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CHAPTER I
DETECTION AND MMSE ESTIMATION OF MEMORYLESS NONLINEAR
FUNCTIONALS OF RANDOM PROCESSES IN GAUSSIAN WHITE NOISE

1.1 Introduction and Dissertation Outline

The theory of detection and minimum mean square error (MMSE) estimation
for known signals in Gaussian noise and for Gaussian processes in Gaussian
noise are widely available | 1,2] and well known. This is due to ﬂ;c
successful application of the theory in solving many problems .of practical
intevest,  The nonlinear theory is not as widely known due both to a lack of
solutions to problems of general interest, and to the mathematical background
required to foliow many of the proofs (which rely on measure theory and the

stochastie calculus),  Recently, several texts [3,4] have appeared to make the
nonlinear theory more available to the average engineer,

In this dissertation, the Karhuenen-Loeve expansion and the Volterra func-
tional expansion are used to derive results for detection and MMSE estimation
for nonlinear memoryvless functionals of random processes. In all cases con-
sidered, the observation process is assumed to contain an additive Gaussian
white noise component. Since the results are shown using simple concepts, they
can be easily followed by most graduate students with no background in measure
theory or the stochastic calculus.

ln Chapter (1, a Volterra functional expansion for the likelihood ratio is
derived for detection of a nonlinear memoryvless functional of a random process.
For the special case of detection of a zero-mean Gaussian process, this Volterra
functional expansion is reduced to well known results. Two examples of

calculating Volterra kernels for detection of nonlinear memoryless functionals

1-1
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of zero-mean Gaussian processes are presented. Detection of nonlinear
memoryless functionals of de processes is considered, and performance of the
truncated Volterra expansion compared with the optimum performance for a
phase~modulated sinusoid,  For long observation times, a class of non-
linearities and stationary Gaussian processes is considered for which it is
possible to reduce the Volterra functional expansion. As an example, it is
shown that first order Butterworth phase modulation of a sinusoid is a member
of this class. Performance is derived for this example.

In Chapter 11, MMSE estimation of a nonlinear memoryless functional of
a random process using nonlinear observations is considered. Using Baves'

'
law and the Karhunen-lLoeve expansion, an expression for the aposteriori

probability density function (pdf) of the coefficients of the Karhunen—l.m"vc
expansion of the random process is obtained. Using this, a Volterra functional
expansion is given for the MMSE estimate of a nonlinear memoryvless functional
of the random process. For the special case of MMSE estimation of a zero-
mean Gaussian process using linear observations, the Volterra expansion is
reduced to well known results. Also, for the case of MMSE estimation of a
nonlinear memorviess functional of a zero-mean Gaussian process using.linear
observations, the Volterra functional expansion is shown to reduce to resatts
obtained by Olsen [5] . The connection between MMSE estimation and detection
theory is shown by using the Volterra functional expansion to derive a stochastic
differential equation for the logarithm of the likelihood ratio. This result was
obtained by Kailath[ 6] using the lni» stochastic calculus. Svstems of differential

equations describing the MMSE estimate of a Gaussian first order Butterworth

process with linear observations and the square of a Gaussian first order

Butterworth process with squared observations are obtained. MNMSE estimation




of de processes is considered, and as an example, MMSE estimation of the dc
phase of a sinusoid is presented along with performance.
Chapter 1V 1s a summary of the principal results of the dissertation and ‘

suggestions for future work.

1.2  Previous Results in Detection and MMSE Estimation for Nonlinear

Problems
Systems of coupled nonlinear differential equations for the conditional
moments of a random process were first rigorously derived by Kushner (7] .

Development of these equations was preceded by the formulation of a partial

differential equation for the a posteriori pdf of the state of a random process
(known as Kushner's equation), also derived by Kushner(8] and later by
Bucy [9] . An excellent presentation of this theory is given in Jazwinski| 3] .

Kushner's equation must be interpreted formally, since there is no theory for

$ . e - _— . o E
stochastic partial differential equations. The equations for the moments, &
however, have been rigorously established by Kushner. Unfortunately, this ‘4
syvstem of equations is infinite, and there does not appear to be anv convenient R
way of solving them. Jazwinski has suggested several approximation techniques, “,4

i
1
such as truncating the system, or assuming a recursion between the moments é
|
(such as a Gaussian recursion) so that the system may be closed([3]. Some ed
&

simulation results are available in the literature. Kushner|[10]. for example,
successftully simulated a Gaussian tyvpe filter on a nonlinear second order {
|
system with linear measurements. These filters ave not used as extensively |
as the linearized or extended Kalman filter[ 3], and so there are not many |

simulation results available.

1=3
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Another approach that appears promising for the discrete filtering of
Markov processes is based upon Bayes' law. Let ZKN1 denote the sequence

ofdata Z,. ..., Z Using Bayes' law([11], the a posteriori pdf of the state

0 “K-1°

of a random process is given by

K-1
|
Z ) P(Z !X,

p(x |
p(xKizK) = LS

1-1)
K-1 (
7 |
P (AK Z )
K-1) _ K-1 ;
P(XK!Z ) = fp(xK_llz ) PRy lX, )dX, . (1-2)
A Ll e SK-1 E
P(LK,A ) " fP(XKIL ) P(Z X, ) dX (1-3)
where the state XK evolves according to a nonlinear difference equation
= F 1-
X = TeBg p g g, Hh=)
and the measurement data is given by
ZK = hK(XK’ \K). (1-5)
and where Wi - and Vi are uncorrelated Gaussian white sequences. In

Sorenson[11] . the a posteriori pdf in Equation (1-1) is approximated as a
multivariate Gaussian density. In Hecht|12], multidimensional Gaussian
quadrature is used to perform the integrations in Equations (1-2) and (1-3)
and provide a very close approximation to the evolution of the a posteriori pdf.
These ideas are extended in Bucy, et al.[13] and simulation results reported.
The technique appears to be very promising even though the computational load
is heavy, even for problems of low dimension,

Other techniques for MMSE estimation include the partitioning theorem
of Lainiotis[14] and the Volterra approximation of Katzenelson and Gould[ 15] .

Lainiotis obtains a Baysian relation for the a posteriori pdf of the state via his




partitioning theorem, Katzenelson and Gould derive systems of integral
equations to be solved to obtain the Nth arder Volterra filter which minimizes
the mean-squarved-estimation errvor, To the best of the author's knowledge,
neither technique has resulted in MMSE estimators for problems of general
interest,

Morve recently, Olsen| ] has obtained exact results for MMSE ostimation of
a nonlinear memoryless tunctional of a Gaussian process in Gaussian white noise
using linear observations,

he connection between detection theory and MMSE estimation was first
discovered by Schweppe| 16] for Gaussian processes in Gaussian white noise and
Sosulin and Stratonovich| 17] for detection of a diffusion process in Gaussian white
noise,  Duncan| 18] later rigorously rederived the work of Sosulin and Stratonovich
using the lh\s interpretation of the stochastic integral, Kailath| 6] later generalized

\ .
these results to a larger class of random processes using the Ito stochastie caleulus,

——
b

- ———————
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CHAPTER 11
DETECTION OF NONLINEAR MEMORYLESS FUNCTIONALS OF
RANDOM PROCESSES IN GAUSSIAN WHITE NOISE

2.1 Derivation of the Volterra Series

This paragraph considers the problem of detecting a nonlinear memoryless
functional, A S(t,*), of a random process, m(t), in additive Gaussian white noise
n(t). Using the Karhunen- Loeve expansion, a Volterra functional expansion* is
obtained for the likelihood ratio,

Consider the detection problem

”1: r(t)

i

AS[t, m@t)] + n(t) 0

IA
=
’
-
=
]
=

HO: r(t)

n() 0 <t=T (2-2)

where n(t) is a zero mean Gaussian process and m(t) and n(t) are independent

processes with covariance

Kyt ty) = 1.;({'m(tl) - Elm“l)” {m(tz) - E[m(t2)I}) (2-3)
NO
Kn(tl, tg) = E[n(tl) l’l(tz)] = = (S(tl -tz) (2-4)

Suppose that m(t) has the Karhunen-1Loeve expansion
N

m(t) = L.I.M. Z m; () ¢=t=T (2-5)
N=*% fe1

where the eigenfunctions, (bi(l), and cigenvalues, Ai’ are solutions of

T
)\i (bi(t) = f Km(t, T) ¢i(1)d'r (2-6)
0
and where
T
m, = J’ m(t) ¢i(t) dt . 2-7

(8]

*A functional is a mapping from the observation space {r(t); 0 < t < T} to the
real line, The Volterra functional expansion is the functional analog of the
Taylor series,

, _4.-<
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Consider the truncated representation of mgt)
N

mN(t) = Z mi ¢l(t) (2-8)
i=1

and consider the hypothesis testing problem

]

Hp: ry® AS|t, my(®)] +n(t) 0 <ts=T (2-9)

Hy: ry®) = n) . (2-10)

Note that the m,, i=1, 2, ..., N may be thought of as unwanted parameters with
probability density function p(ml, ey mN).
To obtain the likelihood ratio for the hypothesis testing problem of
Equations (2-1) and (2-2), the likelihood ratio for the hypothesis testing problem
of Equations (2-9) and (2-10) will first be obtained. Then the likelihood ratio for
Equations (2-1) and (2-2) will be determined by taking the limit as N— =, Note
that Equations (2-9) and (2-10) represent a composite hypothesis testing problem

where the probability density function (pdf) of the unwanted parameters is p(m,,

ey M), For this type of problem [1, p. 87], the likelihood ratio is

I p® |10, H)) p(o | H)) do

A R) (2-11)

/p® |9, H) p(o | H ) do
where R is a random observation vector and 0 is a vector of unwanted random
parameters. To pose the problem in a form where Equation (2-11) can be used,
rN(t) is expanded in a Karhunen-Loeve expansion (under the assumption m(t) is

given) in the set of orthonormal basis functions d"(t). S [
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where ‘
| t, Z m ¢, () I
J Wt = i=1 - 0 <t =T (2-12)
'I\ N &
9
f 57 1, E m, ‘bl(t) dt
0 i=1

and :!'l(t), 1=2, ... are chosen arbitrarily to complete the set of basis functions

The expansion is

M
rN(t) = ;ll‘i\iz l‘j d'j(t)
’:

2-13)
1
where
T
"j = f ry © :I'j(t) dt . (2-14)
(8]
Now define
M
PN. M(“ = Z l‘j L‘"j(” (2-15)
Al
and form the hypothesis testing problem (®iven Mo vines my)
- .
%
Frl bl f {Asit, mN(t)l () wl(t) dt
(8]
R \
lll: R = : = (2-16) ;‘
> b
T |
‘
L”M_} [\'"S“. mN(t)l tn()) P dt
O

| :




.
3
Hy R = s
r
L M

The expected value of ry conditioned on hypothesis H

is given by

T
B, (H,, My, e, M)

and, for { > 1
b:(x'lllll, My, eee, my) =

However, since

St, my®] = f

0

[T 1
n(t) dl(t) dt
0
y (2-17)
T
Lo
1 and on mp,..., mN

T 2

T

STt mN(t)]
= E :\f rdt+j n(t) v, ) dt
- !

o : 0
f S%(r, mN(T)] dr

Q

)
rl‘ =

" A(] s, my )] dt) (2-18)

(8}

Il‘ 'I‘
E(\ f Sit, mN(t)] :I'i(t) dt +f n(t) tbl(t) dt) .
(2-19)

(8] (&)

s°(t, mg®) dt| b (2-20)

and { :!'l(t‘} forms an orthonormal set, it follows from Equation (2-19) that

Efr,IH,, m,, ..., my) = 0 {=9 , (2-21)

Similarly

b:(r’luo, My, weey M) = 0 B (2-22)
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Also, Y under either hypothesis has variance 1‘—‘ and the r, are uncorrelated

and Gaussian (hence, statistically independent), From the above dis-

cussion it follows that

1. 2
T ]
ml_{'c.) H.) 1 oxp ik r -:\‘J Szlt my, (1)} d((
v M/2 N_ | ("1 ) » MN ‘
(" N \)
(8] (8]
M
. Z :l.; (2=23)
=2
and
M
P 1 1 2 a_n
PRI, IIO\ ™M °XP N Z Y (2=240
(*Np) © (=1

where @ (Myy eeey mN\ are the unwanted parametoers and where
R= (Fys eees l‘M\. From Equation (2-23), (2-24) and (2-11) and taking the

limit as N, M-=* the likelihood ratio for the hypothesis testing problem of

Fquations (2-1 and (2=2) is obtained as

R ‘ \ } ( \ ’\
.“ '\‘ ! \l. }_‘ ' \{‘ \.||, my Y \(I S m ‘N| nm, "y 4w Wy
[
\ ) " \ \l '“ \

N A\ >

I M ™ "w 4 \|' \}_:‘ " L s TR, ' !
o |
!L
(2-25)
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M
M/2 1 2
exp | - 7~ r, fout of the numerator and denominator in

Cancelling (r NO)'
® =1

Equation (2-25), taking the limit M— = gnq integrating the denominator results in

£ T
Alr®] = Um N | exp L r{) Sit, ®)] dt
N, My
-0 4}

N~

T
9
= 9
exp| - -:— J’ St mN(t)] d) p(m1 2 mN) dm1 =i dmN 2-26)

0
(¢]

which can be rewritten in the form

0 ’I‘
N 2A . A
Alr@®)] = lim v ) exp | Sit, mN(n] r(t) - = Sft, mNm] dt
o0 -~
N—- - o |
- o
p(ml. e mN) dm1 dmN (2-27)
Expanding the first exponential in Equation (2-26) yields
o T T
1 [2A - i
Alrt)] = Z & (N;) ]f Tt oo T £t o, t) e L dt
i=0 [ o
(2-28)

. t)
i

where the integrand contains the Volterra kernel fl “1'

o0
w N[«
qal.”..q)— gﬂ” jﬁt[bhr mNﬁﬂL..ﬂq.mngl

g ¥
A~ 2 i
exp | - ¥ f R mN('r)] dr
(8]
. 2.8
p(ml. vy mN) dml dmN (2-29)
2-6
AN it i |




Letting N—* i{n Equation (2-29) fl(t , tl) becomes

) Ll

T
2
- A 3 A“ 2
fl“l' Sy tl) = K bltl, m(tl)l Sltl, m(tl)l exp(-N—o f S%(r, m(7)] dr
(o] (2

-30)
where the expectation is carried out with respect to the random variables
T
D)
" D)
m(tl) . m(ti) and exp|( - ‘:,— j S7[r, m(t)l dT |. Expanding the exponential

0

in Equation (2-30), fi(tl, sy ti) can also be written as

© . T T
i 2\ .
M = /ATTV 1 Je . 2 il
[ty ceen tp = E 1j_'- (No) ) Jf h(bl""'bi' si+1"'bl+])
(8] O

j=0

o TERETRL (2-31)

where

bK = bltK, m(tK)l .

Summarizing, the likelihood ratio of the hypothesis testing problem of Equations
2-1) and (2-2) is given by the Volterra functional expansion of Equation (2-28)
with the Volterra kernels defined by Equation (2-30).

Note that Equation (2-28) is a physically realizable nonlinear operation

with memory on r(t). It is easily put in the form

C %0 @0
Alry] = Z f‘ f r(T “t)...r(T- t) Tl(tl' S tl) dt1 dtl
{i=0 == -0
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x

where

T S | 2Ai Bk
s wxni B F(N—o) £t oens ) URD ... UG (2-32)

and U(t) is the unit step, Also, each kernel t'i(t . tl) is symmetric in its

URER
arguments,

2.2 Rederivation of the Linear Result for Zero Mean Gaussian Processes

Consider
AS[t, m(@t)] = mqt) (2-33)

where m(t) is a zero-mean Gaussian process with autocovariance

Kt ty) = E[m(tl) m(tz)] ; (2-34)

For this case, the hypothesis testing problem of Equations (2-1) and (2-2)

becomes
HI: rt) = m(t) + n() 0=t =T (2-35)
Hy: r®) = n(t) 0<t=T (2-36)

where m(t) and n(t) are independent zero-mean Gaussian processes, From
Equations (2-28) and (2-30) the likelihood ratio is

0 ']‘

T
o\ 1
Alrt)] = z : 1_1'_ (ﬁ') f‘ j r(tl) r(ti) fi(tl, S g ti) dt1 dtl
i o
(o] (8]

F=e (2-37)
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where

T

I e 2 . L
fi(tl' —aias tl) = E m(tl) m(ti) exp -No f m(7)dT (2-38)
(o]

Equation (2-37) is now expressed in closed form by obtaining fi(tl’ aesels ti)

as a sum of products of fz(tk, tj). From Equation (2-38)

T

2 " 2 -
fo = E |exp |- No f m-(7)dT A (2-39)
o

Expanding m(7) in a Karhunen-Loeve expansion and using the orthogonality of

the eigenfunctions, Equation (2-39) can be written as

el
f 1 2
o = Elexp N Z o, (2-40)
o1
where the pdf of m,, mz, sy My is given by
N 2
1 1 Z =
P(ml, ceey mN) = T exp |- 3 Aj (2-41)

3§ A
5 7 Pare

enN/2 "TAJ
j=1

and where the eigenvalues, Ai' are solution of Equation (2-6). From

Equations (2-40) and (2-41)

0 o0 N‘

1 2 2
f = lim fN 4 rexp |-+ E <7\_ +N_) o
o N— N 2 2 : J 0,

-0 =00

i a0 i e St i It
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Equation (2-42) may be rewritten as

N N /o e ‘ao EY :
= "r 0 N
f‘) lim N /... [ T
N-—-x o : 2
f=1 ——+ A - -0 N /o
2 i N/ NO AL
(Zx) = 7; N
¢ &)
-_l=1 T*‘ Aj
N 2
1 m,
exp [- 3 E (W dml...dm\J . (2-43)
-~ 0 -~ N, A
j=1
No
—

The N-fold integration is recognized to be unity since it is the volume of an N

dimensional density function, Taking the limit in Equation (2-43) it follows that

= e Sl o_
f 7] S ) (2-44)
i] == + 2

2 i

In the ensuing development it is shown that fi(tl, i ti) =0 for i odd. Pro-

ceeding with f'.’.(tl’ t'l"
1y
’ ’ 1 2 ’
t'j(tl, t,_,\ = K nutl\ m(t_z\ exp |- ¥ f m (7)drT " (2-45)
(8]

(8]

Expanding m (11), m(t,) and m(7) in Karhunen-Loeéve expansions, there results

o x o
X 1 2
f‘l(tl’ ty) = E E E mil ml“ exp| - N—O- 2 mj
;=1 f,=1 | i )=1
¢i1(t1\ ‘qu(tg\ . (2-46)

i



In Equation (2-46) note that

w
1 2
Elm, m, exp|[- — m
P 8 N, i
J=1
1
r N N/2 7° © W s
| O . o n
Nim T3 Y./ i Ml
N-—=w 9 - !
. =] ek \i - - N 2
- = 2 N D
.\w\N/.—, tN\\ \\
(=™ N‘
j=1 —+ X\,
! 5 i
r‘/ N b
/ ) . m
exXpi~ 5 Z \—*‘l—x N dm1 dmN . (2-47)
Al
R
N
= ¢\
From Equation (2-47)
w
1 2: 2
Efm, m exp|-—=— m,
e U Yo - !
1= /
s 1
i o N - (N“ _’\\i
, N y/a N N , L s
o Al :
f_"‘ i 8 S Y

| where §
: 1 2

x N :
O
ity ty) | T] N

=] -
112+\l

is the Kroenecker delta, From Equations (2-48) and (2-46)

o

N0 ’\l
& 22 e b L L
)
o e Tl
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Similarly,

where

e, €)%, € P, &) 9, L)
lll 12_ 13 3 144




From Equations (2-51) and (2-50)

1 4
0 2 2 A
N /2 (N ) :
s o _o |
Bty by tan ty) =TT 5 3 |

)
i=1 5 + Ai
0 }\i ) }‘i
1 i 2
3 - 41 ) 9 ) > N
i,=1 —+ A, i,=1 —+ A,
1 2 L 2 2 i,
¢1 (t3)<1>i (t4)
2
] A
!
P e X
i.=1 =+ A, 1=1—+7\
1 2 11 2
4> (t2)4> (t4)
) % A,
9
03 No IR > e
i =1 — i =1 —— o A.
1 2 i1 2 2 iy
$. (t,) ¢. (t,) (2-52)
i, 2 i, 3
From Equation (2-52) note that 1
BaE . R T a
f f f f r(ty) rity) rity) rit,) £yt to, tg, ty) dt, dt, dt, dt, :
0 6 0 © i
T T ¥ "
<N0>2 = A, :
f, =] 3 /I vty r,) E —J—No ¢j(t1) ¢j(t2) dt, dt, | .
o o j=1 -2—+ Aj
(2-53)
2-13
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Generalizing* from Equation (2-53) obtain

J I rty) .o Tl £, oo ) dt Ll dt

) 1/2

f J l(t)l(t)Z-———‘L—‘i‘(i)‘t‘(l)dt

i=1 —.- t+ A‘
s for i even
= 0 for i odd ,

(2-54)

From Equations (2-54), (2-44) and (2-37) the likelihood ratio is found to be

w0 N ’/2 P o0 l l2 l
Alr(t)] = ;; N—'(l— E (ﬁ—> Wr'_
i=1 -2 + X i=o ‘' °
i
i even
T T i/2
[J 1(t)l(t) E -—-'L—tb(t)‘b(t)dt . (2-55)
N, i i
O N /\i

*This follows from

ElMy;: cvey M) = Em, m ), .. K@m m, )
1 N :: | iN-l i

0 iodd SRR N i even
N'
where the sum is over all ———————— ways of dividing the N
2
o

N .
random variables into = combinations of pairs and where E(my) =0 for i=1,

., N. See [1, problem 3,3, 12],
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Redefining the index of the summation on i in Equation (2-55) the expression

for Alr(t)] becomes

0 N /2 T T |
Atewst = | T7 S — Niff r,) re. )Z bt 5 ;
=1 =2+ A $e' o =1 =+ A ;

¢,t) ¢5(t,) dty dt, | - (2-56)

The series in Equation (2-56) is recognized as the solution to the integral equation [ 1]

N T
O a 0

< h*(tl’ t2) +[ h*(tl’ T) l\m('r, t2) dT = Km(tl, t2) . (2-57) ;
o !
i
Therefore, 'i
- |
A, ‘
hytty, t,) = T oty .t . (2-58) |
1t 2 N0 Vo LT ,
=1 =t A, ’
2 j .

From Equation (2-56) and (2-58), the logarithm of the likelihood ratio is given by

o
22,

In Alr@®)] = 5= ff r(ty) Tty hytty, ty) dt; d -—Zln(l+ ) ;
i O

(2-59)

TR R R T

This is in agreement with known results (1, p. 12, Equation (2-26)] . !

2.3 Calculation of Volterra Kernels - Some Nonlinear Examples

In this paragraph, three examples of computing Volterra kernels are pre-
sented. The first two examples, a hard-limited Gaussian process and the absolute .
value of a Gaussian process, are the only nonlinearities of Gaussian processes dis-
covered to date for which exact calculation of the first three kernels is possible.
The last example compares the performance of a receiver based on the likelihood
ratio with the performance of a receiver based on the truncated Volterra expansion

of the likelihood ratio for a nonlinear memoryless functional of a D, C. process,




2.3.1 Hard-Limited Gaussian Process in Gaussian White Noise

Consider
Sit, mt)] = sgnlm@)] = 1 m(t) > 0
= 0 m(t) = 0
= -1 m@) < 0 (2-60)

where m(t) is a zero-mean Gaussian process, From Equations (2-28) and (2-30)

o : T T
5 z : 1 /24 i .
Alr)] = i (No) f f rty) eee TRt ooyt dt, ... dt,
=0 o o 2-61) !
where b
T i
: A2 2
f!(tl' ceen t) = E ﬂgnlm(tl)l sgn[m(t])] exp 'FI; sgn”[m(7T)]l d7| | .
(2-62) 1
From Equations (2-62) and (2-60) :r
= , K
T
; A’ 2 AT ¥
fu = Elexp N [ sgn"[m(T)] dr = exp(—r> . (2-63) }
0 o
0 §
Also, since sgn(m(t)] is an odd function of m(t) k
f,t) = f, Efsgnlm®)]} o, (2-64) X
Similarly,
£yt ty) = f, Elsgnlmet )] sgnlmt, )1} - (2-65)
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The expectation in Equation (2-65) is given in [19, p. 198, Equation 7-29] to

obtain
K _(t,, t.)
D - § Vi
5 ty) = f, = sin 1l pl 2 (2-66)
IJKm“r ') Kmtar ty)
where Km(tl, tz) is the autocovariance of function of m(t), Also
f3(t1, tos t3) = fO l-){sgn[m(tl)] sgn[m(tz)] sg'n[m(ts)]}= 0 (2-67)

and fi(tl’ Ay ti) =0 for i odd. The general expression for fi (tl, Ty ti) for
i even appears to be intractable. An interesting integral expression is available
in [20]

0 0

o = l_ N 1
E,lsgn(m1 cee M) = =g f[ @ (Wgh eeey 00) —

- J e i |

where tbm(wl, weey wN) is the joint characteristic function of m,, i=1, ..., N,

i’
This expression is not available in reduced form for N = 4,

From Equations (2-61), (2-63), (2-64), and (2-66), it follows that

o 2 i [ iy
- 21 2a\’1L
Afr®)] = exp (T) 1+<N >1r f f
(e} (o]
(0] (o]

K., t.)
r(t) Tty sin”’ R g, #obyae |
B By LK, Ty)
m'1’ 1 m 2" 2 (2-69)
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2.8.2 Absolute Value of a Gaussian Process in Gaussian White Noise

Consider

Sit, m)y] = Im)! (2-70) :

S—
ol

where m(t) is a zero-mean Gaussian process, Also, assume A =1 to obtain from

B 55

Equation (2-28) and (2-30)

Alr )] = Z ll. (Ni)
3 0

i=o0 0

r

i

T T

i N :

f rty) ... Y Ty, L.l t) Aty Ll dty
v 2-T1)

where
T
. 1 2
fl(tl' 3ir ti) = E Im(tl)... m(tl)l exp |- 7= f Im(t)|” dr
° %
(2-12)
Note that
T
2 2
f [m(T)|™ dr =f m-(r)dr . 2-73)
O (8]

Hence, expanding m(7) in a Karhunen- Loéve expansion where the pdf of the
expansion coefficients is given by Equation (2-41), fo becomes
T
{f = § 1 2
s |OF oxp—N—Of m (7)) dTt
0

00 ) N
1 12 : 2 2 N
= lim [ Nf S————— YN (\l +-ﬁ—> m, dml ees dm . «

N -+ o =08 <0 N x - fmil i o N s
/)

27”N = ;;)‘ |9

L

i=1 2-74) !




With reference to the development of Equation (2-44), Equation (2-74) can be

written as
(¢ = Tr _Noo ) (2-175)
=l =2 A
Similarly,

b

m; ¢ 1ty
N N /2 2 |Z
- = 0w
fl(tl) = lim ’r N s 3

0 0 2
=1 —+ X - -9 -_ A
2 2 i
: @m" 7TN
ju 1 To i Ai
N 2
] m,
exp (- 3 E N i dm] ...dmN . (2-76)
Q
iR il
e
e Pt

To proceed it is convenient to define the random variable

N
E m, ¢, (t)) 2-17)

i=1

where now, from Equation (2-76), m,, i=1, ..., N are zero mean independent

N)
—2(_ A
Gaussian random variables of variance N . Thus, Y'IN is zero-mean
0
2z N
Gaussian with variance
N N()
2 Z 3 Moo
= —_— 1 -
(TZIN N‘ d’l (tl) . (2=78)
i=1 ==+ N

T S 9 3

I—
PR A

T - PO~V

v
P ol o

o dliin,
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From Equation (2-76) through Equation (2-78)

U, FSPNESe SO E T28 S

1 t
N N /2 e H
0 . ] H
fl(tl) g!—n’m ” ﬁ-o——— P‘”ZIN') . (2-79) i
fm] e Xl H‘
& |

From Papoulis [19, Equation (5-48)]

E(1Z, 1) = = (2-80) ﬁ
1IN T ZIN ’i
i
Utilizing Equation (2-58) in Equation (2-78), fl (tl) may be expressed as d
S 2
No/:z N0
fl(tl) = ’7 - = h‘“l' tl) . (2-81)
% 0
i=1 - b ?\i
Similarly, note that
N N
1
LIREY b Z iy ety E :“‘i“‘i(‘z‘
T —=— f Nf i=1 i=1
N s l
N 2
= R _ —0
; o= N - %

2 i

Viste dmN . &
3

D_RO !
(2=-82) \
\ Y
M
!




et

As with Equation (2-77) define the zero mean jointly Gaussian random variables

N
" Z my ¢4ty a8
=1
N
Z:Nx 2 my «bi(tz) . (2-84)
i=1

leand Z‘.!N have the property that

D)
I1\;m v, 1\; = =2 haft), t;) (2-85)
-0 1 s
2 No
gm” OZ’N =3 hat,t,y) (2-86)
No
gmw l-)(ZlN Z:ZN‘ s h‘(tl’ (2) . (2-8T7)
In terms of LIN and Z:}N'
1
/ N NO/) 4
f;,(tl, ty) = 33» "ﬂ N, l-:(lZlN zle) : (2-88)
» i=1 i Ai

From Papoulis [19, p. 221, Equation (7-109) and Equation (7=110]

B)
o Whnsr Lasy) |
E(12..Z2 .1} = £ 4 & 1- I3
1IN 2N m ZIN /._)N (tz (TZ
) IN 2N
B2, Zor) B2, ors)
e INU 1 MR - ]N(T Ch (2-89)
Zin Zon 2N Zon
2=-21

. -

e




From Equation (2-85) through Equation (2-89)

° N2\ N
[8) (8]
fg(’tl, (2) = ;; No - Jh‘(tl, tl) h‘(t'.!' t2)
(=1 —+ )‘i
1
o e
hitty, t,) ha(ty, ty)
ol - t., t)h (; t,) B .
U T aGon By Jh‘(tl' tl) h‘(tg, tg)
e ho(t,, t.) ’
sin 1,- L3 ) (2=90)
L ho(t,, t) R, t,) ’

s -

2-22
1




Similarly, it can be shown that [21)

,
N /2 \1 \‘y‘ 3
- \ \ PR ——
(l.\,. tan 1) ( T ( - ‘h,ll‘, t) hat, hotg, T
Pl = .\ i
3 i
g L) Mglyy Ll Bt ty) ho, tg)

T E‘lt_:, LR, W h“'lﬁl_‘;'“'a' ]

Ao Fe) '

o .
h,\(:‘_ ‘J‘V h'd,. ll

i1, hiy ty) ‘ ho ity tg)
V MR Bty VR
Myltys () Bty tgd ]

) hety, tgJ R, f\‘h,.—l_—lf‘

b tg) h..ll, L) h..\l, ty)
t,) h‘.l.j, (3\ h‘a], t‘\ h,d»u z:\ h_ax, 13\
/
. L : : g Mefp by
o[ VMt WTRERTR b )] Moy, IR AGTY
sin —— - e SR
— - - - e —————
| 4 3 1
H - 1 h"‘l' ‘S\ ’
——
L 4 h.\lx' 13\

A general expression for fi “l‘ TR ti\ has not been obtained,

2-01)
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2.3.3 A D¢ Example - Phase Modulated Sinusoid

For the de case, the sample functions are random variables, Hence,
m() = m St =ET (2-92)

From Equation (2-28) and Equation (2-30), the likelihood ratio is given by

9 T T
E 1 2A ! i
A\lr(t)] = l-f (N—)) ...j l(tl\ aodls l(ti) fi(tl' soay t‘) dtl G dtl
=0 e e (2-93)
where
/ =
{ 2 1 2
fl(t], ey ti\ = E b(tl, 27 AP b(ti' m) exp -N—0 f S (T, mdr
0
(2-94)

Observe that the Karhunen-1Loéve expansion of m@) consists of a single term,
Hence another expression for the likelihood ratio is obtained from Equation (2-26)

as

. T =, &
2A AT 2
Ar@] = exp |5 f r(t) S¢t, m) dt - N ST, m) dt
-0 o o 9 (8]
p(m) dm (2=95)

where pim) is the a priori pdf of m,

Let
S(t, m) = cos(w Lt m) (2=96)
C
where
5 o
p(m) = o= Vs ms=2Zr
-
0 elsewhere . (2=97)




From Equations (2-95) through (2-97), the likelihood ratio for this problem

is given by

{

27 / T T
\[r(t)] = L > i *(t) cos(w t+m) dt -A—- cosz(w t+m) dt
r(t it - exp N r(t) ¢ ot N b
O 4 (0] @ (8}
(2-98)
Let
T
I = f r(t) cos ~o0t dt (2-99)
)
T
Q = f r(t) sin wot G o (2-1003y
o

Then Equation (2-98) can be written as

(7
= 3 D)
24 A
ANr@y] = -;'1— J exp| g (I cos m-Q sin m) - ,——E
&5 0 o
O
sin 2wo'l‘ cos 2 Lou'l‘ -1
<l + —JJOT cos2m + ——-WT— sin 21’1\) dm . (2-101)

For w T >> Ithe second term in the argument of the exponential in Equation

(2=101) reduces to a constant independent of m and may be lumped with the

threshold. When this approximation is not made, note that Equation (2-101)

can be rewritten as

9

ATT
" 2N 27 [
& o 2A
AIER)] i w Semm—— J- exp :— (I cosm - Qsin m)
27 J N,
2 Sinw T
- ¥ —_— cos(2m + w T) | dm
2N w T o a_100
o o (2-102)
YO

dm,

el it a e

Sbagae




From [22, Equation (9.6.34)]

@0
o L 1,(Z) +2 E 1, (2) cos(k 0) . (2-103)
k=1
It follows that
9
_ATT
ON DY
N =% 2, sinw T
Ao )] = B ¥ = £ axp |55 dm
SIFEH S0 o\”2N_ T xp-ﬁ;— (Icosm - Q sinm)
o C
9
o _\.2,1 sin u:o"l <
wat ki-aN =T j
k=1 » ¥ o
51
exp [TV} (Icosm - Q sin m] cos(k(2m + wOT\] dm |§ . (2-104)
(8}
Note that
2n
2A
j exp 13— (Icosm - Qsinm){ cos{k(2m + ~AOT)] dm
o -
2w

L}
o
o}
o
~
3
<
-3
OR

s) b
exp [;I—A (Icosm - Qsinm) | cos 2km dm

O -
2T
2A ca
-~ sin kaT exp |5~ (Icosm - Qsinm)| sin 2km dm . (2-105)
(8]
o o
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From [23, Equations (3. 937-1) and (3. 937-2)]

2
f exp % (Icosm - Qsin m)] cos 2km dm
. o
Kk 1
2 o= . 2k S A A
= 1 @®+@) @-j*+a+i® 1, |2 d®+Q?
2k N0
(2-106)
and
2m
2A - .
[ exp l:N— (Icosm - Qsin m)] sin 2km dm
o
(o)

s ok 2
= ir @®+Q%  @-i@™-ari@™ 1, [ﬁl—A @ + Q% } (2-107)
o

where j= -1 andk=0, 1, ...
Consequently, Equation (2-105) is evaluated as

27

j exp [%é (Icosm - Qsinm)] cos [k(2m + wOT)] dm

o
(o]

~k :
2 9
- @+ @) Izk,%—A @+ Q% }
(e}
3 cos ko T (1 - j@°* + @ +;@)

- jsin ke T (-] - @+ @™ f : (2-108)

In polar form




9] « . s -1
(1= = (12 4 @2k )2k tan (Q/T) (2-109)

- . . . -1
- j(.))“)l‘ i (lz . Qz)k e+j.2k tan (Q/l) 2-110)

Expressing cos kwo’l‘ and sin kwo'l‘ as sums of exponentials and making use of

Equations (2-109), (2-110) it follows that

2k s A 2k g - Pt
T-iQ)"" (cos l\wOI‘ - j sin I\wol‘) t I +jiQ)" (cos l\wo'l + j sin l\wol)

D)

D 1. o
= 2(I° + Q“)l‘ cos (2K tan . % + kmn']‘)

(2-111)
From Equations (2-111) and (2-108)
2m
2A
f exp |5~ (I _cosm -Q sin m)] cos [k(Zm + w T)] dm
, o 0
(8] §
r 1
: 3A 2 - % -1Q
- ) $ourbediold » 91 - N 0 .
2w l‘.lk ,\NO I +Q (ns(-l\ tan Tt l\w”’l) 2-112)

for k=0, 1, 2

§ 9y s

Substituting Equation (2-112) into (2-104) the expression for the likelihood ratio

becomes
2
AT 1
2N 2 sinw T ,
; & 0 AT 0 2A 2 i
Alr )] = ¢ [0 (- N o T ) [0 N I +Q) ]
(8] (8] (o]
- 2 inw T 3
A°r S 0 2 2 =
L Y N el 2A .2 2
T lk( N, @ T )lzk[N a “’”}
k=1 o o 0
cos [k(«oo”l‘ + 2 tan” ! ‘-Iiil ) (2-118)
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Note that for wo'l‘ =nm, n# 0 or for wo'l‘ >> 1, Equation (2-113) simplifies to

92
-

T

) 2A 2 2. .
IO N I +Q") . (2-114)

>

Alr@)] = e

2N

This is in agreement with a previously published result [1, Equation (367)].
The performance using Equation (2-114) is also documented [1, p. 346].

Now consider Equations (2-93) and (2-94)

= .
f = E i, s d
o exp |- N cos (wor +m)dr
i 0
Az'l‘ sinw T
= Al n o e CHSEECE, e D} M o [
| exp 2N0 1+ on cos(Zm + wo’]) 2 (2-115)

From Equations (2-115) and (2-97)

)
AT )
- 2T .,
2N 2,. sin w T
i = e L ex 8] SR I cos(Zm + w T)|dm
) 27 = BNO W O'l‘ b o s

This involves a well known integral [22] . Consequently,

D)
- AT
‘.ZN0 AB'I‘ sin w()’l‘
o= ¢ Wlta, TR ) T
(8] &)

Using u:o'l‘ =n7 in Equation (2-116), fo reduces to

f = e ] (2-117)

0_9q
A

-

P T T T T T I TR T T T T T T T

oL T

]



From Equation (2-94), fl (tl) is given by

T
; , A2 2 N
l(tl) = K cosx(wot1 + m) exp |- N f cos (wo-r +m)dr + (2-118)

(o]
(o]

Performing the integration in Equation (2-118) there results

|
i
|

Az,r sin wOT |
= N = D) " |
fl(tl) E cos(eoot1 + m) exp 5N ST cos(2m + wol) i
o o _,
2-119) }
For wOT >> 1 or wo'l‘ =nm, n# 0 Equation (2-119) simplifies to |
|
D) {

A°T

2N
(6]

|
fl(tl) = EICOS(thl +m)] e (2-120) i

Expanding the sinusoid in Equation (2-120) using trigonometric identities there

results i
!
27 l
1 |
fl(tl) = |cos wotl n J‘ cos mdm .
(8]
2
- AT
= 2N ‘
! - sin w t ~1— ] sin mdm | e %
i ol ZW
| )
|
!
{ = 0 (2-121)
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From Equation (2-94), fg(tl- t.l) is given by

t)) = Efcos(w t. +m)cos(w t, +m)
2 o o2

1

‘.Z,I, sin w T

C B
exp|~=— |1 + ——— cosZm + @ T) 2-122)
‘.ZNO wo I 008( o (

For @ T >>1or  T=nm, n #0f,(t,, t,) becomes

1)

f:’.(tl’ 12) = Elcos(wot + m) cos(wot2 + m)] e (2-123)

1

Expanding the sinusoids in Equation (2-123) and taking the expectation there

results
f. ., t.) = & [cos w t, cos w t_  +sin w t, sin w t ]
2 3" 2 2 RO | a2 ol 02
2
T
T 2N
Ry R (2-124)

Using Equations (2-117), (2-121) and (2-124) in (2-93), an approximation to the
likelihood ratio, using only the first three terms, can be written as

2

_A T
.)N 9
. 1/2A\" 2 2 b
A\zlr(t)l = e 1+ I(ﬂ) (I + Q%) (2-125)

where I and Q are defined in Equations (2-99) and (2-100), respectively and the

9

subscript refers to the exponent of ;X—A

(8]
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Note that both Equations (2-125) and (2

1

Y 2.:
1" +Q" .

~-114) are monotonic functions of

It follows that for wOT =nrm, n#¥0, the performance of a receiver

based upon Afr(t)) and A,lr(t)] are identical even though Alr(t)] and A, [r(t)] are

-~

B 9 2
very different functions of (I + Q%) . Including the first five terms of the

likelihood ratio, it can be shown that

9

_A°T
2N 2
e S 1/2A 2,02
.\4h(t)l = @ {:1+ 4(N ) 1" +Q%)
(o]
T L2
’ LIT (:1%) a° + Q3 2-126)

o
where the subscript refers to the highest exponent of '&—& - kEquation (2-126) is

o
1

By 9 2
also a monotonic function of (I" + Q%) . Note that expanding Io(°) in Equation

(2=114) in a Taylor series results in

_Az'l‘
2N 2 4 p
p ok 1/2A 2 2 1/2A 2 o
Alr] = e I}+ 4(—No> U +Q )+(T-I(NO) I +Q9 +} -

(2-127) |
Hence, A\,,Nh'(t)] is obtained by truncating the expansion of A [r(t)] after 2N +1

terms, Since all the coefficients in the expansion of ln(-) are positive and since

1
9

o oL |
17 + Q%) s positive it follows that both ‘\.,N[r(t\] and A [rt)] are monotonic

Y 9 2
functions of (17 + Q%) , seneralizing, it follows that receivers based upon

A )] and \.,Nh‘(ﬂi have identical performance for wo'l‘ =nm, It follows that




it is not always necessary to take many terms in the Volterra functional expan-
sion of A [r(t)] in order to obtain acceptable performance. Of course, for this

example, A ,,Nh‘(t)l N =1, 2, ... all turned out to be monotonic functions of the

same statistic (I"2 v Q?')J. For most nonlinear problems the sufficient statistic
for .\EN[r(t)] will not be the same as the sufficient statistic for A [r()]. This is
apparent from Sections 2.3.1 and 2, 3. 2 where the formulation of a simple suffi-
cient statistic appears unlikely due to the form of the Volterra kernels (.e.
higher order kernels cannot be expressed as combinations of lower order
kernels). Then, the closer .\ler(t)] approximates A [r(t)], the closer the
receiver performance approaches the optimum. In general, it is not clear

how large N must be to obtain acceptable performance.

2.4 Sun's Theorem and Asymptotic Receivers

In this section, it is shown that for the class of nonlinearities, S(t, m()],
and Gaussian processes, m(t), satisfying Sun's Theorem* [ 24] the higher order
Volterra kernels are representable in terms of lower order kernels as the length
of the observation interval goes to infinity (T—~ ), For this case, asymptotic
sufficient statistics can be obtained for which performance can be determined,

2.4.1 Asymptotic Receiver Derivation

From par, 2,1, the likelihood ratio for the detection problem of Equations

2-1) and (2-2) is

B2l i ’I‘ 'l"
\[r(t)] = z : A 88 1 r,) r(t,) f,(t t,) dt dt
4 i.' No cee 1 “e e i i 1. e ey ‘ 1..- i
i=o o 0 (2-128)
*Sun's Theorem is discussed in Appendix A,
2-33
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2-34

fl(tl. <ty = E bltl. m(tl)l bltl, m(tl)]
o L
A~ 2
exp) - N~ j S$%[(r, m(7)] dr . (2-129)
(8]
O

In this section, asymptotically optimal receivers are obtained for the special
ase
= o @ ] X o 1
ity -con tp = K E{SIt,, m )] ... Slty, me)]) 2-130)
where K is some proportionality constant independent of i, *
At this point it is convenient to define
5 JQ Q X o_
di(tl, ceen ) b,\b[tl, m(tl)l b[ti, m(tl)]. . (2-131)
From Equations (2-130) and (2-131)

ity cons tp) = Kdyt), ..oy t) (2-132)

Suppose that dl(tl. whiay ti\, where 0 =t =T forj=1, ..., i, is

I

expanded in a multidimensional Fourier series. For i = 1, 2, and 3 the

expansions are

11 ‘¥l 12 2nl
= — ) 1 B
dl(tl) E dll cos —F— t, + dl sin T 4 (2-133)

*For many angle modulated sinusoids, Equation (2-130) applies, An angle

modulation example is treated in Section 2.4, 2,
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1 2
1
29 '.31ri1 31r12 M
+ dl i, sin T t, cos T t2 :
5 |
28 27 i 2mi 3
-t - L &~ ‘
+ dl] i, CO8 —F t1 sin T t2 !
o4 2ri 2ni,
hdy 0 S s 6 osln e i, i
hi R ‘3 (2-134) k
o« 0 x
o o O i i3
daltyitaets) = E : d a cos -——-‘"ll t, cos ——Jri.l t, Cos 3 t
3¢ty Z Z A el i Saolin SR Taahn g :
ll:o i2=n 13=0 i
2 i 2mi 2mi
DD} &« 0 .
! by ‘I" T SR — t, cos —=S ¢t
23 i X i 2 \ 3
; 33 ‘.Zml 27ri2 2n|‘
§ td, i‘i‘ cos —— t, sin 7 t2 cos "1—" ty
; '1'2's
34 '_’nil 2ri, 2ni,‘
¢ di i.i COS —— t, cos ’l‘- t, sin l‘. ty
123 0 ‘
35 27ril 2rri,) 2ni,‘
rd, . ElR t, sin —=—= t, co8 —p= ¢
A 1 1 1 2 1 3
12 3
6 ‘.’nil 2mi, 27ri_‘
d, U osin = t, oS —= t_ sin gt
. — : 3
'1‘2‘3 | 1 I 2 1
37 ‘.’ni] 2mi, L’ni,‘
td, .. cos — t, sin —= t, sin ——
- - ’ 3
111213 1 1 1 2 1
a8 i?ﬂi1 2 i 2ni.‘ i
td o sin —=— t, sin —= t, sin T tg - |
"1'2's s : (2-135)




The Fourier coefficients are determined in the usual manner. The first

few are
2ri
1 2 . 1 M
dil = T j dl(tl) cos —% tl dtl |
O
T .
2 i
12 2 d.(t,) "
dil T j 11" sin T t1 dt1
(8}
- 9 \2 L3 27 2 i,
di1i2 (T) J f dz(tl, t2) cos —,l.—tl cos —p t2 dt1 dt2
o o0
At this point it is convenient to define
T
X No f r(t) cos T t dt (2-136)
0
T
2A o BRI Qn
Vi N‘ j r(t) sin T tdt . (2-137)
il -
Under "o' X and Vi i 0,1, ....are jfointly Gaussian and statistically
independent with
E( H)  E/H) 0 (2-138)
and
1 2A°
. T
| — ——
ln(xi lello\ 5 N 6”
QO g
2
, 1 2A°T o
l-(\i .\“H ) > 1 (SU (2-139)




Under }ll, X and Yir it=0, 1..., may be asymptotically jointly Gaussian. (In
Appendix A, this is shown for the case S¢t, m(t)) = cos (mot rm(t)). The proof
makes use of Sun's Theorem* and the Cramer-Wold Theorem,) The expected

value of X conditioned on H1 is

T T
2n 2
; f A EIS[t, m@t)] ! cos = : t dt « J Elnt)] cos —%l- t dt s

l-.(xi H,)

1 T

(&) (8]

A=

From Equations (2-133) and (2-131) it follows that

(2
e 118A°T | 11
mimls 2(«-——N )di 3 (2-140)
0
Similarly
1 2-\2 12
A 1f3A%T\ .18 K
E(v,IH) 2<—-—-N )di (2-141)
(8]
In like manner
D]
1 (’ -\2'1 )- 21 1 2A2'l'
(X - \= e == 2-142
L(xi xiHll\ 3 N dij 7 N %y (2-142)
g (8] O
2
1 (2a%7 23
E(x y‘ml) 'y ( N ) d” (2-143)
] - i
2
. { 1 2:\2'1‘ 22
M‘\l xj Hl\ ry --N—O—> d i (2-144)
9
1 (2a%7 )~ 24 1 (0-\21‘
P n - - - - - -
I-,()l_\jllll) - N, dij t3 Nn )6” 3 (2-145)

*Sun's theorem requires that m(t) be a zero mean stationary Gaussian
process. Other restrictions on m(t) and S{t, m({)] are discussed in Appendix A,
An example which satisfies Sun's theorem is presented in Section 2, 4, 3,




Utilizing the asymptotic statistics of Equations (2-136) and (2-137) it is possible
to obtain the Fourier coefficients of Equation (2-135) in terms of the Fourier
coefficients in Equation (2-133) and (2-134). To see this, recall that if

Zjs 7y and z, are fointly Gaussian, it follows that [25, p. 71]

E(z‘ zJ zk) [E(zi zj) - E(zi) E(zj)l E(zk)
+ (E(zi zk) - E(zi) E(zk)l E(z])

+ lE(z. 2 - E(z,) E(zk)l E))

) j
FE@) B@) By (2-146)
Consider
. T T T
. 2A\° 3
l:.(xi xj xle]) (No) f f I [A d3 (tl. t2. t3)
o o o
No
+ A —2— dl(tl) 5((2 - ts)
No
+ AT dl(t2) (5(11 ~ t3)

&)
EB dl“:l) 6((1 = tz)]

+ A

o2 2n{ 21k
cos = t, cos t, cos t3 dtldt2 dt3

1 T ‘g T
(2-147)
From Equations (2-147), (2~135) and (2-133)
3
e = 2ina » IEEY & L 2a’r (11
L T S L R gk "T\N i O
(8] (¢
1 11
vl By by “u) . (2-148)

T ———



On the other hand, substituting Equations (2-140) and (2-142) into (2-146)

vields

3
9
e e 1/2A°T 2l Lb = .21 153 S e o R 6 (e 4 I
l‘,(\i \i .\k Hl\ 8(__NO )(dij dk dik d] dik di -ﬁdl di dk >

1 /2A%T 1 11 13 5
(=) (4 o, +d s vdy 6 Y .
¢ ( No ) (‘ T TR TR (2-149)

Comparing Equations (2-148) with (2-149), it follows that

31 21 Bl 21 .11 21 11 (S L B
¢ b -~ 2 2-150
dijk dii dk dlk di iﬂi di di d‘ dk - (2-150)

In a manner similar to that used in the development of Equation (2-148),

3

o 2

X 1 (2A°T 32 L 2A°T 12 e

E(v. x. x [H.) =i 2 T R 9_1s
v, \‘ X, 'Hy R < Nn ) dijk 1 ( '\'0 > (jk di (2-151)

Substituting quation (2-140) to (2-145) into (2-1406) results in

5 3
. 1/2A°T 2% .31 .98 .11 .31 .18 12 11 n)
Ely. X, X - == y +d, + . = 2d,
0y ¥y % ) \\( N ) <dlj dy i dedytd didi
1 /24° : 12
2A' T " 2
(-4 -2 S 9 _129 3
3 ( N ) k“\, di (2-152) o
o s
v
Comparing Equations (2-151) with (2-152). observe that ;
32 22 .11 22 .11 &1 8 1 U 8 U
d? . . - 2d, 2-153
ik dii dk dik dj djk dl dl d_i dk ) (2-153) ;
4
Similarly, it is readily shown that 3
33 23 .11 40 O 22 .11 13 12 .13
1 ki : = 2d, 2-154)
diik ( i dk dik dj d“\_ di d‘ dj dk (2-154 1
34 2 12 23 .11 22 ,11 G kY .21 18 T
" } - 2d. 2-158)
dijk dii dk dik dj dik di dl d‘ dk (2-1586
i
|
2-39




35 24 .11 22 .12 22 .12 12 .12 .11 "
dijk dij dk *dik dj + djk di - 2di dj dk (2-156)
36 22 32 24 .11 23 12 .12 1 12 5
dijk dij dk + dik dj + djk di - .Zdi dj dk 2-157)
37 23 12 28 12 24 ;11 .11 .12 .12 5
dijk = di}. dk + dik dj + djk di - “di dj dk (2-158)
38 .24 12 24 12 24 12 o ¥2 32 .12 H
dijk = dij dk + dik dj + djk di - ~di dj dk {(2-159) |
|
With reference to Equations (2-133) and (2-134), now consider f
dl(tl\ dy(ty, tg) + dl(t2> d.:(tl. ta) +d;(tg) dy(ty, ty) b
fi
_ 11 21 11 .21} 11 .21 2mi 2mj 271k :
'ZZZGi g, My Gy i Gy ) Go% =i € 008 =ac 1, ool Sty !'j
i 3 k q
12 2% 11 .22 11 .22 27i 2rj 21k
+ (di djk + dj dik +dk dij ) sin = t1 cos =g t2 cos =5 t3
) 12 ‘ZlL 11 .23 27i 27 21k
+ (d djk + dj dik dk dlj ) cos =~ tl sin T t2 CO8 =y t3
11 .28 11 .23 12 .21 2ri 27) 2k
+ (di djk + dj dik +dk dij) Cos = t1 cos = tz sin T t3
12 .22 12 .22 11 24 2ni 21rj 27k
+ Qii djk + dj dik dk dij) sin T tl sin T t2 cos =g t3
12 .23 11 .24 . 12 22 2mi 21rj 21k
: (di dyo +d;" dy +d " dy ) sin Sp= ty cos Tt ty sin Sty
11 24 12 23 .12 13) 2ol . ... 2%} 2rk
+ (d‘ djk + dj dik + dk dij cos = t1 sin T tz sin 5 t3
12 24 12 .24 12 .24 27i 21rj 2k
(di ik d] d“\ +dk dij) sin T t1 sin T t?. sin T t3 . ]
(2-160) 3
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Also,

dl(tl) (11(12) dl(t:;\

. d:l l'” 'l](l gin 2L t, cos l—;r;—i- t, cos 2?1\ tg
+ di“ djm dll(l cos :ﬂ l1 sin '3_:’1 tz cos "),1;,'\ 13
s dl“ dj” diz cos __’_;r_i t, cos ._3_:{_1 t, sin 'Z,T, K ty
i dil“ djl‘3 lll\l sin % t, sin :)-7;—1 t, cos drk ty
' di]") di” dll(“, sin i’;—l t, cos 3—?—1 t, sin 2,7;,[‘ e
. (li” djl“, ql‘tz cos —")—;T—l t, sin i%f_l t, sin ").7;, 3 tq
+ (liu dj” dl](”) sin l.;r,i tl sin :’T”.l 12 sin 'Z,:T‘l\ !3 ) (2-161)

Substituting Equations (2-150) and (2-153) through (2-159) into Equation (2-135)

and making use of Equations (2-160) and (2-161) it follows that

dylty, 1y 1) = d (t)d,(t,, t,

gr g {) + d'(tz) dz(tl, t:;) rdl(t3) dg(t', )

-

-2 2-162
“dl“l) dl(tz) (11(13) (2-162)

where = denotes "is asymptotically equivalent to''.

- - S N —— » P
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Note that Equation (2-162) can be written {n the form

dgtt,, ty, tg) =~ l":“:' ty) = d;(ty) dy(ty)] dyey)
Pldyty, ty) - dy ) dy gl d )
+ ld:(tl, ty) - d](tl) dl(t‘l” (11(13)
Pl ) e, dey) (2-163)
Also, note that the asymptotic form of d‘(tl, tg, t3) is symmetric in its argu-

«
<

ments,  Following the same procedure that led to Equation (2-162) it can be
shown that

deltye to, tg, t) = dy(ty, tp) dyttg, t,) +dytt), tg) dotty, t,)

Hd,ty, t) dy(t,, tg) =2d ) dy ) d ) d )
(2-164)
Fquation (2-164) can be rewrltten in the form
Aty oy ) = ldy g, t) - d e d el d,y(ty, t) - d ) d ]

* ld'_l(‘l' ty) - dl(‘l) dl(t3)| 1&12(12, g = d](tz) d](t4ﬂ

Fld, ), ) = d ) die ] Hd, iy, t) - d ) )ty

+ l\l_:(tl, ty) - d ) (ll(tzwl dytg) dy(ty)

Fld,ty, ) = d ) A ] dp ) d )

Pl g, t) = d e dtpldy e, dty)
b Id:(t:, t:‘) - dl(tz) dl(ts)l dl(tl) (il(t4)
Fldyt,, t) =d ) diepld tpd )

' ldﬂ(t(}' t.‘) - (ll(t:‘) dl(t4” dld‘) dl(tg)

g e
P d ) d it diey 2-165)




r_——wﬂ

At this point it is convenient to let

T
w3 g . Ak
"l = IJ dl(tl, ety tl) x(tl) % l(ti) dt1 oo dtl (2-166)
(8]
!
,l\ ;
|
“1 ] f dl(l]) 1‘([1) dtl (2-167) '
O
1 r !
o= f f [dg(tl, ty) - d](tl) dl(t__,)l v r,) (ltl dt2 3 (2-168)
(0] O
Utilizing Equation (2-163), it follows that '
3 oy |
Ng == 30 v+ n (2-169) |
3 1]
Similarly, making use of Equation (2-165), there results |
2 2 4 {
n, -~ Jvr + 61N v+ . (2-170)

Substituting Equation (2-166) into Equation (2-128) and making use of Equation

(2-132) the likelihood ratio may be expressed as

. 1 2A : : |
Alr®)] -~ K Tix) n . (2-171)
faes ) QO

th \
However, for some cases n, can be interpreted as the i moment of a Gaussian |

random variable z with mean 1 and variance 1. The characteristic function of

z s given by =

B
Elexp(wz)] = cxp(% Wy +w n)




Comparing Equations (2-171) and (2-172), it follows that

*
D)
DY <~ o
Alr®)] = K exp %- g%! v+ i?i n .
o

0

*Justification for the generalization to nj at this point, though convincing
in the light of Equations (2-169) and (2-170), has not been Riven, Equation

(2=173) can be proven by another method which relfes on an observation due to
A, Nuttall suggested to this author in a private communication,

From
Equations (2-128) and (2-130) {t follows that
r
x 2A
\rty) K E[ exp N j () Slt, m@)] dt
o
O

q )whvn\ ¢ (w) I8 the moment
N 7

o

9
Nuttall vecognized that A [rt)] = K ¢,("\

Renerating function of

Z J r) S, may] de

(3]

with r(t) fixed, Note that Z has mean n and variance | If 7 is asymptotically
Gaussian, then Equation (2-173) follows, To see i 7 is asymptotically Gaussian,
expand r(t) in a Fourfer series to obtain

® T
5
Z 2 rl“ j «‘ns—'%ll Slt, mm]  dt
0

{=0 s
T
¥2 [ 2r i .
v j sin —r—l Slt, my] dt
o
where
r
11 2 y 2ad
t’l l_ f r cos —Tl ot
O
v
10 5 ! 29t
L T j rit) sin ! dt
o

In general, 7 is not asymptotically Gaussian, However, in Appendix A
s shown that for the special case S, ) = cos (o te)
O

v
2rd 3
cos ¢ t S, mm) dt
o
and
v
j sin —;—'-t Sit, mty) dt

o

are asymptotically jointly Gansstan for t=0, ..., N, N arbitrarily large.
Hence, for this case, 7 (s asymptotically Gaussian and so (2-173) applies
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Substituting kquations (2-167) and (2-168) into (2-173) the logarithm of the
likelihood ratio is asymptotically represented as

In Alr@®] = 2lr@)] —

LT
‘ 1 /2A\"
| = o= " "
5 (Nn) f f[ d;’"l' t,) dl(tl\ dl(tg\] rity) i) dll dt2
O (8]
T
24 L) rt) dt, + In K 2-17
¢ Nn \l(t] l’(l tll In K . (2-174)
O

Recall from Equation (2-131) that

(12(t], t,) H\'h‘ltl,m(tl)l sl:;,, m":‘”

. o Q 1 2176
dl(tl) P,\.\ltl, m(tl»]. (2-176)

Equation (2-174) vields the asymptotic receiver. However, conditions

have not been found under which T s large enough for (2-174) to apply.

2.4.2

Asymptotic Receiver Performance

From Equation (2-174), a receiver based on the logarithm of the

likelihood ratio for long observation times is
8

T T
) -
_ 1 (2A\ ° : :
t [rn) L v -tnk = 3<N—n> j J Idg(tl, 12) - d](tl) dl”:” x(tl) n(t:)
O O

T

; (;I—\) j dyty ) dt (2=177)
O

(8]

-z

o



where

d .t = E {s{t,mep]... S¢,mep] £ (2-178)

e
Recall that r(t) = AS [ t, m(t)] + n(t) under hypothesis Hl‘ In this section,

it is shown that the conditional moments of £' [ r(t)] given Hl and the con-
o

|

|
ditional moments of la: [ rt)] where r(t) = AS(t) + n(t) are asymptotically %
equal provided that S(t) is a Gaussian processes with the same mean and }.
autocovariance as S [t, m(t)] and provided that m(t) and S(t, .) satisfy Sun's ‘f
theorem. It then follows that the asymptotic performance of the asymptotic '
receiver may be found by considering the Gaussian process S(t). Conditions
on the length of the observation interval, T, under which the asymptotic
performance of the asymptotic receiver closely approximate the performance

of the optimum receiver, have not been obtained.

Consider the random variable

T
Zy = f r¢t) S[ t, m)] dt (2-179)
o

with moments

O £ IO e

T T

E(z‘l) =1 1’i=f / rt,)...rt)E is[ tl,m(tl)] .80 ti,m(ti] } ‘i
o o b
dt,...dt, (2-180)

and the Gaussian random variable

Y P

22 = f r(t) S(t) dt (2-181) :

o




T
with moments
Tj T
E(ZE,) =Ny 4 =f > f r(tl)...r(ti)E[S(tl)...S(ti)] dtl...dti. (2-182)
0 (8]

H m(t) and S(t, .) satisfy Sun's theorem and if 7 2.1 =7 1,1 and 1 2.9 =My 9
then it follows from par. 2.4.1 (see footnote pg, 49) for T~ that

) (2-183)

M1,i " Mo, i
for i~ 2.
Substituting Equations (2-180) and (2-182) into (2-183) there results

E {S[tl,m(tl)]...b‘[ ti,m(ti)” . E.(S(tl)...S(ti\] : (2-184)

Now consider the moments of ¢ ' [ rt)] under H

1 From Equation (2-177)

it follows that

E ({v\"‘[ ry] } K !u])

SNOIONE

o i
E ;ff r(tl)r(tz)[dg(tl,12)-d1(t1)dl(t2)]dtldt2é
o 0

T
f 1‘(()(11 (tHdt
o

K-i

[ 2-185
H, ) i (2-185)

s
I
-1




Expanding the argument of the expectation in Equation (2-185) there results

E{[:a'(r(m} K' “1} : -NA / fF[r(t) Tty ) [H]

dl(tl)...dl(t}\.) dtl...dtk

. i K+i ’
+Z(‘l‘) (%) (%A) ['.‘ff/ﬁ[r(tl)...r(tminn]]

[d(t t)d(t)d(t)]

“

Ly o typ=dy g, ) ty))]

918
2i‘1)"'d1(tx+i) dtl...dtK” . (2-186)

dl(t
Focusing attention on the expectation in Equation (2-186), note that
) |
E[r¢t).. vt ) 1H, ]

— < ) - v -
= E ( 1 AS [tl,m(tl)] } n(tl)t... | AS [t}\‘*i'

m(tK*i)] + n(tKH) | [H, )

(2-187)
Consider first the case for which K+i is an even integer. Multiplying out the
right-hand side of Equation (2-187) and simplifying those terms involving n(t)
as a factor, it follows that

E[ rty)... ) |H ]

vt

= AN § {slt, ymt)] . L m(tK‘i)] |

N
K+i-2 "o § : s
+ A 5 E[ n(til)n(tiz)]

iK
TT sl tj,m(tj»]$ i,

1

(2-188)




e
where the first sum is over all T‘;\T‘-_—W ways of choosing two arguments

from K+i, Evaluation of the expectations involving the noise term, although

known, are not required for the argument to follow. Similarly, for (i+K) odd
E[ rt,). o LI ynll

K+

= A E {9[ tl,m(tl)] | ti e Mt m"”

L e
K+#i-2 ‘o -
A 7 E E[ n(til)n(tig)]

i+tK
ESTT s[tj.m(t].)]; #i i,
1
+
K+i-1

N et

b (2-189)

E[ n(t,).. .n(til_l)n(ti]*l). Snt

Substituting Equation (2-184) into both Equation (2-188) and (2-189) results in

E[ r(tl)...r(tl\.‘i)HII]-~I<,[ Tt OIrd) = ASt) )] (2-190)
Use of (2-190) in (2-186) leads to the conclusion that
' g ' -
E({e [r®]] "vnl) . E( e [rn]} “yrm = AS(t)+ n(n) (2-191)
1
Since the probability density function of ¢ [ rt)] given H, is determined by

1
the moments of ¢ [ rt)] given H,, it follows that

b} ') + Pt 'Y —AS ) ~19¢
P, i, XHp)»P, Ir)=AS(t) n ) [ XIr®)=ASt) )] (2-192)

ol a




and that the detection probability

L)

— 1 -
P, = [ P, i, (X[H ) dX (2-193)
.Y o0
may be evaluated by considering

Py / Pl'!r(t)zAS(t)+n(t)[X[r(t)=AS(t)+n(t)] dx (2-194)
_Y o«

for T-, . Therefore, the asymptotic receiver operating characteristic (R.O.C)
of the asymptotic receiver is evaluated considering an equivalent problem

where, under Hl' r(t) = AS(t)+n(t), S(t) is a Guassian process with
E[st]=E{s[t,mt)] | , (2-195)
and
~ - ~ !
E[ S¢tst,)] = E{s[ t;, m¢ ] s[t,, me)] i . (2-196)
When Equation (2-177) is the low energy coherence (L. E. C.) receiver (see

Appendix C) for S(t), the asymptotic performance is easily obtained using the

Chernoff approximation of Appendix C.
Assuming that T is large enough so that the asymptotic receiver is a

good approximation to the optimum Neyman-Pearson receiver, performance of

the optimum receiver will be closely approximated by the asymptotic performance
of the asymptotic receiver. It has not been possible to obtain general conditions

which assure that T is sufficiently large.

e Wkl e i s NP




2.4.3 An Example - First Order Butterworth Phase Modulation of a Sinusoid

For this example, let the hypothesesbe given by

Hi: rt)=Acos ot + mt)] +nt), 0= t= T (2-197)

HO: rt)

ntg) O0<t<T (2-198)

where m(t) and n(t) are statistically independent Gaussian random processes with
the properties
E[m®t)] = E[n®] = 0 (2-199)

=X 'tl“tz'

E[mt)mt,)] = Pe (2-200)

N

E[n(tlm(tzy]r-,f 5ty ty) . (2-201)

From the correlation function assumed in Equation (2-200), the spectrum of
mqt) is

. 2aP ST
bm(m) i (2-202)

Q +

From par. 2.1, the likelihood ratio is

y T o0
1 /2A i :
A [r(t)]:E T (N—o> f...fr(tl\...r(ti)fi(tl, et Gt dt (2-203)
(8} O

i=0
where
fi(tl. .ti) = E [ cos [(“otl mutl)] cos[moti+-ln(ti)]
)] 'I‘
AT 2
exp {—N— f cos [mot mt)] dt } 5 (2-204)
(8}

(8}




Expanding the exponential in Equation (2-204), fi(tl' cea t[) becomes

T

- i T
2
_2 1 A j &
fity oot = m <- N, ) f ; .fE {cos[motl*m(tl)]...cosh)oti m(ti)]
0

=0 o

a
o 1+1'm(ti+1)]"‘c°s [wotHj +m(ti+j)] }

2.905
dti+1 ”'dthj . (2-205)

l)
Recalling that cos“g= | (1 + cos 2g) it follows that

) ...

Y 2
E {cos [wotlvm(tl)] ...cos [motim\(ti\] cos [‘“oti st

2
cos [mothj*m(thj)] }

e : }
- E { cos{(ootl m(tl)] ...cos [‘”oti »m(ti)]

+ Terms involving 2 "‘)otK" K=i+l, ... . (2-206)

Hence, the integrand in Equation (2-205) involves a constant with respect to the

variables of integration plus rapidly oscillating terms which contribute negligibly

to the integration. Consequently, Equation (2-205) can be written as
f)
A“T
“2N

fi(t ot) ~e = E{cos[motlom(tl)]...cos[woti+m(ti)] } . (2-207)

1
Comparison of Equation (2-207) with Equation (2-130) shows that K = e

In Appendix A it is shown that X and Yi defined by Equations (2-136) and (2-137)

(3]

-A2T/2N,




are asymptotically Gaussian when S(t, m(t)) = cos (m0t+m (t)). Hence from

Equation (2-177)

£ (r(t)) =

03] —

D}
('A> fj [dz(tl, 0)" dl(tl)dl(tz)] r(t Ir(t,) dt dt2 !
T

2
s . 2-208
(No) f dyprt)) dt (2-208)

o

where, from Appendix B,

| 5
oty t) = E \COS[‘“otl'm(tl)] cos [;L\ot2+m(t2\] }
-P |
= ¢ I [ cosh (pc_“ It1-to ) COS tl cosmot,,
o > =y ‘1 t) g a4
+ sinh (Pe ) sin tl sin “‘ot" (2-209)
Iy
E
and {
!
dt))=E { cos [ t, mit,)] } =eF/2 cop g t ’ (2-210)
e A ol 1 Do) ol ;
;
In Appendix C par. C.2 it is shown that Equation (2-208) can be interpreted as “4
the LEC receiver for a Gaussian process with mean and autocorrelation given by i
Equations (2-210) and (2-209) respectively. In Appendix D par, D-2 it is shown 31
|
that the LEC condition applies for this process over a wide range of values for J
P and aT. As discussed in par, 2.4.2, the asymptotic performance of the
|
asymptotic receiver is evaluated by considering an equivalent problem where, j
d

under ”1‘ r(t) = AS(t) +n(t) where S(t) is a Gaussian process with mean and auto-

covariance given by Equations (2-210) and (2-209) respectively. As pointed out




in Appendix C (see C-23), the LEC receiver for the equivalent problem is
determined from Equation (2-208). Using only values of P and aT such that

the LEC condition applies, performance is obtained by employing the Chernoff

approximation discussed in Appendix C. From Appendix C

. .. waeArley
o i AR e gl
Ppa = HE)-Su®) [eb HO/2) ety SNTE)) (1 -H-(—-—%’b )

aoe O o4
_a®[1-87ue)]

, (2-211)
s 2
6(a(S)] SUENLT

4 D i 4 o% 3
S ) + - < Ty Q) /O ~ -Q
PI) ~ 1= OMM (1-S)u(S) ;e(l S)"uE)/2 erfc‘[(l—swu(S)][l _.EI_L___MGI S) :l

& 2
_ a®[1-4E)a-8)7] |

e (2-212)
6NZT(uEn” < ) i
. : i
where S is chosen so that g(8) =y, 0= S< 1, and y is the threshold, Also, !;
from Appendix C ';
\
9
D} ~ o 2' -9 ~ ;
. _ =S(1-8) A~ —2p § 1 2P| o1 (1-e72l0T, q
e = =3 Na) ¢ 32 .8 | T "3 '
& ) 0( & —1 <1, 21- a
. g
‘S

o 9 -9i
e P2 [ ar 1 ..mT) l
- (=) T = 5
2i i 912 \
=1 .
\2 p |
} (——) e aT 4 (2-213) E
Q

0 1




9

Note that <—&\——\-> can be interpreted as a signal-to-noise ratio (SNR),  Also,
(

(8}

NP can be interpreted as the modulation index.  Figures 2-1 thru 2-11 show the

receiver operating characteristics (ROC) for a wide range of SNR, NP oand o,
Note that decreasing SNR by 10 dB, say from -10 dB to =20 dB, and increasing

o1 by a factor of 100, say from l(ls to l()T results in identical ROC's at the

higher SNR's, At lower SNR's, decreasing SNR by 10 dB, say from =80 to =90 dB,

: > : . 18 19 ]
and increasing oT by a factor of 10, say from 10 to 10 also results in ROC's

Al
which are close, This suggests a threshold effect in receiver performance,

O

Also, note that incveasing T fora, A, — , P, and Pl-‘-\ given, results in a

monotone decreasing miss probability, P In addition, incrcasing P with A,

M*

— , o, T, and Pl‘\ given, results in an increasing I’M.

b b \‘J
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2.4,4 Suboptimum Detection of a First Order Butterworth Phase Modulated

Sinusoid

In the hypothesis testing problem of par, 2,4,3, the hypotheses are

lllz r(t) A cos | \JOI = m{e] -+ ne), 0< 6= T (2-214)

Ho: () n) ,

0s t< T (2-215)

where m(t) and n(t) are zero mean independent Gaussian processes with auto-

correlation functions

E | m(tl) m(t,)] R _(t ., t.)

Z.

O
X — S -
E |n(t1\ 11([2)1 5 ( (tl t:)

Consider the detector sketched in Figure :

s TR
Pe L -2

(2-216)

(2-217)

12 which is optimum for detection of

a sinusoid having a constant random phase angle uniformly distributed on [0, 27

In this section, the pertormance of this detector is determined for the hypotheses

- L

of Equations (2-214) and (2-215), As expected, the optimum detector is shown

to outperform the detector of Figure 2-

12,

However, for signal to noise ratios

(SNR's) below the threshold of the optimum detector, suboptimum detector per-

formance is close to the asymptotic performance of the asymptotic receiver,

It is convenient to define

1
l % (‘—l‘ 2 f r(t) cos \uut dt
(4]
and
Q ;:_\ 0—1‘ 2 / r(t) sin ~~‘”t dt

0 -

(2-218)
(2-219)
267




-p/? '
. P/2 cos hot

dkaalia

1-‘ <
..,..Zlm_ s ce s I

e "2 sin wet -
Figure 2-12, A Suboptimal Detector "
Note that under hypothesis HO’ I and Q are zero mean statistically independent
Gaussian random variables of variance :
&
= o and -p _4
"fluo o I, I'T‘z; E eg -aT , (2-220) :i
From Appendix A, it follows that under hypothesis Hy, 1 and Q are asymptotically ‘ i
jointly Gaussian, From Equation (2-218) l‘j
T 3
E(IIHI) % e_p/2 f E{ A cos [mot + m(t)]} + n(t) cos wot dt . (2-221) i
& 0

With reference to Equations (2-221) and (B-6), the mean of I under hypothesis ;
Hl is given by ~
, T it ,

" '”1 L(Iliil) = N_o“ 5 aT (2-222)

2-68




& - i S R

where double frequency terms have been ignored. Similarly, the mean of Q

under hypothesis H, is given by

1

n = E@IH,) = 0 . (2-223)
QIH1 1

The second moment of I under hypothesis H1 can be expressed as

o 2 T
2 ~ (2A e
E( |H1) = <N—> e f f cos wotl cos wot2
¢ 0o 0

E ({A cos [w t, +m(ty)] + n(tl)} {A cos [ t, + m(t,)]

1
+ n(tz)}) dt, dt, . (2-224)

From Equations (B-23), (2-216), (2-217) and the statistical independence of

m(t) and n(t), it follows that
E ({A cos [wot1 + m(tl)J 5 n(tl)} {A cos [wot2 + m(t2)] + n(tz)]>

—alt, -t
= A2 e_p!:cosh (Pe e ) cosw t, cosw t
ol o2

( —c1|t1 - t2| )
+ sinh \P e sin wotl sin wotz

N

P o(ty -t

: (2-225)

9)

2-69




Substituting Equation (2-225) into Equation (2-224) yields

2 T
2 -2p -an -t,l
2 ~ [2A*T\ e 1 17 )
EQIH)) > <N ) v S 1 f [ cosh dt, dt,
o T
0
2 P
2A° e :
+ NOQ o il aT (2-226)

where double frequency terms have been ignored., With the aid of Equations

(C-69) and (2-226), it follows that the second moment of I given hypothesis H

1
can be written as

2 0
2 2i =-2iaT
2 ~ [ AT} 2P 2 P far 1 )
Qg '<Na> e o+ ) B | T -
(o} 2 21
i=1
2
A -P x
+ N o e OGEIN
o

(2-227)

From Equations (2-227) and (2-222) it follows that the variance of I given H

1 is
2% — oY
B e RN e P L '2‘°TZ
TIu N a 2 : 211 i
1 o :
i=1%
2
A -P
+ m - e i R (2-228)
(0]
Similarly, it is readily shown that
2 s 2i i+1
- K| S
QIH1 N2 gt (21 +1)! | 2i+1 (2i+1)2
2
A -
* wa | ® P a (2-229)
(0]
E(KQIHl) =0 (2-230)




s o AV e

The suboptimum receiver of Figure 2-12 forms the detection statistic

2
¢ V2 Q (2-231)

From Papoulis [ 3], the p.d.f. of £ given hypothesis H0 is given by
L -LZ/Z(T(?
p“H (LIHO) ~5 @ ; L>0
0 g
o
= 0 , L<O0 (2-232)
where
o = a2 =gq° (2-233)
o IIH0 QIHO

From Miller [25, p. 30], the asymptotic p.d.f. of £ given hypothesis H1

follows as

2 2
e T

L
P (LIH,) = —————— exp | -
2 |H 1 o o 20
1 I|H1 Q|H1 I|H1
I'(m + %)
T (1/2) T(m+1)
m -0
m
& 2
LoQin, ~1n, Ly
1 1 !
I ————————
m 02
IIH1

(2-234) f




The false alarm probability, PFA’ is

0

- '-r) 5

Pra f P“HO(LIHO) dL (2-235)
i

where vy is the threshold setting. Substituting Equation (2-232) into Equation

(2-235) and performing the integration results in

2
P - exp|- t= ¥ (2-236)
FA ( 2002)

The detection probability, PD’ is given by
o0
Py - f p“H1<Lm1) dL . (2-237)
Y

1t is convenient to define

= -
a q”Hl/aI|H1 - (2-238)
b = 'y/()'”H1 ] (2-239)
c UIIHI/UQIHI s (2-240)
d = ‘2 )/ 02 v (2-241)

2

(o -0
QI TUH "QIH,

Substituting Equation (2-234) into Equation (2-237) and making use of Equations

(2-238) ~ (2~241) there results

I'im+ %)

= m
¥ = ¢ Z r'(1/2) I’(m-rl)d Ani1

m =0

(a, b) (2-242)

e o ’ " I ~




where QK(a, b) is the generalized Q function

- K-1 2 2
Qg(@, b) - f X (%) "X +a')/2 T (YA (2-243)
b

From Equations (2-236) and (2-239), the parameter b can be written as !

1/2

=[-2qunPFA] | e

b

T
I|H1

Consequently, Equation (2-242) expresses PD as a function of PFA’ (A2/Noc1), P, "

and aT. Making use of Equations (2-220), (2-222), (2~228), (2-229) and (2-238) -

(2~244), miss probability, (PM =1~ PD), is plotted in Figures 2-13 through

- g

2-17 as a function of the time-bandwidth product, aT, for various signal to noise

1073, Sub-

e —

ratios, A2/N0a, and the fixed false alarm probability, PF e
optimal performance is compared with the asymptotic performance of the
asymptotic receiver in Figures 2-18 through 2-21 for parameters of interest.

Note that suboptimum performance approaches the asymptotic receiver per-

formance as the signal to noise ratio, A2/ Noa, decreases, a
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CHAPTER III
MMSE ESTIMATION IN GAUSSIAN WHITE NOISE OF A NONLINEAR
MEMORYLESS FUNCTIONAL OF A RANDOM PROCESS
USING NONLINEAR OBSERVATIONS

3.1 Derivation of the Volterra Series

Consider the problem of finding the minimum-mean squared error

(MMSE) estimate of a nonlinear memoryless functional of a random process

when the observations have the form
r(t) = AS [t, m(t)] +n(t) 0=t=T (3-1)

and the MMSE estimate desired is

EIT, mT)] =E{g(T, mT)] I rt);0=t=T} (3-2)
where n(t) is zero-mean Gaussian white noise and |
= No = 2 “
E [n(tl) n(tz) ] /2 & (t1 t2). (3-3) 4
To find the MMSE estimate m(t) is expanded in a Karhunen-Loeve expansion ;{
on [ 0,T]. This yields E
. :
L.I.M. ¥
m(t) = D moe® ostsT @-4) :
N—.oo ¢
i=1 »
where ‘
[ "
7\1 ¢i (tl) = A Km(tl’ t2) d)i(tz)dt2 : (3=5) | :
T L
m; = { me) , ()t (3-6) |
E
E[me)] = 0 (8-7 ¥
Km(tl,tz) = E [ m(tl) m(tz)] v (3-8)

\
g 1
W
g 1




The joint Probability density function (P.d.f,) of m,

* ey My 18 denoted by
P(ml. Siaep mN). Let

N

=1

and consijder

ry® = As it myt)] + n(t)

Assumlng m,, i=1, «esy N, are given rN

1]
Loeve €Xpansion to obtain

M
_ LM X
Telis 28 erwj(t) O<t=<T

(3-11)
=1

where the first eigenfunction Is chosen to be

N
5 L Z oy ¢
L &
bt = w (3-12)
}/T s [t. Z"’i ¢ (t)]dt (2
= i=1

and wj(t), j=2are chosen arbitrarily to complete the set,

Clearly

(3=13)

RS-

CTRPIAS S o, +- W1 FE. 7 o T DT 20

9




From Equations (3-13) and (3-10)

T , N !
I-Z(rll My, eees mN) - A;[ s“ t, E m, «bl (t)y | dt ( . 3-14)
# i=1
Also, from the orthogonality of J(t) and Equation (3-11)
l-:(rjl m, ..., my) = 0 _§=2 . (3-15)
In addition, the conditional variance of ri is given by
2 No 2 ¢ .
. rjl My, ey My i e 1. (3-16)

It follows from Equations (3-14) through (3-16) and the joint normality and statistical

independence of the rJ when { w, ! ave given that

% 12 M
2 3
)II-A(hfb (t,mN(l)ldt) i Dt

|8

exp \- N =2
DR v v Bl ey ) Q
1 M1 N M/s
(%)
- (3-17)
Applying Bayes' Law to Equation (3=17) results in
Py, o mylrg, o, ry)
0
. \* M
e - = r,-A 's‘g[t m (t)]dt - + r?‘ m m,,)
wi*R 1 Sl by Z; P(My, ..., My
0 g o2 J
M/,
()
> 0
", 1 2 M
5 : Al /5% “a E }3 d
/:;‘./ exp $ -y rl- b l,mN(ﬂ] t + ] p(ml....,mN) m]...dmN
0 o
(" NO) (3-18)

3-3




Lot
N
glt, mN(ul = g lt, E m, ¢l wl - (83-19)
=1

The expectation of g('T, mN('l‘)), given r may then be expressed as

preree Eag

K Bgl'l‘, mN('l‘\l | Tie ceny rms

= exp ; - Q!: [(l‘l—Ai[.\':l l,mledl {,!

I"’ g 1T, my (T —— LU
_ lm e (NN ) — D e

- _“1 2 M
s “p\'ﬂ‘: [(rl"‘;.["‘:l«.mNm]ms "> .Z,J‘-‘ ]i
Jof == o
e (”N\\)

\_/
L}
;l"]z
-
= 0
| S—)
—

Nul‘. & n\NMm‘. " ""“N

p(ml, ws a0y mehnl, $53 ,dmN i

(3-20)

Cancelling common factors in the numerator and denominator of Equation (3-20)
and taking the limit as M+« , the conditional expectation becomes
E {g['l‘. mN('l‘)] fr)y; 0« t< ’l‘}

T

JV‘ x [l,qul\] exp (N / .\[l,mle yr - .\l(,mNm] }d() Py m dm o dmg

O
o

e I o
- T

'Rl o 2A [ o ) A g

}N’ exp ( N ./ s(t, mNm] IR (t, mle } dt ) PO, m ) dmy .,dluN

(%)

(3=21)




r-—-mi T———— — e

Taking lim N-~,  the denominator of Equation (3-21) is identical to Equation (2-27)
while the numerator differs only by the factor g(T, mN(l‘)). Following the same
procedure used in developing Equation (2-28), it follows that

E{glT,mM] frt); 0= t- T}

o i i T
1 [2A i
Z T (N_o) ff Tt Eph (Tt Lt dty, L dty
= =0 (o] ()
= ok
1 [2A i
ZF (‘N—O) ff LGV (AT AT AL S
i s (3-22)
where
i
N . A2 2
£, .ty = L<b[tl.m(tl)]...b[ti,m(ti)]exp{_N_o f5 0e ciet] d'r} .
0 (3-23)
By Balpecebis k (g[T.m(T)] S[t,,m¢)] ...
T
A2 2
S[tpm(ti)] exp { N /S [v, m(1)] df} . (3-24)
o
o

Equation (3-22) - (3-24) are used later in this chapter to demonstrate that pre-
viously known results can be obtained by this alternate approach. To reduce
Equations (3-22) - (3-24) to a form which is more suitable for implementation of
the estimator, it is assumed that the MMSE estimate of g(T, m(T)) is expressed in

terms of a Volterra functional expansion according to the relation
o io T T
g [T,mm)] = z : il. (%‘-) f.i.2.f r{rgde e ()
9° 2
— 0
i2=0 0 o

-90
ei,,(rl""'rl,,) dr,...dr, (3-25)

-~ -~ 2




where S SETRIN Tl) is the ith Volterra kernel of the estimate. Equating Equations

(3-25) and (3-22), there results
| T T
1 2A e fo
E N (No ) /f r(rl)...r(rlo)eio(rl..... Yl,,) drl...drlo
i,=0 ~ 0 0 i 5 =

-|..
e
Z|
\/
\ 3
g
’2
"1
‘3
Er'
’.:.
."’
—
Lad
=
=

|=
w l .
1 [2A h ,
E il" (N_> f...j!(tl\,...,I‘(til)f‘l(tl....,ti \dtl,....dtl

i l= 0 0 0 1 1

(3-26)
|
Multiplying both sides by the likelihood ratio, which is the denominator of

Equation (3-22), (3-26) becomes

lol
ZZ ("") f fr
) Bl OE (Eey cusyts )
h 1 i
2 l 1

1'0 l‘O

r(rl\...r(ri )oi (rl.....r )
l’

1 ll 1 i2
) -1— 3 rty)... vt (T, te, ... t) dt....dt 3-27)
| l i‘" l. ey l lc.o l . -
i=0 0
; 2A ;
Equating terms of like power in N ) it follows that
0
- i
E hu( I Sl
-4 = b e . ‘l b 8
" f() k
h (Tt -f (t)e !
. R | DA 1170 3-99
tl(tl) = i ; (3=29)

0

3-6




-9
h, (l tl' ,, f(t kl(t,,‘ f,,(tl. ,,) 0 ik
.)‘tlv .‘ . f . (3‘30\
0
In general, vl(tl. x ...ti\ is given by
h (T, t i=1 { t e, . (t t)
l( ) 1'--- l\( l. ceey ‘\ i"k(k‘l'“.' l
(L | P
| 1 ] .
. ko1
£, (t,, e
)
e : e (3-31)

Observe that t‘i{t 4 ti\ can be obtained explicitly in terms of h (l‘,tl, e B

g i

and fk(tl, ey k s §, k=0, 1, , . Consequently, the assumed form of the MMSE

estimate, given in Equation (3-25), is valid,

3.2  Rederivation of the Linear Result for Zero Mean Gaussian Processes

In this section it is assumed that

vty = mt) rnty ; 0« t- T (3-32)
where mt) is a zero-mean Gaussian process and the desired MMSE estimate is

g (T, m(Ty = m M=EM(T) |et); 0< t< T) . 3-33)

From Equation (3=22) - (3=24), m(T) is given by

e

w

i T '
1
§ : 1 2 i i
T (N—') f j!‘(‘l\ l'(t )h, (l t ....ti\ (‘tl.....(iti
o |

a =0 v
m(T) = =2 2 IREREN i

: T T .
Z 1 : L
T ( ) f l/r(t ). r(t‘\fi(tl....,ti) dtl...dti

i=0

—
Gt




where

_— L 2 .
fi(tl.....ti)— E m(tl)...m(tl) exp No fm (r)d~ (3-35)

and

: e A 2
hi(I,tl.....ti)— E im[me,)...m{) exp | - N_ fm (rydr f3-36>

The denominator of Equation (3-34) is the likelihood ratio of Chapter 11

par. 2.2, Hence, from Equations (2-56) - (2-58)

i T T
i
( )/ fr(tl) r(t )f (t ...,ti)dtl...dt‘
i=0 o
o No /o 3 : T T
Tl-m exp -N—'/‘fr(tl)r(tZ)h‘(tI'tZ) dtldto (3-37)
o i o =
i=1 o o
where h.(tl,tz) is the solution to the integral equation
No %
& 5 h,(tl,tg) + f h'(tl' T)Km(r,tz) dr =K (tl, 2) (3-38)
o
and where
K (tl, ,, = E(@mqt )m(t2)) - (3-39)

To develop the numerator in closed form, note that

2
ho(l‘) = E<m(’l‘)oxp --NL fm“(r)dr . (3-40)
o




Following the procedure previously used in Chapter Il par. 2.2, m(t) i8 expanded

: - \J
in a Karhunen-lLoeve expansion to obtain

ho(l\ - E m, exp N ‘ mj (rv,l(l) : (3-41)
-1 : =1
However,
N
exp = _l.. .—l- + _;_ 1 ',
. il TR | g
§- e

! - __l_} : 21) lim N =1\
E m, exp Nn mj ® s o Jf m, N T

=1 i (:.‘rr)N B 77—,\‘

=1
dml. . .dmN
o - (3-42)
It follows that
hy(Ty =0, (3-43)
Similarly,
T
T \ T 1 2 i 3
hl( ,tl) E{ m( )m((l) exp -1—\‘; m- (Y dr 3-4H
QO

With reference to Equation (2-45), hl('l‘,tl) is identical to f,,('l‘,tl\. From
Equation (2-49) it is concluded that
N 9
(8}

N 2 N - A

O 1 ’

T,t) =| T] —-E g ¢,(T) &) » (345
=1 © . =1 © '

R e O ——

citiliin o I ol it




)

|
z
{
I
l
-58) in Equation (3-45) results in l

Use of Equation (2 J
i
: '
= N /2 0N 4
i [ _o . ]
hy(T,t)) = W writs 5 b (Tt (3-46)
i=1 3
It is also readily shown that
(3-47T)

hZ(T' t‘, t2) = 0

= N/ |* (NO>2
hg(T,tyutouty) =| TT N2+ x, 5
=1

[h,(T,th,tyty) + BT ty)h ) ty) ¢ h, (T, th, (), to)] -
(3-48)

In general, hi(I‘,tl. G .ti) is given by

w N /2 2 (N ) 2
h (Tt .0t = | TT § (3 5
1

B (T,t, Mt b )oh ,t ), iodd
Z L 4 %, kg ey %,

=0 , ieven (3-49)

3-10




i1

. 2 i-1 o
where the sum is overall i!/2 (—,,—) * ways of partitioning the set

[T, byasvanl ] into l,,;l pairs. From Equation (3-49), the {8 {_gold integration

in the numerator of Equation (3-34) can be expressed as

T T
i o

ff r(tl)...r(tl)hi(l.tl....ti) dt]...dti

O Q

x i1
S N /2 ¢ /N 2 o
e 7T (8] _0 13
N /2 + X 2 i-1
: 0 i - =]
i g * (_2')'
R i-1
D> ]
j fntl)r(tg\h‘(tl,tg) dtl dt2 3
(8] (8]
T
/ h,(T,t )r(tl) dtl i odd
(8]
= 0 i even . (3-50)
3-11
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With the aid of Equation (3-50), the numerator of Equation (3-34) becomes

o

i T, =T
1 i 3
E 0 ( ) j fr(tl)...r(ti)hi('l.tl.....ti)dt ll
(o] (8]

i=0
i-1
” =1 T T E
1
i 2 '(_> /fr(tl)rng)h.(tl,tohdt dt,
3 (8]
i=0 + 0 ©
i odd
xo |H T
77' \, 2 fh,(l,t yr(t)Hdt,
(8]
9 R
= 77' \ f h,(T,t Tt dt
i=1 0o
T T
1 o
exp | 5 ffr(tl)r(tz)h_(t],t,,)dt dt . (3-51)
v O O

Substituting Equations (3-37) and (3-51) into Equation (3-34), the expression

for m(T) reduces to

T
m(T) =f h, (T, t))r(t))dt (3-52)
o
where h (T, t.) is the solution to the integral equation
NO p
TTluﬂﬂ%l:[}uﬂ,ﬂkmhyt)dr=KmﬂﬂH). (3-53)

(8}

This agrees with a well known result [1, Chapter 6 Equations (23) and (17)] .

3-12
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3.3 A Stochastic Differential Equation for the Logarithm of the Likelihood Ratio

In this paragraph, a stochastic differential equation for the logarithm of the
likelihood ratio is developed.

From Chapter II par, 2.1, the likehood ratio is

- T e
1
= z :L 24 i <
A(rt) = i'. (N ) f : .fr(tl)...r(ti)fi(tl. cep ) dty Lty (3-54)
(0] (6]

i=0 o
where
T
A° .2
fi(tl' ...,ti) = E(b(tl.m(tl))...b(ti, m(ti)) exp (- N—o jS (tr,m(7))dT) .
o

(3-55)
Observe that the likelihood ratio is a function of T. Consequently, we consider

the derivative of A (r(t)) with respect to T. First consider

T T
d g d =
It ffl(tl)r(tl) dt1 = f [ ar fl(tl) :l r(tl) dt1 + fl(T)r(’I) . (3-56)
o o
Similarly,

T T

d .

T fffz(tl,tz) r(t])r(tz)dtldt2
0 o

]

T T

_ d

—-f a1 [ fz(tl,tz)r(tz)dtzJ r'(tl)dt1
o o)

T
+ r(T) f fz('l‘,tz)r(tz)dt2 ; (3-57)
o




A
: 1
;
l Since f,,(tl,(,,) I8 symmetric in its arguments, Equation (3-67) simplifies to
Iq
£ £
d
Ir -[ f‘.!(tl't'.!“ ('l)r“'.!) dtl l"2 g
[S S )
14
T o &
. d }
} _/ f [ ar Lty ] Ity Aty dt,
(8] (8]
T
+ 2rn(T) j f (U toe)dt, | (3-568)
O

More generally, it can be shown that
T T
d [ [ ray. . etat tydt. ... dt
KGR e r@Df @, Lt de L dt

Q Q

1 T
. ]t 9 t) | et Ve, dt
“ e dlr ‘(‘l..... ‘) '(‘l...r(tll l...(l

(8} O

1 I
. Al l‘l F IV x
tole(h f"'f'l(l"l'""tl—-l)ral""'al—l)("l"'dtl-l
(8] O

(3=69)
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Therefore, the derivative of A (r(t)) with respect to ' may be expressed as

T T
BN I
& aoon =30k (Y [ [ DI
aT Ar(t)) = i (N ) f.[ [d'l‘ l.(tl,....t‘)] l(tl)...llt‘) dtl...dt‘
Q O

=0 2
i'l‘ dt,
t (N“> r(l) H(N‘) fj lhl(l,tl,...,(‘n(tl)...l‘u.‘\dtl...tltl -
=0 0 O (3-60)

Equation (3-60) is further simplified using the estimation results from par. 3. I

Consider the MMSE eatimate of S(T', m(l')), then

g, mt)) = S, m)) . (3-61)
From Equation (3-24), hl (r,t E "ti) becomes
B(Fikyaraaety) = B s l,n\(l)lhltl,m(tl)]
s o
A° 2
.\'[tl,m\tN expl| - W f ST (r,m(r) dy (3-62)
(8]
L )
which, from Equation (3-23) may also be expressed as
(3-63)

h‘(l.t‘.....tli = tiol (l.t‘.....t‘)
Substituting Equation (3-63) into the numerator of Equation (3-22), it is concluded

that the second term of Equation (3-60) is given by

i ] R
A Lp 2:_‘- 2A b ¢ op
N r(l) i (N) ...]t“l(l,(l,....tl)dt‘...(lt&
O O 3

=0 ) (

2

A r S [0, mnl A [en] (3=08)

[8)

J=10

L
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To simplify the first term of Equation (3-60), consider the MMSE estimate of :
s2(T, m(T)). Now

gT, m() = ST, m(T)). (3-65)
Observe that

2
-
dT i(tl""’ti)"'No %

‘ T
i 2
f S[ti'm(ti)] exp (— ‘;—o fSZ[ T,m(7)] d‘r> t

o

s? [T, m(D)] 8t;, m¢t )] ...

&2
= g by (B k) - (3-66)

Substituting Equation (3-66) into the numerator of Equation (3-22), the first term

in Equation (3-60) is expressed as

Zil—'( ) _[ f[dT i ---.ti)]r(tl)...r(ti) dtl...dti
i=0

@)
s“ [T,mM]A[rt)] . (3-67)

]
1
Z|>N

o

Combining the above results Equation (3-60) becomes

% s B :‘
1 %A[r(t)]= ~‘§— s?[T, m(m)] A [r@®)] :

(o] i1

+ 2 e ST, mmAlre)] - (3-68) i';
(o] 3




Dividing both sides of Equation (3-68) by A(r(t)) it is recognized that

dT In A(r) = — { rt) AS (T, m(T)) - > AZ /?[T
No

mT)] } «  (3-69)
The result in Equation (3-69) is consistent with the use of the Stratonovich
stochastic integral implied in pars. 2.1 and 3.1 where integrals were manipulated
using the ordinary integral calculus. Equation (3-69) is easily modified to be
consistent with the use of the Ito stochastic calculus via addition of the correction
term

{45201, m)] - A%82(T, mm)) |

3
N
o

as pointed out by Duncan [18] to obtain

arn{Alrel = & ASITm@] {rm) - ASlnmal} . @0

This latter result was obtained by Kailath [6] using the Ito stochastic calculus,
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3.4 MMSE Estimation in Gaussian White Noise of a Nonlinear Functional of a

Zero Mean Gaussian Random Process Using Linear Observations

In this section

r(t) m(t) + n(t) 0<t<T (3-71)
where m(t) is a zero-mean Gaussian process with autocovariance

and where n(t) is zero-mean Gaussian white noise with

N
0

Em¢,nt,) = - 6(ty-t,) ‘ (3-73)
The MMSE estimate desired is

g(T,m(T)) = E@g(T, m(T)) lrt); 0<t<T) . (3-74)

From Equations (3-22) - (3-24)

1/ 2 : i p
Zi—': (N—o) f. . 'jr(tl)“' r(ti)hi(T. t1’ ...,t ) dtl...dtl
(o] 0

T
f. i .fr(tl)... PN, .t dt L dt
(o] o}

(3-75)

where

T
1 2
fi(tl,...,t)=E(m(tl)...m(tl) exp (-N—o/m ('r)d'r)) (3-176)
o]

and

T
BTty ..oty = E (s(l‘.mm)m(t1>. ..m(t,) exp (—Nlofmzvmr))
(o]

(3=177)
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The denominator of Equation (3-75) is recognized as the likelihood ratio. From

Equations (2-56) and (2-58) the likelihood ratio is expressed as

® (T T
2 :l & : ri) ... r)f (t t)dt dt
l'. NO Al (tl coe (t‘ i< lo ees i 1. ove i
i=0 o o
1
©  NJ/2 |3 y TT
S| TT N072—+ X, oxp N—o ffr(tlw(tz)h,(tl,tz) dtldtz (8-178)
1 0 0

where h‘(tl' t,) is given by Equation (2-57). The numerator of Equation (3-75)

must be treated separately for each choice of g(T, m(T)), As an example, let

g(T, m(T)) = m>(T) (3-79)

For this case

T
ho('I‘)=E<m2(T) exp <-Nl /mz(r)dr>> (3-80)
o
o

With reference to Equations (2-45), (2-49) and (2-58) it follows that

1
oo 2
No/2 N

0
hO(T)= 77-N—o7mT - h (T, T). (3-81)
i=1
Similarly,
hy(T,t) = 0. (3-82)
3-19




Also, from Equations (2-52) and (2-58),

2

= N°/2 5 (No)
3 ) [T Th,t,)

7TN 72 + A

i=1 © i

By (T, tyty) =

*2h (T, t)h (T, t)] . (3-83)

To proceed, it is readily shown that

hy(T,t ) ty,tg) = 0 (3-84)

@ N/z |} (NO) 5
Mottty ity =) TT N2+ X, z

i=1

[h,(r,'r)h,(tl,t2)h,(t3,t4)
+hy (T, Thh,t,, tg)h, (ty, t,)
+ h (T, Thh, ), th, ty, to)
+2h (T, tPh (T, t)h, by, t,)

+2h (T, Dhy(T, ty)h, ¢, t,)

+ 2h*(rl tz)h*(rl t3)h¢(t1' t4)

S TR o

+ 2h¢(r' tl)h‘ (ro t4/\h¢ “2; ts)

* 20, (T, t)h, (T, th, &), t)

+2hy (T, tyh (T, th ¢, t,)] (3-85)

SIRGIR; SRS B LR, 3PV~
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and so on. In general, hi('I‘,tl, e .ti) is given by
i+2

- N /2 | (No> -
hi(Toty,ontp = | TT m . 3
j—-

E h. (T, T)h.¢t. ,t. )...h ¢ ,t.)
: iy e il

* h*(rct- )h*(T,t )o..h*(t. ,t) ’ i even
z: " Jo Ji-1 )i

= 0 , iodd (3-86)

o=

where the first sum is overall i!/2 ( %) ' ways of partitioning [tl’ i ,ti]
into% pairs and where the second sum is overall i. i'./zi/2 (-% )'. ways of
partitioning [T, T, tyoeees t.l] into -12- + 1 pairs not included in the first sum.
From Equation (3-86), the ith i-fold integration in the numerator of Equation

(3-75) can be expressed as

is2
2 , ! T T (No> .
[. . .[l‘(tl)... r(t.l)hi(T, tl' ...ti)dtl...dti = 77-N—07_2—*_K_ -
o o j=1 ]
i
T T /2
SLE I e
> Ty h, (T, T) f/ r(t Tt )h,(t;, ty)dt dty
2 2 (5 ¥ oo
i
s-1
T 2r ot .
iil
P—L—i— fr(tl)h*(l‘,tl)dtl f[r(tl)r(tz)h*(tl’tz)dtldtz
2 2 (5),. o 00
, i even
=0, iodd . (3-87)
3-21
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From Equation (3-87), it follows that the numerator of Equation (3-75) is

- T T
} : 1 2 i i
T <N_o> f"'[r(tl)"'r(tl)hl(r'tl'""t)dtl"'dti
i=0 o )
i
o0 //2 :‘ o0 1 2 5-1
(o]
|| | nem 2o (%)
F1 © J =0 2 (2)'. 2
i even
o i/2
/fr(tl)r(to)h‘(tl,t,,) dtldt2
0O 0
i
T 2 g
0f(t)h'l‘t)dt E : (2)
r (T, e —
S gl ), Pu
o i=0 2 2/
i even
L
5 1

TT
<f f r(tl)r(te)h'(tl,tz) dt1 dt2
o 0

Reducing the summations in Equation (3-88) to closed form results in

AR T
Z 1 /2\" [
T <ﬁ;> t‘(tl)...l‘(ti)hi('['.tl,...,t)dtl...dti
o o

i=0
o0 N //2 .l: 1 T T
— o ———
j:l < o o
T 2
NO
= b (T, T) ¢ fr(tlm,(r,tlmtl .
o

3-22
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D]
From Equations (3-75), (3-78), and (3-89) the MMSE estimate of m™(T) is

given by
o
T 2
“ 5 No .
m°(T) = — h (T, T) + B (Tt )r(tl\dtl ; (3-90)
o
However, from Equation (3-52)
T
m(T) = [ h.(l,tl)l‘(tl)dtl . (3-91)
(8]

Furthermore, it is known that (1]

~ 9
rm = B [mm-mm]® reoio- te 1

N)
= = h(T,T) - (3-92)

_?

Hence, Equation (3-90) may be expressed as

- <2

m (T) = () +m~ (1) (3-93)
which is in agreement with Olsen [5] . MMSE estimation given by Fquation
(3=74) using the observation Equation (3-71) has been studied by Olsen [5] using

a technique much more efficient than the one presented here. For this reason,

no further consideration will be given to this class of MMSE estimation problems,




3=24

3.5 Systems of Differential Equations Describing the MMSE Estimate

In this section, Equations (3-22) - (3-24) are used to obtain differential
equations for ;:(I‘, m(T)). Two examples are considered. In the first, the
method is illustrated by considering a linear example for which g(T, m(T)) =
AS(T, m(T)) = m(T) where m(t) is a zero-mean Gaussian process with a first-
order Butterworth spectrum, Using results derived by Olsen [5], the Kalman
filter equations are obtained. In the second, a nonlinear example is considered
for which g(T, m(T)) = AS(T, m(T)) = n12(’1‘) where m(t) is a zero-mean Gaussian
process with a first-order Butterworth spectrum, It is shown that, since results
comparable to those obtained by Olsen for the case AS(T, m(T)) = m(T) are not
available in the more general nonlinear case, the system of differential equations

contains an infinite number of equations,

3.5.1 A Linear Example: First-Order Butterworth Process

In this section, the Kalman filter equations are derived for the MMSE
estimate of a zero-mean Gaussian first-order Butterworth process in Gaussian

white noise, The observation equation is

r(t) = m(t) + n(t) =ts’t (3-94)
where
-Q !tl —t2|
l\m(tl. t2) = E [m(tl) m(tz)} = Pe (3-95)
and
- No
E.[n(tl) n(t2)} =5 <5(t1 -t2) 5 (3-96)

The MMSE estimate desired is
2(T, m(T)) = m(T) . (3-97)

From Van Trees [ 1, p. 547], m(t) can be realized by the differential equation
m(t) = - am(t) + w(t) (3-98)

where w(t) is a zero-mean Gaussian white noise process with autocorrelation
E(w(tl) w(tz)) =2a P 6(tl -3

o) (3-99)
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From Equations (3-22) (3-24), the MMSE estimate of m(T) is

1 (2
Z i <N ) f fr(tl) SPEP AT ) de L de

\)
m(T) Ll (3-100)
S 17 f d i
il (No ) r(tl) r(t‘) Ul. “ee o ti) (1... (ti
=0
where
T
; o 1 2
hi‘T' tl‘ (i) E {m(T) mul) m(ti) exp | - KT jm (T)dr (3-101)
. 0
and
[ T ] )
fi(tl’ ti) E m(tli m(ti) exp | - El—- fm2(7) dr | " (3-102)
o ! | ‘

Recognizing the denominator of Equation (3-100) as the likelihood ratio, n\(T)

can be written as

‘ T T

| . 1 2 i i

E mA\ = E i (-1;0—> f . .fr(tl) cee T(LY) hi(T. e e t) dtl... dti (3-103)
0 (\]

=0

where the argument of n\\(T) and A (r(t)) have been suppressed for notational
economy. Taking the derivative of Equation (3-103) with respect to T and making

use of Equation (3-59), there results

(! A &
N R o L £ £y .
m.\ +m.\ E— Z F-(N—> f fr(t 'mi) hhl(l‘.l,tl. ti) dtl.
I3\ [\
x i Tk
1 2 i 1 s
* i <N0> s Tty L ety hy(T. S URTIRI I dt, (3-104)
=0 [\ I

where the "dot" denotes L ‘
dT

3-28




From Equation (3-101) it follows that

E ‘ ms('l‘) mt

- S 1
ho(T, t,, ioay L) = =
i 1 i 1\0 ,

r T
g
l)... m(ti) exp | - o J-m (7) d |

e /|

| P B
+ E [«um(l) + w(T) | m\tl)... m(ti) exp; TN Jm (1) d: |

| (8}
L o

(3-105)

Since mit) and w(T) are statistically independent for t - T it follows that

r |
A g ‘ w31 M) . MY oxp | - NL fm (ndr
0 l 0

!10 LR Y [i) N
( SR
[ T
a |
-a E ym(T) m(tl) m(ti) exp; - -r-\l— fm"(r) dr |
/ : \
L o 3

(3-106)

Consider the second series in Equation (3-104),  Substituting Equation (3-106)

back into this series and making use of Equations (3-22) - (3-24) there results
q

r(t1\ r(ti) hi(‘l‘. [1‘ ti) dtl

i

W i
Z‘ta
et
‘D

< ;-“"-i

3 >
= TL ;n iy =@ ma ., (3-107)

O

Similarly, hi»l [ ) 1 W § ti) can be written as

p T ]

. - 2.
h m (l) muls m(ti) np( N fm (1) dr

i'l(l' ! il ‘1‘ ti\ E |
O
(0] ]

(3-108)
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From Equation (3-108) and Equations (3-22) - (3-24), the first series in Equation f |
(3-104) is given by l;

i T T {4
2 i ‘
T (N >f fr(tl) r(ti) hi+1(T' T, tl’ ey ti) dtl"' dti '
o

oo

i=0 o |
=m?a . (3-109) L
i1
From Equation (3-68) ‘i
i
- 20 iman (3-110) £
o o
Substituting Equations (3-107), (3-109), and (3-110) into Equation (3-104) there H
results "
A ~ = /N AN A |
m= —am+2— rgé\—m2 r(T)-lm3+l m2 m |, (3-111) '"i
N 2 2 :
0 i
1
From Olsen [5, Table 2. 2] |
H
AN~ (N a2 i
m =mi\{3m -2m" ), (3-112) H
|
Substituting Equation (3-112) into Equation (3-111) yields ',»
i
A A /\ A A 4
m= - am+§— (mz—mz) (r(T)-m). (3-113) f’
o |
: : : ; /N ag ¢
To proceed, it is necessary to derive a differential equation for m® - m*“ , 3
To accomplish this, a differential equation is first derived for m-, Let |
g(T, m(T)) = m2 (T), then from Equations (3-22) - (3-24) it follows that
A 2 1M
9 1 2
me A = z :1_,. (Tx") f fr(tl)...r(t)h(T,tl, O L
i=0 o o |
(3-114)
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where

l[\ ‘[
l_ o ) 0 2 L 1 2 l ;
:!(l,ll, ...,tl)~ E{m (l)m(tl)... m(tl)exp - N§o fm (r) dr . ’
o
(3-115) »
Taking the derivative of Equation (3-114) there results |
. 1
A 2\« 2 L
m A + n/l"\A\ T\}‘ r(T) m/‘;\x\
: F
% ) Y li 1 . !
N T (N;-) fj re,).. r(ty) hy (T, e wtasy t) de, .. dt; |
. 4
=0 0 o !
(3-116) 'i
From Equation (8-115) r
11‘ ,t
;1 (r, ¢ t;) = - .3 E m'l T) mt n 3 - L 1112 )d '
i( R LG i y N = ( ](l)noo l(tl)bxp N (T T
0 o
o {
bl f
T £
g iy = 1 2 {
+2 E m([)[—am(l) t w\l)] m(tl)... m(tl) - W fm (r)dr : }
o |

(3-117)
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Note that both m(T) and w(T) appear in the second expectation in Equation (3~117),

Equation (3-117) can be written as

Il‘

* ¥ = - L. L, 4 ™ " . _1_ 2
hl (T, tl. ey t‘)- No E{m (l)m(tl)... m(tl) exp No J m-(r)dr
0
T
R, [N : 1 2
~2aFK {m (l)m(tl)... m(li) oxp | - N‘) fm () dr
Y%
o 'l\ 'l\
.,z:l T N 2 2
+2 -‘-‘- - T\J-; fj b.[\v(l)lxx(l)lxx(tl). . .m(t!)m (l“_l)...m (t“j)
j=0 FEH s
dtiol .dt“j . (3-118)
Note that
D) D)
K l}-(l‘) m(T) m(tl) G m(tl) m"(thl) ves m“'(t“‘)]
x . ; ’ 2 2
= K E\(l) m (1 )] K [m(ll) m(t,l) m (thl) oo (t“j)]
tterms involving & [w(’l‘) m(tk)] 3 k=l ..., 14 . (3-119)

Since w(T) and m (tk); k=1, ..., 1+; are statistically independent, only the first

term in Equation 3-119) is nonzero, Substituting Equation B8-119) into Equation

(3-118) and recalling from Van Trees [l, p. 532] that

ELw(m) mm] - ap, (3-120)
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it follows that

T
h, (T, t t,) = o B m4('r)m(t ) ... m(t,) exp a5 B mz(f)d'r
St (L | No i i N0
o
T
) e 1 2
-2 E{m (T)m(tl)... m(ti) exp -N—jm (7)dr
& o
F2ZaPE ), ooy ty). (3-121)

Substituting Equation (3-121) into Equation (3-116) and making use of Equations

(3-22) - (3-24) and Equation (3-68) there results

/N A\
m2=—2ar<2\—-ﬁl— n/{4\+2ap+ﬁ2— r(T) m°
(o] (o]
/N2 ~ BN
+31L- m2 _N2_ r(T) m m2 . (3-122)
(0] (0]

From Olsen [5, Table 2, 2]

AN ~
m*i3m® -2mt | (3-123)

o\
Substituting Equations (3-123) and (3-112) into Equation (3-122), m2 is given by

/N N & AN xE A
m2r-2am2+-ﬁ2——[(3mm2—2m3—mm2 r (T)
o

N .
+%(m2 -3m? +2m4)] v2aP . (3-124)
Let
P
(- m”-m? . (3-125)

It follows that

. LT
(= m -2mm ., (3-126)

Ty S T S T

R R YT
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Substituting Equation (3-124) and 3-113) into Equation (3-126) yields

D, a2 1 B8 ag Ay a4
e =2am” +2am” + T -2 m tZm +4dm"mT -4 m t 2a P
(8}
D) O}
-2 F - ﬁL— t"+2aP . (3-127)
. ()
Summarizing,
:\ N 2 ~
ms= -am + N (3 [r(‘l‘) - m} (3-128)
(8]
. 2 D )
e “2Q@f -7t + 2P 3-129)
(8]

in agreement with well known results [l] &
Relations like BEquations 3-112) and 3-122) are not generally available and
the system of differential equations cannot be reduced to a finite system of equa-

tions as in the linear case, A nonlinear example which leads to an infinite system

of equations is considered in the next section,

3.5.2 A Nonlinear Example - Squared First-Order Butterworth Process

In this paragraph, a nonlinear observation equation is considered,. In

particular, the received signal is assumed to be

r(t) m-(t) + n(t) . 0< t<T (3-130)
where m(t) is a zero mean Gaussian process with first-order Butterworth

autocorrelation

-alt, -t,|

, 172 -
Kuity to) = P (3-131)
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and where n(t) is zero mean Gaussian white noise with autocorrelation

N
Ehmﬂnagj=—§601-%). (3-132)

The desired MMSE estimate is

A 3
gIT, m(T)] = m¥(T) . (3-133)

The objective is to obtain a system of differential equations whose solution

yields E(T, m(T) ). From Equation (3-22) - (3-24), the MMSE estimate of

n12(T) is
o0 i ’]? ']?
(& : r(t,) r(t,) h (T,t t.) dt dt
/\ i! NO o padss ) e Tt R ORI B 1=« 4y
:: = i = () () ()
m 1) = =S =T "
12 i
it (NO) f jons f r(tl)" . r(ti) fl(tl'.”'t[) dtl. ..dti
i=0 0 0
(3-134)
where

T
2 2 2 2 4
hi(T’ tl""' ti) = E{m(T) m (tl)...m (ti)exp - f m (r)dr
0

(o}

(3-135)

and

T
fi(tl’ oo ’ti) = E mz(tl). 5 .mz(ti) exp| - NL f m4(r) dr & (3-136)
o
0

- A -.‘a-‘.4_IJ_L.aumu.haaxugﬁn_i_;h__n:::;il"
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Recognizing the denominator of Equation (3-134) as the likelihood ratio,

D
‘f m~(T) can be written in the form
t © T T
.’ 1 2 i h (T i
E 7 (= ) coo R TE) BT, by ) dey
i-o0 0 0
(3-137)
Taking the derivative and making use of Equation (3-59) yields
AN - e
2 §: & 1 8% £ 3
m A+m A rN—r(J) ﬁ(—'\l_)) f[
o i 0 R 0
T(ty)oo TE) B (T, T, b, .00, t) dty...dt,
%0 i T T
+ —l_ i t rt ) T ‘ )
i!(N)) e .ol
i o0 il 0
h (T, ..., t) ey, dt, . (3-138)

From Equations (3-135), (3-98) and the argument leading to Equation (3-121)

it follows that

'l\
A ] A 0. 2 2 3 i 4
hi“' tl,...ti) sl E{m (TIh'm (tl)...m (ti)o..\p N [ m (r) dr
0 0
0 o
1
2 2 2 1 4
~20E{m (T) m (tl)...m (ti) exp| - g m (r)dr
° 3
‘V»
T
2 2 1 -4 (8
t2aPE(m (tlh._.m (ti) expl - N—f m (r) dr .
0 i
0 !

(3-139)
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Also,

T
< 4 1 4
hi+1(T, T, tln ceey ti) = E{m (T) m(tl)- . .m(tl) exp - ﬁ:fm (T) dT Y
0

(3-140)
Substituting Equations (3-140) and (3-139) into Equation (3-138) and making use of
Equation (3-22) - (3-24) results in

AN ) /N /N
W R SR S T e N
o o

From Equation (3-68)

7N

iy 2 N
A=-N—m A+ﬁ-r(T)m A (3-142)
o o
Substituting Equation (3-142) into Equation (3-141) and simplifying yields
AN N 2
m2 = - 2u£§\+ _ﬁ2_ (m4 -Q\ ) ¥(T) + Fl- (;z\nllé\-ﬁ\)
o o
+2aP (3-143)

. . NN 4
Similar results can be derived for m  and m . For m » let g(T, m(T)) = m ™ (T).

From Equations (3-22) - (3-24) it follows that

o R
@A:Zl— 2 Lo ety ..ot b, ¢ t)dt,...dt
i! No e 1... i i y 1.-.-,1 10.. i
i=0 0 0 (3-144)
where
T
(T, ty,...t) = E{m (™) m2,)...m%t) exp | - <= ( mr) ar
f(Ts 0000 b 1 i N,
0
(3-145)
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1
Taking the derivative of Equation (3-144) there results ‘
AN N, 2 < |4
m A+m A N r(T)y m A |4
0 .
'
o i i T \
} : 1 2 i . ‘ e :
) T (Nu)f...jl(tl)...x(li)hi(l,tl,...,ti) .
i 0 0 0 4
dtl...dti . ;
s
(3~146) F’
From Equations (3-145) and (3-98), the derivative of hl(T' tl’ At ti) is 4
5.
given by 'r
| ‘
L 3. 8. 8 ... 1 L & 4
hi(l,tl,....ti) No I (m (T) m (tl)...m (t‘)up NO / m (r)dr
0

T
-4ak m"('l‘) m"(tl). s m"(t‘) exp | - f\.‘l— I l]l4(r) dr

|
o J \

T

J m4(r) dr i}
0

Z',__

. o o
t4 E ms('l‘) w(T) m"(tl). s m"(ti)exp -

)

(3-147)

To simplify the 1ast term of Equation (3-147), first expand the exponential to

obtain
1
y 3 e e 2 2 1 R
E{m (T) w(T) m (tl)...m (ti) exp| - f m (r)dr
L [\ pd
% i T T ;
}E: 1 1y A R 2 4 f
i ( N_) f f E(m (T) w(T) m (tl)...m (ti) m (thl)"’
0 L 0
4! )) dt dt 3-148
m(“j (“1... 4y (3=148)
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Since w(T) and m(t) are independent for t < T it follows that

E{ m3(1‘) w(T) mz(tl). s m?'(t‘) m4(t“1). - m4(t“j)]

—— e o
P o . o

2. 2 2 4 4
= 3 E[m(T) w(T)] Efm (T) m (tl)...m (ti) m (thl)...m (thj“

{
(3-149) i
Substituting Equation (3-149) into Equation (3-148) it follows that ﬁ
3 f
, . ¢
hi('l, tl...., ti) can be written as 11
T
: ) G 2 2 1 4
hi(T, tl' e ti) N E{m (T)m (tl). ..m (t.‘)exp N f m (7)dr
0 \]
0
T
. SO 2 1 4
~4aE{m (T)m (tl).. .m (ti) exp | - -N—f m (r)dr
(8]
0
T
2 2 2 1 4
+12a PE{m (T)m (tl)...m (ti)exp N fm (rydr{}.
. 0
(3-150)

Substituting Equation (3-150) into Equation (3-146) and making use of
Fquations (3-22) - (3-24) and (3-142) results in

2 gl Rglipee
m = -4am + N (m -m m )
o
1 5 > T
"N (m -m )+ 12aPm > (3-151)
o
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20 ,
In general, m™ can be written as

/;'x\\ N /‘_\‘m~l) /\’ “Sh =
m -2na m L (m -m m )T
N,
1 /\l /“\l /}n 2 “ 1
5 P “(n+ed) 2 - 3 =(n-1) T
T o(moom -m y +(2n) (2n = 1Y a P m (3-152)
No

forn 1, 2,.. . Equation (3-152) represents an infinite syvstem of coupled
. 2

nonlinear differential equations tor estimates of the moments of m- (T

conditioned on the observation record r(t); 0t -~ T, Approximations to the

solution ot Equation (3-152) may be obtained by assuming a value tor N such

4 . ; . . :

that m O tor n_ N or by assuming a particular form for the conditional
L ]

nodoboof mT(T) given r(t): 0=t < T, so that higher order moments c¢an be

expressed in terms of lower-order moments,  These techniques have been

applied [ 5] with some success.,

d.6 MMSE Estimation tor de Processes - An Example:  Estimating the

Phasce of a Sinusoid

Detection of nonlinear memoryless functionals of de processes was
considered in par, 2,3.3, In this paragraph, the estimation problem is
considered. For the special case of de processes

m(t) m ¥ g T (3-153)

where the probability density function (p.d, f,) of m is given by Pm(\“. Since

there is only one term in the Karhunen-Loéve expansion of mq(t), it follows




from Equation (3-18) that the conditional p.d.f. of m conditioned on the
measurement record r(t) - A S(t, m) + n(t), 0 < t < T, is given by 1

pmmlr(t); 0<t<T)

T g T
2A - A~ .2
exp | g r(t) S(t, M) dt - N ST(t, M) dt Pm(M)
o )
i 0 0 B
P T ’F
2A T
fcxp' -,;—f r(t) S(t, M) dt 'N—f §7(t, M) dt | p__ (M) dM
i Yo o
-00 L Q0 0
(3-154)
As an example, consider
S(t, m) cos (vt + m) (3-155)
and
p_(M) 2 0< M<«< 2
m o - - -
0 elsewhere . (3-156)
The observation equation is then given by
r(t) A cos (wot +m) + n(t) . (3-157)

Estimation of a constant random phase angle of a sinusoid embedded in additive
white Gaussian noise has been considered by Abbate and Schilling [ 26 ] and also
by Babcock [27] . In this section, after obtaining an expression for the MMSE

estimate of m, performance of the estimator is derived using a new approach.

The method used in this paragraph for deriving the estimator and its perform-

ance is more efficient than is the Volterra functional expansion. L




Substituting Equations (3-155) and (3-156) into Equation (3-154) there

results

pm(MI ri; 0<t<T)

" T g T
| 2A A 2

exp IN_ f r(t) cos (uot + M) dt - N ] cos (wot + M) dt
Rt °0

2T F T

)
f ex| ‘ r(t) cos (“)o" + M) dt - I‘:— f cos2 (uot + M) dt | dM
0 L bl

o

» O M < 27

= 0 , elsewhere . (3-158)

From Equation (3-158) and the development leading to Equation (2-113) it
follows that

4 £ 0 < = !
pm(\llr(t). 0<t<T)

ol 2 N ,
exp ' No (I cos M -Q sin M) 2No ‘“’OT . CcoSs (wo’l + 21\1)-'

= I -AZT.Slan‘ l %I2+Q2 1/2
=¥ %o 2N0 w " 0 N( )

0 2 -
Y . (. a*r, sin w T : ,—%(12 : Qz) 1/2
- Z k 2N wOT 2k | N

“lo

, 0< M<2r

0 , elsewhere (3-159)
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where

g )
1 f r(t) cos uot dt (3-160)
0
L
Q = j r(t) sinw t dt (3-161)
0
For “oT nt, n #0, or “’oT >> 1, Equation (3-157) simplifies to
2.
exp %1 (Tcos M - Q sin M)\l
0 |
p._(MIr@t); 0<t <T)
m - = 3 1/2
i [A'T (T“’ +—z)
" "o| N Q
o
. 0<M<2r
0, elsewhere (83-162)
where
- 2
I AT I (3-163)
Q 2 164
Q=aT 9 Weiss

From Equations (3-157), (3-160) and (3-163), the mean of T conditioned on m is

given by

T

A cos (»Jot £ m) cos wot dt (3-165)

- 2
E(Ilm) AT
0

3=40




Carrying out the integration in Equation (3-165) there results

Similarly, the second moment of I conditioned on m follows as

E(Ilm) = cosm. (3-166) ]
E

TR
=2 4 2
EI1%Im) = 55 f J' |:A cos (wotl + m) cos (mot2 + m)
0 0

s 0 (tl - t2):] cos wotl cos wot2 cli:1 dt2 . (3-167) 1

Carrying out the integration in Equation (3-167) yields

=2 2 - No
EQq7Im) = E"Qim) + —5— . (3-168)
A°T

From Equation (3-168) it follows that the variance of I conditioned on m is

given by
N
olem = —= (3-169)
AT
Similarly, it can readily be shown that
EQIm) = -sinm, (3-170) |
1
N
2 [0} s
G= = —— (3-171) |
Qim AT
EIQIm) = E(lm) EQlm) . (3-172)

Since, given m, 1 and Q are jointly Gaussian, Equations (3-166) and (3-169) -

(3-172) completely describe the statistics of T and Q.
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The MMSE estimate of m is the conditional mean of m given r(t);

0= €< T,

A
m

Therefore, from Equation (3-162),

2T Sxp
1 L
= or ’{ M g
o I

dM

o
%%%TwsM—éMnm
(0]
AT (re '—2)1/2
o| N «
_O

(3-173)

Equation (3-173) is useful for obtaining the conditional bias and variance of

A
m by numerical integration,

The integration in Equation (3-173) can be

carried out by first considering the generating function

exp (Z cos 0) IO(Z) + 2 E Ik(Z) cos ko .
k=1

Substituting Equation (3-174) into Equation (3~173) there results

A
m

where

R

3=42

0

= T+ 2 E

1

1 (R)
[, (®)

=,
2m

2m
0

M cos [k(M + 60)] dM

(3-174)

(3-175)

(3-176)

(3-177)

e i ——
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From the C.R. C. tables (28, Equations 389, 393]
2
2—1" M cos [k(M + 0)] dM
0

2m
1
cos ko 7 f M cos kM dM
(4]

2
- sin k¢ 711? f M sin kM dM
0

2 sin ko , (3-178)
k
Substituting Equation (3-178) into Equation (3-175) yields
0
n 2 e e 3-179
m T+ 2 K1) sin K¢ (3~ )
k=1

2 A
Note that for A 'I‘/N0 = 0 (no observations), R = 0 and m - n, the a priori

estimate, Also, for Az'l‘/NO w (observations on {0, =]), it follows that the

variances of I and Q are zero, This results in 6 - -m. In addition,

lim lk(m

D)
——— i o ’ i “m - X ). £% C Y
e ‘O(R) 1. Consequently, for A ]/NO w Equation (3-179) can be

written as

o0
A Si
L m- -2 E 3“—:—'3 ) (3-180)
ﬂ > 00 k =1
NO

From the CRC tables |28, p. 464] the right-hand side of Equation (3-180) is

A
recognized as the Fourier series for m on (0, 2n] . Hence, m--m as

a9
Sy
) N

N

(8]

Equation (3-179) is plotted in Figure 3-1.
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The bias and variance of 1/\\1 can be obtained by expanding the integrand of
Equation (3-173) in a Taylor series about the conditional means of 1 and (_) as
suggested by Papoulis [ 19, p. 212] . Since the variance of | and (_\) approaches
Zero as Az'l‘/N0 approaches infinity, this approximation to the bias and
variance of 1/1\\ is best for large SNR's, Az'l‘/Nu. From Papoulis [ 19] and

the independence of I and Q

& )
2 0 m 2 am i
LT - B = o_
al |- - ) - o=
m|m 1 T = EfIm) Ilm 9Q |3 ET Im) Qlm
Q  EQlIm) Q  EQIm) (3-181)
and
A - A
E(m|m) m|_ B 4 (3-182)
I = E{|m)
(—Q l-)((:) |m)
The mean squared estimation error is given by
2 A 2
7 im El@m-m" |m]
D} A 2
TA t(EMm|m) - m)~ (3-183)

mjm

Making use of Equations (3-166), (3-170) and (3-173) in Equation (3-182)

there results

P
2r exp (le_l cos (X - m))

A 1 .
E(m|lm) - X 2 dxX . (3-184)
i [ (AT
o\ N
(8]
3-4
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Taking the partial derivative of m with respect to T in Equation (3-173) yields 1
’ 14
A 2r ( AVI— Cos ‘\> £ L
dm g3 f X 0 o A°T 1
— > : 2 N
J T o2 =2 =2 =2
(8]

AT = Y
ll<‘\Nl 'h"r)
) \l

-~ exp | 55— (I cos X - Q sin \)., dax .
:(A"’r 72,50 ) N

J
(3-185)

Substituting Equations (3-166) and (3-170) into Equation (3-185) it follows that

9
ATT 1 A l
J 1/1\1 N( N
—— > ,n j X cos X - X cos m
al i 1 < A°T A"l
l-,(-l_l m) o\ NJ ) L o

1 N
Q  EQIm)

(8}

D)

exp al cos (X -m)|dX . 3-186)
P (
o0
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A - B
Similarly, taking the partial of m with respect to Q there results !
o |
2 <- ANI sinX) > = - |
am 1 0 AT Q l{
- T 3 N
0Q AT = =2 0 -2 =2 l
Q l() N l + Q ) 1 + |
(8] l i
2 i
pa—) | p——) | {
L VT : f
o AT ~ - 1
,0 exp ~ (I cos X - Q sin X)|dX i
2 (AT =5 =3 i
A (—*AN1\’1“'Q‘> : "
0 (3-187)
5|
b

(&)

o R || ra——— : = X sin m
8Q | _ i { ATT = ° 1 ATl
I  E(l|lm) o\ N 0 N

(8] |
Q  EQIm)

DY 9
ATT o s &S
N 1 - 1\ N

i€
2 %
exp cos (X - m) [dX , (3-188) },3
N {
o |
Equation (3-184) was evaluated by numerical integration to provide the estima- 4
¥
tion bias plotted in Figure 3-2, Equations (3-186) and (3-188) were also
evaluated by numerical integration and used in Equations (3-181) and (3-183)
to provide the estimator variance and mean squared estimation error plotted 1
in Figures 3-3 and 3-4, respectively, Note that the estimator bias, variance |
and mean squared estimation error are all conditioned on m and, therefore, 1
|
are sample function dependent, }
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CHAPTER IV

SUMMARY

4.1 Principal Results

In chapter 1I, par, 2.1, the hypothesis testing problem

Hy:rt) = AS [t, mt)] + nt), 0= t = T “-1)

tr@ty = nit), 0=t=T “4=-2)

ll0 -

is considered where n(l) is a zero mean Gaussian process and m(t) and nt)

are independent processes with covariance
K. &,t) =E [ m(t,) mit,) ] (4-3)
Ny

ty) = E [ n\tl)n(tg\] - -4

I\n (tl, G(tl—tz).

Using the Karhunen-1Loeéve expansion, it is shown that the Volterra functional

expansion for the likelihood ratio is given by

R SRR |
1
~ 1 /24 i
Alrw]= & L (2A
Alrtr] = 3 ('\‘o) ff e PRI G Byir oy b
i 0 0

1=0
“#=5
dtl. " .dti
where the Volterra kernels, fi (tl, o ti) are expressed as
f; ®g0...0t) = E S| t nml)] I t, nutii]
s 4-6)
g 3 :
Vooa® R)
exp {- N 8 [r, m(n)] d-
" N \
0
4-1




ro

In par. 2.2, Equations (4-5) and (4-6) are reduced to the well known
results for detection of a zero mean Gaussian process. In par. 2.3, three
nonlinear examples are presented. In the first example, the first three
Volterra kernels are obtained for detection for a hard-limited Gaussian
process. In the second example, the first three Volterra kernels are ob-
tained for detection of the absolute value of a Gaussian process. In the last
example, a sinusoid phase modulated by a dc process uniform on [0, 27] is
considered. The likelihood ratio is derived for this example, For the
special case wo'l‘ =nr, n¥ 0 or on >> 1l it is shown that the performance of
a receiver based on the likelihood ratio is identical to the performance of a
receiver based on the trucated Volterra expansion of Equation (4-5) provided
that at least two terms are used in the expansion,

In par. 2.4, Sun's theorem is used to sum the series in Equation (4-5)
for large T. This is accomplished for the special case where the Volterra

kernels have the form

f. t...,t) = KE{s[tl,m(tlﬂ ...S[ti, m(ti)]} : 4=7)

where K is some constant independent of the index i, and for nonlinearities
S(t, .) and processes m(t) which satisfy Sun's theorem. As an example, the
asymptotic receiver is derived for a sinusoid phase modulated by a first-
order Butterworth process. The asymptotic performance of this asymptotic
receiver is also obtained and compared with the performance of a suboptimum
detector.

In chapter III, par. 3.1, the problem of finding the minimum-mean

squared error (MMSE) estimate

glT, mm] = E{g[T. mT] | rty; 0=t < T} (4-8)




P ————_—_———_—S

is considered where the observation equation is given by
&
rt) = AS [t, mm] + n(t). (=9 i

' - v
Using the Karhunen-Loeve expansion and Bayes' law, it is shown that

. 1 H
X

vl /2A L :
2 T (\\\) J A J‘H(l.,.lq!l‘hl\l,(l_ ""l““l”"“l

2T, mer) _‘,.L—__, L v =10
~ ApaRy T SR
S —‘.—(\—:‘\ ‘ . | rtpr) £ L ) dty L dt
1=0 ) Q0 \

where
T il TS [t S
h(Tt, Wty FlglT, mD]s | 1'"“‘1)] [ti.m(ti)]
(4-11)

o 1
exp ) —:\\7 j Sz[.', m()] d- (
v 0 \

and where fi ‘tl' P ti) is given by Equation (4-6). 1t is shown that Equa-

tion (4-10) can be reduced to

b i T T
: [ ™ = ¥ 1 (2A i . .
g(T, m(m] = L o <:\,0) J J‘ r(ty)...r)
-0 0 0
¢ lll.....ti\ dtl...dt
where
h“('l\
(\ e —
v rﬂ

Py hl(l,tl\—ll((lico
“1"1 {

0

and, in general,




| e e to)
ei ttl, s ti> = - fol
o ¥ SRR T W e
- Z (k) 0 (4-15)
k=1
fi(tl' ey ti) €
fo

In par. 3.2, Equations (4-10), (4-11) and (4-6) are reduced to well
known results for MMSE estimation of a Gaussian process using linear ob-
servations. In par, 3.3, Equation (4-10) is used to obtain a stochastic dif-
ferential equation for the logarithm of the likelihood ratio. In par. 3.4,
Equation (4-10) is used to determine the MMSE estimate of the square of a
zero mean Gaussian process using linear observations, This result is shown
to be in agreement with the work of Olsen [5] . In par. 3.5, Equation (4-10)
is used to obtain systems of coupled nonlinear differential equations for the
MMSE estimate, Two examples are considered, In the first, the Kalman
filter equations are derived for the MMSE estimate of a first-order Butter-
worth process with a linear observation equation. In the second, an infinite
system of differential equations is derived for the MMSE estimate of the
square of a first-order Butterworth process with the observation equation
rit) = mz(t) +n(t). In par. 3.6, the MMSE estimate of the dc phase of a
sinusoid is derived and the estimator bias, variance and mean squared error

are obtained,
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4.2  Suggestions for Future Work

The results of par, 2.4 apply only for large T. 1t has not been possible,
however, to determine how large T must be for the asymptotic results to be
good approximations, A useful extension of the results of this par, would be
an estimate of the length of the observation interval required for the
asymptotic results to apply.,  This might be accomplished for a particular
problem by a Monte Carlo simulation of the asymptotic receiver to obtain
performance,  Another interesting extension of the results of par, 2,4 would
consider frequency modulation of a sinuscid,

An interesting application of the results of par. 3.1 would be found in
estimating the phase of a sinusoid,  VFor large T, the Volterra kernels in
Equation ¢1-12) can be approximated by the approach utilized in par., 2.4.3
leading to Equation (2-207),  In principle, any number of Volterra kernels

can be approximated using this method,

A=5/1-6
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APPENDIX A

ASYMPTOTIC NORMALITY OF X AND ¥

A.1 Sun's Theorem
o1 s 1heorem

The asymptotic behavior of X and vy are determined from Sun's theorem [24] .

|

Sun's theorem is stated as follows. 13
Let m(t) be a real, stationary Gaussian process which is continuous in ‘?;‘
the second mean, i.e,, '
"
1 g i 2 l ]ﬁ
k. Hm B Vim© - me Hp= b o AT i
t—t |
0 2|
and P:
H
2. E[m@t) =0 yt "
0 B
3 R _(n Elm(t) m(t + )] - cj“‘TS (W deo 11
: m m i
“w H
|
vt T :
H
< ‘f
ith | s2 (v d L
W .m(u)(m < w0 l",
-0 :
i
Let g(t, m(t)) be a time-dependent memoryless function that satisfies |
|
4. Eiglt, m) !} 0 vVt
D)
5. EWRTIL m@) )< © vt
6. H B (gt m(t)] -g [t mt)l)“ 0 t, ¢
Y. [“v‘.‘t . ) (!'vl ’ ( B o’ ( o \ vV o’
(8}
7. A p > 0 exists such that
Bt tnp, m(t+np)| glt, m(t + np)|

forn =0, +1, +2,.,,




A=2

Let

0
2nm
S‘ W n‘ >
m( ) Z \m( ! p ) (A-1)
n- -
It
n/p
i D
8. f S*T (W) dw < w0
m
-1/ p
and
‘ 2
1 o sin %—w
9. — S
lbin.‘ © &wN sit L] W m(“)) .-
-1/p =g
exists and is finite
then as T —~w
T/2
Zop —}-_— j glt, m(t)] dt (A-2)
NT ~r/o
is asymptotically Gaussian with variance
D) l 5
g, im E(Z,7) < » (A-3)
Z o 00 \

From Fitelson, [29] condition 1 implies that Rm(f) is continuous, Also, from
Fitelson, [30] condition 8 is related to the large frequency behavior of Sm(m\.

For instance it

Sm(w) - (A-4)

|
|
|




where (‘1, (‘2 >0 and a > 1, then Sl‘n(w) would satisfy

Lo

. 1
h““(‘“) S Z < %0 (A'S)

onw|®
n--oo 1+ C, Iu) + = l
2 P

and condition 8 follows. In condition 9, note that

[+

sin b, 0
lim 1 i :
Hew TR L9 6w - (A-6)
= sin 5 ©

Thus, condition 9 is also satisfied if Equation (A-4) applies.

A.2 Joint Asymptotic Normality of X{ and Y; in par. 2.4,3 for
S|t, m(t)] =cos | wot + m(t)]

In this paragraph it is shown that

1
D} «
X ﬂ f \ A cos lwot fm(t)] +nt)} cos 2—,;,T—1t dt (A-T)
(6]
0
1
: 2A et \ 2mi ~
‘\i No f VA cos |u0t t m(t)] + n(t); sin T t dt (A-8)
0

where i 0, 1,... are asymptotically jointly Gaussian. It is assumed that m(t)
and n(t) are independent zero mean Gaussian processes with

Efm(t) m(t + 1) Rn(™

N (A"9)
E{n(t) nit + 1)) -2 & (1)

)

-
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Specifically
Lo T
9 - BT By
X{ "'}\J_\] -L__— f cos [w t + mt)] cos -'l?i t dt
0 NT
0
o ANT
, 2A \ i 1 n(t) cos ", g t dt (A-10)
N -l— in
0
and
&l T
2AN1 1 j. 2mi
A} ——— cos [w t+ m)] sin ——t dt
i No NT &) 1
0
1K T
BN T -
' ~I;'\\ £ et f n(t) sin ",;i t dt - (A-11)
) NT 0

since the terms in Equations (A-10) and (A-11) involving n(t) arve jointly
Gaussian tori 0, 1,,., it remains to show that the first terms involving

m(t) in Equations (A-10) and (A-11) are asymptotically jointly Gaussian in
order to show that N and v, are asymptotically jointly Gaussian fori -~ 0,1,...

By the Cramer-Wold Theorem* it is sufficient to show that

T N T

7..1, 'T f glt, ml “'\ E \is—-l;: f cos [ t + m(t)]
LR NS
T (
D} : ™ D) $
Ccos “"” tat § +b, {—2- cos [ w t + m(t)] sin ",'I‘ tdtp (A-12)
1 i — 0 1 \
N1
N
*In the Cramer-Wold Theorem, if 7 _; =% is Gaussian tor any
i1

Ay eeey ayy thenxg, i 1,0, Nare jointly Gaussian, See, for example,

[19, p. 231, problem 7-23.]

First note that X and yj can be written as the sum of two random variables,




is asymptotically Gaussian for any arbitrary a, b,, i 0, 1,..., N to show

’ ’ ’
T S
1 2ui
that { — cos [w t 4 m(t)| cos T dt » and
xS
N H
1 2ni : U
_ cos |\ont t m(t)| sin = dt ) fori 0, 1,..,, N are asymptotically H
—_— |
YT 5 ,
i
jointly Gaussian, Assume that the process m(t) satisfies conditions (1) - (3) L
|
]
1
of Sun's theorem, Define g(t, m(t)) to be ‘
gl t, m(t | glt, my] - Eiglt,m@]} (A-13)
Observe that conditions (4) and (5) are satisfied | condition (5) is satisfied since H

E(l, m(t)) is bounded ).  Condition (6) is satisfied because the continuous and

bounded behavior of g(t, m(t)) guarantees the continuity of Rg(t’ to) for all t
2mM
T
and let p = KT.* Then, from Equations (A-12) and (A-13)

and t - To see that condition (7) is satisfied, let @ for some M, K
L

gt o np, m(t + np) |

o N
2A°NT , e | 2T M 21 M
T‘-— E a, 3(0& [ T t ¢ T nKT + mt ¢ np))]
i=0
9 o
cos (_’n‘i t + ',Y‘ - nKT )dt ;
1 1 :
\ oM, 2om N
f hi ).\ll\ [ KT t ¢ T nkT ¢ mt ¢ nmj'
B} i o
sin '—.-'T—lt ' :,—“‘—i-nI\"l‘ dt
1 1 ]

Eigit «np, m(t «np) |}

glt, met « np)| (A-14)

* Fitelson has conjectured, [29] in a similar context, that Sun's Theorem 1
applies also tor o, « R rather than just for the dense set used here, This
dense set is not very restrictive since 2 M/KT can be made arbitrarily
close to any v, ¢ R by a suitable choice of M and K,
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Assume that the spectrum Sm(u) satisfies conditions (8) and (9). (Any

spectrum satisfying Equation (A-4) will also satisfy conditions (8) and 9).)
One example is the first-order Butterworth process for which

2a P
S N rrg— A‘l.r
. l\\( ) 2 P4 ( ))

which satisfies Equation (A=) by inspection, Hence, it follows from Sun's

theorem that 71‘ is asymptotically Gaussian for all “i'bi’ and it follows from

the Cramer-wold theorem that

1
2mi
- Cos [w t + m(t)] cos = t dt
T (8} 1
\ o
(A-16)
T
1 i ol
\:1‘ ’ cos | wot t m(t)] sin T t dt

0
are asymptotically jointly Gaussian for i 0,1,..., Nand N arbitrarily

21 M s ¢ ¥ S .
KT - T'his in turn implies that X4 and Yo

ally jointly Gaussian,

large, but finite, and for w

as given by Equations (A=7) and (A-8) are asymptotic
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APPENDIX B

VOLTERRA KERNELS FOR A PHASE-MODULATED SINUSOID

UP TO THIRD ORDER 4
Assume f-‘
S[t, m®)] = coslwot +m()] (B-1) ii

where m(t) is a zero-mean Gaussian process and

> = -2
l‘lm(tl) m(tz)l Rm(tl, t_:) ’ (B-2)

B.1 Evaluation of dl(t 1)

By definition

o Bl ennbu \
d k| cosl »Ot i "“'1”‘

14y 1
O_nml!) " C-Jm(t])
= (0S8 wotl b.[ S
| \]mul\ i e—]m(tl\
- sin @ tl Bl = e .
. Sl * =1 (B-3)

By assumption, m (ll) m, is a zero-mean Gaussian random variable with

probability density function

2
g m,
2R_., t) .
p (m]\ = ; © L (B-4)
[O
e Rm“l' 11)
In addition, observe that
m o Rt £}
R A ) .
D (v ‘) =6 D =e" o il (B=5) j

L - . _ v




where apm (w) is the characteristic function associated with p(ml). Use of
1

Equation (B-5) in Equation (B-3) yields

1
dyty = e 2 Fata iy cos @t . (B=6)
B. 2 Evaluation of d‘.’.(tl’ tg)
By definition,
dyty, t,) = h‘{coslwotl Fmty)] coslw t, + m(tz\],l g (B-1)

Using trigonometric identities, Equation (B-7) becomes

(12(t1, tz) = cos wotl cos wut2 tlcos m(tl) CoS m(tg)]

- sinw t_ cos “’otg E[sin m(t

ol ) cos 111(!2)1

1

- cos Wt sin wntz Elcos m(t]) sin m(tz)]

+ sin wotl sin mot2 E[sin nutl) sin m(t,_,)] . (B=8)

Let m(tl) =m,, m(,)=m_,. Then

7 imy -im (jm_, —jm‘,)
e + e e T +e oy
j(my + m,) jm, - m, ))
- -1-[1-2(0 : ‘) w:(e s
4
( i(- m, + m, ))
+ E\e

( j(= m; -m,)
+ E\e - ,

1’

n

E(cos m1 cos 1112)

| -
<ot

(B=9)
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Since m(t) is a zero-mean Gaussian random process, m, and m, are zero-

mean Gaussian random variables with probability density function

m
' -% (m, m,) l\l.“l (ml>
p(ml, m:) N smmtm—— T e 2 (B-10)
anlK_|°
m
where
lm'tl' tl‘ m(tl' t'l)
Km (B-11)
Rll‘(tl' ll\ l\m( o [2)

and the corresponding characteristic function is

w, m, + W, m.,\)
w,) = E(v e s B

@y Wy

o SECRE
& - W, 5 (B-12)
It tollows that
: 1 >
L jmy +m) 5 lRm(tl, tl) + Rm(t:, tz) * ..Rm(tl, tz)]
o1, 1) = Ele = e
1 (B=13)
jm, = m,) == IR, L)+ R_@&,, t,) ~2R_@,, t.)]
&1, -1) F(v 1 _): e ° m 1’ 1 m* 2" 2 m 1t 2
(B-14)
-jm\1 i) j(m] + M)
d(=1, -1) = Ele ~J= EX*\e i (B=15)
-j(ml - m,) j(m1 - m,)
-1, 1 E\e “J= E* \e = (B=16)

where * denotes complex conjugation, Use of Equation (B-13) through (B-16)

in Equation (B-9) results in

- % H{nﬁtl.t]\ *1§n“tq,tq\]
E(cos m1 cosm,) = e ~ 5

-

cosh lRm(tl, t'.?” .

(B-17)
B-3
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Similarly,

Ecos m, sinm, = f)— [®1, D -0, 1) +¢(=1, 1) = (-1, -1)] .

(B-18)
Use of Fquations (B-13) through (B-16) in Equation (B-18) yields
F(cos ml sinm,) = 0 {B-19
In a similar manner,
E(sin m] cosm,) = Q (B=20)
Finally,
E(sin m, sin m,)) = —71‘- (e, H - ®1, =1 - o(-1, 1) + ¢ (-1, -1}
g (B=21)
Use of Equations (B-13) through (B~16) in Equation (B-21) results in
-8 (Rt tp + R, )]
Esinm  sinm) = ¢ ~ T 7 sinh(R_t_, t.)]
1 2 m*i* 2
(B-22) ;

Substituting the above results into Equation (B=8), it follows that

1
-3 [Rm\t], t)+R

(ty,t))l
ty,) = e i

§ ine ‘ OS]
u«(w>)1llknl(t1, tz)] cos “’otl cos w t,

5 1
+ alnthm(tl, 12)] sin “ b sin Wty (B=23)
B.3 Evaluation of d3(tl, tg, t.;)

:

By definition,

5 { o ) + W 3 \
dll‘ll' Ly ty) E L(\S(uol] nutl)] cos| xot: + m(tg)] cosl\onta + m(t3)]..

(B=24)
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From trigonometric ident itles, Equation (B-24) becomes

.13(!1, ty tg) = El (cos w t, cos m, - sin Wty sin m,)

(cos @ t, cos m, - sin w t, sin m,)
O < Lo I <

(Cos W t,. cos m,‘ - sin w

o sin m,;)] (B=25)

t
03
where m. nulll, i1, 2, 3, Carrying out the products in Equation (B-25) results in

i

1 (t t t = COS W t. cos w t 208 W ) S 08
Ay 3; ¢ e t, cos ot3 E(cos m1 cos m2 cos 1113)

3t 2 a1 02

-8in W t. ¢cos w t cos w t. E(sin m COS m_ Ccos m
o'l 02 gy S, 2 3)

-cos w t_sin w t_ cos w t, E(cos m, sin m_ cos m.)
o'l o'2 o'y Bl j B, 3

=Cos W t o ¢cos W t sin w t. E(cos m sm, s )
o'l o g B Wte Bie ) €08 W, Sin g

«

+sin @ t. sin w t_
O

\0S W 2 (si S ‘0S8 ;s
Cos 0t3 E(sin m1 sin m__2 cos m {)
+sin w t. cos w t_sinw t. E(sin m Ccos m,, sin m,)

o2 “08 ( 1 2 o 3

Fcos w t. sin w t ) sin w t,
o2 0

) E(cos m, sin m, sin m,)

- sin « t_ sin »oot«, sin Wt E(sin m_ sin m, sinm_) .

o1 03 1 3

(B=26)
Note that the joint probability density tunction of mp, m,, and m, is
m
lm m om, k! n1
2 T By m| M2
p(ml, mw,, m,;) = ‘,)1 75 © 1113

I R 2x "Ik 1"
e (B-27)
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where the covariance matrix is

s
!' Rm(tl’ tl) Rm(tl’ t:Z‘ Rm(tl' t3) 1
3 = -2
l\m Rm(t'l' tl) Rm(t'l' t2) Rm(t:.’.’ t3) (B-28)
R (g, t,) R (g, t,) R (s, tg)
The corresponding characteristic function is
| 1
-1 (w, w,w,) K w
2 28 SR
;03
o(wl. “’g' -As) = e (B-29)

It follows that

E(cos m (o, 1, D+ 61, 1, -1) + &1, -1, 1)

P

cos m, cos m,) =
1 2 8

FO(=1, 1, 1) + &(1, =1, =1) + & (-1, 1, -1)

Fo(=1, =1, 1) + & (-1, -1, -1)] . (B=30) e
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As a result, (B-30) can be written in the form

1
R et ; [R(tl, t) + I{(tz, ty) TR(ts, ty)
E(cos m1 COS M, CoS n13) - aye

+ 2!{(t1, ty) + 2R(t1, tg) + 2R(t2, t3)]

-3 [R(t), t) + Rity, ty) + Ritg, t

3)
+ 2R(t;, ty) - 2R(ty, tg) - 2R(t,, ty)]
- Lire ) + Rit,, t,) + R
o B) (1: tl) Ui (21 2’ La (t3) t3)
e

- ) 9 D
2R(t), ty) + 2R(t;, ty) = 2R(ty, tg)]

1
ol =

- ZR(tl, t)) = 2R(t t3) + 2R(t

1’ o tg)

1
~is [R(tl, tl) + Rt

t.)+ R, t
+ e - 3

2 3)

-2 - 2 9
2R(t), ty) = 2R(t, to) + 2R(t,, ty)]

1
; e— 3[Rty ) + Rty t,) + R(tg, t,)

- ZR(tl, tz) -+ 2R(t1, t3) - 2R(t2, t3)]

1
-5 (Rt t) + Rit,, ty) + Ritg, t

)
+e :

- 2R(tl, ty) - 2R(t, tg) - 2R(t2, t3)]

1
-3 [R(tl. tl) + R(tz, ty) + R(t3, t3)
+€
£ 2R(ty, ty) + 2R(t), tg) + 2R(t,. tq)]
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Upon simplification, (B-31) bocomes

-%ln(t‘, ) H Ry, t) + Rty ty)]
I (cos m1 Cos m, cos m_‘) . -

‘ '-l H(l‘, 12) | R(tl, '3) + "“:}' t:‘)]

(4

‘ o-“m" ty) = Rt ), tg) - Ret,, tg)]

SR, ) R, L) - R, )]

+ Q
~[-Rity, t,) - R, tg) + Rt,, x:‘)l(
Lo
(B-32)
In a similar manner, it is found that
E(cos m, cos m, sin m,) ‘*ii [d@, 1, 1) « o1, -1, 1)+ P(=1, 1, 1D

Fd(=1, =1, ) =1, 1, =1) = ¢(1, -1, -1)
- d(=1, 1, =1) = $(-1, -1, -]
- 0, (B=33)

E(cos m  sin m,, cos m_‘) = G . (B=31)

1
F(sin ml COs m,, Cos m,‘) = () (B=35)

I (sin ml sin m, sin m,‘) = 0 (B=36)
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E(sin m, cos m, sin m,))

1 3

and

E(sin m_ sin m,

1 3

¢os m,) =
3

1
-5 lR(tl, t) R, ) + R, tg)]
E(cos ml sin m, sin m,‘) = - T e s

[ Rt

ty) + R(t, tg) + Rt
e = *

1 3 o0 tg)]

—l—l{(t], ty) + R(tl, ty) - Rit,, t3\]

-

-[=Rqt

t,) = Rit,, t.) + R, t
t+ e :

b 1 3 or tg)]

-1 R(tl, ty) - R(t, tg) - R(t,, 13”{

—(\
(B=37)
—llR‘t ti )+ Rit,, t,) + Rt,, t.)]
e R i 2+ ) T Ritg, tg
4
(‘-llml, t,) R(t], tg) + R(tz, ts)]
) (‘—H{(tl, ty) - R(tl, ta) + Rit,, 13)]
: C-Hm], ty) + Rit,, tg) - Rt,, to)]
) (--“m]' 12) - R(t], 13) - ““3’ t3)l (
(B=38)
1
I ‘— 5 ll{(tl, 11\ v R(tg, 13) ' R(ts, 13)]
Azl
S("'““l' ty) 4 R(tl, ty) + R(tL,, 13)]
-Hml, ty) + R(ll, tg) - R“z' 13)]
& B
: v_“m" ty) = R(t,, tg) - 1{02, 13)]
: - -R(r], ty) = R(tl, ty) + Rt,, 13)18
(B=39)
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Use of the above in (B-26) yields

da(ll, t

o

's

)

-

-e

+

1
i e-Ellml, t) tRE,, t,) ¢ Ry, t3)]

;L'os “)0(1 cos wntz cos wola

1 [-R(tl, ty) = Rt tg) - Ret,, t,)
‘1l

Rty )« R@y, ty) + Rty ty)
+ e
FR(t

t:!) - R(t], t3) +: R(tg, 13)
+te

1’

' eon(tl, ty) + Ret), tg) - R, 13)](

\

\ :
- ) sin “’otl sin w0t2 cos uot3

. }[U-R(tl, ty) - Rit,, tg) = Rit,, ty)

SR ) RE, )+ Rit,, ty)

te

3

) crn(tl, ty) - R(t,, to) + R, ty)

-eﬂ!(tl, ty) + R, to) - R(t,, t3)] {

o) -
) sin uotl cos wotz sin wnta

4 [e-n(tl, ty =R, tg) - Ra,, tg)

4

“R(t,, t,) + R

ty) + Rit,, t
-e

l' 3)

R, t,) - Rit

v 8g) + Rit., t.)
e 2 178 2" 3

+Rity, ) + Rit), tg) - Rit,, ts)]\(
- @
-\cmwt sin w t_ sin w t

"‘ o [ o flets 03

1 oRt ) =Ry, ) - R(t,, t
A

g)
Rty t) ¢ R, ty) 4 Rity, ty)
Rt ) =Ry, ) + Ry, tg)
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(B=40)
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Equation (B-40) can be simplified by noting that

cosh a cosh b cosh ¢ - sinh a sinh b sinh ¢

» % [(ea+b+c+ea+b—c+ea-b+c+ea-b—c+e-a+b+c

-a+b-c -a-b+c -a-b-c a+b+c a+b-c
+e +e +e e e

Yol

a-b+ a-b- -a+b+c -a+b-_c -a-bh+c
e Cae LA +e +e

o e—a-b-c)] )

This simplifies to

cosh a cosh b cosh ¢ - sinh a sinh b sinh ¢

- _AII[ea+b-c . ea-b+c+e—a+b+c+e-a-b-c] (B-41)
Comparing Equation (B-41) with the first group of terms in Equation (B-40),
where

a = R(tl, t2)

b = Rit;, to)

¢ = Ry, ts)

it is observed that

1 [e-R(tl, ty) = Rit;, tg) - R(t,, to) -R(t;, t)) +R(t,, tg) + Rity, t
4

)
+e 2

+e

+R(t, ty) - Rity, to) + Rty t,) . e+R(t1, ty) + Rety, tg) - Rt,, t3)]

= cosh [R(tl, t2)] cosh [R(tl, t3)] cosh [R(tz, t3)]

- sinh [R(tl, tz)] sinh [R(tl, t3)] sinh [R(tz, t3)]

.

(B-42)
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Hence,

a

b

Similarly,

cosh a cosh b sinh ¢ - sinh a sinh b cosh ¢

% [athre  ath-o  p-beo  8S-bea o-atbte

-a+b-c -a-b+c -a-b-¢c a+b+c a+b-c
+ e 2] + e

) = (e

a-b+c a-b-c -a+b+c -a+b-c
e - e - -

-a-b+c -a-b-
% a s b-c

)]

1 [ea+b-c _ea-b+c _e-a+b+c +e-a-b-c]

4 * (B-43)

the fourth group of terms in Equation (B-40) may be expressed as

3 [e-R(tl, ty) - R(t), tg) - R(t,, t,) e R(t;, t)) + R(t;, tg) + R(t,, tg)

4

-e +e

+R(t1, t2> - R(tl, t3) + R(tz, t3) +R(t1, t2) + R(tz, t3) - R(tz, t3)]

= cosh [R(tl, t2)] cosh [R(tl, t3)] sinh [R(tz, t3)]

- sinh [R(tl, t2)] sinh [R(tl, t3)] cosh [R(tZ’ t3)] : (B-44)

Redefining a, b, and c as

R(tz, t3)

]
—
-~

P
(s

'
i
i
%.

|
4
H

. T ——
ars’ ‘s..i:‘ wtieln sia e SER e, N

-
e e = s



The third group of terms in Equation (B-40) become

-1 [e-R(tl' e By byl B )

- Ret;, t,) + R(t, to) + REt,, to)
1

e

+e

+R(t}, t,) - R(t, ty) + Rty tg) ) e+ Rit, ty) + Rty ty) - R(t,, t3)]

= cosh [R(tl, tg)] sinh [R(tl, t3)] cosh [R(tz, t3)]

- sinh [R(tl, tz)] cosh [R(tl, t3)] sinh [R(tz, t3)]

(B-45)
Similarly, the second group of terms in Equation (B-40) may be expressed as "
3 [ *R(t;, t,) - Ret;, t) - Rit,, ty) =Ry, t,) + Rety, ty) + Rity, tq) i
-=le +e »
1 "
"
) e+ R(t;, t,) = R(ty, ty) + R, to) ) e+ Rt t,) + R(t;, t3) - Rt,, t3)] |

= sinh [R(tl, t.z)] cosh [R(tl, t3)] cosh [R(tg, t3)]

- cosh [R(tl, ‘2” sinh {R(t], t3)] sinh [R(tz, t3»] (B-46)
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From the above results it is concluded that

[R mtp 8} # R, t)+ R

da(tl. » ¢ ) = @

(cosw t1 cos w tz cos w t { cosh[R (t 1 tz)] cosh[Rm(t1 3)] cosh[R (t

- sinh[Rm(tl, t2)] slnh[Rm(tl, t3)] sinh[Rm(tz, t3)] }

- cosh [R_(t,, ty)l sinh[R (t,, tg)l sinh(R_ (t,, 3)]‘}
+sinw t) cosw t,sin wot3{ cosh(R _(t;, t,)] sinh(R_ ¢,
- sinh(R | (t;, t))] cosh[R (t,, t.)] sinh(R - 3>]}

+ cos wotl sin wotz sin wot3{ cosh{R {t 1 ,)] cosh[R

- sinh[Rm(tl, t2)] sinh[Rm(tl, t3)] cosh[Rm(tz, t3)]})

B-14

‘ +sinw t sino t, cos wot3{ sinh[Rm(tl, t,)] cosh[R (t

itol]

2’ 3)]

t3)] cosh[R(tz, ta)]

ta) cosh{R (tos 3)1

3)] sinth (t )]

(B-47)

e




APPENDINX C
LEC RECEIVER FOR A NONZERO MEAN GAUSSIAN PROCESS

C.1 Receiver Derivation

Consider the hypothesis testing problem

IlI: r(t) SO tnt); 0O<t T

(C-1)

HU: r(t) n(t)
where s(t) and n(t) are independent Gaussian processes with
El s (tl). s“:” l\'S (tl, l:)
N
Eln(t), nt,) | TO 8ty - t,) (C-2)
E( n(t) | 0
The low energy coherence (LEC) condition is [2, p. 81}
N
(&)

Ny TG e (C-3)

where the eigenvalues, \p and eigenfunctions, \.“im are solutions of the integral
equation T

A G f Ry (G 1) 9t dt . (C=4)
O

From Van Trees (2, p. 11, Equation (1], the logarithm of the likelihood ratio is

\ - \
0 M D DE
t y . . —_— -' __‘_‘; -~
noA\ (rt) No I\o ryt I\o ili
e, Tt o s
0 Rsl 5
Ay L2 i R | =
2 Z N " "2 . N (€=
-1 ay + 5 i=1 ¢




T
P f r(t) ¢1(t) dt
0

T
n =Af E[s®)] ot dt
0

Equation (C-5) may be rewritten as

£n Afrty] = %

(C-6)

(C-7)

(C-8)




: -1
Using Taylor series expansions for both (1 + ‘_’A.‘ Nu\ and n (1 ¢ 2)\i No\ and

retaining terms up to order 2 \i/Nn in Equation (C-8), the logarithm of the

oy

likelihood ratio simplities to

1 2\
fn A (r(t)) 5 <\~>
QO

) 2’\i
- ; , I
N ; 7‘i .'0 ll
9 i=1
bind »
= _!. -i ) 2 1 - _-_.h
5N Z i N
0 0
f=1
0 .)\
1 e ¢
e ..t -9
) N‘ . (( )
j=3 °
However,
0
I\s \ll. (2) z /\i "l‘tl) C‘i(t._,) -
=1
X0
Els(t)) E ni L"i(l\ 5 (C-10)
li=1
B

- l. 4
rt) E i ui\l)

1=1




From Equation (C-10) and the orthogonality of the eigenfunctions Oi(t) on

[0, T] it follows that

T
E l\i r, [ [ 1‘((1) Nt:l) Ks(tl, tz) dt1 dt2

i T
i (UNEV)

[y

i=

-
._'1

1
fEls(t)] r(t) dt
0

-
[

™M
>
So—
—

Els(t)] rt)K (t), t,) dt, dt,

-

tl’

b
-
-~

S
(=

™

T T
2 2
A ff E7[ s(t)] dt
0 0

i=1
0 f O
D) e
E no A J j E[s ()] E[s(tg)] K¢ (t;, t,) dt dt,
i=1 0 0

M
___>‘

I ™
b
7/}
(2
&

—
[
—




With the aid of Equations (C-11) through (C-16), Equation (C-9) can be expressed

. T
£n A (r(t)) = 2 (2 )- f
2 N0
0

rt,)r(t,) K¢y, to) dt, dt,

‘3'\“&

I
P)
it N—U f E| s(tl)J r(tl) dtl

0
5o
= <Kz> ffE[s(tl)] r(ty) Kg(t), ty) dt; dt,
0 0
.
1 /2 2
-5 (K’) fE (s(b)] dt
@r o
T T
1 (2 \* : ] :
‘3 <N~> ffh[s(tl)jh[s(tz)j Kg (b, to)dt dt,
(0]
0 0
#
1 (2 .
-1 <N—) f K, (b, t)) dty : (C-17)
° 0
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Focusing attention on those terms in (C-17) involving the observation r(t), it is

clear that the LEC receiver is given by

of bR
2 = .
('ﬁ;) / f T(tl)r(tz) I\S (tl,tz) dtl dt2
(o) (o]

ro] -

T T H,

2 . N >
+ N fr(tl)gh[s(tl)] No-/ E[s(tz)]Ks(tz,tl) dt, ¢ dt, o

(6] (0] HO

where y is the threshold,

In Section C.2 a case of interest is considered for which
T

Nio f Elsty)] K, (t),t,) dt, is negligible with respect to Elstt))] . Let

¥y &) = E[s(tl)] (C-19)

32
& -2 .
vty = Elstpl -5 [ Elsty) K, gty at, (c-20)
o

Define the norm of a signal y(t) to be

T
Ny Il = / yZtat . (C-21)

o}

It follows that the squared relative error between yl(tl) and yz(tz) is given by

T[T 2
2 ]
4 s N E[s(tz) K, (ty, tdt, dt,

(2=< ) =
My ept

T
f Ez[s(tl)] dt, (C-22)
o

C-6




o
¢ “<<1 implies that yl(tl) is "close'" to y2(tl) in a squared error sense, or, that
T
r)
— E [s(t )] Kg (o, t)) dt, is negligible with respect to E[s(tl)] . For the case
0

(o]
considered in paragraph C. 2, it is shown that ¢ << 1,

The LEC receiver then becomes

,
-;-\; ff“(‘“‘(‘”\(lvto)dt i_

“1
o

r
L = > 1 -
- f r(tl)E[S(tli] dt, 2 (C-23)
o H

o
0

C.2 Justification of LEC Receiver Interpretation in Par. 2.4.3

In par. 2.4.3 S{{,m(t)) = cos (m0t+m(t)). From Equations (2-209) and
(2-210), the mean and variance of the equivalent Gaussian random process,
s(t) = AS(t, m(t)), used in determining the asymptotic performance of the

asymptotic receiver are given by
}7

5 2
L[s(tl)] =Ae COS (1 otl

’tl-tzl) - 1] cos wt

K ¢.,t) = a%e7P [cosh (Pe™ cos o t
s''1'°2 sl ( w

1 02

3 ey By =ts | :
+ sinh (Pe 1 2) sin motl sin “)ot2 s

With respect to (C-18)

D
T 3 -22 T
el ‘
f} St K, (t, tdt, _AF f[cosh e F1 el dt, cos o t,  (C-24)
(0]

S



where the contribution from the double frequency terms is recognized as being

negligible, Expanding cosh (.) in Equation (C-24) obtain

T
fE[s(tz)] K (ty,t)) dt,
o
A3e Sl 1 p -a|t, -t/ |
i cos ‘”otl 3 fexp(Pe 152 dt2
o
T
+% fexp(-Pe“”tl'tz‘) dtz—”[‘]
o
However,
T o i T
-t -t | e } :P_ i =it -t |
fexp(Pe 1 2)dt2—T 1+ T fe 1 2dt2
o) i=1 o)
Note that
T k T
1 - |t -t | e - |t -t i ialt -t |
Tfe 12dt2-Tje l2dt2+T e 12dt2
[¢) o tl
X iot : ~ioT -iot
i e-xartl (e 1-1) . eloztl (e -e 1)

x iaT -iaT

S

PEEIY

T

iiac. e




"
Similarly, f exp(-Pe ¢ [t1-ta dt,, is obtained by changing the sign of P in the

0
above result., Consequently,
T
fb][s(tg)] Ky (t,,t)) dt,

O

-3p /o

p % o S0t T G
$ :\30 i ‘ L)‘;l l-e 2ioty (-e ..mle-mtl)
e Mo ? 2i' | 2iaT 2iaT :
i=1
(C-25)
Also, with respect to Equation (C-22)
’l‘ )] b
N A\"'v-l o=
f E™ [S(H] dt = .—T—“‘ . (C-26)
O

Substitution of Equations (C-25) and (C-26) into Equation (C-22) results in

RREL 2
g B
L st)] Ko (¢, ty) dt dt
N_ HiB(igh] Ky (bgrty) dty 1
2 _ ‘ 0 8
3 'l\
2
f E [s(tl)] dtl
O
2 4 9P 3 = ® 91/ -2ioty -2icT 2ot
0 R W i B - PHig-e 1l " g™
N P) T J OO wghy o1 2iaT
O 3
0 i=1
o\ 2 T g gy 2
< A ,~2P & )42 t ———pl dt
N o S R Cos w4ty 2i'i 1
= 0 i= 1
9
y A ANty
£ e S 1ol
2 \Na °© 3 Vs
O
i1




C-10

Observe in Equation (C-27) that L
-p 2: B . 2: o ap ‘
e CT = e S e (e 1) e 1. (C-28) {

i=1 i=1

It is concluded that the inequality in Equation (C-22) is easily satisfied provided

9

N o << 1. This is the case which is considered in par, 2.4.3. where use is
i (83
(8]

TR NI WA 12 TSy S~ S

made of the LEC receiver given by Equation (C-23).

1
C.3 Receiver Performance ’1

The receiver performance presented here follows the development given

by Van Trees [2] "

C.3.1 Chernoff Approximation

The Chernoff approximation to receiver performance was first introduced

1
by Collins [31]. If ¢ is the logarithm of the likelihood ratio, the false alarm :‘
probability is given by “';

&
o &
{
b - > " =92¢ |
I FA f I ¢ mo (LH!O) dL (C-29) ]
while the detection probability is given by N
— ) 2, |
b[) - f l‘, ,“1 (LTH ) dL (C=-30) |
y

where l’, M (L 'Hi) is the conditional p.d.f. of ¢ conditioned on “i' In Van
i

Trees [1] it is shown that

S
I (LIH) =

> ‘p (LIH ) . (C-31)
¢ IH, ¢IH, 0

‘ umd‘
A ).A.-L.‘&-A..— . & - 2 -




The moment generating function of ¢, conditioned on “0' is

q
¢ ®) = Shp (L1H) d L. (C-32)
¢ 1H ¢ u, (1HG :
0 - 0 |
o ;
Now let g
WS = n (o, n, S)) (C-33)

and next define a tilted random variable X with pdf

SX -
el (XTHg) W
R { [Hg =X HO b xiHy . (C-34)
X © ¢ H 0
S S1 0
L 4 y
fe Py (LIH L
- 0
From Equations (C-34) and (C-29)
Poo = [ ¢® " %p xy4x . (C-35)
FA Xg
y
Equation (C-35) may be rewritten as
¥
3)-Sy S(y-X . '
P, = lE)S SN b xyax | (C-36) ]
FA Xg -
Y 1
N
Before proceeding, note that |
xeS®p XIH)dX
£ ’“O 0
B(x,) = — (C-37)
SI.
f 6"C P,y (LR HL
J 0
C=11




It follows from Equations (C-37), (C-32) and (C-33) that

RIS G 3

E(x) = g5 *® = n S) . (C-38)
Similarly, '
3 |
e, (C-39) |
Xg .
A standardized random variable is now defined as ‘

Xy =K ®)
§ o —m—m— (C-40) |
S

Vi () !
In the Chernoff bound one chooses s so that {
(C-41) !

pE) = v.

With the aid of Equations (C-41), (C-36) and (C-40), the false alarm probability

o —

is expressed as

Pox = QM B) =S () f &S Vi S Y py ¥) dY . (C-42)

P -

(&)

— -

Expand Pv(\'\ in an Edgeworth series to obtain

Y
3 (3
> (V) = & e
[y(\) d(Y) 3" ¢ (Y)

fa 10«
4 @ 3 .6 o
‘[‘Iﬁ_‘ 0! (YY) + 7 ol (\):\ s % (C-43)
where
Hy(Y) = 1
Hl YY) = Y
(C-44)

H, (V) = Y-1

N o= yvO_ay
H3 (Y) = Y -3Y

C-12




and

(n)
Y = —E-(-b-:)—r— (("-45)
n .

@™ 2
Writing out the first two terms of the Edgeworth series it follows that

f S VE®) Y

P(Y)dY

y®) ¢

O

l o y AT T v \72/
SVE® Y -Y7/2

Ver

dy

O

1S 1 [ 3-SVi® Y -v2/2
.fl(u )f; - f Y e‘m “( ) 9— d\r
GWENT T | Ver A
© r— o/
' -SVu@®) Yy -y=’2
e ¥ f ye SVHEI Y Y72 0 Kol (C-46)
2T o

At this point it is convenient to define

1 n -gx -x2/2
f X e ¢ dx . (C=-47)
V2ar

O

ln ((i):

Integrating Equation (C-47) by parts, there results

ln (8)= (n=1) ln-‘.z(‘” - B In-l (3) . (C=48)

C-13

|
e
;




e T

Note, by direct integration, that

*2/2
Iy (3) = e ! erfc* (8) (C-49)
29
1 -3/ n
I, B) = - 3e erfc* (3) (C=50)
l 9
&
where
2
0 X
1 3
erfc* (B) = / e dx . (C-51)
2r
8
Using the recursive result of Equation (C-48)
o -)/,)
243~ : Y,
L) = 28— 33 +38)e® " erfcx(9) (C-52)
3 2T
Identifying 3 with § [ (S), it follows that
f eSVHE) Y P (Y) dY
o
D ..
ST u®)
2 =
= e erfe* (SVu(S))
‘2" Q
L 4 S ui).
y L8] S w01 _gdiisn®2e ©  erfex SVu®)
e 3 /0
6 s)” 2 2
. (C=53)
i, -

—

P ——
b L |

BT T 0% il

e —
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From Equations (C-53) and (C-42), the false alarm probability is approximated as

F 2..
~ _\ - .‘-' n /’r) P
pp ™ eu(S) SuS) S u(S)/2 erfc* (S\//J(S”

Jue g . 2.. )
S)S S)-Si(S) S (S) /2 =
_BS)ST 6‘“ H OV BUEHS UEV2 o v s VES))

w(S)-Si(S)

9..
S) (1-S7u (S
_B®>A-STu(s)) e (C-54)

6 (N3 2y2r

where 0<S<1 and is chosen so that 1 (S) = W .
From Equations (C-31) and (C-34), observe that

. =(B-DHX u(S) =~
! = e 5 b
P“H1 (X Hl) € % X) (C-55)

S
Use of Equations (C-55) and (C-30) result in the detection probability being

expressed as

(&)

P = 1 - HEHI-S)(S) f SISV Y

s PHAY - (C-56)

[n a manner similar to the development of Equation (C-54) from (C-42), it can be

shown that Equation (C-56) can be written as

o o ey a2 o
p[)= 3 C;L(b)«(l SHS) +(1=-8) " (S) /2 eric* [(I—S) [1'(8)]

3 < 2
S)(1-8 8) +(1-S)(S) +(1-8) " (s)/2 Vi
it 18) HEA-SUE A UG/ 2 por [ 18 VES ]

e e L4 .
L MSYA-p(S)(1-8)7) ou(S)ul—S)p(S) C-57
=% 3/2 ( -.)l)
6 V2r WS

where, as before,0 <S8« 1 and is chosen so that ;}(S) =7y,
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C.3.2 LEC Approximation for u(S) ; 1

From Van Trees [2, p.35] a simple expression for u(S) can be obtained for I3

the LEC case,

1 - 2Ai 2(].—8)).l
1) = 3 z (1-S) £n <1 + N—(;—)—fn <1 +——N—o———>

i=1
2 7 2
S 2 : i !
-3 No/ e Ai 0<S<1 . (C-58)
i:l 2(1-8)

Denoting the first term in Equation (C-58) as Hg (S) and the second as uD(S), note

that

°° 2
w3 a e ot 2
HR® = 5 _5_ %(1 &[N N3 (N ) St e ]
i=1 © °

N_ N 2
0

2 2
I S e BENRN - A B £ S . (C-59)
1

Because of the LEC assumption it is necessary to retain terms only up to order

2
2,
(-ﬁ—'-> (since the linear terms cancel). Hence, for the LEC case
o
PR
* SQ-8) 11 (2" 2 .
g ) - 5 (N K2t t) dtydty ¢« (C=60)
o
o o
Similarly,

-S(1-5)
)

o\~ 2 2),(1-9)
(N—) By | Tom— e ‘ (C-61)
o/ % o

HpS) =




2A.
Retaining terms only of order — in Equation (C-61), there results | 3

N
0

T

2

~ -S(1-8 2 2

(¢} (¢]
0

N

g
ffE[s(tl)] E[s(tz\] K (), tp)dt, dt, s )
[N}

(C~62) ;
It follows from Equations (C-58), (C-60) and (C-62) that ,‘_v‘
1) ~ uR(S) + /JD(S) . (C-63) q
C.3.3 Evaluation of ;(S) as Required in Par. 2.4.3 :
From par. 2.4.3
I)
)
Est) = Ae © cos o t (C—64)
o1l
and
. _ A2 -P . ~alty-to|
l\s (tl,tg) =A" e { [cosh (Pe )-1] cos “’otl cos “)ot2
’ - fty-t . ;
+ sinh (Pe ' "1 2') sin o t; sing t, } . (C-65)
Consequently
T T
- D
f f K (¢, t,) dt dt,
0 0
g 2Pp?  y p o |ty=to] —alty=to]
= —T—— s - ff [cosh (2Pe 2)-2 cosh(Pe 1772 )+1]dtldt
T 2
O O
(C-66)

where double frequency terms have been ignored,




To perform the integration in Equation (C-66) consider

i W
-to!
L,, f f exp (Pc-a yéa ) dtl dt,
12 2
0o o

” T

‘ T
)l -10y! -
e A E %— ﬁ ff s Stptgl dt, dt, . (C-67)
(e}

i=1 o

However,

s
=i 1t1=t.!
. T ff e 12l ge o,
oy >
@ O

to T

1 Ha (ty-to) 20 =Q(ty-to)

T/ e dt1 + T f e dt1 dt2
0 t,

"
| L
° N

p ; S -
_ L P-img e'lm2-1> ’ eéimz <c—ml—e-mt2> dt
i HaT -iaT 2
(8]
o
t
-t T wtra’ . ~ '1
= 1 e ml_l) g mI‘(emI_l) 1 '
= T 5) + > ._ X
iaT (iaT)% - (iaT)2 iaT ]
{ .
3
4
-iaT
2 2(1-e ) .68
il S e : (C-68) 3
(iaT)~
3
Therefore, from Equations (C=67) and (C-68), g
i O
" 5 exp (Pe-(wtl-tz') dt, dt
2 B
g
0 0 ;
- % 8 21 ~iaT
=1 4 E ) e - SRS ) ) (C-69)
i iaT (iaT) 2

i=1




Use of Equations (C-69) in (C-66) results in

-
D)
j l\s (tl,tz) dtl dtg =
O O
— (L4 2 —_9i AT
ate P2 @p)~! 2 811~ 20T
AR ———— ‘).' 0- 2 A - A‘)
1 } Z:H 21" 2iaT 2iaT) >
- 2i -2iaT
Z p- 2 . ( %
-2 ST ST ( 5 * (C=70)
o g (2iaT)” \

Hence, with reference to Equation (C-70)

o
9 i -9 o ‘_'_’ _2' 0 i
. -sa-sl A% i @P)?'| ar  (-e~20T
Hp®)=—"9 N a 2 Ty H g
i ) T : i 21"
i=1
=y p2i [ o7 (goe-2ieT (
a3 l_ L—- - L._—) - C_71‘
L f)i' l 2 l
5 o \
Similarly,
) H 2 -)\2 _PT
N f ET [si] dt = “——e‘_,——
0 N
(8] (8]

(C-72)

C=19%
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and

T 3

2

N— f fh[st )] E[ s(t )] 1 K (t).ty) dt, dt,
o o0

1w

R )
~ (2 o o | ~a[ty-to o
<No) at 1 /f[cosh (Pe ) -1] dt, dt, (C-73)
a O

where double frequency terms have once again been ignored. Use of Equation

(C-69) in Equation (C-73) results in

2 [s(t)) Els(ty] K dt, dt,

-2iaT
a1 7F R s B (C-74)
N « a1 i 2
2i
=1
Hence, from Equations (C-74), (C-72) and (C-62)
sa-s)/a® -p A2 : 2p fx—~ p2l T
et S R o ey S . £ al
bpS = =3 jou = S (N a> & o0 i
o o
=1
l-e_?‘mT)
- -(——-2—— (C-75)
2i
Adding uR(S) and uD(S) it follows that
~ -§(1-S) A : -2p —epy2 | or gl—e_ziaT)
He) = = g (N a) 2 2 | 1 3
o 1 2i

2if .. .. -2iaT 2
- (2-8) E I?,—l[‘:—-ﬂ-iz—-—‘:l% +(A) ePar | . (-7
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APPENDIX D

THE LEC CONDITION FOR NONSTATIONARY PROCESSES

D.1 Derivation
Consider the integral equation

T

Ao ‘tl‘ = / K (tl,t2\ o (tz) dt.2 (D-1)

O
where A is an eigenvalue and oi(t) is an eigenfunction associated with ’\i' The

low energy coherence (LEC) condition applies if [2]

N
! ] ] .0
*uax' << 3 (D-2)
W
where ! A\I-\K’ is the modulus of the largest eigenvalue and —- is a white noise

level, If }\'(tl, tg) is an autocovariance for a stationary process, the eigenvalues
can be bounded by the maximum value of the spectrum [1], 1t is then easy to see
whether Equation (D-2) applies without actually solving Equation (D-1) for the
eigenvalues. Unfortunately, no simple technique for determining a tight bound

on A

M is available when Kt t,) is an autocovariance for a nonstationary

X I’ 2

brocess. The purpose of this appendix is to orovide a technique for determining
puryp Pr g

~

a tight bound on '\\H\' for the more general nonstationary case,

Let

mtl.t?)-iul,t,» = Eqt,,t

o 1+ ')

(D=3)

where }\'(tl, t,) is an autocovariance for a stationary process. From Equations

(D-1) and (D=3)

T I:
\L“ltll —/ E“l'tj\ Oqul dt;, = / E(tl,tz\ O(t:) dt:‘ : (D=4)

(8] O
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Let
T
et = f E(t),ty) ot,) dt,. (D-5)
o
i Following the development leading to Equétion (C-22) it follows that if
| T T
[ fepaty < r® [ SPep ety ©-6)
o (o]
then
T
A o(ty) = / K(t),ty) (ty) dty . @-7)

o
Consequently, the eigenvalues and eigenfunctions associated with K(tl,tz)
approximately satisfy Equation (D-7) and f(tl,tz) can be used to obtain approxi-

mate values for A provided that Equation (D-6) applies. From Equation (D-6)

T
f e’t,) dt, = f / E(;,t,) 6ty o, at, . D-8)

1Y 1 2
o (o o

Use of Schwartz's inequality in Equation (D-8) results in

T T[T T
/ e?(t)) dt, < [ f EZ¢,t,) dt, / ¢2(t2) at, |at, . ®-9)
(o] o o 0

However, the eigenfunctions have unit energy. Hence Equation (D-6) is applicable

provided

TT
ff E2¢,ty) dt) dt, <o A2 . (D-10)
00




Rocall that (1]

P
\M.‘\X > {] f(‘l\ K“l't'}) f('2) (l!‘ ("2 (D-11)
o o
where
" 2
/ f (t‘) \ltl = 1, (D-12)

Hence, Equation (D-6) is satisfied for the largest eigenvalue if

R A (L e . o (D-13)

/ / (K (6 dE

(8] .\\
where () satisfies Equation (D-12).
The procedure for obtaining an upper bound on A MAX' the largest eigenvalue
associated with Kt ‘,t,_,\. is as follows:
L. Given K(tl, 12\‘ formulate, by trial and errvor, a covaviance function of
n stationary process, K(t L t:). for which the inequality in Equation

(D-18) is satisfied,

1o

Having found a suitable Kt , determine an upper bound on the

1 "
largest eigenvalue associated with Kt l,tg\.
3. This upper bound is used as an upper bound for A MAX
Observe that the inequality in Equation (D-13) may be satisfied only for a limited

range of parameter values associated with the random process, The upper bound

{8 thon valid only for this restricted vange,

D-3




D.2 Calculation of Region for Which the LEC Condition Applies in Chapter II

Par, 2.4.3.

In this paragraph

R_(t = pe™@ t1-t2|

my to)

Asft,m®t)] = A cos [‘Do t+m(t)] .

From Appendix B

v A
Ad,t,) = AE |S[tl. m(tl)] } =Ae " /2 cos oty
2 o
A" d,(t;,t,) = AE {S[tl,m(tl)] S[tz,m(tz)]l

= A%e°P [ cosh (Pe-a'tl'tz ') cos o t, CoS i t

+ sinh (Pe™® [t1-to ’) sin g t, sin 0oty ] !

Let

= al 2
Kit,,t,) = A [dzal.tz) d, ) d;t,)]

_ a2 =P “aity=te|
= A% [[cosh (Pe 2')-1] cos ® ¢ cos oty
+ sinh (Pe-(”'tl-t2 l) sing t. sin g t

ol Bo'g | °

Through a process of trial and error, ﬁ(tl,tz) is chosen to be

-P
Kty = A $ [ exp (e t1-t2l) -1] Co8 1t ~t,) .

D-4

2

(D-14)

(D-15)

(D-16)

(D-17)

(D-18)

(D-19)




Recall that

T T T T

.2 J : = 2 5
f/h (toty) dt) dt, = // K, t,) - Kt ) t,)" dt) dt, . D-20)
0o o

0o 0

From Equation (D-18) - (D-20)

4 e 2P 4 ~alty~to|
f/r (t),ty) dt, A m ff (2 exp (-2Pe 111712
0O o0
-4 exp (-Pe ™ L 18
r2)dt dt, (D-21)

where double frequency terms have been dropped since they contribute negligibly

to the integration. From Equation (C-67) and Equation (D-21)

;: r h 2P [ & op i -iaT
fty) dt dt Wk _(_"_-; ) 1 (-e )
2 4 it i
o i=1 (O' )
-ia'T
z:r_")_ (___1_ o ,) : T
; (iaT”
In Equation (D-13) let
f(‘) = v:—}- COS (00‘ & (D_23)
It follows that
TT
f f it Kty ty) fit,) dt, dt,
o o0
) =ity -to|
2 : :
~ A”“ f/ ((osh (Pt 2y ~1) dt dt2 i
0o o




where, once again, double frequency terms have been dropped. The right side of

Equation (D-24) can be expanded so that

TT
[f fit) Kty ty) fit,) dt, dt,,

0o 0

T T
-P - |ty-to | - |t{=to|
~a?2 ff§ (an(l’e 172) , exp (-pe™I1 2)_1)dt1dt_
2
o o

2 2
(D-25)
From Equations (D-25) and (C-67)
K
fff(tl) K(tl.tz) f<t2) dtl dt2
0o o0
-pP = 2i -2iaT
22 e P 1 (1-e )
ot B | '22:’21_'.' 2iaT - ) : (D=36)
e (2iaT)
With the aid of Equations (D-26) and (D-22), Equation (D-13) becomes
— | -iaT
(-P) 2-2) (1 _(-e7%")
it iaT 2
i=1 ol
<<l (D-27)

o 2
p2l [ 1 pe~2oT
2i' \ iaT 2

i=1 (2iaT)

The random process parameters of interest are P and aT. Note that increasing
P decreases the left-hand side of Equation (D-27) while increasing oT increases
the left-hand side of Equation (D-27). The left-hand side of Equation (D-27) is
plotted in Figure D-1 for representative values of P and oT. Only values of P
and aT for which Equation (D-27) is satisfied are considered in Chapter 11

par, 2.4.3,
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The power spectral density associated with K(tl,tz) is

N -‘)
-y - 2 e
S )= /ej“’TA >

-0

|
exp (Pe""” y-1 | cosp 1 dT . (D-28)
o

Expanding the exponential in Equation (D-28) and performing the integration

results in

0 o ‘
- A® -P 2 : i
S ()= 7 ° %— 3 a g+ o 3 (D-29)
3 (i)

2
l=l + ((D-(Uo) (u!) ¢ (w’wo)

The peak of S (@), assuming a < W4y is

P P

i (D-30)

Syax = 2@ ©

i=1

N
The LEC condition applies provided S (u) 'M AX €€ -59 . Consequently, it follows

from Equation (D-30) that the LEC condition applies if

2 = i
A -P P
Na* T << 1, (D-31)
i=1

The inequality in Equation (D-31) is satisfied throughout Section II par, 2.4.3.
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