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ABSTRACT

Computerized pattern recognition was used to look for characteristics of
new nickel-cadmium spacecraft cells which would be predictive of later
performance under stressful conditions. It was found that the changes
in voltage while a cell was being charged could be used to make a rough
estimate of its lifetime. The standard deviation in the predicted lifetime
values was somewhat smaller than the standard deviation of the lifetime
distribution as a whole, and there are indications that a more extensive

data set would yield better results.




When subject to stressful conditions, supposedly identical nickel-
cadmium cel[s will display a wide range of lifetimes. Variations in life-
times between 50% and 100% are not uncommon for cells which are charged
and discharged in an identical manner. The purpose of this work has been
to identify characteristics of a cell just off the production 1ine which will
be useful in predicting extended performance and time of failure.

Since prediction of battery lifetime is particularly important for
spacecraft applications, an extensive testing program for sealed nickel-
cadmium cells used in satellites was implemented by NASA at Crane Naval
Weapons Support Center in 1974 (1). Cells were subjected to harsh operating
conditions to cause accelerated aging and early failure. It was hoped that
accelerated testing would be faster and cheaper than the previous practice

of testing the cells under conditions identical to what they would encounter

on the mission,while producing results which were just as relevant.

Before the cells were cycled to failure at Crane, a series of pre-tests
were carried out on them by the manufacturer, General Electric. In these
. tests, the internal pressures and voltages were recorded at different

intervals as the cells were charged and discharged. The length of time it

took each cell to discharge to 1.0 volts was also monitored.

We have used several different pattern recognition (2 - 5) techniques
to look for relationships between the performance of cells in these pre-tests
and their lifetimes. See Table I for a 1ist of features extracted from these
tests for use in pattern recognition.

Correlations between the pre-tests done by the manufacturer and the
accelerated 1ifetimes were complicated by the fact that the test program at
Crane was factorially designed (6). Eight different test design parameters

(factors) were varied over five different levels to show the effect of changes
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in cell construction and also to allow extrapolation from the severe testing
conditions to normal conditions.

To get information on the effect of design and component changes,

3 of the cell's construction parameters were varied. These were the
concentration of the electrolyte, the volume of the electrolyte, and the
negative precharge. The possible values for each of these design parameters
are given in Table II. There were 14 different combinations of these parameters
among the cells that were examined.

To allow for extrapolation of the accelerated results to normal
operation the cells were grouped into packs of 5 or 8, and each pack was
cycled under conditions different from other packs. Different permutations
of the cycling conditions in Table III were used.

The wide range of testing conditions made the comparison of lifetimes
between packs difficult. Cells in one pack lasted an average of 18 cycles,
while cells in another pack lasted for more than 10,000 cycles. To remove
the effect of unwanted variables from the data, the quality of each cell was
measured relative only to other cells which had been cycled under identical
conditions. Each was assigned a relative lifetime number (RLN) which is
defined below:

RLN = N/A
where, N = # cycles until cell failure
A = average # cycles for all failed cells in the pack.

A cell was considered to have failed if it developed a dangerously
high pressure (> 250 psi), was shorted, or would not charge to minimum
voltage. Only cells that had failed by June of 1977, and which belonged to
packs in which at least two other cells had failed, were included in the

analysis. There were 220 such cells.
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Two different approaches were taken in a search for tests with predictive
information. The first was to use a two-class training set created from the
relative lifetime distribution to predict whether a cell would be “"good" or
"bad”, without saying anything about how good or bad it was. The second
approach was to use different combinations of tests to make predicitons
of relative lifetime. The variance of the predicted values from the true
values was taken as a measure of the usefulness of the tests used in

prediction. Both methods will be descirbed in more detail.

Analysis Using a Two-Class Training Set

Since the results of a predictive test will eventually be used to
decide whether or not a cél] is adequate for a given application, it seemed
reasonable to dividé the cells into two classes. A boundary was drawn in
a low density region of the relative lifetime distribution, and all cells
with 1ifetimes below the boundary were considered to be "bad". Several
different boundaries were tried.

Histograms were then used to look for features in the manufacturer's
test which would show a difference in the behavior for good and bad cells.
A predictive feature would be indicated if good cells fell in one region of
the histogram, and bad cells in another. Such a feature is shown in
Figure 1.

No features were found where there was a sharp difference between the
good and bad cells. However, it was noticed that there was a high degree

of clustering with respect to cell type (the 14 different combinations of

design parameters). In an effort to remove this major variation in the
data to look at underlying clustering by cell quality, the manufacturer's
tests were "type-autoscaled". This means that for each test all the feature

values for cells of the same type were pulled out of the distribution,
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autoscaled separately, and then returned to the distribution. This
procedure eliminated any differences in the magnitude or the standard
deviation of the data that were caused by variation in the composition of
the cell. This procedure is illustrated for an ideal distribution in
Figure 2. (Autoscaling replaces each data point in a distribution with its
distance from the mean. The distance is expressed in units of standard
deviations. All autoscaled distributions have a mean of 0 and a standard
deviation of 1.)

Clustering was also found with respect to the date on which the data
were taken. Therefore, the tests were also "date-autoscaled" in a similar
manner.

A one-dimensional K-nearest-neighbor analysis was conducted on both

the scaled and unscaled data. The features which showed the best classifi-

cation accuracy were then combined to form a 26-dimensional space. Iterative
feature selection (7) was used to improve the K-nearest-neighbor classifica-

tion accuracy in this space by reduction of dimensionality.

Cluster Analysis

The main problem in the use of two-class pattern recognition for the

prediction of cell lifetime is that the results are highly dependent on

PO |

the initial class definitions, and these definitions were made rather

arbitrarily. If the performance of cells falls naturally into three or

NN Y I,

four classes instead of two, then one may be ignoring a good deal of
predictive information by separating the cells into only two classes.

To avoid this biasing of the results, a non-parametric hierarchical

S

clustering algorithm was used to examine the natural clustering of the

data for certain types of features.
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The particular algorithm which was developed seeks out "valleys"
in a distripution using the fixed neighborhood classification rule
described in Reference 8.

The fixed neighborhood classification rule involves the four
following steps:

1) Make some initial rough assignment of the clusters.

2) For each data point, find all other points within a given
fixed radius (r), and determine which clusters those points
belong to.

3) Assign the point in question to the cluster which has the
most members within that radius.

4) Continue steps 2 and 3 until no more changes are made in

cluster membership.

Several passes through all the data points are usually required before

the cluster boundaries settle in low density regions.

Part of the versatility of the algorithm is due to the fact that the
choice of r affects the size of the clusters which are formed. A variation
of r from small to large values will cause merger of clusters at different
levels. This can be used to produce a hierarchical map which shows
similarity between clusters.

The initial assignment of clusters is important in that a good first
choice can greatly reduce the amount of time required by the algorithm to
adjust- the cluster boundaries to regions of low density. We have found
that most of the common procedures for initial cluster generation are
inadequate because they often draw the cluster boundaries in regions of

high density, far from the valleys where they eventually end up.

............
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To remedy this problem, a new cluster generation scheme has been
implemented which involves the following two steps:

1) Each point is assigned to be a cluster generating nucleus.

2) The nuclei are sequentially expanded to include their two nearest

neighbors, provided that the neighbors are within r.

Using this procedure, initial clusters a;e always generated in high
density regions and éxecution time for the rest of the program is usually
greatly reduced. When compared to a method in which the space was divided
into cubes which defined the initial cluster boundaries, the number of
passes through the data was reduced by a factor of five.

The algorithm just described was used not only as a tool to examine
the characteristics of a space drawn up from a specified set of test
features, but also to choose sets of features which optimized the
clustering of cells of similar relative lifetimes. It searched for a
combination of features which would maximize J, where J is defined in
Equation 1. A J value of 100 indicates a perfect predictive feature.

n wev
El[l - (gey)] (100)(n, )

j - 1 (1)

Jd =

where, n = # cells
N, * # cells in the cluster
i
wev, = variance in relative lifetimes for the cluster

BCV = between cluster variance in relative lifetime.

--------------




RESULTS

The k-nearest-neighbor analysis using a two-class training set was not
able to find any features in the manufacturer's test data that would give
an overall classification accuracy of over 75% for all 220 cells considered

together. However, when the cells of each type were separately analyzed,

much better results were obtained. For example, when cells designated by
Crane as group 4EJr were looked at alone, it was found that the slope of
the voltage vs. time curve (type-and data-autoscaled) as the voltage reached

95% of its maximum value was a good feature for distinguishing between "good"

and "bad" cells. Using only feature #16 (AV at 8-4 hours) a k-nearest-neighbor
analysis correctly classified 90.7% of the cells. This was done with the
boundary drawn in the relative lifetime distribution such that 70% of the
cells were considered good. Looking at the results in more detail, 93.3%
of the good cells were correctly identified, while 84.6% of the bad cells
were correctly identified (Table IV). Bad cells were clustered into two
groups, one at 0.38 standard deviations from the mean, and the other at -1.33
standard deviations. The K used was 1. See Figure I.

During other cycles of the manufacturer's tests, the cells from group
4E behaved in a similar manner. Feature #23 from the fourth cycle

(AV at 24-16 hours) again showed a cluster of bad cells at .38 standard

deviations.

S —

Results for other cell types are also summarized in Table IV.
. ¥ Group 4E consisted of cells which had a KOH concentration of 30%, a KOH
ﬁ volume of 19.5 ml. and a precharge of 2.8 amp hours.
®
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The successful classification results obtained when the cell types were
looked at individually (Table IV) indicated that the analysis of the entire
distribution (after type-autoscaling) gave poor results (75% classification)
for reasons other than a lack of lifetime information in the data. Apparently
the differences between cell types either caused more than a simple change
in the magnitudes of the measurements made by.the manufacturer, or else
caused some new mode of degradation and failure during the accelerated
cycling. In either case, the relationships between the initial tests and
the relative lifetime distribution were changed sufficiently for cells of
different composition that different features in the manufacturers' tests
were useful in prediction of lifetime. It was for this reason that the
valley seeking clustering algorithm was used to find cell types which were
similar enough in their behavior to be grouped together for the creation of
a larger prediction set.

In Figure 3 a hierarcial map produced from the cluster analysis
shows which cell types are most similar in a space created from the unscaled

cell parameters (precharge, etc.). Each cluster at the base of the map

represents a unique type of cell. The cell types have been labeled by the

Ei numbers which were assigned to them at Crane (group #).

Another map (Figure 4) was constructed from an 8-dimensional space
which was formed from non-autoscaled pressures from the middle of 4 different
® charging cycles. Note how similar the clustering is to that in cell parameter
space. The same smaller clusters, which are composed mostly of cells of
n: identical composition, merge to form 3 major clusters. These larger clusters
i_ represent three different manufacturing lots; platelots 1, 2 and 4. This
Ef does not necessarily mean that there was a change in the plate/composition

between runs, because the clustering in cell parameter space, which only

.................................
..............................
...........................................
.............................................
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considered the concentration of electrolyte, the volume of electrolyte
and the precharge, also showed 3 major clusters.

Clustering in a 2-D feature space created from features #6 and #12
(the discharge time to 1.0 V) showed clustering by lot number. There were
two major clusters, one corresponding to lot 1, and the other to lots 2
and 4 (see Figure 5).

Voltage features were less sensitive to variations caused by cell type.
The cells in small clusters were fairly homogeneous in composition, but
the marked separation into 3 major cell types at high levels was not as
evident. It is perhaps for this reason that voltage features were more
useful in prediction than'pressure features.

For the clustering at large r, it was postulated that all cells in
one lot may behave enough alike to form a common prediction set. To test
this hypothesis, cells from lots 1, 2 and 4 were examined separately for
clustering by relative lifetime. In large clusters, only clustering by
cell type was found, but in the tiny clusters of two or three cells, a
fair degree of separation by lifetime was found.

This Tow level separation into clusters of cells having similar life-
times is shown in Figure 6. This hierarchical map was produced from a
3-D space constructed from the best features for 1ot 1. The J value for
the smallest clusters was 66.2, so the average within cluster variance in
lifetime was only about 1/3 that for the entire distribution.

Figure 7 shows the low level clustering in the best feature space

for lot 4. Here J was 72.8. The features which produced these maps, along

with the best features for lot 2 are listed in Table V.
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Although clustering by 1ifetime has been shown, the valley seeking
technique used to find the clusters can not be used directly in predicting
the lifetime of a new cell. A k-nearest neighbor algorithm in which the
lifetimes of a cell's k-nearest neighbors are averaged to predict its
lifetime would be better suited. The results of such an analysis using
features from Table V are given in Table VI. ‘- The restriction that a cells
neighbors must be within a fixed minimum distance was imposed so predictions
were not made for all cells.

The k-nearest neighbor resuits were not as good as might have been
expected from the cluster analysis. This was due in part to the crossing
of cluster boundaries when large k's were used. Better results were obtained
when the lifetime of a cell was predicted to be the mean lifetime of the
nearest cluster. It must be remembered, however, that in this case there
was some biasing of the results because the cell's lifetime that was being
predicted went into making up the mean of the nearest cluster.

Better results were obtained in all cases when the maximum nearest
neighbor distance allowed for a prediction was reduced. This is yet another
indication that cell quality causes only minor (but significant) variation

in the initial performance of a cell, and looking at larger variations will

not be helpful.

In Figure 8 the performance of the KNN algorithm for all 220 cells

;' as a function of the maximum neighbor distance has been displayed. The
ij feature space was created from all 8 features listed in Table V. The circles
ii contain the number of cells for which predictions were made. It is easy to

> see that the deviations of the predictions from the actual relative lifetimes

were very small when only cells in high density regions (low maximum NN
distances) were considered. Unfortunately there were few cells in these

ii tightly clustered regions.

.
-
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CONCLUSIONS
Voltage features have been found to be more predictive than pressure
features. When all features in which J was greater than 65 and the percentage

of cells clustered was greater than 45% were examined, voltage features

appeared 36 times compared to 13 times for pressure features. Time

g required for discharge to 1.0 V was as predictive as the voltages during

E a charge.

{f Clustering by cell quality (relative 1ifetime) is much less pronounced

than clustering by other variables such as cell type for the features

examined thus far. More precise prediction of cell lifetime will probably

require inclusion of detailed knowledge of cell cons“ruction and how 1ife-
time is affected by construction variables. It is hoped, however, that
the analysis of the shape of better defined charging and discharging curves
will yield features which are less dependent on cell type. McDermott and
Sommerfeldt have begun such an analysis on curves recorded during the
accelerated cycling at Crane, using exponential fit parameters as features (9).
No conclusive results are yet available.

When usi:g the best features that have been found so far to test a
given type of cell, a good prediction set would require more cells than were
used in this analysis. Some cells would fall into empty regions of space so

prediction on the basis of their nearest neighbors would be innaccurate.

Few of the features extracted from the data taken toward the end of a

charging period were found to be useful. Changes in a cell's voltage and
pressure while it is still accepting a charge are much more important than

any overcharge phenomenon. Thus, simply recording the final state of a cell

A "v. " .-. .-_ .!. '-.

{ after a charge will probably not provide any useful information.
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TABLE I.

FEATURES EXTRACTED FROM MANUFACTURER'S PRETEST DATA

TEST
3.1
Charging at 3.0A

3.2
Discharging at 3.0A

3.3, 3.4
Identical to 3.1, 3.2

3.5
Charging at 0.75 amps

3.6
Discharging at 3.0A

4.1 _
Charging at 0.6A

4.4
Discharging at 3.0A

FEATURES

(1) Pressure (t)
(2) A Pressure (t)
(3) Voltage (t)
(4) A Voltage (t)
t =0, 30, 60, 90, 120, 150 minutes

(5) Voltage (t)
(6) Time to reach 1.0V

(7 - 12) Same as 1 - 6

(13) Pressure (t)
(14) A Pressure (t)
(15) voltage (t)
(16) A Voltage (t)
t =4, 8, 12 hours

(17) Voltage (t)

(18) A Voltage (t)

(19) Time to reach 1.0 Volt
t = 60, 120 minutes

(20) Pressure (t)
(21) A Pressure (t)
(22) Vvoltage (t)
(23) A Voltage (t)
t=0, 8, 16, 24, 32, 40, 48 hours

{24) Time to Reach 1.0 Volt
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TABLE I1I
CELL DESIGN PARAMETERS
Concentration of KOH (%) 22 26 30 34 38
Volume of KOH (ml) 17.5 18.5 195 205 21.5
Negative Precharge (amp-hours) 2.20 2.50 2.80 3.00 3.30
i L, A S SRR T LT R R B B T, B A AT e AT T ATk )
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TABLE III
ACCELERATED CYCLING CONDITIONS

Temperature (°C) 20 30 40
Depth of Discharge (%) 20 40 60

Charge Rate* c/4 c/2 G
Discharge Rate* C/2 C 2C
* C =6 amps

o e e ';"'-'v.' F ol

S AT Y '._'.. R R R R A A
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50
80
2c
ac

60
100
4c
8C
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TABLE IV

ANALYSIS OF INDIVIDUAL CELL TYPES

RN TTANE Car Rtk ta syt N geruerTree

CELL s BEST FEATURES TOTAL % %
TYPE GOOD ¥ (ALL DATE AND TYPE AUTOSCALED) % GOOD . BAD
(GROUP #) CELLS  CELLS SEE TABLE I CORRECT  CORRECT =~ CORRECT
4€ 70 40 #16, AV, t = 8 - 4 hours 90.7 93,3 84.6
9 68 19 #3, AV, t = 30 - 0 min. 89.5 92.3 83.3

10 73 13 #22, V, t = 0 hours 92.3 87.5 100
11 76 17 BEST SINGLE FEATURE 88.2 83.3 100
#13, P, t = 8 hours
BEST COMBINATION 94.1 100 80
#7, P, t =0 minutes
#9, V, t = 90 minutes
#13, P, t = 8 hours
#15, V, t = 4 hours
13 77 27 #4, AV, t = 30 - 0 minutes 92.6 95.2 83.3
#4, AV, t = 90 - 60 minutes . - -
#8, P, t = 30 minutes . . ’
14 77 13 #14, AP, t = 8 - 4 hours 100 100 100
15 65 23 #16, AV, t = 8 - 4 hours 100 100 100
16 67 18 #12, time discharge to 1.0V 88.9 91.7 83.3
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TABLE V
CLUSTERING RESULTS

Best Predictive Features For Lots 1, 2 and 4

L S, ST &, R S, LYy

AUTOSCALED
FEATURE COMBINATIONS r

#23, AV at 24 - 16 hrs. .35
#22, V at 32 hrs.
#9, V at 0 hrs.

#9, V at 0 hrs. .05
#12, Time to 1.0V
#9, V at 30 min. .24

#14, AP at 8 - 4 hrs.
#10, AV at 90 - 60 min.

------- AL P T T IY
» Ol T i R

% CLUSTERED
81%

49%

68%

J
66.2

68.0

72.8
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TABLE VI
KNN LIFETIME PREDICTION RESULTS

PREDICTIONS RLN STANDARD STANDARD DEVIATION
MADE (%) DEVIATION IN LOT IN PREDICTED VALUE

K

7 71 0.311 .245
2 o 70% 0.221 .192

7

LOT

59% 0.157 111
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Figure 1. This histogram shows the best two-class separation for group 4-E
cells. A kNN analysis of this distribution resulted in only 3
misclassifications.

Figure 2. Type-autoscaling. The procedure has been exemplified for a
distribution of only two types of cells. In this study it was
used to normalize data from fourteen different cell types.

Figure 3. Clustering in cell parameter space showing the number of cell
types and their similarity. Each line on the figure represents
an individual cell.

Figure 4. Clustering of cells in mid-cycle pressure space. Division of
cells into three major clusters similar to the clusters of
Figure 3. indicates that the pressure behavior is mainly
dependent on variations in the cell construction parameters

E in Table II.
jﬁ Figure 5. Clustering in discharge time space. Note the sharp difference
ki in the behavior of plate lot 1.

Figure 6. Lifetime clustering in lot 1. See Table V for features.

Figure 7. Lifetime clustering in lot 4. See Table V for features.
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Figure 8. Change in the standard deviation of predicted lifetime values
with maximum nearest neighbor distance allow. At low maximum
neighbor distances only tight clusters are considered for
lifetime prediction and predictions are more accurate.
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