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— r ~ :~Extended Abstract ~
;‘. ~

In this presentation we explol) a class of integration strategies~~~at_fall

in between the two extremes of symbolic integration and numerical quadrature ,

which are , respectively, aimed at the computer generation of answers in the

fonn of exact expressions and numerical value 
~~
We
~~rpJ~

rst ii seu~1) ~?e
theoretical advances in symbolic integration~ as metiva ion to the following,

aJLO~ ~~~~~~~~ ~Lthen ,~~ii.~~~three major contexts of applications with attendant case studies~
and finally ecprlv~~ four possible types of strategies for approximate inte-

gration,.~.. In part~?b~4T~~~ shall connent on the feasibility and adequacy (or

inadequacy) of MACSYMA for implementing these strategies.

We begin with theoretical discussions. In this aspect we have discerned two

major paradigms of strategies , which we label the “pattern-recognition paradigm”

and the “problem-solving paradigm”. These labels , though far from perfect, are

chosen to indicate the emphasis only. In the former class ~se include , for

example , Risch’s algorithm, (Ref. 1) and Moses ’ new approach based on extension

operators (Ref. 2). We believe these strategies to be part icularly characterized

by the search for algorithmic techniques to recognize that certain expressions

or operators belong to some specified classes. The problem solving paradigm

is obviously inherited from heuristic strategies of artificial intelligence.

In this latter class we include, for example, Wang’s definite integrations

(Ref. 3) and our elliptic integrations (Ref. 4). All these theoretical

strategies suffer from practical limitations of one kind or another. Notebly

among these are the nultivariate factorization problem, the optimal selection of

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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input vls-a-vis output class of expressions and intelligent choice of contours

for definite integration. The optimal selection needs particular elaboration

here. Take for example the Integration of rational functions. It Is easy to

devise an efficient algorithm to decide if a given rational function can be

integrated in terms of rational functions. &~t such algorithm would be of

extremely limited Interest because it would return a negative answer for most

input expressions, such as something as simple as l/(x+l). The addition of

one ‘new ’ function (logarithm) in the output class dramatically expands the

problem-solving horizon. ~~ the other hand , we obviously cannot carry this to

the other extreme of choosing a large number of new functions, lest the result

be next to worthless. Ill these discussions, however, force us to consider what

we mean by ‘usefulness ’ of an output expression, which in turn leads us to

considering three major contexts of applicat ions.

At this Laboratory we have been associated with  an applied mathematics group

which provides consultation and support to a diversity of engineers and scientists.

Although our p icture is s t i l l  sonewhat limited , it does g~~,e us an indication of the

major context s in which integrat ion tools are considered necessary or useful. The

first is the usual exploratory context , where a ~clentist or engineer encounters

isolated Integrals which he needs to tackle. )k~re he typically wants closed

form solut ion, but often settles for an approximate answer. The need here is

based on the motivation to “do something with” the result , that is , to either

study its dependency on some parameters or on some other mathematical operations.

The second context revolves around multiple integrat ion. Ikr e the goal is

usually ,nr*,rical evaluation, but one is interested in reducing the multiplicity

of integration as nnich as possible, because multiple quadrature is costly both

in ccrq’ut ing t tn~ .uht accuracy . The’ third context concerns malt i - parameter

studie s , where the integral depends on a ntmber of parameters, thus mak ing
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nunerical results difficult, if not impossible to interprete . For example, if
the integral is a function of six parameters , the nim~erical result would require

a six-dimensional table or six-dimensional hypersurface to represent. In all

these contexts of applications, current technology forces an investigator to

take either alternative of the two extremes of numerical versus analytic results

(with some exceptions to be mentioned later). It is fair to say that most

“real life” problems are non-elegant in nature and analytic results

are difficult and unlikely to come by. For example, a polynomial of 5th

degree whose coefficients are derived from data or other computations can seldom

be factorized. In most non-trivial algorithms of integration this fundamental

limitation is often fatal, because they involve, in one form or another, partial

fraction decomposition which depends on factorization. All these discussions

point to the need of a compromising approach between the extremes of numerical

and exact integration. Such cn approach (let us call it approximate i~ttgiatioit),

is resorted by scientists and engineers in isolated instances, but has not been

investigated as a possible general purpose tool in the sense of a quadrature

scheme or a symbolic integrat ion algorithm. The inportant point to stress is

that the approximate approach is intended to yield an output that is an expression,

rather than a table of numbers. At this stage we have examined four broad

categories of such approximate schemes. The first constitutes in the approxi-

mation of the integraitd by a set of basis functions such as polynomials or

splines. There have been some isolated applications using such approximation,

for example, in finite element analysis. The second may be labelled interpolatory

scheme. Here the spirit is analogous to the derivation of quadrature schemes,
• i.e., by approximating the integrand by some interpolation formula and then

integrating term by term . The third approach is based on a reduction of trans-

cendence of the integrand. For example, if it is intended to integrate the sine
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of a polynomial, one may approximate the sine by a rational function and thereby

reduce the entire problem to one of integration of rational functions. 
• 

The last

is to compute a parameterized set of integrals by quadrature and then approximate

the answer by some basic functions. This approach can hardly be considered( under the umbrella of integration (it is more of a curve or surface fitting

problem), but it may turn out to be very useful in some contexts. In the

presentation we shall provide a concrete example for each approach and discuss

the MACY~ Lk relevance to each. Though we do not have a coherent theory behind

each, we believe this investigation is a modest beginning of approaches of
- practical significance.
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