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SECTION 1

INTRODUCTION

A problem of continuing and widespread interest in electro-
magnetic theory is that of wire configurations under certain speci-
fic conditions. The transient and harmonic analyses of thin-wire
structures have been the subject of investigations for a number of
vears. An early treatment of thin wires was given by Oseen [1l] who
applied the method of retarded potentials to straight thin wires and
calculated the induced current on a wire by a transient incident
wave. Hallen [2] used a slightly different form and derived a pure
integral equation for the induced current on a thin wire and used it
to derive analytical expression for the natural frequencies and
current distributions of the natural modes. Since then many investi-
gations have studied various thin-wire problems.

In recent times Tesche [3] analyzed the thin wire scatterer
trom the singularity expansion point of view. Wilton and Umashanker
[4] conducted a parametric study cof an L shaped wire using the sing-
ularity expansion method (SEM). The EMP® interaction with a thin
wire above a ground plane using SEM was investigated numerically by
Shumpert [5]. However, in more recent times Crow, et al. [6] have
conducted an in depth study of the crossed wire structure using SEM.

Even though many of these papers are helpful in the determina-
tion of induced currents and charge densities on thin wire config-

urations, most of them utilize very complex and elaborate numerical

*
The electromagnetic pulse generated by a nuclear denotation is
generally referred to as the EMP.

U




techniques. Being motivated by some techniques used earlier, the
present investigation utilizes primarily analytical techniques for
the treatment of wire configurations in the proximity of a lossy
ground.

[he second chapter of this report presents the time harmonic
analysis and considers the plane wave illumination of a single wire
over a perfect ground. The approach used follows Tavlor, et al. [7]
for the current distribution induced on a transmiss?on.line by a
nonuniform field. Subsequently the plane wave illumination of
crossed wire configuration over perfect ground is considered. The
single wire and crossed wire configurations are then considered to
be in the proximity of a lossy ground plane. The third chapter in-
cludes transient analvsis with brief description of SEM., It presents
the technique for determining the natural modes and frequencies for
perfect ground, as well as lossy ground considerations utilizing SEM.
Numerical results obtained tor both single wire and crossed wire con-
figuration are presented in Chapter IV. Chapter V contains the con-
clusions and comments.

The accurate determination of the natural frequencies and
natural current modes on a mathematically tractable configuration
(e.g., the crossed wire configuration) is an early step in the study
of electromagnetic field interaction with an aircraft that will pro-
ceed to more complex configurations. This and other topics are

considered in some detail in this report.
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SECTION TII

TIME HARMONIC ANALYSIS

g® 2.1 Plane Wave lllumination of the Single Wire

Some time ago, Bates and Hawlev (8] presented a simple first-

T —

order treatment of the scattering of plane waves from an infinitely
thin wire above a ground plane. In that pabci the effects due to a
lossy ground plane are neglected but thev were later considered by
Leonard Schlessinger [9]. In more recent times Crow, et al. [o] and
[10], have also conducted similar studies for thin wires of finite
length above a perfect ground plane applving purely numerical tech-~
niques.

The present investigation considers (utilizing simple analvti-
cal techniques) plane wave illumination of a single wire above a
ground plane. Initially, the perfect ground case is presented,

E oo

later the loggf §round plane case is.discusscd. In both cases
transmission line theorv is used, which requires the wire height to
be much less than the wave length and the wire length.

In this section we obtain the expression for a single wire over
perfect ground illuminated by a plane wave. The general formulation

for the current distribution along the thin cvlinder (or wire) due

to normal plane wave incidence has been obtained by Tavlor, et al.

[7) for a two wire transmission line with arbitraryv termination

impedances, For the problem considered heve the single wire with

o

its electromagnetic images forms a two wire transmission line with
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open ends, as shown in Figure 2,1, In Figure 2.2, the trapsmission

line currents at the ends are zero (i.e., 1 = 1 = Q because Z

Q A 0
and 2 are infinite). Hence the expression becomes
AN
I(z,jw) = ::'~‘fL"'“ {sin k(z-t) K(u) sin ku du
2 sin(kv)
u 1o
+ sin(kz) K(u) sin k(u-<) du] 2.1)

where

K(u) = [Ef\h.:\ - Ef\—h,:)} » i 4 E‘ sin(kh)
- U

Y is the shunt admittance per unit length and Z the series impe-

dance per unit length.

2.2 Plane Wave Illumination of a Crossed Wire Configuration

Over a Perfect Cround

Several investigators have considered the plane wave iliumi-
nation of wire configurations over perfect ground and in free space.
Shumpert [5] has also analyzed thick wire configurations. Crow, et.
al. [11], formulated the problem using Pocklington tvpe integro-
differential equations and studied it by means of the SEM. Numeri-
cal techniques were used to determine the natural frequencies and
associated current modes. Analvsis of crossed wires in a plane wave
field was done by King [12]; however, recently Crow, et al. [5]
utilized SEM techniques for perpendicular crossed wires over a per-
fectly conducting ground plane. In order to avoid the complicated

numerical techniques, an attempt was made to obtain the natural




frequencies and associated current modes utilizing transmission
line theorv in conjunction with electromagnetic superposition.

Consider the wire configuration oriented as shown in Figure
2.3. 1Initially the current distributions are obtained considering
excitation along the (a’ Lf or ?w elements separately. Then the
net current distribution is obtained by the summation of the fore-
going results via superposition.

Case A. Consider the excitatiéh along the ia eleﬁent only.
With reference to Figures 2.3 and 2.4 the current on the Qa element
is obtained by treating the configuration shown in Figure 2.3.

There are basically two junction conditions that apply to this
configuration. (1) The Kirchhoff's current law must be satisfied
at the crossed wire junction and (2) junction voltages of the wires

are all equal. Hence Z, is infinite corresponding to the open end

2 i
i
Zu) e £

.
Zh

and where Zo and Zf are the impedances seen looking into the
u

transmission line formed by the L) and if element with their
u

images, from the junction, Z; is the equivalent impedance formed

considering Z0 and Zf impedances in parallel. Accordingly

Zm = -] Zcm cot(k(m) (2:3) ?;
where :2

z, = 120 in(2b/a) (2.4)
and

2, = =32, cot(kiy) (2.5) ?

10
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wvhere

“ -

(3

l

transmission lines
conditions,

According to Tavlor, et

induced on the line is

* sink 2
Yiw \ - - LU
,1 ln("j") I sin k ¢

and 7 g are the characteristice fmpedance of
”

120 \'n()h’.‘l(\ (2.6)

\ and '
) f

respectively and correspond to the free space

al. {7], the current distribution

. !:"lnk (z=\ _|\ K(u) ¢ sin k u + du

<

[ QO

\

+ ginkz {'

Lo
-

K(u) « gin k(u—-\"‘) + du (2. 7)

Applving the free end conditions described earlier

l" - ﬂ

and

:‘.‘ cos KU+ 7 ain k

Integrating and simplitfving

K(z) = 4 &4 ¢
O

Prime (") {ndicates the quantitfes when only the o .

excited.

since 2 s infinite

} K(u) + sin k(uw‘_l\-du (2.8)
\‘. bl |

sinkh (2. 9)

element is

-




™

-

Using (2.8) and (2.9) in (2.7) yields

sink(z=-¢ ) ol-"z;lukh

' = e - oy A i+ \ 5
l.\‘ o X'. sin Ko kE sink?
a ca a
¢ [sin k\.'-\"l\ + sin k o b sin k 2 ) (2.10)
wvhere
ros K ) -
4 E sinkh \ROR R “a :
\ - A f‘. SR = e S - Al \ )
: k o8 k \" + ‘ v sin k { 'll
e . .
and
p— _'-1
|2 tan kU tamk\‘( ,
- = =y — | (2.12)
l ‘ ‘. .
cw ot
[ -

In ovrder to obtain the curvent distribution on the other wvive ele-

ments the junction voltage {s used, f.o.,

'
VI(0,je) = =1'(0,1w)2 . -1 Z (LoD
a a 1

Now considering the ¢ i element with fts ifmage an open ended

transmission line the current distribution is

v a(l\k(\".-.'.'\
l'.(t."\u‘\ - 1'.\0.%‘\ ;

——— 2. 14)
.-a(nk\" (2.14

x
where a positive l'. current is divected awav trom the function.,

e junction voltage then is

' '
F.(0,3w) = «1_(0,ju0)d 2:15)
\'U.i lt\ i y (2.1
noting that
Al Al
V(O Jw) =V (0,jw)
f a

*The 2 coordinate axis cofncides with the 2 axis but {8 directed
fn the opposite divection,




Using (2.13) and (2.15) vields

-
o

4E sin kh
Al O
I’_(O,j.,.-) -

A}
1
1!

(cosk ¢ ) =1
a

3 < Z coskt¢ + jZ' sink
£ k L_au.)sk = i , sin

Correspondingly for the L elements it can be shown
A

sink (U -v)

' . \‘ .
UL L R L L R e

where

-2 4E sinkh (cosk ¢ ) -1
(8} a

that

I'(O,ju‘) = .

2 k Z coski+j Z sink
ca a 1

with a positive current directed away from the junction.

Case B.

Case A and considering the excitation along the (f

the current on ¢

(2.16)

€2.17)

Applying the same solution technique as utilized for

element only,

£ is (for this case the incident field is direct-

ed in the -z direction requiring a corresponding sign change)

sink (z'-.) 4E sin k h
I(z' jw) = -1" £ 5
f & 1 sin k ¢ kZ .sin k.
f cf t
"
. |sin k(z' =¢.) + sink ¢ _- sinkz'|
v ( p
where
. 4E sink h (cos k .) -1
: = = 0 \) = - 0 *
Ly = Tptydu K 7 cos kL. +J 2" sink¢
cf t \ f

M

2 tan k ¢ tan k ¢ §
-t & -J w + a
=1 2 2
N cw ca

(2.18)

(2.19)

T e e e




Due to the different coordinate axes being in opposite directions
for Qa and Lf elements, there is sign difference between (2.18)
and (2.19) and their corresponding equations, (2.10) and (2.11).

The current induced on Ca element is

sin k (Ia -2)

H,-’ ", - ' T 9 5
Ia(-o.]w) I (0,3w) sin k1 (2.20)
where
"
" 21 4Eosink h (cos k Lf)-l
I (O,jm) = + . " 5 (2-21)
a Za k Zcfcosklf-Q- jzy sinkuf
and the current induced on Lw element is
o sin k (iw-y)
I (v,jw) = I;(O,ju) T (2.22)
w
where
"
e S Zy, 4E sinkh (cosk £.)-1 (2.23)
i i k 2 .cosk R_+3j 2" sink?®
w ct f 1 f

Case C. Once the current distribution over different elements
is obtained due to excitation along La and Rf elements the
total currents can be easily determined utilizing superposition
theorem. It should be noted that the current distribution due to
the plane wave excitation along the iw elements can be inferred
from the foregoing by using symmetry. To obtain the total currents

for the entire structure, results for Case A are added to the

corresponding results for Case B to vield,

15




sin k (¢ -2)
[ (z,jw) = 1 (0,j0) ————n . (2.264)
W W sin K « ,
where
I"‘ |kl\ ‘k\l-\“!
K F‘ sin kh | =2 t.t;m o ot ’.’.l tan 5 |
[ (0,10) = B i WS g s 21 (2.25)
a f" w af
Similarlyv for the ‘g element
sin k(¢ - £) >
(2',jw) = I_.(0,1uw) —————
I!( J 1:“ ’ sin k
4 F , sin kh
- ————— sl 2'-=0.) + sink { _-sink z'
. .sink\‘_[ in k( ; sin k t,\mk ]
o3 t 5 )
(2.26)
where
£ ;kx't.\ ‘.\\'l)—y
=} 4E_sin kh| (Z +22 )ctan |[—| +Z tan [-»r‘ a
I.(0,jw) = s LT a S, e « J
S ((Z +2)2 +2% 2 i
kL a "r') L .lhl.‘ (2.27)

Lastly for the (l element

sin k(\“‘- z)

w) = ), jw e
I.l“‘" ) ’ _[_gl“'j ) sin k \.‘l

4 E sink h
o

e — - [sin k(2= ) +sin k¢ =sin kz] (2.28)
k “cabink Ly a a
where
o k \'t. \ , kl y=—
JAE sin k h |[(Z2 +22Z )tan|—5— | +2 tanje=—=| |
I,(0,ju) = - - - L2 ) w7 )1

k[(Z +2.) 2 +22 2.1
a t W a t (_’._‘Q)

Note that the junction currents given by (2.25), (2.27) and

2.29) satisfy Kirchhoff's current lawv at the crossed wire junction, ,‘
!

{

|

lo




2.3 Current Source Excitation of Crossed Wires Over a

Perfect Ground Plane

To obtain all the natural current modes and frequencies it is
convenient to consider the crossed wire structure to be driven from
a current source as shown in Figures 2.5 and 2.6. Then applying
transmission line theory, the current and voltage along the (J
element are

v.e I \.—jjky

ot (2.30)

| V (y,jw)

lu(-vvj»s‘) wl [vle

cw

-iky jky

- V:a® 0] (2.31)

r

where the following end conditions must be satisfied:

: o X e =PER o L (2.32)
Q30 7 [V,e w=V,e w] e
cw
and
o el

vV (0,30 Vi+ V, ' 1 1 5 ]

e T ——— = - | v (2.33)

L (0,§w) T cw V, =V, I}28 2o 2,

V, = -4 P ZCw(Zc»’QT) Io (2.34)
1 2 z + 7, Sink ¢ B
2 2 %3 I
1 Cuw Cuw 1 Q -
b R b + Z Sin k . e
T
Using (2.34) and (2.35) in (2.31) vields

I (v,Jo) =1'[2 (e 3KV 4 oIkYy | zr(e'“‘-" -e3¥¥y) (2.36)

w ¢ cw

17




T HEEE LR TR L E T T T EEFTFFEET

Figure 2.5: Current source excitation of

o

V - -

crossed wire
configuration over a perfect ground.
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gy I

o

where
[\
1] - T S
Io 1 ) (Zm + ZT) sin k (“

Theretore

2 cos ky+ 3 2 sink v

- W 1\
» w) = o
I (v, ] (Z +2_) sink ¢ %y
W T w
or
Z cosk y+ jZ_ sinky
$ T %t . cw L 1
w 7 Z coskl + 12 selnk & o
Cw W . T S
where
L 2.2
e a £ "
z. + % 2 2.
T f Z“\ £ a I\ > 1 £

(2.38)

(2.39)

2.40)

and is the parallel combination of all elements except the one that

is excited. The current on the element that is not excited

W

and on the ia and ﬂf elements may be obtained by the use of

Kirchhoff's current law at the junction,
-1 (0,40) = I_(0,f0) + I'(0,3w) + I.(0,w)
and the junction voltage conditions,

y ) = - 0)Z = - w)2, = -1' w)Z
\w(0|ju) Iu(O,jn) & If(O.j ) £ Imkﬂ,j )LM

7

Hence the current on the element that is not driven i

w

Z & X
l 1 + z—‘ + E—‘——' I'(0,30) = -1 (0,Jw) .
L a f ! W W

(2.41)

(2.42)

AT

< adaaule  _tow o S o 22 e sl
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s
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The currents on other elements of the wire configuration can be
obtained similarly. Thev are*

sin k(L = v")

I'(y'.Jw) = 1'(0,jw) o (2.44)
sin k(X - 2)
z y) - 0 J o &
L2 u) 1o 10:3u) —-¢E;7%—~—— (2.45)
= S
=3 S ki
Le(z'w) = 1.(0,40) 520 ity *_) (2.46)
’ sin k . A
t
where from (2.43) and (2.39)
e & I
= CWw (o) ;
¥ W = <+ . 2.47)
s L J 2 (2 +2) sinkt_ Skt

Correspondingly for the (a and if elements,

Zp 2 1
- . cw 2.48
1.(0,5) + 2,2 +2Z) sink ( e
i 2 1
¢ s “C J o
VAR 2.49)
If(O.j ) 3 Zf(z' % :T) sin kU A

When the ia element is excited bv a current source, the

current on {a' (f and elements can be derived in a similar
w

manner and are presented as follows

*Note that the v' axis coincides with the v axis except that it
is directed in the opposite direction
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Zgcoskz+ izl sinkaz i
C . a
1,(2s3w) i (Zy+ Z!) sink O be k250 i

Wil o WO e R 2.5

I¢(\'J“) Iw\\'J‘ sin k ¢ (2.51) ?
W i
sin k(L = y) é
I“I(_\'.ju‘) = I“.(O,_]“') Sir‘;—k—f——' (2.52) é
J sin k(i -z") ¥
Z' W =» = ) u“) _‘o- i
I.(2',50) 1.(0,] ek (2.53) ¥
$
where -
28 i :

I'(0,§0) = + j e (2.54)

i 2'(Z2_ +2,) sin k ®

W a ! a ¢
. ' i
2, 2, 1 f,

I (0,j0) = +j e (2.55)
b Z (Z +2) sin k ¢ L
W 1 a i
2,2, T K
I.(0,ju) = +j e (2.56) $
b 4 - > 4 -
\ ‘-f(ua + 4-1‘ Sin k \a :
b ' R ‘
and 21 has been defined previously. B
Similarly when the Cf element is excited the currents on < & }
4
i {. and { elements are 3
3
; ch cos k z' + j ZY sin k 2z' \
.08 3u) = «f - : I (2.57) L
f (Zf + Ll) sin k L o F
8

sin k(C‘ -v")

'(v',jw) = y W = 2.58
Iw(} »Jw) IM(O.j ) sin k U ' ) i3
W ' 9




sin k(v -v)
L = L0 ik (2.59)
sin k(! - z)
Id(Z._fw) = Id(o,_ju) “?i_l_\*k—d\——. (2.60)
where
Z? Zcf Io
I'(0,Ju) =4 ————p (2.61)
: Z @+ Z,) sin k Lo
A R
I (0,j0) = +j S (2.62)
e Z“\(Zf +2,) sin k "
"
S
T, (0 3u) = 4 (2.63)

"
F Za(zf + Zl) sin k (f

and 21 has been defined previously.

ro

.4 Lossyv Ground Plane Considerations

The propagation constant encountered in the earlier sections is
a real quantity for the perfect ground case onlv. However, under
lossy ground conditions the propagation constant becomes complex.
Although only a few investigators have considered the treatment of
wires over a lossy ground plane, there has been remarkable progress.

Schlessinger (9] derived a self contained expression for the propa-

gation constant following Sunde [13] and Wait [14].
Sunde (13] derived the propagation constant for insulated |

aerial conductors, accounting the finite conductivity of the earth - ¢
|

which gives rise to an increase in the longitudinal impedance and to




resistance losses in the earth. He derived this expression as a
special case of wire of infinite length above the surface of the
earth.

According to Sunde the series distributed inductance can be

approximated 'with satisfactory accuracy for engineering purposes"

as
201y )
L =+——2xg —-———ffl—- (2.64)
2 g
where .
Y. = Yijwp (0 + jue ) 2,65
N 3 ( g 3 g’ (2.65)

with ¢ and ER the ground conductivity and permittivity, re-

spectively. The shunt distributed capacitance is approximated by

S (2.66)

According to the foregoing the product of the distributed series

impedance and shunt admittance is

., ) — i b —
(Jw)=e_u_ H1+Y g (on ) |
2Y = — —— nfe—= i (2.67)
e 2h Y h | a {
tn(—) B R
Since the propagation constant k = -jvYZ |, then
[ 1 [1+y_ n)] 7% |
1 - | SO ST | | 5 o
X = -j \O ] 1+ : (2h y ° n Y h i (2.68) ‘
| Rt == | N i
| a L = I |
[ { } |
where \o = Ju\h0~0 % {

All the foregoing expressions for the current induced on the




wire configurations over a ground plane became valid for the lossy

ground when the propagation constant of (2.68) is used in the

\ transmission line current and voltage expressions. 3

(5]
=~




SECTION 111
IRANSTENT ANALYSIS

1.1 Singularity Expansion Method

The SEM technique was vecently introduced by Baum [15) as a
technique tor etticiently characterizing a conducting bodies'
response to efther transient or steady state electromagnetic {1 lum-
ination.  An arbitrvarily shaped conducting object is completelvy
characterized by {ts complex natural frequencies together with its
associated natural current mode distributions. The mathod mav be
viewved as an extension of ordineey civeuit throry methods to distrib-
uted parameter svstems. Many of the recent EMP interaction investi-
gations and studies have utilized the SEM techuique.  Because of {ts
advantages the SEM technique is applied to the wire configurations
that are considered in the foregoing.

Initially a 3 x 1 vector is formed whose elements are the

current distributions on the crossed wirves, i.co.,

T(r,8) = i ‘1\:.5\ ‘
| T (v,s8) !

whore s = jo and {s the complex trequency, the tilde () denotes
the Laplace transtorm,
Then utilizing singularity expansion technique, the solut fon

for the wire currents mav bhe expressed as

T ————




A ;‘
TR0 » B} w2 08 (3.1)
(8] d;l - Sd Y

n, is the coupling coefficient and l‘(r) {s the ath natural mode

and where the natural frequencies s are those nontrivial complex
8 |

frequencies obtained by the complex values of s that vield

l;‘(:',s) - 0 (3.2)
or

I;'(z,8) = 0 (3.3)
or

1-f(v.s) = 0 (3.4

The vector i‘\r\ represents the normalized current distribution
8

for the ath natural frequency or the ath natural current mode. It

is defined as

Cim ® = % 3
- » N I » >
{ - ——" T(r,s !
q(r) S+8 ¢ E ( 'H)
0 1 )

(3e3)

where ¢, {s a constant adjusted so that the maximum value of any

element of l‘(r\ is equal to 1.

Accordingly then the coupling coefficient L i{s defined such

that

S - 8
» \lm v . >
—— e 3) 3.0
n i (r) aia En I(r,s (3.0)

However, it should be noted that the natural trequencies (or simple

-
pole singularities) of I(r,s) occur in complex conjugate pairs since

e S —

B e

——————




the current must be purely rveal {n th

frequencies of the third quadrant ot
solution

sidered then the time domain

¢ time domain., 1f only the

the complex s=plane are con-

tor impulse excitatfon is

. : v R | !
I(r,t) = 2 E Re |n e o 1 (r)J % (3.7)
O b L\ "W
am] -
1.2 Natural Frequencies and Assoclated Natural Current
Modes for a Perfect Ground
Plane wave {lluminatfon of the single wire over perfect ground

has been tormulated in section 2.1,
natural trequencies tov this contfigur
with those obtained by other {nvestip
approaches.

From equation (2.1)

’
“

- ‘\.

sin kK h
—T~-lsin k(2 -

I
O

—

o

I\-"., \\\“

win k

fn which all parameters have been det

current I(z.fw) diverges at natural
gfn k¢ = 0
or when
l‘ n
Kk —
X

w1 2y 3y sas NBete X

In this section we obtain the

atfon and compare the results

ators uti{lizing ditterent

-
.

W) 4+ sin kK U = sin k (3

|

ined earlier. Note that the

trequencies tor which

(3.9

(3.10)

{e the wire lenpth.




For the perfect ground case and free space conditions above the

ground the propagation constant is purely real

pa—

k = -3 /Y¥Z = w/LC (3.11)

where the characteristic impedance of the transmission line formed

by the single wire and its image is

(2]

z Qc (3.12)
Thus

w B — (3.13)

relates the natural frequencies that are observed to be independent
of the height above the ground. These natural frequencies being
purely real differ from the complex ones found by Tesche [3] for
the wires in free space, (a different physical configuration), but
are similar to the ones determined by Umashanker, Shumpert and Wil-
ton [16] for wires over a perfect ground plane.

The crossed wire configuration is more difficult to analyze in
that there are two independent conditions for which the induced
currents diverge and one requires a numerical search for the natural
frequencies. Both divergence conditions occur for the current
source excitation (section 2.3) but only one condition arises when
plane wave excitation is considered (section 2.2).

In the first attempt to obtain the frequencies for which the

currents in (2.42), (2.50), (2.51) and (2.52) may diverge, it is

28 <




noted that both (2.42) and (2.50) diverge as Mg 0 since

T 2 +0 w
W
and
ch Io 1
) \ > ’
1,039 255> 3 Teimkt 2 hEda
w (] w
wheve
cos k'lw
e W ko

Accordingly the natural frequencies are the frequencies for which

Zw = 0 . Hence they satisfy

m
kxw = (2a - 1) 7

Or in the complex s-plane the natural frequencies are

s = j(2a -1)

m™
. 72 DAL B TR SR SR

("}
However, it should be noted that I1 and If remain finite at the
foregoing natural frequencies.

A second condition for which the crossed wire currents diverge

is

=4
3

The frequencies for which the foregoing is satisfied can be obtained

by a numerical search routine programmed for the digital computer.




The natural current modes are then determined for the associ-

ated natural frequencies as follows; e.g., considering the first

natural frequency kli\ = 2,568. By trial and error it is found
that I8 is larger than If and 1 at k= k. . For this
frequency 1‘ is then adjusted so that
<
sin kl(iq - z)
Id(z,jwl) sin &, ;1 (@259
sin k,(lf = z')
fut . ki e ]
It.(z s Jwy) 0.1506 o kx \{f (3.106)
sin kl(( -v")
1 u = - L w - - .’2 2 3o 9
I\ul("'j ) Iw]('v ’ ) 04231 sin k ” Q 3.1 )
i w

Plots of the first six natural modes for crossed wires over a ground
plane are shown in Figures 4.1 through Figure 4.6. Analvtic results

are also presented in Appendix A.

3.3 Natural Frequencies for a Lossy Ground Plane

The natural frequencies for wires over a lossy ground plane are
obtained by using Chapter II and the divergence condition (3.10).
Hence the natural frequencies for a single wire are obtained by

finding the frequencies for which the following is satisfied

v

r 1 ll +y hT]z i
W 2T SRR MR T
'y L s

|
Li\n

This expression must be solved numerically to obtain the natural

frequency for each integer o . Results are presented in Chapter IV.

30
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SECTION TV

NUMERICAL RESULTS

The numerical technique used to obtain the natural frequencies
tor single wire and crossed wires, essentially utilizes search rou-
tines which scan the arca of interest in the complex s-plane. Thus,
the natural frequencies which satisty the expression in question are
determined. The computer program Qtili:vd }o% the same is refer-
enced by Crow, et al. [o]. It uses a subroutine which is based on
the Cauchy integral formula and determines the zeros of the analvt-
fcal function F(z) for the induced current expressions. On ob-
taining the results, R expresses the ratio of the function F(=)
to the average magnitude of F(z) evaluated at points along a se-
lected search contour, It should be noted that an accurate zero
of the function would be represented by values of R < 0.1

Tables 4.1 and 4.2 show the natural frequencies for athinwire
above a ground plane with typical conductivities and dielectric con-
stants for concrete with a = 0.5 m, h = 1.0m and ¢ = 10.0 m
(for Table 4.1) and a = 2.0m, h = 4, 0m and ¢ = 40.0m for
Table 4.2 respectivelv., In Tables 4.3 and 4.4 are presented natural
frequencies for the thin wire above a ground plane tfor different

heights with conductivity Og = 0.0076 and «¢' = dielectric con-

¥z

stant = 25.0 for a = 0.5m and ¢ = 10,0 m. Table 4.3 is valid
for n= 1,0 and Table 4.4 is valid for the n= 2.0 case. The

natural frequencies for the crossed wire structure over a perfect ground

i | R S, €
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TABLE 4.3 NATURAL FREQUENCIES FOR THIN WIRE AT

DIFFERENT HEIGHTS ABOVE LOSSY GROUND

PLANE (a = 1 mode)

a = radius of the wire = 0.5m, { = length of the wire = 10.0 m

= ground conductivity = 0,.0076 mho/m, ¢

]

= dielectric

g 8
constant = 25,0
\GS,- cé €y
Height (h) \Sd/c)
nbovimiround Ratio (R) Real Pe—
1.0 0.1001 x 10°° -0.05102414  0.27835674
1.5 0.2331 x 10°° -0.03077844 0.29960148
2.0 0.5121 x 10°° -0.02093694 0. 30609920
2.5 0.6837 x 107° -0.01550837 0. 308923406
3.0 0.1127 x 10-° -0.01215137 0.31041838
3.5 0.1656 x 107" -0.00990076 0.31131393
4.0 0.3717 x 10-° -0. 00830301 0.31190006
4.5 0.3627 x 10-° -0.00711283 0.31230273
5.0 0.2166 x 107° -0.0061997 0.31259685
5.5 0.3973 x 10°° -0.0054785 0.31281843
6.0 0.4237 x 10-° -0.0048902 0.31299033
0.5 0.8557 x 1077 -0.0044173 0.31312691
7.0 0.2168 x 107° -0.00401720 0.31323763
7.5 0.6561 x 10=° -0.00367852 0.31332809]
8.0 0.6561 x 107" =0.00338850 0.31340527
8.5 0.2344 x 10”° =0.00313765-  0.31340994
9,0 0.6883 x 107" =0.00291877 0.31352531
9.5 0.6669 x 107° -0.00272628 0.31357319
10.0 0.4135 x 10°° -0.00255800 0.31361494

* With reference to Figure 2.1.

-’




TABLE Q.A* NATURAL FREQUENCIES FOR THIN WIRE AT
DIFFERENT HEICHTS ABOVE LOSSY GROUND
PLANE (a = 2 mode)

a = radius of the wire = 0.5m, = length of the wire = 10.0 m

0 = ground conductivity = 0.0076 mho/m, f: = dielectric
g 2

constant = 25,0

(e = g% g)
8 S
Height (h) (s /e
above ground Ratio (R) .

(m) Real Imaginary
1.2 0.1045 x 10~ -0.049947285 0.61470751
1.8 0.1923 x 107° -0.03549272 0.02010536
2.0 0.1050 x 1073 -0.02321064 0.06238932
2.8 0.1050 x 107 -0.01097105 0.6254712
3.0 0.9174 x 10 -0.,01307539 0.0202959
5.3 0.3516 x 10-¢ -0.01057798 0.06267801
4.0 0.2020 x 10~® -0.00882479 0.6271039
4.5 0.5290 x 10~ -0.00753400 0.6273233
5.0 0.2724 x 1077 -0.0065484 0.6274822
5.5 0.1744 x 10-° -0.00577389 0.6276017
0.0 0.1720 x 10~ -0.00515098 0.06276942
6.5 0. 3420 2 10" =0.00404030 0.6277676
7.0 0.1746 x 10~° -0.00421481 0.6278270
1.5 0.3388 x 107 -0.00385542 0.0278759
8.0 0.1723 x 10° -0.00354826 0.6279108
8.5 0.5032 x 10~° -0.00328301 0.6279514
9.0 0.3131 x 10~ -0.00305189 0.6279810
9.5 0.1687 x 107° -0.00284889 0.6280066
10.0 0.1742 x 10~° -0.00266932 0.6280289

*With reference to Figure 2.1




plane are shown in Table 4.5 for <J + Ly = 1 S S ;f/;a = 0.5

and a = 0.05L (where L 1is a scale factor). The natural current
modes for these frequencies (first through the sixth) are shown in
Figure 4.1 through Figure 4.6. A comparison of these modes with the
numerically obtained modes of Crow, et al. [6] exhibits very close
agreement. Lastly, the natural frequencies as obtained by Crow,

et al. [6] for the crossed wire configuration accounting the radia-
tion losses (with the same dimensions as conschred for results in
Table 4.5) is shown in Table 4.6 for the purpose of comparison. It

should be pointed out that radiation losses could be incorporated

into the presented analvsis using the procedure suggested by Marin

—
4
St
.
=
=
(o
w
[

s reserved for future study.
Coupling coefficient calculations are presented in Appenix A
which completes the SEM analvsis for the crossed wires over a lossv

ground plane.




TABLE 4.5° NATURAL FREQUENCIES FOR CROSSED WIRE
CONFIGURATION OVER A GROUND PLANE FOR

L R = L, ia/if = 1.9412 (using current

source excitation).

¥ Sl/Lc
1 i 2.5680
2 j 3.1416
3 j 4.0157
4 § 6.2834
5 j 7.9421
s j 9.4248
7 §10.9614
8 §12.5665
9 jl4 6408
10 §15.7080

* =
With reference to Figures 2.3 and 2.5

TABLE 4.6 NATURAL FREQUENCIES FOR CROSSED WIRES (as
obtained by Crow, et al.) FOR £1+ Lf 3

g f2_ 2, B/L = 8.1, a/L = 0.05.

a r

X SJL/C

1 -0.0202 j 2.4525

2 -0.0426 j 2.7604 i
3 -0.0470 3 3.9166 fs
4 -0.1775 i 5.9389 |
5 -0.3015 § 7.7876 g
o -0.3289 i 8.3861 }
7 -0.5359 410.7325 '
8 -0.8424 §12.0186
a -0.7667 j14.1852 |
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Figure 4.1: Yatural current mode for a crossed wire

Structure over a ground plane, transmission
line formulation results for L = 2 =+ ;f'
ia/lf = 1.9412 (arrows indicate directions
assumed for positive current).
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Natural current mode for a crossed wire
structure over a ground plane, trans-
mission line formulation results for

L =29, = la el Za/lf = 1.9412 (arrows
indicate directions assumed for positive
current).




Fisure 4.3: Natural current mode for a crossed wire

structure over a ground plane, trvans- v

mission line formulation results tor 5
)¢ 2 i, Bl 1. Q419

L w28, = tg * Lp g Lafle = 1.9412 (arrows L

indicate directions assumed {or positive

current).
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igure &4,4:

Matural current mode for a crossed wire
Structure over a ground plane, trans-
nission line rormulation results for

L = JC“ = CJ - Cf, (J,if = 1,9412 (arrows
indicate directions assumed for positive
current).

i i st



Figure 4.5

Matural current mode for
structure over
mission line
L= ey = 1y + gy Lg/lp =
lndicate directions assumed

current)

1

a crossed wire
a4 ground plane, trans-
formulation resulrs for

; ot ;

L9412 (arrows

for positive




Figure 4.6:

Natural current mode for a crossed wire
structure over a ground plane, trans-
mission line formulation results for

L = “C\.) = "J = ,‘:. 3 "il" ‘f 109512 (drrows
indicate directions assumed for positive
current).




SECTION V
CONCLUSTON AND COMMENTS

The study of wire configurations in the proximity or lossy
ground is useful in the EMP simulation studies of aircraft [18].
As compared to other more elaborate, complex and purely numerical
techniques utilized for this interaction problem. the theoretical-
numerical approach presented here isvmuch simpier. écéidcs. the
step-byv-step approach enables the reader to obtain a clear under-
standing of the interaction problem.

In case of a single wire over a perfectly conducting ground
plane, the natural frequencies, as shown in section 3.2, are inde-
pendent of the height above the ground. It should also be noted
that in this case the imaginarv parts of the natural frequencies
are close to those of the wire in free space. For the single wire
above lossv ground plane the natural frequencies for different
ground parameters are tabulated in Chapter IV. Tables 4.1 and 4.2
reveal that for a tvpical set of parameters such as radius of wire,
height of the wire above a ground plane, and length of the wire,
with the change in ground conductivitv and dielectric constant,
there is not much change in the resonating natural frequencies
(zeros). But Tables 4.3 and 4.4 indicate that the real part of the
zeros becomés more negative with the decrement of the height of the
single wire above a ground plane. The agreement of this observa-
tion with the results obtained by other investigators verifies the

presented analysis of thin wire configurations.

43
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It should also be noted that the crossed wire configuration
illuminated by a plane wave does not excite all the natural modes.
However, the crossed wire configuration excited from either end by
4 current source excitation does excite all the natural modes. The
determined natural frequencies and the associated natural current
modes thus obtained are in good agreement with those obtained by

Crow, et al. [6] (as shown in Tables 4.5 and 4.6, and Figures 4.1

through 4.6). i e
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APPENDIX A

TURAL MODES AND COUPLING COEFFICIENTS

The analytical expressions for the natural current modes for

first six natural frequencies as listed in Table 4.5

have been presented here:

For the n = 1

If(z',j;c,“)

I“‘('\",ju‘ 1)
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The coupling coettficients for the first six natural modes are
obtained as follows: -

1

For n = 1 mode
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For n = 4 mode
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