . The finite element formula (95) can be expanded
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in MAx which leads to an error that is of order (qu)a . Table 1 shows

that although the linear finite element equation and the fourth order finite

ditference equation have the same order of truncation error, the finite
element equation is much more accurate. At L = 3Ax the finite element
solution gives only 17% error in phase speed, while the fourth-order finite
difference gives 39%. However for L = 2Ax , Cg = 0 , which indicates that

the finite element computational group velocity is very large for this wave-

length. This can be shown by differentiating as follows:

d(uCF) - [2cospAx + 1]

( 96)
du (cosplAx + 2)2

C =

When L = 2Ax (pAx = w) this formula gives G = -3¢ which is much larger

than the =-(5/3)c¢ that occurs with fourth-order differencing. This suggests
that small scale noise will propagate very rapidly in finite element models.
This tendency toward noisiness has been observed in various finite element
models. The degree of accuracy indicated above for the finite element model has
been verified by Cullen (1973) in a two-dimensional advective problem. It
should be noted that although the FEM gives a solution for all values of x

in the range considered, the high accuracy.is only obtained at the nodal

points since the fields are assumed to be linear between nodal points. In

the next section the method will be applied to the barotropic vorticity equa-

tion.
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9. Barotropic Vorticity Equation with Finite Elements

In this section the finite element method will be applied to the non-
linear barotropic vorticity equation in a two-dimensional domain. The basis
functions will be linear functions on triangular elements. The barotropic

vorticity equation can be written

an = —* .
w0 = -k x Wevn , ( 97)
where n=f(y) + V¥ , _ (. 98)

is the absolute vorticity.
Following Fix (1975) both Y and n are expanded in terms of the basis
functions qh(x,y) as given below:

N

v(x,y,t) = :E: Ua(t) ¢3(X.y) ’ £ 39
j=1

N

n(x,y,t) = }E: nj(t) ¢3(X.y) . ( 100)
j=1

When the Galerkin method is applied to ( 98) the following is obtained:

N N
b B vj(c)ffwiv’wj an= - f o xEmaa + ) nj(t)ff@i(X.y) @y (X, ¥)AA
j=1 J=1

for 1i=1,..,N. Since linear basis functions will be used it is necessary to

integrate the left hand side by parts, which gives:

N » - i
Z wj fv¢iijdA -Jf C&‘if (Y)dA - Z njffcpicpjdA $ ¢ 101)
j=1 § i=1 '

for 1=1.,2,...,N.
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The boundary terms which arise from the integration by parts were set to zero,
by assuming that either 1 1is periodic in space or that there is no flow
normal to the bou;daries(i.e.,vaw-; = 0, where ; is a unit vector normal to
the boundary). Now apply the Galerkin method to the vorticity equation ( 97),

which leads to the following form:

N
dn >
3 Eifwimjm-z zwﬁj% ¢ 10

J*1 j=1 k=1

for i=1,...,N. This equation is of the same form that was obtained with the spectral
model, but the nonlinear term requires much less effort because the only ¢'s
which interact are those which are physically adjacent.
The equations ( 101) and ( 102) conserve both mean square vorticity
(enstrophy) and kinetic energy. The enstrophy conservation can be shown by
multiplying ( 102) by ni and summing over 1 . When the sumatioas are
taken under the integrals, the form ( 26) is found Since the integral of
ni x VeVn  vanishes, the conservation of n2/2 follows directly. The
kinetic energy change can be examined by first differentiating ( 101) and

substituting the result into ( 102) which gives:

Vo *Vepyd = Z Z b, k[/ Kx Vo * Upda, (103
P

J=1 J=2

for 1i=1,2,...,N. Multiply this equation by —wi and sum over i . The
resulting equation is again of the same form as ( 26) and the left hand side
is the derivative of the total kinetic energy. Since the integral of
wE x VWe+Vn 1is zero, the energy is conserved. These results are not dependent
on the particular basis functions which are employed.
The systems of equatfons ( 101) and ( 102) can be written in matrix

-
forms which are more convenient for solution. Let $ and n be column
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vectors of the values of and 1n, , respectively. Then ( 101) takes

i i

the form:

»

»
Ky = Q. ( 104)
where the elements of the matrix K are

K{J =[S VQ) N \Q\dA ’ ( 105)

>

and Q is a column vector of the right hand side of ( 101). Sfwmilarly,

system ( 102) becomes

»
dn = oy
M at ) ( 106)
where the elements of M are
= [f \
M{i I, C")(q‘ dA » ( 10])

>
and J 1is a column vector of the right hand side of ( 102).
The solution procedure will be illustrated for the case where leapfrog

time differencing {s used in ( 105) which leads to the equation:
"
MAn = 2At J_ , ( 108)

> > >
where An = Nl = Myl ° The matrices K and M are computed initially

and stored for later use. The equations can be integrated beginning with

T d . » right hand sid 08) can be ¢
wj,n ’ ‘j.n—l an nj.n The right hand side of ( 108) can be computed
from and n , and that equation can then be solved for Anj . This

Jyn Jn

increment can be added to . With these values the

nj,n—l j.ntl
right hand side of ( 104) can be computed, and ( 104) can be solved for

to obtain n

, and the process can be continued. In this procedure {t {s necessary

wj,n#l

to invert the matrices K and M during each time step. These matrices ave

very sparse since only adfacent elements {nteract. In some cases direct




methods can be used, but iterative methods are much more flexible,
Cullen (1973) has shown that the two dimensional advective stability
criterion for linear elements is

"d"‘ < 1/v6 , (109)

where d 1is the distance between nodal points. This 1s consistent with the

one-dimensional result (92), because the step from one to two dimensions

is usually achieved by replacing the grid size with d/¥2 . 1In this applica-
tion I cI would correspond to the maximum velocity in the domain. Since the
condition (108) is rather restrictive for At and since two matrices must

be inverted per time step it may be worth while to use a fully implicit form

similar to (93).

The natural generalization of the tent function in one dimension to two
dimensions is a basis function which is composed of triangular elements. On
each triangle the function varies linearly from 0 at two vertices to 1 at the
third which is the nodal point for the basis function. Figure 3 shows how
a typical basis function qﬁ is constructed on a rectangular grid of nodal
points. This function is the sum of the six plane surfaces that are associated
with each triangle. The basis functions can be equally well constructed when
the nodal points are irregularly located, and it is not necessary to have six
triangular elements in the constructi{on.

The elements in the matrix equations (104) and (106) are obtained by
evaluating the integrals f{n equations (101) and (106). These integrals
can be reduced to a series of integrals over triangles such as are shown in
Figure 3. Within each triaangle any point is affected by only the three
basis functions which have nodal points at the three vertices of the triangle.

Zienkiewicz (1971) and Desai and Abel (1972) describe a convenient procedure

W3




for evaluating the integrals over each triangle. This involves introducing
triangular coordinates which vary linearly across each triangle in the same
manner as the basis functions. The integrals can then be evaluated quite
generally.
A rigorous mathematical analysis of the finite element method is given
in the book by Strang and Fix (1973). The stability and convergence of the
method are discussed in considerable detail. Most finite element applications

are based on a variational formulation rather than the Galerkin approach which

has been used here, although the Galerkin method is most appropriate when time

dependence is included. Pinder and Gray (1977) developed the finite element

metood with the Galerkin approach, and gave applications in hydrology which
has similar equations to those which occur in numerical weather prediction. ‘
The finite element method has been applied to atmospheric prediction with

the primitive equations in shallow water form. Cullen (1974) and Hinsman (1975)

uﬁ:.o
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Fig. 3. Construction of the basis function ¢, on a
rectangular array of nodal points. ]
carried out global forecasts with these equations using linear basis functions
on triangles as discussed in this section. The elements were efficiently
arranged so that the area of each element was almost the same over different
parts of the globe. Most global finite difference models have a large varia-
tion in grid size between the equator and the pole, and consequently are not

very efficlent.

Ly




pr—

Staniforth and Mitchell (1977) reformulated the shallow water equations
in terms of the vorticity and divergence as was done in section 6.6 for the
spectral model. In this form semi-implicit time differencing can be applied
easily, which allows a much larger time step. This is very important since
the finite element method generally requires more computer time per time step.
Staniforth and Mitchell also found very little noise generation in their fore-
casts, whereas many finite element primitive equation models tend to generate
small scale noise if no smoothing is used [Cullen (197¢)].

The finite element method when applied to meteorological equations gives
very accurate phase propagation and also handles nonlinearities very well.

The main drawback to the use of the method is the requirement that an equation
solver must be applied to invert a large matrix at every time step for every
variable. The development of flexible exact solvers for these matrices is of
great importance. The finite element method can easily be applied to variable
resolution problems, but some finite element models do tend to produce noise
probably as a result of the large spurious group velocity for the shortest
wave. However, the formulation of Staniforth and Mitchell (1977) seems to
reduce this problem considerably. Schoenstadt (1978) has shown that noise is
generated in finite element models where all variables are carried at the same
models points. When the variables are staggered at different model points:or
when the vorticity and divergence equation are used this problem can be
avoided. The general procedure used by Staniforth and Mitchell (1977) appears

to be superior because semi-implicit differencing can be easily implimented,

and the forecasts are not noisy.
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